A thesis entitled
Calculation of the Total Electron Excitation Cross Section in the Born Approximation Using
Slater Wave Functions for the Li (2s + 2p), Li' (2s + 3p)
Na (3s + 4p), Mg (3p + 4s), Ca (4s + 4p) and K (4s + 4p) Excitations
by
P. L. Simsic
as partial/fulfillment of the requirements of the Master of Science Degree in Physics

William Williamson Jr.
Adviser
Dean of the Graduate School

The University of Toledo
ACKNOWLEDGMENTS

The author would like to thank Dr. W. Williamson for his help in the course of this research. Without his ideas concerning the basic approach to this problem, this paper would not have been possible. Partial support for computing time was provided from NASA contract No. NGR 36-010-017.

The author would also like to thank Dr. A. N. Witt for his ideas concerning the astrophysical aspects of the problem.

Finally, but most important, the author wishes to thank his wife, Peggy, for her patience and understanding during the course of this project and for her assistance with some calculations at the beginning of the research.
TABLE OF CONTENTS

Acknowledgements...ii
Table of Contents...iii
List of Tables..iv
List of Figures...v
Introduction...1
Wave Functions..4
Born Approximations...8
Total Cross Section...17
Line Strength of Na (3s → 3p) Line...30
Conclusions...40
Appendix..42
References...60

iii
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Electron Excitation Cross Sections (Units of πa_o^2)</td>
<td>27</td>
</tr>
<tr>
<td>II</td>
<td>Electron Excitation Cross Sections for Na(3s + 4p) (Using $Z_{41} = 1.35$ (Units of πa_o^2))</td>
<td>29</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>Description</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Total Cross Section vs. Incident Energy for Li(2s + 2p) Excitation</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>Total Cross Section vs. Incident Energy for Li(2s + 3p) Excitation</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Total Cross Section vs. Incident Energy for Na(3s + 4p) Excitation</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Total Cross Section vs. Incident Energy for Mg(3p + 4s) Excitation</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Total Cross Section vs. Incident Energy for K(4s + 4p) Excitation</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Total Cross Section vs. Incident Energy for Ca(4s + 4p) Excitation</td>
<td>26</td>
</tr>
</tbody>
</table>
INTRODUCTION

Galactic nebulae which show emission-line spectrum are of two types, that is, diffuse and planetary nebulae. The diffuse nebulae are normally irregular, often of low density and surface brightness, and sometimes extensive; whereas, planetary nebulae are generally symmetrical and compact and usually have a higher surface brightness and density than the diffuse bright nebulae. The spectra of these gaseous nebulae as well as those of certain stars, including the Sun, show strong emission lines owing to allowed and forbidden transitions of a number of "heavy" elements (atoms and ions other than H and He), such as N, O, Ne, S, Cl, Ar, P, Fe, Ca, Mn, Cr, V, Ca and Ni in various stages of ionization. In addition Mg I lines have been observed and Na and K are known to exist in planetary nebulae although not in great abundance.

Interpretation of gaseous nebulae requires proper evaluation of their geometrical structure, physical state, and chemical composition. One must be able to interpret the spectra quantitatively in terms of physical parameters and chemical composition of the emitting medium. Consequently, collisional cross-sections for allowed and forbidden transitions and line intensities are necessary for the proper interpretation of the properties of gaseous nebulae. One type of excitation mechanism which is possible is $e + A
ightarrow e + A^*$.

This paper considers excitations of neutral atoms by inelastic scattering of incident electrons. Simple antisymmetrized product Slater
Wave functions describing the initial and final states of the atom are used. Total cross-sections using the Born Approximation are calculated for the following excitations: Li(2s → 2p), Li(2s → 3p), Na(3s → 4p), Mg(3p → 4s), Ca(4s → 4p) and K(4s → 4p). Since intensities of the emitted radiation are also of importance in interpreting gaseous nebulae, the line strength of the Na(3s → 3p) transition is calculated using Slater Wave functions and compared to an experimental result.

Typical electron temperatures in gaseous nebulae are 10^4 K. If a Maxwell distribution is assumed the average kinetic energy at this temperature is about .8 ev. This is below the threshold energy of all of the transitions calculated here. There are of course electrons with energies higher than this average and these appear in the tail of the velocity distribution. In particular for a Maxwell distribution at 10^4 K, .9% of the total number of electrons have energies higher than 5 ev. This is above the threshold of all the transitions considered here, the largest threshold being 3.75 ev.

Due to the relatively low abundance in planetary nebulae of the elements for which the total cross sections are calculated here, the particular cross sections given may not be of great interest to those studying these nebulae. However, by using either of the programs given in the Appendix it is relatively simple to obtain cross sections for any desired s → p transition. All one needs are the threshold energies and the configuration of the atom to allow the determination of the effective atomic numbers. These effective atomic numbers are calculated
using Slater's rules which are given in the next section. Any determination of the effective atomic numbers using these rules takes only a few minutes.

The reason for choosing Li, Na and K was so that a comparison could be made with another readily available calculation, i.e. (Vainshtein, Opykhtin, Presnyakov). Ca and Mg were chosen because they were originally thought to be of importance in the emission spectra of comets.

The method is not expected to yield reliable results near threshold but should give answers within a factor of 2-7 for incident electron energies about 3-4 times threshold.
WAVE FUNCTIONS

Two types of wave functions are used. Both have the general form
\[\psi_{n\ell m} = R_{n\ell}(r)Y_{\ell m}(\theta) \]
where \(R_{n\ell}(r) \) is a Slater radial wave function and \(Y_{\ell m}(\theta) \) is a spherical harmonic. In one type which will be referred to as Slater Wave Functions I (SWFI), the \(\ell \)-dependence of the \(R_{n\ell}(r) \)'s was deleted. This is equivalent to setting \(\ell = 0 \) in the radial function for all \(n \). The general form of the SWFI is given by the following:

\[
\begin{align*}
R_1(r) &= N_1 \exp(-Z_1 r/a_o) \\
R_2(r) &= N_2 \left[r \exp(-Z_2 r/2a_o) + A_{21} R_1(r) \right] \\
R_3(r) &= N_3 \left[r^2 \exp(-Z_3 r/3a_o) + A_{32} R_2(r) + A_{31} R_1(r) \right] \\
&\vdots \\
R_n(r) &= N_n \left[r^{n-1} \exp(-Z_n r/n a_o) + \sum_{j=1}^{n-1} A_{nj} R_j(r) \right]
\end{align*}
\]

The \(N \)'s and \(A \)'s are constants and are determined from the orthonormality conditions \(\langle R_i, R_j \rangle = \delta_{ij} \). Thus,

\[
A_{nj} = N_j \prod_{i=1}^{j-1} \frac{A_{ni} A_{ji} - (n+j)!}{(Z_{i} + \frac{Z_{n}}{n})^{n+j+1}}
\]

and

\[
N_j = \left[(2j)! \right] \left(\frac{j a_o}{2 Z_j} \right)^{2j+1} \left(\sum_{n=1}^{j-1} A_{jn} \right)^{-\frac{1}{2}}
\]
To make the radial integrations simpler the radial wave functions may be rewritten in the following form,

\[R_n(r) = N \sum_{j=1}^{n} F_{n, n+j} r^{n-j} \exp\left(-\frac{Z_{n+1-j}}{a_o} r\right) \]

(1)

where the \(F_{n,j} \)'s can be determined from

\[F_{n,j} = N \sum_{K=1}^{n+j} F_{n,n+K} A_{n+K,j} \]

(2)

and we choose \(F_{n,n} = 1, A_{n,n} = 0 \).

The \(Z_n \)'s are effective atomic numbers which are determined by the following Slater rules.⁴

"For determining \(Z_n = Z-s \), the electrons are divided into the following groups, each having a different shielding constant: 1s; 2s, p; 3s, p; 3d; 4s, p; 4d; etc. (The s and p are grouped together but the d and f are separated.) The shells are considered to be arranged from the inside out in the order named. The shielding constant s for any group is found as follows,

1. Nothing from any shell outside the one considered.
2. An amount 0.35 from each other electron in the group considered (except in the 1s group, where 0.30 is used instead).
3. If the shell considered is an s,p shell an amount 0.85 for each electron with total quantum number less by one, and an amount 1.00 from each electron still further in; but if the shell is a d or f, an amount 1.00 from every electron inside it."
The second type of wave functions which are used allow for an \(\ell \)-dependence in the radial function. This is accomplished by writing different radial functions with different \(\ell \)-values for the same \(n \). These radial wave functions are referred to as Slater Wave Function II (SWF II) and are given by the following:

\[
R_{10} = N_{10} \exp \left(-\frac{Z_1 r}{a_o}\right)
\]

\[
R_{20} = N_{20} \left[r \exp \left(-\frac{Z_2 r}{2a_o}\right) + A_{201} R_{10} \right]
\]

\[
R_{21} = N_{21} \left[\ell \exp \left(-\frac{Z_2 r}{2a_o}\right) \right]
\]

\[
R_{n\ell} = N_{n\ell} \left[r^{n-1} \exp \left(-\frac{Z_n r}{na_o}\right) + \sum_{n'=\ell+1}^{n-1} A_{n\ell n'} R_{n'\ell} \right]
\]

The \(A_{n\ell n'} \)'s are the amount of the \(R_{n'\ell} \)'s with \(n' \leq n - 1 \) which must be added to \(R_{n\ell} \) to make the \(R_{n\ell} \)'s orthonormal. The \(N_{n\ell} \)'s and the \(A_{n\ell n'} \)'s are again determined from the orthonormality conditions

\[
<R_{n\ell}, F_{n'\ell'}> = \delta_{nn'}
\]

\[
A_{n\ell n'} = -N_{n\ell n'} \left[(n+n')! \left(\frac{a_o}{n} + \frac{Z_n}{n} \right)^{n+n'+1} - \sum_{k=1}^{n'-1} \frac{A_{n\ell K} A_{n'\ell K}}{n^{n'-k}} \right]_{n>n'>\ell}
\]

and

\[
N_{n\ell} = \left[(2n)! \left(\frac{a_o}{2Z_n} \right)^{2n+1} - \sum_{j=1}^{n-1} \frac{A_{n\ell j}^2}{\ell} \right]^{-\frac{1}{2}}
\]

Here again the radial functions can be put into a form which make the radial integrations simpler. Thus
\[R_{n\ell} (r) = N_{n\ell} \sum_{j=1}^{n-\ell} F_{n,\ell, n+1-j} r^{n-j} \exp \left(\frac{Z_{n+1-j} r}{(n+1-j)a_0^2} \right) \] \tag{3}

where \(F_{n,\ell, j} = N_{j \ell} \sum_{k=1}^{n+1-j} F_{n,\ell, n+1-k} A_{n+1-K, \ell, j} \) and \(A_{n, \ell, j} = 0 \) if \(n \leq j < \ell \)

and we choose \(F_{n, \ell, n} = 1 \).
The Schrödinger equation for the atom plus incident electron is

\[\left[\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + \sum_{i=1}^{Z} \frac{Z e^2}{r_i} + E_T + \frac{Z e^2}{r} + \sum_{j=1}^{Z} \frac{Ze^2}{r_j} - \sum_{i \neq j} \frac{e^2}{|r_i - r_j|} \right] \psi(r, r_e) = 0 \]

(4)

where \(E_T \) is the total energy,
\(r \) refers to the position of the incident electron,
\(r_j \) refers to the position of the incident atomic electrons,
\(r_e = (r_1 \ldots r_Z) \).

Now expand \(\psi(r, r_e) \) in terms of a complete set of orthonormal atomic wave functions \(\psi_n(r_e) \) satisfying the equation

\[\left[\frac{\hbar^2}{2m} \sum_{i=0}^{Z} \frac{\partial^2}{\partial r_i^2} + \sum_{j=1}^{Z} \frac{Ze^2}{r_j} - \sum_{i \neq j} \frac{e^2}{|r_i - r_j|} + E_n \right] \psi_n(r_e) = 0 \]

(5)

where \(E_n \) are the associated eigenenergies. Now, set

\[\psi(r, r_e) = \sum_{n} \psi^*(r_e) \psi_n(r_e) \]

(6)

where \(S \) denotes a summation over the discrete states and an integration over the continuum states.

Substitute equation (6) into equation (4), multiply by \(\psi_n(r_e) \) and integrate with respect to \(r_e \) to obtain
\[
\int \left[\frac{\hbar^2}{2m} \nabla^2 + \frac{\pi^2}{2m} \sum_{i=1}^{Z} \frac{e^2}{r_i} + \sum_{j=1}^{Z} \frac{Ze^2}{r_j} - \sum_{i \neq j} \frac{e^2}{|r_i - r_j|} \right] \psi_k(\mathbf{r}) \psi^*_k(\mathbf{r}_e) \, d\mathbf{r}_e = 0 \quad (7)
\]

Now use equation (5) to obtain
\[
\frac{\pi^2}{2m} \left[\nabla^2 + \frac{\mathbf{K}_n^2}{n^2} \right] \mathbf{F}_n(\mathbf{r}) = \int \psi^*_n(\mathbf{r}_e) \mathbf{V}(\mathbf{r}, \mathbf{r}_e) \psi(\mathbf{r}, \mathbf{r}_e) \, d\mathbf{r}_e \quad (8)
\]

where
\[
\mathbf{V}(\mathbf{r}, \mathbf{r}_e) = -\frac{Ze^2}{r} + \frac{Ze^2}{\sum_{j=1}^{Z} |\mathbf{r} - \mathbf{r}_j|} \quad (9)
\]

is the interaction energy between the incident electron and an atom composed of \(Z\) electrons and protons, and the wave number \(\mathbf{K}_n\) is given by
\[
\mathbf{K}_n^2 = \frac{2m}{\hbar^2} \left(\mathbf{E}_T - \mathbf{E}_n \right)
\]

Now suppose the incident electron has wave vector \(\mathbf{K}_i\) and impinges on an atom in state with energy \(\mathbf{E}_i\). Then the asymptotic behavior of \(\mathbf{F}_f(\mathbf{r})\) for larger \(\mathbf{r}\) has the form
\[
\mathbf{F}_f(\mathbf{r}') \sim e^{iK_f r'} \delta_{fi} + \frac{e^{iK_f r'}}{r'} f_f(\theta, \phi) \quad (10)
\]

where \(f_f(\theta, \phi)\) is the scattering amplitude corresponding to the excitation of the \(f\)th state of the atom and \(\theta, \phi\) are the polar angles of \(\mathbf{r}\) referred to the direction of incidence as polar axis.

Consider the equation for the Green's function
\[
\left[\nabla^2 + \mathbf{K}_n^2 \right] G(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}')
\]
then the solution to equation (8) can be written as

\[F_f(r', \mathbf{r}) = e^{i \mathbf{k}_f \cdot \mathbf{r}' - i \mathbf{k}_f \cdot \mathbf{r}} \delta_{fi} + \frac{2m}{\hbar^2} \int G(\mathbf{r}, \mathbf{r}') \psi_f^* (\mathbf{r}_e) V (\mathbf{r}, \mathbf{r}_e) \psi (\mathbf{r}, \mathbf{r}_e) \, d\mathbf{r}_e \, d\mathbf{r} \]

(11)

In order that \(F_f \) should have the correct asymptotic form given by equation (10) we find,

\[G(\mathbf{r}, \mathbf{r}') = \frac{iK_f |\mathbf{r} - \mathbf{r}'|}{4\pi |\mathbf{r} - \mathbf{r}'|} \]

(12)

where \(\mathbf{k}_f \) is a wave vector in the direction of \(\mathbf{r} \).

Now

\[|\mathbf{r} - \mathbf{r}'| = (r^2 + r'^2 - 2rr' \cos \theta)^{1/2} = r' \left[(\frac{r}{r'})^{2} + 1 - \frac{2r}{r'} \cos \theta \right]^{1/2} \]

(13)

So for large \(r' \)

\[\frac{1}{|\mathbf{r} - \mathbf{r}'|} \sim \frac{1}{r'} \]

(13)

and

\[\mathbf{k}_f \cdot |\mathbf{r} - \mathbf{r}'| \sim \mathbf{k}_f \cdot r' \left[1 - \frac{r}{r'} \cos \theta \right] = \mathbf{k}_f \cdot r' - \mathbf{k}_f \cdot \mathbf{r}' \]

(14)

Then

\[G(\mathbf{r}, \mathbf{r}') \sim -\frac{iK_f r'}{4\pi r'} e^{iK_f \cdot \mathbf{r}} \]

(15)

Substitute equation (15) into Equation (11) to obtain

\[F_f(r', \mathbf{r}) = e^{i \mathbf{k}_f \cdot \mathbf{r}' - i \mathbf{k}_f \cdot \mathbf{r}} \delta_{fi} - \frac{m}{2\pi \hbar^2} \int e^{-iK_f \cdot \mathbf{r}} \psi_f^* (\mathbf{r}_e) V (\mathbf{r}, \mathbf{r}_e) \psi (\mathbf{r}, \mathbf{r}_e) \, d\mathbf{r}_e \, d\mathbf{r} \]

(16)

Comparing equation (16) with equation (10), we see that

\[f_f(\theta, \phi) = -\frac{m}{2\pi \hbar^2} \int e^{-iK_f \cdot \mathbf{r}} \psi_f^* (\mathbf{r}_e) V (\mathbf{r}, \mathbf{r}_e) \psi (\mathbf{r}, \mathbf{r}_e) \, d\mathbf{r}_e \, d\mathbf{r} \]

(17)
To obtain the Born scattering amplitude make the assumption that the incident electron interacts only slightly with the target atom so that its wave function may be closely approximated by the plane wave $e^{i\mathbf{K}_1 \cdot \mathbf{r}}$ which would be the correct wave function in the absence of all interaction. This approximation should be valid when the speed of the electron is great in comparison to that of the electron in the target atom. This is essentially equivalent to the requirement that $\mathbf{K}_1 a \gg 1$ where a is the range of the electron-atom interaction. With the above assumption substitute

$$v(\mathbf{r}, \mathbf{r}_e) = e^{i\mathbf{K}_1 \cdot \mathbf{r}} \psi_1(\mathbf{r}_e)$$

into equation (17). Then

$$f_e(\theta, \phi) = -\frac{m}{2\pi \hbar^2} \int e^{i(\mathbf{K}_1 - \mathbf{K}_f) \cdot \mathbf{r}} v_{f_1}(\mathbf{r}) d\mathbf{r} \quad (18)$$

where

$$v_{f_1}(\mathbf{r}) = \frac{\psi^*_f(\mathbf{r}_e) V(\mathbf{r}, \mathbf{r}_e) \psi_1(\mathbf{r}_e)}{d\mathbf{r}_e} \quad (19)$$

Now substitute equation (9) and equation (19) into equation (18) and use Bethe's integral

$$\int e^{i\mathbf{K} \cdot \mathbf{r}_2} \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|^2} d\mathbf{r}_2 = \frac{4\pi}{K^2} e^{i\mathbf{K} \cdot \mathbf{r}_1}$$

to obtain
\[
\begin{align*}
 f_f(\theta, \phi) &= \frac{2Zm}{K^2\hbar^2} \int \psi^*_f(\vec{r}_e) \psi_1(\vec{r}_e) e^{i\vec{k} \cdot \vec{r}_e} d\vec{r}_e \\
 &= -\frac{2m}{K^2\hbar^2} \sum_{j=1}^{Z} \int \psi^*_f(\vec{r}_e) e^{i\vec{k} \cdot \vec{r}_j} \psi_1(\vec{r}_e) d\vec{r}_e
\end{align*}
\]

where \(\vec{k} = \vec{k}_1 - \vec{k}_f\) and \(\Delta \vec{k}\) is the momentum change of the incident electron.

The first term vanishes due to the orthogonality of the atomic wave function.

So (in atomic units)

\[
 f_f(\theta, \phi) = -\frac{2}{K^2} \sum_{j=1}^{Z} \int \psi^*_f(\vec{r}_e) e^{i\vec{k} \cdot \vec{r}_j} \psi_1(\vec{r}_e) d\vec{r}_e \quad (20)
\]

Equation (20) can be simplified by writing \(\psi_f(\vec{r}_e)\) and \(\psi_1(\vec{r}_e)\) in terms of antisymmetrized product wave functions. Thus

\[
\begin{align*}
 \psi_f(\vec{r}_e) &= \psi_f(\vec{r}_1 \ldots \vec{r}_Z) = (Z!)^{-\frac{1}{2}} \epsilon_{ij \ldots K} \psi_i(\vec{r}_1) \psi_j(\vec{r}_2) \ldots \psi_K(\vec{r}_Z) \\
 \psi_1(\vec{r}_e) &= \psi_1(\vec{r}_1 \ldots \vec{r}_Z) = (Z!)^{-\frac{1}{2}} \epsilon_{lm \ldots n} \psi_l(\vec{r}_1) \psi_m(\vec{r}_2) \ldots \psi_n(\vec{r}_Z)
\end{align*}
\]

where \(\epsilon_{ij \ldots K}\) is the permutation symbol

\[
\epsilon_{ij \ldots K} = \begin{cases}
 +1 & \text{even permutation} \\
 0 & \text{any two indices the same} \\
 -1 & \text{odd permutation}
\end{cases}
\]
Consider the expression

\[
\sum_{t=1}^{Z} \int \psi_f^* (\mathbf{r}_e) e^{i\mathbf{K} \cdot \mathbf{r}_t} \psi_i (\mathbf{r}_e) d\mathbf{r}_e
\]

\[
= \sum_{t=1}^{Z} \int d\mathbf{r}_1 \ldots d\mathbf{r}_Z \psi_f^* (\mathbf{r}_1 \ldots \mathbf{r}_Z) e^{i\mathbf{K} \cdot \mathbf{r}_t} \psi_i (\mathbf{r}_1 \ldots \mathbf{r}_Z)
\]

\[
= \frac{1}{Z} \sum_{t=1}^{Z} \epsilon_{ij \ldots K} \epsilon_{km \ldots n} \int d\mathbf{r}_1 \ldots d\mathbf{r}_Z \psi_f^* (\mathbf{r}_1) \ldots \psi_f^* (\mathbf{r}_Z) e^{i\mathbf{K} \cdot \mathbf{r}_t} \psi_i (\mathbf{r}_1) \ldots \psi_i (\mathbf{r}_Z)
\]

(21)

In order to simplify equation (21) consider the case \(t = 1 \).

Then equation (21) becomes

\[
= \frac{1}{Z!} \epsilon_{ij \ldots K} \epsilon_{km \ldots n} \int d\mathbf{r}_1 \psi_f^* (\mathbf{r}_1) e^{i\mathbf{K} \cdot \mathbf{r}_1} \psi_i (\mathbf{r}_1) \delta_{jm} \ldots \delta_{kn}
\]

where \(\psi_i (\mathbf{r}_1) \) is the final state wave function that does not appear in the initial state wave functions.

\[
= \frac{1}{Z!} \epsilon_{ij \ldots K} \epsilon_{lj \ldots K} \int d\mathbf{r}_1 \psi_f^* (\mathbf{r}_1) e^{i\mathbf{K} \cdot \mathbf{r}_1} \psi_i (\mathbf{r}_1)
\]

(22)

Now use the relation \(\epsilon_{a \beta_1 \ldots \pi} \epsilon_{a^t \beta_1 \ldots \pi} = (P-1)! \delta_{aa^t} \) where \(P \) is the number of subscripts on the \(\epsilon_{a \beta_1 \ldots \pi} \)'s.

Then equation (22) becomes

\[
= \frac{1}{Z!} (Z-1)! \delta_{il} \int d\mathbf{r}_1 \psi_f^* (\mathbf{r}_1) e^{i\mathbf{K} \cdot \mathbf{r}_1} \psi_i (\mathbf{r}_1)
\]

\[
= \frac{1}{Z} \int d\mathbf{r}_1 \psi_f^* (\mathbf{r}_1) e^{i\mathbf{K} \cdot \mathbf{r}_1} \psi_i (\mathbf{r}_1)
\]
But this shows that all of the terms in the sum in equation (21) are equal. And since there are \(Z \) terms in the sum equation (21) becomes

\[
\int dr \psi_f^*(r) e^{i\hat{K} \cdot \hat{r}} \psi_i(r)
\]

where \(\psi_f(r) \) and \(\psi_i(r) \) are the final and initial state wave functions of the excited electron.

Using Slater Wave functions the expression for the Born scattering amplitude becomes

\[
f(\theta, \phi) = -\frac{2}{\hat{K}^2} \int dr \ R_{nf}^2(r) \ R_{n1}^2(r) <l_{m_f} | e^{i\hat{K} \cdot \hat{r}} | l_{m_i}>^2
\]

where

\[
<l_{m_f} | e^{i\hat{K} \cdot \hat{r}} | l_{m_i}> = \int d\Omega \ Y_{m_f}^+ (\Omega) \ e^{i\hat{K} \cdot \hat{r}} Y_{m_i} (\Omega)
\]

To do the angular integral choose \(\hat{K} \) to be along the z-axis and use the expansion

\[
e^{i\hat{K} \cdot \hat{r}} = \sum_{\nu=0}^{\infty} i^n \sqrt{\frac{4\pi(2\nu+1)}{4\pi}} j_{\nu}(Kr) Y_{\nu0}(\Omega)
\]

where \(j_{\nu}(Kr) \) is a spherical Bessel function of the first kind.

For an \(s + p \) excitation the angular integral becomes

\[
<l_{m_f} | e^{i\hat{K} \cdot \hat{r}} | \infty> = i \sqrt{3} j_1(Kr)
\]
To do the radial integral for SWF I use equation (1) which gives the R_{n}'s in the terms of the F's.

Finally the scattering amplitude for an $s \rightarrow p$ excitation becomes (for SWF I)

$$f(K) = \frac{2\sqrt{3}}{K \rho} \left[\sum_{j=1}^{n_{f}} \sum_{K=1}^{n_{l}} \frac{F_{n_{f},n_{f}+1-j} F_{n_{l},n_{l}+1-K}}{a_{jK}^{-2}} \right]$$

where

$$a_{jK} = n_{f} + n_{l} + 2 - j - K,$$ \hspace{1cm} (23)

$$b_{jK} = \left[\frac{Z_{n_{f}+1-j}}{n_{f}+1-j} + \frac{Z_{n_{l}+1-K}}{n_{l}+1-K} \right],$$ \hspace{1cm} (24)

$$\theta_{jK} = \tan^{-1} \left(\frac{K}{b_{jK}} \right) \text{ and } \rho_{jK} = \sqrt{b_{jK}^{2} + K^{2}}.$$

For an $s \rightarrow p$ excitation the angular integral remains the same when SWF II are used. In this case use equation (3) for $R_{n_{f}l_{f}}(r)$ and $R_{n_{l}l_{l}}(r)$.

So for an $s \rightarrow p$ excitation with SWF II
\[f(K) = \frac{2\sqrt{\beta N}}{K^{2}\iota_{i}^{2}} \sum_{j=1...n_{f}}^{\infty} \sum_{k=1...n_{j}}^{\infty} \text{\(P_{n_{f},\lambda_{f},n_{f}+1-j}, P_{n_{i},\lambda_{i},n_{i}+1-K} \) } \]

\[\frac{(\alpha_{jK}-2)!}{\alpha_{jK}^{a_{jK}}} \left\{ K(\alpha_{jK}-1) \sin (\alpha_{jK}\theta_{jK}-\pi/2) + \rho_{jK} \cos [(\alpha_{jK}-1)\theta_{jK}-\pi/2] \right\} \] (25)

Total cross sections were also calculated using an effective potential of the form

\[V(|r - r'|) = -\frac{e^{-C \frac{K^{2}}{r} |r - r'|}}{|r - r'|} \]

In dimensionless units

\[V(|r - r'|) = -\frac{e^{-C \frac{1}{a_{o}} (K_{a_{o}})^{2} \frac{|r - r'|}{a_{o}}}}{|r - r'|} \]

Now choose

\[\frac{C}{a_{o}} = Z^{2} E_{T}^{2} \]

where \(Z \) is the atomic number of the target atom and \(E_{T} \) is numerically equal to the threshold energy in Rydbergs. The effective potential has an overall effect of replacing the Born scattering amplitude by

\[f(K) = f_{\text{Born}}(K)/\left(1 + Z^{2} E_{T}^{2} K^{2} \right) \]
TOTAL CROSS SECTION

The total cross-section is given by

\[\sigma_T = \frac{K_f}{K_i} \int \left| f(\theta, \phi) \right|^2 d\Omega . \]

Since our V(r) has azimuthal symmetry

\[d\Omega = 2\pi \sin \theta d\theta \]

the total cross section becomes

\[\sigma_T = \frac{2\pi K_f}{K_i} \int_0^{\pi} \left| f(\theta) \right|^2 \sin \theta d\theta . \]

Now from conservation of momentum (\(\vec{h}K \) is momentum vector) we get

\[K^2 = K_i^2 + K_f^2 - 2K_i K_f \cos \theta \]

where \(\vec{h}K \) is the momentum transfer and \(\theta \) is the angle between \(\vec{K}_i \) and \(\vec{K}_f \).

Then

\[2KdK = 2K_i K_f \sin \theta d\theta \]

or

\[\sin \theta d\theta = \frac{KdK}{K_i K_f} . \]

Now at \(\theta = 0 \)

\[(K_{\min})^2 = (K_i - K_f)^2 \quad \text{or} \quad K_{\min} = K_i - K_f \]
and at $\theta = \pi$

$$(K_{\text{max}})^2 = (K_i + K_f)^2 \quad \text{or} \quad K_{\text{max}} = K_i + K_f$$

From $E = K^2$ and $E_f = E_i - E_T$ where E_f is the energy of the scattered electron, E_i is the incident electron energy and E_T is the threshold energy we get

$$K_{\text{max}} = K_i \pm K_f = (E_i)^{1/2} \pm (E_f)^{1/2} = (E_i)^{1/2} [1 \pm (1 - \frac{E_T}{E_i})^{1/2}]$$

And so the integral for the total cross section becomes

$$\sigma_T = \frac{2\pi}{K_i^2} \int_{K_{\text{min}}}^{K_{\text{max}}} \, dK \, K|\tilde{f}(K)|^2 \quad (26)$$

Slater's rules are used to determine the effective atomic numbers Z_n's. These values are used to calculate the orthonormality constants A_{n_j}'s and N_n's for the SWF I and the A_{n_m}'s and N_{n_m}'s for SWF II. The F_{n_l}'s and $F_{n_l j}$'s are in turn calculated from these orthonormality constants. These results are then substituted into equation (22) for SWF I and into equation (25) for SWF II. The scattering amplitude thus obtained must be squared and integrated over the momentum transfer according to equation (26).

The following cross sections were calculated using both SWF I and SWF II: Li(2s \rightarrow 2p), Li(2s \rightarrow 3p), Na(3s \rightarrow 4p), Mg(3p \rightarrow 4s), Ca(4s \rightarrow 4p) and K(4s \rightarrow 4p). Two computer programs which were written to do the calculations are given in the Appendix. The first program calculates the
total cross section using SWF I as follows: First the $a_{jk}'s$ given by equation (23) are calculated. The the $b_{jk}'s$ equation (24) are calculated. Next, the $F_{nn}'s$ equation (2') and the $A_{nn}'s$ equation (2') are initialized to 1 and 0 respectively. The $N_{nj}'s$ and $A_{nj}'s$ are calculated next. These must be calculated together since they depend upon each other. Then using the calculated $N_{nj}'s$ and $A_{nj}'s$ the $F_{nj}'s$ equation (2) are calculated. Finally the last part of the program calculates the scattering amplitude $f(K)$ equation (22) squares it and integrates $|f(K)|^2$ over the momentum transfer using Simpson's rule as an approximation to the integral.

The second program calculates the total cross section using SWF II. This program calculates the radial integral in addition to the integral over the momentum transfer. Thus, the $N_{nj}'s$ and the $A_{nj}'s$ are calculated first. Then the radial integration is done and finally integral over the momentum transfer is done. Simpson's rule is again used for both of these integrations.

The results of the calculations are given in graphic form on the following pages. These results are compared with the calculations of Vainshtein, Opykhtin, and Presnyakov (VOP) and with experimental data where available. It was found that the difference in using SWF I and SWF II for all of the calculated excitations was less than about 5%. The data are therefore only plotted for one set of wave functions.

Agreement with VOP is very good for the Li(2s → 2p) transition. Both calculations are high with respect to the experimental data given in reference (9). Agreement with VOP for the Li(2s → 3p) transition
is not as good with VOP obtaining a peak cross section which is more than 3/2 times and at a lower energy than the SWF result. No experimental data could be found for this transition. The SWF result for the Na(3s → 4p) is about an order of magnitude smaller than the VOP calculation up to 5 threshold units and a factor of 3-8 smaller for the higher energies. However, the SWF cross section for this transition has an oscillation in it. More will be said about this oscillation and attempts to understand it ($Z_4 = 1.35$ curve) in the conclusions. As can be seen from the graph the SWF cross section is closer to the experimental values given in reference (9). No other calculations or experimental data could be found for the Mg(3p → 4s) and Ca(4s → 4p) transitions. Good agreement with VOP is obtained for the K(4s → 4p) transition. The cross section peaks at roughly the same energy but the VOP peak is about 50% larger and does not tail off as fast.

All of the Modified Born results show the expected behavior of a lower cross-section at the lower energies with the approach to the same value as the Born Approximation at the high energies.

These data are presented in tabular form in Tables I and II on pages 27, 28 and 29.
\[\text{Li} (2S \rightarrow 2P) \]

- xxxxxxx EXPERIMENTAL
- ----- BORN (SWF)
- ----- MODIFIED BORN
- ----- VOP

\[\varepsilon_t \text{ (THRESHOLD UNITS)} \]

Graph showing the relationship between \[\varepsilon_t \] and \(\varphi (\varepsilon_t, l) \) for different models.
Li \,(2S \rightarrow 3P)

- Born (SWF)
- Modified Born
- VUP

\begin{figure}
\begin{center}
\begin{tikzpicture}
\begin{axis}[
 xlabel={E_i (Threshold Units)},
 ylabel={\(\sigma (\pi a_o^2)\)},
 xmin=0, xmax=20,
 ymin=0, ymax=3.0,
 xtick={0,5,10,15,20},
 ytick={0,0.5,1.0,1.5,2.0,2.5,3.0},
 legend style={at={(0.5,1.05)},anchor=south},
]
\addplot[thick] table [x expr=
\coordindex-\coordindex, y index=0] {data.csv};
\addlegendentry{Born (SWF)}
\addplot[dotted] table [x expr=
\coordindex-\coordindex, y index=1] {data.csv};
\addlegendentry{Modified Born}
\addplot[dashed] table [x expr=
\coordindex-\coordindex, y index=2] {data.csv};
\addlegendentry{VUP}
\end{axis}
\end{tikzpicture}
\end{center}
\end{figure}
Na (3s → 4p)

- Experimental
- Born (SWF)
- Modified Born
- VOP
- Born (SWF) \(\bar{Z} = 1.35 \)
- Modified Born \(\bar{Z} = 1.35 \)

\(\sigma \) (in \(\sigma_0^2 \)) vs. \(E_l \) (threshold units)
Mg (3P \rightarrow 4S)

- BORN (SWF)
- MODIFIED BORN

\[\alpha \] (\theta) vs. \(E_l \) (Threshold Units)
$K(4S \rightarrow 4P)$

- **Born (SWF)**
- **Modified Born**
- **VDP**

$\sigma (\pi a_0^2)$

E_i (Threshold Units)
<table>
<thead>
<tr>
<th>E (threshold units)</th>
<th>(\text{Li (} 2s + 2p))</th>
<th>(\text{Li (} 2s \rightarrow 3p))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Born (SWF)</td>
<td>Mod. Born</td>
</tr>
<tr>
<td>1.16</td>
<td>0.101(3)</td>
<td>0.961(2)</td>
</tr>
<tr>
<td>1.64</td>
<td>0.130(3)</td>
<td>0.125(3)</td>
</tr>
<tr>
<td>2.00</td>
<td>0.127(3)</td>
<td>0.122(3)</td>
</tr>
<tr>
<td>2.44</td>
<td>0.119(3)</td>
<td>0.115(3)</td>
</tr>
<tr>
<td>3.56</td>
<td>0.995(2)</td>
<td>0.966(2)</td>
</tr>
<tr>
<td>5.00</td>
<td>0.818(2)</td>
<td>0.797(2)</td>
</tr>
<tr>
<td>6.76</td>
<td>0.674(2)</td>
<td>0.659(2)</td>
</tr>
<tr>
<td>11.24</td>
<td>0.475(2)</td>
<td>0.465(2)</td>
</tr>
<tr>
<td>17.00</td>
<td>0.351(2)</td>
<td>0.345(2)</td>
</tr>
<tr>
<td>24.04</td>
<td>0.271(2)</td>
<td>0.266(2)</td>
</tr>
</tbody>
</table>

\(^a\) - Graphically interpolated
TABLE I
(cont.)

<table>
<thead>
<tr>
<th>Na (3s + 4p)</th>
<th>Mg (3s + 4p)</th>
<th>K (4s + 4p)</th>
<th>Ca (4s + 4p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Born (b)</td>
<td>Mod. Born</td>
<td>VOP (7)</td>
</tr>
<tr>
<td></td>
<td>(SWF)</td>
<td>(SWF)</td>
<td></td>
</tr>
<tr>
<td>.266(0)</td>
<td>.211(-1)</td>
<td>.320(1)</td>
<td>--</td>
</tr>
<tr>
<td>.211(0)</td>
<td>.187(-1)</td>
<td>.360(1)</td>
<td>.232(0)</td>
</tr>
<tr>
<td>.194(0)</td>
<td>.245(-1)</td>
<td>.347(1)</td>
<td>.234(0)</td>
</tr>
<tr>
<td>.194(0)</td>
<td>.381(-1)</td>
<td>.311(1)</td>
<td>.230(0)</td>
</tr>
<tr>
<td>.209(0)</td>
<td>.740(-1)</td>
<td>.222(1)</td>
<td>.223(0)</td>
</tr>
<tr>
<td>.219(0)</td>
<td>.103(0)</td>
<td>.170(1)</td>
<td>.214(0)</td>
</tr>
<tr>
<td>.219(0)</td>
<td>.120(0)</td>
<td>.132(1)</td>
<td>.193(0)</td>
</tr>
<tr>
<td>.196(0)</td>
<td>.124(0)</td>
<td>.839(0)</td>
<td>--</td>
</tr>
<tr>
<td>.169(0)</td>
<td>.120(0)</td>
<td>.585(0)</td>
<td>--</td>
</tr>
<tr>
<td>.144(0)</td>
<td>.109(0)</td>
<td>.426(0)</td>
<td>--</td>
</tr>
</tbody>
</table>

a - Graphically interpolated

b - Additional points calculated, n = 1.02, σ = 0.148; n = 1.04, σ = 0.195; n = 1.08, σ = 0.241.
TABLE II

ELECTRON EXCITATION CROSS SECTIONS FOR Na (3s → 4p) USING $Z_{41} = 1.35$.

(Units of πa_o^2)

<table>
<thead>
<tr>
<th>E (Threshold units)</th>
<th>1.16</th>
<th>1.64</th>
<th>2.00</th>
<th>2.44</th>
<th>3.56</th>
<th>5.00</th>
<th>6.76</th>
<th>11.24</th>
<th>17.00</th>
<th>24.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Born (SWF)</td>
<td>.469(0)</td>
<td>.477(0)</td>
<td>.555(0)</td>
<td>.657(0)</td>
<td>.818(0)</td>
<td>.883(0)</td>
<td>.878(0)</td>
<td>.781(0)</td>
<td>.664(0)</td>
<td>.563(0)</td>
</tr>
<tr>
<td>Mod. Born</td>
<td>.313(-1)</td>
<td>.581(-1)</td>
<td>.119(0)</td>
<td>.202(0)</td>
<td>.367(0)</td>
<td>.478(0)</td>
<td>.532(0)</td>
<td>.537(0)</td>
<td>.489(0)</td>
<td>.433(0)</td>
</tr>
</tbody>
</table>
The line strength for spontaneous emission in the dipole approximation is given by

\[S = \sum_{i,K} |\langle n_{i} m_{i} | K \rangle |^{2} \]

(27)

where \(i \) and \(K \) number the degenerate sublevels of the upper state \(n \) and lower state \(m \); and where the summation is over all possible combinations of the sublevels of the upper state with those of the lower state; and where

\[\langle n_{i} m_{i} | K \rangle = \langle n | \hat{r} | m \rangle \]

(28)

It will now be shown how \(S \) is related to the Einstein coefficient for spontaneous emission. This will be done semiclassically in the sense that the \(E \) and \(M \) field is treated classically while the particles are treated quantum mechanically. A correct quantum electrodynamical treatment leads to the same results.

Maxwell's equations of motion for the electromagnetic field are in gaussian units

\[\nabla \cdot \vec{E} = 4\pi \rho \]

(29) \[\nabla \times \vec{H} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = \frac{4\pi}{c} \vec{J} \]

(30)

\[\nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{H}}{\partial t} = 0 \]

(31) \[\nabla \cdot \vec{H} = 0 \]

(32)
From equation (32), we see $\vec{H} = \vec{V} \times \vec{A}$. If this is substituted into equation (31) and the order of the spatial and time derivatives is interchanged we obtain

$$\vec{V} \times (\vec{E} + \frac{1}{c} \frac{\partial \vec{A}}{\partial t}) = 0.$$

Thus

$$\vec{E} + \frac{1}{c} \frac{\partial \vec{A}}{\partial t} = - \vec{V} \phi$$

or

$$\vec{E} = - \frac{1}{c} \frac{\partial \vec{A}}{\partial t} - \vec{V} \phi$$

Substitution of the equations for \vec{E} and \vec{H} into equations (29) and (30)

$$\vec{V} (\vec{V} \cdot \vec{A} + \frac{1}{c} \frac{\partial \phi}{\partial t}) - \nabla^2 \vec{A} + \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = \frac{4\pi}{c} \vec{j}$$

$$\frac{1}{c} \frac{\partial}{\partial t} \vec{V} \cdot \vec{A} + \nabla^2 \phi = - 4\pi \rho$$

where $\vec{V} \times (\vec{V} \times \vec{A}) = \vec{V} (\vec{V} \cdot \vec{A}) - \nabla^2 \vec{A}$ has been used. Now choose the Lorentz gauge so that

$$\vec{V} \cdot \vec{A} + \frac{1}{c} \frac{\partial \phi}{\partial t} = 0$$

Then equations (33) and (34) become

$$\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = - \frac{4\pi}{c} \vec{j}$$

$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = 4\pi \rho$$

Now, taking the curl of equation (35) we obtain

\[\nabla^2 \vec{H} - \frac{1}{c^2} \frac{\partial^2 \vec{H}}{\partial t^2} = - \frac{4\pi}{c} \nabla \times \vec{J} \]

(37)

Assume that the three cartesian components of \(\vec{J} \) vary harmonically in time with the same angular frequency \(\omega \) but not necessarily with the same phase:

\[J_x (\vec{r}, t) = 2 |J_x (\vec{r})| \cos (\omega t - \phi_x) = J_x (\vec{r}) e^{-i\omega t} + J_x^* (\vec{r}) e^{i\omega t} \]

(38)

where

\[J_x (\vec{r}) = |J_x (\vec{r})| e^{\phi_x} \]

with similar equations for the \(y \) and \(z \) components. We are interested only in the solutions for \(\vec{E} \) and \(\vec{H} \) that have the same frequency \(\omega \). Thus the \(x \)-components are given by

\[E_x (\vec{r}, t) = 2 |E_x (\vec{r})| \cos (\omega t - \phi_x) = E_x (\vec{r}) e^{i\omega t} + E_x^* (\vec{r}) e^{-i\omega t} \]

(39)

\[H_x (\vec{r}, t) = 2 |H_x (\vec{r})| \cos (\omega t - \alpha_x) = H_x (\vec{r}) e^{-i\omega t} + H_x^* (\vec{r}) e^{i\omega t} \]

(40)

where

\[E_x (\vec{r}) = |E_x (\vec{r})| e^{i\phi_x} \quad \text{and} \quad H_x (\vec{r}) = |H_x (\vec{r})| e^{i\alpha_x} \]

Using equation (30) \(\vec{H} \) is given in terms of \(\vec{H} \) in a vacuum by

\[\vec{E}(\vec{r}) = \frac{ic}{\omega} \nabla \times \vec{H}(\vec{r}). \]

(41)
Substituting the expressions for \(\mathbf{J} \), \(\mathbf{H} \) and \(\mathbf{E} \) into the wave equation for \(\mathbf{H} \), equation (37), we obtain,

\[
(\nabla^2 + K^2) \mathbf{H}(\mathbf{r}) = -\frac{4\pi}{c} \mathbf{\nabla} \times \mathbf{J}(\mathbf{r}) \quad K = \omega/c \tag{42}
\]

The retarded solution of the above equation is given by

\[
\mathbf{H}(\mathbf{r}) = \frac{1}{c} \int \frac{\mathbf{\nabla} \times \mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \exp \left(iK|\mathbf{r} - \mathbf{r}'|\right) d^3\mathbf{r}' \tag{43}
\]

Now

\[
\exp \left(iK|\mathbf{r} - \mathbf{r}'|\right) \xrightarrow{r \to \infty} \frac{1}{r} \exp \left(iK(r - r' \cos \theta)\right) \tag{44}
\]

where \(\theta \) is the angle between \(\mathbf{r} \) and \(\mathbf{r}' \).

The Poynting vector is

\[
\mathbf{P}(\mathbf{r},t) = \frac{c}{4\pi} \left[\mathbf{E}(\mathbf{r},t) \times \mathbf{H}(\mathbf{r},t) \right]
\]

Using equations (39) and (40) for \(\mathbf{E} \) and \(\mathbf{H} \), we see that the average over a period of oscillation has a z component

\[
P_z(\mathbf{r}) = \frac{c}{2\pi} \left[|E_x(\mathbf{r})| |H_y(\mathbf{r})| \cos (\omega t - \phi_x) \cos (\omega t - \alpha_y) \right]_{\text{time ave}}
\]

\[
- |E_y(\mathbf{r})| |H_x(\mathbf{r})| \cos (\omega t - \phi_y) \cos (\omega t - \alpha_x) \right]_{\text{time ave}}
\]

\[
P_z(\mathbf{r}) = \frac{c}{2\pi} \left[E_x(\mathbf{r}) | |H_y(\mathbf{r})| \cos (\phi_x - \alpha_y) - E_y(\mathbf{r}) \times H_x(\mathbf{r}) \cos (\alpha_x - \phi_y) \right]
\]
Then

\[P(\mathbf{r}) = \frac{c}{2\pi} \text{ Re} \left[\mathbf{E}(\mathbf{r}) \times \mathbf{H}^* (\mathbf{r}) \right] \quad (45) \]

Now we are only interested in those terms in the energy flux that fall off as \(1/r^2\) since only these correspond to radiated energy. Choose the \(z\)-axis along the vector \(\mathbf{r}\) which goes from the center of the charge-current distribution to the point at which the field is measured.

Using equations (41), (43), and (44) we obtain

\[H_x = -\frac{ik}{rc} e^{ikr} \int J_y (\mathbf{r}') e^{-ikz'} d^3r' \]
\[H_y = \frac{ik}{rc} e^{ikr} \int J_x (\mathbf{r}') e^{-ikz'} d^3r' \]
\[H_z \rightarrow 0 \quad (46) \]
\[E_x = \frac{ik}{rc} e^{ikr} \int J_y (\mathbf{r}') e^{-ikz'} d^3r' \]
\[E_y = \frac{ik}{rc} e^{ikr} \int J_x (\mathbf{r}') e^{-ikz'} d^3r' \]
\[E_z \rightarrow 0 \]

Partial integration has been used to get rid of the derivatives of \(\mathbf{J}\). The above equations show that the asymptotic fields are transverse to the direction of propagation. They also show that only the component of the current perpendicular to the direction of propagation contributes to the radiated energy.
Substituting these fields into equation (45) we obtain

$$ P_z = \frac{K^2}{2\pi r^2 c} \left[\int J_x e^{iKz'} d^3r' \right]^2 + \left| \int J_y e^{-iKz'} d^3r' \right|^2 $$

Generalizing the above equation to give the average energy flux in the direction of \(\mathbf{K} \) we obtain

$$ P_z = \frac{K^2}{2\pi r^2 c} | \int J_{\perp K} d^3r' | e^{iKz'} $$

where \(J_{\perp K} \) is the component of \(\mathbf{J} \) perpendicular to \(\mathbf{K} \).

In most cases of practical interest the wavelength of the radiation is many times greater than the linear dimensions of the current-charge distribution. This means that \(R \cdot r' \ll 1 \) and \(e^{-iK \cdot r'} \) can be replaced by 1 in the integrand of the equation for \(P_z \). Then

$$ P_z = \frac{K^2}{2\pi r^2 c} \left| \int J_{\perp K} d^3r' \right|^2 \quad (47) $$

From equation (46) with the same approximation it is apparent that the polarization of the radiation is determined by the total current vector

$$ \mathbf{J}_o = \int \mathbf{J}(r') d^3r' $$

With \(\mathbf{J}_o \) linearly polarized the integral in equation (47) can be replaced by \(|\mathbf{J}_o|^2 \sin^2 \theta \) where \(\theta \) is the angle between \(\mathbf{K} \) and \(\mathbf{J}_o \). Then the total power radiated is

$$ P = \frac{K^2}{2\pi r^2 c} |\mathbf{J}_o|^2 \int_0^{2\pi} \int_0^\pi r^2 \sin^3 \theta \, d\theta d\phi $$

$$ = \frac{4K^2}{3c} |\mathbf{J}_o|^2 \quad (48) $$
Equation (48) is also valid for non-linear polarizations.

To convert to quantum theory the classical expression for \(\mathbf{J} \) must be replaced by its quantum analog. We want to replace \(\mathbf{J} \) by a current density that is associated with an initial upper state \(u_K \) and a final lower state \(u_n \), since energy is radiated during the transition from \(K \) to \(n \). It is natural to represent the current density as a product of a charge density and a velocity and to take for the velocity the momentum operator divided by the mass: \(-\frac{\mathbf{p}}{m}\). The charge density for a stationary state is expected to be the charge of the particle times its position probability density i.e., \(e|\psi|^2 \). However, we are concerned here with a transition between states and so replace this by \(eu_n^* u_K \). Thus we can replace \(\mathbf{J}(r) \) by

\[
\mathbf{J}(r) \to -\frac{ie\hbar}{m} u_n^*(r) \mathbf{\hat{V}} u_K(r)
\]

To get \(\mathbf{J}_0 \) we must integrate the above expression for \(\mathbf{J}(r) \) over the coordinates.

Thus

\[
\mathbf{J}_0 = -\frac{ie\hbar}{m} \int u_n^*(r) \mathbf{\hat{V}} u_K r d^3r
\]

or

\[
\mathbf{J}_0 = \frac{e}{m} \int u_n^* \mathbf{\hat{p}} u_K r d^3r
\]

or

\[
\mathbf{J}_0 = \frac{e}{m} <n | \mathbf{\hat{F}} | K> .
\]

(49)
The matrix element of \(\hat{P} \) is \(\hat{P} = \frac{d \hat{r}}{dt} \).

So

\[
\frac{1}{m} \langle n|\hat{P}|K\rangle = \frac{d}{dt} \langle n|\hat{r}|K\rangle. \tag{50}
\]

If an energy representation in the Schrödinger picture is used we have

\[
\langle n(t)|\hat{r}|K(t)\rangle = \langle n(o)|\hat{r}|K(o)\rangle e^{i\omega_{nk}t}
\]

where \(\omega_{nk} = \frac{E_n - E_K}{\hbar} \).

So

\[
\frac{d}{dt} \langle n(t)|\hat{r}|K(t)\rangle = \frac{d}{dt} \langle n(o)|\hat{r}|K(o)\rangle e^{i\omega_{nk}t}
\]

\[
= i\omega_{nk}\langle n(o)|\hat{r}|K(o)\rangle e^{i\omega_{nk}t}
\]

\[
= i\omega_{nk}\langle n(t)|\hat{r}|K(t)\rangle \tag{51}
\]

Substituting equation (51) into equation (50) we obtain

\[
\frac{1}{m} \langle n|\hat{r}|K\rangle = i\omega_{nk} \langle n|\hat{r}|K\rangle. \tag{52}
\]

Substituting equation (52) into equation (49) we obtain

\[
J_o = i\omega_{nk} \langle n|\hat{r}|K\rangle \tag{53}
\]

Substitution of equation (53) into equation (48) gives the radiated power. We can interpret this power as the product of the spontaneous rate of transition from \(n \) to \(K \) and the quantum energy \(\omega_{nk} = E_K - E_n \) given off in each transition.
Thus

\[p = \frac{4K^2}{3c} e^2 \omega_{nk} nK |\langle n|\hat{r}|k\rangle|^2 \]

and the transition probability per unit time for spontaneous emission (Einstein probability coefficient) becomes

\[A_{nk} = \frac{4K^2 e^2 \omega_{nk}}{3hc} |\langle n|\hat{r}|k\rangle|^2 \]

Using \(\omega_{nk} = Kc \) we obtain

\[A_{nk} = \frac{4e^2 \omega_{3K} nK}{3hc^3} |\langle n|\hat{r}|3k\rangle|^2 \]

The line strength is the sum over all possible combinations of the (possibly) degenerate sublevels with those of the lower state of the matrix element in the expression for \(A_{nk} \).

To calculate the line strength of the Na(3p → 3s) line we need the effective atomic numbers \(Z_n \) for sodium. Using Slater's rules we find: \(Z_1 = 10.7 \), \(Z_2 = 6.85 \) and \(Z_3 = 2.20 \). From these values the A's and N's can be found and substituted in Slater's radial wave functions. The same result is obtained for the line strength of the Na(3p → 3s) if either SWF I or SWF II are used.

Thus we obtain (in atomic units)

for \(m = 0 \)

\[\int \psi_n^* \hat{r} \psi_k d^3r = 2.76 \hat{e}_z \]

for \(m = 1 \)

\[\int \psi_n^* \hat{r} \psi_k d^3r = 0.799 \sqrt{6} \quad |-\hat{e}_x + i\hat{e}_y| \]
When these results are substituted into the expression for S the answer is (in atomic units)

$$S = 22.9.$$

This compares reasonably well with an experimental value of 19 atomic units given in reference 2.

The value obtained for the Einstein probability coefficient is

$$A_{nK} = 2.256 \times 10^6 \text{ sec}^{-1}.$$
CONCLUSIONS

With the exception of Na(3s \rightarrow 4p) cross section the SWF cross sections are roughly with a factor of 3-4 of VOP's results. In particular, there is very good agreement with VOP for the Li(2s \rightarrow 3p) cross section. One should realize that comparing one theoretical calculation with another does not establish the validity of either.

The oscillation in the Na(3s \rightarrow 4p) cross section is disconcerting. Normally such oscillations come from the interference of coupled states, but couplings have not been included in the SWF calculation and so it was first thought to be a programming error. A second program was written to serve as an independent check on the results of the first program. In this program the radial integration was also done on the computer. Numerous excitation levels of hydrogen using hydrogen wave functions were calculated with both programs. Both gave the same results and agreed with the results given in VOP. When SWF's were used the programs also calculated the A and N parameters. Both programs used the same routine for calculating these parameters. So it was concluded that the oscillation in the Na(3s \rightarrow 4p) cross section was real.

By setting all of the A's individually equal to zero it was found that only A_{413} significantly affects the cross-section. In particular by setting A_{413} equal to 90% of its calculated value the oscillation is removed. However, the cross-sections increase by about 60%.

Using the orthonormality conditions $\langle R_n, R_{n'} \rangle = \delta_{nn'}$, it can be shown that
\[A_{413} = - \int_{0}^{\infty} d r r^2 R_{31}(r) \left[r^3 \exp(-Z_4 r/4) \right] \]

Thus, the absolute value of \(A_{413} \) can be reduced by using a different value for \(Z_4 \) than that given by Slater's rules. The value obtained for \(Z_4 \) by using Slater's rules is \(Z_4 = 1.00 \). By setting \(Z_4 = 1.35 \) the oscillation is removed. However, this increases the cross section to 3-4 times the original calculated value and the peak shifts toward higher energy. This rather large change in the cross section should be expected since the \(A \)'s, \(N \)'s and \(F \)'s all depend on \(Z_4 \) and these appear in the expression for the scattering amplitude \(f(K) \).

Thus it appears that the absolute value of \(A_{413} \) is too large. This could be due to too large an overlap between \(R_{31} \) and the characteristic part of \(R_{41} \) which is the factor in brackets in the above expression for \(A_{413} \).
The following programs were used to do most of the calculations related to this work. The first program does both the radial integral and the integral over the momentum transfer using Simpson's rule as an approximation to the integrals. The first part of the program down to and including statement 10 calculates the $N_{n_{j}}$'s and $A_{n_{j}}$'s. Then the radial integration is done and finally the integral over the momentum transfer is done.

The second program as given uses the SWF I. Only minor modifications are required to use SWF II. In this program only the integral over the momentum transfer is done as equation (1) is used for $f(K)$. This program will work for any $s \rightarrow p$ transition for which $n_{f} \geq n_{i}$. If $n_{f} < n_{i}$ enough N_{j}'s, A_{nj}'s and F_{nj}'s may not be calculated. Only the statements marked * need be changed to calculate the total cross-section for other than $s \rightarrow p$ transitions for which $n_{f} \geq n_{i}$.
DIMENSION TN(10), XSUM(5), AX(5), A(5), FX(5), XARS(5), SIGMA(5)
DIMENSION PDFX(5), R1A(210), R1(225), RF(205)
DIMENSION C(4,4), AA(4,4,4), R(4,4,205), Z(4)
READ 20, NT, NF, (Z(I), I=1,NF)
30 FORMAT (212, 10F5.2)
READ(5,50) (A(I), I=1,5), (TN(I), I=1,10)
50 FORMAT (5(F5.2,2X)/5(F6,2,2X))
24 FORMAT (F16.8,4X,11,4X,11)
34 FORMAT (F16.8,4X,11,4X,11)
77=11, CC,
TF=2.7503
AAA=1.722
CC=8.*(AAA**2/TF
XX=1.0D0
NX=XX+1.
RN=290.
NP=RN+1.
DO 1 J=1,NF
DO 1 K=1,NF
AAA(J,K)=0.0D0
1 CONTINUE
DO 10 J=1,NF
DO 12 L=1,NF
IF (J=L-L) 10,10,15
15 ASQR=0.0
IF (J=2) 4,2,2
2 K = J + 1
DO 3 I = 1, K
3 ASSOR = ASSOR + AA(J, L, I) ** 2
4 S = 2 * J + 1
G = J
C(J, L) = 1.0 / (GAMMA(S) * (G / (2 * Z(J))) ** (2 * J + 1) - ASSOR)
WRITE (6, 24) C(J, L), J, L
DO 9 N = 2, N
9 IF (N - J) < 9, 9, 9
5 ASSUM = C(J)
IF (J - 2) < 6, 6, 5
6 LL = J - 1
DO 7 I = 1, LL
7 ASSUM = ASSUM + AA(N, L, I) * AA(J, L, I)
8 SA = N + J + 1
H = J
G = N
AA(N, L, J) = C(J, L) * ASSUM - GAMMA(SA) * (1.0 / (Z(J) / H + Z(N) / G) ** (N + J + 1))
AA(4, 2, 3) = ASS * AA(4, 2, 3)
WRITE (6, 34) AA(N, L, J), N, L, J
9 CONTINUE
10 CONTINUE
PRINT 400
400 FORMAT (1H1)
ALIM = 0
BLIM = 50.
DELPE = (BLIM - ALIM) / EN
Y = ALIM - DELPE
DO 60 I = 1, 2
60 DO 60 N = 1, 15
DO 60 I = 1, M
60 R(N, L, J) = C(i, J) + R(N, L, J) + C(N, L) * AA(K, L, K) * R(K, L, J)
 IF (N-1) < 4A, A, 85
GO TO 60
95 R(N, L, J) = C(N, L) * (Y * (N-1) * EXP(-Z(N) * Y/N)) + R(N, L, J)
CONTINUE
RI(I, J) = R(3, 1, J)
70 RE(J) = R(4, 2, J)
DO 21 I=1,10
 BLIM=SQRT(TE*TN(I))*QT*SQRT((1.+QT*TN(I)/TN(I)))
 ALIM=SQRT(TE*TN(I))*QT*SQRT((1.-QT*TN(I)/TN(I)))
 KY=1
 DO 25 IN=1,5
 25 XSUM(IN)=.0
 DELX=(BLIM-ALIM)/XN
 X=ALIM+DELX
 DO 54 IX=1,NX
 X=X+DELX
 KY=-KY
 K2=1
 RSUM=.0
 Y=ALIM+DELX
 DO 30 IX=1,NX
 Y=Y+DELX
 KY=-KY
 ARG=SNH(X*Y)/(X**2-Y*COS(X*Y))/X
 RIFA(IR)=RI1(IR)*R(T)*ARG
 IF((IR-1)*(IR-NF)*K) 100,300,200
 RSUM=RSUM+2.*RIFA(IR)
 100 RSUM=RSUM+2.*RIFA(IR)
 200 RSUM=RSUM+2.*RIFA(IR)
 300 RSUM=RSUM+2.*RIFA(IR)
 RAN5=DELX*RSUM/5.
 GX=(RAN5*RANS)/(X*Y*Y)
 DO 53 IN=1,5
 AX(IM)=1./(1.+27*AX(IM)*X)**2
 FX(IM)=GX*AX(IM)
 PFX(IM)=CF+FX(IM)
 IF((IX-1)*(IX-NX)*KX)=1.52,52
51 XSUM(IM) = XSUM(IM) + 2.00X(IM)
52 XSUM(IM) = XSUM(IM) + 3.56X(IM)
53 XSUM(IM) = XSUM(IM) + 6.76X(IM)
54 CONTINUE
 DO 56 J=1,5
 XANS(J) = DEL X*XSUM(J)/3.
56 SIGMA(J) = CC*XANS(J)/TR(1)
 WRITE(6,11) (SIGMA(K),A(K)),K=1,5),TR(1),1
11 FORMAT(5E16.7,2X,2X,2X,2X,2X,2X)
 CONTINUE
END
//GO. SYSTEM DB *
3.415, 7.65, 2.29, 1.25
+0.00, +0.10, +0.15, +0.20, +0.25
+1.16, +1.64, +2.00, +2.44, +3.56, +5.00, +6.76, +11.24, +17.00, +24.54
//
DIVERSION A(10,10), RHO(10,10), THETA(10,10), B(10,10), E(10,10),
LX(10), C(10), AA(10,10)
READ 30, NI, NF, (Z(I),I=1,NF)
30 FORMAT (212, 10E5, 2)
34 FORMAT (E16.8, 6X, 11, 4X, 11)
DO 40 J=1, NF
DO 40 K=1, NI
A(J,K)=NF+NI+2-J-K
40 CONTINUE
DO 41 J=1, NF
DO 41 K=1, NI
T=NF+1-J
U=NI+1-K
B(J,K)=Z(NF+1-J)/T+Z(NI+1-K)/U
41 CONTINUE
DO 1 M=1, NF
F(M, M)=1
1 AA(V, M)=.*
DO 10 J=1, NF
ASQR=0.0
IF (J-2) 4, 2, 2
2 K=J-1
DO 3 I=1, K
3 ASQR=ASQR+AA(J, I)*2
4 S=S+J+1
C(J)=1./(SQRT(GAMMA(S)*(C/(2, 8)/(J)))*Z*(2*J+1)-ASQR))
\begin{verbatim}
WRITE (6,24) C(J), J
DO 9 N=2,NF
 IF (N-J) 9,6,5
5 ASUM=ASUM
 IF (J-2) 8,6,6
L=J-1
DO 7 1=1,L
7 ASUV=ASUM+AA(N,1)*AA(J,1)
8 SA=N+J+1
 R=J
 G=N
 AA(N,J)=C(J)*(ASUM-GAMMA(SA)*(1./Z(J)/K+Z(N)/K)**(K+J+1))
 WRITE (6,54) AA(N,J), N, J
9 CONTINUE
10 CONTINUE
N=NF+1
J=NF
NF=NF-1
NF1=NF+1-N1
DO 12 1=2,NF1
12 M=1,NF1
M1=N-1
JY=J-M
 IF (M1-JM) 12,13,11
11 FSUM=G*F
 L=N1+1-JM
 DO 12 K=1,L
 (K)=K+1-K
12 FSUM=FSUM+F(N,MK)*AA(NK,JM)
F(N,J)=C(J)*FSUM
\end{verbatim}
The Slater transition probability Γ is the total cross section in the form

\[\Gamma = \frac{1}{2} \left| \sum E_i \right|^2 \]

where E_i is the incident energy in the ith channel.
103 XSUM=XSUM+2.0*FX
104 XSUM=XSUM+FX
105 XSUM=XSUM+FX
 XANS=DELX*XSUM/2.
 * XANS=24.*((C(NI)**2)*(C(NF)**2)/(EI*ET))*XANS
 WRITE (6,106) EI,XANS
106 FORMAT (5X,4F14.6,5X,7H SIGMA=, E9.4)
 IF(EZ) 100,108,100
108 CALL EXIT
END

/*
 //C. L. SIN DD *
 1 21.00 1.00
100.000 1.04 .74970 10.0000
100.000 1.16 .74970 10.0000
100.000 1.30 .74970 10.0000
100.000 1.64 .74970 10.0000
100.000 2.44 .74970 10.0000
100.000 3.46 .74970 10.0000
100.000 5.22 .74970 10.0000
100.000 6.76 .74970 10.0000
100.000 11.24 .74970 10.0000
100.000 17.00 .74970 10.0000
100.000 24.00 .74970 10.0000
/*
Read Initial and Final Total Q. No. & Eff. Zn's

Read A parameters Incident Energies

$TE = \text{Threshold energy}$
$AAA = 1.732$

$XN = \text{No. of pts for K integration}$
$NX = XN + 1$

$RN = \text{No. of pts for R integration}$

Calculate A_{nj}'s and N_{j}'s

Start R Integration

$ALIMR = .0$
$BLIMR = 50.0$

Initialize all radial wave functions to zero at all points of integration
Initialize all radial wave functions at \(r = 0 \)

Evaluate \(R_1(r) \) and \(R_n(r) \) at each integration point

Return to x integration

\[
\text{DO 21 I = 1, 10}
\]

Calculate ALIM and BLIM

Initialize
\[XSUM(IN) = .0 \]

\[
\text{DO 54 IX = 1, NX}
\]

\[XX = -XX \]

Return to R integration

\[KR = 1 \]

\[KR = -KR \]
\[\text{ANG} = \sin \left(\frac{x^y}{x^2 - y} \cos(x^y) \right) \]

\[\text{RIFA (IR)} = \text{RI (IR)} \times \text{RF(IR)} \times \text{ANG} \]

- What is the relationship between: (IR, NR, KR)
- What is the sign of KR

\[\text{RSUM} = \text{RSUM} + 2 \times \text{RIFA (IR)} \]

\[\text{RSUM} = \text{RSUM} + \text{RIFA (IR)} \]

\[\text{RANS} = \text{DELR} \times \frac{\text{RSUM}}{3} \]

Return to x integration
\[GX = \frac{\text{RANS} \times \text{RANS}}{X \times X \times X} \]

\[\text{DO 53 IM = 1,5} \]

\[AX(IM) = \frac{1}{1 + (\text{ZZ} \times A(IM) \times X)^2} \]

What is the relationship between (IX, NX, KX)
and what is the sign of KR

\(< 0 \quad > 0 \quad = 0 \]

\[XSUM(IM) = XSUM(IM) + 2 \times FX(IM) \]

\[XSUM = XSUM(IM) + FX(IM) \]

\[XSUM = XSUM(IM) + FX(IM) \]

\[XANS(J) = \text{DELX} \times XSUM(J)/3. \]
\[\Sigma(J) = \frac{C \cdot \text{ANS}(J)}{TN(I)} \]

WRITE \(\Sigma(K) \), A(R), TN(I), I

END
Read Initial and Final total Q. No.'s & Eff Z_n's

Calculate a_{jk}'s

Calculate b_{jk}'s

Initialize F_{mn}'s = 1. and A_{mn}'s = 0.

Calculate N_j's, A_{nj}'s

WRITE N(J) and A(N,J), N, J

Calculate F(N,J)'s

WRITE F(N1,JM) N1, JM

READ XN, EI, ET, FX

Start Integration
Start Integration

Calculate A LIM, B LIM

\[KX = 1 \]

102 Calculate YSUM

\[FX = \frac{(YSUM ** 2)}{X ** 7} \]

\[KX = -KX \]

What is relationship between (IX, JX, KX) and what is sign of KX

\[XSUM = XSUM + 2 * FX \]
\begin{align*}
104 & \quad XSUM = XSUM + FX \\
105 & \quad XSUM = XSUM + FX \\
& \quad XANS = \text{DELX} \times XSUM / 3.
& \quad XANS = 24. \times (C/NI)^2 \\
& \quad \times (C(NF)^2) / (EI \times ET)^2 \times XANS \\
& \quad \text{WRITE EI, XANS}
\end{align*}

\textbf{What is FX} \quad <0 \quad \text{END} \quad >0

\textbf{END}
REFERENCES

