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Abstract. The symmetrical problem of two transverse cracks in an
elastic strip with reinforced surfaces is formulated in terms of
a singular integral equation. The special cases of one central
crack or two edge cracks are discussed. Numerical methods for
solving the problems with internal cracks are outlined and stress
intensity factors are presented for various geometries and degrees
of surface reinforcement.

1. INTRODUCTION

In a recent paper [1] Gupta and Erdogan have treated the

problem of symmetrical transverse' cracks in an elastic strip by

means of singular integral equations. References to alternative

approaches to similar problems are given in [1], In this paper

we consider transverse cracks in an elastic strip with reinforced

surfaces. The bending stiffness of the surface reinforcement is

neglected, and the effect of the reinforcement is accounted for by

a modification of the boundary conditions for the elastic material.

The problem is formulated as a singular integral equation with the

derivative of the normal crack surface displacement as the unknown

function. A numerical solution is carried out for several geom-

etries and degrees of reinforcement, and the stress intensity

factors are given.

* This work was partially supported by a grant from NASA-Langley,.
NGR-39-007-011.

**Present address: Structural Research Laboratory, Technical
University of Denmark, 2800 Lyngby, Denmark.



2. THE INTEGRAL EQUATIONS

Consider the strip shown in Figure 1. The geometry and the

external loads are symmetric with respect to x= 0 and y= 0. The

sides of the strip are reinforced with membranes with finite

stretching stiffness T. The bending stiffness of the membranes

is neglected. By using symmetry considerations it is seen that

the corresponding perturbation problem can be formulated with the

following boundary conditions:

u(0 ,y) = 0 , a (0,y) = 0 , 0 £ y < ° ° ; (l .a,b)

92

°Y (h,y) =° • a (h,y) =T — ~ v(h ,y) , 0 < y < »,- (2 .a ,b)xx xy gy^ -

ay (x,°°) = 0 , a (x,°°) = 0 , 0 £ x f h; (3.a,b)

a (x,0) = 0 , 0 £ x £ h ; (4)

a (x,0) = - a (x) , a < x < b ,

• T£- v(x,0) = 0 , 0< x< a, b < x < h ; (5.a,b)
dX

3 ' .
^- v(x,0)dx = 0 ; (6)

a 3x

u and v are the x- and y-components of the displacement . vector .

Following [1] and [2] the solution is given in the form

.00

u(x,y) = - | ̂ ~ (^ - py)e"pysin(px)dp
J po

[f(s) - ̂  g(s)]sinh(sx)
S .. £

xg(s)cosh(sx) } cos(sy)ds



f /- \

v ( x f y ) = - 2LJ2- (£±_ + py)e~PYcos(px)dp
'o

i~ [ f ( s ) '+ ^ g(s)]cosh(sx)
o * ^

+ xg(s)s inh(sx)} sin(sy)ds (7.a,b)

When the solution is expressed in this form the field equations

and the conditions (1), (3) and (4) are satisfied. The material

parameter K is'defined by K=3-4v for plane strain and

K= (3-v)/(l+v) for plane stress, where v is Poisson's ratio. The

functions m(p), f(s) and g(s) will be determined from the remaining

boundary conditions (2) and (5). From (7) the stresses are found

to be

m(p) (i

/•
2 I- — [f (s)cosh (sx) + sxg(s) sinh (sx) ] cos (sy)ds ,

•"o

.00

$ tfvv = - | m ( p ) (l + py)e~PYcos(px)dpv yy J

| [ f ( s ) + 2g(s) ]cosh(sx)

+ sxg(s) sinh(sx) } cos(sy)ds ,

.00

Tu 0xy = ~ ¥^

.

{ [f (s) + g(s ) ] s inh(sx)
•"o

+ sxg(s) cosh(sx) } sin(sy)ds (8.a-c)



where y is the shear modulus. By transforming (2) and (8) the

following equations are obtained

2 f ̂ ^
f(s)cosh(sh) + shg(s)sinh(sh) = ^- —22 2 cos(Ph)dP'

Jo (p2 +sz)

f(s)sinh(sh) + g(s) [sinh(sh) + (1 + $)shcosh(sh) ]

,ao

f $sh - Pm(P?, cos(ph)dp= £ Pom(Po 2 sin71 Jo (p2 + s2r<P'
(9.a,b)

where the degree of reinforcement $ is defined by

T2 57- for plane stress

f 1 - \j) T2 „». for plane strain.tin

(10)

Straightforward use of the mixed boundary condition (5) for

the determination of the last unknown function m(p) would lead to

a set of dual integral equations. Here the method from [1] is

used. A new unknown function- G(x) is defined as

G(x) = -JL V(x,0) , 0<x^h (11)

By use of (5.b) and (7.b) the following relation is obtained

b
m(p) = - ̂ |j j G(t)sin(pt)dt (12)

Substituting for m(p) by means of (12) in (9) and (8.b) the last

boundary condition (5. a) takes the form

,b,
H(x,t)G(t)dt = - =- Tra(x) , a < x < b (13)

Noting that the first term of (8.b) gives rise to a Cauchy-type

singularity, (13) may be expressed as
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rb
I [ t̂ 3F + tb + k(x't} 7ra(x) '

a < x < b , (14)

where

f00
k(x,t) = [K(x,t,s)ets - K(x,-t,s)e~ts]ds

•'o

K(x,t,s) = { [(1 - fsh) (sh- 2) - (2sh + $sh - 3)s(h-t)

- ( (1- $sti) (sh+ 2) - (1- *sh)s(h-t) )e~2sh]cosh(sx)

- [1- fsh - 2s(h-t) + (1- $sh)e~2sh]sxsinh(sx) }

/ [sinh(2sh) + 2sh + 2$ shcosh2 (sh) ] (15.a,b)

The index of the singular integral equation is +1, and the neces-

sary extra condition is given by (6) ,

fb G(x)dx = 0 , (16)
a

For 0 < a < b < h the kernel k(x,t) is bounded. Thus (14) is an

ordinary singular integral equation with the fundamental function

w(x) = [(x- a) (b-x)]~1/2 (17)

A numerical solution can then be obtained by the method described

in [3] and [4].

For a=0, b<h the problem reduces to a single central crack.

No additional condition is present in this case. The term l/(t+x)

now becomes unbounded for x,t-*0. This influences the fundamental

function. k(x,t) is bounded and the fundamental. function may be

determined in a straightforward manner by variable transformation



[5] or reflection in the line x=0 [1]*. The result is

w (x) = (b2 - xV1/2 (18)

3. EDGE CRACKS

For a>0, b=h the character of the integral equation changes
i

as the function k(x,t) becomes unbounded for x,t-»-h. In the fol-

lowing calculations there is an essential difference between the

cases $ = 0 and $ 7* 0. This is caused by the denominator of (15.b),

where the term of highest order for s-*• °° is multiplied by $. As

the case $ =0 has been treated in detail in [1], only $ ̂ 0 will

be considered here. In (15.b) terms which for x,t-*h become of

order less than 1/s for s -*-°° are extracted and integrated analyti-

cally. This is done by use of the formula [6]

m -s(2h-t)
o G

I cosh(sx)

dm

dtm 1
_ ( 2 h - t ) 2 - 2 1x

ds =

*
2h - t

dm

dtm Jo

sinh(sx)

cosh(sx)
ds

m

2 dtm
[ t - (2h- x) t - (2h + x) (19)

It appears that only the terms which originally contained the

factor $ contribute to the singular part of the kernel. Only

these terms are extracted in the following formulation.

f 1 i ic+1r -1- _ ± 4. V Iv -M 1 r(-t-) — — irn (-it)
J l t-x t - (2h-x) + *f (X't) J ̂t' - 4 ira(K) '

a < x < h, (20)

*The reflection technique applied in [1] requires a slight modi-
fication of the kernel, which would otherwise be defined by a
divergent integral.



where

kf (Xft) = F+1F " t - (2h +

o

I
•'

(2h + x)

[K(x,t,s)ets - K(x,-t,s)e~ts - K (x,t ,s) ets] ds

— c;h r
K^x/t/s) = 2e { [- sh + 2 - s(h-t) ]cosh(sx) + sx sinh(sx)}

(21.a,b)

The first two terms in the kernel of (20) constitute a

generalized Cauchy kernel. It is noted that this part of the

kernel — and thereby the form of the singularities — is independent

of $ , provided $ ̂ "0. Because of the simple form of the generalized

Cauchy kernel the fundamental function can be determined directly

by change of variables [5] . The result is similar to (18) .

'w(x) = t(a-h)2 - (x-h)2]~1/2 (22)

In the case where a strip with edge cracks is loaded with

stresses not acting on the crack surfaces , the problem formulated

here corresponds to membranes broken at y =0. This is seen in the

following way. First the boundary value problem for the uncracked

strip is solved. This solution yields the normal stress a(x) on

the crack surfaces. For reasons of continuity the membrane force

at y =0 is

S = lim a(x) (23)
y 8 x+h '

When the perturbation problem is solved with the load -a(x) on the

crack surfaces/ continuity requires the membrane to be loaded with

the force -S. Thus the resulting membrane force is zero at y = 0



and no interaction takes place between the membrane for y > 0 and

y < 0.

4. NUMERICAL METHOD

The objective is to determine G(t) from the singular integral

equation (14) . First we consider the case 0 < a <b < h. The ker-

nel then has a normal Cauchy singularity and we normalize the

variables by defining T and £

x = (b+a)/2 + Ub-a)/2

t = (b+a)/2 + T(b-a)/2 (24. a, b)

Furthermore we introduce the notation

G(t) = g(T) (1 -T
2)~1/2 (25)

where we have used the fundamental function (17) . (14) may now be

expressed as

M(£,T)g(T) (I- T2)~1/2dr = - 7ra(C) , -1< C < 1 (26)

is used for convenience for a (x) in connection with (24. a).

M(5,T) = (T-?)"1 + (T+̂ r1 + ̂  k(x,t) (27)

(16) takes the form

i.;g(T) (1- T2)"1/2dT = 0 (28)

Based on the assumption that g(r) can be approximated by an (n-1)

order polynomial we obtain [3]

n

j=l ±f j g j
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.| g(Tj)' = o

q = cos(ijo , i = l,2,...fn-l

2-i-i
T. = cos( ^n IT) , j = l,2,...,n (29.a-d)

(29) gives n linear equations for the determination of the n

values g(r.). Special importance is attached to the values g(l)

and g(-l) giving the stress intensity factors in dimensionless

form. As proved in [4], g(l) is determined by

x n -
9(1) = jj I - ^n - 9(T-j> (30)n •

g(-l) is found from a similar formula with g(r.) exchanged by

The case a= 0, b< h is solved by a similar method. We now

define T and £ by

x = b? , t = br (31. a, b)

(25) remains valid, and the integral equation (14) becomes

_

N(?,T)g(r) (1- T) dT = - p ira(5) , 0 < ? < 1 (32)
o

-1- + bk(x,t) (33)

By using the fact that g(x) and N(£,T) are odd functions of T we

may use the formulas (29) to evaluate the integral in (32). We

use 2n instead of n in the formulas (29) and thereby obtain:

n
I N(5.,T.)g(T.) .= -
j=l x 3 D



( - I T ) ,

Tj = CCS(T u) ' ^ = i'2'--"11 (34.a-c)

g(l) is obtained from (30).

5. RESULTS

First we consider the case shown in Figure 1. The value of

a is kept constant and b and <1> are varied. The Tables 1 and 2

contain the stress intensity factors for constant a. When compar-

ing results for different values of b it must be kept in mind that

the stress intensity factors are normalized with respect to dif-

ferent values of £. For a=0.2h, b= 0.6h and $=0 the following

results are given in [1]:

k(a)/a/T = 1.1102 , k(b)/a/£ = 1.0961

Table 3 contains results for a central crack. For $ = 0 the

results may be compared with similar data given in [8] and [9].

With the exception of b= 0.9h there is agreement to within one

unit of the last digit. For $ ̂  0 curves are given in [8]. Within

the error of this kind of comparison the agreement is good.
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Table 1. The stress intensity factor at a for a= 0.2h.

a/h=0 o 2

b/h

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k(a)/a/T , I = (b-a)/2

$ = 0

1.009

1.031

1.064

1.109

1.169

1.253

1.38

* = 0.2

1.008

1.029

1.058

1.097

1.148

1.213

1.30

$ = 1.0

1.007

1.024

1.046

1.073

1.105

1.140

1.18

$ = 2.0

1.006

1.020

1.039

. 1.059

1.081

1.102

1.12

*= 1000

1.005

1.013

1.020

1.025

1.025

1.017

1.00

Table 2. The stress intensity factor at b for a=0.2h.

a/h=0 . 2

b/h

0.3

0 .4

0.5

0.6

0.7

0.8

0.9

k(b) /a / fc , A = (b-a)/2

<£> = 0

1.008

1.026

1.053

1.094

1.156

1.263

1.51

$ = 0.2

1.007

1.024

1.047

1.080

1.127

1.197

1.31

* = 1.0

1.006

1.018

1.034

1.053

1.07.4

1.094

1.09

* = 2.0

1.005

1.015

1.026

1.037

1.046

1.045

1.00

*= 1000

1.004

1.007

1.008

1.001

0.984

0.946

0.85

Table 3. Stress intensity factor at b for a = 0

a/h = 0

b/h

0.1

0.2

0.3

0 .4

0.5

0.6

0.7

0.8

0.9

k(b)/cr/b

$ = 0

1.006

1.025

1.058

1.110

1.187

1.304

1.488

1.817

2.57

$ = 0.2

1.005

1.021

1.048

1.089

1.150

1.237

1.366

1.567

1.89

$ = 1.0

1.003

1.011

1.026

1.047

1.075

1.112

1.156

1.201

1.21

$ = 2.0

1.002

1.006

1.013

1.023

1.035

1.048

1.058

1.055

1.00

$ = 1000

0.988

0.992'

0.981

0.965

0 .942

0.911

0.867

0.802

0.68
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Figure 1. Infinite strip with membrane
reinforced surfaces.
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