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AERODYNAMIC INFLUENCE COEFFICIENT METHOD

USING SINGULARITY SPLINES

By J. E. Mercer, J. A. Weber
and E. P. Lesferd
The Boeing Company

1.0 SUMMARY

A new numerical 1lifting surface formulation, including
computed results for planar wing cases 1is presented. This
formulation, referred to as the "vortex spline" scheme, combines
the adaptability ¢to complex shapes offered by paneling schemes
with the smoothness and accuracy of loading function methods. The
formulation employs a continuous distribuution of singularity
strength over a set of panels on a paneled wing. The basic
distributions are independent, and each satisfies all the
continuity conditions required of the final solution. These
digstributions are overlapped both spanwise and chordwise (termed
"spline"). Boundary conditions are satisfied in a least square
error sense over the surface using a finite summing technique to
approximate the integral. The current formulation wuses the
elementary horseshoe vortex as the basic singularity and is
therefore restricted to linearized votential flow. As part of the
study, a non planar development was considered (i.e., interference
shell body representation), but the numerical evaluation of the
lifting surface concept was restricted to planar configurations.
Algso, a second order sideslip analysis based on an asymptotic
expansion was investigated using the singularity spline
formulation.



2.0 INTRODUCTION

) Various lifting surface schemes bhave been proposed for. the
analysis of arbitrary wing planforms. Most of these methods treat
this ~ fluid ' dynamic problem by relating one flow parawmeter to
another (e.g., downwasa to pressure jump). A- majority .of: the
approaches can ke characterized as constructing a .solution from a
composite ‘of ‘basic, assum=d distributions of fpressure, - vorticity,
or potantial, all of which satisfy the governing differential
equation. The boundary conditions of the prcblem determine the
relative  magnitudes  of the various distributions. - each :0of these
assumed distributions can cover the -entire 1lifting <surface or
"merely -'portions ot 1it, depending on  the particular numerical
schene. o ' o S

Although many of the schemes arise from the above described
common oOrigin, in prdctice there can be great differences among
them., As an example, consider the constant pressure. .panel (Ref.
‘'l) and pressure mode (Ret. 2) schemes. The constant pressure
“panel scheme uses a single +type of distribution. that is of
constant pressure ranging over some small region:of a. wing. A
solution using this method is one that consists of a set of steps
in the pressure level which can only roughly approximate the true
solution. However, the method is applicable to both subtsonic and
supersonic flows and ranges over a wide variety of planform
shapes. The pressure mode scheme, on the other hand, uses several
different types of distributions ranging cver all or at 1least a
large portion of a wing. The solution using this methcd can yield
very accurate pressure results. However, the method requires
careful attention to discontinuities in supersornic flow and it is
restricted in the geomatry cf planforms which it can treat. 1In
choosing between these +two schemes, trades between pressure
details and generality of configurations must ke weighed.

" "The FLEXSTAB system (Ref. 3) which pertorms the stability and
control analysis of elastic arbitrary wing-body configurations was
developed wusing the constant pressure panel scheme Lecause cf the
schemes plantorm generality. Using this aerodynamic method, the
program dgenerates not only symmetric stability derivatives (e.qg.,
CLG, CNh' etc.), but also antisymmetric stability derivatives
(€ay., Cga + CNg , etc.). It was soon recognized, however, that
confiqgurations with small ving dihedral could not be accurately
" analyzed for certain cf tteir antisymmetric derivatives,
specifically the rolling noment derivative, Ceg - Upon’
examination, it was discovered that the accuracy of the constant
‘pressure panel scheme was not adequate for the analysis of these
configurations. In an attempt to establish the requirements
necessary to trz2at such cases, a study wvwas performed (Ref. 4).
This study, based on an asymptctic expansicn of the differential
equation in terms of the governing flow variables (e.g., angle-of-
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attack and angleé of sideslip), revealed that gradients of the
pressure distribution appear to play as active a role in the
sideslip problem of configurations with swmall dihedral as the
pressures theamselves. This result ccnfirmed the belief.that the
constant pressure panel - scheme could not treat this problen.
Further investigation ot other lifting surface schemes which might
be applicable was initiated. This study concluded that no
existing scheme could provide the needed pressure gradient
accuracy required for the small dihedral confiqurations and at the
same time, provide the desired generality. Accordingly, research
to create a new scheme was begun. The result of this study was
‘the ' development of the "vortex spline" scheme: a method which
satisfies the above mentioned requirements. The key features. cf
this method are:

1)~ The wuse of independent, overlapping singularity distributions:
which are arranged such that +the final solution for the
- pressure..will automatically be continuous in both value and
- 'slope ({unless specifically required not to be at certain
- locations)

2) The-use of wing paneling to provide a basis for the extent of
o ‘coverage ' for each distribution, thereby giving it the
generality of the constant pressure panel method

3) - The satisfaction of boundary conditions using a least square
+ error technigue '

4) The application to both subsonic and supersonic flow
5) * - The use of "special Mach lines" fcr paneling in supersohic'
flow. : ’

" The current formulation of the scheme 1is restricted tc
"linearized, steady, potential flcw. The restriction to linearized
flow is due mainly to the use of the elementary horseshoe vortex
as the tasic singularity strength. This singularity was selected
because of its automatic treatment of the linearized wake boundary
condition and its compatability with the existing FLEXSTAE
" aerodynamic representation. . ; ‘

This report: includes: 1) the derivation of the numerical
scheme for flat wings. of zero thickness along with computed
results, 2) - the description of a compatible interference shell

representation (Ref. 1), 3) the description of a second order
numerical scheme to compute interaction effects such as those
vhich dominate for small dihedral, and 4) an alternate supersonic
scheme studied initially (included in the appendix). ’
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amplitude of quadratic ‘addition to panel edge, also
used as a coefficient of the equatlon for a oanel
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strength of Cauchy singularity LT EBL
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coeff1c1ent of the equation for a panel edge
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pressure coefficient

square error

integral of the kernel functlon in the x directlon R
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(constant in x variation in vorticity)
numerical representation of Gj-and Gj°
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Mach number, also, number .of control points

number of spline functions

neﬁtral point

pressure

cylindrical coordinate and also Mach line coordinate

roots of Mach.line -~ panel edge equation (intersections
of Mach line with panel edge)

area of integration and also Mach line coordinate

stiesgth associated with function Yy, an element
of{g .

perturbation velocity in x direction dividé& by U

free stream Qelocity

perturbation velocity in y diréétién divided by U,
peféurbation velocity in z direction divided by U,
downwash on control point, i

downwash on control point i, due to spline function, j -

downwash on downstream subdivision due to upstream
subdivision (used in supersonic flow)

downwash specified by boundéry conditions
downwash from spline functions
Cartesian.coordinate

nondimensional x coordinate

segment'of chordwise vorticity spline variation
(2 is an index, not a power)

Cartesian coordinate

segment of spanwise vorticity spline variation
(n is an index, not a power)

3yﬁ/3y (n is an index, not a power)



¥ nondimensional y coordinate

z Cartesian coordinate
a angle of attack s
8 \/1-Mz (subsonic) or M141»'Ksupéfébﬁidy"

€,.€,.€3 small distance from singularity-""(used to'evaluate G)

Y bound vorticity =

Yy spline function vofticity distribution

sP perturbation in pressure

ACp jump in pressure coefficient across wing surface
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A slope jump in panel edge’ slope

Ax, ,Ax, quadratic additions to panel edges-

4 running coordinate in x direction SRR
n running coordinate in y direction’ -

o shed vorticity

) cylindrical coordinate

(] nondimensional 8 coordinate

6 ciréumferential vorticity spline variation

p density of fluid

¢ perturbation velocity potential

44 potential due to a point doub1e£

¢, potential due to a point source

0, potential due to an elementary horseshoe vortex
a¢ jump in potential
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matrix of elements,AiJ

Matrix Notation

diagonal matrix of elements, ay

vector of unknown strengths,sj

... vector of known boundary conditions

transpose of matrix
vector
inverse of matrix
- Subscripts
homogeneous solution to differéntial equation.
control point evaluation L
lower surface
left panel edge .
leading edge
Mach line
define. location of singularity on shell surface
particuia;‘solution to diffefehtial'eqﬁatioﬁ,“u

regular (non singular varlable) and also right
panel edge

singular variable
trailing edge

upper surface

Coyee



4.0 REQUIREMENTS FOR NUMERICAL SCHEME

“Before developlnq a new scheme, a set  of -requirements® and
desirable features was eostablished. The requiremehts'wéré based
on 1) ultlmduely incorporating the scheme into FLEXSTAB and’ 2) the
analysis performed in reference 4 (the latter tbtecause  -the ‘main’
objective was to model flows around configuratjor with srall
geometric . dihedral). The desirable features were based”’ on
2xperience wita various lifting surface schemes. . = ~» &= i0ovo o

The  requirement set forth in reference & “‘was “that any’

numerical shceme that is to be used for interaction’ flcow ' analysis
(e-g., . sideslip-angle of attack) must be capable of oredlctlnq—iv

gradients of pressure to the same degree of accurlacy ‘a@s ~post
techrnigues currently predict pressure levels. ' This implies that
the basic equivalent pressure distribution used to ccnstruct the
solution must vary ‘linearly as a minimum. A linear varidtion
could approximate pressure gradients in the same way the constant
pressure panel scheme approximates pressure levels. ' Lo R

2 further requirement, established by the ultimate desire to :°

incorporate the final result into FLEXSTAB, was that the new

technique nust be adaptable to arbitrary planforms.’ ‘From -
experience with both pressure mode techniques and = paneling
techniques it was felt that treatment of arbitrary configurations
can best  be achieved through a ©panelirng technique. Such

techniques divide a configuraticn intc many parts’{(called panels).
A distribution of flow singularities is associated with each ranel
and therefore, these singularities "conform to- very: complex
g2ometries by mere adjuqtments to the panel sizes, shapes, and
orientations. s o :

"Experiencs using various numerical schemes also showed that
difficulties arise when attempting to model a 1lifting surface:

which is in the wake of another (e.4g., a tail behind a wing)i The- -

source of the .problem is singularities 1in the downwash ficld

1nheront in.various numerical formulaticns. Because of  these
51ngula11t1es, the downwash 1nf1uence is only correct at discrete
points in the flow field.  Fcr rpaneling techniques (thch

constitute the major source of this problem) this means that the
trailing surface's paneling is determined by the leading surface's
paneling or vice versa (which ever provides the ©more stringent
requirement)..  When dealing with arbitrary configurations many
such paneling problems can arise thus causing wmuch time " tc be
spent establishing the paneling arrangement and in many cases,
causing more panels to be used than would be for methods that dc
not produce downwash singularities. This was not considered
acceptable, therefore the requirement was established to eliminate -
as many of these singularities as practical.

8




As a desirable feature, it was felt that a basic schene
applicable to both subsonic and supersonic flcw would be ideal.
Although not .a requirement, such an arrangement could reduce the
coding needed to implement the scheme and at the same time allow
a slngle mathematical model tc be analyzed all the way from
1ncompress;ble flow ~throuyh the supersonic regire.

Flnally, ‘the most deslrable general rossikle approach would
be a single btasic scheme which could be used for both analysis and
design. This again would greatly reduce coding and at the same
time, permit the  user to alwmost arbitrarily switch apmalysis and
design tunctions while designing an aircratt. As an example, a
designer could generate a shape for a given flight condition and
then analyze tnis configuration "off design" all in one run -
greatly speeding. up the design process. ' ’ )

- Summarizing then, the general requirements are:

1) | Capability'tb_ﬁodei pressure gradients
2)  Arthitrary planform modeling
3)4 Minimumwdoinwaéh siqqularities'in flow field

The generil desiratle features are:
l)' ‘Unified approach for both subsonic and supersonic flbw
2) . ‘A single basic scheme for both design and analysis.

Betore any development of a new scheme vas begurn, a study cf
the characteristics of both subsonic and supersonic flow was
undertaken to =2stablish some of the more detailed numerical
considerations.. For subsonic linearized flow the properties can
be sumparized as: ’ '

I

1) A sinqularity in the pressure c¢r bound vorticity at the
leading edge which varies as the recirrocal of the square
root of th2 distance from the edge - this causes the flow tc

-turn abruptly at the leading edge.

2) The Kutta condition at the trailing edge (vanishing bound
vorticity or pressure) - this 1is required to make the
analysis mathematically unique and phyqlcally arises from
viscous effects. '

For supersonic, llnedrIZLd flow there are several features tc
be considered:



1)  Hyperbolic nature - a solution can proéeed from fore to aft
on a conflguratlon. ' “

~2) lelted regions of "influence - disturbances are limited to
the interior of ‘Mach cones and tend to concentratc most
sttongly along Mach cone boundarles.~ S

3) leferlng edqe ‘conditions - dependlng ‘ou the swéep of an edge
with respect to a Mach line,.the character ot the solution
differs: supersonic leading edges exhibit reqular behavior
whereas subsonic ones c'hom a singular behavior., Sub=cn1c
trailing edges requlre 'a Kutta condition, whereas superqonlc
ones do not. ‘

4) Discontinuous nature ‘of- flow across "special HMach 1lines"
(those emanating from planfcrm edge breaks - Fig. 1)~ along
special Mach lines-  the surface pressure and vorticity
distribution can exhibit discontinuous .behavior in ‘levels and
for gradients. Within regions bounded bty these. spec1a1 Mach
lines the flow exhlblts a smcoth regular behav1or. e N

Varlous schemes use dlffereqt means to representf'the‘ “above
characteristics and in m®many cases the characteristics are only
approximated; yet, these approximations yield adequate results.
Therefore, it 1is not an absolute modeling:requirement that a new
numerical formulation possess the ability to exactly represent all
of the above characteristics; it is only necessary to carefully
study the impact of each in the evaluation of the schene. ‘

'~ The next section countains the apalysis used to develop a new
numerical scheme, the vortex spline, along.. with the computed
results. The appendix contains another méthod> for supersonic flow
only, the doublet characterlst1c box, which vas 1nvectlgated but
not fully developed.

10
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5.0 VORTEX SPLINE SCHEME o s

5.1 General Approach

As outlined in th2 introduction, most lifting surface schemes
model flow problems by relating one flow parameter to another.
For analysis problems the known parameter is the vehicle shape
while the unknown is the pressure distribution. Since both the
known and unknown parameters can be expressed in terms of velocity
and velocity related parameters the forthcoming analysis will be
derived using these variables.

Assuming linearized flow, the perturbation pressure can be
expressed as: '

8P = -RU,Su (1

where su is the perturbation velocity in the free 'ﬁtream

direction with U, being the free stream velocity. Dividing
Equation (1) by the dynamic pressure,  §%»U; . gives:
P o8 . ' (2)
gl YUy
or
Cp=-2u (3)
where C is the pressure coefficient and u = 8u/U, is a

nondimensional perturbation velocity.

Across a lifting surtace there is a jump in pressure, ACp 0
corresponding to a Jjump in the perturbation velocity, u. This
jump can be =2xpressed in terms of another velocity related flow
parameter - the bound vorticity, vy :

(4
T:uy-u, (4)

vhere u is the upper surface velocity perturbation arnd Uy is
the lower surface velocity perturbation.

12




Since Y corresponds to an antisymmetric shear across the
lifting surtface (ref. 5, pg. 129)

Uy = -u!-u ()

‘therefore:

"""' B ~ i ‘k= ‘ . " -“Y = 2u (b)

and:

ACP'Z(uu-u‘)-4U'2Y

(7

. . From Equation (7) it . is «clear that the jump in pressure
across 4 %urfac;,-ds suming linearizedoflow, is directly related to
the shear flow parameter - .bound vorticity, vy ...

Un a two-dimensional planar surface, there are two components
of velocity which are discontinuous, u and v; there are
correspondingly two components of vorticity - Y «corresponding to
u and @ corresponding to v (see Ref. 6, py. 221):

0 = =(v, - V) = -2v %)

where v is the nondimensional, perturbation velocity normal to the
free stream.

In treating potehtial flow, ‘¢. and vy are not independent
and can be related through Helmholtz theorem (Ref. 6, pg. 221) as
(Flg. 2) : . , .

Q
Q
@
-

5x * oy T O (9)
in plementary solutiocn to the governing ditferential
gquation:
a2, 2 2 . ’
N T S B I I I (10)
(1-M") 5755 + 3 y? 3 z? 0

13
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‘FIGURE 2 - AXIS SYSTEM FOR FLOW MODELING



wvhich produces shear flow corresponding to vorticity can bLe
obtained by integrating the basic doublet (Ref. 5). This solution
termed the Melementary horseshce vortex" automatically satisfies
the linearized wake boundary condition of a jump in pctential but
no jump in pressure.

Using the elementary horseshoe vortex as the tasic
singularity, planar flow problems can be modeled as follows:

CW(X,y) = f,.f Y(L,n)K(E-X, n-y)d&dn (11)

where w(x,y) is the known nondimensional downwash velocity (for
small angles w is approximately a , the angle of attack), x and
y are field points, s is the region over which the singularities
are distributed, Y(g,n) is the wunknown bound vorticity
distribution, and K(g-x, n-y) is the horseshoe vortex kernel’
function. i

For subsonic flow, thé'“tegion of influence, 8 , and the
entire singularity surface coincide. The kernel function for this
flow regime is (Ref. 5, pp. 87 and 149):

2 E_X
K(C-x, n-y)* &3 Thoyp r‘ﬁt-nu B(n-y)

- (12)

wvhere B%=i-n2,

For supersonic flow, the region of influence, s, 1is the
portion of the sinqularity surface contained in the forward Mach
cone emanating from the field point (x,y). The kernel function
for this flow regime is derived in the same manner as was done for
subsonic flow (Ref. 5, pg. 87) except that the analysis begins
with the supersonic source (Ref. 5, pg. 88). Since the supersonic
sinqularities can only influence locations within the aft Mach
cone, the 1intagration along the line of doublets does not range
from X to o but rather from X to the intersection of the 1line
of doublets with the forward Mach cone:.from the .influenced foint
(1. 2., X—B‘ﬂn-§37 for a doublet line in the z=0 plane). The
resulting kernel function is:

LI X
2' ("l')’)z ﬁ(_x)z-aj(n-y“)r

K(g-Xx,n-y) =

(13)

where 8 is defined as M2-1 for supersonic flow.

15



As mentioned earlier, Y(¢,n) , . the unknown, can- be
represented 1in an approximate way as ' a series ot basic
distributions Y;(¢,n) , so that:

o

Y(cyn) = ZS YJ (C,n) _ o ((:]Q)
. J=1 S Co S .
where Sy is the. strength of the jtb diStribution. ‘This techrique
permits the integration tc be performed wusing the , known
distributions of v,(%,n); thereby reducing the problem tc an
algebraic solutlonJ for Sy . The algebraic formulation is
2stablished by specitying the downwash at M2N "control -pcints”

(i.e., collocation points):

W(Xi, yi) = Wi o i = ~1, ceoe M . (15)

vhereA,Wi is the downwash at xyyi. "Substituting Equation (1“) into
Fquatiou (11) and integrating yields:

Wy o= zAu Sy CLT L, M (16)
J=1 e :
» . owWi
The aerodynamic influence coefficient, Ayy3= 38; , represents
the integral in Equation (11) (with Sy =1) and gives  the downwash

at point i due to unit strength® of the jtPdistribution of
vorticity. Equations (16) are a set of algebraic equation fcr S
For ¥ equal to N, Egquations (16) are a determinate set of
1lgebraic expressions with® a unique solution for the S For M
greater than N there are more equations than unknowns and, as will
he shown later, the Sj can be determined im a least  square error
sense. Once tne Sj are computed the pressures and pressure jumgs
can. be computed trom Equatlon (7) - -

Lifting surface schemes using the horéespoc vortex Kkernel,
differ in the form of the basic distribution, ¥ (t n) that they
assume. They also differ in the manner 1in thch the toundary
conditions are satisfied, through the location of the field pcints
and/or the number used in relaticn to the number of unknowns. The
next section describss the type of vorticity assumed for the
vortex spline schene.

16 .



5.2 Selection of Vorticity Distribution

"o T'wo-Dimensional Study -
Tt At SRR e R e

Pefore attempting a full three-dimensional study,
various numerical techniques were first developed in two-
~dimensions. These two-dimensional studies . supplied insight
"while at the same  time :'providing a fundamentally simpler
means to obtain numerical results than would be required for
the full  three-dimensional problen. The initial
"‘7_1nvest1gatlon concerned various vorticity distributions. In

two dlmenqlons,"the fba51c vort1c1ty kernel functicn for
dounuash 1s- ‘ '

K(x) = L 1~ A

27 x-¢

“therefore the downwash is:

X2
Y(¢&
S s e e w(x), = f x-i-;) g , (18).

R study was made wusing this  expression as a two-
dimensional" ' formulation of the constant pressure panel

scheme. With vY(f)=1 for x; < ¢ < x, the integration can
then be performed yielding:

X = X3 (19)

L ) = e

X - Xp

Figure' 3 ,éhbis, how the scheme is used to model the
'101d1ng on a flat plate at anqle of attack

" Thée ‘vort1c1ty distribution': is a 'series of step
functions. The influence of - the jtRstep function, having

_ strength, Sj , on the 1thqppt:oi point can be expressed from
' Fquatlon (19) as-‘; o o o ' - B ‘

e

- w(x{) =wgy = 5= S; 1n (20)
oyt a8y e |

or
Qi = Aid SJ (20

17
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Aly = élT Il.nl..___nlxi ~ X _
Xy - xdfl . (22)

The 1location of the ccmtrol points is computationally
determined so that the numerical results will be correct over
a wide range of problems. Since there is one «control point
and one value of S corresponding to each panel, Equations
(16) constitute a determinate set of limear algebraic
equations  (M=N) which can easily be solved for the strengths
SJ'

The thing to note about the constant pressure panel
scheme 1is that the downwash field for the panels contain a
logarithmic sinqularity at each panel edqge. This means that
the control point placement on the panel is critical since
the gradients of the downwash can be large.

Figure 4 shovws the results of the flat plate analysis
for subsonic flow. These results show the large downwash
gradients and also show that there is no way to specifically
invoke the Kutta conditior at the +trailing edge. This
condition is implied through the control point location.

In spite of these problems the results are fairly good;
but, however, they are not sufficient for the interaction
problem (as pointed out in the introduction).

In order to improve upon these results it was apparent
that two things had to be done - 1) remove as many of these
logarithmic singularities as practical, and 2) establish some
definite means to introduce the KRutta condition in subsonic
flow. The first item was achieved by noting that the
logarithmic singularities arise from jumps in the vorticity
strength therefore a new distribution had to be formulated
which had continuity of vorticity level. This implied that
the vorticity had to fposess at least a linear variation
(consistent with the requirements set forth in Ref. 4, and
outlined in the Introduction). There are two means to obtain
a continuous distribution using a linear distribution - one
is to place separate continuity constraints on the solution
across = panel edges using a method such as Lagrangian
multipliers; the other is to form the functions so that they
automatically provide continuocus distributions. This second
means was selected because of the inherent simplicity in the
mathematical formulation. Figure 5 shows the basic function
used for the new two-dimensional numerical scheme. .- This
figure also implies that there 1is still a Jjump in the

19
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vorticity at the leading edge which causes a logarithmic
singularity. The only way to remove this sinqularity at the
leading edge is to use the proper asymptctic form which 1is-
related to the reciprical of the square root of the distance
from the edge (Figure 4). The newv scheme was tested with and
without the proper singular form, the conclusion was ‘that
there was sufficient accuracy for lift and moment without
this singular variation in the vorticity. C

Figure 5 shows that the triangular distribution = of
vorticity provides a natural meams of introducing the Kutta
condition by omitting the 1last function. This oc¢mission
forces the vorticity to vanish at the trailing edge.

The vortex spline formulation is based on a different
means of satistying the boundary conditions which will be
discussed later; but the fundamental.approach is to compute
the downwash at discrete locations using the basic triangular
distributions of vorticity, vy, in Equation (18) -:with the
limits changed to include two panels per distribution (Figure
5). Figure 6 shows the results for subsonic flow.

Basic Three-Dimensional Function

For the three dimensional formulation of the scheme, two
components of vorticity must be considered, vy and o . As
pointed out earlier, these two components are not independent
in potential flow. This means that it is not possible to
arbitraily legislate that both components vary 1linearly in
all directions. Using Equation (9) to solve for ¢ in terams
of v gives: ‘

-3 o _ ;
g = —-s—y-deX (23)

From the +two-dimensional study where vy was the only
component present, the variation streamwise (x) need=d to
avoid logarithmic singularities was linear. Equation (23)
then states that ¢ mwust vary quadratically in x. This same
analysis can be repeated using the other requirement that ¢
vary linearly normal to the stream (y) in order to eliminate

singularities. Solving FEquation (9), this time for y ,
yields: .

) S e o ,

Ve - s fow (24)

This means that Y npust vary quadratically in y.

22



’0 Spline Results (10 Panels)
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FIGURE 6 - TWO DIMENSIONAL SPLINE RESULTS

23



- Summarizing then: .
Y - linear in x, quadratic in y
0 - linear in y, quadratic in x

_ . (A plot of o versus y would be analogous to Figure 5-
a series of linear functicns.)

With this above variation the only places where
singularities would occur on a simple rectangular wing would
he at the leading edge (due to a jump inY) and at the tips
(due to a jump ino) for subsonic flow and at the tips cnly
for supersonic flow (Fiqure 7).

Since. the elementary horseshoe vortex is best descrited
in terms of vy , the criteria established abcve for this
component of vorticity was the one used as the basis to
derive the three dimensional distribution functicn presented
next. ,

For the x variation of ¥ in three-dimensions, the
requirement shown above is the same. as that for two-
dimensions. However, the y variation has to be guadratic of,
in more fundamental terms, continuous in both value and slope.
in order for o to be continuwous in value. The logical
means to form such a surface distribution seemed to be as a-
product of two functions - one providing the desired 1linear
x variation and another providing the desired guadratic.y
variation. To see how this y variation was formed, consider
the basic triangular form wused 1in two-dimensions. This
distribution has, in general, three discontinuities in slope.
By adding three discontinuous quadratic distributions to this
basic form, these discontinuities can te removed. Fiqure 8
shows how this is accomplished. The requirement for each of
the quadratic functions is that they begin and end at the
centers of ©panels (spanwise) with zero value and slope, and
also have a discontinuity in slope at the panel edge which
cancels the discontinuity in slope of the triangular
function. The overall function then ~becomes .six separate
quadratics which <cover four panels spanwise. The equations
of these gquadratics can be computed from the imposed boundary
conditions cn each segment. Table 1 gives these results.
(As a note, these spanwise functions could have alsc been
developed using three quadratics over three panels specifying
the slope and value matches at the two inner panel edges, and
also requiring the distribution to vanish in both value and
slope at the outside edges. The additional requirement cf
unit’ maximum - value would then completely specify the
distribution.)

24



Downwash singularities
- along these edges only.

—y
.

T

|

Note: no downwash singularity at leading edge, if edge isrsuperéonicfyw"

FIGURE 7 - LOCATION. OF DOWNWASH SINGULARITIES WITH VORTEX SPLINE
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If X415 uscd to represenrt the chordwise variation of vg
and Y4 is used to represent the spanwise variation of Yy ” the
distribution of wvorticity could be expressed as a doubly
subscripted variable, ¥4,4 . However, in order to conforn
with the singly subscripted Yy ot Equation (14), a unique
relationship between k and i,j was assigned so that:

Y T Vi3 = X4 Yy k=1....N (25)
where Y consists of the six quadratic seqments de (n =
1,24e05,46) ghoun in Table 1 and Xj consists of the two linear
segments Xy (m = 1,2) shcwn in Fiqgure 5. Thus, the analytic
desctiptign of Yx = Yy, consists of twelve discrete
pacts, Xy Y4@ (am = 1,2; n = 1,2,...,6). These parts are

distributed over eight panels (four spanvise, two chordwise)
as shown in Fiqgure 9.

For a set of rectangular panels, Xyis only a function cf
the streamwise coordinate, Xx. By definition, Yjis only a
function of y, providing the spanwise edges are aligned with
the. free stream (which by the panel definitions, will always
be the case). If the panels are not rectanqular, X; becomes
a function of toth x and y so that it varies as the fraction
of local chord:

1 X - Xp (26)
Xy = ————
Xrg ~ XLE
and
2 g - X
Xy * o0 (27)
XTE LE

In the above equations, xpp and xqp are the leading apd
trailing edge coordinates of the panel covered by segment x1
(x1 ); this 1is illustrated in Figure 5.

2
Except for rectangular panels, xl and Xy will be
functions of y. If the fraction of local «chord 1is defined
as:

X - X

X = LB
XpE = XIE

then X4 bLeconmes

28
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(30)

The above representation holds for all leading and
trailing, panel edge shapes. ' :

The bound vorticity distribution defined by FEquaticn
(25) (termed splin2) and shown in Figure 9, produces no
singularities in the downwash, This function 1is. scaled up
and down in the solution exactly the same way as the constant
pressure panel scheme using a multiplicative constant which
1s the unknown.

The next sections describe how a wing is subdivided into
panels and how the basic splines are overlapped using these
subdivisions.

Modeling Vorticity on a Wing Using Vorticity Splines

Figure 10 shows a paneled wing with both a spanwise cut
and a chordwise cut - to display the chordwise and spanwise
overlappinyg of the basic spline functions (assuming unit
amplitude) . For the five <chordwise functions and the six
spanwise functions shown, there will be a total of thirty
(N=30) spline functions distributed over twenty-five wing
panels. The components of a single function are 1identified
(shaded area) +to depict 1its relationship to the overall
arrangement. This figure also shows that the Kutta condition
has been imposed (zero value of furction at  trailing edqge).

As shown 1in Table 2, special functions are used at the
root and tip, the functicns for symmetric flow will be
discussed first.

The first root function (root function 1) is the right
half (spanwise) of a ncrmal function. The =second root
function {root function 2) is .composed of segments
'Y3, Yh’yj and y® of a normal function with ¥6 of the
corresponding function on the left half of the wing added to

of the right side function. Addingy these two teras
accounts for the overlapping of the right and left halves.
{This <can be done since the magnitude of functicn
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Root Function - Symmetric

n vy v
Y = A + By +Chy

4
(Y ranges from 0 to 1
Y 5 on each panel,t )
" n
Lo+
y =y
Bowndary Conditions Constants
t
Qn) Left Bige | Right Edge Ap Bn Cn
V-3 " Do not|exist - - -
4 -6 " Normel |Rmections
Note: The normal function represented by segments 4 through 6 at the root
meets the proper symmetry requirement of vanishing slope.
Root Function 'l - Antisymmetric
Segments 1 through 6 do not exist
Root Function 2 - Symmetric
Normal Y2s egment
Y*Function segment
from left side C 1 T + ) -y
L ’ p
y -y =y
: Bowndary Conditions Constsats
Segaent —
(n) Left Bige | Right Bige  Ap Bn Cn
1 Does ndt exist - — -
. Combi 1 i )
) m '1ne overlapping 1/4 0 1
functions |at the root
36 Normal {f:nctions
TABLE 2 -~ SPECIAL SPANWISE FUNCTIONS




Root Function 2 - Antisymmetric

-.MNote: 2 & 3 are combined
‘ \1nto one segment

R

l——-—? }-—»; ——y .
" Boundary Conditions Constants
gment — ,
(n) | Left Bige | Right Bige An B, -~ €n
1 . Does [not exist 1 - - -
R "
2-3 Y =0 y2ev s ¢v -0 3/2 -3/4 -
46 Normal | functions
Tip Funection - 1
!n
T & B G
=y
Boundary Conditions C Constants S
(n) Left Bige i’i Right Edge : Ap Bp . cn‘
- bNor'mal; functions
. Y._s,_’, Yij.‘Y.‘-s .
=0
5. . | 3/4 0 -3/4
Y.-5 - Y! .
6 does [not exist _ = _

TABLE 2 - CCONTINUED
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Tip Function -2

N

o y v
N - !onndnry'Cbnditian‘ Constants
s ¢ _ S . : .
tn) Left Rdge Right Edge An -Bp A B . ,Cn .
1 Normal| function .
2.y1 2.y -
290 y2=y? L+ 1, hety L+t -
: Yi=y? , :
. Y’,=Y2 . B
14-6 Do not exist - - . -

* Note: An additiona] constraint was placed on segment 2 and 3 which required that
' the combined spanwise distribitions be capable of representing a constant

TABLE 2 - CONCLUDED
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corresponding to the Y0 segment 1is the same as that
corresponding to the y2 segment- by sympetry. The reason for
this treatment will be explained in the next section.)

The next to last tip function (tip function 1) has vl ¢

Y2, and y3 as normal segments. yb does not exist; y* and

15 are one continuous gquadratic function, the boundary

conditions of which are: 1) continuous slope and value at
left edge of the tip panel, and 2) zero value at the tip.

The 1last tip function (tip function 2) has Yyl as a
normal segment, but y2 and y3 , the only remaining segnments,
are determined such that when this tip function is added to
the other functions, the combination will produce a constant
value of Y it all the strengths {(rultiplicative
coefficients) are the sane. This requirement was set
because, in supersonic flow, the vorticity  strength can be
constant approaching a pointed tip. This tip distribution
modeling capability also tended to yield the: best numerical
results of any of the variations studied (for both subsonlc
and qupersonlc flous).

For 'antlsymmetrlc flow (e.g., rolling) the roct
‘functions have to be altered. Figure 11 shows these modified
‘'spanvise variations. The first root function (Y,) has been
.deleted. The most inboard function (Yo ), for the

antisymmetric case, 1S the same as a retlectlon of the next
‘to last tip function (Y/). The remaining functions across
-the span are the same as for the symmetric case,

Table 2 gives all the coefficients for the special
functions just described.

JPigure 12 shows an example of how two functions are
overlapped -~ that is share common panels. This illustraticn
depicts one of the many possible ways that overlapping can
occur.

Arbitrary flow Froblenms involving syametric
configurations can be decomposed into a symmetric and an
antisymmetric flow problen. In this way, only one half of

the wing need be treated for each of these reduced problens.
For symmetric flow, the wunknown strengths have the sanme
values for corresponding functions cn opposite sides of the
configuration's plane of symmetry. For antisysmetric flow,
the strengths have the same magnitude but opposite sign for
corresponding functions. Using these properties tc formulate
the problem results in the concept ot real and image
relations and the satisfaction of boundary conditions on one
side of the plane of symmetry only (the other side

‘35




FIGURE 11 - ANTISYMMETRIC SPANWISE SPLINE DISTRIBUTION
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automatically satisfied by the appropriate symmetry
relation). The symmetric problem is constructed as the sunm
of the influences from the real and image functions, where
real and 1image iwmplies corresponding functions on opposite
sides ot the symmetry plane. The antisymmetric problem is
constructed as the difference of the influences from the real
and 1image functioms.  This scheme reduces the number of
calculatlons to be performed by half. '

Wing Panelan

As mentioned earlier, the basic paneling procedure is to
cut the wing streamwise to form panels so that . two panel
edges are parallel to the free stream. This arrangement
allows the kernel function integration to be performed more
readily by introducing simple limits; 1t also simplifies the
expression for the Y variation of. the basic vorticity
distribution (making it a function of y only).

The 1ipitial assumption for paneling was that the new
technique use the same trapezoidal paneling as the constant
pressure panel method (Ref. 1). Quickly, it was realized
that any non-rectangular planforms would have discontinuities
in the slopes of the fore and aft panel edges. Such
discontinuities would introduce logarithmic singularities in
thé downwash field, imncluding the wake. The source of these
sinqgularities can be seen by inserting the expression for the

Y spline distribution (Egq. 25 ) into Equation ( 23:).

" xpp(¥),x
o, ¥) = -5 [ x(&, y)¥(y)ac (31)
xu:(y) ‘
The upper limit of the above integral depends on whether

0 is computed on the distribution (limit equal x) or bebind
the distribution (limit egual xTE(y)). :

. The above equation shows that if any of the variables
Y(y)s X(%,y)sx1g(y) or »pg(y) has a discontinuity in slope with
respect to y then o will be discontinuous in value -
producing the logarithmic 'Sinqularity.‘ of course .Y(y) is

generated so that it is continuous ip both value and slope so

vill not be of concern. This shows that planform “ breaks,
which cause - jumps  in panel. slopes, vl;l produce the
undesirable downwash sxngularltles. :

A method vas developed to 'eliminate this probles by
eliminating the planform breaks. Pigure 13 shows the
procedure and gives the resulting equations for the planform
edyes. The procedure shown is exactly the same one used to
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change the basic, linear distribution of vorticity into the
quadratic distribution (Figure 8).

An additional benefit of gcing to the quadratic edge
panels is that they provide a more general modeling element
to handle arbitrary planforms. Later results in this report
will show their usefulness in modeling a circular wing.

The basic panel then 1is one with two parallel,
streamwise edges with two gquadratic edges; the quadratic
changes coefficients at wpid sgan.  With this . paneling
arrangement there will be no downwash singularities in the
wake (except from the tip)) and theretore, meets the desired
requireament. (The gquadratic paneling could alsc have been
developed using one continuous gquadratic across each panel
edge: 1in order to he compatible with the three spanvlse fanel
developments mentioned earlier. )

The paneling described above is the one always used 1in

subsonic flow. For supersonic flow, however, there are two
choices of paneling - the one just described and another
termed "speciai Mach ‘line paneling.” In this latter

procedure certain Mach lines are identified, across which the
vorticity level and/or gradient «can bLe discontinuous . (see
Figure 1). These lines eminate from planform breaks, tips,
etc. Along these lines continuity conditions can be relaxed
and "downstream sSections can be treated as separate wings in
the wake of the upstream sections. Interior to each section,
the paneling 1is treated as though that section were a
separate subsonic wing (normal quadratic panels), so that the

Y distributions for each subdivision do not overlap panels
of "an- adjacent subdivision.

Figure 14 shows a square wing at M equal V2 comparing
the normal geometric paneling with the special ‘Mach line
paneling. Note that the planform breaks are eliminated even
when they are due to the special Mach lines. Alsc note that
since there are no sinqularities in the wakes emanating fronm
each subdivision, the ©paneling of the subdivisions can be
independent (eoxcept at planform breaks where the edges have
to be aligned to ensure that the quadratic edges fore and aft
ceincide).

Numerical results computed with the special Mach line
paneling (preseated later in this report) show that this
procedure greatly improves the details of the pressure
distributinn and at the same time allows for even greater
variation in paneling options then arfrforded by the normal
geometric paneling.
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--.5,3 Evaluation of Kernel Punction Integrals

p i
e K

Equation (11) gave the ihfegral expression which relates - the'’

downwash, W, to the vorticity distribution, y . Equations (12)
and (13) gave the kernel functions appearing in the’ integral for
subsonic and supersonic flow, respectively. .- This section
discusses the evaluation of the integral for both flow regimes and

the additional problem of establishing the 1limits for the

supersonic. integral.

Substituting the expression for Yv4 ,  the 'basic spline
distribution of vort1c1ty (Equation  (25)), into the downwash
integral. (Equation (11)) gives the downwash at pcxnt 1 due to un1t
amplltude of the jth spline’ d1=tr1but10n- _

YR X TE(")) ‘ . R
ff [X(C n)Y(n] K(g -~ X W n-yi)dCdn (32)

YL LE(n) - | | e

vhere [XY], denotes the right hand side of Equatzon (25).‘ Yy and
YR are the fe and! rlght edges, respectively, o¢f ‘the  panel
associated with X J (components of [XY])). Xrg(p) and Xpg(n)
are the trailing and leading edges, respectively, of that same
panel. The syabol refers to the principle value of the integral
(Bef. S5, pg. 132y. The total downwash at x3 , yy4 is then the
sum of the influences from all the integrals for the various
spline distributions, each multiplied by its respective strength,

SJ. vy in Equation (32), corresponds to Ay in Equation (16):
N | "
v, = 2A“ 8y (16)
} J=1 ' o e : :

Examination of the integral in Equation (32) shows that since

ypand yg are constants, due to the fact "that they are parallel
%ges,v the - integration can best be performed cn ¢ first.
Returning 'to Equations (26) and (27) for x, 1t is noted that both
can be urltten as: . . .

X = ¢+ t-f(n) {33)

c(n)

o w




vhere the variabiés of integration,' 14 and n , replace x and
Y, Trespectively. Substituting Equation (33) into (32) and
replacing Ayy for wyy yields two general forss:

g ‘1 ' YR xTE(")
Ay =t 1r(n)(‘ff(—"';7 J eK(t-xin-yi)ae (34
SRS APEN = ", XLE(n) |
and T % xT
4 2 E(n) S
. f(n)
Ay | +f’ Y(n)c(n)dnf K(¢- xi,n-)i)dt (35)
B . XLE(n)

" 'For arbitrary edges the integrations indicated by Equations
(34) and (35) cannot be perfcrmed analytically for both 14 ‘and
n . The integration in the 4 direction can be perfcrmed
analytically, however, leaving the integration in the n
direction to be performed numerically. Even for the special cases
vhen the integration can be performed entirely analytically (e.g.,
rectangular panels), it is faster to perform the cuter, g
integration numerically. This is because of the number of
hyperbolic functions, etc. which arise from the analytical
expression and must be evaluated by the computer.

,Léttiﬁé:,_A“'
) - xpp(n) . | |
",._‘4Gl'(n).'f © LK(E- xi,n-yi)dc (36)
x (") : : .
and .XTE(”
G (n)- K(t - x, , - 4
2" i“LE(n) (C-x 0 n-yg)ac (37)

the resultlng expre551ons for 6(n) in subsonic flov can be written

as: ¢2 (x+¢)
I [ —L—\/("x ¢y + 820y~ ”)2]

o) - r—-m

- T I ¢ xre(n) :
- _;_.;ln,(x‘-cy\/;l () + 8 (yl-n)z' ' LE('”) (38)
é ‘ g= xpp(n)
11 . 2
2 = g e Vi of + oty | ( (39)
. . L= XLE n) v
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and in supersonic flow as:

. o 1 xy + § - : 2 a2 _ 2 " * . .'
. Al”_Gli(") X [2(1'1 - n)e V(‘i ) -8ty R

A . . . = xTE(n,)or iML('?) ' ' ]
(%, -¢)+ \ﬁxi' 4 )2- Bz(yfnf }

' . . !
N N ‘ 3

) |

e FIR '

L= xyp(n) - (wo)

2
- 8
- 1n
+ >

C=xTE(n)or xl;’lL('ﬂ‘). h

D S S 2_ 2 2 S
G2(.n)— -2-7—(—;1-:7)-2' ﬁxl-:) B.(yl-n) , B (hlv).

¢ =xpg(n)

.. - .The notation at the right side of the above expressions is
“the standard one for integrals, indicating that the exgressicn is
first evaluated with 4 replaced by the upper 1limit and then,
subtracted from that, the expression with ¢ rerlaced by the
lover limit. - ’

Under certain circumstances Equations (38) through (41) can
become singular due to the (yy =n) term in the denceinator. The
order and presence of a 51ngular1ty in the integrand depend on the
relationship of y,to the two side edges of a panel, yy and yp ,
and the relationsL1p of x; to the other two edges xypfn) and xTg(n). It
is ‘obvious that if the control point y value falls to the left of
Y1, (the left edge) or to the right of yp (the right edge) the

.integrals involving (y~n) will never be s1ngular._ For this case,
the numerical 1ntegrat10n with respect to n from yp  to YR - can
‘'be performed routinely using Gaussian quadrature. It is also
true, but less obvious, that if the x value of the contrcl ©pcint,
X4y » lies upstream of xyp (y; ) then there will be no singularity
regardless of the y; value (this can be verified by taking the
llmlt of the expr9551on evaluated at both limits as n approaches
y For this last case, however, care must be taken that ncne
% the quadrature points falls tco close to y;, when y; falls
between Y, and yp . Such proximity could give rise tc numerical
.problems. Other ‘than taking this precautionary measure, the
‘integration is routine. '

If the value falls between y; and yp and the xy value is
downstream of t%e leading edge,x;p(Y; ), then the G(n) functions
cannot be inteqgrated directly. or th1s case there will be three
basic singular forms: 1) a logarithmic singularity (for only the
linearly varying terms, G1l), 2) a Cauchy s1ngu1ar1ty(1/yfnfCtn),
and 3) a Mangler 51nqu1ar1ty (1/(yl-ﬂ) form) . The first
singularity is integrable in a Riemanian sense, but the latter two
.are not. These singular forms arise from taking the limiting form
of the. kernel function as the point of evaluation approaches the
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plane of the singularity. There would be no sinqgularities if the
limiting process had been taken after the integration. The
'advantage of taking this limit before integrating is the resulting
'simpler expression. The cost of taking this 1limit 1is the
"introduction of the singular forums. Although the Mangler and
Cauchy expressions cannot be numerically integrated, they cam bte
eliminated from the integrand and treated separately (Ref. 7).
There are several ways to accomplish this, but basically all the
methods assume that the integrand can be expanded about the
singularity as:

E(").._ﬂ.‘_!+(_‘£___)+A'L1n 4+ Ag 4 A;"l"')"'Az(’g"')z‘. . o
Vo Ag-m) Yg=n '

(42)

(yy=n)

Here G(n) represents either Gj (n) or Gy (n) multiplied by
‘the remaining n functionality (from Fquations (34) and (395)).

Expansion 42 can be pérfoimed either analytically or
numerically. The analytical method is covered in Reference 7,
so it will not be repeated here.

ngéricallf7§(n ) cdn be exrressed as:
G(n) = Gg(n) + Gg(n) 43y

where Eé (n) contains all thelsinqular..forms ‘and ER (n ) 1is
regular. TIn the vicinity of the singularity, the leading terms of
the series im Equation (42) QODinate, therefore:

+ A (48)
(¥ - n) yg-n 0

y=n

(In region of simngularity)

The only term of the above series which is antisymmetric
about the singularity is the Cauchy tern, Ac/ Y-n , therefore,
it . is possible to evaluate the coefficient of this term
independently by computing G(n ) at tvwo points clcse to the
'singularity=' - ‘n-'y1+‘c1a'nd n=yy - €:

Y

1}

c -' -
§.l[c;ug-cu - G(yg + ‘1)] | (45)

The choice of €) is a function of the number of significant
"figures the machine uses to store numbers and, to a lesser extent,
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the manner in ihich the expression for G(n ) is constructed. (The
accuracy of G( n ) near the singqularity is best if the origin of !

/

{

1]
{

the axis system is located at the singularity. This origin:
location avoids the numerical prcblem of adding a small number to

a large ore.)

Since the remaining terms of Equation (44) are all symmetric
about the sinqularity, they must be evaluated simultaneously. The
three unknowns Ay , Ap , and Ag can be numerically computed by
evaluating G(n) at three pcints. Because the Cauchy term has a
rather large influence, numerical error can be reduced by
eliminating this antisyemetric term (as well as the_ other
antisymmetric terms) from the calculation by evaluating G(n ) at

equal distances on both sides cf the singularity and summing the
influences. This gives three equatlons for the three unknowns:

Ry + 21lnjg|Ay + 2Ag = T(y +€)+ G(y-€1)  (uea)

Hﬂnl o

AM + 21ney| A, + 249 = G(y +€p) + G(¥i-€,)

n?bl”

(46D)

lvo

2 Am * 21nl€giAL + 28 = G (¥ +€3) + G(y - ¢y)
€3 (U6cC)

These equations can be solved for Ay and Ay . A, will nct be
required as will te shown next.

Using the above results, ES {(n), Equation (43), can bte
expressed as: :

- A," A
Gg (n) = M ¢+ == 4+ A 7
s . ln|y, «n (47)
(,1_,,)2 yg-n L N

The above expression can be integrated directly using the
integrals given for the Mangler and Cauchy forms in Reference 7.

1

f AM dn = AM 1 -
%, (g -2 - (y;~vyg) (yy-yp) (48)
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YR

A Yy = ¥,
f Lo 40 = Ac [-1n R
n v - u9)
YR- o
S ALln\n-nldn"AL['(yg"R)anl'an
44 50
+(¥t'”L)ln|¥1"L|"R*YL]-' &9
The non-singular part of G(n) is then: | B

3 G(m = Tgl) = Gomy - =2

= - - -  emeeem— -
| r(™ G(‘n) Cs G("") -2~ Vi-n
The above expression picks ufp ‘the A3 and remaining terms _which
vere dropped to compute the Ay , Ag , and Af, . GRr (n)
contains no forms which cannot be integrated numerically_ using
Gaussian gquadrature. Therefore, numerical integraticn of GR(n),
vhen combined with the results shcwn 1in Equations (48) . through
(50), constitute the entire integration of G(n ) to evaluate Ayy .
(It is important to mention again that the allowable magnitudes
for €& , €, , and €3 depend on the number of significant figures
carried for G{n) and are therefore computing machine derendent.)

The above procedure uwas compared to a method which used the
non-sinqular, out of plane exgression for the kernel. This
alternate procedure integrates the out of plane kernel using a
control point very close to the sinqularity plane. For the same
accuracy, the planar coaputational scheme, just described, wvas
about ten times faster. Both schemes used a self checking
integrator which breaks the interval of integration intc fparts
small enough to be handled by a four point Gaussian quadrature
using eight points as a check (Reference 8).

The ¢ integration 1in supersonic flow is not always between
the leading and trailing edges. Figure 15 shows the forward Mach
lines emanating from the point Xi,yg. These lines are shown
cutting a panel, the significance of this cut is that portions of
the panel ahead of the lines influence the point x4 ,y4 , vhile
those aft do not. In terms of the kernel function, the regions
aft of 'the 1lines cause the values 1in the radicals to'become
negative wmaking the -expression for the integrand complexi..
Physically, this means that the influencing regiocn is limited to
the area within the forward Mach lines, therefore, the limits of
integration should be adjusted to include only  this region.
Figure 15 shovs two distinct regions of integration, one from the
panel leading edges to the panel trailing edges - Region I; and
one from the panel leading edges to the Mach lines - Regior II.
The integration over a panel is the sum of the integrals over the
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FIGURE 15 - FORWARD MACH CONE ON SURFACE .OF A WING



tvo types of reqgions (as will be shown in Figure 16, there can Le
several of each type on a single panel).

The 1integration of the supersonic kernel in the ¢ direction
from leading edge to trailing edge was given in Equations (40) and
(41) . The integral from leading edge to Mach 1line is the =sanpe
except for the  upper linmit, Xpg(n), replaced by the equation of
the forward Mach line:

4 —lfighiygbiﬂé Mach line
CML = xi ¥ B(n - y‘ ) (52)
+ left go1ng Hach line

This upper limit on § simplifies the expresclons in Equations
(40) and (41) by forc1ng ‘¢he radicals to vanish. The integrands
for the n integration which result from this changing of limits
ongt are therefore no -more complicated to integrate than the cnes
already discussed. The' problem then is identifying the various
regions on the panel. so that the llmlts for the n integrations
can be determined. - s . '

For curved panel edges, a Mach llne can 1ntersect in various
wvays. Figure 16 shows sSsome of. ‘these’ combinations. Several
intersection characterlstlcs can be noted from the figure:

1. After an intersection Hlth a tralllng edge, the Mach line can
: intersect either the tralllng edgedaga;n_or the leading edge.

2. After an intersection with a leading eﬁgé the Mach line «can
intersect either the leading edge again. or the trailing edge.

3. Proceeding left to right (positive n or .y direction) each
intersection changes the region - from a Region I to a Region
II from a Regionm II to a Region I and from a Region II to a
Region 0 (Region 0 does not influence the ccntrcl point); but
there can never be a jump from a Reglon I to a- Fegion 0 or
vice versa.

The above characteristics can be used to fcrm a logical
scheme to, 1dent1fy the various regions. and find . the limits of
Lntegratlon.‘ ‘“Using the quadratlc equation’ for the planfcrm edges
from Figure 13 and the equation fcr the Mach lines (52) expressed
in a common coordinate system, a quadratic expression for the
intersections can te obtained:

X4 7 B(n=y)-a-bn-cnd=0 (53)

vhere a + bn+ cn2 is the =oguation of the panel edge .
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The four roots of this experession (two for the +8 and +tvwo
for the ~«8 ) represent the four possible intersections of the
panel leading or trailing edges and their extensions with the Mach
line. . A total of eight roots are obtained when both 1leading and
trailing edges are considered. The scheme to identify the regions
and limits on n takes these eight roots and arranges them so that
they are in order according to their n value (from left to right).
With each root is an identifier which states whether the "root
belongs to the leading or trailing edge. Roots to the left cf the
left panel edge (y;,) are excluded as well as roots to the right of
the right panel edge (YR) .

The integration 1limit determination ©procedure starts by
establishing vhether the Mach line crosses the 1left panel edge
ahead,. behind, or on the panel. If ahead of the panel, the first
region, bounded ty Yy and the first intersection (which has to
be with the leading edge) will te a Region 0 (no integratiocn - no
influence). If on the panel, the first region will be a Region
II. If behind the panel, the first reqgion will be a Region I. If
there are no intersections (roots) between Yy and yg then the
entire panel is of the same regqion type. The key region is Region
II. From this region, the next region will be either 0 cr 1I
depending whether the intersection is with the leading or trailing
.edge respectively. In going from one region tc ancther, Region II
will always be involved. ’

Figure 17 shows the logic block used to establish the limits.
Once the procedure is started, at the left panel edge, it proceeds
automatically with ¥, being the first limit and yp being the
last. As an example of hovw the 1logic block results are used,
Pigure 17 also shows the regicns and n 1limits of integration for
a right going Mach line whose origin is positioned behind the left
panel edge (Ry denotes a root cf Equation (53)).

One quick test which can be made to see if a panel has any
influence on a control point before using the above logic is to
check the X value versus the w@most forward ¢ value of the
panel edge.” If x, is upstream of this ¢ value then the panel
cannot influence the control pecint regardless of the supersonic
Mach number. This computation can save evaluating the sorting

roots in many instances.

A Because the supersonic flow problem requires this added
computation, which involves only the panel-control pcint
relationship, and since each panel is covered by several VY,,it is
advantageous to integrate all the possible components” of each
spline function which share a particular panel-control point
relationship. That is, the contributions to Ay4 from each of the
tvelve components of ¥y .in (Equation (25)) are not sumnmed
consecutively, but rather are added to as the program loops fros
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one-panel to another. This means that the total value of A may
not be available until all integrations over all the panels” have
been - performed. Such an arrangement avoids setting the region
limits more than once for any ccntrol point-panel relationship.
This procedure offers a computational speed advantage over ancther
possible arrangement which forms one complete Ay, before going
to the next (i.e., a conmplete Yy ). "With this latter
arrangement, the Tegion limits must be cosputed several times for
the same control-point panel relationship, due to the spline

arrangement where functions occupy common panels (Figures 1C and
12) . ' ‘

This concludes the basic formulation of the nuperical
integration scheme used to evaluate At {termed the influence
coefficient elements) . The next sectio describes how these
elements are used to- - match the boundary conditions for various
flov problenms. ' -
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' éff Satisfaction of Boundary Conditions on Singularity surfaces

. ‘The preceeding sections showed the construction of the tLasic
‘building block of the numerical scheme - tne vortex splinme. This
‘section shows how the strengths, Sj (multiplicative constants of
each’ Y4), are determined by application of the boundary conditions
on the singularity surface (region “s" of Ekquation (11))." Each
element naturally satisfies the governiny differential equation,
since they were developed from the horseshoe vortex, and each
element also satisfies all the ccntinuity of vorticity required of
the final solution (the purpose of the spline), therefore the
- strengths of these elements are all independent. This
‘independency uweans that every element can be separately adjusted
such that it best satisfies the imposed boundary conditions.
Since the splines have a limited number of degrees of freedom,
they, 1in general, cannot exactly satisty these boundary
conditions. A compropise match must be accepted. The comprcrise
used for the spline development was a least square error match.
A solution based on this technique will yield the best overall fit
to the boundary conditioms.

The square error involved 1in the approximation to the
boundary conditions can be mathematically expressed as:

II[WBC(C'n)- Ws“""]2 dt dn (54)
-] ‘

‘Hhere'Ez is the syuare error, ‘MBc(c:”) is the applied downwash
boundary condition and Wg(Zf,6n) is the downwash from the splines.
'Since it 1is not possible to perfore +the indicated surface
integration for general cases, an approximation has to be made.
This is dcne by assuming the integral can be expressed as a

weighted sum:

M 2
2z {j-jl[wBC( ton) - wg £,n) )78y (55)

"Here ( " ) is one of ¥ points on the surface (termed the

" control p01ntsf dnd a; 1is an area associated with that pcint.

(The choice of control point locations and their associated areas

is discussed 1later.) Eguation (16) can te wused to exgress
. Wg( ‘l’ nl) in Equation (55) giving:

E22 E [ch -y AUSI] 8, (56)
lnl i j:l

sy




The notation has been abreviated such that the subscript i
denotes the value at ( ﬂ ’ % ) .

The sguare error in Equaticn (56) can be wminimized with
respect to each strength, sj , -Since these strengths are
independent. This minimization is accomplished by differentiating
Equation (56) with respect to Sy and setting the resulting
expression to zero:

2 M
JE
§§k=212[ ZAU j]aAu( =0 (57)
=1

The wvariable, k, ranges from 1 tc N, therefore Equation (57)
represents N algebraic equations which can be solved for the N
strengths. A more useable form for Equation (57) is:

EZ Ayc®y A8, = EA (58)

i=1§=1 €y

‘ The entire set of Equations (58) can be written in matrix
notation as:

an MxM m ["l] an.r MxM Mx1

(47 [ad [4 N[ ] 9

Here [Ajr isg the transpose of matrix [A] vith elements
AU , an is a diaqgonal matrix with elements 8 . The
and - are vectors rerresenting the unknown'strengths,

{S}, and the kfiown boundary conditions, Wpgc. Solving Eguation
(59) for {8} gives: i

(o] - [ ] e ]

Fgquation (60a)is valid whenever the nusber of control points
is grcater than or equal to the number of unknowns (M2N). TIf +the
number of control points is equal to the number of unknowns (M=N)
then [A] is a sqguare matrlx and Equation (60a) reduces to the

determlnate form of:
_l .
- w '
{3} (4] [ BC} (60b)

An abreviated notation is introduced here:
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(61a)
A= [a] | ‘ (61b)
8 = {S] o .(6.1c)
Wné ‘[Wné} 'y (61a)
then
S = (XTA).l A :wac (62)

The symbol ZT‘ is the transpose of A weighted by:rﬂJ.

When the special Mach 1line paneling is ewmployed, the
hyperbolic nature of the flow can be used to advantage by treating
each region as a separate wing and solving the problem 1in steps.
Figure 18 shows the arrangement of the panels with the associated

A] npatrix partitioned into elements which represent the
influence of subdivisions on themselves, A ; and elements which
represent the influence of subdivisions cn other subdivisions, B.
It is obvious from this figure that it is very inefficient to
solve this problem with this one 1large matrix. Instead, the
problem can be divided into three separate, smaller problens,
correspording to the three subdivisiomss (I, II, III). If this is
doge, the three equations to be solved in a manner analogous to
Equation (59) are: :
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Ansnsv\h-wﬁ | . :- (63b)

1
Am Sm = Wi - Wm (63c)
where ' {63d)
Wa = Bn, 151
, (63e)
w./. =

m = Bm,1 51 *By Sy

The subscripts denote the subdivisions and the quantities Wy,
Wy , and W are the known downwashes in each subdivision. The
right hand sgées of Equation (63b) and (63c) camn be thought of as
"effective"® dovwnwashes for the independently treated downstrean
subdivisions. '

Another computational consideration is the cost of performing
the operations indicated in Equation (60). A more direct method
can be employed if Equation (56) is rewritten as: :

M N .
2
E? ,.El l[chlV 1 -’Z Vay Allsl] ‘ (64)
= =]

The above expression can be  minimized directly using
Householdert's technique {(Ref. 9). This procedure provides a great
savings 1in computation time over the method represented by
Equation (60).

The key feature of this least square error approaéh is to
select the poiuts (Cbng and the areas, a; , such that Equation
(55) does approximate Egquation (54). With this goal, a study of

various arrangements was undertaken. Fundamentally the study
entailed subdividing the panels, which were used to form the
splines. These subdivisions were formed by lines of constant

percentage span and chord. Contrcl pcints were located om these
subdivisions using the area of the subdivision as the weighting
factor, ay v in Equation (55). These points were located at the
spanvwise centroids of the subdivisions, midway Letween the leading
and trailing edges. 1In the study the number of spanwise sections
could be specified independently from the chordwise sections.
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Figure 19 shows the minimum arrangements resulting fror the
study for supersonic and subsonic flow. By minimum, it is meant
that the arrangement'’s approximation to the inteqgral (Equation
(54)) was adequate over a wide variation of paneling. (Results
presented later will show the accuracy of the arrangements fcr
cases with as few as twvwelve panels and twenty-four control
points.) The supersonic case required more control points because
of the 1limited extent of influence in supersonic flow;
consequently more points are needed to Ysense" this influence.

The study also revealed that difficulties are encounteéred in
the vicinity of subsonic leading edges and at all tips due to the
singular nature of the vorticity distribution in these regions.
Since the splines do not have the ©proper asymptotic form, the
downwa sh has .an improper singular behavior. This downwash
departure tends +to have a strong influence on the errcr
minimization procedure if ccntrol Fpoints come too close to the
edges involved. So, another study was made tc determine suitable
locations for control points in these regions. A review of other
iifting- surface schemes showed that their respective two-
dimensional formulations could give the Fproper lift on a flat
plate at angle of attack in subsonic flov using only one elegent
(e.9., N=1 in Equation (16)). In fact, this is a criterion that
can be used to establish the proper control point location fcr a
determinate numerical formulaticn (where the number of unknown
strengths. is equal to the number of control points). This two
dimensional criterion can be shown tc be valid for the vortex
lattice. (Ref. 10) and the constant pressure panel schenmes. Using
this criterion, the proper control point location tor the spline
was computed. The one element spline representation for the 1lift
on a flat plate is shown in Figure 20. The integrated load for
the spline was set equal to the linear theory 1integrated load.
The 1location was then found where the downwash from the spline is
equal to the downwash on the flat plate. This location is at the
certer of the panel. (This result can be confirmed using Equation
(18) with the distribution Y(8)= (X3- g )/(x, -x)) ) . Starting
with this resuit, it was discovered, by numericai investigation,
that points on or downstream of the center chord line of the
leading edge panel consistently produced accurate results. Since
the components of the spanvwise functions begin and end at the mid
panel span, (Fiqure 10), the criterion in this direction is that
the control points near an edge be on or inktoard of the three
quarter panel span (corresponding to the center of the half
panel) .

Using the above criteria, the general paneling arrangements
shown in Figure 8 could be applied directly without any special
considerations for subsonic flow, since the «control Fpoint
configuration satisfies the conditions outlined. For supersonic
flow, there 1is no problem spanwise; chordwise, with a supersonic
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leading edge, there is also no problea. But, if the leading edge
is subsonic, the two forward control points must be excluded from
the minimization process. With this simple exclusicn rule,

consistently accurate results were cbtained over a wide range of
test cases.

The benefit of this least square error scheme can be Bore
fully realized for cambered surfaces where the nomber of functions
needed to model a problem can be small compared to other schemes.
This is because relatively few functions can model rather rapid
camber variations and the number of functions is not tied one to
one to the number of control pcints. With the least square error
formulation, any number of control points per -panel can be
introduced to accurately incorporate the camber variation into the
problem and at the same time, the number of functions can be held
to a minimum. As pointed out earlier, the confiqurations shown .in
Figure 19 represented the ~ainimaum arrangement for consistent
accuracy, any larger nuaber of control points could also be used
to obtain better camber definition, (subject to the edge
constraints outlined above).
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5.5 Computational Procedure

Figure 21 shows a flow diagram of a method to compute results
using the vortex spline scheme. Once the strengths, S, have been
computed, the remaining parameters can be determined (e.g., lift,
moment, pressure distribution, etc.). Since the splines provide
a continuous distribution over the surface, the pressure and bound
vorticity can -be evaluated directly at any point by determining
the aggregate :influence of the contributing <functions. This
continuity also makes it possible to compute the shed vorticity,

o , by integrating and differentiating the basic dlstrlbut1on for
Y as 1nd1cated ty Bquatlon (23).

The llft;and load dlsttlbut1on can be computed- either by
actually integrating the basic functions or by pertorsing a sum on
the pressures, similar -to what wvas done for the least square
downwash error integral formulation using the same control pcints
and areas. The moment can likewise be computed by integrating or
suaming; however, the accuracy of this <calculation .using the
suaming technique is 1less than that for the lift calculation.
Nevertheless, the summing technique is sufficiently accurate when
several panels are employed and was the method used to compute
both the lifts and moments presented in the next section.

In addition to the standard aerodynamic parameters, the s»ean
square error can also be computed. This mean is the parameter, Eg
in Equation (55) divided by the total area (sum of the a, ). The
mean square error (with appropriate control point exclusion) is an
excellent indicator of the overall accuracy of the solution. The
square root of this value, the rcot mean square downwash error,
was found to be the same order of magnitude as the root mean
square pressure error for the cases examined. This RMS error
parameter supplies the user with an a posterior judgment of the
validity of a flow model without the need to consult other data.
It also opens the possibility of formulating a scheme which wvould
automatically adjust the paneling and rerun a case if sufficient
accuracy were not obtained from the imitial run.

The next section presents the test cases that were used to
evaluate the schese.
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5.6 Bumerical BResults

Various configurations were analyzed to determine paneling
requirements and convergence to a known answer. The spline
function results were compared with other lifting surface schenmes
and exact,linearized flow solutions. Fiqures 22 through 28 show
the results. :

Figure 22" is a comparison of the spline scheme with another
liftiny surface solution (Ref. 10) for a «circular wing in
incompressible flow. The comparisom shows good agreement not only
for the coefficients but also for the detailed loading. Note how
vell the quadratic edged panels can match the exact planform.

FPigures 23 and 24 show comparisons of the spline scheme with
a pressure @mode scheme (Ref. 2) for compressible, subsonic flow.
Again agreement is very good. Note the rounding of the planform
representation at the root for both cases. This eliminated
downwash singularities without introducing any special singular
forms for vy . .

Figure 25 " shows a comparison of the spline scheme, using
special Mach line paneling, with the exact, conical flow result
(gef. 11). The plantorm papeling shows a rounding at the root.
This rounding produced a sliqght departure of the pressure from the
2xact result in the vicinity of the rounding (not noticeable in
the chordwise plot of the pressure). : :

Figure 26 ‘shows two comparisons of the spline scheme using
geometric paneling for supersonic flow: one with the exact
solution and one with a constant pressure panel scheme using the
same paneling. Even for this ganeling, which ignores the special
Mach 1lines, the spline scheme gives accurate coefficient results
with a reasonable comparison tc¢ the fpressure.

Figure 27 shows another comparison of the spline scheme with
exact conical flow results (Ref. 11). This planform bhas a
subsonic leading edge. Again note the rounding of the planform.
This rTounding causes a local departure of the pressure frcm the
exact result as shown. The overall agreement is gocd, even for
the relatively few panels used. ' '

Figure 28 shows the numerical stability of the formulation

for various paneling schemes. In all cases the pressure
distributions appear to be as accurate as could be expected for a

65



4

-0T X §8°h=J0XI7 ysemumoq aenbg uesy jooy

. 0
80£0 = N _ INITGS XILHOA

8L1="3

.0 )
9060 = z“ 19vx3

g6LL=12

- INITdS XILHOA ——

(01434)

ONIM AVINOUID - 727 J¥NOId

(-efipa uipes) pioys 1005 jo 38
PI0Y ueaws UORIEIY JO SWIIAY U}
pessaidxa urod esinau oy st %)

0=W
Nvigvy | =0

Burpeor astmuedg

9°

A

v

- N




e
~5

7 o=0.0895 RADIANS  ————- PRESSURE MODE (REF. 2)
4 i M=022 , VORTEXSPLINE - . -

€y = 0.380

PRESSURE MODE ‘ N, - 0.534

C, =0.388

VORTEX SPLINE I N°V=U-542

*(N is the neutral point expressed
in terms of fraction chord aft of
root chord leading edge.)

Root Mean Square Downwash Error = 2.18 X J.O'2

¥

' FIGURE 23 - UNTAPERED SWEPT WING
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FIGURE 2% - TAPERED WING WITH ZERO SWEEP OF QUARTER CHORD
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(N, is the neutral point and is -
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of leading edge.)

€, =200
VORTEX SPLINE | w_ . g.334

Root Mean Square Downwash Error = 4.63 X 10-3

FIGURE 25 - SQUARE WING (SPECIAL MACH LINE PANELING)
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Root Mean Square Downwash Error = 1.79 X 10~2

FIGURE 26 - SQUARE WING (GEOMETRIC PANELING)




o= 1 RADIAN ---EXACT(REF11,PG.157)
M=v7Z —VORTEX SPLINE

(N is the neutral point and is expressed as
fraction of mean chord aft of apex.)

Root Mean Square Downwash Error= 5.00 X 102

FIGURE 27 - DELTA WING
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FIGURE 28 - VARIOUS PANELINGS OF A CIRCULAR WING




given paneling wusing a linear chordwise representation. The
stability -of the solution does not depand on paneling, and the
soluticn converges to the exact results as the number of panels is
increased.
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+ 6.0 SHELL REPRESENTATION USING, THE SPLINE, SCHEME o a
. R . N . N . '_f - IR 1 f, .
6.1 General Approach
This section presents a schene which represents the

interference effects on wing-body combinations. The basis for
this representation is presented in Reference 1 where it is
referred to as an interference shell. The shell arounts to a
cylindrical surface vith singularities distributed over it, much
the same as for the wing. The interferemce shell, however, is not
a impermeable surface with flow tangency boundary conditiomns. The
purpose of the shell 1is to account for the mutual interaction
between the body and the wing. The shell boundary conditicn ‘is
that the shell singqgularities induce a velocity which cancels the
velocities on the shell that are induced by the wing. The body
contained iunside the shell, will however, induce a flow through
the shell which is not canceled. The enclosea body then appears
to be in an undisturbed free stream flow, therefore its analysis
can be treated separately using some appropriate technique (e.g.,
Ref. 12).

The aim of +this shell study was to provide an improvement
over the constant pressure panel shell (Ref. 1). In so much as
the vortex spline arrangement provided much improvement over the
constant pressure panel scheme for the wing, it was felt a similar
development for the interference shell would be appropriate.
There was, hovever, an unresolved question concerning the
interference shell - namely whether the elementary horseshce
vortex was the appropriate singularity needed to model the body-
ving interaction effect. The question arose because bodies 1in
potential flow do not have a wake (i.e., shed vorticity) and
because the elementary horseshoe vortex does have a wake. This
difference Letween the flow cn a wing and the flow cn a body can
be attributed to the roundness of the aft end of a body as
compared to the sharpness of the trailing edge of a wing
(suggesting no Kutta condition on a body). If the Kutta conditicn
is not used, a vortex solution is not umnique (Ref. S, pg. 57).
This means that a ~<chell representation using the vortex spline
which needs the Kutta conditicn migqht not properly model the flow
on a body. Because of this pessibility, a study was initiated
vhereby several elementary singularities were develcped which
could ke utilized in a spline technique. These singularities were
the elementary horseshoe vortex, the source, and the doutblet.
Unfortunately, none of the analyses was developed to the point of
yielding numerical results. The next secticn shows the analysis
vhich was performed for the various singularities as well as a
detailed description of a schepe using the elementary horseshoe
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vortex in an influence coefficient approach. The scheme described
is compatible with the scheme already presented for wings.
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6.2 Interference Shell Singularities

Figure 29 shows the cylindrical coordinate system used to
analyze the interference shell. Since the doublet and elementary
horseshoe vortex can be derived tfrom the source (Ref. S5, rpp. 28
and 87), the analysis will begin with the source singularity for
subsonic flow. '

The elementary source potential ,¢ , for subsonic tlow is
given as (Ref. 5, pg. 87): 8

-1 1

4n (X) +Bzr2 (65)

Qs(xar,e) =

where 62=1~M2 . In .this expression, the source has been placed

at the origin of the coordinate system., If however, the source 1is
located at some other point (xo, Ty & ), then the potential
becomes § dependent: °

1 .
Qs(x,r,ﬂ,"o»"o’eo) =- (66)

4w V(x-xo)z-r B"(r2+rg-2rrocos(6-eo))

The above result can be better understocd frosm Figure 30.

The kernel function corresponding to that used for the planar
vortex panels can be derived by differentiating (66) with respect
to the local surface normal coordinate (i.e.,3Pg/ar|r=r, is the
downwash on a c¢ylinder of revolution). In order to ottain the
influence coefficient, Ay this velocity kernel must be
multiplied by the proper strength variaticn chordwise and
circumferentially (the latter variation corresponding tc the
spanwise variation for planar panels). After multiplication, the
function must be integrated over the domain of the singularity.

Tha interference shell can be paneled 1in a way entirely
analogous to the geometric paneling scheme used for the wing
(Figure 31). First the cylinder can be divided streamwise by
parallel rays on the surface. Then the cylinder can be further
divided by parallel planes normal to the axis of the cylinder.
These <cuts define a group of panels which are rectangular in the

X-9 coordinates. Spline functions for the various
singularities can be defined using these panels.

Since the different sinqularities require different degrees

of continuity, the anaiysis from this point on will te lieited tc
the elementary horsesho2 vortex using the continuity conditions
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FIGURE 29 - GEOMETRY OF INTERFERENCE SHELL
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already defined for planar panels. The analysis will be further
restricted =wo circular cylinders having equal arc length panels.

The first step in the shell analysis is the derivation of the
elementary horseshoe vortex on a circular cylinder. This
singularity is obtained by 1integrating the doublet potential
function (Ref. 5, pg. 87) from some 1initial point Xo to o

(downstreanm) . This integration corresponds to a line of doublets
from the point Xo to o . The potential ot the doublet with its
axis in tha 7, direction (Figure 30) is derived by

differentiating the source potential (66) with respect to r, :

Qd (X,l' ,0 ’xO!ro ,90) = 5&;1 = 28;2. (TO-I'COS(G-OO ))
)
° [(x-x°)2+ 82(r2+rg '21‘1'0003(0-60)]

% (67)

The potential of the elementary horseshoe vortex is then:

0;(“»".'-"0"0 » 8 ) 'f .(x,!‘,o,xa,l‘o » O )d’;
e -
o

- To-TCOS(0-0, ) [H X=X, ' . ](6.8)
4 (r2¢rg - 2rr,cos (9-0,)) {(x-xo)zo 82(r2s roz-zrrocoo(o-oo))

For this analysis, a spline arrangement  spanning three
circumferential panels was used (Figure 32). The circumferential
variation can be derived wusing three quadratics (one on each
panel) and a set of constraint requirements. On the first panel
(Figure 33), the requirements are that the function must vanish in
value and slopz at the 1left edge. Onr the second panel the
requirements are that the function be continuous in value and:
slope at the left edg=2. On the third panel the requirements are
that the function be continuous in value and slope at the left
edge, and vanish in value and slope at the right edge. These
eight requirements, coupled with the additiomal specifications of
unit peak amplitude, completely determine the nine coefficients of
the three quadratics composing a single spline. The spline
distribution of bound vorticity (strength of elementary horseshoe
vortex) can then be written as:

23 tm
Y o) = L X, (69)

4=1m=1

where X: is tn2 same as that defined by Equations (26) and (27),
and the 9?‘ for equal arc length panels are:
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2 =2 S
9, = Tel | (70) .
(71)

912 = ._2... 41-.0- -_4_32
3 3 3 2. .

.2 457 ,272 o
G?‘ 3 3 %3% 38 (72)

The 9's are local coordinates for each.panel ranging - from-

0 at the left edge to 1 at the right edge. -

The 1influence coefficient kernel is found by differentiating
Equation (68) with respect to r .(to find. the normal velocity
kernel) and evaluating this resulting expression on the surface of
the cylinder (r equal rj ). -

| ,_ _ 1 | - 2cos A8 X|=Xoq o (X4=%gN1-cosz0) | |
K (X1, 8%, 80:T0)= 7 [zrg (1-cos46) [H _—] -8 2R3 (73)

where Ap is 8- 8,, R is J(x -x F + 28%r (1 c0888)  .nd the subscript

"i" denotes that the field point (x, 6 ) T) is on the cylinder
surface.

The influence coefficient is then:

®R*rg _

AiJ- f Yy(x,6) K(xy,04,x,0)axrdo (74)
X
© LE
The integration can be carried out ip exactly the same manner

as for the planar panels performing the x integration first then
using the numerical scheme, previously described, to integrate in
the @ direction. This same numerical integration scheme can be
used since. the cylindrical kernel has the same e1ngu1ar propertles
as the plarar kernel.
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ir the «cylindrical

For supersonic flow, the differences
planar analysis

analysis are the same as outlined for the
basically the kernel and limits of integration change.

The supersonic source is (Ref. S5, pg. 87):

V(X -X,)°- 8 (r2¢r2-2rr oCo8 (0 -8))
The doublet in the ¥, direction is defined by Od--;yx
o
2
8¢ (ro-rcos(6-0
od'(*'."'."o"‘o"o)'.' (%o (0-99)) 3/ (76)
2% [(xex Pop2(r2er2 - 2 '
[x Xo) -8°(r®+rg - 2rrycos(g-8,)
and the horseshoe:vortex is defined by
> {32 (r2+ roz -2rr°co-(0 -eo))
| (717)

xo
X-X

1 r,-rcos(e-o,) o

& (27,8 %00 T0u00 )= o 5
(réers -2rr, co-(o -8,)) J(x -Xg )2 - g‘(r24r°2-2rrocpl(0-0°))

In the above .2 is defined as ‘M2—1 ( 52 is always positive
whether supersonic cr subsonic).

coefficient 1is derived

The kernel neaded for the influence
and evaluatlng

from (77) by dlfferentxatlng with respect to r
the result on the surface of the cylinder (r equal T, )-

il JAL
2R3

r 1 (X4-%Xg) g2 (x4 -x_ )(1-cos4e)

K‘x 28,5 ’
12812X5, 8T )= - 2, L—E(l-costse) =

(18)

where pAg 1is 6y - 6, and R is - \/(,f-goyz-232r°2(1-coer).

‘The limits of intagration for the supersonic integral ‘are
found by determining the intersection of the forward Mach cone,
emanating frcm the control point ( X{ . 01), with the cylinder.
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The equation of the M#ach cone evaluated on the surface of the
cylinder is: ' "

(x-x;)% = 28%¢2 [1-cos (ar0)] “(79)

For the simple panels used in the analysis, the intersections

are found by replacing x with X . (x of the 1leading edge) -and

X*rg (X of the trailing edge). Equation (79) then gives the o

values of the intersections which can be used in the integration

lipit scheme previously described to establish the region (0, I,
or II) and set the limits for the 8 integration.

~ Once the influence coefficients are computed, the  boundary
conditions are satisfied and remaining analysis is performed using
the same 1logic as was used for the planar development. The
boundary conditions of course are different for the interference
sell as mentioned before and are more fully covered in Reference
1. However, this difference does not affect the mechanics of
obtaining a solution, it only changes the layout of the overall
influence coefficient matrix in that the body contained within the
shell is assumed to have no influence on the shell.

The above analysis could be repeated using doublets, but
since the equivalent doublet strength is the integral of the bound
vortex strength in the x direction  (Ref. 5, pg. 135), . such a
formulation would require quadratic distributions in both X and Y.
This arrangement could be made using the relations given by
Equations (70) through (72) for both the X and 6 variations. An
influence coefficient scheme could then be formulated which would
not shed vorticity. This scheme could then be compared with the
vortex schem2 to determine the wmerits of each for body
representation. The scop=s of the present development did not
include such a comparison.
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7.0 SECOND ORDER SOLUTIONS USING THE VORTEX SPLINE

In the introducticn it was pointed out that one of the
purposes for developing a pew aerodynamic technique was to have a
scheme which .would calculate those lateral-directional stability
derivatives Wwhich cannot bc handled by th2 current formulations
vhich +treat arbitrary wing-body combinations. The previous
sections ~have ‘“shown the development of a scheme which was felt
would provide the necessary improvements to meet the lateral-
directional rejuirements. The course of development was to be an
initial treatment of planar wings (Ref. 13), then a treatment -of
bodies in the presence of wings (the interference shell), and
finally the treatment of these wings and todies and their
combinations 1in interaction flow. The initial interaction flow
studied was for angle of attack-angle of sideslirg. :

The basis for the second-order flow analysis is given 1in
Reference 4. In essence, the development assumes that the exact
nonlinear, potential flow equation can be expanded in terms of
small yeometric parameters which .define the problem (e.g., angle
of attack, dngle of sideslip, wing thickness, etc.). When this
expansion 1s carried out, an ordered set of linear equations ‘is
obtained. Rach of these equaticns has its own boundary conditiomns
which are determined by a similar expansion of the exact boundary
conditions. The higher crder equations (those involving powers
and products of the small parameters) have non-homogeneous
differential equations while the first order equations have the
familiar linearized, homogeneous differential equation, e.g.,

32‘2 '32’2- . 32‘2 ‘ . . :
(I-Mz) %2 + ayz _44’ —a?!— = F(X,y, Z) S (80)

2 2
] F] 2 ¢
(1-M?) a—'l,, + —15‘” + —4 =0 (10

where the subscripts "1" and "2%" denote the first and second order
terms from the potential flow expansion. The expansion assures
that F(x,y.,z) is only a function of ¢, and its derivatives.

The forms of +these results (Equations (80) and (10)) are
standard ones arising from expansions so that the technique wused
to evaluate results for these equations is general. This point is
being wmade because the cxpansion in Reference 4 did not properly
account for all the terms present and therefore 1is not wvalid.
Although the result is not correct, the forms of the equations are
indicative of the +types of numerics needed. The werk done in
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‘implementing the technique 1is therefore valid and would be
applicable when the proper expansion is found. -Because of this,
the technique used to solve the class of problems represented by
Equation (80) is presented, but the presentation will be somewhat
general in nature. Detailed extension of the scheme to second
order wing-body comnfiquraticns vas of course not done.

A The solution to Equaticn (80) consists of two parts - a
homogeneous part, ¢ZR ., and a particular part, ¢,p . Since
Equation 10 can be added to ©Equation (80) in any propcrtion
-without changing the problem, an assumption is made that a %2p can
be constructed which will satisfy the wvwake tLoundary conditions.
This leaves homogeneous boundary conditions in the wake for the

" homogeneous solution %4 . This means that the same homogeneous
"formulation, (i.e., vortex spline) can be used for both first and
second - order homogeneous solutions. The particular solution,

¢zp , provides a basic velocity kernel in exactly the same way
the horseshoe vortex (homogenecus solution) provided the velocity
"kernel for the wing and the interference shell (Equation (68)).
Following the procedure outlined for the shell, this potential
function for ¢2p is differentiated with respect to the surface
-normal at the control point. The resulting differentiated
quantity 1is the normal velocity kernel, analogous to those
associated with the first crder problems for vwings and
“interference shells (Eguations (12) and (73), respectively).

Unlike the first order problem the particular solution does
not depend on matching the bcundary conditions. Rather, the
strengths of the distributions and the distributions themselves
are known directly and no solving is involved. This is because
F(x,Y,z) is only a function of the first order problem, whose
strength is determined initially in the solution to that problem.
Specifically then, the velocity kernel determined fros ¢2P is
used to compute an additional influence on the boundary conditions
and not used as a means to satisfy them. The downwashes computed
from the particular kernel and those obtained from the boundary
condition expansion are combined to provide a new set of boundary
conditions for the second c¢rder homogeneous solution. The
homogeneous solution, ¢2§ , is then used to satisfy the combined
boundary conditions. The net result is that the combination of
¢2p and ¢2y satisfies the boundary conditions for the second
order problem which were determined by the initial expansion.

Since the second order homogeneous differential equation is
identical to the first order equation, the same basic solution
technique can be used (i.e. the vortex spline). The second order
homogeneous solution, of course, has different boundary conditions
and correspondingly different strengths from that of the first
order. Also, depending on which equation is involved, there can
be different symmetry requirements for the solution (e.g. angle of
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attack —angle of sideslip c¢roblem assuming zero sideslip is
antisymmetric while the first order problem, angle of attack, is
symmetric).

Figure 34 shows how a seccnd order problem could be solved
using the vortex spline scheme. Basically the central block of
logic 1s the homogeneous boundary conditicn solver which is the
vortex spline scheme (Figqure 21). The second order particular
solution section of the logic blcck provides the downwashes which
must be combined with the specified boundary condition (from the
expansion). These downwashes then represent a new set of boundary
conditions for +the homogeneous solution ('¢2H ) which is solved
in the exact same manner as the first order problenm. The
quantities necessary to obtain the pressures are then computed
(this is not always just the bcund component of vorticity as

pointed out in Reference 4) and the stability derivatives are
obtained.

The advantage of the vortex spline for solving these second
order problems can be seen from a study of the characteristics of
the forcing functions F(x,y,2) (Ref. 4). These functions
generally involve derivatives of the first order soluticn. A
solution to the first order problem must, therefore, be capable of
providing sufficient derivative resolution that thé second order
problem can be solved accurately. The splines provide this
capability as can be seen from Figures 22 through 28.
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8 .0 CONCLUDING REMARKS

The experiesnce gained with the vortex .spline scheme has
indicated the following: '

1. The solution is not strongly dependent on  pane€ling

arrangeaent; it works well with uniform or nonuniform panel
spacing. 5
2 The scheme works =2qually well for both 'Subsoh;c and

supersonic flow.

3. Special Mach 1line paneling prcduces better pressure

rasolution in supersonic flow than geometric paneling.

However, 1in all «cases the gecmetric paneling ‘“produced
accurate values for lift and moment. 2

4. The absence of downwash singularities in the wake ~(except
bekind planform tips) implies that tails can be paneled
independently from wings.

5. Computation times are small, requiring only a few seccnds
(CDC 6600).- for simple planforms and less tham 2 minutes for
finely paneled planforams.

6. Accurate results can be obtained with sparse paneling.

7. The extension of the =scheme to the representation of
arbitrary confiquration surfaces appears entirely feasible.

8. The numerical stability of the scheme provides flexibkility in
the application of the method. Such stability is a
tundamental requirement for the «computation of downwash
(camber slope) given fpressure (this type of problem solving
is termed the design mode).

9. The scheme is self-checking in that the user cap judge the
eccuracy of the numerical representation by simply examining
the root mean square error in the downwash. (This rms value
seems to be the same order of magnitude as-the rms*~error for
the pressure distribution for the cases tested sc far.)
Future plans for the scheme should include investigation of

an automatic paneling technique wherein the user would only be

regquired to input the vehicle shape and specify an acceptable «rms
error. The £ program  would then automatically panel the
confiqguration, solve the problem, examine ¢the 1rms error, and
repanel based on the error. This cycle would continue until the
specified rms error was achieved. Such a development would lead
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to'a self-checking scheme that provides results of a predetermlned
level of numerical accuracy.
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10.0 APPENDIX

Doublet Characteristic Box Method

This method is an alternate approach to the vortex spline in
supersonic flow. The methcd showed promise but further
development was halted when it became evident that a great deal of
time would be needed to calculate all the integrals involved for
the various building blocks, as well as developing a systematic
approach to identify all the "special® Mach lines. There wvas,
however, substantial work done on the fundamentals. This effort
is presented below.

The first step in the present work was to identify the
"special” Mach 1lines emanating from planform edge breaks. These
lines are used to divide the planform into several different
regions. Each of these regiors 1is divided into a network of -
panels bounded by Mach lines as shown in Figure 35.

The basic building blocks comprising the zethod were
identified. These blocks, along with their contrclling
parameters, are shown in Figure 36. The building blocks include
(see Figures 35 and 36):

I Reqular - Bounded by Mach Lines
II Two Subsonic Leading Edges

I11 One Subsonic Leading Edge

Iv Supersonic Leading Edge

v Subsonic Trailing Edge

VI Wake

A planform 1is represented by a superposition of these
building blocks. The singularity distribution on each panel is
assumed to be a function c¢f the Mach line coordinates (r, s)
Figure 37. The type of singularity distribution that was explored
initially was a doublet distribution of the form

8¢=28+br+cr?+ ds + es?2 + frs + gr2s + hre?2 + kr2g? (81)

where A4¢ 1s the velocity potential Jump across a panel and
a,b, ... , k are unknown coefficients. This distribution provides
vorticity components that vary linearly and guadratically with
and s as shovn in Pigures 38 and 39, and insure smooth derivatives
of the resulting first order solutions.
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"Special" Mach Lines

Regular Panel

AN
AN

FIGURE 38 - INTERIOR REGION PANELING

vorticity component parallel to r
vorticity component parallel to s

varies linearly with r
varies quadratically with s
varies linearly with s
varies quadratically with r

FIGURE 39 - BASIC VORTICITY DISTRIBUTION



The unknown coefficients are found in the tollowing ways: the
solution starts with a leading edge panel (II or IV Figure 36) for
which 4¢ 1is known (0 at leading edge); the solution then proceeds
downstrear by matching at common edges. These matching conditions
consist of requiring Ay, Yo + and Vg (Figure 39) to be
continuous across the panel edges. This leaves one free parameter
remaining for each panel which 1is determined by the downwash
boundary conditions. The basic method of analysis is shown in
Figore 40 for the "Regular™ panel. The procedure consists of
natching Ad and the two derivatives,3A¢/9r and jad/ 8, along the
two upstream edges. This leaves only the parameter k as unknown.
k is then determined by satisfying the downwash boundary condition
at a control point placed on the panel.

Along the network boundaries (either "special® Mach lines or
planform edges), some of the matching conditions (i.e., 44, am¢/ar
and 3ap/98) are relaxed. They are replaced by additional downwash
boundary conditions to provide the freedom needed to account for
loading discontinuities, Kutta conditions or other constraints.
Although the abtove procedure pfprovides a determinate set of
equations, a minimum error technique might also be incorporated to
enable multiple boundary points cn the panels.

The influence coefficients relate potéhtial jump, A¢ 4 to the
dovnwash , @, through the ©planar relationship (the basic doublet
representation - Ref. 14).

N ' R J'] A¢ (r),8,)drds
82
2wy, dras —H(r-rl)z(s-sl)z (82)
Here M is. the HMach number and U, 1is the free streasm
velocity.

Thus, the unknown coefficients are determined by combinations

of:
- Downwash (camber)
o Matching - Aé, 28¢ , 8¢ ACp
_ ar 38
e  Mipimum Error

An investigation of the varicus building blocks and the
matching conditions provides the results shovn in Figure 36. This
figure illustrates the matching conditions applied and the number
of resulting free parameters, any of which might be relaxed. \Note
that a wake panel is completely specified (no free parameters) by
the upstream conditions. ’
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A¢ and 2.&‘_

' as A¢ and 34 continuous
continuous ar

8
A¢ = a + br + cr2 +ds + es2 + frs + grzs + hrs?‘ + kr‘zs2
Yg = %A;'-} = b+ 2cr + fs + 2grs + hs2 + 2kr's2

Ye= 288 - g4 es + fr+ gr? + 2hes + 2krfs

1) At r =0, A¢ given,
a+ds + esz. matches the upstream quadratic function
& a,d,e determined

2) At s =0, &4 given & b and ¢ determined as in 1)
3) Atr=0, 2 givenb+fs+hs® & f,h determined as in 1)
4) At s = 0, %_:1 given,d + fr + gr2 & g determined as in 1)

5) k unknowns determined from the downwash constraint
a=~ffaekK (r,r],s,s]) dr] ds] '

where K (r,r] .‘s,s]) is the kernel from equation 82.

FIGURE 40 - "REGULAR" PANEL MATCHING
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With the sideslip problem in view, the following basic stegs
were used to make up the doublet characteristic box method.

1) The functional form for the potential jump wvwas selected
(i.e., Equation (81)).

2) The boundary conditions are used to determine the parameters
of the doublet distribution through combinations of known
downwash (camber), matching conditions and methods of minimum
error. ) :

3) a) Pressure {(and ensuing load) can be found directly as the

spatial derivative (in the free stream direction) of the
potential jump.

b) Second order sideslip calculations are made possible by
the represcntations of the velocity potential through
the improved spatial derivatives of the first order
potential function.

The complexity of the doublet characteristic box method’

hinges on the downwvash-potential jump relationship which must be
integrated analytically, numerically, or a combination of the %wvo.
Accordingly, the basic downwash-potential jump relationship might
be cast into a more suitable form than presented by Equation (82)
- such a form wmight <carry the double differentiation under the
integral sign, for example.

An investigation of the various building blocks and the

matching conditions provides the results shown in Fiqure 36.
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