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Foreword

This report contains a description of work conducted for the Astronautics
Laboratory of the Marshall Space Flight Center under Contract NAS8-28656, 'Design
Fabrication, Testing and Delivery of Heat Pipe Leading Edge Modules.'" The NASA
Contracting Officer Representative for this study was Mr. Farouk Huneidi and the
MDAC Program Manager was Mr. R. V. Masek.

Major contributions to the accomplishment of this program were made by Mr.

G. A. Niblock and Mr. G. G. Graff at MDAC-E and Mr. J. S. Holmgren, Mr. P. P. King,
and Mr. G. D. Johnson at MDAC-DWDL.
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1. INTRODUCTION

The goal of low cost space transportation that the Space Shuttle is ex-
pected to accomplish requires highly reusable system components, especially
in the orbiter. The orbiter will make about 100 flights in fulfilling its
design capability. During the flights certain aerodynamic surfaces experi-
ence an extremely severe environment, notably the nose region and leading edge
surfaces. Thermal protection of these regions presents a variety of problems.

A prior study, performed under contract NAS8-27708, examined the fea-
sibility of using high temperature heat pipes and three alternate concepts
for cooling nose and wing stagnation regions. The study included both the
orbiter and the booster of the fully reusable Phase B configuration.

The initial analysis indicated that the booster applications showed
little promise for heat pipe concepts. The orbiter leading edge applica-
tion was, however, found to be feasible with respect to the heating and ac~
celeration environments. The wing leading edge was amenable to a simple
design. Cascading was not required and the shape was essentially two-dimen-
sional, permitting an assembly of conventional high temperature heat pipes
in spanwise segments. Consequently, the leading edge application was inves-
tigated in detail to allow a preliminary design.

The leading edge heat pipe design and the three alternates were examined
and compared. The heat pipe version was determined to be somewhat heavier
than the alternate candidates but much less expensive (as was each reusable’
design) than the ablative version on the basis of total program costs. ' Sub-
sequent consideration of more severe entry conditions than those of the Phase
B configuration and enviromments significantly impacted the trade study re-
sults. The hotter entry resulted in temperatures exceeding the columbium
reuse temperature limit. This analysis, although qualitative, indicated that
the heat pipe and carbon-carbon designs remained viable candidates.

The current contract (NAS 8-28656), reported in this document, is a follow-
on to the prior study for the purpose of constructing feasibility tesf models
of the heat pipe concept. The program included the analysis and design of the
heat pipes, their integration into the test module structure, heat pipe develop-
ment testing, fabrication of the test modules and facility adapter, and formula-
tion of recommended testing conditions. The heat pipe an#lysis and testing

were conducted at the Donald W. Douglas Laboratories (DWDL) in Richland,
1
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Washington. Structural analysis and design, fabrication of sheet metal and
machined parts and final assembly were accomplished by MDAC-E in St. Louis,
Missouri.

The results of the heat pipe and leading edge module thermal analysis
indicate the test modules will meet their design goal; reducing the leading
edge temperature at the stagnation line from 1316°C (2400°F) to less than
1010°C (1850°F). The development tests demonstrated that the model assembly
could be brazed with active heat pipes, as was borne out by the subsequent
successful brazing of both modules with active heat pipes loaded with sodium.
Construction of the two modules in this fashion conclusively demonstrated the

manufacturing feasibility of the concept.
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2. HEAT PIPE ANALYSIS AND DEVELOPMENT TESTING

All analysis and testing related to heat pipe internal design, e.g.,
working fluid selection, wick design, and material compatibility were con-
ducted by DWDL. Because of the advanced nature of this heat pipe applica-
tion the various analyses were confirmed by development testing prior to
fabrication of the deliverable hardware. Because of the high temperature
operation, a major concern was compatibility between the container material,
the wick, and the working fluid. The type of wick design required
analysis and testing far selection of the final design. Finally,
to assure a design with structural integrity for safety in handling and in
testing of the hardware, several structural qualification type tests were
performed.

Heat Pipe Internal Design - The Reference (1) review of heat pipe

fluids and materials for Space Shuttle applications showed that sodium/
Hastelloy-X might be considered for temperatures up to 1800°F. Data
existing in the literature of the sodium/Hastelloy-X system are limited
to a few tests conducted either in a nuclear reactor or a pumped loop.
In another review, of alkali metal corrosion tests, Reference (2), data
for Hastelloy-X in pumped loops were somewhat conflicting. In one case
corrosive attack was reported in a 305 hour test with temperatures up to
1700°F, and in the other case there was no evidence of corrosion in a
1000 hour test with temperatures up to 1500°F.

It should be pointed out that in loop tests the Hastelloy-X would
not be the only component of the loop. Other metallic materials used in
the construction of the loop could affect the behavior of the Hastelloy-X.
This is also in the cdse in the tests described in Reference (3) in which
Hastelloy-X exposed to flowing sodium at 819°F to 887°F showed little
evidence of attack. The Hastelloy-X was in contact with several other
materials during the test period.

The compatibility of iron-, cobalt-, and nickel-base superalloys has
been determined in refluxing potassium at 1800°F for times up to 2000
hours. See Reference (4). Hastelloy-X was included as one of the test
materials. The results of these tests were that the cobalt and nickel-base
alloys (including Hastelloy-X) appeared to have sufficient corrosion
resistance to warrant consideration for use as hardware for the ground

testing of design concepts for components of space power systems.

3
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Although these tests were with potassium, it would be expected that
operation with sodium should be somewhat similar. This has been essentially
verified by operation of a sodium/Hastelloy-X heat pipe at 715°C (1320°F) for
20,000 hours as reported in Reference (5). The temperature is lower than
the required temperature for the Shuttle application, but the very long time
of the test would tend to indicate that little corrosion had occurred.

As pointed out by DeVan, Reference (6), the corrosion of materials
in a polythermal all-liquid loop does not necessarily apply to a two-phase
boiling system. Further, although a heat pipe is similar to a boiling
system in that there is evaporation and condensation - (thus two phases) all
liquid-vapor phase change occurs by surface evaporation without boiling.
Somewhat better simulation can be provided by a small test system, which is
essentially identical to a heat pipe, called a reflux capsﬁle.

A reflux capsule test provides a simple method for investigating the
effect of a two-phase liquid metal environment on heat pipe structural
materials. The capsule, constructed of the material(s) of interest, is
placed with its axis vertical. Heat is applied to the lower end, causing
the liquid metal to vaporize. Condensation of the vapor occurs at the
upper end and gravity returns it to the heated end. This method, reported
in Reference (7), has been used successfully by DWDL to determine the compat-
ibility of various materials at temperatures up to 1800°C (3272°F) and so was
employed with the new combination of materials to assure compatibility.

Hastelloy-X tubing and bar stock were procured in accordance with AMS
specifications No. 5588 and No. 5754F, respectively. Reactor grade sodium
(<10 ppm oxygen; 32 ppm carbon) was obtained from Mine Safety Appliances
Corp. After the capsule parts were machined, the parts were degreased in
alcohol, cleaned in hot water and Alconox, rinsed in alcohol and finally
cleaned in Freon in an ultrasonic cleaner. Then the parts were dipped into
a nitric-hydrofluoric acid mixture for 3-5 minutes. After a thorough rinsing,
the capsules and end plugs were TIG welded together in an inert gas glove box.

The assembled capsules were then given a heat treatment which simulates
the thermal portion of the brazing cycle which is to be used in the fabri-
cation of the leading edge segment. This consisted of heating in a vacuum to
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115°%¢ (2100°F) and holding for 15 minutes. Then the capsules were cooled to
1040°¢ (1900°F) and held there for three hours, followed by a furnace cool to
room temperature.

Charging of the capsules was conducted in a high purity (less than 10
PpPm 02 + H20) inert atmosphere glove box to duplicate the purity level
expected in the test module heat pipes. Since trace quantities of oxygen in
Alkali metals can influence corrosion behavior markedly, it is imperative
that a known purity level be maintained.

After sodium loading the capsules were placed in the vacuum furnace for
testing. Two chromel-alumel thermocouples were spot welded to each capsule
for monitoring test temperature. Desired test conditions were:

1. 985°C (1800°F) for 30 hours
2. 985°C (1800°F) for 100 hours
3. 1040°C (1900°F) for 30 hours

In addition to fhese three tests, one capsule contained a section of
stainless steel screen. The purpose of this test was to determine if the
stainless steel screen had sufficient corrosion resistance for eonsideration
as a wicking material.

Upon completion of each test, the sodium was removed and three metal-
lographic samples were taken from each capsule: one from the liquid zone,
one from the vapor zone, and the other from the liquid/vapor interface region
(top of the liquid pool). After the metallographic analysis was completed,
hardness and wall thickness measurements were made on each specimen.

These examinations indicated that there was no significant corrosion of
the Hastelloy-X walls or of either the Hastelloy-X or stainless steel screens.
Stainless steel screens were selected for the panel heat pipes since they
provided good corrosion resistance at lower cost than Hastelloy-X. These
tests demonstrated that the Hastelloy-X, stainless steel screen, and sodium
system should fulfill the space shuttle mission requirements.

The brazing temperature of 1052°¢ (1925°F)was higher than the expected
operating temperature and it was planned to braze with completed (active)
heat pipes. A 1.59-cm (5/8-in.) OD, 25.4-cm (10-in.) long Hastelloy-X heat
pipe was brazed to a 0.51-mm (0.02-in.) thick fin to further assess compat-
ibility with the working fluid. Figure 1 shows the fin-to-tube braze and a
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closeup of the tube wall. No discernible corrosive attack occurred. The
tube interior surface, the stainless steel wick, and the pinch-off closure
were closely examined and the results indicate compatibility was conclusively
demonstrated by the test.

With material compatibility assured, the wick design proceeded with
the following design criteria: (a) ability to transport the required heat
flux at maximum temperature, (b) ability to operate during start-up conditions,
and (c) ability to be formed into a proper contour for the leading edge
segment. Previous experience with (c) essentially fixes the wick design
to be either isotropic or arterial. Since the amount of Hastelloy-X
tubing was quite limited, the preliminary tests were conducted with stainless
steel heat pipes.

The term "isotropic wick" implies that the wicking material has
uniform porosity such that the capillary radius (rc) and permeability
coefficient (Kp) are constant for the material. Maximum heat pipe per-
formance is obtained by maximizing the capillary pumping capacity.
Thus, it is desirable to have a small rc and large Kp; however, for a
isotropic material, this combination of desired properties is not obtainable.
To circumvent this situation, a wick was fabricated from two types of screen
material, one possessing a low r. and the other a high Kp. This was
accomplished by rolling up a sandwich structure of 100 mesh and 200 mesh
screen so that the bulk of the wick consisted of alternate layers of each
type and with the OD and ID surfaces covered by 200 mesh. Measurements

of the permeability of this structure gave a value of 2.56 X 10_9 ft2.

A single layer of 100 mesh has a K of 3.1 X 109 ft2 and that of a single
layer of 200 mesh is 6.3 X 10-10 fzz. Thus, the K of the structure is

very close to that of the 100 mesh screen. Coveriﬁg the entire surface

of the structure with the 200 mesh screen provides the small value of r.-
Porosity measurements of this layered wick gave a value of 0.72. This

wick structure was then processed for incorporation into a heat pipe.

The other type wick structure evaluated was a special type of arterial
wick. The arterial wick, because of the low pressure drop of the artery,
has ; substantially greater heat transfer capacity in the wick-limited
operating mode. The basic arterial wick structure was the type used for
the ATS-E and OWS-I heat pipes. Four small (0.037 in. OD) screen tubes were

6
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inserted into the main artery to create a "multiple artery'" wick. This
structure has been previously analyzed and characterized through lab
experiments.

These two wick structures were analyzed with sodium as the working
fluid. The pipes were 41.9-cm in length and 1.27-cm in diameter. Per-
formance values as calculated with a DWDL computer program are shown in
Figures 2 and 3. The envelope of operational limits is probably best
described in the sonic (gas flow) and wick (liquid flow) curves since the
entrainment limit (mixed flow) is somewhat arbitrary. From these curves,
it can be seen that if several hundred watts were applied to either pipe
at low temperatures (315°C) the limit first encountered would be the
sonic limit. From this one would expect possible problems during start-
up.

To assess the possible start-up problem, two heat pipes, each with one
type of wick (isotropic or arterial), were constructed and tested. Heat
loads were applied with a Lepel radio frequency (RF) induction heating
unit. Heat removal was solely by radiation. The radiated power was a
calculated value based on experimental values of temperature and emissivity.
Temperatures were measured with chromel-alumel thermocouples and the
emissivity was determined with the use of an Ircon pyrometer. A plate
voltage reading from the Lepel unit was taken for several steady state
temperatures. From this a curve of plate voltage versus power radiated
could be constructed for each pipe. For start-up behavior, the RF unit
was set at a given value of plate voltage. It was assumed that the power
input to the pipe was equal to the maximum value determined from the
steady state conditions.

A typical temperature versus time relationship for start-up is shown
in Figure 4 for the multiple artery heat pipe. Successful start-up occurred
with both wick designs for various heat loads. This was demonstrated many
times without evidence of performance limiting phenomena. The time required
to heat up from room temperature to a preselected arbitrary temperature (e.g.
593°C) showed good agreement with the calculated value. Some theoretical

and experimental values are shown in Figure 5.

8
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START-UP OF AN ARTERIAL SODIUM HEAT PIPE
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COMPARISON OF THEORETICAL AND EXPERIMENTAL
HEAT-UP TIMES

Heat-up Time, seconds

Input Power

Isotropic Wick

Multiple Artery

watts Theory Experimental
385 112 96
263 162 138
220 196 180
260 149 141
Figure 5
12
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All of the start-up tests had been conducted with the pipe level. Since
part of the leading edge will have to operate against gravity, several tests
were conducted to determine if a gravity head would affect the start-up
characteristics. Tests conducted with the multiple artery showed that gravity
heads up to 11.7-cm (4.6-in) had no effect on starting up from room temperature.
No tests were conducted beyond this value since extensive modification of the
equipment would have been required to yield higher elevations and the heat
pipes clearly were capable of starting against the required head.

Both wick configurations operated satisfactorily. Therefore, the
isotropic wick was chosen since it was the simplest design. As a final
check of the wick selection, a Hastelloy-X heat pipe containing the selected
wick type was built and tested. Because of the very limited supply of
1.27-cm (0.5 in.) tubing this test pipe was constructed with 1.59-cm
(5/8 in.) tubing. The heat pipe length was 45.7-cm (18 in.). The perme-
ability of the wick was measured as 2.85 X 10-9 ftz. Operation of the
Hastelloy-X heat pipe was entirely satisfactory with no problems exhibited
during start-up. The maximum temperature reached was 930°C and at this
temperature the pipe was rejecting 989 watts, which is about 37% of the
theoretical limit. The operation of the Hastelloy-X pipe at 37%Z of the wick
limit was not an operational limit but was a condenser limit. The Hastelloy-X
pipe, with that combination of area, temperature, and emissivity could not
radiate more than 989 watts. The results of these heat pipe tests showed that
the layered multiscreen wick would be entirely acceptable for use in the heat
pipes for the leading edge panel.

These tests confirming wick performance then allowed a high confidence
computation of the performance of the design diameter heat pipe. Performance
values for the wick in the design diameter pipe were calculated and the
results are summarized in Figures 6 and 7. Figure 6 shows the performance
of a level pipe operating in 1-g as a function of temperature and effective
length. Figure 7 shows how the performance of the same pipe is affected by
imposing a tilt of 17.12 degrees. This value of gravity head represents
the worst case for the leading edge. These values in Figures 6 and 7 are
theoretical limits and steady state operational values are below this limit

in order to ensure a reasonable safety factor.

13
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Structural Tests - Two tests were performed. The first tests were to

establish the strength of the tubing as a pressure vessel and to verify the
end closure strength. A second test was conducted to determine the shear
strength of the tube-to-skin braze joint as data on the specific alloys
were not available.

Three end plug weld qualification pipes were constructed and tested.
End plug external views are shown in Figure 8. The pipes were pressure
tested and examined. The results indicated a very substantial strength
margin. The operating internal pressure during testing will be about
4.14 X 105 N/m2 (60 psia). The minimum burst pressure requirement at
room temperature, accounting for temperature effects on the Hastelloy-X
alloy strength, was established as 9.2 X 106 N/m2 (1340 psia). The tubes
were pressurized to 68.9 X 106 N/m2 (10,000 psia) without failure and
dimensional checks also indicated no yielding. The burst pressure is
probably in excess of 138 X 106 N/m2 (20,000 psia) at room temperature,
a margin of safety of about 15 for internal pressure. Metallurgical
evaluation subsequent to the pressure test showed high quality welds.
Typical end plug-to-tube and end plug pinch-off closure welds are shown in
Figure 9 (a and b respectively).

Three test specimens were prepared and tested to assess the shear strength
of the Hastelloy-X and braze alloy combination. The specimens all failed
in tension in the skin rather than in shear. A typical test specimen 1is shown
in Figure 10. Skin segments were brazed to opposite sides of the tube to
prevent bending loads and in this case one skin segment broke free. Two
specimens failed at loads equivalent to shear stresses of 131 X 106 N/m2
(19,000 psi) and one a.t 186 X 106 N/m2 (27,000 psi). This was well in excess

of expected shear stresses.
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3. LEADING EDGE MODULE DESIGN

3.1 Configuration - The configuration of the test module was established
by the airfoil shape the test facility could accept and the necessity to minimize

the cost of the test module. The facility planned for the testing was a

hydrogen fueled hot gas tunnel at NASA-MSFC. This test facility had been
designed for operation with a leading edge segment serving as the center body

of a supersonic diffuser. The hot gas source was a rocket motor that used
hydrogen and oxygen or air as the reactants.

The existing diffuser geometry, shown in Figure 11, had been established
for a carbon-carbon leading edge. Consequently the calibration of the
facility for that shape had been performed and both heating and pressure
distributions were available. For this reason the heat pipe leading edge
was designed with the same cross-section as the previously constructed
carbon-carbon leading edge. To minimize program costs the width of the heat
pipe cooled segment was reduced to 15.2-cm (6-in). This was the minimum
width thought sufficient to demonstrate feasibility and could readily be
accommodated with an adapter comstructed with an-available carben=-carbon
segment.,

The test facility imposed a severe transient environment because of its
essentially’ instantaneous startup and, again to minimize costs, a very simple
design was desired. The design which evolved within these constraints is
illustrated in Figures 12 and 13. One test module consists of 12 conven-
tional screen-wick heat pipes formed to the airfoil cross-section, with a
thin skin covering the heat pipes. Each heat pipe was constructed of welded
and drawn 1.27-cm (0.5-in) 0.D. tubing having a wall thickness of 1.27 mm
(0.050-in). The heat pipes utilized a composite screen wick with alternate
layers of 100 and 200 mesh stainless steel. Stainless steel was found to be
chemically compatible and so was selected because it was less expensive than
Hastelloy-X screen. Sodium was selected as the working fluid based on per-
formance and chemical compatibility studies. The heat pipes and skin were
brazed to form an integral structure, with integral stiffening ribs at each
end of the test module abbreviated span.

An interesting feature of the desigﬁ was that it allowed assembly of the
unit for brazing with operational heat pipes. Thus each heat pipe could be
individually tested to verify acceptable performance prior to final assembly.
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3.2 Thermal Analysis - An extensive analysis of the leading edge was

performed to determine the transient response of the test segment to facil-
ity start-up and to explore the effects of higher than nominal heating rates.
The transient response determined the thermal gradients for stress analysis
and higher than nominal heating rates were analyzed to check a modification
of the design deemed necessary for the heating rates anticipated in the MSFC
facility.

The analytically computed temperature response is shown in Figure 14
and indicates that the system will reach steady state in about 10 minutes.

The temperature gradient which induces stresses, peaks much earlier though,
at about 4 seconds after heating is initiated. This is indicated by the tem-
perature differences shown in Figure 15. The first 20 seconds are shown in
expanded scale and as noted the peak occurs very early. Consequently the
thermal stresses occur while the heat pipes are still relatively cool and

are near maximum strength. At equilibrium, with the heat pipes operating,
the temperature is higher but the gradient is much reduced. Note that dur-
ing steady operation the heat pipe produces a reversal in the gradient about
15 cm (6 in.) back (measured along the surface) from the stagnation line.
This is a necessary condition for the operation of the heat pipes since the
heat removed from the stagnation region must be rejected in the aft portion
of the heat pipes. In that region the heat pipes are hotter than the environ-
ment, thus the gradient is reversed. The effect is shown in Figure 16. The
reversal is not apparent at the time of the peak gradient, however, because
the entire leading edge has a net heat flux into it. The distribution of

the maximum gradient is indicated by the temperature differences shown in
Figure 17.

These gradients are based on the nominal peak heat flux given in the contract
statement-of-work (SOW) heating profile. Discussion with MSFC personnel indicates
that the facility may impose greater heating rates. This would exceed the
design criteria for the heat pipe leading edge, but as shown in Figure 18 the
test segment has a suhstantfal overshoot capébility\ An over-temperature excur-
sfon does cause larger thermal gradients, however, as indicated in Figure 19, and
consequently causes higher thermal stresses. Although the test module should
withstand the maximum facility heat flux for a brief period the effect of combined
stresses due to off-nominal heating was not determined. Therefore operation at

heating rates substantially above the design values should be avoided.
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During startup, the operation of the heat pipe must be assured because
of the nearly instantaneous onset of heating in the MSFC facility. Unlike
an atmospheric entry, in which the heating increases over a period of
several hundred seconds, the facility reaches the peak heating rate in less
than a second. This could cause a localized dryout of the wick unless the
working fluid is liquid prior to startup. An electrical heater is provided
to preheat the test segment and melt the working fluid. This heater was
sized to provide a minimum initial temperature of 149°C (300°F) and will

require input power capacity of approximately 2600 watts.
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3.3 Structural Analysis - The heat pipe leading edge assembly is attached to

the carbon/carbon facility adapter assembly with a 14.66-inch long step bolt
located at the nose and slotted angle brackets and 3/8-inch diameter bolt, both
located aft. The forward attachment provided close alignment of the leading edge
surface in the stagnation region. The slotted brackets and 3/8-inch diameter bolt
allow differential thermal expansion of the carbon-carbon adapter and the heat pipe
assembly to the rear and laterally when heated. The carbon/carbon facility adapter

is bolted directly to the tunnel centerbody mounted plate.

Strength Criteria, Design Temperatures and Pressures - The heat pipe leading

edge assembly was designed to withstand the temperatures shown in Figures 14 through
18 and the pressures shown in Figure 20. The ultimate load was established as 1.4
times the limit load. The structure will stand limit loads at operating temperature
without detrimental deflections and withstand ultimate loads at operating tempera-
ture without failure. Further, the structure will withstand, without failure, a
fail-safe condition consisting of ultimate loads combined with temperatures
resulting from one pipe inoperative.

Structural Analysis - A finite element computer model of the heat pipe

leading edge was constructed using the STRUDL-II computer program. The model
is shown schematically in Figure 21. 1Internal loads, reactions, and dis-
placements were obtained for pressure and temperature conditions expected in
the test facility. Two temperature environments were used in the analysis;
those occurring at 4 and 1200 seconds from the start of testing. Four sec-
onds after the onset of heating a maximum temperature gradient of 128.6°C/em
(588°F/in) was imposed on the heat pipe assembly with a surface temperature
of 315°C (600°F). After about 1200 seconds, steady state was reached with a
surface temperature of 930°C (1700°F). The temperature environments were combined
with a pressure profile having a stegnation pressure of (2. 5 psi) for a 10°
angle of attack. The 10° angle of attack, used to account for any misalign-
ment in the test facility, was a worst case assumed condition.

Figure 22 shows tube and facesheet bending moment versus distance along
geometric centerline for the 600°F environment. A maximum moment of 11.08 N-m/p
(98.1 in-1b) is shown near the nose, substantially less than the allowable
moment. Figure 23 shows tube and facesheet bending moment for the steady

state condition. The maximum bending moment for this condition is 1.66 N-m/p
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(14.7 in-1b/in) and occurs at the nose. These bending moments producé stresses
in the tubes of 8.6 x 107 and 1.24 x 10 N/m2 in steady operation. Allowable
limit (yield) stresses for the corresponding temperatures are 2.96 x lO8 and
13.8 x 108 N/mz, respectively. (See Figure 24). Start up is the more critical
design condition because the applied stresses are larger (relative to allowable
stresses) than at the steady state condition with higher temperatures.

External load balances are shown in Figures 25 and 26. The figures show
that loads are small for a structure of this size. Parts which makeup the
heat pipe assembly were all analyzed using the internal loads and reactions
obtained from the computer model. All parts have large positive margins of
safety.

The large margins of safety result principally from consideration of
material availability. The delivery time for Hastelloy-X tubing was at
least 13 weeks. However, somewhat oversize tubing was available at MDAC-E
and could be utilized for the program. This tubing, although of the correct
diameter had a thicker wall than neéessary. To avoid a long delay in
receiving the material, the thicker wall tubing was utilized. These
considerations led to a design with large margins of safety that was not a
weight optimized design. The unit weight thus is greater than for a flight
article because the environment is more severe (transient bending moment
seven times steady state) but principally because program considerations

dictated the use of available stock.

MECHANICAL PPROPERTIES OF HASTELLOY-X

TEMP Fiy Fry o E

KSI ksI | INJINOF x 1078 | KsI
600°F 103 43 7.75 26,000
1700°F 25 20 9.1 16,000

Figure 24
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Weight Analysis - An estimate of the test module weight was prepared

prior to construction of the hardware. The methodology employed was identical
with that used to predict the weight of flight version leading edges in con-
tract NAS8-27708. A simple technique was used; that of accounting for the
volume-density products of the component parts. The estimated weight break-

down is as follows:

Hastelloy-X Tubing 5.22 kg (11.5 1b)
Wick 0.56 kg (1.24 1b)
Sodium 0.27 kg (0.59 1b)
End Plugs 0.25 kg (0.54 1b)
Machined End Fittings 0.86 kg (1.89 1b)
Skin 0.73 kg (1.60 1b)
Edge Ribs 0.91 kg (2.00 1b)
Doublers 0.42 kg (0.93 1b)
Braze Alloy 1.22 kg (2.68 1b)
Nose Region Filler Wire 0.15 kg (0.32 1b)
Total Estimated Weight 10.57 kg (23.29 1b)

The actual total weight of about 10.16 kg (22.4 1b) was close to the
analytically estimated weight. The close correspondence between estimated
and actual weights for the test module lend credence to the previous for a

flight-weight design.
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4. LEADING EDGE MODULE CONSTRUCTION

Hastelloy-X tubing with an outside diameter of 1.27-cm (0.500-in) and a
wall thickness of 1.27-mm (0.050-in) conforming to AMS 5587 was purchased by
MDAC-E, cut to 137-cm (54-in) lengths and shipped to DWDL. Upon receipt,
representative sections were cut from four tubes, mounted, polished, etched,
and metallographically - examined for general quality. The welded area in
the '"weldrawn' tubing was checked closely because, in alkali metal service,
these areas are sensitive to local attack if the welded micro-structure is
not broken up during drawing and annealing operations. These examinations
indicated that the welds were all of high quality and barely discernable in

the tube structure. Examples are shown in Figure 27. The ASTM grain size of

7 indicates a fine grained structure suitable for liquid metal service.
Micro-hardness traverses of the welded region showed no sigificant changes
in hardness, indicating that the area has the same strength and ductility as
the base metal.

The Hastelloy-X tubing was then swab cleaned with isopropyl alcohol fol-
lowed by etching with a 20% HNO3, 5% HF solution to remove any oxide film or
scale on the interior of the tubing. After etching, the tubes were rinsed
with distilled water and then isopropyl alcohol, followed by drying with
bottled nitrogen. The tubes were immediately fitted with clean plastic '"cap-
lugs" to maintain internal cleanliness. Stainless steel screens were cut to
proper length and width, ultrasonically cleaned in Freon and dried. The
screens were vacuum annealed for 15 minutes at 1100°G to facilitate subsequent
wick loading and forming operations. The vacuum annealing cycle also served
to remove any entrapped particles and back reduce :ny oxide films on the
screens,

The screens were then rolled on a mandrel on the screen rolling tool and
inserted into the Hastelloy-X tubes,: after which they were trimmed slightly short-
er than the tube length and expanded against the tube wall. Spherical glass
beads were added and tamped into place to support the wick and tube walls
during subsequent forming. The tubes were then shipped to MDAC-E for form-
ing to the airfoil shape.

Forming was done at the MDAC-E facility and checked for dimensional com-
pliance The forming was done in a two-step process. First the small nose

radius was bent in an automatic tube bender. The pre-bent tube then was
40
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FINE GRAINED TUBE WELD MICROSTRUCTURE

» WELD ZONE

Figure 27
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formed to the final shape over a Formica tool as shown in Figure 28. The
tubes, in the pre-bent and finished form are shown in Figure 29.

The presence of glass beads during forming prevented crushing of the
tube and held the wick in contact with the tube wall along the outer mold-

line. As expected the wick buckled locally on the inside of the bend in the
small radius region as shown in the Figure 30 X-ray photograph. This was

observed in development testing and is not critical to pipe operation since
intimate contact of the wick with the tube is necessary only on the outside

of the bend. The necessity for the glass beads, even in the regions with an
effective large bend radius is shown in Figure 31. In this X-ray photograph

of a tube finish formed with the glass beads removed after the nose radius

had been formed it can be seen that the wick separated from the outer periphery

of the tube, a condition which is unacceptable.

After forming, the glass bead filler was removed and the tubes were trim-
med to length. The tubes were then shipped to Paulo Products Co. and vacuum
annealed at 1080 + 14°C for 15 minutes in a vacuum of 1 x 10-4 torr. The pur-
pose of the vacuum annealing cycle was to thermally condition the heat pipe
internal surface and to minimize distortion from residual stresses during the
brazing cycles. The vacuum annealed tubes were then packaged and shipped with
the end plugs to DWDL for welding and charging.

Concurrent with the forming operation the various machined and sheet
metal parts were fabricated. These included the heat pipe end plugs, the
support brackets, stiffening ribs, doublers and numerous other small sheet
metal parts.

The end plugs were ultrasonically cleaned in Freon and then vacuum an-
nealed at 1975°F + 25°F for 15 minutes to thermally condition their internal
surfaces and to anneal the fill tube. The fill tube is crushed closed prior
to sealing by electron beam welding so it is imperative that the alloy be in
the annealed state to prevent cracking during this critical operation.

The wick assembly was trimmed back at each end approximately l-cm
and the end plugs were fitted in place. The heat pipes were then loaded into
a high purity (less than 10 ppm 02 + HZO) glove box and manually tungsten
inert gas (TIG) welded. Internal contamination during welding was eliminated
by the use of the glove box and the welds were of a high quality. After
welding each heat pipe was tested to insure that it was helium leak tight

to a sensitivity of 1 x 10-9 std cc/sec. The welds were subjected to -ray
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FORMING TOOL AND TUBE

Figure 28
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examination to insure that no subsurface defect greater than 0.5-mm diameter
was present. This was followed by full length X-ray examination of the heat
pipe to document the wick configuration after bending and to check the screen
to I.D. gap in the critical nose section of the heat pipes. The gaps observed
were 0.5-mm or less which is considered to be an excellent fit for heat pipe
performance.

The heat pipes were then fitted with all metal connectors and attached
to the sodiﬁm loading facility. The heat pipes were evacuated and the system
was helium leak checked to insure that no air leakage was present during
charging. The heat pipes were heated to approximately 260°C and maintained
there during the charging sequence. The heating accomplished two purposes,
adsorbed gasses were driven off during the evacuation cycle and the elevated
temperature kept the sodium in the molten state during the. injection cycle.
Unless the heat pipe is kept above the melting point of sodium the liquid
metal freezes in the valve seat or end plug, resulting in a deficient charge.
The heat pipes and isolation valves were weighed before and after charging
to document the charge weight., Figure 32 lists the charges of each heat pipe
used in each of the two test segments. After loading and checking, the heat
pipes were placed in an R.F. heating station and run in reflux mode to wet all
of the inside surfaces. All inside surfaces must be completely wetted or "hot
spots" can form which would cause premature "burn out" of the heat pipe during
reentry simulation tests. The refluxing also serves to expell all non-conden-
sible gas such as argon or helium adsorbed in the wick assembly during the
welding operations. Once the heat pipe was isothermal and any gasses had
been expelled, the heat pipe was cooled and removed from the charging
station with the isolation valve in place. The fill tube was then flattened
in a pair of hydraulically actuated dies followed by an electron beam cutoff/
closure to seal the heat pipe. All end fitting weld closures were X-rayed to
document weld quality.and to check for subsurface defects such as bubbles caused
by sodium vapor. The heat pipes were again reflux tested to insure that
no gas leakage occurred during sealing operations. The completed and opera-
tionally tested heat pipes were then cleaned to remove outside surface oxide
films, packaged and shipped to MDAC-E for integration and brazing.

The finished heat pipes were inserted in supporting cross beams and traced
to determine the necessary edge rib shape. The rib forming tool was shaped to
have the same profile as the heat pipes. The ribs were then formed in a
7000 ton press by punching the part into a polyurethane block.
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SCDIUMN CHARGING SUMMARY

TEST SEGMENT NO. 1 TEST SEGMENT NO. 2
HEAT PIPE S/N  SODIUM CHARGE IN GMS HEAT PIPE S/N  SODIUM CHARGE IN GMS
1 23.9 3 24.7
2 24.1 4 24.7
5 22.5 6 22.6
8 21.1 7 20.9
9 22.6 10 ' 20.9
11 22.0 15 21.8
12 22.0 17 17.3
13 20.8 18 22.5
14 23.1 19 21.2
16 19.0 20 24.8
21 19.8 23 23.6
22 24.5 24 21.1
Figure 32
48
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The cross beams were in turn mounted on a Hastelloy-X plate to establish
the leading edge rear dimensions. The tubes were then carefully aligned so
that the 12 adjacent heat pipes formed a flat planar array in the shape of
the leading edge. Tungsten inert gas tack welds were then made between the
end plugs and cross beams to fix the heat pipe positions. The stiffening
edge ribs were then added. Tie bars were welded to the edge ribs-to
hold the heat pipes together over their entire length. Gaps between adjacent
heat pipes were checked with feeler gages to insure that the joint clearance
did not exceed 0.l-mm. In the first assembly, all joints between heat pipes
were 0,0l-mm in. or less. In the second assembly, a few areas in the nose sec-
tion exceeded the tolerance and stainless steel shim stock was added to these
areas to provide the correct joint clearance. Nickel 200 filler wires 3.2-mm
in diameter were then shaped to the nose contour of the leading edge sec-
tion. Two sheathed chromel-alumel thermocouples were fitted in place
to monitor the nose centerline temperature and the stagnation area temperature.
A slurry of AMI 914 brazing alloy was then applied to both sides of the heat
pipes along their full length (Figure 33) and to specified areas of the edge
ribs and cross beams. A O.l-mm thick tape of AMI 914 alloy was attached to
the inside surface of the Hastelloy-X cover skin to insure an adequate
supply of braze alloy to the critical tube-to-skin interface. The cover skin
was then stretched over the heat pipes with the brazing fixture as
shown in Figure 34 to insure full length intimate contact between the heat
pipes and cover skin. After the skin was pulled taut, it was spot welded to
the rib flange (Figure 35) to complete the braze assembly.

The assembled test segment was shipped to Paulo Products, Inc. of St.
Louis and placed in a vacuum brazing furnace. The test assembly was position-
ed so that the heat pipes were roughly horizontal with the nose area lowered
approximately 2.5-cm (l-in). This position assured an adequate supply of braze
alloy and insured wetting and refluxing of the heat pipes in the critical nose
area. The first test segment was brazed at 1048°C for 30 minutes followed
by a 3 hour diffusion treatment at 1079°C to raise the braze alloy remelt
temperature. Similar diffusion treatments have been used with AMI 914 for

continuous service at 1260°C in jet engine applicationms.
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BRAZE ~ SUBASSEMBLY

Figure 33
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FINAL BRAZE ASSEMBLY

Figure 34
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SPOT-WELDED LEADING EDGE BRAZE ASSEMBLY

Figure 35
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The first module was very well brazed but some of the braze alloy drain-
ed out of the nose section leaving a few isolated voids as evidenced by x-ray
examination. To minimize alloy drainage and to thicken the fillets, the sec-
ond test segment was brazed at 1037°C for 30 minutes and followed by a 3 hour
1024°C diffusion treatment. Alloy drainage was eliminated in the second sef-
ment and the braze fillets were somewhat larger. During the heating cycle,
both test segments were checked through a view port and the heat pipes appear-
ed to be isothermal and operating properly.

The first unit brazed is shown in Figure 36 mounted to the carbon-carbon
facility adapter. The second unit,which was being assembled for brazing, ap-

pears in the background.

ASSEMBLY OF TEST MODEL

Figure 36
53
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5. FACILITY ADAPTER
The adapter cross-section was dictated, as with the heat pipe test modules,
by the shape for which calibration data were available. The carbon-carbon segment
which was available had the necessary airfoil shape but required trimming to
the proper size and construction of a leeward (upper) surface cover plate.

The adapter design is illustrated in Figure 37.
The principal test module attachment is the bolted connection near the nose of

the leading edge. A long Hastelloy-X bolt was used to make this connection and to
attach the carbon-carbon side plate. Two slotted supports at the aft end carry
the small reaction loads due to the heat pipe module weight and aerodynamic
pressure. The slots accommodate the differential expansion of the carbon-

carbon adapter and the Hastelloy-X heat pipe test module. Four Hastelloy-X

webs attach the carbon-carbon segment to a steel base plate that may be bolted

to the facility centerbody.
The aft potion of the leeward side, which will not reach temperatures re-

quiring carbon-carbon is covered with a Hastelloy-X panel. A flat zee-stiffened

panel design was selected to minimize the construction cost since this region has

a small curvature and the mismatch would be negligible.
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6. RECOMMENDED PERFORMANCE TESTING

Conditions for testing the heat pipe leading edge are outlined below
and provide close correspondence with several anticipated flight conditions.
In general these conditions are consistent with the capabilities of MSFC
hot gas facility. The recommended test conditions, in the MSFC hot gas
facility, are given in Figure 38. The tests are shown in the sequence
in which they would be performed with initial (Phase I) tests intended to
provide verification of system performance with external convective heating.
Phase I and II tests would demonstrate and explore the capability (including
fail-safe design) of the system when subjected to entry convective heating
in the MSFC hot gas facility. In addition, two optional tests are recom-
mended, both utilizing radiant heaters, so that the test model would not be
subjected to aerodynamic loads as in hot gas flow testing. -

The first series of optional tests recommended is a precursor to hot
gas flow tests which may be performed without exact simulation of the heating
distribution. This test would allow a slow heat-up cycle (to minimize
thermal stresses) with steady operation at several heat flux levels and with
various orientations to simulate differing acceleration or '"g''-levels.

Both the orientation and angle of attack are limited in the hot gas facility.
Since two test modules are available, the preliminary tests could be per-
formed with one unit while the other is being setup for testing in the hot
gas facility. The purpose of the second series of optional tests would

be to explore the capability of the design to withstand greater than nominal
heating conditions and the heat transfer levels at which heat pipe inherent
limitations are manifested, vis., at what heating rate sonic flow, nucleate
boiling, wick capillary pumping capacity or other phenomena limit the heat
pipe performance. Again, the flexibility of the lamp facility and its no-
load characteristic would be useful.

Test Environment - The nominal test environment specified for the MSFC

hot gas facility is as follows:
Total Temperature: 2898°C (5250°F) Stagnation Pressure: 17,237 n/m2 abs.

Angle of Attack Range: O to 0.175 Rad. (0 to 10 deg.) (2.5 psia)
Cold Wall Heating Rate: Model Centerline, 2.2 in. radius
Angle of Attack Cold Wall Heat Flux (37.7°C)
0 rad. (0 deg.) 1078 kw/M2 (95 BTU/ftz-(sec)
2 2
0.1745 rad. (10 deg.) 908 kw/M~ (80 BTU/ft"-(sec)
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It should be noted that the nominal heating rates are more severe than the
design value specified in the contract but a reduction in heating rate by

changing the 0 mixture ratio or by nitrogen injection could provide

-H
2 72
heating rates consistent with the design entry heating profile shown in
Figure 39.

Heat Pipe Scaling - The test segment and test conditions defined in

the program differ from the anticipated flight situation in three important
areas: (a) the test segment is about 1/2 the orbiter wing thickness, (b)
testing will take place in a 1l-g environment, and (c) test angles of attack
will be between 0 and 10 degrees, whereas the vehicle angle during reentry
heating is expected to be approximately 0.524 rad. (30 deg.). To provide

a meaningful verification of system performance, therefore, proper scaling
between test conditions and anticipated flight environment ﬁust be provided.

Three parameters, the maximum structural temperature, the heat flux,
and the acceleration vector must be properly combined for a reasonable simu-
lation of the flight articles performance with the test hardware. The
maximum temperature is dependent upon the heat flux and also the leading
edge segment size and shape. Since the test model size and shape was deter-
mined so that an existing calibration model could be used only the heat
flux may be varied. To achieve a maximum temperature of 982°C (1800°F),

a stagnation line heat flux of about 409 kw/m2 (36 BTU/ftz-sec) will be
required. The maximum temperature will occur at the stagnation line in the
thin skin covering the heat pipes and will be affected somewhat by the

size of the braze fillets. If larger than expected fillets occur, then the
heat flux necessary to produce 982°C (1800°F) will be greater, perhaps as
high as 500 kw/m2 (44 BTU/ftz—sec).

In the expected flight reentry trajectory, maximum heating occurs at
an angle of attack of about 30° with a nominal 0.6 "g" load acting per-
pendicular to the plane of the wing. Testing of the segment will be in a
l-g environment at angle of attack between 0 and 10°. The impact of these
differences is primarily on the wick design and can be explained by con-
sidering the pumping limit equation.

58

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST



Report MDC E0775

HEAT PIPE LEADING EDGE 20 Apri! 1973
Volume Il
o
o
wy
o
e
& =
Ll a
= o
<c 5
= 2
1=
~ w
(&5] % E; %
= & o
- = = o
w
= .
[,-4
d [
—_— o
o
o
> o ]
(= S <
—
[ — =
o
= =
d €9
g
= =
L
— 3
— wy
m
(==
L
DHS-Zld/nlﬂ
; =
a 2 = ~ =
yi 1 L 1 L =)
o 9 o
O
3 < Q
O
w/m
A !

31V ONILVY3IH T7vM LOH

Figure 39
59

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY = EAST




Report MDC E0775

| 20 Aprit 1973
HEAT PIPE LEADING EDGE Volue Il

Neglecting vapor pressure drop, the following equation must be satis-

fied to ensure adequate liquid return flow to the evaporation region.

H W
>
? - Kl }I: qOﬂq(x) dxdx + p —£_h (2)
c PAW PL fg gc qo L gc

20 .
The value of 7 1is a function of the wick pore size at the liquid vapor

interface and the °© liquid properties. Since the temperature, working
fluid, and wick material for the test and flight system are identical, the
lefthand side of the equation will be the same for both cases. For the
same reason, KP and the term uL/pL fg are also the same for the test and
flight units. Heat pipe diameter is the same in both cases and w, there-
fore, does not change. The terms which cause the value of the righthand
side of Equation 2 to differ between the two cases are q, gizl dxdx and "gh'".
Both of these terms are functions of the angle of attack” and ° can be cal-
culated based on trajectory data for the flight case and tunnel conditions
for the experiment. To balance the difference in these terms, the value
Aw was increased for the test segment heat pipes over that required by the
flight design. The corresponding value of Aw for the flight case would be
obtained by calculating the value of Aw which equates the righthand side of
the equation for both the test and flight parameters. Thus by this scaling
procedure, adequate performance for the test pipes proves that the cross-
sectional area calculated in this manner for the flight system will be
adequate.

Criteria for Success - Phase I tests will simulate the entry

heating environment in a hot gas facility. The design heating distribution
will be simulated nearly exactly, allowing performance mapping of the lead-
ing edge. The test will also provide for demonstration of the capability to
withstand the design heat flux in the flow test environment. The success
criterion for these tests is that the heat pipes successfully reduce the
maximum leading edge temperature from 1315°% (2400°F) to 1010°C (1850°F)

or less with an angle of attack of 0.1745 rad (10 deg.) in the 1-g

environment.
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The Phase II tests are to demonstrate the fail-safe feature of the heat
pipe design. A three test sequence of increasingly severe tests will deter-
mine the response of the heat pipe system to the loss (undetected) of working
fluid from a heat pipe. The criteria for success in this test are: (1)
the structural integrity of the segment be maintained and (2) the adjacent
heat pipes operating temperature not exceed 1093°C (2000°F).

The optional precursor and ultimate performance tests are of a research

nature. Consequently success criteria are inappropriate.
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HEAT PIPE LEADING EDGE

7. RECOMMENDED FOLLOW-ON EFFORT

This work accomplished under Contract NAS8-28656 and in a prior study
under Contact NAS8-27708, indicates that the heat pipe cooled leading edge is
feasible for Space Shuttle Application. Flight designs generated for the
Phase B configuration and environment in the prior study indicated a generally
thinner metal structure than was constructed in this contract. This prior
study, however, did not yield a fully-iterated design. The design process
considered working fluid compatibility, the combined stresses due to internal
pressure, aerodynamic loads, and temperature gradients. Selection of the
panel cross-section, support spacing, tube diameter and many other elements of
the design was based on individual optimality criterion in serial fashion.

The final design, based principally on creep criteria, theréfore was probably
not the minimum weight achievable. In addition, it was not specific for the
current orbiter mission.

Thus, there are two recommended items of follow-on effort. The first is
a design study task to define an iterated weight optimized design for the
current orbiter configuration and environments. The configuration establishes
a performance limit by defining the amount of leading edge surface available
for cooling. Consequently, the heat pipe design cannot necessarily be sub-
stituted in a simple fashion for another design subsequent to a design freeze.
To remain a viable alternate, early analysis to establish the design char-
acteristics of the heat pipe leading edge specific to the shuttle mission and
configuration is required. The second follow-on task relates to manufacturing
development to assure that a thin structure can be fabricated with acceptable
costs. This work should include construction of flight weight samples to
investigate thin wall tube forming, the effect of forming on a single-layer
wick, and the suitability of self-contained braze tooling in a thin-wall

structure.
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9. NOMENCLATURE

Cross sectional area of vapor passage
Cross sectional area of wick
Body station

Youngs modulus

Ultimate strength

Yield strength

Acceleration

Gravitational constant
gravity head

Heat of vaporization

Rate constant

Permeability coefficient
Wick design parameter

Developed length measured from nose centerline

Effective heat pipe length

Local heat flux

Ratio of local to stagnation heat flux
Stagnation heat flux

Artery radius

Capillary radius

Radius of vapor passage

Maximum temperature

Time

Width of wing cooled by single heat pipe
Sonic velocity

Distance

Coefficient of thermal expansion
Pressure drop

Liquid Pressure Drop

Tilt angle

Available capillary pumping pressure rise
Vapor pressure drop

Liquid viscosity

Vapor density
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Liquid density
Surface tension
Ratio of specific heats
Vapor viscosity

Temperature difference
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