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I. Introduction

In general, there are three approaches to nonsupervised learning

classifiers-detectors.

The first approach is the method of mixtures, in which we estimate the

unknown parameters of a mixture distribution of input patterns. [ 1 ]

It has been found, in general, that learning algorithms of this type are

not simple to implement, and that they are slow to coverge, even though

convergence to the true parameters can be guaranteed under certain loose

restrictions. [ 2 ]

The second approach is the method of constructing a discriminant function

by an iterative procedure. It is simpler, but usually it does not lead to

optimal classification. One of the main techniques applicable to this

approach is clustering, which has been investigated in [3 ] , [4 ] , and

elsewhere.

The third approach is the decision directed method. It is a straightforward

application of supervised learning methods, hence it is simple. Scudder

[6 ] , Agrawala [ 5 ] , Davisson and Schwartz [ 7 ] , have discussed some

learning algorithms based on this approach. The disadvantage of the

method is that the estimates are usually asymptotically biased, due to

classification errors.

In the present paper, we will use an improved version of the decision-

directed approach.

A decision-directed detector (classifier) uses previous decisions to

estimate unknown parameters. On the basis of these estimates, the

detector structure is modified for subsequent decision. The fundamental

idea is that the detector assumes all past decisions correct, and on this

basis, he tries to improve his performance by adjusting his decision
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parameters. Applying this idea, Scudder [6 J considered the binary

detection of unknown signal versus no signal in noise. He estimated the

signal as the sample mean estimate based on observations that were

classified as containing the signal. Convergence of his estimate was

heuristically argued. His estimate was asymptotically biased.

Davisson and Schwartz [7 ] studied a decision-directed detector using

previous decisions to estimate the prior probabilities as relative frequen-

cies of decisions in favor of each hypothesis. Their estimate is asympto-

tically biased, but for certain applications the bias is sufficiently small

for practical purposes.

They found bounds to the probability that the estimate of the prior will

"run away" to 0 or 1.

In an unpublished study [8 ] , the author has found similar bounds to the

"run away" probability, for a decision-directed receiver where both the

signal amplitude and the prior probability are sequentially updated, using

previous decisions.

In order to have optimal performance of an M-ary detection scheme,

accurate knowledge of the prior probabilities is necessary.

The degradation in the probability of error when in correct prior probabi-

lities are used, has been computed in a closed form.

In the present paper, the method of Davisson and Schwartz [7 ] for simul-

taneous detection and sequential estimation of the prior probabilities, is

generalized to arbitrary probability density functions and substantially

improved by the introduction of nonlinear transformations.

The prior probability updating procedure is made to converge to the true

values, in an optimal fashion, in the sense that the asymptotic error

variance is minimized.

A stochastic approximation theorem due to Sacks [9 ] is invoked.
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Possibly, the most interesting conclusion of the present work, is the fact

that we can improve the behavior of a sequential estimation procedure by

using a memoryless nonlinear transformation.

II. Binary detection with inaccurate prior probability

We now consider the problem of binary detection with inaccurate knowledge

of the prior probability.

Let H1 , H2 be the two hypotheses, with corresponding prior probabilities

Tr and 1 - r , and probability density functions fl (x) and f 2 (x).

The observation is x, x E En. We pose the following convenient

restriction on the p.d.f's.

Vxe En f1 (x) > 0, f2 (x) >0 and continuous.

It is well known that the optimal decision rule that minimizes the average

probability of error is :

Decide H1 if rrfl(x) (1-rr) f2 (x)

Decide H2 otherwise.

Hence, the knowledge of rr is essential for optimality.

Let Pe (p) be the average probability of error, when p is the estimate

of yr used in the decision rule.

It is then easy to show that:

Pe (p) - Pe (r) = [rrfl1 (x) - (1-rr) f 2 (x) ]dx > 0

R (r,p)

where

R (rr, p) = (x; min( , 1 p f1 (x) max lr l,

f 2 (x)

The above formula gives us in compact form the suboptimality of a

decision rule that uses an incorrect estimate, p , of the true prior, rr.
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JII. Adaptive detection-estimation scheme for 2 hypotheses

We now assume that fl (x) , f 2 (x) are known and positive for all

x e En , and that nr is unknown.

The method of simultaneous detection and estimation of rr employed in

[7 ] is the following.

Assume that n past observations xl ... xn have been classified,

n1 of them to H1 and n 2 of them to H2 . A natural estimate of

rr , is then

Pn = n1
n

When observation Xn + 1 is received, its classification is then based

on Pn

f (Xn + 1)  1 - Pn
Decide x e H if 1 n + 1 n

n + 1 f2 (xn + )  Pn

Decide Xn +1 E H 2  otherwise

Pn can be expressed as:
n

Pn = 1 Wj
n j=1

where

1 if fl (xk+l) -Pk

Wk + 1 = 2 (Xk+l) Pk

0 otherwise.

Written in a recursive estimation form:

Pn + 1 Pn - Pn - Wn+
n+-4- Wn+l
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The expected value of pn + 1 conditioned on pn is given by:

(P + 1+ Pn) =Pn n + [Pn- E( Wn+l Pn)

From the above form, it is clear that if pn converges to a value q,

then this value will satisfy the equation:

q = E(Wn I Pn = q )

or

S fl (x) - f2 (x) ] dx + f2 (x) dx - q = 0

R (q) R (q)

where

Rm(q) f(x) = 1 - q

f 2 ( x)

In general, the root of this equation is not equal to rr , and therefore,

the procedure leads to an asymptotically biased estimate of .

We now introduce a modified sequential detection-estimation scheme,

in order to improve on the original.

Let L (x) , g (x) be two nonlinear functions defined for x e [0 , 1 ]

Then, the following estimation algorithm is proposed:

Pn + 1 Pn - 1 L (Pn) [g(pn) - W n + 1 ]n+l

The new regression function of the modified algorithm, is :

M(Pn) = E [L (p) [g(p ) - Wn + 1 Pn

= L (pn) {g(pn) - 1[r fl (x) + (1- ) f2 (x) ] dx

R (p n)

Necessary condition for having an asymptotically unbiased estimate, is

to have the value Pn = rr as a root of the regression equation:

M (r) =0
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This condition is achieved by choosing the function g as follows

g(s) = s [s fl (x) + (1- s) f 2 (x) ] dx

R(s)

for s e [0, 1] .

Substituting g into the previous equation, we have

M (p) = L (p ) . (Pn -r) . G (pn)

where

G(s) = [fl(x) - f 2 (x) dx

R(s)

The function G (s) is monotone increasing for s e [0 , 0.5] and

monotone decreasing for s e [0. 5 , 1] , as shown in Appendix I

Also, G(0) = G(1) = 0 , G(s) > 0 for s (0 , 1) .

The form of the function G (s) is given in Fig. 1.

G (s)

Fig. 1

0 I 0. 5 " 2  1 s

For reasons to be explained, we assume that we have the knowledge

that the unknown prior rr , lies between TT1 and rr2 , where

0 < rrl< 0.5 , 0. 5 < TT2<1 .
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Let

Z (p) = L (p) [ g(p) - W - M(p)

for

p 12 1

where

12 = [ ' ,1r 2 ]

and

f (x)1 if f1 (x) 1 - p

W f2 (x) p

0 otherwise

Then, the Robbins-Monro Stochastic Approximation procedure that gives

the sequential estimates of rr, is written:

Pn+ = Pn - (n+1 ) -  [ M(Pn)+ Z(pn)

We invoke now a theorem due to Sacks [9] , in a slightly modified

version, to fit the circumstances.

The assumptions to be checked are:

Assumption (1)

(x - rr) M (x) > 0

for all x e 12 , x TT

Assumption (2)

For all x e 12 and some positive constant k 1 ,

M (x) k1  x - rr

and for every t 1 , t 2 , such that 0 < t 1 < t 2 < C
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inf M (x) > 0 where the inf is taken

for x - 12 and t1  Ix - Tr ! t 2

Assumption (3)

For all x e 12 ,

M(x) = a l ( x - ) + (x , R)

where (x,T) = 0 (x - ) as x - 0

and where aI > 0

Assumption (4)

(a) sup E Z2 (x) <

xeI 2

(b) lim E Z 2 (x) = C2
X--. rr

Assumption (5)

Z (x) } are identically distributed random variables (conditioned

on x) .

Assume, further, that al >

Then, the stochastic approximation procedure

p, = p - (n+ 1) - 1  L (p n ) . (P )- W ]
n+l n n n n+

IT if p '
1 n+1 1

p p' if rr p "
n+l n+1 1 n+l 2

r if 1T p 1
2 2 n+1

converges to TT , and the error n -nr ) is asymptotically

normally distributed with mean 0 and variance ( 2a - 1)-1
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Note :

If the condition al > ) is not satisfied, the convergence of

the error variance is slower than n- 1, as Sakrison [10 ] points

out.

For our particular case,

M (p) = L(pn) . (pn - rr) . G(pn)

hence, if we restrict L (x) > 0 , for x e 12 ,

the assumption (1) is satisfied.

Also, if we further restrict L (x) to be bounded, assumption (2) is

easily satsified.

That is, the condition:

0 < K2 < L(x) < K3 , for x e 12 ,

satisfies assumptions (1) and (2) . Assumption (3) is satisfied if

we let

a =M' (r)

For our case, if we assume that G' (x) exists, we have:

M' (x) = L' (x) (x -). G(x)+ L(x). G(x)+ L(x). G'(x)

M (n) = L () [G () + G ()]

Also,

2 = limE L (x) [g (z) W - M(Z)

Z ---P rr

After some straightforward calculations, we find:

2 = L 2 (T) g(r) (l-g ())
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The formula for the asymptotic error variance then becomes .

L 2 (T) g () (1 - g(rr))
var n (pn -"r) 2L (TT)- G(rr) + G () - 1

In Fig. 2, we plot the function G (TT) + G (rr)

For 0 <r T fro , the function is positive, and for rr : rro, it is

negative.

The crossover point TTo , lies between 0. 5 and 1

I

G(T) + G (T)

I

Fig. 2

Therefore, if T2 < no, we are ensured that G(rr) + G () > 0

VrreI 2V 
.

12

We are now in a position to find the optimal function L (rr) , that will

minimize the variance expression. It is a straightforward matter to see

that the optimum function L is :
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L () [ () + G"(1 r, T e 12

Using the above L , the achievable minimum asymptotic error variance

is: g(TT) (1-g ( )
V= , 2 ' 2

G (T) +G() ]

In Appendix I, we prove why G (Z) has the form of Fig. 1 for

general density functions.

In Appendix II, it is shown how we can easily compute g (r) , G () ,

G (TT) for the multivariate Gaussian case.

IV. Adaptive M-ary detection-estimation scheme with unknown priors

In the present section, we are considering the problem of adaptive detection

with unknown prior probabilities under M hypotheses, M > 2 . The

hypotheses H1 .... HM correspond to prior probabilities r 1 M....

and probability density functions fl (x) , f2 (x) , ... , fM ( x)

For simplicity, we assume again that fi(x) are positive and

continuous Yxe En

We need to estimate M - 1 of the prior probabilities only.

j th
Let p j = 1, ... , M be the n estimate of 7

Let n = Ll' r2"'" M- 1l
1 2 M-1 T

and Pn = pn Pn ... n ]

Then, the observation Xn + 1 will be classified according to the decision

rule :
k m

Decide Hk if pn fk (x + 1 ) = mx pn m ( x n
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Again, to achieve optimality in our decision rule, we must find a method

of forcing the vector pn to converge to the true value TT , "as fast as

possible. "

As before, a natural estimate of rr is the relative frequencies vector

decisions in favor of the several classes.

Let n be the number of past observations, and let nk , k= 1 , ... , M

be the number of those classified as belonging to Hk

n = n1 + n2 + .... nM

Then, a natural estimate of rrk is:

n
k 1 k

Pn n Ws

s=l

where

Sif pk fk (xs + )  = max pmn f xs +)
k ms+ m + 1

+ 1 otherwise.

k = 1, 2, ... , M.

We have the following sequential estimation algorithm:

k k -l k k
p = pk_ (n+ 1)

- I pk W k
Pn+1 n ( n n+ 1

k = 1, ... , M.

Written in a vector form: 1

P n+1 = n - (n + 1 n1 . n+1

M-1 M-1-Wn n+1

This algorithm has the fault of the original one in one dimension.

It is asymptotically biased.

The modification to be introduced now is a nontrivial generalization of the

one dimensional case.
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For reasons of convergence, we assume we have the knowledge that

rr C IM , where IM is a subset of (0, 1 )M-1, to be specified later.

In the case M = 2, we have the previously defined internal 12 = [ r2].

A desirable property that we will assign to the internal IM , is:

If

rr e IM , ti e [ zi , hi

i = 1, ... , M - 1

where

0 ti hi < 1

Ai are small positive numbers, and h i are close to and below 1 .

We will assume, therefore, that we have knowledge of the region IM '

and hence .e , hi are known.

We define the saturation function,

a if x ~

sat [x , a, h] = x if x [, h]

h if x - h

After that, we are describing the modified sequential estimation procedure

for the vector n .

g ( P n) - n+
-l2

Pn+ = P - (n + 1) . A(P ) . L(P ( ) n g ( P n ) - W n +l

M-1
g-1 (Pn) - Wn+l
LM-1 n n+1

and
j
n+ sat [n+ L 'j 3h

j = 1, ... , M- 1
-13-



where

W are the previously defined random variables
n+l

gj (Pn) are scalar functions, defined for P eI M

A ( P ) is a positive scalar function defined on IM

and

L(Pn) is an (M-1) x(M-1) matrix

L(Pn) = {Lij (Pn) , i, j = 1, ... , M- 1

where

Li j ( P ) are scalar functions defined on I
i n M

All of the above functions L , g, A will be designed for improvement

of the original algorithm.

We compute :

E [gj(P) - W

j k
= gj(P) - Pr [P f. (x) = max pfk(x)

M
= gj(Pn) - rs Jfs (x) dx

s = 1 Rj (Pn)

where

Rj (Pn) = x; p f. (x) = max P fk(x)

If we let M
s

g (Pn) = n fs (x) dx

s=l Rj (Pn)

j , ... , M - 1
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then

E[gj(P) - WJ  P

M pn s fs (x) dx

s = 1 R (Pn)

M-1

= (P s) ffs ( x ) d x  + (pn M )fM ( x ) d x

s=1 R (P ) R (P )

M - 1

Pn rs) fJ[fs ( x ) - fM(x)] dx

s = Rj (Pn)

We defind the following (M - 1) x (M - 1) matrix F (Pn ) , with

elements

Fsj (P) = [fs (x) - fM(x) dx

Rj (Pn)

s, j = 1, ... , M - 1

Then, the (M - 1) dimensional regression function for the modified

multidimensional algorithm, is :

M(P) = A(P) . L(Pn) E g (P ) - W +1

2  M-1 I T
2n 1 ' "" ' g M-1 (P n  W+ 1 n

or

M(P ) = A(P) L(P ) ) F(P ) . (Pn - )

Hence:

M(rr) = 0

-15-



We note that by properly choosing the functions gj (Pn) , we have

achieved to make the procedure asymptotically unbiased, assuming

that it converges. We still have to ensure convergence

Let

Z (P) = A (P ) L(P ) 1 gl(P n ) - + 1 ' "

M-1 T

gM - 1 (Pn )  W - F (P ) (P -r ) 1

defined for Pn I M

To ensure convergence and asymptotic normality of the error, we now

invoke the multidimensional version of Sacks theorem [9]

The assumptions to be satisfied, are :

Assumption (1)

M (r) = 0 , and for every e > 0

inf (x - rr)T M(x) > 0

where the inf is taken for

x e IM  and e- 1 > x - II > e

Assumption (2)

There exists a positive constant k 1 such that:

SM(x) 1 k, x - iT

for all x e IM

Assumption (3)

For all x e IM,

M(x) = B. (x -T) + 8 (x , r)

where B is an (M - 1) x (M - 1) positive definite matrix,

I (x, ) = 0 ( ix - rj ) , as x - l --- 0

-16-



Assumption (4)

sup E Z (x) >
xIIx C IM

lim E Z(x) ZT(x) = S

X -- 6 TT

where S is a nonnegative definite matrix.

Assumption (5)

(Z (x) } are identically distributed.

(conditioned on x)

Let b b be the eigenvalues of B in decreasing order.
1 ' M-1

Write B = PDP- , where P is orthogonal and D is the diagonal

matrix with diagonal elements (bl . .. bM - 1)

Let s.. be the ( i, j ) th element of S, and let sij. be the ( i, j )th

element of S* = P-1 S P

Let b > 2

M-1

Then, n ( Pn - rr ) is asymptotically normal, with zero mean, and

covariance matrix PQP-1, where Q is the matrix whose

( i, j )th element is (b i + bj - 1)-1 . s

We now assume that the matrix F (P) is nonsingular for all Pe IM .

Satisfaction of the above condition depends on the form of the probability

density functions

fl (x) '  . , fM (x) , and on the interval IM .

-17-



For reasons to be seen immediately, we choose:

T
L (P) = F (P)

Also, we restrict the scalar function A (P) to be bounded:

0 < k2 < A(P) < k3 , VP I

Hence, the inf of Assumption (1) is bounded from below:

T T T
inf (x - TT ) M(x) = inf(x - w) A(x) . F (x) F(x) (x - rr)

> k2 e 2 inf p 2 (y)

y el
M

where p 2(y) is the minimum eigenvalue of F T (y) F(y)

Because of the assumption that F(y) is nonsingular, p2(y) is positive.

Hence, Assumption (1) is satisfied. Assumptions (2) and (4) are easily

shown to hold, and Assumption (3) also holds, with

B = A(rr) . FT ( ) F(rr)

We need now to compute the covariance matrix S.

In Appendix III, we show that

S( ) = A2() . F T (T) . R ( ) . F(TT)

where R( w) is a (M - 1) x (M - 1) matrix with elements

Rkm () =  k ( T) (Skm gm (

where

1 for k=m

km 0 for k ( m

If q '... qM-1 are the eigenvalues of F F in decreasing magnitude,

we can write
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F F = P diag(q ... q P-
1 M-1

where P is orthogonal.

The eigenvalues of B are then

b. = Aqi

and

B = A P diag(q ... q ) -1
1 M-1

S* = A 2 p-1 FT RF P

Let m be the elements of the matrix
1j

P-1 FT RFP

Then

s* = A2 m
ij ij

and Q has elements

2 -1A (Aq. + Aq- 1) mij
1 J 1J

To conclude:

For every r IM , the matrices F, P, R are fixed. The only

parameter to be adjusted, is A( rr).

The restrictions A (r) must satisfy are:

0 < k2 < A () < k3  Vrr e IM

Furthermore, we must have

A(r) . min q ( r r ) >
k k

This last condition is essential in order to have mean square convergence

of the error of the order n-1. If it is not satisfied, as Sakrison [10]
-1i

points out, convergence is slower than n-1
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The optimal choice of A(rr) , hence, is the value that minimizes the

-1 Qhseeet
trace of P Q P- , where Q has elements

Qij = A2 (Aqi + Aq - 1) - 1  m..
ij (q "

under the constraint:

A min q >
k k

We have

T(A) = trace(P Q P-1) = trace(Q P-1 p) trace(Q)

Hence, we wish to minimize

M-l
2 I-1

T(A) = A 2  mkk (2A qk 1)

k=1

under the constraint

2A qk > 1

for k=l,... ,M-l

where

kk 0

and

q > q > ... > q > 0
1 2 M-1

The function T(A) is positive in the region

A > (2q )-1
M-1

For A-- + , T(A)-- +

and for A ( 2 qM- 1)-1 , T(A)--+

Since it is also a ratio of polynomials, it must have a number of local

minima for A > (2q )-1
M-1

-20-



The derivative of T(A) is

M-1 Aq - 1

T (A) = 2A m -kk 2

k=1 (2Aq - 1)
k

-1 '
For A - (q ) T (A) > 0

M- 1

Hence, the region of interest for seeking zeros of T (A) , is

((2qM )-1 P (qM )-1 ) = I - 1 )

The number of zeros of T (A) is at most 2(M - 1)

Let A, i = 1, . , 2(M-1) , be the zeros of T (A) that are

in I(q M _ 1

Then, the optimal value of A is:

Ao (rr) = arg [min T(A i ) i

The above procedure was done for a fixed rr e I M

Doing the same thing for a mesh in I M , we can construct the optimal

nonlinearity A. (1) , T e IM

Therefore, the trace of the error covariance matrix, has the asymptotic

minimum value of:

trace [n2 E(P - r) (Pn- )T ]

M-2

---- () mkk (Tr) 2Ao (r) k () -

k=1

-21-



V. Conclusions

It has been shown that we can estimate efficiently the prior probabilities,

even in the presence of detection errors. The cost we have to pay, is

the construction of the above nonlinear functions of iT.

For the binary case and for multivariate Gaussian probability density

functions, the nonlinear transformation functions are easy to construct.

The important conclusion is, that the use of nonlinear transformations

can improve the properties of stochastic approximation methods.
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APPENDIX I

For the two hypotheses and for general probability density functions, the

function

G(z) = [fl(x) - f2 (x)] dx

f ( )  1-zI - z

f2 ( )  z

has the form given in Fig. 1.

Proof :

a). For z e [0, 0.5],

fl (x) . f2 (x) t (1-z). z -  1

and (1 - z ) z -  is monotone decreasing, hence G (z) is monotone

increasing. Also, G (0) = 0 .

b). For z . [0.5, 1] , z - 1 (1 - z) 1

G(z) = [fl(x) - f2 (x) dx - f 2 (x) - fl(x) dx

fl ( g )  f, ( )
1 12 1 -! 1 -z

f2 (  )  f2 (  )  z

The second integral is a positive, monotone increasing function of z,

hence G (z) is monotone decreasing for z e [ 0. 5 , 1] .

Also, G(1) = 0

Hence, G (z) has a maximum at z = 0. 5 and has the form given

in Fig. 1i.
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APPENDIX II

For the two hypotheses case and for Gaussian n-dimensional probability

density functions, the nonlinearities g(rr) , G(!) , L(rr) can be

constructed by using a method due to Fukunaga and Krile [11 ] .

The essential characteristic of the method is the linear transformation

of the observation vector to a new one that has components statistically

independent under both hypotheses.

We are interested in computing the following two integrals :

S1 (TT) = fl(x) dx

1l_ 1-

S2(T ) = f 2 (x) dx

r1T 1-1

for 1r e 12

Let fl(x) = N(x, 0, R 1 )

f 2 (x) = N(x, M, R2 )

where M = M 2 - M 1 = difference of mean vectors.

Let A be the n x n matrix satisfying the relations :

T
A R 1 A = I

A R2 A T = A

-24-



where A = diag(x 1 ... Xn) , with X1 ... xn  the eigenvalues

satisfying:

IR 2 - R1 = 0

For R1 , R2 positive definite, all xi  are positive.

Let u = AM = (u 1... u n)T

If x is the original observation vector, the new one is.

Y = Ax = (Y 1 " Yn ) T

The statistics of Y are:

E(Y I H1 ) = 0 , E(Y I H2) =

E(YT I H1 ) = I, E[ (Y - )(Y - )TH] = A

We can see easily, then, that

S1 () = Pr [U(Y) < 0 1 H 1

where
n

U(Y) = {y2 - 1 (y. - u.)2 -Lnj. - 2Ln[n (1-rr)

j=1 j

Since yj are independent Gaussian random variables with zero mean

and unit variance, the characteristic function of U ( Y ) can be easily

computed.

M l (jw) = E {exp (jW. U(Y) )H 1 }

n
= K(j m) . 7 F 1m (j)

m=1
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where

K(jw ) exp[- 2j. Ln [ (1 -T)-1]]

F 1 (j) = - j2am) . exp [(2a b M)2 jwh
1m ) = lm 1m m 1m

2(1- j2aim W)

and

a = 1- 1
lm -mim

b = m
x -1m

2

him = alm blm ) + LnXm

1 - alm

Also, if we make the transformation:

Z = -  A(x - M) = (z 1 ... Zn)T

the vector Z has zero mean and unit variance Gaussian independent

components.

Then,

S2 (T) = pr V(Z) < 0 H 2 ]

where

n - 2

V (Z) = (Xk - 1) k + Xk uk
k= 1k

2

k + LnXk - 2 Ln[ (-w)
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The characteristic function of V (Z) , is then

n

M2 (j) = K (j ) 7r F 2 m (j)
m-1

where, F 2 m(jw) have the same form with Flm(Jw) , with

corresponding parameters :

a 2 m = Xm -1

b 2 m XmUm (Xm-1 - 1

2-

h2 m = (a 2 m b2m ) ( + a 2 m -1 + Lnxm

Hence, M l (jw) and M2 (jw) can be easily expressed in terms of

u and A.

Then, the functions Sk(rr) , k = 1, 2 can be expressed as an integral

involving Mk(jw), as follows:

+1

Sk( ) = 2-1 -1 p 11m[Mk ( -j)] d.

where p = 3. 14159

k = 1, 2

The functions G(rr) , g(r) can then be expressed as:

G(rr) = S l (1) - S2 (rr)

g(rT) = nr S1 (w) + (1 - ) S2 (rr)

In the formula for Mk ( j w) , r appears only in the first factor,

K(jw) .

-27-



Hence, the computation of Sk (r) and therefore of G ( T) , involves

one more integration, using K (j w) instead of K (j ) .
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APPENDIX III

The matrix R (rr) has elements

k m
Rkm () = E (gk -WnI ) (gm (r) - Wn + 1 T

k

gk(r) gm(T) - gm(r) E (Wn+ 1 I+ )

m k m

- gk(T) E (Wn+ Ilrr)+ E(Wn+ 1 wn+ 1

We have shown that

k

E (Wn+ 1 ) = gk(r)

Also,

k m +1 for k= m

Wn+l W n+ 1
0 for k m

Therefore,

Rkm () = gk() [ k m  gm ( ) ]

where

1 for k = m

8km
0 for k m

-29-
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