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Abstract

The report summarizes work done in two areas during the period September 1,

1973 through February 28, 197U. The first of these is a continuation of work on

aluminum-alloyed silicon grating cells. Work on optimization of the geometry

(grating line width and spacing) confirms the previously presented analysis of
2

such cells. A 1 cm grating cell has been fabricated and its i-V characteristic

has been measured under an AMD solar simulator; it is found that the efficiency of

this cell would be about 7.9% if it were covered by the usual anti-reflection

coating. Note that the surface of the cell is not covered by a diffused junction.

The response is blue shifted; the current is somewhat higher than that produced by

a commercial Si cell. However the open circuit voltage is low and attempts to

optimize the open circuit voltage of the aluminum-alloy junctions are described.

The second area of investigation is a preliminary X-ray topographic examination of

GaAs specimens of the type commonly used to make solar cells. The X-ray study

shows that the wafers are "filled" with regions having strain gradients, possibly

caused by precipitates. It is possible that a correlation exists between the

presence of low mechanical perfection and minority carrier diffusion lengths of

GaAs crystals.
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I. INTRODUCTION

This report consists of two parts. The first describes the current status

of the work on grating cells, i.e., photovoltaic cells made by producing a fine

grating-like pattern of minority carrier collectors on the light receiving surface

of a semiconductor crystal. In the experiments reported here, the semiconductor is

single crystal silicon. The collectors are formed by alloying a grid of fine

aluminum lines into the silicon. The second part of the report describes the status

of an X-ray topographic examination of some GaAs single crystal wafers of the type

commonly used to make GaAs photovoltaic cells by diffusion or by epitaxial techniques.
- !

II. ALUMINUM-SILICON ALLOY JUNCTION GRATING PHOTOVOLTAIC CELLS

a) Fabrication Procedure and Open Circuit Voltage (V )oc

In our last report we described our procedure for fabrication of aluminum-

silicon alloy junction grating cells. The following steps are followed in making

these cells. -

1) The "as-received" silicon wafer having resistivity in the range 0.1 to 10-ohm cm

is cleaned in accordance with standard procedures commonly used for fabrication

of microelectronic circuits. •'[•(!) The wafer is cleaned ultrasonically in

trichloroethylene .for 30 sec, followed by cleaning in acetone for 30 sec. and in

methanol for 30 sec.- (ii) It is washed in a 1:1:5 solution of NH oH, H_0. and

deionized H^O at 80°C for 15 min. (iii) It is washed in a 1:1:6 solution of

HC£, HO- and deionized H?0 for 15 min. (iv) It is rinsed in deionized H.O.

(v) It is dipped in buffered HF for 20 sec.].
o

2) A thin layer of aluminum (about 7000A) is deposited on the clean (polished)

surface by vacuum evaporation.

3) Two thin layers, the first of titanium and the second of silver, are deposited on

the other side of the silicon wafer. (After "suitering" this two layer combina-

tion makes an ohmic contact to the silicon wafer.)
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4) A layer of A-Z positive photoresist is spread over the aluminum covered surface.

5) The photoresist is exposed through a mask which defines the grating pattern or

patterns.

6) The photoresist is developed with A-Z developer. It happens that the developer

removes both the photoresist and the aluminum from the regions which are intended

to be the spaces between the lines in the grating pattern. The material in these

spaces is "virgin silicon", i.e., the base wafer material.

7) The remaining photoresist is removed by dissolving in acetone, thus leaving

behind on the wafer an aluminum pattern of the desired form.

8) The wafer is heated in a reducing atmosphere at temperatures in the vicinity;

of, or above, the silicon-aluminum eutectic temperature (576°C). During the

heating process the aluminum alloys with the silicon forming p-n junctions and

the Ti-Ag layers form an ohmic contact to the base.

9) Leads are attached by bonding Cu wires with "silver print" paint to the A£ on

the light receiving surface of the cell.

The particular samples to be discussed here were made from silicon having

a resistivity between 2 and 3.5ft cm and a (100) surface on which the aluminum

pattern was to be formed. Our first goal was to continue the exploration of

alloying temperatures and schedules in the hope that open-circuit voltages (V )

higher than those reported in our last semiannual report (0.44V) could be obtained

if the alloying process were optimized. Toward this end we prepared a group of samples

having the configuration shown in Fig. 1. Twenty-one sets of three units were

prepared from each silicon wafer. After the pattern had been defined (as in step

#7 above) each of the samples was subjected to two kinds of alloying schedules.

In one of these the samples were heated "slowly" in the other, "rapidly". In the

Seventh Semiannual Report - NASA Grant NCR 40-002-093, Brown University, Division
of Engineering - September 1 through February 28, 1973.
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rapid heating experiments, the controller of the furnace was set at the desired

temperature and the furnace was turned on. It was found that with our combination

of furnace and controller, (the controller used in these experiments is capable of

causing more rapid heating than the one used in the experiments reported in our

previous report) the interior of the furnace could reach a temperature in the

vicinity of 700°C in about five minutes; samples subjected to this faster heating

schedule were construed to have undergone "rapid" heating, [This "rapid" heating

cycle is to be contrasted with cycle (a), the fast heating cycle defined in our

previous report. In that case, the furnace was brought up to the desired temper-

ature and the sample was shoved into the hot furnace; the heating from room temp-

erature to 700°C occurred in a minute or less.] In the "slow" heating experiments,

the controller setting was gradually increased up to the desired temperature; about

15 minutes were consumed in attaining 700°C. [This is similar to the slow heating

cycle (b) of our previous report.]

In either case, the procedure was as follows. The sample was placed

inside a quartz tube which passed through the tubular furnace; the sample was

positioned so that it would be in the middle of the two foot long furnace. With

the furnace at room temperatue, the quartz tube was sealed. It was purged with

N gas for 15 minutes followed by H« for 15 minutes before the furnace was turned

on. The H^ continued to flow through the tube during the heating cycle until the

temperature in the furnace had returned to room temperature.

In both the rapid and slow heating cycles, the furnace was shut off as soon

as the furnace had reached the desired processing temperature, i.e., the sample

was kept at its maximum temperature for a few minutes only.

The open circuit voltage (V ) was measured by exposing the cells to, light

from a tungsten iodide source coupled with a water filter intended to reduce the

2
infrared content of the incident light. The intensity was about lOOmW/cm , the

u \ •.



samples were measured in succession at the same position. The measurement was

performed quickly, i.e., before the sample temperature could experience any

increase. The experiments;were mainly useful for comparing junctions of this

group to each other rather than for comparing with the cells described in our

previous report. Obviously, the aluminum covered "squares" of Fig. 1 are opaque;

the photovoltage is generated because carriers produced within a diffusion length

L of the periphery of the junctiqn can be collected. Now

V - — £n"~-' (1)
oc q °

where I is the short circuit current; I . is the reverse saturation current, andsc o

A is an empirical parameter which has the value "2" ,for silicon junctions. The

parameter I is a function of the minority carrier diffusion length. Our goal

in these experiments is to determine how I (and perhaps A) are affected by

processing procedures. As we have previously noted, the solubility of Afc in silicon

is so high that one would expect values of I and A comparable to that observed in

diffused junctions. The fact has been, however, that whereas V has a value ofoc

about 550 mV for AMO in such diffused jucntions, we have found consistently lower

values .in the A£ grating photovoltaic cells; Fig. 2 is a plot of V as a function

of the processing temperature. The curve exhibits a broad maximum with V values

in the vicinity of 500 mV for alloying temperatures between 650 and 750°C. While

this maximum represents an improvement over the UUO mV peak.value of. our previous

report, it still is lower than the diffused junction value. One important conclu-

sion can be made on the basis of these experiments: the lower values of Voc

reported for our grating cells in our previous report are not caused by the !'grating':

pattern since.V observed from ''square" A£ junctions are essentially the same asoc " •

those observed on grating cells. [A possible explanation for the lower values of

V in the grating is that I is increased by a large surface recombination com-
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ponent contributed by the periphery of the grating junction. The periphery of the

"square" A£ junctions of Fig. 1 totals 7,000 microns whereas the junction periphery

for a grating cell (see Fig. 20 of our previous report) having 5y lines spaced lOOy

apart (Fig. 22 of that report) is U0,000 microns and for 5p lines spaced UOp apart

(Fig. 21 of that report) is 80,000ij. It was to explore the role played by junction

"length" (i.e., periphery) that we fabricated these square junctions and studied

their characteristics.] This conclusion is further supported by the observations
2

we have made on the i-V characteristics of a 1 cm grating cell as described below.

b) Optimization of Grating Geometry

In our last report, we described experiments aimed at maximizing the short

circuit current by changes in the grating geometry. The results of that preliminary

study indicated that the aluminum line width (2a) should be kept as small as possi-

ble and that the line spacing could perhaps be increased even beyond the maximum

value explored up to that time (-95 microns). The optimum grating spacing should

be a function of the minority carrier diffusion length L in the silicon wafer;

the spacing should be of the order of L.

In this continuation of the experiment, cells of two different configura-

tions were constructed by alloying aluminum gratings onto the (100) face of silicon

wafers. One set of cells were constructed with a fixed line width (2a) and the

spacing (2b) was varied. The line width was set at the minimum line width which

we have been able to generate (about 5y) and the spacing was varied between about

2
30 and 250 microns. The areas covered by the grating pattern were 50x50 mils

2
(1250x1250 microns ). Six groups of three cells each were made on an n-Si wafer

having p = 2 to 3.5 ohm cm. The actual values of 2a and 2b are given in Table 1.

The second set maintained a fixed line width to line spacing (a/b) ratio; the

value chosen was a/b = 3. Six values of line width were used; nine groups of cells

2
were made. Group 9 consisted of a 50x50 mil "picture frame", i.e., no gratinp

pattern covered the surface. Groups 7 and 8 have the sane grating structures as
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Groups 2 and 4, respectively; however, the former also have four grating lines at

right angles to the main grating pattern. The actual values of 2a and 2b are

given in Table 2.

These cells were fabricated according to the rapid heating cycle described
, '!

in Section (a). The short circuit currents I of these cells were measured forsc

each of these cells exposed to a tungsten iodide lamp. The light intensity was set
2

at a value which resulted in a short circuit current density of 26.3 mA/cm from a
2

2 cm "common-variety" commercial silicon solar cell whose anti-reflection coating

has been removed by etching in buffered HF. The highest values of short circuit

current for each of the groups are recorded in Tables 1 and 2.

The following conclusions can be offered at this time. For a fixed line

width (Table 1), the value of I passes through a maximum. On the low spacing
SC

side, response drops off because the fraction of the surface covered by the opaque

aluminum grating lines increases. Thus, when the spacing is 31.8p, about 15% of

the surface is covered by A£. When the spacing is 127.2y, about U% of the surface

is covered by A£. Therefore, the current for the grating with larger spacing should

be larger by about 10% than the current for the smaller spacing. According to the

data, the ratio of the currents from the 31.8y to the 127.2y spacings is about 0.89.

On the high spacing side of the maximum the current drops off because the spacing

becomes large compared to a diffusion length.

For a fixed a/b ratio, the same fraction of the base wafer is always

absorbing the light. The observed decrease in I "occurs because the dependence of
SC

I on the ratio of spacing to diffusion length. These data have yet to be analyzed
SC

more thoroughly. ' . ' " ' •

- ? 2c) Measurement on a 1 cm Grating Cell

- 2 -We fabricated a 1 cm grating cell on a 2 to 3.5 ohm cm, (100) plane of a

silicon wafer using the rapid heating cycle described above. The grating pattern

consisted of 7.5y lines spaced 127.2y apart. The output of the cell was measured



- 7 -

*
under a Spectrolab artifical sun at the NASA Lewis Space Flight Center . The

2
intensity was set at 136 mW/cm and the spectral distribution is a good approxima-

tion to the AMD spectrum. The i-V curve of this cell is shown in Fig. 3, which

2also includes the i-V curve of a 2 cm commercial Si cell whose anti-reflection

2
coating has been removed by dipping in HF. (The current reading for the 2 cm cell

has been reduced to current/unit area.)
2

The following points can be made. The 1 cm grating cell produces a short

circuit current comparable to indeed a little greater than that produced by this

commercial cell. (With an anti-reflection coating, this cell should produce an

I about 1.4 times the uncoated cell values.) However, the open circuit voltagesc

of the grating cell (0.47V) is smaller than that generated by the diffused junction

- • • • 2
cell (0.55V). The maximum power point for this 1 cm grating cell occurs at 0.34V

and 22.5mA; this corresponds to an efficiency of about 7.9%. The commercial cell

of Fig. 3 has a maximum efficiency of about 11%. Thus we have shown that we can

2make a 1 cm solar cell of about 8% efficiency without diffusing a junction over

the whole surface of the cell. If we are able to decrease I and thus increase Vo oc

we should be able to at least equal the output of standard Si cells. Because the

grating cell has a somewhat greater short circuit current, it is potentially a

higher efficiency cell.

2
Figure 3 compares the spectral response of the 1 cm grating cell to the

spectral response of the commercial silicon cell whose i-V curve is given in Fig. 2.

Note that the grating cell has a higher blue response. Note also that the

Spectrolab AMO simulator is deficient in the blue compared to the true solar AMO

spectrum. This means that I for this grating cell exposed to true solar AMO
sc

illumination should be even larger compared to the commercial cell than is shown

in Fig. 3.

. . .
We wish to thank Dr. Henry Brandhorst of NASA Lewis, who made arrangements for
these measurements and helped to perform them.
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III. X-RAY TOPOGRAPHIC EXAMINATION OF SOME GaAs SINGLE CRYSTAL INTENDED

FOR USE IN SOLAR CELLS

o
In an earlier report , we showed how X-ray topography could be used to

exhibit changes in the defect content of silicon wafers subjected to the diffusion

process. The contrast variations observed in X-ray topographs are related to

regions in which there are strain gradients. Since dislocations and impurity pre-

cipitates have strain gradients in their vicinity, X-ray topographs can be used to

determine the dislocation density and the extent to which precipitates may be

present in a crystal. Variation in dislocation content can affect the minority

carrier lifetime of germanium and silicon single crystals; precipitates can also

be expected to affect this parameter which is so extremely sensitive to defects.

We have therefore set out to use X-ray topographic techniques to guide us in the

course of fabrication of GaAs cells. Our rationale is as follows. A "good" solar

cell must require the longest possible minority carrier lifetime (i.e., diffusion

length). All other things being equal, a crystal with a low dislocation content

and a minimum of precipitates should have the highest lifetime. This is really a

hypothesis. In the case of GaAs we really need to establish that mechanical per-
•' • .' - '

fection, i.e., the absence of defects giving rise to strain gradients, is correlated

with high lifetime. This hypothesis has been partially verified in the case of

silicon. Our approach to the silicon problem is therefore to start with strain-free

(as demonstrated by X-ray topography) material and to subject it to successive

stages in the fabrication of a solar cell (diffusion, contact formation, etc.).

The material would be examined after each step to ascertain that its mechanical

perfection had not been affected. Such a program makes sense in silicon.

However, knowledge of the role that mechanical perfection plays in con-

trolling the minority carrier lifetime of GaAs is in a more rudimentary state.

o
Sixth Semiannual Report - NASA Grant NCR 40-002-093, Brown University, Division of
Engineering, September 1, 1973 - February 28, 1974. The X-ray topographic study
was performed by Professor Barton Roessler and Mr. R. Kaul whose names were
inadvertently left off that report.
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What is known is that minority carrier diffusion length can vary over an order

of magnitude in GaAs crystals containing the same concentrations of donors or

acceptors, and grown under essentially the same conditions. Our first goal was

therefore to subject some GaAs single crystals, intended for solar cells, to X-ray

topographic examination. Two GaAs wafers have been examined to date. X-ray

topographs indicate that all of them are "filled" with regions having large strain

gradients. This is to be contrasted with silicon single crystals used in solar

cells which contain a modest concentration of dislocations but have virtually no

evidence of precipitates. The remainder of this report is concerned with details

of the examination of these three specimens.

a) Specimen #2 was obtained from the Bell and Howell Electronic Materials

Divison (Mr. Gil Walker of NASA-Langley provided this specimen and the other GaAs

used in this study). It is zinc doped, p-type material; the resistivity is in the

1-10 ohm cm range. The specimen is tear-drop shaped with a straight edge (for

orientation in subsequent fabrication) in the [110] direction. X-ray back re-

flection photographs showed that the surface is (001). Visual examination showed

that one surface of the specimen is flat and specular—characteristic of a

well-polished surface and the second surface has a rough, dull surface which

is probably the surface condition characteristic of a prior cutting or coarse .

polishing operation.

Several (220) X-ray topographs have been recorded using Mo radiation. The

crystal thickness is approximately 0.012 inches thick. The product of the linear

absorption coefficient, y , and the thickness, t , is approximately 6.0; the

crystal, accordingly, is "thick" in the X-ray sense and the X-ray topographs are

obtained by the anomalous transmission phenomenon. Dislocation images are—

consequently—regions of reduced X-ray intensity.

Figure 5 shows a low magnification (18x) topograph (L-131) obtained with

the X-rays incident upon the rough, non-specular surface. The mottled appearance
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of the surface was attributed to the redistribution of the X-ray intensity in the

surface damaged layers upon which the X-ray beam is incident. The details in the

images in the region at the bottom of Fig. 5 are shown at higher magnification

in Fig. 6.

We assumed that the surface damage obviously present in the abraded sur-

face was obscuring our view. This could occur when the X-ray beam was incident

upon the rough, nonspecular surface on the abraded side of the GaAs specimen.

Since this mottled appearance was similar to that observed previously in the topo-

graphs recorded from silicon specimens with a similarly rough surface, it was ex-

pected that chemical polishing would remove this surface damage and that the topo-

graphs would then show dislocations and other imperfections in the crystal more

clearly as was the case for the silicon specimen.

Accordingly, the GaAs wafer was chemically polished in an H.O -H-SO^

solution. Contrary to our expectations, this chemical polishing procedure did

not produce flat smooth surfaces on the specimen. Instead, both surfaces— thei

formerly smooth specular "front" surface the formerly rough abraded "back" sur-

face — developed a series of deep troughs and grooves that looked very much like

the remnants of old deeply damaged areas due to previous scratches introduced

during some prior polishing procedure. Both surfaces, though not flat, were ex-

tremely shiny, i.e., had a metallic luster.

Figure 7 is an optical reflected-light photograph at a magnification of

about 8x of the formerly smooth (front) surface after the H 0 -H SO^ chemical

polish. It shows the series of deep troughs that were, in fact, visible on both

surfaces. Figure 8 shows this same surface using ordinary reflected-light optics

in oblique illumination at a magnification of 18x and indicates that the surface

irregularities were so deep that the depth of field was insufficient to permit

focusing on the surface. The cell-like network that is seen in Fig. 8 shows
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that the chemical polish has not removed the surface layers uniformly. It is

likely that boundaries of these cells have been more rapidly attacked by the

chemical polish than the cell interiors as a result of' non-uniformity in the

composition of the crystal. Some of the deep grooves in Fig. 7 appear to be due

to surface damage from previous polishing operations since they have the appear-

ance of rather long straight lines, i.e., like scratches^ It should be recalled,

in this connection, that the condition, before chemical polishing, of the surface

shown in Figs. 7 and 8 was that of the as-received crystal — a specular, lustrous

surface with no easily discernible .scratches. If the" long straight lines shown

in Figs. 7 and 8 reveal damage due to prior processing, the damage extends well

below the original "as-received" surface. The chemical polish, then, did not

polish uniformly and, in fact, seems to resolve what may be impurity segregation

at cell boundaries as well, as scratch damage deep in the crystal.

Figure 9 is a (220) X-ray topograph [L162 (LP154, LP155)] of the

crystal in this chemically-polished condition. The region at the top of Fig. 9

is shown at higher magnification in Fig. 10. The white angular lines at D may be

dislocation images or may be a diffraction effect at the cell-boundaries. Regard-

less of the interpretation of the diffraction effects shown in Fig. 10, it is clear

that the chemical polishing procedure did not do what was expected, i.e., remove

the damage in the abraded back surface of the as-received crystal and leave flat,

smooth, specular surfaces suitable for X-ray topography.

We then proceeded to mechanically polish the back surface (now deeply

grooved but shiny) to a flat specular, surface so as to eliminate shadowing in the

X-ray topographs due to the surface irregularities. The specimen was polished with

9ym, lum and then 0.3um A100. using deionized distilled water as a lubricant.2. o

The crystal thickness after this procedure was 0.010 inches. (The thickness of

the as-received specimen was 0.0135 inches.)
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Visual examination of this flat specular surface showed that it was full of

many small holes. This could be seen with the naked eye in oblique illumination

and is shown in Fig. 11 (Met 30 and 31). At higher magnification it appears that

a second phase particle has been pulled out of the crystal by the polishing proce-

dure to form these holes. It.was confirmed by focusing (at high magnification

(800x)) up and down, that they were, in fact, holes and not particles embedded in

the matrix and protruding from the surface. A Nomarski interference contrast photo-

graph of this mechanically polished surface is shown in Fig. 12 (Met. 36).

Surface scratches from the mechanical polish are now easily seen in addition to

the holes. It should be pointed put that it is not possible using bright field

illumination to observe these surface features anywhere near as clearly as when

Nomarski contrast is used. This fact is illustrated by Figs. 13 and It which

compare the identical region on the original as-received specular surface of

GaAs #2 in ordinary bright field reflected light (Fig. 13) and in Nomarski con-

trast (Fig. 14). A flat specular surface is not, then, a damage-free surface.

The central feature of these results is that the quality — in the sense

of crystalline perfection — of GaAs Specimen #2 is low. Both X-ray topography

and optical microscopy suggest that the crystal contains second phase particles

and/or substantial polishing damage. The Ga-As-Zn ternary phase diagram [see

Fig. 7, p.68, "The Use of the Phase Diagram in Investigations of the Properties

of Compound Semiconductors", M. B. Panish, in Phase Diagrams: Materials Science

and Technology 6-III, Editor Allen M. Alper, Academic Press (1970)] indicates the

segregation effects which will occur during solidification. As the melt solidifies

one may expect constitutional undercooling effects and a resulting cellular struc-

ture to form [see, for example, "Solidification Structures of Solid Solutions",

by L. A. Tarshis, J. L. Walter, and J. W. Rutter in ASM Metals Handbook, Vol. 8,

p.150 (1973)]. The precipitation of other compounds, such as Zn-As0, may then be
O £-
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expected (if their specific volumes are appropriate) to cause elastic strains at

the cellular boundaries. Such precipitate associated strains have been shown

[see Fig. 21 in "The Application of X-Ray Topographical Techniques to the Study

of Semiconductor Crystals and Devices", by E. S. Meieran, Siemens Review,

Vol. XXXVII, p.61 (1970)] to give an X-ray topograph which is similar to those

presented in this report as Fig. 6 and 9. Since Meieran also presents X-ray topo-

graphs of GaAs in which individual dislocations are easily resolved, it seems

reasonable to conclude that our GaAs Specimen #2 was not material of high crystal-

line perfection. The difficulties probably arise during the growth from a zinc

doped melt.

It should be mentioned that the crystalline perfection of such doped melt

grown crystals can apparently be quite good — at least insofar as can be indi-

cated by etch pitting procedures [see, A. G. Thompson, Journal of Electronic

Materials, Vol. 2, p.17 (1973)].

b) Our second wafer was cut from a Si doped GaAs crystal. It has a rough

abraded "back" surface and a smooth, specular (lustrous) front surface. X-ray

topographic examination showed it to be too thick for reasonable exposure times

using Ag radiation and so the crystal thickness was reduced from the as-received

thickness of 0.014 in. to about 0.008 in. by mechanical polishing the back surface

on 9ym, 3ym, and O.Sum Al-0 . It was then chemically polished in HF-HNO -H 0 1:3:U

for two minutes.

A (220) X-ray topograph of this specimen is shown in Fig. 15 (LP218-L211).

It shows this specimen to be of low quality similar to Specimen #2. A Nomarski

interference contrast photograph of the front specular surface in the as-received

condition is shown in Fig. 16 (Met. 42). It appears similar to the more extensively

examined Specimen #2 and confirms that this specimen is also of low quality as

compared to silicon or even as compared to what is possible with GaAs crystals.



IV. SUMMARY AND CONCLUSIONS

2
1. A 1cm alloyed aluminum silicon grating solar cell has been fabricated.

Its current-voltage characteristic was measured using an AMD simulator. It was

concluded that its AMD efficiency would be about 7.9% if the cell were covered

by a standard antireflection coating.

2. A series of small area alloyed aluminum grating cells were fabricated

and tested in a continuing attempt to optimize grating line-width, spacing and heat

treatment. The "best" cells are made by alloying at temperatures around 700°C for

a few minutes. Line spacings of about lOOp seem to result in the highest values

of short circuit current in the silicon wafers used in the study. The minority

carrier diffusion length in these wafers is therefore well in excess of lOOy.

3. X-ray topography studies of GaAs wafers of the kind commonly available

for making solar cells" indicates the presence of a large concentration of strain

gradients. These crystal wafers are known to have low diffusion lengths (about

V. PLANS FOR FUTURE WORK

1. Grating cells will be made on GaAs wafers by alloying A£-Zn grating

lines into single crystal GaAs wafers.

2. GaAs crystals which have diffusion lengths in the range of lOjj will

be subjected to X-ray topographic examination.

3. Attempts will continue to correlate solar cell efficiency with strain

gradients and mechanical imperfections in silicon and gallium areuide.

JJL/llt
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Figure.Titles

Figure 1 Test sample configuration.

Figure 2 Open circuit voltage versus alloying temperature.

Figure 3 Characteristic under simulated AMD illumination.

Figure •* Relative spectral response.

Figure 5 The (220) topograph (L-131) of GaAs specimen #2 showing mottled

appearance due to surface damage in surface upon which X-rays are

incident. Magnification, 18x.

Figure 6 The region at B in Figure 2 at higher magnification. White lines

correspond to reduced X-ray intensity. Magnification, 43.2x.

Figure 7 An optical reflected light photograph of the grooved surface which

developed upon chemically polishing (H-O- + H SÔ ) the flat specular

surface of the as-received GaAs wafer (Specimen #2). Mag. 8x.

(Met. 28 and Met. 29)

Figure 8 Same surface of chemically polished GaAs surface at higher magnifi-

cation. Depth of troughs is too great to permit focusing. Mag. 18x.

Oblique illumination (Met. 27). Note network of cells.

Figure 9 A(220) X-ray topograph of GaAs #2 after chemical (̂ 2°2 ~
 H2S(V

polishing. LP 15U (top), LP 155 (bottom). Mag. 18x. L-162.

Molybdenum radiation. X-rays incident upon "back" surface.

Crystal thickness 0.010 in.

Figure 10 A (220) X-ray topograph from GaAs #2 after chemical (H202 - H2SOU)

polishing. Mag. 13.2x (LP 163 L-162). Molybdenum radiation. X-rays

incident upon "back" surface. Crystal thickness =0.011 in.

Figure 11 Reflected light photograph of mechanically polished surface of GaAs #2,

Same magnification as Fig. 7. Oblique illumination. Mag. 8

(Met. 30 and 31).

Figure 12 Nomarski interference contrast photograph of mechanically polished

surface of GaAs #2. Mag. 240x. (Met. 36)

Figure 13 Reflected light photograph of as-received specular surface of GaAs #2.

Mag. 210x. (Met. 19)
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Figure It Nomarski interference contrast photograph from identical region

shown in Fig. 13. Mag. 2HOx (Met. 18)

Figure 15 A (220) X-ray topograph from GaAs Specimen #1 Si doped. Mag. 27x.

(LP218-L211) silver radiation.

Figure 16 A Nomarski interference contrast photograph (Met 42) of the

as-received front surface of GaAs Specimen #1. Mag.
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Fig. 5 The (220) topograph (L-131) of GaAs specimen #2
showing mottled appearance due to surface damage
in surface upon which X-rays are incident.
Magnification, 18x.



B

Fig. 6 The region at B in Fig. 2 at higher
magnification. White lines correspond
to reduced X-ray intensity.
Magnification, 43.2*.



Fig. 7 An optical reflected light photograph of the grooved surface which
developed upon chemically polishing (H202 + Î SOij) the flat specular
surface of the as-received GaAs wafer (Specimen #2). Mag. 8x.
(Met. 28 and Met. 29)

Fig. 8 Same surface of chemically polished GaAs surface at higher magnification,
Depth of troughs is too great to permit focusing. Mag. 18*. Oblique
illumination (Met. 27). Note network of cells.
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Fig. 9 A (220) X-ray topograph of GaAs #2 after chemical (H2C>2 -
polishing. LP 154 (top), LP 155 (bottom). Mag. 18*. L-162
Molybdenum radiation. X-rays incident upon "back" surface.
Crystal thickness 0.010 in.



Fig. 10 A (220) X-ray topograph from GaAs #2 after chemical (H202 - H2SC>4) polish-
ing. Mag. 43.2x (LP 163 L-162). Molybdenum radiation. X-rays incident
upon "back" surface. Crystal thickness =0.011 in.

Fig. 11 Reflected light photograph of mechanically polished surface of GaAs #2.
Same magnification as Fig. 7. Oblique illumination. Mag. 8 (Met. 30 and 31),



Fig 12 Nomarski interference contrast photograph of mechanically polished surface
of GaAs #2. Mag. 240x. (Met. 36)



Fig. 13 Reflected light photograph of as-received specular surface of GaAs §2,
Mag. 2UOx. (Met. 19)

Fig. 14 Nomarski interference contrast photograph from identical region shown
in Fig. 13.Mag.240x (Met. 18)
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Fig. 15 A (220) X-ray topograph from GaAs Specimen #1 Si doped.
(LP218-L211) silver radiation.

Mag. 27x,

Fig. 16 A Nomarski interference contrast photograph (Met. 42) of the as-received
front surface of GaAs Specimen #1. Mag. 2UOx.



TABLE 1

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7*

Group 8*

Group 9

Cell Nos.

1,7,13

2,8,14

3,9,15

4,10,16

5,11,17

6,12,18

Cell Nos.

1,7,13

2,8,14

3,9,15

4,10,16

5,11,17

6,12,18

19,22

20,23

21,24

Grating Line Width (2a)

(w)

5.1

5.1

5.1

5.1

5.1

5.1

TABLE 2

Grating Line Width(2a)

(y)

10.2

20.4

30.6

40.8

61.2

81.6

20.4

40.8

Spacing(2b)

(y)

31.8

63.5

95.3

127.2

190.8

254.4

Spacing(2b)

(y)

31.8

63.6

95.4

127.2

190.8

254.4

63.6

127.2

I (ma/cm )
sc

24.7

25.8

25.6

27.9

26.8

26.7

2
I (ma/cm )
sc

24.2

22.7

21.2

21.9

19.6

19.3

19.7

16.6

8.4




