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TECIINICA L hlEhlORANDUM X-64858 

CHARGED PARTICLE RADIATION ENVIRONMENT 
FOR THE LST 

The nominal orbit  €or the Large Space Telescope (ZST) is a t  a n  inclina- 
tion of 28.8 deg and an  altitude of 330 nautical miles (611 km) . The lifetime 
of the LST is expected to be about 10 years .  F o r  this orbi t  and mission life- 
tiine, any radiation-sensitive equipment onboard will be subjected to a substan- 
t ia l  f lux of high energy charged particles and charged particle induced secondary 
particles. Radiation hardening during the design of such equipment and careful 
placement to take advantage of shielding from spacecraft  s t ructure  during 
spacecraft  design c3n reduce or eliminate many radiation damage problems. 
This repor t  defines the important components of the radiation environment 
and gives preliminary est imates  of dose r a t e s  to be expected on the LST. This 
infarmation will bc useful in pointing up problem areas  for more detailed 
radiation analysis later.  

I 
I 

There a r e  four possible sources  of damaging radiation for  the IST: . 
geomagnetically trapped electrons and protons. Solar event protons, galactic 

Because of the high geomagnetic cutoff a t  30 deg latitude (4  BeV for  protons), 
so la r  f lare  pxotons should not be important. The cosmic-ray dose r a t e  will 
a lso be ;educed by the geomagnetic field. According to Burrel l  and Wright [l], 
the does rate due to  cosmic r a y s  for  the nominal orbit should be about 7 . 0  
millirads/day ( a  rad is the deposition of 100 e r g s  of energy per g ram of 
material  receiving the dose).  Hopefully, any opboard source will be smal l  
and well shielded. Thus, the major source of radiation is the Van Allen belt, 
with a minor contribution f rom cosmic rays. 

cosmic-ray ?>rticles, and onboard radiation sources  (if there  a r e  any). I 

I 
! I .. 

Figures  1 and 2 show the average trapped electron and proton flwes 
differential on energy for the proposed LST orbit. The fluxes were  obtained by 
using J a m e s  Vette's model environment [21 in a program 131 that averages the 
flux along the orbital  trajectory for several  orbits. There is an uncertainty 
factor of four in the electron environment and two in the proton environment. 

i 
a: 

Also shown in Figure 2 a r e  the proton fluxes a t  the center  of an aluminum 
spherical  shell shield of various thicknesses. The flux is assumed to be iso- 
tropic, an assumption which is good when the dose is to be averaged over  a 
long mission. The u s e  of 8 spherical  shell  shield is a siinplifying assumption 
that allows a better understanding of shielding effectiveness. If problem a r e a s  

........... -_ ....... .___ .... ..._I ............... 
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Figure 1. Average trapped electron flux differential with respect to 
energy for the LST orbit of 28.8 deg inclination and 330 nautical 

mi les  (611 km) altitude. 
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PRIMARY PROTON - DIFFERENTIAL 
ENERGY SPECTRUM BEHIND 
VARIOUS THICKNESSES OF ALUMINUM 

330 n.mi., 28.@ CIRCULAR ORBIT 
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Figure 2. Average trapped proton flux differential with respect to anergy 
a t  the center of a spherical aluminum shell of the 

g i p n  shield thicknesses for the IST orbit. 1 r :  
rP 3 
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a r e  found la ter ,  a mathematical model of the LST geometry will be construcied 
and doses calculated using the shield thicknesses and mater ia ls  specified by 
the model. The unit z r a m s  per  centimeter squared for  shield thickness i s  
typical in charged particle shielding work because l i f ferent  materials have 
approximately the s a m e  shielding effectiveiless p e r  unit length in these units. 
That is, 1.0 g/cm2 of a i r  is about a s  effective in stopping protons a s  1.0 g/cm2 
of aluminum. The problem of ch?asity variation between samples  of mater ia l  
with the same  chemical composition is also avoided. 

Figure 3 shcws the dose r a t e s  in millirads/day due to protons and their  
secondaries i41, electrons 151, and electron-induced bremsstrahlung [51. 
The same  values a r e  tabulated in Table 1. The proton dose ra te  is, again, for 
a sphcrical  shield centered on an aluminum receiver.  The geometry for the 
elcctron and bremsstrahlung dose ra tes  i s  different. In  these calculations, 
the electrons a r e  assumed to be isotropically ir'cident on an  aluminum infinite 
plane shield r a t h e r  than a sphere. The differences in dose r a t e s  for  the two 
geometries a r e  insignificant when compared to  environmental uncertainties. 
The curves show that the proton component dominates the physical dose ra te  
for  shield thicknesses above 1.0 g/cm2. F o r  the exter ior  and very thinly 
shielded portions of the spacecraft ,  the electron Component of dose ra te  is 
most important. The dose r a t e  due to bremsstrahlung is about a factor of 
400 below the proton dose r a t e  for a given shield thickness and is less than the 
cosmic-ray dose r a t e  for shield thicknesses grea te r  than 1.0 g/cmZ. 

F e a r s  have been expressed that cer ta in  components would be excep- 
tionally sensitive to damage by bremsstrahlung o r  that bremsstrahlung would 
introduce noise into the data. Figure 4 shows the bremsstrahlung energy flux 
differential with respect  to  energy for  a point behind various aluminum infinitc 
plane s lab thicknesses. The spectra a r e  sharply peaked toward low energies. 
The average energy appears  to be in the range from 0.1 t o  0.3 MeV. It is 
difficult to believe that intcractions involving gamina r a y s  a t  these energies 
woulcl be a s  grea t  a s  a hundred t imes more damaging than protons on a dose- 
deposited basis.  Some photographic fi lms a r e  unusually sensitive to law-energy 
gamma rays.  The response of one of these fi lms to a typical bremsstrahlung 
spectrum was about 30 t imes  higher than its response to protons on a dose 
basis.  However, the authors believe that in general  the proton component of 
the dose i s  the most important one to consider. 

For the nominal orbi t  of the LST, most of the radiation damage will 
occur  during passages through the South Atlantic Anomaly, a distortion in the 
geomagnetic field which resul ts  in higher trapped particle fluxes a t  lower 
altitudes than a r e  usually seen over most of the ear th 's  surface. The LST 
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PARTICLE DOSE RATES FOR LST ORBIT 

ELECTRONS 

1 
SHIELD THICKNESS !~/&-ALUMINUM) 

Figure 3. Dose rates due to protons, electrons, and bremsstrahlung 
thickness for the LST orbit. 
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TABLE 1. DOSE RATES DUE TO PROTONS, ELECTRONS, AND BREILISSTRAEILUNG AT THE GIVEN 
SHIELD THICKNESSES FOR THE LST ORBIT 

Shield Thickness 
( g/cm2 aluminum) 

0 

0.1 

0.2 

0.4 

0.6 

0 .9  

1.0 

1.5 

2.0 

3.0 

4.0 

5.0 

10.0 

Proton Dose 
Rate 

( radddny) 

38.3 

10.2 

6.11 

3.63 

2.73 

2.30 

2.01 

1.60 

1.35 

1.08 

0.937 

0.831 

0.535 - 

Electron Dose 
Rate 

( raddday) 

1900.0 

49.7 

19.6 

8.59 

3.95 

1.61 

0.559 

0.0241 

5.25 x 

1.83 x 10" 

1.07 X 10'" 

7.70X 

-- 

Breniss tra hlung 
Dose Rate 
( raddday) 

-- 
0,0171 

0.0142 

0.01 15 

0.0097 1 

0.00825 

0.00713 

0.00545 

0.00457 

0.00357 

0.00296 

0.00256 

0.00140 

* The galactic cosmic ray adds approximately 0.007 raddday to the above totals. 

_ * .  .. 

Total Dose 
Rate* 

( rads l'd a y ) 

1,940.0 

59.9 

25.7 

12.2 

6.69 

3.92 

2.58 

1.63 

1.36 

1.08 

0.940 

0.834 

0.536 
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Figure 4. Bremsstrahlung energy flux differential in energy behind 
plane infinite aluminum shields of various thicknesses 

in the LST orbit. 
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orbi t  passes  through the lower edge of the Van Allen belts in the anomaly. 
Thus, the dose r a t e s  encountered increase rapidly with increasing orbital  
altitude, a s  shown in F igure  5. Since the anomaly i s  centered a t  about 35 deg 
south latitude, the dose r a t e s  encountered also increase with orbital  inclina- 
tion, though not a s  rapidly a s  wit.h altitude. This  variation i s  shown in Figure 
6.  At higher inclinations (> 50 deg),  the north and south "horns" of the outer: 
trapped electron belts a r e  encountered, and the geomagnetic cutoff for f la re  
protons decreases  so that these types of particles become more important; 
however, fo r  typical shielding seen in most  large spacecraft ,  the trapped 
proton component will s t i l l  dominate the total dose. 

/ 

The proton flu. encountered by the LST will have two types of temporal 
variations, a very shor t  t e r m  one and a long t e rm one. The short  t e rm one i s  
the variation seen a s  the spacecraft  passes  in and out of the South Atlantic 
Anomaly, with the f l u x  r i s ing  and falling rapidly a s  the center  of the anomaly 
is passed. Figure 7 shows the proton isoflux plot in the South Atlantic Anomaly; 
Figure 8 shows the proton flux during several  passes  through the anomaly. This  
plot is a t  a lower altitude than the LST orbit ,  but it i s  used to show the pattern 
of trapped radiation in and out of the anomaly region ra ther  than the particle 
count rate.  Almost a l l  of t h e  radiation damage will occur during these passages,  
which will usually las t  less than 15 minutes. 
pass  may reach 40 to  50 t imes  the average daily dose rate.  The other temporal 
variation i s  associsted with the 11-year so la r  cycle. 
of the proton belt during the quiet par t  of the cycle by perhaps a factor of two, 
a s  a resul t  of changes in the high altitude atniospheric density [SI. The Vette 
environment has this  variation averaged out. 

The maximum dose r a t e  during a 

There  is an enhancement 

F r o m  experience with Skylab and Apollo, the authors find that the effec- 
t ive shielding for a typical point inside the spacecraft  i s  considerably higher 
than would be expected from merely measuring spacecraf t  wall  thickness. For 
Skylab, the wall thickness was  about 1.0 g/cm2, whereas typical points in the 
Workshop had an effective shield of approximately 10 to 15 g/cm2 171. Because 
the LST is a somewhat sma l l e r  structure, a typical point would probably have 
f rom 5 to 10 g/cm* of shield. This corresponds to dose r a t e s  in the range 400 
to 800 millirads/day. Actual dose r a t e s  depend strongly on the geometry. If 
sensit ive equipment i s  near  thinly shielded areas ,  the complex geometry dose 
calculation should be performed to get  a bet ter  es t imate  of the problem. 

.- 
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PROTON DOSE RATES VS SHIELD THICKNESS FOR 30" OFielT 

INCLINATION 

VETTE PROTON DATA AP7. AP6 
30" INCLINATION CIRCULAR ORBIT 

0 0.03 glcm2 ALUMINUM SHIELD 
b 0.10 gicm2 ALUMINUM SHIELD * 0.50 g/cm2 ALUMINUM SHIELD 

' 0 2.00 g/cln2 ALUMINUM SHIELD 
0 5.00 glcm2 ALUMINUM SH4ELD 

A 15.00 glcm' ALUMINUM SHIELD 

v 1.00 g/cm2 ALUMINUM SHIELD 

0 10.00 g/cm2 ALUMINUM SHIELD 

20.00 g/cm2 ALUMINUM SHIELD 

ALTITUDE (NAUTICAL MILES) 

Figure 5. Proton dose ratc at the ccntcr of a spherical aluminum shell 
of thc givcn thicknesscs scrsus orbital altitude Cor 3 

circu 13r :<O-dcg inclination orbit. 
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Figure 7 .  Proton isoflis plot a t  an altitude of 400 k m  in the South 
A tla nt ic A noinn ly . 
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Figure 8. Integral proton flux received c n  a 30-degree circular 
orbit at  an altitutlu of 240 nautical inilcs. 
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