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ABSTRACT

The first part of this report presents a collection of typical 3-body .

trajectories from the L, libration point on the Sun-Earth line to the Earth.

These trajectories in the Sun-Earth system may be grouped into four

distinct families which differ in the transfer time and AV requirements.

Also included are curves showing the variations of AV with respect to

transfer time and typical 2 and 3-impulse primer vector histories.

The second part of the report deals with the development of a 4-body

trajectory optimization program to compute fuel optimal trajectories

between the Earth and a point in the Sun-Earth-Moon system. It presents

methods for generating fuel optimal 2-impulse trajectories which may

originate at the Earth or a point in space and fuel optimal 3-impulse

trajectories between 2 points in space. The extrapolation of the state

vector and the computation of the state transition matrix are accomplished

by the Stumpff-Weiss method. The cost and. constraint gradients are

computed analytically in terms of the terminal state and the state transition

matrix. The 4-body Lambert problem is solved by using the Newton-

Raphson method. An accelerated gradient projection method is used to

optimize a 2-impulse trajectory with terminal constraint. The Davidon's

Variance Method is used both in the accelerated gradient projection method

and the outer loop of a 3-impulse trajectory optimization problem. This

method is preferred over many others mainly because it does not require

a one-dimensional search. Several well-known methods which have been

successful in solving 2-body trajectory optimization problems perform

poorly in the 4-body system. A brief qualitative comparison of these

methods is given.

An example of a 4-body 2-impulse transfer from the L, libration

point to the Earth is included. The difference between this trajectory

and a 3-body trajectory of the same transfer is readily discernable.
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INTRODUCTION

This report is divided into two parts. The first part is a collection

of typical 3-body trajectories from the L, libration point on the Sun-Earth

line to the earth. They are generated using routines based on the program

developed by D'Amario . The extrapolation of the state vector is
/ Q Q\

accomplished by the Wilson's version of the multi-conic method '

These trajectories in the Sun-Earth system may be grouped into four

distinct families which differ in the transfer time and AV requirement.

The effect of the moon is approximated by adding the mass of the moon

to the mass of the earth and increasing the initial parking orbit radius

so that the velocity is the same as in a 100 n. m. earth orbit. Also

included in the first part are curves showing the variations of AV with

respect to transfer time and typical two and three-impulse primer vector

histories. The experience gained in solving the 3-body trajectory

optimization problems has been most valuable in the subsequent develop-

ment of the 4-body trajectory optimization program.

The second part of this report deals with the development of a

comprehensive program to compute fuel optimal 4-body trajectories

between the earth and some point in the Sun-Earth-Moon system. The

moon is treated as a separate entity. The basic building blocks of the

-program-a-re-the integrator- and-the iterators. The_manner in which

these building blocks are connected depends on the selection of the

dependent and independent variables. The integrator uses the Stumpff-

Weiss method ' to extrapolate the state vector and to compute the

state transition matrix. An important feature is that the cost and

constraint gradients can be computed analytically in terms of the terminal

state and the state transition matrix. This method does not require the

switching of coordinates and generates its own ephemerides. The

iterators solve the boundary value problems to satisfy terminal conditions

or to optimize AV with or without terminal constraints.

The generation of a 4-body fuel optimal trajectory is considerably

more difficult and time-consuming than in the 2-body system mainly

because of the increased difficulty in solving the Lambert problem. In



a 4-body 2-impulse transfer it is generally necessary to go through a

search process to obtain an initial estimate of the required velocity. If

the initial estimate is reasonably good so that the terminal miss is small,

an iterative solution of the boundary value problem will converge to the

required velocity. If the boundary conditions and/or the transfer time

are changed, the required velocity for the perturbed trajectory may be

obtained by iterating on the Lambert solution for the reference trajectory

provided that the changes are kept small. In general, the solution of the

Lambert problem will require several iterations, each involving a costly

function evaluation (the extrapolation of the state vector and the state

transition matrix). On the other hand, the computation of the gradient in

terms of the terminal state and the state transition matrix is trivial.

A number of iterators which have been successful in solving 2-body

trajectory optimization problems perform poorly in the 4-body system.

They either require too many function evaluations or just fail to converge.

The selection of iterators is thus of major importance.

Some reduction in computer time is possible by a judicious choice

of the independent variables. For instance, the classical choice of the

independent variables to optimize AV in a 2-body 3-impulse transfer
(2 S)is the position and time of the interior impulsev ' '. The gradient of

AV with respect to the independent variables may be expressed in terms

of the time derivative of the primer vector. Since the solution of the

2-body Lambert problem is a single step process, there is no inner loop

of importance. When this approach is applied to a 4-body problem, it

would require the solution of two difficult inner loop Lambert problems

to satisfy constraints at two places and an outer loop to optimize AV.

The 4-body problem is highly non-linear in that the inner loops will fail

to converge unless the changes in the interior impulse position and time

as generated by the outer loop are heavily constrained. As a result,

the progress to a converged solution tends to be very slow.

In view of the fact that'the reference and the perturbed trajectories

are required to satisfy the same boundary conditions, there are only



four degrees of freedom. Thus, a better approach is to iterate on the

initial required velocity and the time of the interior impulse in the outer

loop. The effect of this change is that one of the two inner loop Lambert

problems is eliminated. The gradient of cost with respect to the new

independent variables may be computed without computing the primer

vector. This new approach results in a significant saving in computer

time. To insure convergence the required change in the interior impulse

position with respect to the reference trajectory for the remaining

Lambert problem is introduced in increments rather than in one single

step. After the problem has converged to a solution, the primer vector

history is computed to determine whether the trajectory is optimal or an

additional impulse is required.

The 4-body trajectory optimization program provides tne capability to

compute 2-impulse transfers between the earth and a point in space with

or without optimization and 3-impulse fuel-optimal transfers between

two points in space. The 2-impulse transfer may originate from the

earth or a point in space. The terminal condition of a point to earth

transfer may be either of a point to point type (FTP) or of a point to

radius type (PTR). The initial condition of a transfer from the earth to a

point in space is of a FTP type in which the initial position is also varied

to optimize AV.

This report is concluded by showing an example of a 4-body 2-

impulse transfer from the L, libration point to the earth. The transfer

time is chosen to be the same as the typical loop type 3-body trajectory.

The difference between the 4-body and 3-body trajectories is readily

discernable.



PART I

EXAMPLES OF THREE-BODY TRAJECTORIES



I.I Generation of Three-Body Trajectories

Both 2-impulse and 3-impulse trajectories in the 3-body system

have been generated between the L, libration point on the Sun-Earth line

and the earth. The motion of the earth is assumed to be circular around

the sun. The trajectories of the earth and the vehicle are confined to the

ecliptic. The 2-impulse transfer originates from the L, point and

terminates at the earth with a given radius and zero radial velocity. The

terminal radius corresponds to a parking orbit which would give the

same circular velocity as in an 100 n. m. orbit after adding the mass of

the moon to the mass of the earth.

The procedure used to generate a typical family of 2-impulse

trajectories are as follows.

1. A magnitude of the required velocity at L, is selected and the

direction relative to the Sun-Earth barycentric line is varied.

The state vector is extrapolated to a prescribed terminal time
(8)

using the Wilson's version of the multi-conic method . The

state transition matrix is computed along with the trajectory.

A field of trajectories is generated in this manner. An initial

estimate of the required velocity is obtained from the trajectory

which has the smallest miss distance.

2. The constrain^ gradient is computed in terms of the terminal

state and the state transition matrix. The Lambert problem

is then solved by iterating on the initial velocity using the

Newton-Raphson method until the desired terminal conditions

are satisfied.

3. The terminal time is varied and the Lambert problem is

re-solved using the required velocity of the reference

trajectory as the initial estimate. A parabola fit is used

to extrapolate the required velocity from three adjacent

Lambert solutions.

4. The variations of AV with respect to flight time is plotted.

The primer vector history of the two-impulse transfer which

requires the minimum AV with respect to the flight time is

examined.



5. If the magnitude of the primer vector history exceeds one, a

three-impulse trajectory is generated using a method similar

to the one described under Part II.

I. 2 Examples of Typical 3-Body Trajectories from L, to Earth

The 3-body trajectories may be grouped into four distinct families.

Typical trajectories of these families are summarized in Table I.

The first three families of trajectories have corresponding

trajectories found by previous investigators for moon to L-g transfers

in the Earth-Moon system. The last family is new.



TABLE I

Typical 3-Body Trajectories

Family

Fast (Lj to

leading edge
of earth)

Fast (L, to

trailing edge
of earth)

Loop type

Double pass
type

Typical 2 -Impulse Trajectories

Transfer

Time

(Day)

33.563

35.563

116.682

174.32

Traj.

Fig. 1

Fig. 3

Fig. 6

Fig. 10

AV

(m/s)

454.446

341.350

272.137

203.34

Primer

Vector

History

Fig. 2

Fig. 4

Fig. 7

Fig. 11

AV

vs

Time

Fig. 5

Fig. 5

Fig. 8

Fig. 12
Note 4

Primer
Vector
History for
3 -Impulse
Trajectory

Note 2

Note 2

Fig. 9

Note 3

NOTE:

1.

2.

3.

4.

Mass ratios used are shown in Appendix A.

The 2-impulse transfer is fuel-optimal. A third impulse is not
required.

A converged solution to a 3-impulse transfer has not been obtained.

Extrapolation has not been carried out far enough to establish
the flight time for minimum AV.
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PART II

FOUR-BODY TRAJECTORY OPTIMIZATION
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II. 1 General

The basic building blocks of the 4-body trajectory optimization

program are the integrator and the iterators. The integrator is the

routine to extrapolate state vector and compute the state transition

matrix. The iterators are the routines to solve boundary value problems

with or without optimization. 'The types of problems which will be

encountered may be classified into three groups.

1. No optimization - Solution of Lambert problem to satisfy terminal

constraint only.

2. Optimization only - Example - outer loop of a 3-impulse transfer

3. Optimization with constraints - Example - two-impulse transfer

from the earth to a point in space

The structure of the program is determined by the choice of the

dependent and independent variables.

II. 2 Coordinate System

All coordinate systems are three dimensional, non-rotating,

parallel Cartesian systems with their origins located, at the center of

mass of the body. The x-y plane of the sun-centered system lies in the

ecliptic. The orientation of the axes in the ecliptic is not specified and

will depend on the source which provides the ephemerides for the initial

conditions. A possible choice, for example, is to require the x-axis to

intersect the Vernal Equinox at the beginning of the nearest Besselian

year.

II. 3 Integrator

There are only two methods which are suitable for use in a 4-body

trajectory optimization program. They are both multi-conic methods.
(8)The first version is due to Wilson and the second version is due to

Stumpff and Weiss . The major difference between the two methods

is that during each time step the former computes the two-body conies

in sequence while the latter computes them in a parallel manner. In a

4-body space the Stumpff-Weiss method has the following advantages:

21



1. At each time step, no logic is required to determine the proper

sequence of computation of the conies. While this is not a problem

in a 3-body space, it introduces complications in a 4-body space.

2. The method generates its own ephemerides for the 4-body space.

If the ephemerides are read, say, from a JPL tape, it is not

possible to exclude the presence of the other bodies.

Input ephemerides are needed as initial conditions only. The

required inputs are the initial positions and velocities of the earth, moon

and vehicle with respect to the sun at the initial time and the mass ratios

of the massive bodies.

II. 3.1 Stumpff-Weiss Method(10)

The 4-body space is shown in Figure 13. The position and velocity

vectors of a body are indicated by the second subscript with respect to

another body indicated by the first subscript.

At each time step it is required to compute six two-body conies and
three approximate perturbation vectors. From these conies and perturba-

tion vectors are obtained six reference trajectories. The state transition

matrix is computed from the two-body state transition matrices. The

reference trajectories are in error equal to the remainders which will

be computed every four time steps to indicate the errors but not used to

correct the reference trajectories. This is because the computed, state

transition matrix is valid only for the reference trajectories. If the

errors are too big, the user may decrease the step size or increase the

number of steps accordingly.

At the first time step, the reference trajectories equal the true

trajectories. At subsequent time step, the reference trajectories are

used as inputs to generate the conies and the approximate perturbations.

(13)The six conies will be generated using Goodyears routines .

They are denoted by:

22



rMV

rSE

rsv

Fig. 13 4 - Body System
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[pt. J1 = (1?i, I1- [\ J1

i = S, E, M

j = E, M, V

The six reference trajectories are denoted by:

i1' °- ;';

p. r . = (r~. .. V. .)
*\ D i, ] i» J
i = S, E, M

j = E, M, V

i * 3

The three approximate perturbations are given by equations below.

- J P * < 0 ) 5 + { [ P ^ - J

- JPS M(O)} + {[PMV] - J

(1)

- J ( 0>5 [ [ J ] - J

where

/i. = mass ratio, i = S, E, M

h = step size

p~..(0) = reference trajectory at beginning of step
*J

i = S, E, M
j = E, M, V

24



J =

0,

The reference trajectory is computed from Equation (2).

PSV = [PSV] +psv

PSE = [PSE] + FSE

SM SM

= " PSE SV

(2)

MV

EM

= " PSM SV
_._.r

= " PSE SM

The state transition matrix is computed from state transition matrices

of two-body conies in Equation (3)

h, t) = cpsv(t+h, t) + cpEV(t+h, t) + <pMV(t+h, t) - 2J

(3)

cp(t+h, tQ) = <ph(t+h, t) cp(t, tQ)

The errors or remainders in the reference trajectories propagate according

to Equation (4).

R SV (iSE

SE (4)

R SM SM (SSE + SEM}

25



where

i = S, E, M

j = E, M, V

i * J

Since we have used 7.. instead of the true F. . in s.., the error in
J J J

_ _* A ii. 4 _

(s.. - s ..) is h . Then the errors in R is also h and the errors in R
J J

f*

is h if the remainders are used to correct the reference trajectories.
• *

The values of R for four time steps are saved and the remainders at

every fourth step are computed using Stirling's five-point formulation
(12)shown in Equation 6 . •

t +4h) = - - [ 6 4 R ( t + h ) + 2 4 R ( t + 2h)o 45 o O

+ 64 R (t + 3h) + 14 R (t + 4h)o o

R (t + 4h) = K- [192 R (t + h) + 48 R" (t + 2h)
O 40 O O

+ 64 R (t + 3h)

where t = time at beginning of every 4 time steps.

II. 4 Structure

The structure of the trajectory optimization program is strongly

influenced by the choice of the dependent and independent variables. A

particular choice determines how many integrators and iterators are

required and how they are connected together.

In a two-impulse transfer, the logical choice is the required.
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velocity at the initial time. If the transfer time is fixed and the transfer

originates from the earth, the initial position vector must also be

iterated. The terminal constraint may be of a point to point (FTP) type

or a point to radius (PTR) type. The PTE terminal consists of three

components: the desired radial distance at earth, the desired radial

velocity (usually zero), and the desired orbital inclination angle with

respect to the ecliptic. The PTP terminal is the desired position vector.

The two-impulse transfer is shown in Fig. 18 and 19.

In a three-impulse transfer, the problem is to perturb a reference

trajectory in such a way that cost is reduced.- Both the reference

trajectory and the perturbed trajectory must satisfy the same PTP

terminals.

( 2 3 )In the classical method ' / the independent variables are the

position and time of the interior impulse (r, t ). It requires two

inner loops to solve two Lambert problems to satisfy terminal conditions

at t and t. and an outer loop to change (r , t ) to reduce AV. This

method was developed for two-body problems where the Lambert problem

can be solved in one step. In the four-body problem the solution of the

Lambert problem must be done in multiple steps and is very time

consuming. In adapting the Optimum Multi-Impulse Rendezvous Program
(4)(OMIR) to a four-body problem it was found that most of the computer

time was spent in extrapolating the state vector and solving the Lambert

problem in the one-dimensional search. Furthermore, the four-body

transfer trajectory is very sensitive to changes in F and t . The

Lambert problems will converge only when AF and At are kept very

small. The net effect is that the reduction in AV is small from one

iteration to another.

The family of the three-impulse transfer trajectories has four

degrees of freedom. It is then possible to change the outer loop indepen-

dent variables from (r , t ) to ("v t ). In this choice, r is deter-

mined by v7 and t . It is only necessary to iterate on v" to satisfy

the terminal constraints. In other words, there is only one Lambert

27



NO / Constraint
Satisfied

rf, vf

Stop

Terminal Constraint

FTP or PTR

Figure 14 TWO-IMPULSE TRANSFER

WITHOUT OPTIMIZATION
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v , r
o o

Iterator

Gradient
Projection or
Accelerated
Gradient
Projection
Step

Stop
Condition
Satisfied

Stop

Figure 15 TWO-IMPULSE TRANSFER

WITH OPTIMIZATION
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t , v . vm' o' m

Integrator

State from

v , to m

*m' V .
Accelerated
Gradient
Step

rf vf

Constraint
Satisfied

9

'YES

Stop
Criterion
Satisfied

Integrator

Advance
State from

*m t0 *f

Inner Loop
Terminal
Constraint
FTP only

Stop

Figure 16 THREE-IMPULSE TR'ANSFER
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problem to be solved. Tests have shown that it is possible to reduce

computer time by 50%.

The proposed program structures for 2- and 3 -impulse transfers

are shown in Figs. 14, 15 and 16.

II. 4.1 Two-Impulse Transfer from Earth to a Point in Space

It is assumed that the initial position of the vehicle lies on a

circular earth parking orbit of known radius r and is specified by two

angles, a arid j3. (Fig. 17) The initial required velocity is assumed to

be normal to the position vector and makes an angle y with an intermediate

plane. The X-^Y—Z coordinates are inertial non-rotating coordinates.
J t i . i i . J l

The three angles and the magnitude of the required velocity, v , are to

be chosen so that the cost of transfer from the earth to a specified point

(P) in a specified time is optimized (Fig. 18).

II. 4. 1.1 Estimate of Initial Required Velocity at Earth

An estimate of the initial required velocity at earth for a 2 -impulse

transfer to a point in space may be generated as follows. Let

= position vector in coordinates

r = magnitude of position vector

Rotation matrices (from X 7Y 'Z ' to X^Y^ ^ :
Ji.

R,

' cos a.

sin a

0
\

cos |3

0

sin /3
L

-sin a. 0

cos a 0

0 1

0 -sin ft

I 0

0 cos j3

\

/

\

i
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Fig. 17. Initial position and velocity vectors of a 2 - impulse transfer from earth.

a, j3)

Fig. 18. Two - impulse transfer from earth to P.



1

0

0

0 0

cos y -sin y

sin y cos y

Then

EV

EV = R fla j3

, v
\ o

o

0

0

cos a cos j3

sin a cos j3

sin /3

/o \

v
o

\0 I

(-sin ot cos y - cos a. sin 0 sin y)'

(cos a. cos y - sin a sin j3 sin y)

cos j3 sin y

— ~
SV rSE EV

Vo = VSV = VSE + VEV

where r and v are position and velocity vectors relative to the sun in

X-Y-Z coordinates.

For a specified transfer time and magnitude of the initial impulse

the initial required velocity is expressed in terms of the 3 angles. By

varying a, jS and y in small increments a field of trajectories is generated.

A crude search is made first for the required velocity which gives the

minimum miss distance. This is followed by a refined search around

33



the above minimum.

II. 4. 1. 2 Cost and Constraint Gradients

Independent variables:

, a, j3, y)

State transition matrix:

<p(tf, t ) =

^227

Terminal condition:

= p — prf rf

Variational equations:

6r =

6vf = ^21 6ro + ^22 5vo

The variations of the initial position and velocity are related to the

changes in the independent variables by

6r -° dx

3V
0 dx

3x

f o' o-l^-I (pn —- + «p.2 —SJ dx
L n 3x l* 3x J
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dr
dx = dx —

o _

3x

"0

0

0

-r sin a cos 8

r cos a cos 8

0

-r . cos a. sin 8o

-r sin a sin 8o r

r cos 8
0

0~

0

0

"-sin a cos y - cos a sin 8 sin y [ v (-cos a cos y + sin a sin 8 siny) '

cos a cos y - sin a sin 8 sin y i vo(-sina cos" y- cos a sin/S siny) i
i i

cos 8 sin y ( 0 j

-v cos a cos 8 sin y t v (sin a sin y - cos a sin 8 cos y)"

-v sin a cos 6 sin y

-v sin 8 sin v

v (-cos a sin y - sin a sin 8 cos y)

v cos 6 cos y

Cost gradient:

Av = |vf(J - vf |

dx

— T

Av
<P22 ^]

aAv
ax Sx

Note that only the Av at the terminal point is considered.
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Constraint gradient:

S. - JL<F
ax s f ax a*

II. 4. 2 Two~Impulse Transfer from a Point in Space to Earth

The 2-impulse transfer from a point in space to the earth is shown

in Fig. 19. An estimate of the initial velocity may be generated in a

manner similar to the transfer from the earth to a point in space.

Independent variables.-

x = v

State Transition matrix:

cp(tf, t0) =

/<PU <P12 \

Variational equations:

It follows,

6rf =

•f
î W

o

jf_

o

6v

12
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Cost gradient:

Av = |Avo| + |Avf | = |VQ - |vfd - vf |

where

'fd
unit ((rp x v,) x rp) + VQ

rfE f f f Earth SE

v (.,..-, = velocity to earth

radial distance of vehicle at earth

— T
AvQ

|Avf|

Point to Radius Terminal Condition (PTR)

"" -T* r

xcos i, - cos i .
Earth

where

rf = |rf|

— T — ,
rf = rf vf' rf

cos i = 117 h/h

h = r„ x v.

uz = (0, 0, 1)
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COS 1

Define:

then,

_
. r _ T

v- *-Bv f Bv f
o o

i(rf vf
T - r rf

T) <P12 + rf r T

cos 1 _ _ T
z

- T r 1 Sh h= uz LE ^ "
0 **»*„

R = z. 0 -x.

xf 0

V =

xf 0
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ah — f — f
• - - ~~ -F "^ ~ ~ ~ ™ -p J

a"v 3V a~v
o o o

- R 0no - V<P22

ah _ hT 5h

av h sv
o o

aVo

V (R *22 - V

— T
cos i _ z ,, 2T "rirT> ,„ ,, »- —7- ( h i - hh ) (R <p09 - V <p,9;d 22 12

Point to Point Terminal Condition (PTP)

= rf - rfd

a? aFf_Jt . <p
a^o avo

II. 4. 3 Three-Impulse Transfer(2j 3*

A 3-impulse transfer between 2 points in space is shown in Fig. 20.

Given a reference trajectory T, the problem is to generate a neighboring

trajectory F ' satisfying the same boundary conditions at reduced AV.

II.4.3.1 Classical Three-Impulse Transfer

In the classical approach, there is an outer loop which iterates on

7 and t to reduce AV and two inner loops which iterate on "v" andm m o

v" to satisfy boundary conditions at t and t_ respectively. The cost

gradient of the outer loop is expressed in terms of the primer vector

and its time derivatives.
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II.4. 3. 2 New Three-Impulse Transfer

The independent variables in the outer loop are changed to v" and

t . The state vector is extrapolated to t . There is only one innerm , m
loop which iterates on v" to satisfy terminal condition ~r.eA.r m id

Cost and Cost Gradient

Av = IAVJ + |Avm| + |Avf |

= fv - v | + |v -v 1+ Iv,., - vJ1 o o ' ' m m, ' ' fd f1

v v • Av
 c ov,m \ _ f_ f

T / q v m "m \ - T uvf

Variational Equations for the first leg

6F = (fl .. 6F + <p 0 6v" = <p ,„ 6vm ^mo, 11 o ^mo, 12 o ^mo, 12 o

= (p 01 6F + cp or) 6v" = <p 00 6vm ^mo, 21 o ^mo, 22- o *mo, 22 o

6 F = 0o
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6F "m _
— - «»mo. 12

- 2 2
o

av

at.
HL_ = o
m

Variational Equations for the second leg

0 = 0- ,, 6r 4- (Oc ,0 6vvfm, 11 m vfm, 12 m

„, 6r + <p. 00 6v21 m ^fm, 22 m

v = - OP TO <Pc n 6rm rfm, 12 ̂ fm, 11 m

Since

dr = 6F " +~v " dt = 6r + v + dtm m m m m m m

6r = 6r - (v - v ) dtm m v m m m

6vm+ =^fm, 12"1 ̂ fm, 11 [6rm" ' (vm+ ' V'* dtm]

6vo + ^fm.w" <Pfmf l l
( vm- vm ) dtm
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" " ^fm, 12 Pfm, 11 ̂ mo, 12

a v
T7
3tm

6v. = (Op 01 [6r - (v - v ) dt ]f ^fm, 21 m m mm

-1 c— -1 /— + — -•>
5fm, 22 [~ ̂ fm, 12 ̂ fm, 11^ mo, 12 o +<pfm, 12 ^fm, 11 (vm " V ' dt

m
]

— 1 -I c

91 ~ '-Pfrv, 99 ^Fw, 19 ^Fw, Tl-l 'P^,^ 19 °V^, ^i im, ^z ini, l<5 zm, 11 m.o, i<i o

i Ol ^P-P*^« OO O-P**« TO (P-C~*~ mJ \ ̂ «« ~ *>« / -̂*>t»«»i, <sl ~im, ^^s ~lm, 1^ ~im, 11 m m m

-
= [(^fm, 21 - «Pfm, 22 ^fm, 12 Vfm, II1 ̂ mo, 12

_ _ _ -
— = - [<pfm, 21 * ̂ fm. 22 ̂ fm, 12 ^fm, 11] (V ' vm } dtm
Stm

Note: This derivation does not need the computation of the primer

vector and its derivative.

II. 4. 3. 3 An Alternate Form of Cost Gradient from Classical Approach

(2 3)In Classical Approach '

on T: J = JAVj + |AvmJ + |Av f |
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If we use the relation

—T - - — T —T -
-X 6r = X 6v - X 6v"m m o o m m

TT+ *- + -T T c- ,-r-T + ._ +X Or = -Xr ov~ + X ovm m f f m m

we return to

6J = XQ
T 6vQ + Xm

T (6vm
+ - 6vm-) - Xf

T 6vf

which will lead to same gradient as before. However, if we use the

expressions for X and X in

6J • + 6F+ - ̂ " 6r"

we will get a different but equivalent expression for the gradient. This

is because of X and \c are related through the relationo x

__rp _t.rp

X 6v - X 6x = C.

Since

Xm = ^mo, 11 Xo + ^mo, 12 Xo

•̂~, ~ tP™,* 91 ̂ -~ + <P,~~ 00^m mo, £i o mo, ^^ o

we have

X = ^ ~ (X " ^ 11 Xo)

« i
Xm~ = ^mo, 21 Xo +(pmo, 22 ^mo, 12* (Xm " ^mo, 11 V
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Similarly,

~

f ^ftn, 2l\n + < P em • fm, 22
.*. x + , __

m ~ *. 12" tt-
6J = TT + + ±A

m or . \ T - _m m *m OFm m

Xm ^5F " - fir + — -m ( m - V ) dtrn j-jj- ,. yj
a frT+ -LT m m

um ' V^ «?- ' - f T + /~ +m ^ Xm fv -T - )d t
"i rn

— f —1, 12 (\> - c) T \
Y fm> 11 Xm}

' 21 Xo ' ^mo 2? p -1 .-mo, 22 ^mo 12 (X - ^ 7 T £_ .
- r -i mo; H \JJ 6r

f^^ 12 ' fi, - - ~ -

= ff_ m

, 21 +

I- </)„ ~1an. u ^fm> u -
_ »«. 22

+

'm. m m 'Thus m

"

V

, 21 9 <p
^ ' 12

-T ,
, 12 V 97 ^ , 1 2

, 12 J A^
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= "' 11 \n ' V^ (V+ ' V> dtm

These cost gradients are different in appearance from the previous

result.

The constraint gradient with respect to the required velocity in the

inner loop of the three-impulse case is the same as shown in the two-

impulse transfer from a point to earth by iterating on "v instead of "v .

II. 4. 3. 4 Solution of Inner Loop Lambert Problem in Increments

The change in the interior impulse position, dF , between the

perturbed and reference trajectories due to changes in "v" and t is

usually so large that the "v on the reference trajectory is a poor

estimate for the inner loop Lambert problem. This difficulty can be

alleviated

(Fig. 21).

alleviated by introducing dF in increments rather than in one step.

Using v t from the outer loop, we extrapolate the state vector

to t to obtain rm>

dr - r - r , ,m m m , o l d

Let n = number of increments

dF
AT = _m n

3 = 0

Procedure:

rm, new rm, old • m
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_ _ ._v = v , , + A vm, new m, old " m

3. Solve inner loop Lambert problem from 7" to ~F f , using
i ill j IlC Vv -I U.

"v" as the initial estimate.

— + _ — +vm, old ~ vm, new

rm, old rm, new

3 = j +1

5. If j <n, go to 1.

II. 5 Iterators

The major cost in computer time in a 4-body trajectory optimization

problem is in function evaluation. Each function evaluation consists of
the extrapolation of the state vector and the state transition matrix to the

terminal time in multiple steps. The computation of cost and constraint
gradients in terms of the terminal state and the state transition matrix is

trivial.

The solution of the optimization problem will in general require
several function evaluations. It is a difficult problem for two main reasons.
1). The problem is highly nonlinear. Only small variations from a

reference trajectory is possible to insure convergence.
2). The cost function is often non-unimodal in a search direction. Any

accelerated gradient method which requires an one-dimensional
search must use some bracketing procedure to locate even a crude
minimum in the search direction. A simple bracketing procedure
will require several function evaluations. As a result, the cost in

computer time in an one-dimensional search can easily become
prohibitive.
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During the early stage of the development considerable effort was

spent in evaluating iterators which have been used successfully in
solving 2-body trajectory optimization problems. Some qualitative

comparisons of their effectiveness in solving the 3-body problems are
given below.

II. 5.1 Evaluation of Iterators
(7)

1. Jacob son-Oksman Method

This is an accelerated gradient method, which was successfully
(21)used to optimize three and four-impulse two-body rendezvous trajectories

It optimizes a scalar function using cubic fit interpolation in lieu of an
one-dimensional search.

If there are constraints to be satisfied, they can be included only
as a penalty function. The effectiveness of the method is reduced and
the method cannot correct the general deficiency of the penalty function
method.

This method, was used to optimize cost in the outer loop of a

3-body 3-impulse transfer based on the classical formulation. The

progress was very slow because the interpolated •minimum falls very

close to the starting point. Here, the advantage of not requiring an one-
dimensional search appeared to be a disadvantage.

2. Fletcher-Powell Adaptation of Davidon's First Method^14' 15^

This is a popular accelerated gradient method to optimize a scalar

function but it requires an one-dimensional search to be effective. The
algorithm we tested came from a NASA MSC program "Optimum Multi-

(4)Impulse Rendezvous Program (OMIR). It incorporates an one-
dimensional search method using a Golden Section bracketing procedure
and cubic fit(20).

We tested it in the outer loop of a 3-body 3-impulse transfer. It
was found that the iterator requires an excessive number of function
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evaluations in the one-dimensional search. About 95% of the computer time

is spent in this effort and the remaining small portion in updating the

H-matrix and generating a new direction to proceed. The algorithm

was satisfactory for the two-body problems where the Lambert problem

can be solved in a single step and a large number of function evaluations

is not particularly painful. The computation time can be reduced

by a change of variables as suggested earlier but the ratio of time spent

in one-dimensional search and that in generating a new direction will

remain unchanged. The requirements of a one-dimensional search is

a definite burden.

3. Campbell-Moore-Wolf Method(6)

(17 18^This method is equivalent to the Armstrong-Marquadt Method ' '

in principle. The algorithm we tested came from the Princeton University

program "Trajectory Optimization Program for Comparing Advanced

Technologies (TOPCAT1)" • '. It is also a penalty function method to

handle constraints through internally generated weightings inversely

proportional to the squares of the allowable tolerances. However, the

user must supply proper scaling to keep numbers within computable

range.

The step size and direction are controlled by an inhibitor, \. When

X is very small, the method behaves like a Newton-Raphson method to

satisfy the constraint. When X is very large, the method behaves like a

gradient method of a weighted scalar product of the constraint violations.

The value of X is increased when step size is exceeded or if the residual

grows. It is reduced otherwise. In our test problems, X has a steady

tendency to grow such that not only the step direction is changed but

also its magnitude is reduced. Neither characteristic is desirable since

the user has no further control over the behavior once the mechanism

for changing X has been programmed and it is difficult to change X in

an optimal way.

The method has the inherent difficulties associated with a penalty
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function method. Furthermore, one would normally desire to take

gradient steps early in the process and then shift to the Newton-Raphson

method. This method behaves just in the opposite manner. It is also

very difficult to provide the proper scaling to be consistent with the

desired tolerances and computable range.

4. Modified Fletcher Method

(24)
This is another version of Davidon's method proposed by Fletcher

/23\
and modified, by Powers . It still requires a crude one-dimensional

search. In testing the method in the outer loop of a 3-impulse transfer

it was found that a crude one-dimensional search as suggested by Powers

did not work. The reason is that the function being optimized is often

non-unimodal in the search direction. In order to achieve a cost reduction

from the starting point it is necessary to use some kind of bracketing

procedure such as one used, in II. 5.1.2. As a result, the number of function

evaluation required becomes much larger than desired.

II. 5. 2 Recommended Iterators

A thorough evaluation of known iterators leads to the following

selection of iterators.

1. No optimization

Newton-Eaphson Method with a simple automatic step size control.

This method will be used in 2 places.

1. Inner loop of a 3-impulse transfer

2. 2-impulse transfer from a point in space to earth.

2. Optimization only
Hfi )

Davidon's Second Method This method does not require an one-
(15)dimensional search as in the Davidon's First Method . It has the

advantage of an accelerated gradient method without the penalty of

excessive number of function evaluations. It appears to be the most

efficient method among the ones tested. It will be "used in:

1. The outer loop of a 3-impulse transfer

2. A 2-impulse transfer from the earth to a point in conjunction

with the gradient projection method.
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3. Optimization with Constraints
(22)

1. Gradient Projection Method This method will be used to

generate fuel-optimal two-impulse trajectories from the earth to

a point in space for a fixed transfer time.

2. Accelerated Gradient Projection Method(19> This is a

accelerated version of the gradient projection method. It is a

combination of the standard gradient projection method and an

accelerated gradient method. The Davidon's Second method will

be used for the accelerated gradient portion of the algorithm. It

will be used as a replacement of the gradient projection method

if feasible.

II. 6 An Example of a Four-Body Two-Impulse Transfer

An example of a 4-body 2-impulse trajectory from the L, libration

point to the earth has been generated. The transfer time is 116. 682 days

which is the same as the typical loop type 3-body trajectory mentioned

in Part I. This a a 3-dimensional problem. Both the earth and the moon

have initial position and velocity components normal to the ecliptic. The

projection of the trajectory with respect to the earth in a plane parallel

to the ecliptic is shown in Fig. 22. The 3-body trajectory of the same

transfer time is shown in Fig. 24. It is evident that the 4-body trajectory

is noticeably different from the 3-body trajectory. The presence of the

moon as a separate entity appears to have a very strong effect on the

trajectory. The distances of the vehicle from the earth and the moon

is shown as a function of time in Fig. 25. There are three intervals

during which the vehicle is closer to the moon than the earth. The mass

ratios used are shown in Appendix A. The initial conditions of the earth

and the moon were obtained from a MAC data file on JPL Development

Ephemeris No. 69.

The primer vector history of this 4-body trajectory is shown in

Fig. 23. It is a fuel-optimal 2T-impulse transfer for the initial conditions

used. A search for the optimal initial conditions has not been done.
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APPENDIX A

Three-Body Space

1 A. U. = 1.49597893 x 108 KM

= 1. 001098 x 10

= 3.0404322 x 10 -6

= 9. 9999696 x 10-1
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Four - Body Space

EARTH-MOON
BARYCENTER

M

SB

SL1

VSB -: VSE + 'M
VEM

a - yT ) VSBV
-2= 1. 001098 x 10

= 3.0034845 x10-6

= 3. 6943122.x 10-8

= 9.9999696 x10
-1

Based on mass ratios from JPL

Tech. Report 32-1306.
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APPENDIX B

Accelerations,."...
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