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ABSTRACT

‘ The first part of this report presents a collection of typical 3-body . ¢
'trajectories from the 'Ll libration point on the Sun-Earth line to the Earth. ' N
These trajectories in the Sun-Earth system may be grouped into four :
distinct families which differ in the transfer time and AV requirements.

Also included are curves showing the variations of AV with respect to

transfer time and typical 2 and 3-impulse primer vector histories.

The second part of the report deals with the development of a 4-body
trajectory optimization program to compute fuel optimal trajectories
between the Earth and a point in the Sun-Earth-Moon system. It presents
methods for generating fuel optimal 2-impulse trajectories which may
originate at the Earth or a point in space and fuel optimal 3-impulse
trajectories between 2 points in space. The extrapolation of the state
vector and the computation of the state transition matrix are accomplished
by the Stumpff-Weiss method, The cost and constraint gradients are
: computeci analytically in terms of the terminal state and the state transition
matrix. The 4-body Lambert problem is solved by using the Newton-
Raphson method. An accelerated gradient projection method is used to
optimize a 2-impulse trajectory with terminal constraint. The Davidon's

Variance Method is used both in the accelerated gradient projection method

and the outerToop of a 3-impulse trajectory optimization problem, This
method is preferred over many others mainly because it does not require
a one-dimensional search, Several well-known methods which have been
successful in solving 2-body trajectory optimization problems perform
poorly in the 4-body system. A brief qualitative comparison of these
methods is given,

An example of a 4-body 2-impulse transfer from the L1 libratidn
point to the Earth is included. The difference between this trajectory

and a 3-body trajectory of the same transfer is readily discernable,
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INTRODUCTION

This report is divided into two parts. The first part is a collection
of typical 3-body trajectories from the L1 libration point on the Sun-Earth
line to the earth, They are generated using routines based on the program

(1)'

developed by D'Amario The extrapolation of the state vector is

accomplished by the Wilson's version of the multi-conic method(s’ 9).
These trajectories in the Sun-Earth system may be grouped into four
distinct families which differ in the transfer time and AV requirement.
The effect of the moon is approximated by adding the mass of the moon
to the mass of the earth and increasing the initial parking orbit radius
so that the velocity is the same as in a 100 n. m. earth orbit. Also
included in the first part are curves showing the variations of AV with
respect to transfer time and typical two and three-impulse primer vector

“histories, The experience gained in solving the 3-body trajectory
optimization problems has been most valuable in the subsequent develop-

ment of the 4-body trajectory optimization program.

The second part of this report deals with the development of a
comprehensive program to compute fuel optimal 4-body trajectories
between the earth and some point in the Sun-Earth-Moon system. The
moon is treated as a separate entity. The basic building blocks of the

~— ————program-are-the-integrator and-the iterators._ The manner in which

these building blocks are connected depends on the selection of the
dependent and independent variables. The integrator uses the Stumpff-

a0, 1) 4, extrapolate the state vector and to compute the

Weiss metho
state transition matrix. An important feature is that the cost and
constraint gradients can be computed analytically in terms of the terminal
state and the state transition matrix, This method does not require the
switching of coordinates and generates its own ephemerides. The
iterators solve the boundary value problems to satisfy terminal conditions

or to optimize AV with or without terminal constraints.

The generation of a 4-body fuel optimal trajectory is considerably
more difficult and time-consuming than in the 2-body system mainly

because of the increased difficulty in solving the Lambert problem. In



a 4-body 2-impulse transfer it is generally necessary to go through a
search process to obtain an initial estimate of the required velocity, If
the initial estimate is reasonably good so that the terminal miss is small,
an iterative solution of the boundary value problem will converge to the
required velocity. If the boundary conditions and/or the transfer time
are changed, the required veloéity for the perturbed trajectory may be
obtained by iterating on the Lambert solution for the reference trajectory
provided that the changes are kept small. In general, the solution of the
Lambert problem will require several iterations, each involving a costly
function evaluation (the extrapolation of the state vector and the state
trénsition matrix). On the other hand, the computation of the gradient in

terms of the terminal state and the state transition matrix is trivial,

A number of iterators which have been successful in solving 2-body
trajectory optimization problems perform poorly in the 4-body system.
They either require too many function evaluations or just fail to converge.

The selection of iterators is thus of major importance.

Some reduction in computer time is possible by a judicious choice
of the independent variables. For instance, the classical choice of the
independent variables to optimize AV in a 2-body 3-impulse transfer
is the position and time of the interior impulse(z' 3),

AV with respect to the independent,variables may be expressed in terms

The gradient of

of the time derivative of the primer vector. Since the solution of the
2-body Lambert problem is a single step process, there is no inner loop
of importance. When this approach is applied to a 4-body problem, it
would require the solution of two difficult inner loop Lambert problenis
to satisfy constraints at two places and an outer loop to optimize AV,
The 4-body problem is highly non-linear in that the inner loops will fail
to converge unless the changes in the interior impulse position and time
as generated by the outer loop are heavily constrained. As a result,

the progress to a converged solution tends to be very slow.

In view of the fact that'the reference and the perturbed trajectories

are requi’bed. to satisfy the same boundary conditions, there are only



four degrees of freedom. Thus, a better approach is to iterate on the
initial required velocity and the time of the interior impulse in the outer
loop. The effect of this change is that one of the two inner loop Lambert
problems is eliminated. The gradient of cost with respect to the new
independent variables may be computed without computing the primer
vector. This new approach results in a significant saving in computer
time. To insure convergence the required change in the interior impulse
position with respect to the reference trajectory for the remaining
Lambert problem is introduced in increments rather than in one single
step. After the problem has converged to a solution, the primer vector
history is computed to determine whether the trajectory is optimal or an

additional impulse is required.

The 4-body trajectory optimization program provides the capability to
compute 2-impulse transfers between the earth and a point in space with
or without optimization and 3-impulse fuel-optimal transfers between
two points in space. The 2-impulse transfer may originate from the
earth or a point in space, The terminal condition of a point to earth
transfer may be either of a point to point type (PTP) or of a point to
radius type (PTR). The initial condition of a transfer from the earth to a

point in space is of a PTP type in which the initial position is also varied

ra

This report is concluded by showing an example of a 4-body 2-
impulse transfer from the L, libration point to the earth. The transfer
time is chosen to be the same as the typical loop type 3-body trajectory..
The difference between the 4-body and 3-body trajectories is readily .

discernable.



PART 1

EXA,MPLES OF THREE-BODY TRAJECTORIES



I.1  Generation of Three-Body Trajectories

Both 2-impulse and 3-impuise trajectories in the 3-body system
have been generated between the L, libration point on the Sun-Earth line
and the earth. The motion of the earth is assumed to be circular around
the sun. The trajectories of the earth and the vehicle are confined to the
ecliptic. The 2-impulse transfer originates from the L1 point and
terminates at the earth with a given radius and zero radial velocity. The
terminal radius corresponds to a parking orbit which would give the
same circular velocity as in an 100 n. m. orbit after adding the mass of
the moon to the mass of the earth.

The procedure used to generate a typical family of 2-impulse
trajectories are as follows.
1. A magnitude of the required velocity at L is selected and the
direction relative to the Sun-Earth barycentric line is varied.
The state vector is extrapolated to a prescribed terminal time
(8)  The
~ state transition matrix is computed along with the trajectory.

using the Wilson's version of the multi-conic method

A field of trajectories is generated in this manner. An initial
estimate of the required velocity is obtained from the trajectory
which has the smallest miss distance.

2. The éonstgqini gradient is computed in terms of the terminal

state and the state transition matrix, The Lambert problem
is then solved by iterating on the initial velocity using the
Newton-Raphson method until the desired terminal conditions
are satisfied. ‘

3. The terminal time is varied and the Lambert problem is
re-solved using the required velocity of the reference
trajectory as the initial estimate. A parabola fit is used
to extrapolate the required velocity from three adjacent
Lambert solutions.

4, The variations of AV with respect to flight time is plotted.
The primer vector history of the two~impulse transfer which
requires the minimum AV with respect to the flight time is

examined.



5. If the magnitude of the primer vector history exceeds one, a
three-impulse trajectory is generated using a method similar

to the one described under Part II.

[.2 Examples of Typical 3-Body Trajectories from L1 to Earth

The 3-body trajectories may be grouped into four distinct families.

Typical trajectories of these families are summarized in Table I.

The first three families of trajectories have corresponding
trajectories found by previous investigators for moon to Lo transfers
in the Earth~Moon system. The last family is new.



TABLE I

Typical 3-Body Trajectories

Typical 2-Impulse Trajectories Av Primer
. ~ ' i . . Vector
Family Transfer Traj. AV Primer Vs History for
Time (m/s) Vector | Time | 3-Impulse
(Day) History Trajectory
Fast (L1 to
leading edge 33.563 Fig. 1 454,446 | Fig. 2 Fig. 5 Note 2
of earth)
Fast (L1 to
trailing edge 35.563 Fig, 3 341,350 | Fig. 4 Fig. 5 Note 2
of earth)
Loop type 116, 682 Fig. 6 272.137 | Fig. 7 Fig. 8 Fig. 9
Double pass ,
type 174,32 Fig. 10 | 203. 34 Fig. 11 Fig. 12| Note 3
' Note 4
NOTE:
1. Mass ratios used are shown in Appendix A,
2. The 2-impulse transfer is fuel-optimal. A third impulse is not
_required.
3. A converged solution to a 3-impulse transfer has not been obtained.
4, Extrapolation has not been carried out far enough to establish

the flight time for minimum AV,
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PART 1I

FOUR-BODY TRAJECTORY OPTIMIZATION

‘6
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II.1 General

The basic building blocks of the 4-body trajectory optimization
“program are the integrator and the iterators. The integrator is the
routine to extrapolate state vector and compute the state transition
matrix, The iterators are the routines to solve boundary value problems
with or without optimization. ‘The types of problems which will be

encountered may be classified into three groups.

1. No optimization - Solution of Lambert problem to satisfy terminal
constraint only.

2. Optimization only - Example - outer loop of a 3-impulse transfer
Optimization with constraints - Example - two-impulse transfer

from the earth to a point in space

The structure of the program is determined by the choice of the

dependent and independent variables,

II.2 Coordinate System

All coordinate systems are three dimensional, non-rotating,
parallel Cartesian systems with their origins located at the center of
mass of the body. The x-y plane of the sun-centered system lies in the
ecliptic. The orientation of the axes in the ecliptic is not specified and
will depend on the source which provides the ephemerides for the initial
conditions. A possible choice, for example, is to require the x-axis to
intersect the Vernal Equinox at the beginning of the nearest Besselian

year.

II. 3 Integrator

There are only two methods which are suitable for use in a 4-body

trajectory optimization program. They are both multi~conic methods.

(8)

The first version is due to Wilson and the second version is due to

Stumptf and Weiss'1?,

The major difference between the two methods
is that during each time step the former computes the two-body conics
in sequence while the latter computes them in a parallel manner. Ina

4-body space the Stumpff-Weiss method has the following advantages:

21



1. At eéch time step, no logic is required to determine the proper
sequence of computation of the conics. While this is not a problem
in a 3-body space, it introduces complications in a 4-body space.

2, The method generates its own ephemerides for the 4-body space.
If the ephemerides are read, say, from a JPL tape, it is not

possible to exclude the presence of the other bodies.

Input ephemerides are needed as initial conditions only. The
required inputs are the initial positions and velocities of the earth, moon
and vehicle with respect to the sun at the initial time and the mass ratios

of the massive bodies.

(10)

I1.3.1 Stumpff-Weiss Method

The 4-body space is shown in Figure 13. The position and velocity
vectors of a body are indicated by the second subscript with respect to

another body indicated by the first subscript.

At each time step it is required to compute six two-body conics and
three approximate perturbation vectors. From these conics and perturba-
tion vectors are obtained six reference trajectories., The state transition
matrix is computed from the two-body state transition matrices. The
. reference trajectories are in error equal to the remainders which will
be computed every four time steps to indicate the errors but not used to
correct the reference trajectories. This is because the computed state
transition matrix is valid only for the reference trajectories. If the
errors are too big, ‘the user may decrease the step size or increase the .

number of steps accordingly.

At the first time step, the reference trajectories equal the true
trajectories., At subseduent time step, the reference trajectories are
used as inputs to generate the conics and the approximate perturbations.

The six conics will be generated using Goodyears routines(ls).
They are denoted by: ‘

22



Fig. 13 4 - Body System
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The six reference trajectories are denoted by:
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The three approximate perturbations are given by equations below,

— 30

PSV o= {[Bgpl = I Bgg(0} + {[Bryl - I Pry(0)}
u' sk sk
+ g (B = 7 By + UByyy] - T Bpgy @)
| 1)
K K

ol
[

SE m {[BSM] - J_$SM(O)} - m {[EEM] - J_ISEM(O)}

J— “’E b H’E ’ i
P = ————— {[Pom] -~ I Pap(0)} + ———— {[Brps] = T Props(0)
SM ~ W ¥ Bg PSE PSE TR TR PEM PEm(0)}
where
B; = mass ratio, i = S, E, M
h = step size
5;:.(0) = reference trajectory at beginning of step
i=S, E, M
j=E, M, V
i#j
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The reference trajectory is computed from Equation (2).

Pgy = [Pgyl ¥ Pgy

Psg = [Pgpl + Pgp

Psm = [Psml + Psm |
o (2)

Py = - Pam + Po

EV se tPgvy

Ppmyv = T Psm tPsy

I

EM SE T Psm

The state transition matrix is computed from state transition matrices

of two-body conics in Equation (3)(11).

@ (t+h, 1) = @gy(tth, t) + @y (tHh, t) + oy (t+h, 1) - 27
(3)

e(t+h, t.) = @ (t+h, t) o(t, t )

The errors or remainders in the reference trajectories propagate according

to Equation (4).

.

jav]|

sv = Mg Ssy Y g Bgg ¥ 8gy) T Ey GBoy T Sy

|

se = (BgtHg) Sgg T Hy Bgy - Spw) | (4)

)

juo]l

sm = Mg tHy) Sqm tEE Bsg T SEM
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where

[F..] . T..
-S-i. = ﬁig-'-——’;‘]—g (5)
J (173511 1751

i=18S E M

j = E, M, V

i #j

Since we have used ’r“lJ instead of the true Fij in gij’ the error in

(sij

is h6 if the remainders are used to correct the reference trajectories.

- 'é':':ij) is %, Then the errors in R is also h” and the errors inR

‘The values of R for four time steps are saved and the remainders at
every fourth step are computed using Stirling's five-point formulation

shown in Equation 6(12). :

R (t0 + 4h)

"

h = =
15[64 R (to+h) +24 R (t0+2h)

+64 R (t, +3h) +14 R (t_ +4h)

— h® . 2 =
R (t0 + 4h) 75 [192 R (to +h) + 48 R (to + 2h)

i

+64 R (t_ +3h)
- where t_ = time at beginning of every 4 time steps.

11,4 Structure

The structure of the trajectory optimization program is strongly
influenced by the choice of the dependent and independent variables, A
~ particular choice determines how many integrators and iterators are

required and how they are connected together,

In a two-impulse transfer, the logical choice is the required

26



velocity at the initial time. If the transfer time is fixed and the transfer
originates from the earth, the initial position vector must also be
iterated. The terminal constraint may be of a point to point (PTP) type
or a point to radius (PTR) type. The PTR terminal consists of three
components: the desired radial distance at earth, the desired radial
velocity (usually zero), and the desired orbital inclination angle with
respect to the ecliptic, The PTP terminal is the desired position vector.
The two-impulse transfer is shown in Fig. 18 and 19.

In a three-impulse transfer,‘ the problem is to perturb a reference
trajectory in such a way that cost is reduced.- Both the reference
trajectory and the perturbed trajectory must satisfy the same PTP

terminals. .

' In the classical method.(z’ 3),' the independent variables are the
position and time of the interior impulse (Fm, tm). It requires two
inner loops to solve two Lambert problems to satisfy terminal conditions
att and te and an outer loop to change (Fm, tm) to reduce AV. This
method was developed for two-body problems where the Lambert problem
can be solved in one step. In the four-body problem the solution of the
Lambert problem must be done in multiple steps and is very time
consuming. In adapting the Optimum Multi-Impulse Rendezvous Program
(OMIR)(4) to a four-body problem it was found that most of the computer
time was spent in extrapolating the state vector and solving the Lambert
problem in the one-dimensional search. Furthermore, the four-body
transfer traj‘ectory is very sensitive to changes in Fm and tn The
Lambert problems will converge only when AFm and A‘tm are kept very
small, The net effect is that the reduction in AV is small from one

iteration to another.

The family of the three-impulse transfer trajectories has four
degrees of freedom. It is then possible to change the outer loop indepen-
dent variables from (rm, tm) to (vo, tm). In this ch01ce; ris deter-
mined by Vo and tm’ It is only necessary to iterate on Vm to satisfy

the terminal constraints. In other words, there is only one Lambert
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problem to be solved. Tests have shown that it is possible to reduce
computer time by 50%.

The proposed program structures for 2- and 3-impulse transfers
are shown in Figs. 14, 15 and 16.

I1.4.1 Two-Impulse Transfer from Earth to a Point in Spacé

It is assumed that the initial position of the vehicle lies on a
gircular earth parking orbit of knqwn radius ro and 1s s‘pecified by two
angles, o and 8. (Fig. 17) The initial required velocity is assumed to
- be normal to the position vector and makes an angle y withan intermediate
plane. The XEYEZE coordinates are inertial non-rotating coordinates.
The three angles and the magnitude of the required velocity, Vs are to
be chosen so that the cost of transfer from the earth to a specified point

(P) in a specified time is optimized (Fig. 18).

II.4.1.1 Estimate of Initial Required Velocity at Earth

An estimate of the initial required velocity at earth for a 2-impulse

transfer to a point in space may be generated as follows. Let

FEV = position vector in XEYEZE coordinates
ry = magnitude of position vector
. . . Ry — .
Rotation maj:mces (from X Y'Z  to XEYEZE).
éos o -sin o 0
'Ra = | sina cos o O‘
0 0 1
cos B 0 -sin B
R, = |0 1 0
B -
sin B 0 cos B
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Fig. 17. Initial position and velocity vectors'of a 2 - impulse transfer from earth.

0
ch {ro, a B)

Fig. 18. Two - iinpulse transfer from earth to P.



R, =10 cos vy -sin y

0 sin vy cos ¥

Then

a]
!
o
oy

EV =~ "¢ B

ro cos o cos B

=1r sin o cos 8
ro sin B
0
_V—EV = Ra»Rﬁ Ry vy
| 0
Ivo (-sin o cos y - cos ¢ sin B sin )
=1 v, (cos @ cos y - sin ¢ sin B sin y)
~vO cos B sin y
Yo = Tsv " Tsg T TRy

Vo T Vsv T YsE T VRV

where 'r'o and VO are position and velocity vectors relative to the sun in

X-Y-Z coordinates,

For a specified transfer time and magnitude of the initial impulse
the initial required velocity is expressed in terms of the 3 angles. By
varying @, B and y in small increments a field of trajectories is generated.
A crude search is made first for the required velocity which gives the

minimum miss distance. This is followed by a refined search around
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"~ ‘the above minimum.

II.4,1.2 Cost and Constraint Gradients

) Independent variables:

o
State transition matrix:
Y1 %2
ot to) =
P21 P22
Terminal condition:
¥ o= Tp- Ty

“ Variational equations:
GFf = on GFO '+ ®19 GVO
6vf = Q9 6ro + Qg9 6vo-

The variations of the initial position and velocity are related to the

changes in the independent variables by

ar
oF, = —L 4%
X
Y7
6, = — d&x
, X
- o o - _ f -
o7 = Loy =2 e, 2] ax- L ax

ox ox X
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0 ' -r singcos B
3F °
(o) ! :
— =10 r, cos a cos B
ox I
0 : 0

- i I
r, cos a sin B | O
!
-ry singsing 1 0
|
|
0
!

cos
ro B

-sin ¢ cos ¥ - cos o sin B sin 7| vo(-cosa cos ¥ + sing sin B8 siny) "

7
o) . . ; ' . X oo
—— =| cosa cos ¥ - sing sin Bsiny | vo(-sing cos y- cos a sinf siny)
3% ! o
cos B sin y i 0 :
-V, COS & Ccos B siny 1 v, (sin ¢ sin ¥ - cos o sin B cos ¥)
i

. . |
-v, sin a cos Bsiny ,
1

- i i |
v, Sin B sin vy \

Cost gradient:

Av = Iv‘fd -’Vf|
_ —T = _T
dlavel  -avy wv, -4V
dx lav,| 3% |avg
e 2l
3% 3%

v, (-cos a sin ¥ - sin ¢ sin § cos )

v, cos B cos vy

BTO avo
— + © — :l
T 22 %

[‘le -

Note that only the Av at the terminal point is considered.
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Constraint gradient:

- oF oF o
¥ X “ o x 53 3%

'II.4V‘. 2 Two'-IrjnpulsevTransfer from a Point in Space to Earth

' The 2~impulse transfer from a point in space to the earth is shown
in Fig. 19, " An estimate of the initial velocity may be generated in a
manner similar to the transfer from the earth to a point in space.

. Independent Variabies:

o
State Transition matrix:
n %2
oty t) =
P21  ©ag
‘Variational equations:
6Ff = (912 670
vy = gy OV,
It follows,
Brf )
"
0
7
v 22
Yo
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Cost gradient:

Av = |av |+ 18T = ) - T T Vg - Tl
where
v = VEE unit (&, x7) x ) +7,
1z = —= uni r.Xxv,)xr v
fd Lo f £ f Earth SE
VSE = velocity to ea_lrth
Lep = radial distance of vehicle at earth
AV . Avo i AVf avf-
3V, a7 | |av| a7
- T —T
_ Avo AV,f 0
av | lav,| %2

fd f
L Y
cos id - cosi
Earth
where |
| re = |l
.. FT‘"/
Ty £ Vel Ty
— T—
cosi= u, h/h
h = rfxvf
u, = (0,0, 1)
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/Brf
__aib
% . | %
avo avo
avo
T .
Brf i r. or i
— r —
avo f avo
3 P
avo

dcos i
avo
Define:
R =
vV =
then,
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3h _ h. 3h

- T =

avo avo
ET

-

T (Regy - Vo)

— T
o u
dcosi _ "z

~— S
_avo ‘h

2

(h°1 -BhT) (R @y - V 0p,)

Point to Point Terminal Condition (PTP)

II.4.3 Three-Impulse ‘Transter(?:3)

A 3-impulse transfer between 2 points in space is shown in Fig. 20.
Given a reference trajectory I, the problem is to generate a neighboring

o __traj’efcto,ry I/ satisfying the same boundary conditions at reduced AV,

R "II-.V4, 3.1 Classical Three-Impulse Transfér

In the classical approach, there is an outer loop which iterates on

and t to reduce AV and two inner loops which iterate on Vo and

'Fm- - |

Vm+.tb satisfy bouhd.ary cdnditions at tm and tf res;pecti\iely. The cost

 gradient of the outer loop is expressed in terms of the primer vector
and its time derivatives. ’ | '
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Y e
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— X 4?7
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/43‘ /
n
/\f = Avf
/A‘v}/
©
Mg met) WmO’ u
P
- mo, I
1%
InO) 21 ©
o P
w 25
fmft,, " v
© fa, 1
Y ™ 2 © ,
Ao = fm, 22
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= g, 12 (rn -
e, —
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+ = 1‘270’ 12 :1--
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AV _ —'-+. + -'—-._.
(Am m XIn. Vm)

= - v -
Btm

I1.4.3.2 New Three-Impulse Transfer

The independent variables in the outer loop are changed to VO and
tm. The state vector is extrapolated to 'tm. There is only one inner

loop which iterates on Vm+ to satisfy terminal condition Ffd'

Cost and Cost Gradiént

av = |V |+ 6T |+ AT
— - —_ + - - — -
= |"‘70'V0 |+|Vm "Vm}l'*'lvfd_vfl
AV AV 3V + Av_ o AV . 3V
3AV _ o . m ( m _ - m ) - f - f
v, | AV 0| lav ] v, v, &7 | v,
v, AV v
- —>‘0T +XmT (a—m _ a_-m > - —XfT gv_f_
Yo v o
3 + — - .
aAv=AT<" o )-%,T '
3t Mo Mot 3t Foat
Variational Equations for the first leg
GFm = Pm , 1 61no te o, 12 o (’Dmo, 12 Gvo
va ®mo, 21 Gro Te , 22.7 70 B (pmo, 22 6—0
or =0
o
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- ®mo, 12
o .

— “mo, 22

Variational Equ'a.tions for the second leg

0y = 0=0m 1 5T+ 0 12 67,
o ‘=' Pem, 21 6Fm+ Y Prm, 22 67m+
6Vm+ - - Ptm, 12 Pfm, ﬁ GFm'Jr

Since

dF - = GFm' + vm" dt = GFm+ + vm+ dt

or, * = or - ' -v, D)t

Ovrn+ ‘=—‘p.fm, 12'-1 Ptm, 11 [6Fm— B (?m+ -vm-) dt ]

-1 — a1 -+ _ -
" Pm, 12 Ptm, 11 ®mo,12 Vo T Prm, 12 Ptm, 11Vm V) &
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v q
- " %tm, 12 %tm, 11 °mo, 12
(o]
avm+ 1 .
" = O, 12 P, 1 Vm " Vm )
m
67, = 6F " - -7 Tyat]
Ve T Pm, 21'%"m "V m " Vm m

- =1 _ -1 4+ -
* Oem, 2217 Pem, 12 Ptm, 11%mo,12 %70 T Ptm, 12 Ptm, 11 Vm 7 Vm )ty

- - -1 _
“[@fm, 217 Ptm,22 Prm, 12 Pm, 11} Pmo, 12 %0

-1 o+ -
Tl 0em, 21t Pem, 22 Prm 12 Pem, i) Tm T Vm ) Yy

v
. ) -1
— " [0, 217 Pem, 22 Prm, 12 Ptm, 11 Pmo, 12

BVO

3V, 1 + -

P [‘me, 21" Ptm, 22 Ptm, 12 Ptm, W Vm " Vm ) 9ty

Note: This derivation does not need the computation of the primer

vector and its derivative,

II. 4, 3.3 An Alternate Form of Cost Gradient from Classical Approach

In Classical Approach(z’ 3)

onT: T = |67 |+ |av, |+ |av]
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GJJ:J'V..J = 7 T e

- - T* - -‘:. - _ :
) 0 A, o T AT 6V "Am évm 6rm<
T . *’-—T..; ~“T~._"T+ _— T .
o 6V - Ap OF, = £ 67, = A ov_*. KT o
Since
Sinc ., . x
m ™ m,

R
‘m m 0 ")\m or
< TT+ e L. .
5J = ,\m 5!‘ . . 61»
T+ - .
= /\m (dl‘m Vm dt ) X (d
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If we use the relation

“T- o = _ =T, <T- o~ -
-Xm_érm = )‘o 6vo >‘m 6vm
LT+ . 4+ =T e T+ . +
>‘m Grm = ->‘f 6vf+)\m 6vm
we return to
s L L T v
6J = >‘o 6V0+>‘m (6Vm 6Vm) )\f Gvf

which will lead to same gradient as before, However, if we use the
p T B Y + ’ . = ’
expressions for )\m and Am in
=+ o+ _ET - o~ -
8J = A 6rm A 6rm
we will get a different but equivalent expression for the gradient. This
is because of —>‘o and Xf are related through the relation

"L 6v - XL 6% = C.

Since
>‘lm - (prno, 11 >‘o +(pmo, 12 lo
>‘m - ‘Pmo, 21 >‘o-_“pmo, 22 Ao
we have
X, - 1o - %)
o  ®mo, 12 (A Pmo, 11 o
X = o+ T - )
m (pmo, 21 %o wmo, 22 <pmo, 12 m <pmo, 11 )‘o
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Similarly,

‘-3/, :
!
5
3
[
ot
>
8
+
s
3
[ V]
[\V)

6J =Am T -
m m érm
- vT+
= AL [6F T L +
m m "y -v ) A
) m "V )dtm]"kgl GFm—

i
~—
]
6
3]
o
Do
Yl
+
AS)
B8
O
[\
Do
S
g8
o
ot
no
<
8
O
=
s
o>‘

*+ [o -1
£ ( A 3T
| m, ‘12 q’fm, Ay - >‘f”T (Vm+ h ) dt
Thus ' | ) )
24V
————— X -~ ‘ '
av {[ qDnlo 21 +(p !
- , mo, 22 Pmo, 12 ®mo, 11! A
) s Y

[o -1 ' '
fm, 12 @py 4y +
fm, 11 (‘Dmo, 22 <pmo 12 ~1]x
, s “m

+ 13
0 T
m, 12 Al 12
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AV  _ -1 - —nT = + = -
= 0pn 12 @em, A -2 O~V ) dt

Btm

These cost gradients are different in appearance from the previous

result.
The constraint gradient with resi)ect to the required velocity in the
inner loop of the three-impulse case is the same as shown in the two-

. . . - +. —
impulse transfer from a point to earth by iterating on Vi instead of Vor

11.4.3.4 S.o-lution,.of Inner Loop Lainb'ert Problem in Increments

The change in the interior impulse position, d?m, between the
perturbed and reference trajectories due to changes in 70 and ty is
usually so large that the 7m+ on the reference trajectory is a poor
estimate for the inner loop Lambert problem. This difficulty can be
alleviated by introducing d?'m in increments rather than in one step.
(Fig. 21).

| Using VO, 'tm from the outer loop, we extrapolate the state vector
to 'tm to obtain ro

Let n = number of increments

dr
Arm = -5
i=20
Procedure:
1 r‘m, new r‘m, old +-Arm
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— + _ -1 L —
2. AV T T @, 12 Pem, 11 A'm
— * P + AT +
Vm, new = 'm, old AVm
3. Eolie inner loop Lambert ;problem from rm’ new to req using
Vm, new 25 the initial estimate.
4 - + S
) - 'm, old Vm, new
1nm, old rm, new
j= i+l

d. If j <n, go to 1.

I1.5 .If.era.tto.r.s

The major cost in computer time in a 4-body trajectory optimization‘
problem is in function evaluation. Each function evaluation consists of
the extrapolation of the state vector and the state transition matrix to the
terminal time in multiple steps. The computation of cost and constraint
gradients in terms of the terminal state and the state transition matrix is

trivial.

The solution of the optimization problem will in generél require
several function evaluations. It is a difficult problem for two main reasons. -
1). The problem is highly nonlinear. Only small variations from a

reference trajectory is possible to insure convergence.

2).  The cost function is often non-unimodal in a search direction. Any
accelerated gradient method which requires an one-dimensional
search must use some bracketing procedure to locate even a crude
minimum in the search direction. A .simple bracketing procedure
will require several function evaluations. As a result, the cost in
computer time in'an one-dimensional search can easily become

prohibitive, '
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During the early stage of the development considerable effort was
spent in evaluating iterators which have been used successfully in
solving 2-body trajectory optimization problems. Some qualitative
comparisons of their effectiveness in solving the 3-body problems are

given below,

I1.5.1 Evaiuation of Iterators

(7)

1. Jacob svd.n.-().ks'man' Me'thod

This is an accelerated gradient method, which was successfully
used to optimize three and four-impulse two-body rendezvous trajectories(zn.
It optimizes a scalar function using cubic fit interpolation in lieu of an

one-dimensional search.

If there are constraints to be satisfied, they can be included only
as a penalty function. The effectiveness of the method is reduced and
the method cannot correct the general deficienéy of the penalty function

method.

This method was used to optimize cost in the outer loop of a
3-body 3-impulse transfer based on the classical formulation. The
progress was very slow because the interpolated minimum falls very
close to the starting point. Here, the advantage of not requiring an one-

dimensional search appeared to be a disadvantage.

2. Fletcher-Powell Adaptation of Davidon's First Method(M’ 15)

This is a popular accelerated gradient method to optimize a scalar
function but it requires an one-dimensional search to be effective, The
algorithm we tested came from a NASA MSC program "Optimum Multi-
Impulse Rendezvous Program (OMIR). n(4) It incorporates an one-

dimensional search method using a Golden Section bracketing procedure
(20)

and cubic fit

We tested it in the outer loop of a 3-body 3-impulse transfer. It

was found that the iterator requires an excessive number of function
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evaluations in the one-dimensional search, About 95% of the computer time
is spent in this effort and the remaining small portion in updating the

- H-matrix and generating a new direction to proceed. The algorithm

was satisfactory for the two-body problems where the Lambert problem

can be solved in a single step and a large number of function evaluations

is not particularly painful. The computation time can be reduced

by a change of variables as suggested earlier but the ratio of time spent

in one-dimensional search and that in generating a new direction will
rerhain unchanged. The requirements of a one-dimensional search is

a definite burden.

3. Campbell-Moore-Wolf Method'®)

This method is equivalent to the Armstrong-Marquadt Method(17’ 18)

in principle. ‘The ai’gorithm we tested came from the Princeton University
program ''Trajectory Optimization Program for Comparing Advanced
Technologies (TOPCATl)"(5). It is also a penalty function method to

- handle constraints through internally generated weightings inversely
proportional to the squares of the allowable tolerances. However, the
user must supply proper scaling to keep numbers within computable

range,

The step size and direction are controlled By an inhibitor, X\. When
X is very small, the method behaves like a Newton-Raphson method to
satisfy the constraint, When X is very large, the method behaves like a
gradient method of a weighted scalar product of the constraint violations,
Thevvalhue of )\ is increased when step size is exceeded or if the residual
grows, It is reduced otherwise. In our test problems, X has a steady
tendency to grow such that not only the step direction is changed but A
also its magnitude is reduced. Neither characteristic is desirable since
the user has no further control over the behavior once the mechanism
for changing X\ has been programmed and it is difficult to change X in

an optimal way.

The method has the inherent difficulties associated with a penalty
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function method. Furthermore, one would normally desire to take
gradient steps early in the process and then shift to the Newton—Raphsqn
method. This method behaves just in the opposite manner. It is also
very difficult to provide the proper scaling to be consistent with the

desired tolerances and computable range.

4.  Modified Fletcher Method

(24)

This is another version of Davidon's method proposed by Fletcher

(23)

search, In testing the method in the outer loop of a 3-impulse transfer

and modified by Powers It still requires a crude one-dimensional

it was found that a crude one-dimensional search as suggested by Powers
did not work. The reason is that the function being optimized.is often
non-unimodal in the search direction. In order to achieve a cost reduction
from the starting point it is necessary to use some kind of bracketing ,
procedure such as one used in 11, 5.1.2, As a result, the number of function

evaluation required becomes much larger than desired.

J1I.5. 2 Recommended Iterators

A thorough evaluation of known iterators leads to the following
selection of iterators.
1. No optimization

Newton-Raphson Method with a simple automatic step size control.

This method will be used in 2 places.
1. Inner loop of a 3-impulse transfer _
2. 2-impulse transfer from a point in space to earth.

2. Optimization only

416)

Davidon's Second Metho This method does not require an one-

dimensional search as in the Davidon's First Me'thod(ls). It has the
advantage of an accelerated gradient method without the penalty of
excessive number of function evaluations. It appears to be the most
efficient method among the ones tested. It will be used in: |
1. The outer loop of a 3-impulse transfer _
2, A 2-impulse transfer from the earth to a point in conjuhction' ,
with the gradient projection method. |
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3. Optimization with Constraints
1. Gradient Projection Method(zz) This method will be used to

generate fuel-optimal two-impulse trajectories from the earth to

a point in space for a fixed transfer time.

T - 9, 25) oo
2. Accelerated Gradient Projection Method(lg’ 25) This is a

accelerated version of the gradient projection method. It is a

combination of the standard gradient projection method and an
accelerated gradient method. The Davidon's Second method will
be used for the accelérated gradient portion of the algorithm. It
will be used as a replacement of the gradient projection method
if feasible.

1.6 An Example of a Four-Body Two-Impulse Transfer

An example of a 4-body 2-impulse trajectory from the L1 libration
point to the earth has been generated., The transfer time is 116.682 days
which is the same as the typical loop type 3-body trajectory mentioned
in Part I. This a a 3-dimensional problem. Both the earth and the moon
have initial position and velocity components normal to the ecliptic., The
projection of the trajectory with respect to the earth in a plane parallel
to the ecliptic is shown in Fig. 22, The 3-body trajectory of the same
transfer time is shown in Fig. 24. It is evident that the 4-body trajectory
is noticeably different from the 3-body trajectory. The presence of the
moon as a separate entity appears to have a very strong effect on the
trajectory. The distances of the vehicle from the earth and the moon
is shown as a function of time in Fig, 25. There are three intervals
during which the vehicle is closer to the moon than the earth. The mass
ratios used are shown in Appendix A. The initial conditions of the earth
and the moon were obtéined from a MAC data file on JPL Development

Ephemeris No. 69,
The primer vector history of this 4-body trajectory is shown in

Fig. 23, It is a fuel-optimal 2~impulse transfer for the initial cond.itions

used. A search for the optimal initial conditions has not been done.
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APPENDIX A

Three-Body Space

n

1. 49597893 x 10° KM

1. 001098 x 10”2

3.0404322 x 10°°

9. 9999696 x 101
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Four-Body Spaée
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APPENDIX B

Accelerations. ..
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