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AN EXPERIMENTAL STUDY OF JET EXHAUST 

SIMULATION
 

By 

William B. Compton III
 

SUMMARY
 

An investigation was conducted to determine the effect of varying
 

the jet exhaust's ratio of specific heats, gas constants, and tempera

tures on jet interference on afterbody drag. Jet exhaust simulation
 

parameters were evaluated also. Besides air, three other exhaust gases,
 

each with a different value of each of the gas parameters, were tested.
 

Tests were made using a single nacelle model with afterbodies having 

boattail angles of 100' and 200, and having sonic and Mach 2 jet exits. 

The investigation was conducted in the Langley 16-foot transonic wind 

tunnel through a Mach number range of 0.60 to 1.20 at Reynolds numbers 

per meter from 10.06 x 106 to 14.05 x 106.
 

Differences between the jet interference of the four exhaust
 

gases ranged from 10 to 20 percent of the jet off drag at the low jet
 

pressure ratios, and up to 35 percent of the jet off drag at a jet exit
 

pressure ratio of 3. Air, when used as the jet exhaust, consistently
 

resulted in the highest drag. The actual magnitude of the increments 

between the jet interference of the various exhaust gases was greatest 

for the combination of high boattail angles and high subsonic and
 

transonic Mach numbers. For operating conditions typical of high nozzle 

drag (high boattail angles, and transonic speeds and corresponding
 

pressure ratios) the current data indicate that the use of air to simulate 

dry-turbojet exhaust can result in an increase of afterbody drag 

amounting to as much as 20% of the dry-turbojet value. 



The differences in jet interference between the various exhaust
 

gases are attributed to different plume shapes and entertainment pro

perties of the gases. Corrections for the plume shape differences can
 

be made by relating the drag to the computed plume angle. Although
 

the entrainment differences are difficult to predict, they seem to be 

a relatively straight line function of the product of the jet exhaust gas 

constant and local temperature, and also of the local jet exhaust kinetic 

energy per unit mass. 

INTRODUCTION
 

Experimence has shown that the complex flow field in the
 

vicinity of an airplane's exhaust nozzles has made prediction of tran

sonic nozzle drag difficult. (ref. 1 and 2). Therefore, experimental
 

methods are usually used to obtain reliable transonic performance data.
 

Since the jet engine exhaust affects the afterbody drag because
 

of plume blockage and aspiration due to the exhaust mixing with the
 

external flow, propulsion tests are conducted in which the exhaust
 

flow is simulated. Usually, because of technical reasons, costs, or
 

safety considerations the fluid simulating the jet exhaust is not the
 

same as the exhaust gases of the full scale airplane. Thus, the
 

difference in the temperatures, specific heats, and gas constants
 

between the model and airplane exhausts can result in the jet 

interference of the model and airplane being different.
 

Other investigations which have been conducted to determine the 

effect of varying the exhaust gas parameters on jet interference (ref.
 

3 to 8) generally utilized afterbody configurations which were not 

*The information presented in this report is based on a thesis submitted
 

in partial fulfillment of the requirements for the degree of Master of 

Science, George Washington University, Washington, D. C., August 1973.
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typical of airplanes today. They also usually lacked information such 

as jet exit profiles, afterbody skin temperatures, and boundary layer 

profiles which precluded determining precise differences in drag due 

solely to the jet interference of the various exhaust gases. However,
 

the investigations did tend to show that with cold air simulating the
 

jet exhaust, base and boattail pressures were generally lower than for
 

the other gases. In reference 9 attention was especially given to the
 

problem of correlating the jet interference for different exhaust
 

gases. In that reference, several jet simulation parameters were pro

posed which, if matched for different jet exhausts, would hopefully
 

give the same jet interference for each exhaust gas.
 

The present investigation was conducted to get a clear under

standing of the relative magnitude of jet interference for various
 

exhaust gases. It also was conducted to determine at what conditions
 

any differences between the jet interference of the various gases
 

occur, the cause of the differences, and to evaluate the simulation
 

parameters suggested in reference 9. Two afterbodies, one with a
 

boattail angle of 200 and one with an angle of 10', were investigated.
 

Each was investigated for jet exit Mach numbers of 1 and 2. Air and
 

the decomposition products of three concentrations of hydrogen
 

peroxide were used for the jet exhaust. Afterbody pressures and skin
 

temperatures, jet exit pressure and temperature profiles, and after

body boundary layer profiles, were measured.
 

In this particular phase of the investigation, efforts were
 

concentrated on studying the problem of jet interference on surafoes
 

forward of the nozzle exit. Therefore, in attempting to correlate
 

the jet interference for the different exhaust gases, only those
 

parameters which were considered most likely to influence the jet
 

interference in this region were evaluated.
 



SYMBOLS
 

2
 
area, meters
A 


maximum cross-sectional area of model, meters
2
 

Amax 

B jet total temperature weighting factor 

C entrainment constant 

C afterbody pressure-drag coefficient, A 

CD,jet on afterbody pressure-drag coefficient at jet on conditions
 

CD,jet off afterbody pressure drag coefficient at jet off conditions
 

P - p 
Cp 
 pressure coefficient,
 

D,aft afterbody pressure-drag, newtons
 

d diameter, meters
 

dmax maximum diameter of the model, meters
 

f distance from nozzle throat to exit (see fig. 4),
 

meters
 

i integer
 

K Kelvin
 

Zlength of afterbody meters
 

M Mach number
 

kilograms meters
 

MOM momentum, second
 

Men t mass of fluid entrained, kilograms 

n integer 
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p 


q. 


R 

RN 

r 


re 


s 


T 


TDP 


V, 


V. 


v 

x 

y 

z 


8afterbody 

pressure, metr 2
 
meter2
 

kilograms 
free-stream dynamic pressure, 2etra2
meter 2 

gas constant, joules 
kilogram K
 

Reynolds number 

radial distance from model centerline, meters
 

radius of nozzle exit, meters
 

length of convergent portion of nozzle (see fig. 4),
 

meters
 

temperature, Kelvin
 

free-stream dew point temperature, Kelvin
 

local speed of the Jet exhaust, meters
 
second 

meters 
speed of the free-stream, second 

axial distance from nozzle exit, aft positive, meters 

axial distance from tangent point of afterbody radius 

and forward section of model, positive aft (see 

fig. 4) meters 

radial distance from model surface, meters 

axial distance from nozzle throat, positive aft (see
 

fig. 4), meters
 

boattail angle, angle between axis of symmetry 

and gene'ratrix of model afterbody (see fig. 4),
 
degrees
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8j ( 4 - 1/ 

M2 1)1/2 

y ratio of speeific heats 

6j calculated initial inclination angle of the jet exhaust 

plume, degrees 

~6j+6 

6 angle the boundary layer rake probes make with axis of 

symmetry of model (see figure 7), degrees 

angular location measured in a plane perpendicular to 

axis of symmetry of model, clockwise direction positive 

when viewed from rear, 00 at top of model degrees 

AV difference between Prandtl-Meyer turning angles of the 

jet exhaust just inside the nozzle exit and just 

downstream of the nozzle exit 

kilograms 

p density , 3 
meter 

Subscripts: 

aft afterbody 

b base 

bl boundary layer 

DP dew point 

des design 

e exit 

edge conditions at the outside edge of the boundary layer 

ent entrained 

j jet 
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local conditions just downstream of the jet exit 

MAX maximuma 

noz internal nozzle wall 

r rake 

s static 

t total 

te trailing edge 

th nozzle throat 

free-stream 

EXPERIMENTAL APPARATUS AND PROCEDURE 

Test Matrix and General Procedure 

The jet interference on afterbody drag was investigated using four
 

different jet exhaust gases for each of four afterbody configurations.
 

An afterbody with strong adverse pressure gradients with separated flow,
 

and one with more gentle pressure gradients and unseparated flow were 

tested. Each were tested with a sonic and a Mach 2 jet exit. The
 

investigation was made on single nacelle models in the Langley 16-foot 

transonic wind tunnel. Tests were conducted at free stream Mach numbers 

from 0.60 to 1.20, and at an angle of attack of 00. The gas parameters 

and test matrix are listed below: 
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JET EXHAUST GAS PARAMETERS
 

Gas 


(air)
 

275% 


(64.6% steam, 35.4% oxygen)
 

3 

(61.5% steam, 38.5% oxygen)
 

4 

(57.5% steam, 42.3% oxygen)
 

CONFIGURATION
 

NUMBER , dma x 
deg 


1 200 1.0 

2 100 1.5 

3a & 3b 200 1.0 

ha & 4b 100 1.5 


5 200 1.0 

(forward 
boundary 

layer)
 

6 200 1.0 

(rear 
bound ry

layrf 

8 

Decomposition 

products of: 


-

H 2 02 


82% H202 


90% H202 


TEST MATRIX
 

EXIT 

MACH 


NUMBER 

1 

1 

2 


2 


1 


1 


R,Joules 
Y kg x 

i.4 287.04 300 

1.301 389.86 646 

1.282 383.78 810 

1.265 37,6.19 1013 

JET 
EXHAUST 


GASES 

1,2,3,&h 

1,2,3,&4 

1,2,3,&4 


1,2,3,&4 


2,3,&4 


2,3,&h 


FREE STREAM MACH
 
NUMBER RANGE
 

-o.6 1.2 

o.6 - 1.2 

0.6 + 1.2 

0.6 + 1.2 

0.6 - 1.2 

I 

o.6 + 1.2 



Standard procedures at the Langley 16-foot transonic tunnel were 

used in obtaining the basic quantities sudh as pressures. During a
 

tunnel run, the tunnel Mach number was set and held constant while a 

sweep of the jet pressure ratio was made with data being taken at dis

crete values of pressure ratio. All conditions were held essentially
 

constant while data were being recorded.
 

Data were taken at the highest Mach numbers first, and then at
 

progressively lower Mach numbers to keep the variation in the tunnel
 

total temperature small. To account for small cyclic variations in
 

the desired test conditions, five frames of data for each data point
 

were recorded within one second, and the average of these was used
 

to compute the data. The data reduction procedures are given in
 

Appendix A.
 

Model
 

General - To investigate the jet interference of the four different
 

jet exhaust gases, both an air model and a hydrogen perioxide model
 

were used because of the manner in which hydrogen peroxide must be
 

decomposed to produce the gaseous jet exhaust. Both models had exactly
 

the same external contours; and were cylindrical nacelles with semi

ogive noses. The various afterbodies were attached to the basic
 

models.
 

The models were supported from the nose by a sting-strut arrange

ment which positioned the centerline of the models on the centerline
 

of the tunnel. A photograph of the model installed in the tunnel is
 

shown in figure 1. Figure 2 shows the general arrangement of the model.
 

Air model - The arrangement of the air model is shown in figure
 

2(a). In this sketch, the path of the air is indicated by arrows.
 

The air is introduced perpendicular to the model axis through eight
 



sonic nozzles equally spaced radially around a central core. There
 

are two flow smoothing plates, each having a lattice work of sharp
 

edged holes drilled in an equilateral triangular pattern. The jet
 

total temperature and pressure were obtaine& from a rake as illustrated.
 

Details of the rake are shown in figure 3. 

Hydrogen peroxide model - The general arrangement of the hydrogen
 

peroxide model is shown in figure 2(b). The hydrogen peroxide is
 

decomposed by a silver screen catalyst bed in the decomposition chamber
 

which produces a gas composed of a mixture of steam and oxygen. The
 

mass ratio of the steam and oxygen, and hence the specific heat, gas
 

constant, and total temperature of the mixture are determined by the 

concentration of the hydrogen peroxide.
 

The internal section of the hydrogen peroxide model from
 

immediately forward of the flow smoothing plates, see figure 2b,
 

to the nozzle contour had the same dimensions as the air model.
 

Insulation was installed between the inner and outer shells of 

the afterbody to minimize heat transfer and maintain the same external 

skin temperatures of the air and hydrogen peroxide models. 

Afterbodies - Figure 4 gives the dimensions of the four afterbodies
 

tested. Basically, they consisted of two external contours each with
 

a sonic and supersonic jet exit. The external contours of all the
 

afterbodies began at model station 144.78, and the base diameters of 

all the afterbodies were equal. The rim at the base was kept as small
 

as practical.
 

One external contour, which had a boattail angle at the exit of
 

200 and a length to maximum diameter ratio of 1.0, had strong adverse
 

pressure gradients and separated flow at some conditions. The other,
 

which had a boattail angle of 100 and a L/d of 1.5, had more gentle,
 

pressure gradients, and generally had unseparated flow.
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The two jet exit conditions chosen were a sonic exit and a Mach
 

2 exit. For the nozzles with the Mach 2 exits, the divergent part
 

of the supersonic contours was designed by an irrotational method of
 

characteristics with a stream function method of determining the 

inviscid isentropic contour. The method is described in reference 10.
 

Two supersonic contours were designed, one for the air nozzles, and
 

one for the hydrogen peroxide nozzles.
 

Pressure orifices on both the external and internal contours were
 

placed as close to the exit as physically practical. Tables 1 and 2
 

give the orifice locations.
 

Cross sectional area distributions of the model with the short
 

afterbody and of the support system are given in figure 5. Examples
 

of theoretical pressure distributions calculated by an axisymmetric
 

curved boattail method of characteristics (reference 11), and by an 

axisymmetric potential flow method in which the body is represented 

by sources and sinks distributed along its surface (reference 12) in 

figure 6.
 

Boundary layer rakes - The boundary layer was measured on the model 

surface at the beginning and near the trailing edge of the afterbody 

with the steep boattail angle. Sketches of the rakes used and their 

locations are presented in figure 7. The local flow angle at the rear 

rake was predicted from potential flow calculations described in 

reference 12. The design of the probe tips (see figure 7) was such that 

accurate total pressure readings could be obtained for misalignments of 

the probe with the local flow up to angles of 100. 

Wind Tunnel
 

This investigation was conducted in the Langley 16-foot transonic
 

wind tunnel which is a single return, continuous, atmospheric wind
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tunnel with an octagonal, slotted, test section. The Mach number is
 

continuously variable from 0.2 to 1.3. Further details of the wind
 

tunnel are given in reference 13.
 

Measurements and Instrumentation
 

Model - Static pressures were measured on the model afterbodies
 

and in the boundary layer, on the nozzle internal surface, and in the
 

jet exhaust at the nozzle exit plane. Total pressure measurements
 

were made in the jet exhaust flow and in the model boundary layer. The
 

pressures were measured with individual strain gage pressure
 

transducers calibrated to an accuracy of +0.5 percent of the capacity 

of the gage. 

Temperatures were measured on thelsurface of the model afterbody,
 

on the internal nozzle surface, in the jet exhaust flow, and in the
 

model boundary layer with swaged wire thermocouples. Iron-constantan
 

swaged wire with an accuracy of +0.6K was used for the air model,
 

while the higher temperature capacity chromel-alumel swaged wire
 

with an accuracy of +2.2K was used for the hydrogen peroxide model
 

and the boundary layer measurements.
 

ANALYSIS OF EXPERIMENTAL RESULTS
 

Factors Influencing Jet Interference
 

As the jet exhausts from the nozzle exit, it influences the
 

afterbody pressures in two ways: by presenting a body which the
 

external flow must negotiate, plume blockage, and by entraining
 

fluid from the vicinity of the afterbody. These two effects oppose 

each other, with the plume blockage tending to raise the afterbody 

pressures, and the entrainment tending to lower them. Both of these 

effects are strong functions of the gas properties of the jet exhaust.
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The manner in which the exhaust gas physical properties affect the jet 

plume shape and entrainment, and hence influence the jet interference on
 

afterbody drag is the subject of this investigation. Figure 8 illus

trates plume blockage and entrainment, and includes other flow para

meters (free stream conditions, jet exhaust profiles, and afterbody 

boundary layers) which can influence the magnitude of the jet interfer

ence on the afterbody pressures.
 

During the investigation, the jet exhaust profiles and afterbody 

boundary layers were monitored for each exhaust gas to insure that these 

flow conditions were constant. The variation in the free stream para

meters between tunnel runs was small, and the jet exhaust profiles for 

each exhaust gas were relatively flat and uniform. Also, the variation
 

in the model external skin temperatures between the exhaust gases was
 

generally small except very near the nozzle exit. The small skin
 

temperature variations had no effect on the forward boundary layer, and
 

only a slight, if any, effect on the one at the model trailing edge.
 

Therefore, any differences in jet interference between the four exhaust
 

gases should be due mainly to the effect of the properties of the exhaust
 

gases on plume blockage and entrainment. A more thorough discussion of the
 

additional parameters is given in Appendix B.
 

Jet Interference Correlation Parameters
 

Plume blockage parameters - Since the jet exhaust influences the 

afterbody pressures by plume blockage effects and by entraining fluid 

from the vicinity of the afterbody, the jet interference correlation
 

parameters would be those parameters on which these two effects
 

depend. Of the many parameters suggested in reference 9, only those
 

which were considered most likely to correlate these two effects
 

were evaluated.
 

The plume blockage interference would obviously be a function
 

of the shape of the jet exhaust boundary. As discussed in reference
 

14, the most important factor determining the shape of the jet
 

boundary is it's initial inclination angle. That matching this
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angle does match the initial jet plume shape well in a quiescent
 

atmosphere was verified for several exhaust gases in reference 15.
 

In reference 9, the first term of a series expansion of the
 

ratio of Pt/pe gives:
 

2
y.


P Pe - Jc (AV)+ . )
 

where the subscript A denotes the conditions to which the jet is 

e 1)1 / 2 expanding, = (Me2 - , ana AV is the difference in the 

Prandtl-Meyer turning angles for the jet exhaust in expanding from 

Me to MY. The following similarity parameters were then 

suggested for the jet boundary. 

Jet boundary in a Ul-p-)C--,)p iquiescent mediumae y ej~e
 

Jet boundary in p - 5z y M
 
a moving stream (pt - P_) P2 0. Y M2
 

In addition to these parameters from reference 9,the initial
 

inclination angle of the jet exhaust, 6, was itself calculated to be
 

used as a jet boundary simulation parameter (see sketch (a)). To
 

calculate 6j, it was assumed that the measured afterbody trailing
 

edge pressure, paft, te' was
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Jet boundary
 

Sketch (a)
 

the pressure to which the jet exhaust was expanding upon leaving the
 

nozzle. Then, using paft,te' the measured jet exit pressure, pe
 

and the jet total pressure, 6 was calculated from the Prandtl-


Meyer relations.
 

If the external flow on the afterbody were not separated, it
 

would have to turn through an angle of
 

+8= (2) 

at the afterbody trailing edge. This angle was used in an attempt to
 

correlate the interference due to plume blockage for afterbodies
 

with different boattail angles.
 

Jet entrainment parameters - The entrainment of fluid from the
 

vicinity of the afterbody by the jet exhaust depends on, among
 

other things, the momentums of the jet exhaust and local 

afterbody flow, and the velocities, energies, and mixing 
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characteristics of the two flows. Considering this, the following
 

simulation parameters suggested in reference 9 were considered the
 

ones most likely to correlate the jet interference due to
 

entrainment.
 

2
2 M2A
 
(Mass flow)2 Pe Y1 e T e
 

2 2 2
 

Pe YM A A
 

Momentum
 
M2p. y A 

Kinetic energy y M2 R T
 
2 per unit mass 
 y M2 Rw T 

Internal energy (ym - 1) RJ Te
 
per unit mass (y3 - 1) R. T.
 

The maximum cross sectional area of the model, Amax, was substituted 
for A in these equations. 

Assuming the entrainment was more likely dependent on the jet 

exhaust conditions just downstream of the exit instead of those just 

inside the exit, the parameters above were computed for the local 

conditions just downstream of the exit as well as for the jet 

exit conditions. The static pressure in this region was assumed to 

be paft~te' The velocity ratio:
 

V 

V1
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was also used to correlate the entrainment.
 

Correlation of Experimental Data
 

Magnitude of differences in jet interference - Figure 9 shows 

an example of the interference of the jet exhaust on the afterbody 

pressure coefficients. The data is presented for one exhaust gas 

at several values of jet pressure ratio. It can be seen that the jet 

exhaust generally tends to increase the pressures on the afterbody 

above their jet off level. Pressure coefficients such as these 

were integrated to obtain afterbody drag coefficients.
 

Examples of the drag coefficients plotted as a function of jet
 

total pressure ratio are presented in figure 10 for all the exhaust
 

gases tested. It can be seen from the jet off data, p t /p = 1.0,
 

that there were slight differences in the jet off drag coefficients
 

as each jet exhaust gas was tested. In order to present the
 

differences in the interference of the various exhaust gases
 

accurately, the data is presented in the form of jet interference
 

on afterbody drag normalized by the jet off drag coefficient, or as:
 

CD, jet on -CD, jet off
 
CD, jet off
 

A negative value would indicate favorable jet interference. Figures
 

11 through 14 present, in this form, all the data as a function of
 

jet total pressure ratio, jet static pressure ratio, and initial jet
 

inclination angle. The averages of the jet off drags for each configu

ration and condition are included to help assess the absolute magnitudes
 

of the differences between the jet interference of each exhaust gas.
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Figures 11 through 14 show that there are substantial differences
 

between the jet interferences of the four jet exhaust gases. Depending
 

on the configuration and freestream Mach number, the differences
 

between the jet interference of the various exhaust gases generally
 

ranged from 10 to 20 percent of the jet off drag at the low jet
 

pressure ratios, and up to 35 percent of the jet off drag when compared at
 

a jet exit pressure ratio of 3. Air, when used as the jet exhaust,
 

consistently results in the least favorable jet interference and
 

therefore the highest drag. The exhaust gases having ratios of specific
 

heats and total temperatures of 1.30 and 646K, 1.28 and 810K, and 1.26
 

and 1013K result in increasingly more favorable jet interference and
 

less drag. The only two exceptions to this pattern are for the
 

combination of the long afterbody with a sonic exit, the jet exhaust
 

gas having a y of 1.30 (gas 2), and k = 0.60 or 0.80 (figures 

12 (a) and 12 (b)). For these combinations, gas 2 gives the most 

favorable jet interference. However, these deviations from the 

pattern are misleading. For these conditions, the actual magnitudes 

of the jet interference of all the exhaust gases are very nearly equal, 

and the jet off drag is quite low. Therefore, dividing by the low
 

jet off drag magnifies any irregularities in the measurements.
 

Based on percentage of jet off drag, there are large differences
 

between the jet interference of the various exhaust gases at all
 

subsonic Mach numbers. However, the greatest differences between the
 

actual magnitude of the interference of the gases is at the high sub

sonic and transonic Mach numbers, M = 0.90 and 0.95. At these Mach
 

numbers, the steep adverse pressure gradients are probably easily
 

influenced by plume blockage, and the large nonjet-induced separated
 

regions (fig. 9) could be easily influenced by entrainment. At the
 

low subsonic Mach numbers, the magnitude of the difference between the
 

jet interference of the various exhaust gases was not very large even
 

though differences based on the jet off drag were on the order of 30 to
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35 percent. This is particularly true for the afterbody with a boattail 

angle of 10 which had values of jet off drag coefficients of .031 and 

.035 at free-stream Mach numbers of 0.60 and 0.80. At a Mach number 

of 1.20, the increments between the jet interference for the various
 

gases are small when based on the percentage of jet off drag.
 

Also, the differences in magnitude between the jet interference of the
 

various gases were greater for the afterbody with a boattail angle of
 

200 than for the one with an angle of 10'. This effect is also
 

probably due to the more adverse pressure gradients and greater
 

regions of non jet-induced separation for the steep afterbody. Figure 15
 

illustrates these two points.
 

For the configuration with a jet exit Mach number of 2, the jet
 

exit static pressure ratios were not high enough for the jet exhaust
 

to expand very much. The differences in jet interference between the
 

various exhaust gases for these configurations are similar to the
 

differences for the configurations with Mach 1 exits at the lower jet
 

pressure ratios (figures 11 through 14).
 

For operating conditions typical of high nozzle drag (high boattail 

angles, and transonic speeds and corresponding jet pressure ratios) the 

current data indicate that the use of air to simulate a dry-turbojet 

exhaust can result in an increase of afterbody drag amounting to as much as 

20 percent of the dry turbojet value (fig. 15). 

Correlation of exhaust plume blockage.- To correlate the jet inter

ference of several exhaust gases, both the plume shape effects and en

trainment effects of the jet exhausts on the afterbody drag must be 

accounted for. If this were done, the jet interference of all the
 

exhaust gases as a function of the correlating parameter would fall on 

a single curve. This section deals with an attempt to account for only
 

the differences in interference due to plume shape effects of the
 

various gases.
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Figures 11 and 12 present the jet interference of the four
 

exhaust gases for the configurations with the sonic jet exits. These
 

figures show that there is a discrepancy between the jet interference
 

of the four exhaust gases at all values of jet pressure ratio. As a
 

function of jet total pressure ratio, the discrepancy diverges as
 

pressure ratio is increased. Comparing the interference as a function
 

of the jet exit static pressure ratio, this discrepancy increases at a
 

slightly lower rate.
 

A comparison of the interferences as a function of the intial 

inclination angle of the jet exhaust, 6j, also shows differences 

between the jet interferences of the four exhaust gases. However, at 

the high pressure ratios and hence high plume angles, the discrepancy 

is reduced even more than for the comparison using exit static 

pressure ratio. For each freestream Mach number and configuration, 

the differences between the jet interference of the four jet exhaust 

gases seem to be relatively constant with 6 The initial plume 

angle probably gives a good representation of the initial shape of
 

the jet plume in a moving stream as it does in a quiescent atmosphere
 

(reference 15). Therefore, the discrepancies between the jet
 

interference of the four jet exhaust gases at a constant value of
 

6. should be mainly due to entrainment. 

Figures 13 and 14 present the data for the configurations with
 

the Mach 2 jet exits. Since the initial inclination angle of the jet
 

plume was computed using the Prandtl-Meyer relations, the magnitudes
 

of the negative angles presented in these figures are slightly in error.
 

The maximum values of exit pressure ratio or initial plume angle 

for the configurations with Mach 2 jet exits were not large enough to 

determine if the trends just mentioned were valid for these configura

tions. However, for these configurations, t9 seems to be at least as 

good a parameter as jet pressure ratio'with which to compare the jet 

interference of the various exhaust gases. Therefore, the data seems 

to indicate that 6 is a more relevant parameter for comparing the 
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jet interference of underexpanded jets than either ptj /p or 

pe/pW. The use of 6. instead of peIP- or p. would be more 

helpful when high jet exhaust plume angles are expected. 

For the afterbody with a boattail angle of 200 at a free-stream 

Mach number of 0.95, the jet interference was relatively insensitive 

to plume angle up to a value of 6 > 180 (figure 11 (d)). This 

effect can possibly be expalined by considering figures 9 and 16. 

At a Mach number of 0.95, there is a large separated region 

on the afterbody. From figure 9, configuration 1, after the jet is 

initially turned on, increases in jet pressure ratio at first tend to 

aspirate the separated region and lower the afterbody pressures. 

Further increases in jet pressure ratio only tend to raise the pressures 

slightly. This occurs until very large values of pressure ratio are 

reached. At these large values of pressure ratio, the ratio of the 

jet plume diameter to that of the separated region is probably large 

enough for the plume blockage effects to again predominate. This is 

also illustrated by figure 16 (a) and (b) which show the afterbody 

pressure distributions for each exhaust gas. The pressure distributions 

are interpolated for constant values of pe/p. and ptj/p . The
 

interference of the jet exhaust on the distributions is mainly limited 

to the separated region of the afterbody until large values of Jet 

plume angle are attained. 

Figure 17 presents the jet interference as a function of the
 

initial inclination angle of the Jet plume and of the plume boundary 

correlation parameters suggested in reference 9. These parameters are
 

intended for plume boundary correlation in a quiescent atmosphere and 

a moving stream. The comparison is shown for the afterbody with a
 

boattail angle of 200. An exit Mach number of 2 was used because the
 

parameters are zero for an exit Mach number of 1. For the range of
 

plume angles attained, all the parameters seem to give equal results. 

However, due to the j and . terms, at free stream and jet exit 
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Mach numbers near 1, the two parameters suggested by reference 9 can
 

either diverge or approach zero. Therefore 6 seems to be the best 

of the three with which to correlate jet interference. 

A comparison of the jet interference versus 6. for a sonic jet 

exit and a Mach 2 jet exit is shown in figure 18. The initial inclination 

angle of the jet plume does not correlate the jet interference for the two 

jet exit Mach numbers. At a jet plume angle of 00, the Mach 2 exit gave 

less favorable jet interference which probably indicates more entrainment. 

This effect was also observed in reference 16. The jet interference 

of the Mach 2 exit tends to become more favorable than that of the 

sonic exit as the plume angle is increased. 

By adding the afterbody boattail angle to the initial inclination
 

angle of the jet plume, a hypothetical trailing edge flow turning
 

angle, Z, was obtained. This angle was used in an attempt to correlate
 

the change in afterbody drag coefficient due to plume blockage for
 

different afterbody boattail angles. Figure 19 presents the jet
 

interference of the afterbodies with boattail angles of 200 and 100
 

as a function of C. The angle, C, may have some use as a correlating
 

factor between afterbQdies of different shapes when the freestream
 

Mach number is low and there is no separation. However, fails to
 

correlate the jet interference of afterbodies with different amounts
 

of non jet-induced separation, therefore the use of this parameter is
 

not recommended.
 

Correlation of entrainment - In addition to plume blockage, the
 

jet exhaust influences the afterbody pressures by entraining fluid
 

from the vicinity of the afterbody. The amount of fluid entrained
 

is partially governed by the momentums of the jet exhaust and local 

afterbody flow, and the velocities, energies, and mixing characteristics 

of the two flows.
 

Figure 20 presents a summary of the jet interference of the 

various exhaust gases as a function of several parameters from
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reference 9, and of RiTe and Y3 . The parameters presented are the 

ones considered most likely to correlate the entrainment. The values 

of each parameter are computed for the jet exit conditions. The 

afterbody with a boattail angle of 200 was chosen for this 

comparison because of it's greater jet interference. 

The four points on each curve represent the four jet exhaust gases 

tested. The values for each point were obtained from crossplots at a 

constant initial jet plume angle. Since each plot is for a constant 

initial plume angle, it is assumed that any differences between the 

jet interferences are mainly due to differences in entrainment. 

Entrainment tends to make the jet interference more positive, so 

increasing entrainment would be in an upward direction on the figure. 

Figure 20 shows that the entrainment is not a simple function of 

any of the parameters presented. For example, the Mach 2 exit, with 

its greater exit momentum and mass flow, has approximately the same 

jet interference as the sonic exit. Since the initial plume angles
 

are the snme, equal jet interference would mean equal entrainment. If 

the entrainment were just a function of exit momentum, the points for 

each nozzle would lie on the same curve. The same reasoning can be 

applied to show that entrainment is not a simple function of the
 

other parameters. 

The interaction of the jet exhaust with the external flow takes
 

place downstream of the nozzle exit. Thus, entrainment would seem 

to be more dependent on the jet conditions downstream of the nozzle 

than the conditions inside the exit. With this in mind, the 

correlating parameters were recomputed for the conditions just 

downstream of the nozzle exit. For these calculations, the local jet 

static pressure was assumed to be equal to the afterbody trailing 

edge pressure. 

The momentum of the entraining fluid is generally considered a
 

major factor determining the quantity of fluid entrained. In
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reference 17, the following equation is-given for the mass of fluid
 

entrained by a jet in a quiescent atmosphere.
 

1 dment. C 

1/2 d CMOM1/2 

or
 

dment c(MOM91/2 1/2
C (mo . (3) 
w 

In this equation, ment is the mass of the surrounding fluid entrained, 

MOMil is the momentum flux of the jet exhaust, p. is the density of 

the surrounding fluid, w is the axial distance downstream of the 

nozzle exit, and C is a constant. Thus the equation predicts that 

the entrainment varies as the square root of the exhaust momentum. 

This parameter, computed for the local jet exhaust conditions, is
 

presented in figure 21. As mentioned previously, entrainment tends
 

to lower the afterbody pressures, so as entrainment increases, the jet
 

interference becomes less negative.
 

Figure 21 shows that even compared on the basis of the square
 

root of the local momentum of the jet flow, the entrainment of the
 

sonic exit and Mach 2 exit do not correlate. The jet exhaust
 

Reynolds numbers based on the exit diameters of the nozzles ranged
 

from 3.71 x l05 to 20.9 x 105 for the sonic nozzle, and from
 

5.60 x l05 to 25.7 x 105 for the Mach 2 nozzle. Reference 17 reports 

that for values greater than 6 x 10 , the entrainment coefficient, 

C, is independent of exhaust Reynolds number. Then jet exhaust
 

Reynolds number should not account for the fact that the entrainment
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of the two exits do not correlate. This may indicate that entrainment
 

is dependent on the jet exhaust Mach number and factors other than
 

the momentum of the jet exhaust. 

The parameters V .,/VW, yj, R , T and local kinetic 

energy per unit mass, figures 22 through 24, also fail to correlate the 

entrainment of the two nozzle exits. However, for each exit and for 

each plume angle, the effects of entrainment of the various gases is 

close to a straight line function of these parameters. The local 

kinetic energy parameters seems to be the best in this respect. 

Reference 18 indicates the independence of the jet mixing on the
 

ratio Rj Ttj/R Tt, if smooth, uniform jet flow is assumed. The 

velocity and kinetic energy parameters are themselves functions of 

this ratio. At a constant jet exhaust plume angle, the measured
 

values of jet interferences decrease as this ratio increases.
 

Reference 18 also indicates that the mixing process alters the
 

effective jet boundary shape so that the external inviscid flow is 

affected. This could explain why the jet interference became more
 

favorable as the ratio R T j,/R T increased. An increase in the
 

jet exhaust diameter would increase the afterbody pressures and result
 

in a more favorable jet interference. However, consider figure 11 (d).
 

For this particular set of conditions the jet interference is only
 

slightly affected by the initial jet plume angle between values of
 

6 j from 10 to 120. Yet, there are considerable differences between
 

the jet interference of the four exhaust gases in this range of
 

plume angles. The differences in interference in this case seem to
 

be more likely due to entrainment of fluid from the vicinity of the
 

afterbody.
 

Regardless of the physical explanation, the relatively straight 

lines of the RT and kinetic energy parameters, figures 23 and 24, 

suggest that they may be used to adjust for entrainment of various 

gases. Using either parameter, two points on the curve would have to 

be experimentally established at the proper plume angle for a 
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particular configuration. Then a straight line interpolation to the value of
 

the parameter for the real jet exhaust gas may give an extimate to the correct
 

jet interference. However, the entrainment seem to depend on the jet exhaust
 

Mach number and the external flow conditions. Thus, the effects of entrainment
 

for one configuration and set of conditions should not be used to predict that
 

of another configuration or set of conditions.
 

APPLICATION OF JET SIMULATION PARAMETERS
 

The preceding discussion has established the importance of simulating the
 

jet plume blockage and entrainment effects. It has been demonstrated that the 

jet plume blockage effects can be duplicated for various exhaust gases by 

matching the initial inclination angle of the jet exhaust plume. Corrections 

to wind-tunnel values for entrainment, however, must be evaluated from results
 

for at least two exhaust simulation gases.
 

An example of the procedure for adjusting the experimental value of jet
 

interference to full-scale conditions is shown in figure 25. First, experi

mentally determine the variation of afterbody drag with jet pressure ratio for
 

at least two jet exhaust gases. The, correct for plume shape differences by
 

realting the drag to the initial plume angle of the jet exhaust, and obtain a
 

value of drag at the operating plume angle of the aircraft. Final adjustments
 

to the Jet interference for any discrepancies in entrainment could then 'be 

made by interpolating with the kinetic energy parameter or the HT ratio as is
 

illustrated in figure 25.
 

CONCLUDING REMARKS 

Based on the range of the jet exhaust gas parameters tested and other
 

variables of the investigation, the folliwng results are indicated.
 

Substantial differences were obtained between the jet interference on
 

afterbody drag for the four jet exhaust gases tested. Depending on
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the configuration and freestream Mach number, the differences generally
 

ranged from 10 to 20 percent of the jet off drag at the low jet pressure
 

ratios, and up to 35 percent of the jet off drag at a jet exit static
 

pressure ratio of 3. Air, when used as the jet exhaust, consistently
 

gave the least favorable jet interference and therefore the highest
 

drag. The exhaust gases having ratios of specific heats, gas constants,
 

and total temperatures of: 1.30, 390 joules/kg K, and 646K; 1.28, 384 

joules/kg K, and 810K; and 1.26, 376 joules/kg K, and 1013K, resulted 

in increasingly more favorable jet interference and less drag. 

Although, based on percentage of jet off drag, there were large 

increments between the jet interference of the various gases at all 

subsonic Mach numbers, the actual magnitude of the increments was 

greatest for the combination of high boattail angles and high subsonic 

and transonic Mach numbers. For operating conditions typical of high 

nozzle drag (high boattail angles, and transonic speeds and corresponding
 

pressure ratios) the current data indicate that the use of air to simulate 

dry-turbojet exhaust can result in an increase of afterbody drag anounting 

to as much as 20% of the dry-turbojet value. 

The differences in jet interference between the various exhaust
 

gases are attributed to different plume shapes and entrainment proper

ties of the gases. ,Corrections for the plume shape differences can be
 

made by relating the drag to the computed plume angle. Although the
 

entrainment differences are difficult to predict, they seem to be a
 

relatively straight line function of the product of the jet exhaust 

gas constant and local temperature, and also of the local jet exhaust 

kinetic energy per unit mass. 
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APPENDIX A-


Data Reduction
 

This appendix describes the procedures used to reduce the measured
 

quantities to coefficient form. To account for small cyclic variations
 

in the desired test conditions, five frames of data for each data point
 

were recorded within one second, and the average of these was used
 

to compute the data.
 

Jet exhaust conditions - The stagnation conditions of the jet were 

obtained from the rake located just behind the flow smoothing plates, 

see figure 2. Incremental areas were assigned to the probes and the 

total pressure and temperature were obtained from the equations: 

i0
 
-Ptj = At 'J. t'j (Al) 

and
 

3 
Ttj = L BtJ Ttj (A2) 

i=l '1 t1 

10 3 
where E 'A 1 and 2 B =1. In these equations, j

i=l t'J=l A 

indicates conditions of the jet and i is an integer.
 

The static pressure at the nozzle exit was assumed to be the 

average of measurements made with the two static pressure taps 

nearest the nozzle exit. See table 2 for their exact locations. This 

assumption was a valid one as was pointed out in the discussion in 
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Appendix B. These values of static pressure were used for the jet exhaust exit 

condition when computing the various jet simulation parameters. The 

afterbody with the boundary layer rakes had no static orifices, so 

P., for conditions at which the nozzle was assumed choked, ie: when
 

_y_
 
t.( ' 2 ) - I > p (As) 

• J+l
 

was calculated using the equation
 

y
-_t_ 
=Pe ptj ( +) Yj-1 (A ) 

External conditions - The afterbody drag coefficient was computed 

by assigning incremental areas to each pressure on the top row (at 

= 00) and using the equation 

CD'aft Amx -l( A)

-1 Da CP aft )(Aaft) (A5) 

max i

where n is the number of orifices in the top row, and
 

n 

Aaft = a - Ae. (A6) 
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It was assumed that the top row of orifice would be the row most 

nearly free of strut interference.
 

The boundary layer profiles were computed by substituting the 

pressures sensed by the rakes into either the equation: 

1y -1 


if
 

Pt,r. +
 

or the equation:
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if
 

Pt ,r i 

The integer, i, indicates the particular rake total pressure measure

ment in question. The second equation for 'bl" was iterated until 

the residual was < 0.0001 of the computed value1of % . The velocity 

profiles were computed using the free stream stagnation temperature as 

the stagnation temperature in the boundary layer. To check the 

validity of this assumption, boundary layer temperatures were measured 

with another set of rakes. The ratio of the actual velocity in the 

boundary layer to the velocity computed assuming free stream 

temperature would then be: 

1actual1li %li actual T 1 

Vcomputed 4bl abli computed 
 Tt,
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APPENDIX B 

Factors Influencing Jet Interference
 

As the jet exhausts from the nozzle exit, it influences the
 

afterbody pressures by presenting a body which the external flow must
 

negotiate and by entraining fluid from the vicinity of the afterbody.
 

The magnitude of these two effects are influenced by the free-stream
 

conditions, jet exhaust profiles, and the condition of the flow on the
 

afterbodies. The influence of these parameters on the jet interference
 

of the various gases is discussed in the next three sections.
 

Free stream conditions - As in all aerodynamic phenomena, the 

Mach number and other conditions of the free stream are very important 

in determining the jet interference, Since the Langley 16-foot transonic
 

wind tunnel is an atmospheric wind tunnel, the free stream conditions 

varied slightly during the investigation. Figure 26 shows the band
 

versus Mach number of the free stream parameters encountered during 

the test. The variation in Reynolds number at a particular Mach 

number is primarily due to the variation in free stream total 

temperature. The break in the bands between Mach numbers 0.95 and 1.20 

indicates that no data was taken in this Mach number range. The
 

band width of the free stream parameters is small enough so that it 

doesn't substantially affect the jet interference.
 

Jet exhaust profiles - In considering the jet interference on
 

afterbodies ahead of the jet exit, the conditions at the initial
 

part of the jet plume are of more importance than those further down

stream. Important factors determining the initial shape of the jet 

boundary and the entrainment of the external flow by the jet exhaust 

are the jet exit Mach number, pressure, and the shape of the exit 

profiles. Therefore, even though care was taken in the design of the
 

model to insure profiles of a flat and uniform nature for each exhaust 
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gas, the actual exit profiles were verified statically with rakes.
 

As can be seen by a study of reference ,19, this was especially important
 

for the hydrogen peroxide nozzles because flat exit profiles are
 

difficult to obtain with these gas generators.
 

The pressure distributions on the nozzle walls were also measured
 

and are shown in figure 27 as a function of jet pressure ratio.
 

Figure 28 presents profiles of the total pressure, static pressure,
 

and total temperature ratios for two values of jet pressure ratio.
 

The pressure ratios for the supersonic nozzles were the two highest
 

which could be obtained statically with the jet mass flow available.
 

The nozzle wall exit static pressures were obtained with the static
 

pressure rake removed to avoid interference of the rake probes with
 

the wall measurements. The exit profiles of the basic measured
 

quantities were relatively flat and uniform for all the gases.
 

The exit velocity profiles were computed from the basic measure

ments and are presented in figure 29. These and the internal
 

pressure distributions (figure 27) indicate that the jet total pressure
 

ratio for the supersonic nozzles must generally be greater than 0.6
 

of its design value to insure a nominal exit Mach number of 2. 

Figures 28 and 29 show that the exit profiles for the various gases are 

relatively flat and uniform. This indicates that nonuniformity of the 

exit profiles was not a major factor in the differences in jet interference
 

between the various exhaust gases.
 

Afterbody flow parameters - The entrainment of the fluid from the
 

region of the afterbody, and the effect of the jet plume boundary on 

the afterbody pressures depends to a large extent on the nature of the 

flow on the afterbody. Figure 30 shows the jet off pressure distri

butions and boundary layer profiles for the afterbody with a boattail 

angle of 200. 

The Mach numbers in the boundary layer were computed using the 

static pressures measured at the tips of the boundary layer rakes
 

(see figure 7). A comparison of the coefficients of the pressures
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measured at the tips of the rakes with those measured on the model 

surface in'the plane of the rake with the take removed, figure 31, 

shows that the static pressures used to compute the boundary layer
 

Mach numbers were in error. The profiles do serve the purpose,
 

however, of giving an indication of the boundary layer shapes and the
 

extent of the separated region on the afterbody.
 

The velocities in the boundary layer were computed assuming
 

that the total temperature in the boundary layer was the same as 

the total temperature of the free stream. The square roots of the
 

ratio of the total temperature in the boundary layer to that of the
 

free stream show that this assumption gave very little error in that
 

portion of the boundary layer which was not separated. The boundary
 

layer temperature measurements at a Mach number of 1.2 were unreliable
 

due to a thermocouple malfunction and are not presented.
 

Figure 30 shows that the afterbody skin temperatures had no effect
 

on the -forwardboundary layer profiles. The rear profiles indicate
 

that there is a very slight tendency for the boundary layer at the
 

trailing edge to separate earlier (M, = 0.90) for the hotter skin
 

temperatures. Figure 32, which presents the trailing edge boundary
 

layer profiles immediately before and after a jet pressure ratio sweep,
 

shows the opposite trend. Which ever of these indicated trends is
 

correct, the effect appears to be slight and the jet interference should
 

not be appreciably affected.
 

The boundary layer profiles show that, for the Mach numbers
 

tested, the greatest amount of separated flow on the aftbrbody with 

k/dm = 1.0 occurs at a free stream Mach number of 0.95 and a smaller 

amount at Mach numbers of 1.20 and 0.90. At Mach numbers of 0.80 and 

0.60 there appears to be no separation.
 

The data for the afterbody pressure distributions presented in 

figure 30 was taken just before and after each jet pressure ratio 

sweep to assess any effect of afterbody skin heating. The skin 

temperatures immediately after the jet was turned off were essen

tially the same as the hottest skin temperatures when the jet was 

36 



operating (see figure 33). At first, a comparisdn of the minimum
 

values of the pressure coefficients in figure 30 for'the air model
 

with those for the hydrogen peroxide model seems -to indicate that
 

colder skin temperatures result in lover afterbody pressures. However,
 

the pressure distributions for the hydrogen peroxide model seem to be
 

consistent regardless of skin temperature, and some of those tempera

tures are at the same level as the temperatures for the air model. A
 

check of the coordinates for the two afterbodies revealed a difference
 

in model radius of up to 0.025 cm. Potential flow theory, reference 12,
 

only accounts for about one third of the pressure coefficient difference 

between the two models, but it does substantiate the variations obtained 

in the pressure coefficient distributions. 

It has been shown that, during the investigation, the width of 

the band of the various free stream parameters was small. Also, the 

jet exit profiles were shown to be relatively flat and uniform 

regardless of the jet exhaust gas, and the flow field in the vicinity 

of the afterbody was only very slightly, if at all, affected by the 

model skin temperatures. Hence, any difference in jet interference 

between the four exhaust gases should be mainly due to the differences 

in the properties of the exhaust gases themselves. 
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TABLE IL,- EXTERNAL INSTRUMENTATION LOCATIONS TABLE 2.- INTERNAL INSTRUMENTATION LOCATIONS
 
Static Pressure Orifices 

X/dfa x for boattails x/dm x for boattalls 

deg 	 -L-10 - =15 deg - -10 151 
ddex dd 

0 	 -0.833 -0.833 90 -0.500 -0 500 

-0.500 -0.500 0 0 

-0 167 -0 167 .200 167 


0 	 0 .250 .220 
.125 167 .300 .267 
200 .200 .417 . 4 7 

.250 267 .56? .750 

.300 .417 .633 1.067 

.417 .583 .767 1.267 
500 .750 833 1 417 
567 917 9117 

633 1 000 .950 

.700 1.067
 

.767 1.133 180 -0.833 -0.833 

.833 1.200 -0.500 -0.500 

.883 1.267 -0 167 -0.167 

.917 1.333 0 0 
950 1 383 125 167 

1.41? 200 220 
.250 267 

50 -0.500 -0.500 .300 417 

0 	 0 .417 .750 

.125 .167 .567 1.000 

.200 220 .633 1 133 

.250 .267 .767 1.267 

.300 .417 .833 1 383 

.417 .750 .917 1.417 

.567 1. 067 .Oso 

.633 1.267 

.767 1.333 

.833 1.417 

,917 

.950
 

Surface Temperatures
° 
(0-= 0 and 1800) 

x/ala = 1.0 for boattailsX 

/dl = 1.0 2/da - 1 5 x x 

-0.833 -0.833 

0 0 

.500 790 

.833 1 200 

.933 1.417 

NOTE 0 is measured clockwise when model is viewed from the rear. 

Static Pressure Orifices 
Boattails with Z/dm x = 1 0 

zfdth 
g Some Supersonic nozzles 

nozzle V=1.4 V=1, 28 3 
-5 -1 667 -2 164 -2.230 

-0 333 -0 433 -0.446 

0 0 0 
.333 433 446 

1.267* 1 299 1 784 
2 164 8.123 

- 3.030 4 015 

4.805- 5.498
30 1.267" 4.805' 5.49* 1 

bor confi-nrtions.I..cjitt. I amex I > substitutethe foSuovIng 

Sone , Sriersonc nozzles 
nozzle -4=1.283 
1,033 4.528 5.186 

Surface Temperatures 

(= 
1 5) 

Boattails with Z/dcax = 1.0 

z7_th 
Sonic Supersonic nozzles

nozzle 	 y=1.4 =1.283 
y 

-1.667 -2.164 -2230 
0 0 0 

1 267* 2,164 2.123 

4.805* 5.365* 

' For conflguration with l/d 15, substitute 
the ollowia vlues 

Sonic Supersonic nozzles 

nozzle y=1 4 y=1. 283 

10313 4.528 4.740 

0 s at the top of the model. 
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Figure 1.- Photograph of model installed in the tunnel. (Boundary layer rakes 
installed, forward rake configuration). 
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Figure 2.-	 Sketch showig general arraement at the model. (Al dimensions are in 
centimeters unless otherwlse noted). 
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Figure 2.- Concluded.
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