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FOREWORD

The research reported herein was supported by NASA Contract NAS8-21140.
Dr. George H. Fichtl of the Aerospace Environment Division, Marshall Space
Flight Center, was the scientific monitor, and support was provided by
Mr. John Enders of the Aeronautical Operating Systems Office, Office of
Advanced Research and Technology, NASA Headquarters.

The research reported in this document is concerned with the results of
studies of wind and turbulence in the first 150 m of the atmospheric
boundary layer. The motivation behind this research is the development of
models of the statistical properties of atmospheric turbulence for the
design and safe operation of aeronautical systems. Atmospheric turbulence
models play a number of crucial roles in the design and operation of
aeronautical systems. First, they provide for the development gust design
criteria; second, they provide for the development of atmospheric turbulence
simulation procedures whereby control systems can be evaluated and pilots
can be trained. Finally, they provide a basis whereby the current require-
ments, criteria, and procedures for reporting winds and turbulence to pilots
prior to take-off or the final approach can be evaluated, updated and
improved, as well as for the development of possibly needed new procedures

It is believed that the models reported herein will contribute significantly
to these areas of aeronautical interest, especially to the development of

atmospheric turbulence simulation procedures.
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I. INTRODUCTION

Certain statistics of airflow near the ground are of special
interest to designers of aeronautical and aerospace vehicles and systems.
These include the mean wind profile; variances of the velocity components;
spectra of the velocity components and of dynamic pressure; and cospectra
between velocity components at different levels. These quantities will be
called "predictands". Two sets of '"predictors" will be considered: either,
conditions close to the ground measured locally; or large-scale data available
from weather maps and astronomical tables.

The problem of estimating the predictands at Cape Kennedy from local
variables has been discussed in previous reports, and will be summarized
only briefly here. 1In this report, emphasis is placed on the problem of
estimating the statistics required from large-scale variables.

Monin-Obukhov theory predicts that the statistics of atmospheric flow
over homogeneous terrain in equilibrium in the "surface layer" are completely
determined by three parameters: the roughness length, z_3 the friction

velocity, u,; and the Monin-Obukhov length, L, defined by:

u*3 c pT

=P 1
L kegH @
Hence, Cp is the specific heat at constant pressure, T temperature, p density,
g gravity, k von Karman's constant, and H the vertical heat flux (including

the effect of moisture on buoyancy).



The "surface layer" is defined as that region in which the vertical

variation of u,, H and therefore L can be neglected. This is approixmately

%9
true only in the lowest 30 m or so; the possibility remains, however, that
the relationships valid in the surface layer may apply up to the top of the
Kennedy tower (150 m), if surface values of friction velocity, heat flux and
L could be inserted into these relations. The relations, and tests of their
validity up to 150 m are discussed in Chapter 1V.

The roughness length is needed in the estimation of the predictands
both from local and from external variables. Therefore a separate chapter,
Chapter II, is devoted to its determination at Cape Kennedy.

The determination of u, and L from local variables has been discussed
in earlier reports and will be summarized briefly in Chapter III. The
estimation of the same quantitites from large-scale variables formed a major
part of this project, and is discussed both on the basis of theory and
measurements in Chapter V.

Combination of the results of Chapter II, III, and V leads to techniques
for estimation of the predictands from large-scale variables only. These
methods, and a test of their accuracy, are given in Chapter VI. Chapter VII
gives instructions for the estimation of the various statistics from usually
observed data. Finally, an appendix discusses statistical and mathematical
properties of time series of atmospheric turbulence at Cape Kennedy and else-
where.

The tower and instrumentation at Cape Kennedy will not be described in

detail here, since this has been done by other authors, e.g., by Fichtl and




McVehil (1970). Suffice it to say here that mean and fluctuating wind,
as well as mean temperatures were available at six levels: 18 m, 30 m,

60 m, 90 m, 120 m and 150 m.
Some of the material in this report has been discussed in two previous

reports, NASA CR-1410 and NASA CR-1889; these will be referred to as Reports 1

and 2, respectively.



II. DETERMINATION OF ROUGHNESS LENGTH AT CAPE KENNEDY

Roughness length is usually determined from wind profiles, preferably
under neutral conditions, although alternative methods have been suggested
in earlier reports. Determination of roughness lengths from wind profiles
presupposes a thorough understanding of profile theory, above the surface
layer. At the time of writing of this report, numerous profiles have been
processed so that their properties could be evaluated sufficiently well to
suggest reliable estimates of roughness lengths. To simplify matters, only
neutral conditions are considered first. This is accomplished by considering
only average profiles of individual runs, for which the Richardson number
between 18 and 30 m lies between -.05 and +.05.

Up to 150 m, it is presumably legitimate to obtain equations for the
wind profile under the assumption that the wind direction is invariant with
height. Then, we may derive expressions for the profile over homogeneous
terrain by integration of the differential equation for wind u as a function

of height z:

/X (2)

This equation may be considered as the definition of the "mixing length', A.
The quantity u, is the local friction velocity. Of course in the surface
layer, the friction velocity is constant and A = kz, so that the wind follows

the familiar logarithmic relation,




The behavior of the friction velocity above the friction layer can be
derived rigorously from the equation of motion in the direction of the wind:

du,
2u, — = fv (3

* dz g
Here, vg is the component of geostrophic wind at right angles to the surface
wind u, and £ is the Coriolis parameter.
From the theory of the geostrophic drag coefficient (see, for example,

Blackadar and Tennekes, 1968), we have
S 1
vg/u*o = - (4)

Here B varies with stability. Under neutral conditions the best estimate
for B is about 5 (for further discussion, see Chapter V). Integration then

shows that, very nearly

Uy = Uy~ 6fz (5)

where Uy is the friction velocity at the surface.
Since the mixing length, A, is kz near the ground, and applying the

scaling appropriate for the neutral planetary boundary layer, we may put:

A=%kzF ({—z—) (6)
*o0

Here F is presumably a universal function. For example, Blackadar (1962)

has suggested:

F=(1+63 2971 7)
u*o




If we now substitute equations (5) and (6) into (2), and integrate, we
may write formally:
Uy

w= =2 [ E-+ g ()] (8
o *0

fz . . . .
where Gﬁ:——) is another universal function, related to F. In particular,
*0

with Blackadar's hypothesis for F, the expression for the wind profile can

be written

[
1l
~| £

In Z- + 144 £z (9)

o
Figure 1 shows the logarithmic wind profile, and, for comparision, (9) with
roughness length 20 cm and friction velocity 52 cm/sec. Clearly, the
Blackadar profile in semilogarithmic representation curves significantly
in the lowest 100 m.

Geometrically, the roughness length is given by the intercept of the
profile with the ordinate. In practice, however, the roughness length is
often determined by constructing a tangent to the observed portion of the
profile and determining z from its intercept with the ordinate, a procedure
based on the assumption of a logarithmic wind profile. Clearly, if the
actual profile is as strongly curved as Blackadar's profile, the roughness
length would then be strongly overestimated. It is therefore of great
importance to analyze profiles observed under hydrostatically neutral conditions

in order to study their curvature.




100

10

Figure 1. Theoretical wind profiles for 20 em roughness
length and uy, = .52 m. ¢ = logarithmic law,
o = log-linear law, A = hyperbolic sine law.



Ten-minute average wind profiles are now available on tape, one for
every hour of 1968. From these, mean 'neutral" profiles regardless of wind
speed were computed, for twelve wind direction sectors. Here, ''meutral" is
defined by -.05 < Ri < +.05. The resulting profiles are shown in Figure 2.

It is clear that the twelve profiles show considerable irregularities,
but no systematic bending to the right with increasing height. This result
is in agreement with conclusions reached by Thuillier and Lappe (1964) who
analyzed profiles near Dallas, Texas. Many of the irregularities may be
due to instrument effects; in a few cases, as will be seen, the change of
terrain upstream of the tower may be responsible for kinks in the profiles.

In any case, (9) does not provide the best fit to the observations. A

somewhat better fit is provided by the hypothesis

u
*0 kzf
£ tanh 575063 U (10)

A = 0.0063

which leads to geostrophic drag coefficient statistics in as good agreement

with observations as (7). 1In that case, the wind profile can be written,
A . 2

omitting a term in (fz)

sinh 63 fz/u*o

YTk In sinh 63 fz /u, - 1> fz (1D
o' *o

This wind profile is also shown in Figure 1. It is quite close to the
logarithmic profile and, when fitted to observed profiles, should produce

better roughness lengths than (9); but the results should not necessarily be
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Figure 2e. Neutral wind profile at Cape Kennedy
for wind directions 15°.
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superior to roughness lengths determined under the assumption of a logarithmic
profile. Because computations based on the assumption of logarithmic profiles
are by far the simplest, logarithmic relations were assumed.

Actually, two sets of roughness lengths were obtained from the near-neutral
wind profiles: first, lines were fitted to the profiles shown in Figure 2; and
second, average profiles were constructed from fewer individual profiles, the
Richardson number of which was restricted to lie between -.0l1 and .0l1. Thus,
usually ten or fewer individual ten-minute profiles were averaged in each wind
direction sector. The random errors in these averages are larger than in the
first sample, but systematic errors should be smaller, Generally, the agreement
between the two sets of roughness lengths was quite good, and they were averaged.

Two other groups of roughness lengths were used, both requiring theoretical
expressions for the correction to the logarithmic wind profiles due to unstable
stratification. The characteristics of these expressions are quite well known
for the surface layer, generally taken as the layer below 30 m or so. Panofsky
and Petersen (1972) have recently tested the hypotheses that the expres-
sions valid below 30 m can be applied up to 100 m, on the basis of observations
at Risd, Denmark. The results were favorable to the hypothesis. An independent
test will now be described which was made on Kennedy profiles. This was based
on hour-average mean profiles, in various categories of Lo’ the Monin-Obukhov
length. The average profiles themselves, along with the mean value of L0 for
each, are shown as Figure 3. Again, the "neutral" profile is logarithmic, with
an intercept suggesting a mean roughness length of 0.4 m. The other profiles

have the expected curvatures.

12




HEIGHT, m

T T T T T T T T T
- -7.4 -37  -77 +200 -250 e |
100 N
B -
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u, m/sec
Figure 3. Average wind speed profiles of one-hour runs, from
left to right, at 150 m: L =« 7.4 m, L = - 37 m,
L==-7TTmn, L=+200m, L=~ 250m, L ~ o,
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The test was made on the basis of the nondimensional vertical wind

shear,

ac
(a3
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ct
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-
€
o]
ct
Q
'-l

In the surface layer, and, accordin

unstable air

/4

6= (1 -16z2/1)" (13)

In practice, normalized wind shears were computed by dividing wind
differences between successive levels Auu by the corresponding wind dif-
ferences Aun under neutral conditions. Since ¢ = 1 in neutral air,

Au

o /o = _i*ﬂ)._l‘. (14)
u ¢n - ¢u - u*O Aun

Subscripts u and n denote unstable and neutral, respectively. The ratio

u /u*uo was evaluated from equation (15) (see below) applied at 18 m:

18
6 U o
*
no 18 a - o )
Yxuo Yu in 18
18 zo

This procedure for evaluating ¢ has the advantage that it eliminates
systematic errors in wind measurements caused by systematic changes of

roughness with distance from the tower. The determination of the Monin-

Obukhov length Lo is described in the next chapter. The same technique had

been used successfully with Ris¢d wind profiles.

14
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Figure 4 compares the theoretical dependence on ¢ on z/Lo with the
observations. Some observations from the Ris¢d tower (Denmark) are in-
cluded. The agreement is surprisingly good, and further confirms the hypothesis
that (13) can be used up to 100 m, or even to slightly greater heights. Thus,
the method for determining surface stress and roughness suggested by Panofsky
(1963) can be applied to the tower data.*

First, the diabatic wind profile is written as:

u
u = —%2-[1n (ze_w) - 1n zo] (15)

Paulson (1970) determined Y for unstable air from (13):

2z 1

zZ \ _ 4x, _ - T
b -t g -2 e

E) + 5 (16)
o

Here x = (1 - 16 z/L0)1/4. Equation (15) is a linear equation between

u and ln(ze—w), with In z, as intercept. In stable air, we take Yy = - 5 Z/Lo'

Table 1 lists ¢, Py and e_w computed from these equatioms.

*More recent data from Idaho Falls as well as the points plotted suggest

that a better fit is given by the KEYPS equation

which also has the property that, as —z/Lo -+ o, Km is independent of z and
Uyys a8 required by the original theory of free convection. Another excellent

fit, undistinguishable here from the KEYPS equation, is provided by:

b= (1 - 18 {—)'1/3
o)

15
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Table 1. Wind profile parameters ¢, P, and e-w as functions of z/Lo

z/L0 0.1 0.05 0 -.1 -.2 -3 -.4 -5 -6 -.7 -.8 -9 -1 -2 -3

¥ -0.5 -0.25 0 .28 .45 .59 .70 .79 .87 .94 1.01 1.06 1.12 1.49
eV 1.65 1.28 1.0 .75 .64 .55 .50 .45 .42 .39 .37 .35 .33 .22
) 1.50 1.25 1.0 .79 .70 .65 .61 .58 .56 .54 .52 .50 .49 .42

1.74

.18

.38

Average wind profiles were constructed from the 10-minute average winds
in 1968 for each sector, and (15) was fitted to each by least squares. This
yielded the second set of roughness lengths. The third set was that given
by Fichtl and McVehil (1970) which was based on one-~hour average winds, but
only at 18 m and 30 m. The first two sets then effectively represent
average roughness lengths applying to the whole tower, whereas the third set
represents the lowest section of the tower.

All three sets of roughness lengths are shown in polar form in Figure 5.
Also, a line is drawn into the figure, which is taken to be the "best"
distribution of roughness lengths at Cape Kennedy. The three sets agree
quite weli with each other, with that by Fichtl and McVehil yielding slightly
lower values than the others. This is because the average logarithmic wind
shear between 18 m and 30 m is very slightly smaller than higher up, sug-
gesting slightly smaller roughness lengths in the immediate neighborhood of

the tower than further away.

17
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Figure 5.

Polar diagram of roughness lengths

A neutral only, ten minute average wind
m neutral and unstable, 1 hour averages
¢ Fichtl and McVehil
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A qualitative test of the roughness lengths involves comparing their
angular distribution with the corresponding distribution of terrain features.
Fichtl and McVehil (1970) distinguish basically two sectors: essentially
smooth terrain (vegetation 0.5 to 1.5 m high) from 300° through 360° to
160°; and a sector with trees about 200 m and more from the tower, from 160°
through south to 300°. The "smooth" area is interrupted by a narrow band
of trees 450 m away to the east and southeast. It is seen that the angular
distribution of roughness lengths shown in Figure 5 agrees fairly well with
the terrain.

West of the tower, and about 200 m from it, there is a strip of forest
extending to a distance about 400 m from it. The wind profiles for wind
directions 255° and 285° in Figure 2 both show a large wind shear between
30 m and 60 m, corresponding to roughness lengths of about 1.5 m. This rough-
ness length is about what would be expected for woods, and the heights of the
large-shear layer are consistent with theory (Elliott, 1958) and observations
elsewhere. Similar irregularities in the wind profiles are found with easterly
winds, which may be due to a small hill in that direction. Nevertheless,
this explanation of profile irregularities must be considered as extremely
tentative.

In summary, the angular distribution of roughness lengths, as shown
in Figure 5, is in reasonably good agreement with terrain characteristics.
However, it will be seen later that these roughness lengths are generally
larger than what would have been expected from the fluctuation statistics.

The roughness lengths discussed in this chapter are essentially "local"
roughness lengths. Having been obtained from wind profiles up to 150 m at a

tower, they represent approximately a circle of radius 1 km, with the tower

19




at its center. For applications to the dynamic behavior of rockets on the
pad and shortly thereafter, such local roughness lengths are needed, in
contrast to requirements for the estimation of the effect of terrain on
airplanes, or on large-scale momentum transfer.

If the relations valid at Cape Kennedy are to be applied elsehwere,
analogous '"local" roughness lengths must be estimated. Only approximate
guidelines can be stated for such quantities: 10_2 cm for unobstructed
water surfaces; 1-10 cm for low grass and low vegetation; 10-80 cm for
fields broken by trees and hours; 80-400 cm for mainly forested regions and
cities. These estimates are still controversial and require considerable

refinement.

20




III. DETERMINATION OF Lo AND Ugo FROM LOW-LEVEL VARIABLES

According to Monin—-Obukhov theory, the meteorological predictands
needed for the design and operation of aercnautical and aerospace systems
can be estimated as function of roughness length, friction velocity and
Monin-Obukhov length in the surface layer over homogeneous terrain. Before
tests can be made to what extent these relations are valid up to the top of

the Kennedy tower, at 150 m, estimates of Lo, zo and u o first have to be

*
made. In the last chapter, the characteristics of roughness length were
described. Here, the question of the estimation of Lo and Ugo will be taken up.
According to theory, z/Lo in the surface layer is a universal function
of the Richardson number, Ri, defined by
. _8 - du,2 17
Ri =2 (v, - /@) an
Here, y is the lapse rate of temperature, and Yd the adiabatic lapse rate.
Observations at well instrumented, homogeneous sites (see, e.g. Paulson
1970) confirm the hypothesis, proposed originally independently by Pandolfo,

Dyer and Businger, that Ri and z/Lo are essentially equal to each other in

unstable air, so that we may put:
Lo = z/Ri (18)

In stable air, the Monin-Obukhov hypothesis is more controversial, but a

good relation (for Ri << .20) seems to be

21




o [5R1 1] (19)
(see Businger, et al., 1971).

The Richardson number appearing in (18) and (19) has usually been
determined directly from its definition (17) from observations of wind
and temperature at 18 m and 30 m; z in the equations is taken as the
geometric mean of these two heights or 23 m. Although this technique has
actually been used in this project for determining LO, it probably is not the
best technique because it involves the squares of measured wind shears which
have large observational uncertainties.

A better method for obtaining Ri involves measurement of the bulk

Richardson number. The bulk Richardson number is defined by:

B=g—7— (5 (20)

which can be determined with much greater percentage accuracy than Ri,
because u has a much smaller percentage error than du/dz.

Ri is connected with B through

. 21
Ri = B [u/ge—) (21)
Given ¢ and ¥ from (12) and (15) respectively, we have:
1n z/zO - 2
Ri = B ————Er————~— (22)
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For the surface layer, both y and ¢ are now quite well known (see
Chapter II), and therefore it is possible to construct a nomogram for Ri
as a function of B and z/zo. This nomogram is shown in Figure 6.

Figure 7 compares values of Ri from (17) with those computed from
Figure 6 for O'Neill, where winds are extremely accurate. The agreement
is excellent.

Figure 8 shows the same kind of comparison for Cape Kennedy from winds
and temperatures at 18 m and 30 m. The height z was taken as 23 m, the
geometric mean. The value of z  was obtained by plotting ln z - Y as function
of u from 18 m to 30 m and locating the intercept of the straight line through
the two points.

Figure 8 shows that a line of slope 45° fits the data as well as any
line, suggesting no systematic error. But the scatter is enormous, suggesting
large random errors in the "measured" Ri. That Ri-values are uncertain is
confirmed by the wind profiles described in Chapter II.

It is therefore concluded that Lo can be found from bulk Richardson
number and Figure 6 more accurately than by direct measurement. If lapse
rate is not available, we may use the Pasquill stability classes (Table 2) taken
from Slade (1968). Only rough estimates of wind and radiation conditions
are required to determine these classes. The classes can be combined with
roughness length to arrive at an estimate of Lo using Figure 9, which has
been taken from Golder (1972).

Finally, if radiation and wind at a low level are given, Lo can be
found from Figure 10, which, however, has been derived from Kennedy data

only and is not necessarily valid elsewhere.
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Figure 6a. Nomogram for Richardson number as function of
bulk Richardson number B and z/zo (stable).
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Table 2. Relation of Pasquill stability classes to weather conditions

A - Extremely unstable conditions D -~ Neutral conditions*
B - Moderately unstable conditions E - Slightly stable conditions
C - Slightly unstable conditions F ~ Moderately stable conditions

Nighttime conditions

Thin overcast

Surface Wind Daytime Insolation or > 4/8 < 3/8
speed, m/sec Strong Moderate Slight Cloudiness*¥* Cloudiness
<2 A A-B B
2 A-B B C E F
4 B B-C C D E
6 C C-D D D D
>6 C D D D D

*Applicable to heavy overcast, day or night.

**The degree of cloudiness is defined as that fraction of the sky above
the local apparent horizon which is covered by clouds.

Fortunately, Yss as determined from wind, roughness and stability is not
very sensitive to the exact value of LO, so that this quantity has to be known
only approximately, and either of the last simple techniques to estimate it
should be sufficient. The friction velocity is most sensitive to errors in

wind speed, and, to a somewhat smaller extent, to errors in the roughness length.
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The surface friction velocity is evaluated from the theory of the
low~level wind profile, equation (15), given the wind near the ground z° and

Lo. We write (15) in the form:

_ ku
*0 In z/zo - ¢ (z/LJ

u (23)
As before, we adopt Paulson's form for w(z/Lo) in unstable air (16). 1In

stable air, as before
Z Yy o522
V) =-57 (24)
o o

Table 3 summarizes the friction velocities computed from (23) and
(16) for all one-hour runs analyzed so far, along with other relevant
statistics for each run. It is almost certain that local friction velocities
estimated from (23) are more reliable than those that can be obtained from
large-scale variables, including geostrophic wind. It is therefore recommended
that, whenever possible, (23) be used for this purpose, given surface wind

reports from hourly sequences.
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IV. DETERMINATION OF PREDICTANDS FROM z s Uy > AND LO
(o]

4.1 Estimation of Mean Wind

Wind profiles were discussed in detail in Chapter II. Briefly, the
usual logarithmic expressions appear to be valid in neutral air up to the
top of the tower, 150 m; further, the corrections in unstable air developed
for the surface layer supply good fits at high levels as well. Some systematic
exceptions at Kennedy occurred, however, for example, with westerly winds, the
winds at 30 m and 60 m exceeded those expected from the simple profile theory.
As previously mentioned, the explanation for this apparent anomaly may perhaps
be found in the stretch of forest, about 200 m to 400 m west of the tower.

Once u, and LO have been determined by methods suggested in Chapters III

*o

or V, then (15) and (16) may be used to estimate the wind profile. However,
simpler procedures can sometimes be used. For example, a frequent practical
problem is that wind, and perhaps temperatures, or radiation, are given near the
surface. The wind at one or more higher levels must be estimated. This

problem can be handled by dividing (12) at a higher level (subscript 2) by (12)

at a low level (subscript 1). The result is

(24)

The roughness length is given, at Kennedy, from Figure 5. At other

locations, the roughness lengths are assumed known, at least approximately.
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Equation (16) or Table 1 gives { in unstable air, and in slightly stable air,
(Ri < .10). For more stable air, (24) is of doubtful value; the more stable
the air, the less winds near the surface are coupled with winds higher up,
so that winds at 100 m or so cannot be estimated from conditions close to the
ground.

Engineers often estimate high—level winds from power laws, which fit

profiles reasonably well:

u2 22 P
2 _ lz_} (25)

The best fit of such power laws to profiles is obtained if the exponent p

is computed from:

p = —-—L_ (26)
In z/zo -y

Here, z is the geometric mean height between zy and Zy. ¢ is the usual
normalized wind shear and is tabulated above in Table 1. A nomogram for p
as function of E/zo and E/Lo is Figure 11.

Usually, "random" errors in the high-level winds are larger than errors

produced by slight errors in z or L.

4.2 Estimation of Variances

According to Report 2 and Monin-Obukhov theory, the standard deviations
of the velocity components are well correlated with the friction velocity;
further, the ratio of standard deviations and friction velocity should be

dependent on z/Lo.
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Since friction velocities have been revised in accordance with the
revised roughness lengths, Figures 12 to 15 show new relationships between
the standard deviations and the friction velocities on the one hand, and be-
tween standard deviation-friction velocity ratios and z/L, on the other. The
best estimate for Gu/u* in neutral air is now 1.6, and that for Gv/u*, also 1.6.
These ratios are smaller than those found on the average (see Lumley and
Panofsky, 1964). However, they are nearly the same as at Brookhaven, which
is located, like Kennedy, in a generally flat countryside. It is likely that
these ratios are not universal, but depend also on a mesoscale roughness which
controls the low frequency portion of the spectrum of the horizontal velocity
components. If the mesoscale variations are pronounced, for example, the
ratio Gu/u* sometimes exceeds 3. The correlation coefficients between Ou and Ov
with u, are quite high, being 0.87 for o, and 0.45 for O+ This suggests that 0,0
and to a smaller extent, Oy» can be estimated accurately from uy, provided that
u, can be obtained without systematic error, at least at Kennedy, once u, is
well estimated.

In contrast to earlier results, Figures 13 and 15 show no systematic variation
of Gu/u* and Gv/u* with z/L. As to other locations, there are no constant
relations between these ratios and stability.

In spite of the argument that Ou/u* and Ov/u* really could be as low as the
observed ratios of 1.6, there is even better evidence that the true ratios should
be about 50% larger. The argument for this will be discussed more fully in
Section 4.3 1In that case, the ratios are more nearly equal to those recommended

by Lumley and Panofsky (1964). If this is correct, either the assumed roughness

lengths are too large or the measured standard deviations are too small. Since
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the roughness lengths depend critically on the vertical wind shears, this means
that the statistical fluctuations are too small for the wind shears. There is
no objective way to determine whether the wind shears are too large or the
fluctuations too small. We will make the hypothesis here that the wind shears
have no systematic errors, but that all measured fluctuation statistics are
about 2/3 of their true value, perhaps due to instrumental imperfections or
problems with the recorder. Hence, for estimations of cu and Gv’ we will assume
that Gu ~ 2.5 Uso and Uv ~ 2.2 Uy, 28 suggested by Lumley and Panofsky. Further,
these factors will be assumed to be relatively independent of stability. As

mentioned before, we recommend that u o be estimated from (23) as function of

*
z» Lo and wind at a low level.

Report 2 also showed a relation between the difference of high-level and
low-level standard deviations cu and the wind at 18 m, in the sense that the
variance decreased most rapidly in strongest winds; for example, there is no
change when the wind is 3 m/sec, and the variance decreases by 7 m2 sec“2 from
18 m to 150 m with a wind of 8 m/sec. This result has not been explained but
the relation is reproduced as Figures 16, and Figure 17 shows the analogous
relation for Gv.

Theoretically, one might expect the decrease to be largest in the most
stable air; in unstable air the increase of -z/L with height should diminish

or even reverse this tendency. Table 4 shows that fractional change of average

standard deviation with height (relative to unity at 18 m).

According to Table 4, the decrease of the longitudinal standard deviations
is indeed largest for the most stable air; further, in unstable air, the

decreases for longitudinal and lateral standard deviations are about the same;
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Table 4. Vertical variation of average standard deviation
of u and v for different stability groups

Height, m 18 30 60 90 120 150
Ri > -.1

g 1.00 1.01 .95 .83 .80 .77

o, 1.00 1.04 1.00 1.02 1.03 1.05

-0.20 < Ri < -.1

u 1.00 1.01 .92 .84 .81 .78

o& 1.00 1.01 .97 .86 .86 .86
Ri < =-2.0

u 1.00 .98 .94 .90 .87 .86

o, 1.00 1.04 .94 .90 .84 .83

however, in the near-neutral class, average lateral standard deivations
actually increase upwards, though not significantly. 1In fact, upward de-
creases are slightly more common in this category than increases. This
points up the tremendous variability of the change of these statistics with
height, so that the systematic changes shown in the table do not reflect
well the behavior in individual cases. All we can say with certainty is that
the systematic change of the standard deviations is generally small, and that
decreases exceed increases. Wind speed appears better related to the vertical
change than Richardson number (Figures 16 and 17). But, since the relatioms
of wind speed to changes of the 0's with height have not been explained it is
probably best at present that we assume for estimation purposes that no

significant vertical variation of the O's exists.
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4.3 Estimation of Spectra

Fichtl and McVehil (1970) have discussed spectra of lateral and
longitudional velocity components at Cape Kennedy in some detail. For many
applications to rocket problems, the inertial-subrange portion of the spectra
here. For horizontal wind
components, this range extends from wavelengths several times the height to
wavelengths of 1 cm or less. The exact range was discussed in detail in
Report 1.

The equation for the spectra in the inertial subrange is:

Sk = ae?/3 K373

(27)
Here, "a" represents universal constants, which are about 0.5 for longitudinal
components and 0.67 for lateral components, if the wave number k is measured
in radians per unit length. Hence, the problem of estimation of spectra in
the subrange reduces the problem of estimating the dissipation, €.

In general, the dissipation can be written in terms of the nondimensional

function, ¢E:

3
Ugo
€ = 0.4z % (28)
Panofsky, in Report 1, has suggested that, for practical purposes, at
30 m and above, vertical divergence of turbulent energy flux can be neglected,

so that (neglecting the pressure term in the energy budget and assuming

equilibrium)
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.= ¢ - 2/, (29)

Fichtl and McVehil (1970) have suggested that, at 18 m and perhaps below,
vertical flux divergence and buoyant energy reproduction cancel (see also

Panofsky, 1962) so that

. =9 (30)

The cancellation of divergence and buoyant production at low levels
has rycently been confirmed by Wyngaard and Coté-(1971), but (30) has not.
Wyngaard and Cote's conclusion is that the pressure term is important to
the turbulent energy budget in unstable air. Nevertheless, (29) and (30)
seem to explain well the ratio of energy dissipation estimates at different
heights quite satisfactorily, as seen in Report 1, where ¢ was taken as
- 18 2L )74,

The problem of estimating € at any level then reduces to estimating
it at a low level, taken here as 30 m (where it is, according to (28) and

(29))

3
Yxo 30 30

(31)

Figure 18 compares 3/5;5 determined from observed lateral and longitudinal
spectra with the corresponding estimates from (31), with Ugs taken from

Table 3. Apparently the magnitude of the "observed" values of 3 is only
about 2/3 of the "computed 3/€, on the average. The agreement is best for

weak winds at 30 m and poorest for strong winds. This would be expected if
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the discrepancy was due to errors in the dissipation estimated from the
spectra; the stronger the wind, the more these estimates depend on high
frequencies, which would be most strongly damped if there was undue friction
in the anemometer. The tentative assumption will then be made that the
"computed" values of € are better than "observed" values. This assumption
is consistent with the assumption in past sections that "measured'" standard
deviations are too low. In other words, (31), with U determined from (23)
and the roughness lengths of Figure 5 is assumed to result in the best estimates
of € at 30 m.

In Chapter VI, suggestions are made concerning the "best" procedure for
obtaining Uy from geostrophic winds. However, such estimates are likely to
be less accurate than those from (23), based on low-level winds, assumed rough-
ness lengths and L0 determined from radiation and wind, as described in
Chapter III.

There is at least one flaw in the preceding argument. If € values
estimated from the spectra measured at Kennedy are systematically too low,
the error should decrease with increasing heights, as high frequencies become
less important. Hence, observed ratios of dissipations at 120 m to those at
30 m may be too large. Equation (29) was based on this ratio and should be
re-examined with more reliable estimates of € from spectra.

Nevertheless, for the time being, it is still suggested that we can use

(29) to estimate £ above 30 m:

- 16 %_)—1/4 _ %
c 0 ol 30 m
=€
30 a- _@)—1/4 ) 30 z
L L
o o

51



4.4 Estimation of Cross Spectra in the Vertical

Cross spectra are usually characterized either by cospectra and

quadrature spectra, or by coherence, Co, and slope, S, defined by

Cosz(n) + Qz(n)

Co(n) = (32)
5152
and
- U Q) _
S 2mnlAz arctan Cos(n) (33)

where Q is the quadrature spectrum and Cos the cospectrum at frequency n.
Az is the height interval and u the mean speed in Az. In practice, slope
and coherence seem to have simpler properties than cospectrum and quadrature
spectrum. Therefore, the procedure recommended is to estimate coherence and
slope first, and then estimate co~ and quadrature spectra, or space-time
correlation function by cosine transform (equation 2.1, Report 2).

As was first suggested by Davenport (1961), coherence can be well

fitted by exponentials of the form:

aAf

Co(n) = e (34)

Here, Af is the nondimensional frequency, nAz/u and a is a ''decay constant'
which depends on Richardson number. Figures 19 and 20, reproduced from
Report 2, show the relationship between decay constant and Richardson number
at 23 m. The systematic difference between Kennedy and other sites is still

unexplained, but believed to be due to random errors in the Kennedy data.

52



40

¢ ® 1967 DATA
O 1968 DATA
30 -
- b L
o
-
z
hd
w
z
S KENNEDY
5. 20 . |
q
(8] 0
w
a
q
°
10 .
OTHER SITES | ,
2.0 3.0
‘Rizs
Figure 19. Decay constant for coherence of u as function of Ri at 23 m.
40 : T
® 1967 DATA
0 1968 DATA
30 4
[.Y] .
o
-
Z
b
cz> 20 .
S /KENNEDY
3
b} o
a
10 L 8 -
i i 1 L
0 (] 1.0 20 30
'Riza
Figure 20. Decay constant for coherence of v, as function of

53

Ri at 23 m.



Figures 21 and 22 reproduce the corresponding figures from Report 2
showing relationships between slopes and Richardson number; here the
agreement between Kennedy and other sites is good. Also, slopes for the
lateral components are about twice those of the longitudinal components.

The sliopes are relatively constant up to 100 m, but average about
50 percent less between 120 m and 150 m; for details, see Report 2.

Since the writing of Report 2, considerable work has been done on
decay constants for horizontal separations. The decay constants at right
angles to the wind are about the same as the vertical constants. The
longitudinal constants are much smaller and probably increase with increasing

relative turbulent intensity.
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V. RELATIONS BETWEEN LARGE SCALE PARAMETERS AND u, , L0
[}

5.1 Theory
It has been seen that the mean wind distribution in the surface layers,

together with the distributions of a number of statistics of the turbulent

flow, is determined by the parameters z,, u and LO. These quantities may

*0
be thought of as predictors of the mean wind and turbulence statistics, since
the relationships between them are now established. However, Ugo and Lo are
not satisfactory for this use, since their determination by ordinary methods
requires a knowledge of the predictands themselves. It is therefore required
to find appropriate bases for estimating the values of Uso and Lofrom larger
scale variables, such as can be derived from synoptic data or from numerically
calculated properties of the large scale flow.

The basis of such relationships has been laid in theoretical studies
of the planetary boundary layer by many authors. An equation relating the
geostrophic drag coefficient u*o/Vg to the surface Rossby number Vg/fzo was
first derived by Kazanski and Monin (1961) for neutral stratification, and
was later broadened to diabatic boundary layers by Monin and Zilitinkevich
(1967) using the semiempirical theory. Similar relationships have been
derived more recently by Gill (1967), Csanady (1967), Blackadar and Tennekes
(1967) and Blackadar (1969) using singular perturbation methods to match
the flow in the surface (constant stress) layer to that of the outer layer
which is dominated by the earth's rotation and buoyancy. The theoretical

justification of these latter methods has been discussed in detail by

Blackadar and Tennekes (1968).
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In this section we review briefly the theoretical justification and
the probable limitations of these relations as we now know them.

The flow within a neutral barotropic planetary boundary layer (PBL) is
completely determined by the quantities z,» Ugo? the Coriolis parameter, f,
and the height z. Because the surface boundary condition requires the
velocity to vanish at the lower surface, the flow close to the surface
is dominated by the surface roughness z s this condition can be achieved
only by scaling heights close to the surface by z, On the other hand,
throughout the principal portion of the PBL the appropriate length scale
for the wind distribution must be u*o/f. This fact follows directly from
the equations of motion and the necessity for the geostrophic departure
to scale as Uso (Blackadar and Tennekes, 1968). Accordingly, the principal

dimensionless parameter is the ratio of the two length scales, u*o/fz ’

o
which may be called the drag Rossby number. In addition to this number
there exists the independent dimensionless ratio zf/u*o, and it can be
shown from Buckingham's theorem that all other dimensionless characteristics
of the neutral PBL are functions of these two dimensionless ratios.
Normally, the drag Rossby number is very large, typically lO4 to 106,
and it is a reasonable hypothesis to treat the case when this parameter
approaches infinity. 1In this case, the equations of motion demand that
the scale velocity deficits (u - ug)/u*o and (v - vg)/u*0 be universal
functions of zf/u*o only as long as z >> z . It can further be shown that
a necessary and sufficient conditijon for satisfying the boundary conditions

is that the flow near the surface be logarithmic. Also, the logarithmic

solution in the surface layers is compatible with the universal function of
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the outer layer only if the Kazanski-Monin relationships are satisfied:

u 1 Ugo
o, kR E T Al (35)
o
and
v
B
;_8_ = - X (36)

where A and B are constants the values of which must be determined empirically
or from more complete models of the flow. In these equations, the x-direction
is parallel to the surface stress. The equations may be considered as
implicit relations for calculating the values of Uy and the surface wind-
drift angle o when the direction and magnitude of the geostrophic wind are
known.

Model studies of the flow in the PBL make it possible to relate the
two constants A and B to a single disposable constant (Blackadar and Tennekes,
1968). When this constant is chosen so as to achieve the best fit of
empirical data, it is found that A and B are about 0.0 and 4.5, respectively.
The resulting wind distribution is rather similar to the classical Ekman
spiral with a gradient wind level at a height zf/u*0 equal to about 0.25.

The argument for the universality of the functions (u - ug)/u*o and
(v - Vg)/u*o, on which the neutral equations (35) and (36) depend, rests
on the assumption that there are no relevant parameters other than Uyg s £,

Z,s and z. Such ideal conditions seldom, if ever, prevail. We must, in
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practice, be concerned with such matters as non-steady states, horizontal
temperature gradients (baroclinicity), and diabatic vertical temperature
gradients.

The effects of baroclinicity on the surface wind direction appear to
be rather conspicuous, but as far as they affect Uso they are minor. This
conclusion is based on the results of two models studied by Blackadar
(1965a, b). The effect of vertical temperature gradients will be con-
sidered in two parts: (a) the effects of the presence of an inversion at
some level h that effectively prevents the downward flux of momentum and
heat from above, and (b) the effect of a heat source at the surface that
results in the generation of convection by buoyant processes within the PBL.

It frequently happens that a stable layer above the surface is trans-
formed by mechanical mixing into an adiabatic layer surmounted by an inversion,
which must be considered to be impervious to the flux of momentum. If
the inversion is high in comparision, say, to .25 u*o/f, its effect on the flow,

and therefore on u

%o is negligible, for the momentum flux at these levels

would not be significantly changed by the presence of the inversion. We
expect, therefore that h will be a significant parameter only when it is

small compared to u*/f. We shall study this case in detail. This conclusion
is supported by Deardorff, who found by numerical simulation, values for A
and B of 1.3 and 3.0 when hf/u* = 0.5. These values are reasonably consistent
with those found with other models where h is infinitely large.

Steady-state flow in the PBL is governed by the equations

d Tx
f(v—vg) + 3 (5—) =0 37

a b
- f(u—ug) +a;(p ) =0
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subject to the boundary conditions at the surface
= 0: = 0; - 2, -
u(zy) = 05 v(z ) = 05 1,(2) = pu, 3 T, (z;) =0 (38)

and to the condition that at height h the stress vanishes.
The presence of the variable h requires the definition of three
independent dimensionless products, and we choose for these the following

set

Uy

o ? E—a and Zh = G"— (39)

.l.

As in the earlier theories, we assume that the flow is independent of z
except in the immediate vicinity of the surface. Accordingly, the

equations of motion suggest

u - u R
(——gu*0 ) =G (Z, Zh)
(40)
v -V
675;;-&) =3 (2, zZ,)

while in the surface layer, the surface boundary condition requires

S = £ (2/z)) = £, (ZR) (41)

Yo
and, because of the chosen direction of the x-axis

T =0 (42)
u
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Since the geostrophic wind is considered to be independent of height, we

have

}N:

u*o

v
- S

& R,z
g BaZ) =

(R,Zg) (43)

We now require that as R approaches infinity, the solutions for the

two layers match each other in a layer the height of which is small compared

to u*olf and h.

fl(ZR)

Accordingly, we have, for such a layer,

A ~

ug(R,Zh) + u(z,2) (44)

We may now proceed to differentiate this equation successively with

respect to each of the three arguments Zh, Z and R,
du 8;
3z, + oz, ~ 0 43)
RE,'(ZR) = 2 (2, 2,) = £,(2) (46)
1 9Z *“h 2
E_&
' - -
Zf)"(ZR) = 7= (R,Z) = £5(R) (&47)

where the prime

argument. That

denotes total differentiation with respect to the

f2 is a function of Z only follows from the fact that the

left side of (46) is independent of Z, while the right side is independent

of R; in a similar way, f3 must be a function only of R. By similar reasoning,

one can obtain from (46) and (47) together:
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[=

Zfz(Z) = Rf3(R) ol (48)

where k is an undetermined constant that can be identified with

the von Karman constant. With these substitutions, there result the

solutions
g _1
u, =% [InR - A (zh)] (49)
o
and
LS l-ln z/z
u, k o
o

By entirely analogous reasoning, one obtains

v B(Z.)
& ____h (50)
u*o k

This reasoning shows that the Kazanski-Monin relations are quite
generally valid provided the constants A and B are regarded as functions of
hf/u*o. These functions are not known at the present time. It is entirely
possible that some of the scatter in the diagrams for A and B that Clarke has
published is attributable to variations in h, which is generally not

observed. The scatter is most serious in the determined values of B.
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The occurrence of surface heating of the PBL introduces still one more

variable, which can be selected to be the Monin-length

c_ pT u*o3
L =--2._ "2 (51

o kg Ho

where Ho is the surface heat flux. For purposes of nondimensionalizing it,
it is immaterial whether we adopt ku*o/fLo, as is generally done, or h/Lo’ as
Deardorff (1972) has advocated, for either one can be derived from the

other with the use of Zh. To be consistent with general practice, we choose

g = ku*olfL0 (52)

which may be regarded as a kind of bulk planetary Richardson number.

The geostrophic defects now become functions of three independent

variables
u-u
—8 -4 (@2, z, 0) (53)
u, g
o
vV -v
Tg'=‘7 @, z,, 0)
o
and
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£ -3
U i (R, Zh’ o)
(54)
’g
u, = v (R, Zh’ a)
o

From this point the reasoning proceeds in an entirely analogous way to
the preceding discussion. The result is that the Kazanski-Monin constants
must be regarded as functions of both kh/u*o and 0 to be determined from
empirical data.

The behavior of A and B accompanying variations of O have been studied
by Clarke (1970). The observed values of A do not scatter appreciably, nor
is there any significant variation from the mean value of about 5 for all
values of ¢ in the range of -100 to -1000. Thus, under most typical
unstable conditions, A may be regarded as being well known, even though the
values of its arguments may be uncertain. It must be concluded that whatever
the values of h may have been in Clarke's data, they had very little effect on
the value of A. Since Uso is determined primarily by A and is insensitive to
B, it may be inferred that the presence of inversions that limit the height
of the PBL do not normally have to be taken into account in the determination
of Uy
Under stable conditions the scatter in A is much greater. Much of
this scatter can be attributed to larger uncertainties in the determination

of u in these cases, as well as to the effects of accelerations and other

*0

disturbances. The possibility exists that the scatter might be reduced by

taking h into account. More study of this problem is desirable.

*Calculations based on a two-layer model bounded above by an inversion show
that the inversion height has only a negligible effect on A and B as long
as it is situated above a height of .15 uy /f.
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The observed scatter in B(0) is enormous, and existing observations give
little useful indication of the true form of this function. It is tempting
to ascribe this scatter to the failure to stratify the data according to h.
Since, however, B is mostly affected by the surface geostrophic drift angle
0, is is most likely that the major portion of the scatter reflects the
difficulty of measuring it and the sensitivity of this angle to local

disturbances. Fortunately, u is insensitive to the value of B(0, Zh) and

*
[o]

so, the uncertainty of B is of no great concern for the prediction of u, .
o

5.2 Practical Methods for Determining u, and Lb from Large-Scale Variables
o

As we have seen, the surface drag coefficient c_ = u*/Vg, the surface

D

Rossby number and the stability parameter © are connected by:

12 5 1/2
In(Ro) = A(0) - 1n 4 + f——i - B7(@)] (55)
c
D
Here A{(0) and B(0) are universal functions recently measured by Clarke.

Any effect of finite inversion height will be neglected. Here, 0 is given by:

ku

*q
0= & (56)

o

Empirically, A(c) and B(0) are well generated by
A(o) = 4.5 for 0 < - 50
-4 2 -2
A(o) = - 14.410 " ¢~ - 14.410 " o + 0.9 for 0 > - 50
B(o) = 1.0 for 0 < - 175
4 2 -2

B(o) = 6.2+10 " o° + 9.310 " 0o + 4.5 for 0 > - 75
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Since the geostrophic wind speed and the surface Rossby number can be assumed
known, (55) will permit the estimation of the surface stress, provided O is

given. In practice, it is a nuisance to solve (55) numerically for Cpe

Therefore, Figure 23 gives isopleths of ¢ as function of ¢, and Ro which allows

D

a graphical determination of Cps given O, Vg’ and Ro. Also, once O is
known, Lo can be found from the definition of o by (56). Before we can use
Figure 23, we must first design methods for determining o.

As a first approximation, we may assume that 0 depends only on Vg and
insolation, I.

Figure 24 shows how 0 is related to these two variables. This figure
is based on measurements at 0'Neill (see Lettau and Davisdon, 1957), and Cape
Kennedy. Of course, the graph can be used only during day time and between

latitudes 25° and 45°. On windy nights, 0 is almost zero and turbulent

processes during lightwind nights play no important role and can be neglected.

Improvements may be possible, when measurements of the long-wave
radiation of the earth's surface, for example from satellites, are available.
Then, an estimate of the radiation balance during day and night-time hours
can be found.

Where measurements of the incoming radiation are not available, it can
be computed to a certain approximation (dependent on the variability of
cloudiness) from known formulas from the date, the time of the day, the
latitude and the cloudiness.

Some computations have shown that a quasi-empirical formula by
Albrecht (see Moller, 1957) gives better agreement with measurements than

the theoretical formula
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I = IO cos ¢ aSect (57)

with Io = solar constant
L = solar zenith angle
a = transmissivity.

Apparently, the difficulties lie in calculating the absorption of
radiation. This absorption changes with the relative air mass and is
dependent on wavelength. It is therefore a complicated function of the
time in the day and location.

The mentioned formula by Albrecht reads

I=(I -TI)cost(1-c M) (1 +1.19 A c /igo—o) (58)

Iw = part which is absorbed by water vapor

M = absolute air mass (secant of zenith angle)

P = pressure in mb

A = albedo of the earth surface

¢ = backradiation constant (0.19 at Cape Kennedy)

For Cape Kennedy the simplification
I =1585 cos ¢ (1 - 0.19 /M) (59)

gives values which for the present purpose are rather accurate. The very
weak function of pressure (1 + 1.19+c vp/1000) has been contracted with

(I -1I) into one constant.
) w
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For March 3, 1968, for example, the hourly mean values in Table 5
have been read off the radiation registrations from Cape Kennedy and have

been compared with computed values from equation (59).

Table 5. Hourly Mean Values of Radiation at Cape Kennedy

Time Measured Radiation Calculated Radiation . I comp
2 2 ratle T reas
LST m cal/cm” min m cal/cm” min
1200 1080 1100 1.02
1300 1090 1068 0.98
1400 1020 1012 0.99
1500 850 852 1.00
1600 620 626 1.01
1700 360 358 0.99
1800 95 98 1.03
1900 0 0 -—

So far, this equation by Albrecht gives reliable values for the incoming
radiation only when no clouds are present. If clouds are present, a correction

factor has to be introduced.
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Another possibility involving radiation measurements from satellites
exists through use of the temperature 80 of the earth's surface. Together
with the temperature eg at the top of the boundary layer, the temperature
difference A§ = Gg - 60 can be used, instead of insolation, as an external

arameter.

paranm

Equation (56) then can be written in the form

T

~gLo 1 *
=8 - 16 (60)
g D
i - -1 . ; .
Since both py and T*/Ae (T, = X p Cp 0, scaling temperature) are functions

of R0 and 0, 0 can be expressed as

c=f (S, RO) (61)

Here S = %-%g— is a stability parameter given by external variables. By use
g

of empirical data for the dependency of c, and T,/A6 upon stability, the

D
relationship given in equation (61) has been computed. The result is given
in Figure 25. At high Rossby numbers and not too large values of S, O is

nearly independent upon Ro and varies only with S. Thus this second method
also gives some justification for the assumption made for the construction

of Figure 24. TFrom the theoretical standpoint, the second method has some

shortcomings. The known relationship for A8/T, is most likely not correct
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for Rossby numbers smaller than 105. The fact that this ratio changes sign
for smaller Rossby numbers is the reason for intersecting ¢ lines at low S

and R0 values. Intuitively, a theoretical relationship AB/T* should approach

asymptotically the lines S = 0 at small Ro numbers for all G values. The

derivation of such a relationship must remain the task for future work.
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Figure 25. Stability parameter S as function of 0 and surface Rossby number.
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VI. DETERMINATION OF PREDICTANDS FROM LARGE~SCALE VARIABLES

6.1 Method

Aot Elhio e e T oo e 1
€5L ln€ cComputatlional scheme 1ln wiicn

some of the statistics observed at the Kennedy tower are determined from
"external' bulk variables. Equation (55) of Chapter V which gives the

geostrophic drag coefficient ¢ = u,/V_ as a function of Rossby number
* g

D
Ro, and the planetary Richardson number ¢, was solved by one of the methods
suggested by Fielder (Chapter V).

First, Figure 24 is used to determine 0 from I and Vg; then, ¢p is

determined from Figure 23. Given c is known; LO can then be found

D’ Yo
from Uyo and 0, given the definition of O©.
Values of geopotential height on the 850 mb surface prepared by the
National Meteorological Center were obtained from the Nationl Center for
Atmospheric Research archives in Boulder, Colorado. These 850 mb heights
were available every 12 hours at 00 GMT and 12 GMT, on the regular NMC
Northern Hemisphere grid which has a grid interval of 381 km at 60°N

latitude.

Smoothed estimates of the geostrophic wind were obtained by

2 (62)

-8 = = \2 - _z
Vo = FAx /(ZN zg)” + (2 = zp)

in which Ax is the grid interval at Florida (301 km). ;N is the averaged

value of the height at the two grid points north of Florida and ;S’ ;W’
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ZE and averaged values of height at the two grid points south, west and
east of Florida. These geostrophic wind values were linearly interpolated
to the tower site.

Insolation measurements, required for the determination of o0, were
available at Cape Kennedy. However, inspection of these suggested that
many of these were unrealistically low. Therefore, insolation was
computed by the method discussed in the last chapter. The insolation was
corrected for cloudiness by multiplying it by (1 - .03 C) where C is the
cloudiness in tenths.

Figure 26 compares computed and observed insolations. Clearly, in
many cases the observed values are unrealistic. This is further brought out
by the fact that o-values, estimated from these measurements, are often of the
wrong sign. Therefore, in this test, ¢ was determined from Figure 24 as

functions of computed insolation and measured geostrophic winds. Then,

friction velocities were determined from Figure 23,

6.2 Test Results

The mean value of the friction velocities observed locally was 0.76
m/sec, about 77% larger than that calculated from Vg’ 0.43 m/sec. The
scattergram depicted in Figure 27 illustrates the relationship between the
two sets of Uy - Some positive correlation is evident. The large amount of
scatter is probably due to the uncertainty in the geostrophic wind calcula-
tions. The systematic difference could easily be due to the fact that an

average geostrophic wind in a (300 km)2 area is systematically smaller than the
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local geostrophic wind over Cape Kennedy, particularly, if the average is
small. Note that the discrepancy disappears for large speeds, where one
might expect smaller systematic differences between the two kinds of wind.

Another difficulty arises from the uncertainty in the roughness lengths
already discussed in earlier chapters. Both sets of L compared in
Figure 26 are based on the same zo's, namely those derived in Chapter II. As
we have seen, these roughness lengths are too large to account for the
statistical fluctuations of the winds at Cape Kennedy.

Now it turns out that the u*o's estimated from V18 are much more sensitive
to the assumed zo's than those based on geostrophic winds. Therefore the
question was raised what values of z, would eliminate the systematic
differences between the two sets of u,. These turned out to be two orders
of magnitude less than the observed zo's, and therefore are quite unrealistic.
It is concluded that it is impossible to ascribe the systematic differences
between abscissa and ordinate in Figure 27 to incorrect roughness lengths;
as suggested above, the explanation can be found more probably in the
significantly underestimation of local geostrophic winds.

We shall assume that the u*o's obtained from the winds at 18 m are
correct. Hence, the best estimate of Uy given geostrophic winds, would

be based on the line of regression fitting Figure 27.

= . V,oO 63)
Ui est 0.51+062u*0(g ) (63)

These estimates should then form the basis for obtaining wind

profiles eq. (15) and € (eq. (28)) and standard deviations. Test of this

75



suggestion should be made at other locations since there is no guarantee
that eq. (63) is generally valid.

Figure 28 is a plot of Yo (Vg’ g) calculated from Vg as abscissa and the
standard deviation of the longitudional fluctuation O, @S ordinate. The
average value of Ou/u*o (Vg’ 0) which agrees quite well with observations made
at other tower sites (see Lumley and Panofsky, 1964). Again, most of the
scatter is probably due to the uncertainty in the geostrophic wind observa-
tions. The large scatter in Figure 28 suggests that the best agreement with
observed standard deviations at Kennedy is obtained by fitting a line of

regression to Figure 27:
cu = 0.80 + 0.77 Yo (Vg, g) (64)
Similarly, for the lateral component, at 18 m

0, = 0.92 + 0.37 u,  (V , 0) (65)

But, as we have suggested, there are strong indications that the observed
quantities are too small. It is proposed that a better procedure for
estimating 9, and o, from geostrophic winds, roughness lengths and
stability information is to use an equation like (63) to estimate Ugo and
then multiply by 2.5 and 2.2, respectively, to obtain a, and O,° This
technique will be tested on observations to be made at Risd, Denmark, on

the 125 m tower.
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Still, all estimates based on geostrophic winds are certain to have
large random errors even if the systematic errors can be eliminated, for the
correlation coefficient between observed standard deviations and Uso computed
from geostrophic wind is only about 0.44 for the u-component and 0.24 for the
v-component. As we have seen in Chapter IV, correlation coefficients are
about twice as large between standard deviations and u*o's obtained from
local wind. Hence, standard deviations should be estimated from local

rather than geostrophic wind if at all possible.
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VII. SUMMARY OF PRACTICAL METHODS FOR ESTIMATION

OF LOW-LEVEL WIND STATISTICS

7.1 Roughness Length, Friction Velocity and Lo When Large-Scale

Information Only Is Available

a. Daytime. When there is only large-scale information, local
statistics can be estimated from the three basic quantitites: geostrophic
wind speed, insolation and roughness length.

The roughness lengths need not be extremely accurate and can be

estimated from the local terrain according to the following table:

Table 6. Roughness lengths for various terrain types, in cm.

Ocean or ice 0.01
Smooth grass 1
Rough grass 5
Farm land, smooth 10
Farm land, rough 50
Forest, cities 200

Insolation with clear sky can be determined from the usual astronomical

formulae, or, if Cape Kennedy is typical, from:

I =1.585 cos £ (1 - 0.19 vsec T)
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Here, I is the insolation in ly/min and ¢ is the zenith distance of the sun,
which can be computed from hour angle t, declination of the sun § and

latitude ¢ by

cos § = cos t cos § cos ¢ + sin 6 sin ¢

In cloudy skies, this estimate has to be multiplied by (1 - .01 aC)
where C is the cloudiness in tenths and a depends on the type of cloud.
We have used a = 3, though the value should be considerably larger (perhaps
7) with low clouds.

Given I and the geostrophic wind, Vg’ the planetary Richardson
number 0 is obtained from Figure 24. Hence, the surface stress is found
from Figure 23, given 0 and the geostophic wind. If the Kennedy results
are representative, a better estimate of friction velocity is finally found
from

u, = 0.51 + 0.62 u*o(Vg, o)

*0
where u*O(Vg, 0) is the friction velocity obtained from ¢ and Vg'

Next the Pasquill class is determined from Table 2. For this table,
we need a rough estimate of wind speed. This is given sufficiently
accurately by the logarithmic wind law applied at 10 m:

u
*05 10 m
K 1n

u =
o}
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Radiation is taken to be weak if less than 0.5 ly/min, medium if between
0.5 and 1.0 ly/min, and strong if greater than 1.0 ly/min.

Finally, Figure 9 gives an estimate of Lo’ from Pasquill class and
roughness length. We now have Uso? zo, and L0 and can proceed to Section 7.3
of this chapter.

b. Night. At night, large-scale variables are not likely to yield
good estimate of L0 and friction velocity, unless winds are too strong
and stratification near neutral. The following procedure is recommended,
but has not been tested. First, obtain roughness length as in (a). Then,
determine a first approximation of surface friction velocity from Figure 23,
assuming 0 = 0. This approximation will be good in strong winds, but too
large in weak-wind cases with strong inversions. 1In any case, use the
logarithmic law applied at 10 m to obtain a rough wind speed. Use this
to determine Pasquill class from Table 2. Figure 9 gives the first estimate
of Lo’ as function of roughness length and Pasquill class.

Given L0 and Uy,» We can now estimate the planetary Rossby number from

its definition:

0.4 Ugs

CTTL
(o)

With this and geostrophic wind, we enter Figure 23 and obtain a second
estimate of surface friction velocity. This procedure can then be iterated
until it converges. It is expected that it will be fairly reliable under
near-neutral conditions, but not in very stable air. But in the latter

case, the winds are likely to be too weak to be of practical consequence.
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Again, a better estimate of Uy, can be found from
Ug, = 0.51 + 0.62 u*o(Vg’ o)

if the Kennedy results are typical. We then proceed to Section 7.3.

7.2 PFriction Velocity and Lb from Low-Level Data

It is expected that better estimates of surface friction velocity and
L, can be obtained when a low-level wind is measured (e.g., given from hourly
sequences) than if geostrophic winds have to be used. First, roughness
length is estimated as before. Next, the Pasquill class is found from
Table 2. Pasquill class and roughness length yield Lo according to Figure 9.
The surface friction velocity can now be found from the equation for

the wind profile:

_ 0.4 u
Yo ~ 1In z/zo -y (Z/Lo)

where Y is tabulated in Table 1. It is recommended that the height z be
taken as 10 m, the height recommended for synoptic wind observations. This

method has not been tested.

7.3 Estimation of Various Statistics from Zs L, and Yso
a. Wind Profile. The wind profile up to 150 m or so is well

described by
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u=25u, [la &) -y &)
o o

where P is given in Table 1.

b. Variance. At this point, it is recommended that, at all levels,

up to 150 m

0, = 2.5 L
and

Ov = 2.2 Uso

These equations are not so much based on Kennedy results, but on average
results at various locations. Correction for height or stability appears
premature, since no generally valid behavior has been documented.

c. Spectra at high frequencies. At high frequencies (n > u/z), the
inertial-subrange formulae appear valid:

S(n) = ¢ 62/3 u2/3 n_S/3

Here, € is the dissipation of turbulence into heat and the constant, c,

is .14 for the u-component and .18 for the v-component, n is the frequency.
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At 30 m and above, € is estimated by:

2.5 U*03 "_114 z
€ = —)— [ ~ 16 z/Lo) - E;J
and, below, 30 m, by
3
2.5 u,
= 19 - -1/4
£ > [1 - 16 z/Lo)

d. Coherence. Coherence in the vertical is given by:

coh(n) = e_K ndz/u
where Az is the height difference between.the two levels considered. K
is a decay constant which depends on z/L0 as shown in Figures 19 and 20.

The "slope" S, defined by

S arc tan (Q/C)

T 2T nhz

(Q, quadrature spectrum; C, cospectrum) is about 1 for longitudional and

2 for lateral velocity components below 100 m and half as large between 100 m

and 150 m.

Tests of all these procedures at locations away from Cape Kennedy are

urgently needed to test the generality of these methods.

84




REFERENCES

Blackadar, A. K., 1962: The vertical distribution of wind and turbulent
exchange in a neutral atmosphere. J. Geophys. Res., 67, 3095-3102.

Blackadar, A. K., 1965a: A single-layer theory of the vertical distribution
of wind in a baroclinic neutral atmopsheric boundary layer. Pp. 1-22
in Final Report Contract AF(604)~6641. The Pennsylvania State University,
(AFCRL-65-531), 140 pp.

Blackadar, A. K., 1965b: A simplified two-layer model of the baroclinic
neutral atmospheric boundary layer. Pp. 49-65 in Flux of Heat and
Momentum in the Planetary Boundary Layer of the Atmosphere. Final
Report, Contract AF(604)-6641, The Pennsylvania State University,
140 pp.

Blackadar, A. K., and H. A. Panofsky, 1969: Flow similarity in diabatic boundary
layers. Pp. 47-56 in Wind Profiles, Spectra, and Cross-Spectra over
Homogeneous Terrain. Final Report, Contract DA-28-043-AMC-01388(E),

The Pennsylvania State University, 71 pp.

Blackadar, A. K. and H. Tennekes, 1967: External parameters of the wind flow
in the barotropic planetary boundary layer of the atmopshere. App. IV
(9 pp.) of Global Atmospheric Research Programme, Report of the Stockholm
Study Conference; ICSU-IUGG Comm. on Atm. Sci. and the World Meteor. Org.

Blackadar, A. K. and H. Tennekes, 1968: Asymptotic similarity in neutral
barotropic planetary boundary layers. J. Atmos. Sci., 25, 1015-1020.

Businger, J. A., J. C. Wyngaard, Y. Izumi and E. F. Bradley, 1971: Flux
profile relationships in the atmospheric surface layer. J. Atmos. Sci.,
28, 181-1889.

Clarke, R. H., 1970: Observational studies in the atmospheric boundary layer.
Quart. J. Roy. Meteor. Soc., 96, 91-114.

Csanady, G. T., 1967: On the resistance law of a turbulent Ekman layer.
J. Atmos. Sci., 24, 467-471.

Davenport, A. G., 1961: The spectrum of horizontal gustiness near the
ground in high winds. Quart. J. Roy. Met. Soc., 194-211.

Deardorff, J. W., 1972: Numerical investigation of neutral and unstable
planetary boundary layers. J. Atm. Sci., 29, 91-115.

Elliott, W. P., 1958: The growth of the atmospheric internal boundary layer.
Trans. Amer. Geophys. Un., 39, 1048-1054.

85



REFERENCES (Continued)

Fichtl, G. H. and G. E. McVehil, 1970: Longitudinal and lateral spectra
of turbulence in the atmospheric boundary layer at the Kennedy Space
Center. J. Appl. Meteor., 9, 51-63.

Gill, M. E., 1967: The turbulent Ekman layer. Dept. Appl. Math. and Theor.
Phys., University of Cambridge, England (unpublished manuscript).

Golder, D., 1972: Relations among stability parameters in the surface
laye Bo

bl
ayer. und. Layer Meteor. 3, 47-58.

Kazanski, A. B. and A. S. Monin, 1961: On the dynamical interaction between
the atmopshere and the earth's surface. Bulletin Acad. Sci., U.S.S.R.,
Ser. Geophys., No. 5, 786-788.

Lettau, H. and B. Davidson, ed., 1957: Exploring the Atmosphere's First
Mile. Vol. I, Instrumentation and Data Evaluation; Vol. II, Site
Description and Data Tabulation; Pergamon, 578 + xiv pp.

Lumley, J. L. and H. A. Panofsky, 1964: The Structure of Atmospheric
Turbulence. John Wiley, N. Y., 239 + xi pp.

Moller, F., 1957: Strahlung in der unteren Atmosphare. Handbuch der Physik
Vol. 48, 155-253, Springer Verlag, Berlin.

Monin, A. S. and S. S. Zilitinkevich, 1967: Planetary boundary layer and
large-scale atmospheric dynamics. Appendix V (37 pp.) of Global
Atmospheric Research Programme, Report of the Stockholm Study
Conference; ICSU-IUGG Committee on Atmospheric Sciences-WMO.

Panofsky, H. A., 1962: The budget of turbulent energy in the lowest 100
meters. J. Geophys. Res., 67, 3161-3165.

Panofsky, H. A., 1963: Determination of stress from wind and temperature
measurements. Quart. J. Roy. Met. Soc., 89, 85-94.

Panofsky, H. A., and E. L. Petersen, 1972: Wind profiles and change of
terrain roughness at Risg. Quart. J. Roy. Met. Soc., 98, 845-854.

Paulson, C. A., 1970: The mathematical representation of wind speed and
temperature profiles in the unstable atmospheric surface layer.
J. Appl. Met., 9, 857-861.

Slade, D. H., ed., 1968: Meteorology and Atomic Energy. U. S. Atomic
Energy Commission, 445 + x pp.

Thuillier, R. H. and V. O. Lappe, 1964: Wind and temperature profile
characteristics from observations on a 1400 ft. tower. J. Appl. Met.,
3, 299-306.

Wyngaard, J. C. and O. R. Coté, 1971: The budgets of turbulent energy and
temperature variance in the atmopsheric surface layer. J. Atmos. Sci.,

28, 190-201.

86 NASA-Langley, 1974




