
NASA GRANT

Final Report

Title: Investigation of Highly Efficient Satellite

NO Solution Methods

i g Contents: Part I: Time elements

a Part II: Stabilization by external energy corrections

Part III: Long-term global solutions for the syn-

chronous satellite. A preliminary report.

Part IV: The D-S equations of motion

NASA Grant: NGR 44-012-255
1H u

,IT.4 Period of Grant: March 1, 1973 - February 28, 1974

mo t% Prepared by: Paul E. Nacozy and Gerhard Scheifele

SoH 5 Department of Aerospace Engineering and

SmEngineering Mechanics

H r4 w The University of Texas

Austin, Texas 78712

P w Technical Officer: Dr. C. E. Velez
SO1M

IS ~ m NASA Goddard Space Flight Center

~ H I* Date: April 15, 1974
p- , . l o



Part I. ie Ei ; ent'

A. Time Transformations

Time transformations of the Sundman type (ref. 1) have the form

dt = crads (1)

where t is the time, c and a are positive constants, r the magnitude

of the radius-vector, and s the new independent variable.

It has been known for many years that use of the time transformations

of equation (1) improves rates of convergence of analytical series solutions

of gravitational systems (ref. 2 and 3). Also, when equation (1) is used

in conjunction with a coordinate transformation, singularities due to col-

lisions may be eliminated from the equations of motion (see, for example, ref 4).

Several recent published studies (ref. 5, 6, 7) and unpublished studies

(ref. 8, 9) show that the use of the time transformations given by equation (1)

with 1 < a < 2, substantially improves numerical integration accuracy and

efficiency for satellite solutions. Moreover, it has been shown by many of

these same studies that, for a large class of satellite initial conditions,

a near or equal to 1.5 provides the best accuracy and efficiency (ref. 7,8,9).

B. Time Elements

It appears that time transformations lessen or weaken to some extent

the dynamical in-track (Liapunov) instability associated with satellite motion.

The reduction of instability in the coordinates is rendered at the expense of

the introduction of a differential equation in order to obtain the time

(equation (1)). The differential equation for the time exhibits some of the

dynamical instability that was removed from the differential equations for the

coordinates. If the perturbations are small relative to the two-body forces,
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then sowie ^f the instability of the time equations may be removed by use of

time elements.

With zero perturbations, equation (1) may be integrated in closed form

for a = 1, 1.5, 2. These integrals define "time elements" (ref. 11). For

perturbed motion, the integrals of equation (1) are then differentiated using

methods of variation of parameters.

The resulting differential equations for the time elements are then

integrated by means of numerical integration. A significant portion of the

instability is removed from the equation that defines the time transformation

(equation (1)) by taking account of the two-body solution.

It has been shown by Stiefel and Scheifele (ref. 11) that a time element

may be introduced for the KS equations of motion in the four dimensional u-space.

The related time transformation has a = 1 in equation (1).

Often in practice, one does not wish to use the complex KS coordinate

transformations to four dimensional space, but rather remain the three

dimensional physical space and use only the time transformation of equation (1).

Also, the time transformation for optimum accuracy has a = 1.5 in equation (1).

For these reasons we have derived a time element for a = 1.5, as well as for

a = 1 and 2, in the three dimensional physical space. These time elements and

their defining differential equations are presented here in this report.

C. The New Time Elements for a = 1, 2

For two-body motion and for a = 1 and 2, the integral of equation (1)

is Kepler's equation for certain choices of the constant c.

For a = 1 and c = , the integral is

t = T - /1e sin E, (2)

where E is the eccentric anomaly, and where a and e are the semi major
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axis and eccentricity, respectively, anrd T is the time element. A

differential equation for the time element is

d + A / sin E de + e sin E d
ds r 11 dds 2 s

+ a3 e cos E {(l-e cos E)vE - sin E vel} R (3)

where vE, and ve denote the gradients of E and e with respect to the

velocity vector, and R is the perturbing force.

The first term on the right hand side of equation (3) is not a constant

for perturbed motion and is of the-order of magnitude of the unperturbed

quantities. The semi-major axis in the term must be determined from the state

vector which has errors due to the numerical integration of the equations of

motion. The subsequent integration of these errors in equation (3) to deter-

mine the time element compounds the error substantially. To reduce this large

source of errors in the time element the following relation may be used to

replace the first term on the right in equation 3:

S -8(h-v)3 (4)

where h is the total energy of the perturbed system ad V is the perturb-

ing potential defined by

h = hk + V

where hk is the total unperturbed or Keplerian energy.

For a = 2 in Equation (1), and
C= 1

/pa(1-e 2)

the integral is the same as equation (2) but here s is equal to the true

anomaly, f. The differential equation for the time element is
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dT ar + (r-ae2 ) sin E - + e sin E -
-s + a(le2) ds

/+et sin E cos E+ E de + a2re cosE(l-e2 )

*f{(-e cos E) vE - sin Eve} * R (5)

A substitution similar to that of equation (4) may be used to replace part of

the first term on the riqht in equation (5).

D. The Intermediate Anomaly

For a = 1.5 and c = 1, the integral of equation (1) for two-body

motion is

2
s = F(f , k) (6)

where s is the new independent variable, referred to here as the "intermediate

anomaly," e is the eccentricity, F the incomplete elliptic integral of the

first kind, k the modulus defined in terms of the eccentricity as

k= L2e
l+e

and f the true anomaly. Equation (6) may also be written as

sinf = sn[- +e s] (7)

where sn is the sine Jacobian elliptic function.

Equations (6) and (7) give the true anomaly as a function of s. The

time is given by equation (2) where the eccentric anomaly is obtained from the

true anomaly. The time element is obtained from the following differential

equation.
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dde - tan - f(l + cos u)
d- = e s in u - e cos udS 2 l dS ds (1+ e2

-2E 2 (8)2e a (lte) 1/2(1-e) 1dn( .+e) P

The quantity E is the incomplete elliptic integral of the second kind; and

sn, cn, and dn are the sine, cosine, and amplitude Jacobian elliptic

functions, respectively.

The differential equations for any of the time elements that we have

derived have no pure or mixed secular terms for unperturbed motion, therby

further reducing the in-track (Liapunov) instability associated with

equation (1)

E. Elliptic Function and Integral Algorithms

We have developed new computational algorithms tailored to our purpose

in order to compute the necessary complete and incomplete elliptic integrals

and the Jacobian elliptic-functions. The algorithms are based on and

modifications of those by Hofsommer and van de Riet (ref. 12) and are about

five times faster than the algorithms of DiDonati and Hershey (ref 13).

F. Conclusion

We have compared the accuracy of integration of equation (1) directly with

that of integrating equation (3) using equation (2). The result is that use

of equations (2) and (3) provide about two to three times the accuracy of equa-

tion (1) after about three satellite revolutions. Further studies are presently

being performed for longer integration times and for equations (5) and (8).

The full paper with a complete set of numerical comparisons will be pre-

sented at the COSPAR Symposium on satellite dynamics, June 19-21, 1974,
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Sao Paulo, Brazil, and at the AIAA/AAS Astrodynamics Conference, August 5-9,

1974, in Anaheim, California. The paper will be submitted for publication to

the Journal of Celestial Mechanics or be published in the Proceedings of

the COSPAR meeting.

Part II. Stabilization by External Energy Corrections

A. INTRODUCTION

It is shown in reference (14) that constraining solutions to satisfy

exactly the integrals of motion tends to Liapunov stabilize the solutions of

unstable dynamical systems. It is shown in reference(15), pp. 73-77,

that complete Liapunov stabilization of Keplerian motion may be realized by

regularization. Reference (15) indicates that the regularized equations of

motion are stable due to the fact that the Keplerian energy is constant and

that the constant appears explicitly in the differential equations. This

is complete stability in the sense of Liapunov since the time equation is also

stabilized along with the dependent variable equations. This point confirms

the conclusions of reference.(14) since reference (14) shows that use of

integrals in stable dynamical systems (harmonic oscillator) does not improve

accuracy. Whereas use of integrals for unstable (in the sense of Liapunov)

dynamical systems (for example, Keplerian motion) improves the accuracy of

the solution by several orders of magnitude. In addition, references (14)

and (16) indicate that neither time nor coordinate transformations are nec-

essary for the stabilization, only the use of the integrals of motion.

Reference (15), p. 76, reference (16), reference (17), and reference (18)

indicate that for unperturbed and perturbed Keplerian motion, only the energy

integral is needed for stabilization. This result is in agreement with the

numerical results of reference (14), which show that for an n-body problem



7

dynamical system, by satisfying only the energy integral exactly, " solutioh

is produced that is several orders of magnitude more accurate than by not

satisfying the integral and very nearly as accurate as a solution satisfying

all ten integrals of motion. Hence, it appears that there is a fundamental

relation between isoenergetic solutions, regularization, and dynamical

(LNypunov) stabilization.

In reference (14), corrections are applied to the components of the

state vector so that the corrected state satisfies identically the integrals

of motion. The corrections are chosen so that the sum of the squares of the

corrections is a minimum.

This report applies the concept of stabilization using integrals to the

solution of the equations of motion of artifical satellites in an attempt to

reduce the propagation of local truncation errors and improve the efficiency of

a numerical integration solution process. Even though no constant energy

integral exists for the full satellite equations of motion due to the presence

of the tesseral harmonics, drag, and third-body perturbations; nevertheless,

a slowly varying energy "integral" is present in a coordinate system rotating

with the rotating Earth. The integral in the rotating coordinate system is

analogous to the Jacobian integral in the restricted problem of three bodies.

The method presented in reference (14) is extended here to the satellite

solution in a rotating coordinate system. An application of the method to

satellite solution is presented showing accuracy improvements of at least

two orders of magnitude with negligible additional computation time. In

addition, a modification of the method presented in reference (14) is presented

to allow the use of slowly varying integrals.

4

B. The Equations of Correction

The equations of correction using integrals derived in reference (14),
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will now be adapted to a dynamical system with three degrees of freedom

using only one integral - the energy intergal.

For a dynamical system with three degrees offreedom, let x = [x1 ,x2,X 3,x4,x5,x6]

be the state vector in the phase space, where xl, x2 and x3 are the

coordinates and x4, x5 and x6 are the corresponding velocity components.

Let

E(x) = 0, (1)

be an integral of the system. Equation (1) defines a hypersurface of five

dimensions imbedded in the phase space of six dimensions.

During a process of numerical integration of the system, a computed

solution is obtained at time t:

n = n(t) = [n1'n 2,n3 n4 ,n5 ,n6]

where n1, n2, and n3 are the computed position components and n4, n5 , and

n6 are the computed velocity components. Due to errors in the computational

procedure, the integral may not be satisfied exactly but

E(n) = E , (2)

where e is the small quantity. The solution has left the integral surface

defined by Equation (1) and is on the surface defined by Equation (2). It

is desired to make corrections An = [An 1,An2 ,An3 ,An4,An5,An6] to the

computed vector n to obtain the vector

X + An

such that

E(x) = 0 . (3)

The square of the magnitude of the correction vector An may be written as
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6
f(An) =  E (An)2 . (4)

i=l

The corrections are uniquely chosen so that the function f of Equation (4)

is minimized, subject to the constraint of Equation (3). The solution may be

obtained by solving the following equation

An - - = 0 , i = 1,2,3,4,5,6 (5)

along with Equation(3) for the seven unknowns X, and Ani, i = 1,2,3,4,5, and

6. The quantity A is the Lagrange multiplier. Unless the integral given

by Equation (3) is a simple function of the variables (for instance linear),

the solution of the system may be complex (or perhaps not obtainable) as is

the case when the integral is the integral of energy of a gravitational

system. The solution may be simplified by an expansion of the integral in

powers of the corrections. The expansion becomes

6
E(x) = E(n) + BE + (6)

i= ani

Since the errors of the computation and hence the necessary corrections, Ani,

are generally small, second and higher-order terms may be neglected.

Solving Equations (5) and (6) for the correction Ani, with E(x) = 0

and E(n) e, yields

DE

Ani 6 2 i 1,2,3,4,5,6. (7)

j=1 Lan.

The correction vector An is added to the computed state vector n to

obtain a new state vector x which satisfies the integral E(x) = 0, with

an error of order tAnl 2. Geometrically, minimizing Equation (4) subject

to Equation (6) causes the vector An of Equation (7) to be normal to a
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five-dimensional plane which is approximately tangent to the surface

E = 0 at the point x. The equation of the plane is given by Equation (6),

neglecting the second and higher-order terms. Equation (7) is generalized

in reference (1) to a system having n degrees of freedom and p integrals

of motion, where n and p are any positive integers. Also, a more detailed

derivation of Equation (7) is given in reference (14).

The energy integral of a dynamical system (per unit mass) may be written

in terms of a potential energy U and the state vector x as

E(x) = (x4 + x5 + x6) + U - C = 0

where C is the value of the energy for a set of initial conditions.

A numerical integration of the system yields the solution vector n

at time t. The errors in the computation may cause E to be nonzero:

E(n) = e, (8)

where c is the error of the integral. The correction vector An may be

calculated by using Equation (7), so that E(n + An) = 0. For the calculation,

the quantities c and are needed.

aE 
i

The quantities n- are the partial derivatives of E with respect to

n(or x) and are easily computed. The partial derivatives of E1 with

respect to x4, x5, and x6 are equal to x4, x5, or x6, respectively.

The partial derivatives of E1 with respect to xl , x2, and x3 are

simply minus the respective components of the force F, already computed

during the integration step.

C. Previous Applications and Evaluations of the Method

As presented in reference (14), the method was applied to the numerical

integration of several dynamical systems to determine its paractical value.

The systems considered were the harmonic oscillator, the gravitational system



of two-bodies, and the gravitational system of 25-bodies.

The application of the correction method to the harmonic oscillator in

a phase space of two dimensions showed no noticeable differences in accuracy

between the corrected and uncorrected solutions (reference 1).

However, the application of the method to the system of two-bodies

in a phase space of four dimensions over a range of initial conditions showed

a large difference in accuracy between corrected and uncorrected solutions.

The corrected solutions were about three orders of magnitude more accurate than

the uncorrected solutions (reference (14)).

The different results obtained for the harmonic oscillator and the system

of two-bodies offers an explanation of when and why the method appears to be

of value, as presented in reference (14). The errors in the integral of the

harmonic oscillator are small compared to the error in the state variables

of the solution. Since the harmonic oscillator is a stable system, a solution

with a small error will not diverge from a system without the error. This

would explain the result indicating no difference between the corrected and

the uncorrected solutions for the harmonic oscillator. The errors in the

energy integral of the system of two-bodies are also small relative to the

total errors in the state variables of the solution. But the system of

two-bodies is unstable in the Lyapunov sense and hence the system with the

energy errors will diverge from the system without the energy errors.

The method was applied to a gravitational system of 25-bodies. The

results show that the method yields a more efficient numerical integration

process of the n-body problem. A greater accuracy of about two orders of

magnitude is obtained with the method while using the same time of calculation

then without using the method. Or the same accuracy is obtained with the

method while using about 25% less time of calculation (reference 14).
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P. Application of the Method to Satellite Motion

Recently, the method has been applied to the solution of an artificial

satellite of the Earth. The equations of motion of the satellite included all

zonal, sectoral, and tesseral spherical harmonics. The equations of motion

did not include luni-solar nor drag effects. With all of the spherical

harmonics included, no energy integral exists. However, an integral exists

in a coordinate system rotating with the rotation of the Earth. The integral

is analogous to the Jacobian integral in the rotating coordinate system of the

restricted problem of three bodies. If the integral is formulated in the

rotating coordinate system using position and velocity relative to the rotat-

ing coordinate system and then transformed into the fixed system, in terms of

position and a velocity relative to the fixed system, the integral has the form

E(y y) = y + U - C + * W = 0 (9)

where U is the potential, y, is the position vector, and Y is the velocity

vector relative to the fixed frame. The quantity C is the value of the

integral for a certain set of initial conditions and W is the angular velo-

city vector of the rotation of the Earth. The quantity ~ y * W is the

component of the angular momentum in the direction of the rotational axis of

the Earth times the rotation rate of the Earth. That equation (9) is a

constant of the motion may be proved in several ways. One way is to formulate

the Hamiltonian of the satellite system in extended phase space. Equation (9)

is that Hamiltonian, neglecting the constant C.

In addition, a modification of the method presented in reference (1) may be

be incorporated to allow the use of slowly varying integrals. A differential

equation may be formulated giving the rate of change of an integral. This

equation may be integrated numerically along with the state vector. Then,
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at any time, the value of the integral is known and the correction procedure

of reference (1) is applied. It appears that such a modification induces

stabilization and does so only for slowly varying integrals.

E. Numerical Results

The method was applied to the satellite solution by the following procedure.

Two solutions were obtained by numerical integration. One solution did not

utilize the integral while the other introduced corrections determined by

equations 17), (8), and (9). The corrections were applied to the state vector

after each integration step, as in-the discussion following Equation (1)

above. Both solutions were compared with a more accurate solution determined

by smaller integration step-sizes. Both solutions were obtained using a high-

order predictor-corrector integration algorithm of the STDS system of the NASA

Goddard Space Flight Center (reference 19). Both uncorrected and corrected

solutions were integrated with the same step-size and with the same number of

integration steps.

The satellite had initial orbital parameters as follows: A semimajor axis

of 136000 km; an orbital period of 120 hours; an eccentricity of .8; and an

inclination of 400. The solutions were found for about 5 revolutions or over

a time span of 3 weeks. The corrected solutions were found to be more accurate

than the uncorrected by at least two orders of magnitude. That is, the position

and velocity components of the corrected solution had at least two more digits of

agreement with the true solution than the uncorrected solution.

In addition, solutions obtained by a 4th-order Runge-Kutta were performed

for a satellite with an eccentricity equal to 0.6 and a period equal to 3 hours.

Two-body forces and forces due to the second zonal harmonic were included.
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Various step sizes were used: from 500 steps per revolution to 4000

steps per revolution. After 10 revolutions, the corrected solution was at least

one, and often two, orders ofmagnitude more accurate than the uncorrected

solution,, for all step sixes used.

Also, the following study was performed. Corrections were made according

to the following two techniques: (1) corrections were made to both the

position and velocity components with various step sizes; and (2) corrections

were made to only the position components. This study was initiated so as:

(1) to study whether there is a difference if corrections are used with a

Class I integrator or with a Class II integrator; and (2) to determine whether

reapportioning the corrections from the velocity vector to the position vector

could cause differences.

Result: No significant difference was found between the corrected final

state for technique (1) and for technique (2).

Part III. Long-term Global Solutions for the Synchronous Satellite.
A preliminary report.

A. Introduction

A new method has been developed by one of the principal investigators

(Nacozy) to yield semi-analytical solutions of the long-term solution of reso-

nant satellites, in deep resonance with the tesseral harmonics.

The method is able to yield global solutions for all eccentricities,

inclinations, and commensurability ratios for resonant satellites, including

the synchronous satellite. The method is not restricted to moderate or small

eccentricities and inclinations nor to just synchronous satellites as is the

analytical solution of Musen and Baile (reference (21)). In addition, the

method does not yield particular solutions as are given by Gedeon (reference

(22)) and others.
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Our method is based on a semi-analytical approach to resonant pertur-

bations introduced by Hori (reference (23)), developed by Giacaglia (reference

(24)), and extendedand applied by Giacaglia and Nacozy (reference (25)),

and Nacozy and Diehl (reference (26) (and partially used by Musen and Bailie

reference (21)). The method numerically averages the Hamiltonian and uses

the fact that the averaged Hamiltonian has a minimum with respect to the

resonant (critical) argument at the stable, stationary value of the resonant

argument.

Our semi-analytical method also appears to have the advantage that luni-

solar and radiation pressure effects may be easily added numerically without the

need for analytical developments.

We are presently applying the method to synchronous satellites, to determine

the practicality and potential of the method. For the J2-J22 problem, we have

now successfully obtained long-term solutions for e, i, m, and Q,

for all e and i, for a synchronous satellite in the vicinity of the stable

stationary solution. We have discovered a family of periodic solutions for

the J2-J22 problem. These orbits are inclined and eccentric orbits and

have a repeating ground track.

We next plan to include more zonals and Tesserals and luni-solar perturbations

and radiation pressure. We also have the capability to consider the 4, 6, 12,

and 18 hour resonant satellites.

Part IV. The D-S Equations of Motion

Abstract

A new set of canonical two-body elements referred to as Delaunay-similar

(D-S) elements is presented in references (27) and (28). In contrast to the
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classical Delaunay theory which has time as the independent variable, the D-S

theory uses an independent variable which is a generalized true anomaly. This

study-is concerned with numerical integration of the canonical perturbation

equations of these elements. A description of the derivation of the D-S

elements is given. Two modifications are introduced which increase the

numerical stability of the system. The differential equations are established

in Gaussian form fit for numerical integration. All associated transformation

formulae and partial derivatives are described in detail.

(This is an abstract of a study performed by G. Scheifele and R. Samway. The

complete study is given in the Masters Thesis of Robert C. Samway, The

University of Texas at Austin, August, 1973. The Thesis may be obtained

through the Department of Aerospace Engineering and Engineering Mechanics,

The University of Texas at Austin.)
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