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ABSTRACT 

Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and 

sodium magnesium beta-alumina were grown from sodium oxide rich melts. Addi-

tional experiments grew. ribbon crystals containing sodium magnesium , 3 1 

and j3" aluminas. 

The crystal growth of beta-alumina is made complicated by its high sodium 

vapor pressure, peritectic decomposition, and highly reactive melt. However, the 

use of a high pressure [2;0 MN/m 2 (300 psi) ] crystal growth chamber, sodium oxide 
rich melts, and iridium for all surfaces in contact with the melt were combined with 

the edge-defined, film-fed growth (EFG) technique to grow the single crystal beta-
alumina tubes and ribbons. The crystals were characterized using metallographic 

and X-ray diffraction techniques, and wet chemical analysis was used to determine 

the sodium, magnesium, and aluminum content of the grown crystals. 

M



)tueI Oöd 6U!PODJd

Table of Contents 

Section

	

	 Page 

ABSTRACT ............................. 

L SUMMARY .............................. 1 

IL INTRODUCTION .. 	 ...	 ....................... 3 

Ill. APPARATUS AND BASIC EXPERIMENTAL PROCEDURES ...... 5 

A.	 Apparatus, ............................ 5 
B.	 Starting Materials 	 ....................... 7 
C.	 Growth Process ......................... 11 

IV. CRYSTAL GROWTH EXPERIMENTS ................ 23 

A.	 Discussion and Objectives ................... 23 
B.	 Results	 ............................... 25 

V. CONCLUSIONS ............................ 49 

VL REFERENCES ............................ 51

V 



Preceding Page Blank 

List of illustrations 

Figures	 Page 

1	 Schematic of high pressure crystal growth chamber . . . . . . . 	 6 

2	 High pressure crystal growth furnace ..............8 

3	 Section of the Na20-Al203 pseudobinary diagram 
containing f3 and f3"-alumina. Taken from 
reference15.............................9 

4	 Section of ternary system Na0-Al03-MgO at 1700°C. 
Taken from reference 20 . . 	 ..................	 10 

5	 (a) Schematic diagram showing crucible and 
die setup used for growth of ribbons; (b) 
Schematic diagram showing crucible and die 
setup used for growth of tubes ..................13 

6	 Compares Debye-Scherrer films of (from top to 
bottom) i00% beta-alumina, beta-alumina and 
sodium beta alumina " and sodium magnesium 
beta-alumina and sodium magnesium f3". Top 
film: Debye-Scherrer of H.P. - lOAF; middle 
film: H.P.-1OAF bottom and bottom film: Debye-
Scherrer of H.P.-R24 top .......................24 

7a	 Sodium beta-alumina tube H.P. - lAP front, 
showing white poly a-Al203 skin .................26 

7b	 Sodium beta-alumina tube H.P. - 1AF back, 
showing white poly a .-Al 0 3 skin .................26 

8	 From top to bottom: sodium beta-alumina tube 
crystal H.P. -IAF, H.P. - 8AF, H.P. -9AF, 
H.P.-lOAF and H.P.-11AF .....................28 

9	 X-ray spectrum of 0, 13 ", 13"	 compared to X-ray 
spectrum from Debye-Scherrer films of H.P. - R24 (top) 
and H.P.-R24 (bottom) grown from a melt of sodium 
magnesiumj3" ...........................29 

vii



List of illustrations (continued)

Figures	 Page 

10	 From top to bottom: sodium beta-alumina tube 
crystal H.P.- 13AF, H.P. - 14AF, H.P. - 19AF and 
H.P.-20AF .............................30 

11	 Top: 100% sodium beta-alumina a-axis tube 
H.P.-29AF, bottom: 100% sodium beta-alumina 
c-axis tube H.P.-31AF........................32 

12	 LauS back reflection photograph taken (90 0 to 
tube axis) of top clear section (facet) of 
H.P.-29AF a-axis sodium beta-alumina tube ...........34 

13	 Sodium magnesium beta-alumina c-axis tube . . . . . . . . . . . 	 35 

14	 Top: sodium beta-alumina single crystal c-axis 
ribbon; bottom: sodium beta-alumina single crystal 
a-axis ribbon, notice the poly a-skin patch at the 
top of the ribbon above the 4 in. mark ..............37 

15	 From top to bottom: sodium beta-alumina ribbon 
a-axis ribbon crystal H.P. - Ri?, H.P. -R18 and 
H.P.-R19 ..............................38 

16	 From top to bottom: sodium magnesium beta-
alumina a-axis ribbon crystal H.P. -R28, H.P. -R29, 
H.P.-R30 and H.P.-R31 ......................41 

17	 From top to bottom: sodium magnesium beta-
alumina a-axis ribbon H.P. - R32, H.P. -R33, 
H.P.-R34 and H.P.-R35 ......................42 

18	 From top to bottom: sodium magnesium beta-
alumina ribbon H.P.-R37, H.P.-R36, H.P.-R38 
and H.P.-R39 ...........................43 

19	 From top to bottom: sodium magnesium 0" ribbon 
crystal 1-LP.-R24 c-axis, H.P.-R25 c-axis, H.P.-R26 
a-axis and RP.-R27 a-axis ...................44 

20	 Compares Debye-Scherrer X-ray film of Monofrax H. 
Beta-alumina (top film) with Debye-Scherrer X-ray 
film of top of H.P.-R24	 (middle film) and Debye-
Scherrer X-ray film of bottom of H.P.-R24 f3" 
(bottom film) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 46 

vi"



List of Illustrations (continued) 

Figures
	 Page 

21a	 Laue' X-ray photograph (taken 90° to c-axis) 
of H.P.-R25 13" c-axis ribbon. Photograph 
taken of ribbon face just below where it was 
seeded. Top of ribbon is to the left of the 
photograph and the ribbon axis goes from 
leftto right ............................47 

21b	 Laud X-ray photograph (90° to c-axis) of 
H.P.-R25 13" c-axis ribbon. Photograph taken 

2.5 cm below top photograph of ribbon face 
and shows shift of crystal axis of almost 90° 
from c to a-axis. Top of ribbon is to the left of 
the photograph, ribbon a-axis goes from left 
toright	 ..............................47 

ix



preceding page

List of Tables

Tables	 Page 

I	 Semi-Quantitative Spectrographic Analysis ...........12 

IITube Growth . . . . . . . . .. . . . . . . . . . . . . . . . . . . .	 14 

IIIRibbon Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 18 

IV	 Composition of Tube Crystals . . . . . . . . . . . . . . . . . . .	 31 

V	 Composition of Ribbon Crystals ..................39 

xi



L SUMMARY 

This program was an extension of work begun under Contract Nos. NAS3-14410 

and NAS3-15686. Those programs had as their objective the development of single 
crystal membranes of solid ionic conductors, especially 13-alumina, which have 

potential application in high energy density batteries operating at moderate to 

ambient temperatures. Using the Tyco-developed EFG melt growth techniques, 

iridium system components and a high pressure (2 MN/rn 2) furnace chamber, the 

programs demonstrated the growth of single phase single crystal 0-alumina tubes 

of the desired orientations. However, the crystals grown under those programs had 

a tendency to crack along the cleavage plane during growth and very slow growth 

rates (2 mm/hr) were required to obtain transparent single crystals free of phase 

inclusions. 
The specific objectives of this program were to determine the optimum growth 

conditions of p-alumina, to obtain non-coated transparent single crystal tubes and 

ribbons, to eliminate or reduce thermal stresses which lead to cracks, and to grow 

p-alumina tubes with varying amounts of Na20, MgO, and Al203 to enhance ionic 

conductivity and mechanical strength. 

Single crystal single phase tubes and ribbons of beta-alumina containing 

Na20 and Na20 plus MgO were grown as verified by Debye-Scherrer X-ray powder 

patterns, Laud back reflection X-ray photographs, and chemical analysis. Magnesium 

oxide stabilized ribbons which were found to contain 13, 13", 13", and 13" were also 

grown.
Although several uncracked tube crystals were grown, the majority of the 

crystals were cracked, and depending on the afterheater configuration, they were 

all invariably coated with either an Al 203 or a Na20 'skin'. The crystals also tended 

to become multi-grained and contained second phase inclusions when grown at speeds 

greater than 6 mm/hr.
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IL INTRODUCTION 

A recent development of great technological potential is the concept of a 

high energy density battery utilizing a solid, super ionic conductor as the electro-

lyte. One of the best super ionic conductors for such application is 3-alumina 

(nominally: Na2O 11 Al203) 2 Crystals of this compound have very low electronic 
conductivity, negligible ionic conductivity in the direction of the hexagonal crystalline 

c-axis, and very high sodium ion conductivity in directions normal to the c-axis.25 

Obvious advantages will accrue from the use of single crystalline membranes of the 

correct orientation Liven if the polycrystalline aggregates are of preferred orienta-
tion, the presence of grain boundaries provides additional problems, since inter-
granular processes may occur, resulting in failure of the conducting path. It is 

possible that lower operating temperatures may result from the use of single crystal 

materials. Thus, the establishment of a method for the growth of single crystal 

p-alumina is of considerable interest. 
To date, electrochemical studies and prototype batteries have utilized only 

small single crystal wafers or sintered polycrystalline tubes of 0-alumina. Under 

two preceding contracts, 6,7 Tyco developed techniques for producing c-axis tubes 

of p-alumina. Clearly, this constituted a major step toward the realization of high 

energy density batteries such as conceived by Weber and Kummer. 1 
This program was an effort to improve the quality of the crystals to the point 

where useful material could be regularly produced and the effects of composition and 

growth conditions on ionic conductivity could be measured. In the following sections 

we describe the program aimed at optimizing and defining the conditions for growth 

of sound, highly conducting, tubular and ribbon shaped crystals of j3-alumina. Work 

under a previous contract  had established that MgO can be substituted in the p-alumina 

3



crystals during growth. MgO stabilized 0"-alumina (approximate stoichiometry 
10.0 MgO 12.5 Na20• 77.5 Al20 3) was also grown under this program. This phase 
is also a super ionic conductor with a structure similar to that of f3-alumina and with 
even higher sodium ion conductivity. 
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ILL APPARATUS AND BASIC EXPERIMENTAL PROCEDURES 

A. Apparatus 

Because of the high loss of sodium by volatilization at the growth temperature 

under atmospheric conditions, 7 a furnace chamber (designed and built at Tyco) was 

used which would allow the growth of crystals under inert gas pressures up to 

2MN/m2 (300 psi). The addition of excess soda to the melt together with the use 

of the high pressure furnace was necessary for the successful growth of single 
crystal beta-alumina. 6,13 

The furnace is shown schematically in Fig. 1 and was used for the growth of 

all beta-alumina tube and ribbon crystals. The pressure vessel consists of a 30 cm 

diameter by approximately 60 cm high 304 S/S split chamber, designed for 2 MN/cm2 
at 541 K. The chamber is water jacketed and mounted on a suitable stand with a 

hand-operated hydraulic mechanism to raise and lower the bottom section approxi-

mately 30 cm. The lower section swings away in the lowered position for accessi-

bility.

The furnace was designed to allow the growth of crystal tubes up to 20 cm 

long and includes the following features: 

1. On top is mounted a linear motion device suitable for withdrawal 

of crystals at rates of up to 2.5 cm/min.* 

2. 10 cm port for RF power feedthroughs. 

3. 5 cm inner dia sight ports (2) at 20° incline from horizontal. 

*A.D. Little Co., Cambridge, Massachusetts
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4. 2.5 cm vacuum port. 

5. Feedthroughs complete with manually-controlled x-y and vertical 

motion device allowing precise location of crucible (x-y motion is ± 6 mm and the 
vertical motions ± 13 mm). 

6. Various 1.3 to 2.5 cm ports required for evacuation; introduction 
of inert gas and measurement of gas pressure. 

The entire high pressure crystal growing furnace is shown photographed in Fig. 2. 

In this system, first a 450 kHz 20 kW rf generator and then a 20 kW, 10 kHz, 
motor generator was used to raise the crucible containing the melt to the necessary 

growth temperature either by susception directly to the crucible or to a susceptor 

surrounding it. The advantages of the motor generator over the higher frequency 

rf set are the low voltage on the coil during use which reduces the tendency for 

arcing and heating of the power feedthroughs.7' 13, 14 

B. Starting Materials 

There is a continuing uncertainty with regard to the exact composition of beta-

alumina. The material commonly obtainable in such form and known as carborunduñi 

Monofrax H beta-alumina is Na 20 . 11 Al20 3 (8.34 mole % Na20). This material was 
used as the starting charge for many of the growth experiments. Weber and Venero15 
reported the composition of beta-alumina as being 10 mole % Na 20 with an incon-
gruent melting point at 2240 ± 6°K (Fig. 3). Harata 16 reported that Monofrax H cast 
bricks contain small amounts of alpha-alumina as a second phase and that single 

phase f3-alumina has the composition range 10.9 to 13.7 mole % Na 20. Considerable 
MgO can also be incorporated in the f3-alumina phase (up to the composition 6.5MgO 

10.5 Na20 83 Al203) 20 Still higher MgO content (10. mole %) changes the lattice' 

to the J3"-alumina structure (Fig. 4). 

Monofrax H beta-alumina was used as the starting material in most beta-

alumina growth experiments, with excess Na 20 added to vary the composition from 
8.4% to 20% Na20, with MgO being added up to 10.0 mole % for specific growth runs. 

Typically, mixtures of Na2CO3, * MgO, ** and Monofrax H	 beta-alumina were 

weighed into 2 to 9 g charges and placed in the iridium crucible and melted under 
1.4 MN/m2. 

*United Mineral Co. 99.999%. 
**Fischer  Scientific Reagent Grade 

***Carborundum Co., Falconer, N.Y.

ii



Fig. 2. High pressure crystal growth furnace 
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A sample of Monofrax H used for starting material was submitted to 

semi-quantitative spectrographic analysis and the results are listed in Table I, 

together with the analysis of a i00% beta-alumina tube crystal grown from a melt 

of Monofrax H containing 3 mole % excess Na90 (' Na20) 0.13 '2°3 0.87* 

C. Growth Process 

Tubes and ribbons were grown from beta-alumina melts using the Tyco 

developed melt growth technique, "edge-defined, film-fed growth (EFG) 17, 18 at 

speeds from 1 to 250 mm/hr. This techniqud is a modified pulling technique where 

the crystal grows remote from the bulk of the melt and crystal cross-section .Thapes 

can be arbitrarily chosen. 
A crucible and die setup capable of growing sodium beta-alumina tubes was 

assembled from iridium components. The die used allowed the growth of tubes 5 mm 

outer dia >< 3.5 mm inner dia. All sodium beta-alumina tube growth experiments were 

made using this size iridium tube setup (see Fig. 5). 
All the growth experiments were made in argon at 1.1 to 1.6 MN/m 2 in,ide 

a water cooled pressure chamber using a 20 kW, 450 kHz rf or 20 kW, 10 kC, motor 

generator set as the power supply (see Figs. 1 and 2 and Table II. The 19 mm outer 

dia >< 19 mm high X 0.5 mm wall iridium crucible, containing the sodium beta-alumina 

charge material and the iridium tube die were both placed inside a 2.5 cm outer dia. 

Mo crucible with W liner and suscepted to directly. Manual temperature control was 

by a multiturn potentiometer arrangement of the manufacturer's design. 

Only iridium crucible and die components were used in contact with the 

beta-alumina melts. The seeds used to initiate growth were pieces of Monofrax H 

single crystals orientated in either the a- or c-axis direction (Tables II and III. 

The crystals grown were examined using optical microscopy in transmitted 
and reflected light. The composition and occurrence of second phase in the crystals 

grown were determined using standard Debye-Scherrer examination of powdered 

samples and comparing the pattern and line intensities with standard films and litera- 

ture values. Laue' X-ray back reflection photography was used to study the crystal- 

linity of the samples grown. Wet chemical analysis was used to determine the Na, 

Mg, and Al content of the grown crystals.
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Sample: 1 = (Monofrax H) Beta-Alumina Na20.11 Al203 
2 = H.P. - 19AF (top) 
3 = H.P. - 19AF (bottom) 

Instrumentation: 3.4 Meter Mark IV Spectrograph 

- 1 2 3 1 2 3 1	 2 3 - 1 2 3 
Li ND ND ND Zn ND ND ND

- 

Sb ND	 ND ND Lu ND ND ND 
Be ND ND ND Ga T 300 500 Te ND	 ND ND Hf ND ND ND 
B ND 1 3 Ge ND ND ND Cs ND	 ND ND Ta ND ND ND 
Na M M-H M-H As ND ND ND Ba ND	 ND ND W ND ND ND 
MG VFT 0.5% 0.5% Rb ND ND ND La Re ND ND ND 

FT 

Al H H H Sr ND ND ND Ce Os ND ND ND 
Si L-M i% M Y Pr Jr ND ND ND 
K ND ND ND Zr ND ND ND Nd Pt ND ND ND 
Ca VFT 100 500 Nb ND ND ND Sm Au ND ND ND 
Ti FT ND ND Mo ND 75 25 Eu Hg ND ND ND 
V ND ND ND Ru ND ND ND Gd Ti ND ND ND 
Cr VFT 0.25 0.25 Rh ND ND ND Tb Pb ND 10 10 
Mn FT 5 10 Pd ND ND ND Dy Bi ND ND ND 
Fe T-L 0.1% 0.2% Ag ND ND 0.1 Ao lb 
CO ND 25 Cd ND ND ND Er U 
Ni ND 10 10 In ND ND ND Tm P ND ND ND 

Cu VFT 1 2 Sn ND ND ND Yb Se

*Analysis performed by Jarrell-Ash Division, Fisher Scientific Company 
Results in ppm except where % is indicated. 

KEY: ND - Not Detected
	

T 0.01% - 0.1% 
VVFT < 0.0001%
	

L 0.1% -1% 
VFT 0.0001% - 0.001%
	

M1%- io% 
FT 0.001% - 0.01%
	

H>10% 

Table L Semi-Quantitative Spectrographic Analysis 
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IV. CRYSTAL GROWTH EXPERIMENTS 

A. Discussion and Objectives 

Crystal structure analysis of (3-alumina indicates an "ideal" stoichiornetry 

Na20 11 Al203 (8.33 mole % Na20). However, analyses by many investigators 

have shown that the compound usually contains more than the "ideal" quantity of 

Na20. In the NaA1O 2- Al20  diagram of Weber and Venero (Fig. 3), for example, 

the 13-alumina phase field is shown with a breadth corresponding to 10.0 to 11.2 mole % 

Na20. More recently, Harata 16 reported that the single phase region extends from 

10.9 to 13.7 mole % Na20. 
There are considerable difficulties associated with the crystal growth of 

sodium beta-alumina including its peritectic formation from slightly soda-rich liquid 

and of-alumina at about 2240 ± 6°K15' 19 and the 5 torr pressure of Na 2O vapor 

over 0-alumina4 at the peritectic temperature. To limit the loss of Na 20 from the 

melt and hot crystal, growth was conducted in a high pressure chamber containing 

1.1 to 1.6 MN/m2 argon (Figs. 1, 2). Excess Na 2O was placed in the crucible charge 

(see Table Ill). This compensated for vapor losses and depressed the freezing 

temperature below the peritectic temperature. 
To grow crystals of different compositions, both melt conposition and chamber 

pressure were varied (Table I]. Because the solidus in the soda-rich region has a 

finite slope (Fig. 3), it was also possible to obtain crystals with differing Na20 

content by varying the freezing temperature via melt composition in the range of 

10 to 35 mole % Na 20. The Na 2O concentration in the liquid of the meniscus was 

determined by the balance of the rates of rejection from the interface and depletion 

by vaporization. The composition of crystals grown by this technique is therefore 

extremely rate dependent (see Fig. 6).
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Some of the crystals grown under the preceding contracts 6,7 cracked in the 
steep temperature gradient above the die. Under this program an attempt to alleviate 

the cracking problem was made by the use of an afterheater. The afterheater in 

several cases was a metal tube heated by induction from the same rf source that 

heated the crucible and in some cases was a series of stacked disk shields. Numerous 

growth trials were necessary to achieve an optimum design (see Table II, III. 

Another problem encountered in the preceding work was the condensation of 
Na20 vapor on the cooler regions of the crystal. The afterheater was effective in 

reducing this problem by increasing the distance between the source of the Na20 

vapor and the cool crystal surfaces. Baffles of shields were also used to try and 
trap the condensing vapor 

Both a-axis and c-axis tubes of 13-alumina have been grown. Two phase 

mixtures of a and i3-alumina resulted when the melt was soda-poor. Because the 

presence of a high tensile strength second phase such as a-alumina was hoped might 
strengthen a 13-alumina crystal without seriously degrading its conductivity, some 

mixed a-13 crystals were prepared for study. 

B. Results 

1. Sodium 13-alumina tubes 

Table II lists all the afterheater arrangements and growth variables 
used for the growth of beta-alumina tubes. It can be seen from Table IL that although 

the use of a suscepting tube afterheater prevented cracking and the soda-rich deposit 

from forming on the tubes, it had the detrimental effect of causing opaque white 

skin patches to form on the tubes. Figs. 7a, and 7b, show a tube with the opaque 

white skin patch formed at the top. At faster growth speeds the opaque no longer 

formed, but the tube crystal started to pick up a second phase. The isolated opaque 

skin patch was found by the Debye-Scherrer X-ray technique to be a -Al 203 . The 

rest of the tube was beta-alumina. 

Several growth experiments were performed from an 18 mole % soda-rich 

melt using no afterheater (Table II. The tubes were grown in both the a- and c-axis 
and all but one resulted in i00% beta-alumina. All the tubes were covered with a 

grayish-white deposit which was removed by heat treating a: 1523°K (e.g., above the 

decomposition temperature of Na20). Fig. 8 shows the results of these growth runs. 

As can be seen from the photograph the tube crystals became less transparent with
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Fig. 7a. Sodium beta-alumina tube H.P. - 1AF front, showing white poly a-Al 20 3 skin 

Fig. 7b. Sodium beta-alumina tube H.P. - 1AF back., showing white poly a-Al203 skin 
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Fig. 8. From top to bottom: sodium beta-alumina tube crystal H.P. -7AF, 
H.P. - 8AF, H.P.-9AF, H.P. - lOAF and H.P. - 11AF
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increasing length and growth speed. Debye-Scherrer X-ray samples, taken from the 

top of the first four tubes in this photograph shoWed i00% beta-alumina, samples 

taken from the bottom showed beta alumina plus weak lines of a second phase. These 

lines were found to belong to the soda-rich 0" phase (Figs. 6 and 9). Although the 
phase diagram by Weber and Venero 15 (Fig. 3) shows soda-rich 3' to be a metastable 

compound which does not exist above 1873°K, we have found it to co-exist with /3-

alumina grown above 2200°K in several of our growth experiments. This is apparently 

due to the fact that the growth process does not take place at equilibrium. 
Although several advantages using 10 kHz instead of rf induction heating 

were realized, some difficulties were encountered in reestablishing the original 

optimized gradients (due in part to the new coil configuration and in part to the 
deeper skin effect induced by the lower frequency field). 

In order to establish the optimum conditions for the growth of single crystal 

beta-alumina tubes several growth experiments were performed using 1.5 to 2 g 

charges. It was found that the soda loss was too high from these small charges 

to obtain i00% beta-alumina (Table I]. A i00% 13-alumina tube (H.P. -19 AF) 

was grown from a 6-g charge of 13 mole % Na 20 at 1.0 MN/rn2 . It was seeded in 
the c-axis direction but was found after '-j 1.2 cm to have spontaneously changed 

orientation and grown in the a-axis direction (Fig. 10). The second tube crystal 

grown from this charge resulted in a mixture of 80% 1 - 20% a-alumina (Fig. 10). 
Table IV shows that tube crystal H.P. -20 AF contains less soda then required for 

i00% beta-alumina and tube crystal H.P. - 19AF contains slightly more. 

A growth experiment was performed from a 9.0-g melt of (Na20) 0.2
(Al20 )	 duplicating as closely as possible the conditions that had previously pro-

duced single crystal i00% beta-alumina tubes. ' 	 The only deviation was that the 

pressure during growth was 1.0 MN/m2 instead of 1.4 MN/m2. The tube crystal 

that resulted (H.P.-21AF) was i00% beta-alumina and mostly c-axis but was badly 

cracked. A second growth run (H.P. -22AF) from the same melt and using a Mo heat 

shield arrangement to prevent cracking, along with the previous growth parameters. 

resulted in a tube of 'j-' 85% /3, 15% a-alumina (Table IV). A growth pressure of a: 

least 1.4 MN/m 2 appears necessary to obtain more than one 100% beta- alumina tube 

crystal 4.0 cm long, from at least a 6.0 g charge. 

Fig. 11 shows two i00% beta-alumina tube crystals grown from a 6.8 g charge 

with the composition (Na20) 0.2 (Al 203) 0.8 The tube crystal H.P. -29AF was grown 
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Fig. 10. From top to bottom: sodium beta-alumina tube crystal H. P. - 13AF, H. P. - 
14AF, H.P. - 19AF and H.P.-20AF 

30



Table IV. Composition of Tube Crystals

Analysis (wt %) Mole % 
I 

Crystal Na Al 0 Na20 Al203 

H.P. - 19AF Charge 13.0 87.0 

Top 4.1 51.4 (44.4) 8.56 91.4 

Bottom 4.49 51.2 (44.31) 9.33 90.6 

H.P. -2OAF Charge 13.0 87.0 

Top 3.72 53.1 43.18 7.8 92.4 

Bottom 3.37 53.3 43.33 6.9 93.1 

H.P. -22AF Charge 20.0 80.0 

Top 3.23 51.7 (45.07) 6.8 93.2 

Bottom 3.63 53.0 (43.37) 7.4 92.6 

H.P.29AF Charge' 20.0 80.0 

Top 4.30 51.6 (44.1) 8.9 91.1 

Bottom 4.40 52.0 (43.6) 9.0 91.0 

H.P. -31AF Charge 20.0 80.0 

Top 4.33 50.4 (45.27) 9.2 90.8 

Bottom 4.33 50.8 (44.82) 9.1 90.9 

H.P. -35AF Charge 20.0 80.0 

Top 5.10 51.8 (43.1) 10.4 89.6 

Bottom 5.40 50.4 (44.2) 11.2 88.8
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Fig. 11. Top: 100% sodium beta-alumina a-axis tube H.P.-29AF, bottom: i00% 
sodium beta-alumina c-axis tube H.P. -31AF 
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in the a-axis direction at 6.3 mm/hr after it became a full tube. No afterheater was 
used and it exhibited slight vertical cracking. Fig. 12 is a Laue' back-reflection 

photograph taken of a facet on the top area of tube H.P.-29AF, 900 to the tube axis 
which exhibits the c-plane. The second crystal H.P. -31AF was grown in the c-axis 

direction at a speed of 2 mm/hr for 6 cm, then 6 mm/hr for the next 2.5 cm and 

finally 9 mm/hr for the remainder of the crystal. The use of a heat shield assembly 

did not prevent slight horizontal cracking of the tube crystal which was, however, 

single and orientated in the c-axis direction. Tube crystal (H.P. -35AF) with a 

higher sodium content then H.P. -29AF or H.P. - 31AF was also grown from a melt 

of (Na20) 0.2 (u203)0.8 but at a growth speed of only 1 to 5 mm/hr (Table II and I\1). 

Although the use of an excess Na 20 melt composition and a heat shielding 
arrangement, together with a high inert gas overpressure allowed the growth of single 

crystal sodium beta-alumina tubes at speeds up to 12 mm/hr, the majority of the 

crystals did develop slight cracks and all had grayish white surface deposits which 

had to be removed by heat treating. 

2. Sodium magnesium beta-alumina tubes 

A considerable proportion of MgO can be incorporated into the p -
 alumina structure (up to the composition 6.5 MgO . 10.5 Na20 . 83 Al203) 20 Higher 

MgO content (' 10.0 mole %) changes the lattice to the f3"-alumina structure (Fig. 4). 

Because of this phase latitude and the sensitivity of the conductivity to the Na+ environ-
ment, particularly as affected by Mg ions, this effort included the growth of tubes 

with various amounts of MgO. 

The techniques and equipment used to grow beta-alumina plus magnesium 

oxide tubes were the same as those mentioned above the growth of sodium beta-

alumina (Table Ii). Growth was performed in the c-axis direction using apiece of 

Monofrax H single crystal as a seed, and growth was performed under 1.4 MN/M2 

argon overpressure at pulling speeds from 2 to 20 mm/h. The starting charge was 

1.8 g made up of Monofrax H beta-alumina, Na 20 (in the form of Na2CO 3) and MgO. 
The starting composition was (Na20) 15.67 (MgO) 4.61 (Al203) 79.92 Fig. 13 shows 

an MgO doped beta-alumina tube (H.P. - 37AF). The tube is essentially a single crystal 

with the c-axis parallel to the growth direction. It is apparently no more difficult 

to grow beta-alumina with magnesium oxide than it is to grow undoped beta-alumina. 
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V 

Fig. 12. Laud back reflection photograph taken (900 to tube axis) of top clear 
section (facet) of H.P. 29AF a-axis sodium beta-alumina tube 
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Fig. 13. Sodium magnesium beta-alumina c-axis tube
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3. Sodium-beta-alumina ribbons 

The growth of sodium beta-alumina ribbons was performed using the 

same growth techniques as those employed for the growth of sodium beta-alumina 

tubes (Table II]. An iridium crucible and an iridium die designed to yield ribbons 
6 mm wide >< 0.8 mm thick were used. Fig. 14 shows two sothum beta-alumina 

ribbon single crystals grown at growth speeds of 1 to 6 mm/hr from the same 6.8 g 

charge of (Na20) 0.2 (Al203) 0.8 As can be seen from the photograph, difficulty was 

encountered with keeping the ribbon crystals a uniform width at the faster growth 

speeds. This is attributed to the particular heat shield arrangement used. The c-axis 

crystal (H.P. -R3) developed cleavage cracks normal to the c-axis and the a-axis 

ribbon a- c-plane crack down the middle. There was an a-Al 203 skin patch on the 

top of the a-axis ribbon. The ribbon crystals were less transparent after the heat 

treatment used to remove the grayish surface deposit. This can he seen by comparing 

the bottom clear section of H.P. - R3 (Fig. 14) with the rest of the ribbon. As this 

portion was still in the heat shields when growth was terminated it did not have a 

surface deposit and therefore was not heat treated. Fig. 15 is a photograph of three 

ribbon crystals grown at faster growth speeds (1 to 18 mm/hr) using two different 

shielding arrangements (Table II]. Cracking was still a problem and the crystals 

also had horizontal bands of soda rich material. Table V lists the chemical composi-

tion of three i00% sodium beta-alumina ribbon crystals grown at different growth 

speeds. These ribbons are the third, fourth, and fifth growth runs from the same 

6.8 g charge. As can be seen from Table V, ribbon crystal H. P.-R15 contains more 

Na20 than the single phase limit for beta-alumina stated by Harata. 16 This is due 

to second phase inclusions trapped in the ribbon crystal during growth and was 

apparent by the ribbon crystals' cloudy appearance. Crystal H.P. -R14 also had 

second phase inclusions and was completely opaque. 
These experiments seem to indicate that properly orientated single crystal 

sodium beta-alumina ribbons can regularly be produced at 2 mm/hr but cracking 

is still a problem and faster growth rates tend to cause several crystal grains co 

nucleate.

4. Sodium magnesium beta alumina ribbons 

Table III lists the parameters used for the growth of the sodium mag-

nesium beta-alumina ribbon crystals. The iridium crucible and die had the same 

dimensions as those used for the growth of the previous ribbon crystals. A melt of 

M.



Fig. 11. Top: sodium beta-alumina single crystal c-axis ribbon; bottom: sodium 
beta-alumina single crystal a-axis ribbon, notice the poly a-skin patch 
at the top of the ribbon above the 4 in. mark
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Fig. 15. From top to bottom: sodium beta-alumina ribbon a-axis ribbon crystal 
H.P.-R17, H.P.-R18 and H.P. -R19 
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Table V. Composition of Ribbon Crystals

Analysis (wt %) Mole % 

Crystal Na Mg Al 0
Na20 MgO Al2031 

H.P. -R14 Charge 20.0 80.0 

Top 6.8 47.3 (45.9) 14.4 85.6 

Bottom 7.3 45.6 (47.1) 15.8 84.2 

H.P. -R15 Charge- 20.0 80.0 

Top 8.3 47.9 (43.8) 16.9 83.1 

Bottom 8.4 50.0 (41.6) 16.5 83.5 

H.P. -R16 Charge 20.0 80.0 

Top 5.7 44.8 (49.5) 13.0 87.0 

Bottom 4.3 48.8 (46.9) 9.4 90.6 

H.P.-R25 Charge 16.3 11.0 72.7 

Top 

Bottom 5.6 1.14 - - - - - 

H.P.-R32 Charge 16.9 4.6 78.5 

Top 6.9 0.69 - - - - 

Bottom 5.7 0.44 - - - - 

H.P.-R33 Charge 16.9 4.6 78.5 

Top 6.9 0.77 - - - - 

Bottom 5.4 0.30 - - - -
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the composition (Na20)0 1426 (MgO) 00452 (Al203) 08121 and weighing 6.8 g was 

used for the growth of the first four ribbon crystals. This resulted in a badly cracked 

i00% beta-alumina ribbon. The next 6.8 g charge was richer in Na 20 and had the 
composition (Na20) 0.1694 (MgO) 0.0458 (Al 203) 0.7848 Two i00% sodium magnesium 

beta-alumina ribbons were grown from this melt, they were not single and the second 

ribbon H.P.-R29 was badly cracked (Fig. 16). A third 6.8 g charge of the same conipo-

sition as the previous was prepared using select single crystals of Monofrax H. 
From this two uncracked ieo% sodium magnesium beta-alumina crystals were 

grown. The chemical compositions of two Na-Mg-f3-alumina crystals (H. P. -1132 and 

H.P.-R33) are listed in Table Vand Fig. 17. All of the ribbon crystals still had a 

grayish white surface deposit from growth which had to be removed by heating to 

1523°K. 

On several occasions the coating was not completely removed by the heat 

treatment and a white powdery film remained. A part of this deposit problem appeared 

to have been caused by the Mo susceptor. Asusceptor was fabricated out of iridium 

with the same dimensions as the Mo susceptor and a series of growth runs was made. 

Table III lists the parameters used and the results. Fig. 18 is a photograph of 

the results of these experiments. The average growth speed for the ribbons was 

> 6 mm/hr, the ribbons became less transparent with increased growth speed. 

There was very little cracking from the growth runs but the ribbons were coated 

with a white deposit where they grew above the heat shields. This deposit appeared 

to be slightly easier to remove by heating to 1523°K than the grayish white deposit. 

Compare Fig. 19 with Fig. 18. 

5. Sodium magnesium "-alumina Ribbons 

Equilibrium phase information on Mg stabilized f3" alumina is limited. 

The phase is stable at least to 1800°C and has very little compositional freedom at 

1700°C (Fig. 4). 
20 

Weber and Venero 2° grew crystals of Mg-3" from Na0 2 rich 

melts by an isothermal treatment at 1650°C allowing the slow evaporation of Na20. 

Experience with the FFG growth of sodium magnesium beta-alumina tubes indicated 

that it was also necessary to grow magnesium f3" from Na 20 rich melts. The sodium 

magnesium 1" ribbon crystal growth runs were made from 6.8 g charges of 

(Na2O) 0.1626 (MgO) 0. 1099 (Al203) 0.7274 (Table III). Cracking due to thermal 

strain was observed in all of these crystals (see Fig. 19). This may have been due 

to the presence of more than one sodium aluminate phase. Fig. 9 shows Debye-
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Fig. 16. From top to bottom: sodium magnesium beta-alumina a-axis ribbon crystal 
H.P. -R28, H.P. -R29, H.P. -R30 and H.P. -R31
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Fig. 17. From top to bottom: sodium magnesium beta-alumina a-axis ribbon 
H.P. -R32, H.P. -R33, H.P. -R34 and H.P. -R35. 
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Fig. 18. From top to bottom: sodium magnesium beta-alumina ribbon H.P. -R37, 
H.P. -R36, H.P. -R38 and H.P. -R39
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Fig. 19. From top to bottom: Sodium magnesium 3 " ribbon crystal H.P. -R24 
c-axis, H.P. -R25 c-axis, H.P. -R26 a-axis and H.P. - R27 a-axis 
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Scherrer X-ray spectra of 13 , i " f3" and (3". In Fig. 20 the actual Debye-Scherrer 

films are compared with a i00% sodium beta-alumina film. As can he seen from 

these figures the number of phases present increased with crystal length. The phase 

diagram of Weber and Venero 2° (Fig. 4) does not allow the coexistence of the four 
phases. That it occurred may be due either to the growth technique which allows 

segregation to occur at the growth interface or the fact that no part of this is at 

equilibrium. Two Laue'X-ray photographs of the top ribbon face of crystal 

H.P.-R25 are shown in Fig. 20. This (3" ribbon crystal was seeded in the c-axis 

direction and Fig. 21a was taken - 6 mm below where it was seeded. As can be seen 

from Fig. 21b the crystal axis has shifted almost 90° to the a-axis direction after 

2.5 cm of growth. Table V lists the chemical composition of this (3" ribbon 
crystal. These growth experiments did not yield single phase single crystalline 

sodium magnesium (3" alumina ribbon crystals.
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Fig. 21a. Laue" X-ray photograph (taken 900 to c-axis) of H.P. -R25 I c-axis 
ribbon. Photograph taken of ribbon face just below where it was seeded. 
Top of ribbon is to the left of the photograph and the ribbon axis goes 
from left to right 

Fig. 21b. Laud X-ray photograph (90° to c-axis) of H.P. -R25 	 c-axis ribbon. 
Photograph taken - 2.5 cm below top photograph of ribbon face and shows 
shift of crystal axis of almost 90° from c to a-axis. Top of ribbon is to 
the left of the photograph, ribbon a-axis goes from left to right
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V. CONCLUSIONS 

Although single crystal tubes and ribbons of sodium and sodium magnesium 

beta-alumina and magnesium f3" alumina were grown, the problem of consistently 

growing useful transparent, uncoated ribbons a: speeds > 6 mm/hr remains. 

Material grown under this contract has been delivered to NASA-Lewis for ionic 
conductivity measurements.
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