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A FINITE DIFFERENCE METHOD FOR THE SOLUTION

OF THE TRANSONIC FLOW AROUND HARMONICALLY

OSCILLATING WINGS

by F. Edward Ehlers

Boeing Commercial Airplane Company

SUMMARY

A finite difference method is presented for the solution of the unsteady pressure distribution

on harmonically oscillating wings in transonic flow. The differential equation for the velocity

potential of compressible flow was simplified first by the assumption of small perturbation from a

nearly sonic parallel flow and then by representing the flow as a sum of two separate potentials for

the steady and unsteady flow.

On the assumption that the amplitude of the unsteady oscillation is small, the unsteady

transonic flow differential equation was linearized. The resulting differential equation contains

coefficients which depend upon the mean steady flow and which must be computed beforehand

from the solution of the nonlinear transonic small perturbation differential equation. When time is

eliminated from the linear unsteady flow equation by the assumption of harmonic motion, then the

resulting linear differential equation is of mixed type, being elliptic or hyperbolic in regions of the

flow where the steady flow equation is elliptic or hyperbolic, respectively.

Because of the similarity of the unsteady linear differential equation to the steady nonlinear

transonic small perturbation differential equation, a technique of column relaxation similar to that

of Murman and Cole (ref. 2) and Krupp (refs. 3 and 4) was applied to find solutions to the

differential equation expressed in difference form. For subsonic mesh points in the flow, central

differences were employed for all derivatives; for supersonic points, backward (or upstream)

differences were used for derivatives in the streamwise direction only. The boundary conditions for

the wing were applied in the plane of the projection of the wing surface and incorporated in the

difference equations for mesh points adjacent to the oscillating wing. On the plane vortex sheet

downstream of the trailing edge, the condition of continuity of pressure and the Kutta condition on

the trailing edge specify relations between the jump in potential along lines in the free-stream

direction and the value of this jump just downstream of the trailing edge.

Integral relations based on the wing and wake boundary conditions were derived for the wing

and the airfoil oscillating in harmonic motion in the manner of Klunker (ref. 8). These relations are



used for the mesh far-field boundary conditions, which are updated during the computations. The

use of far-field boundary conditions makes it possible to reduce the region of calculations, thereby

saving computer time and storage.

Expanding the terms in the difference equation in Taylor series about the central point and
retaining the lowest order terms in the mesh size lead to the original differential equation plus

additional higher derivative terms which vanish as the mesh size goes to zero. For equally spaced
points and subsonic flow, the resulting fourth-order differential operator is of second order in the

mesh spacing and elliptic in form. Hence, there is no dependence upon the ratio of the mesh sizes

for stability. For locally supersonic points, the additional truncation terms are of first order in the

mesh spacing. This term is a third derivative in the free-stream direction and introduces a simulated

viscosity proportional to the mesh size which was found to stabilize the calculations for shocks

developing in the flow in solving for the steady flow equations by Murman and Cole (ref. 2) and

Krupp (refs. 3 and 4). From this study, the differencing method would appear to be stable.

Subsequent experience has shown this to be true for the oscillating airfoil.

The mathematical development of the method described in the foregoing for oscillating

rectangular wings, swept wings, and airfoils is presented here in sufficient detail to be coded for

actual numerical calculation. To test the feasibility of the method, the equations for the

harmonically oscillating flap on a NACA 64A006 airfoil were coded for the CDC 6600. For the

basic steady flow, the program (TEA-330) developed by Krupp in reference 4 for the transonic flow
over a lifting airfoil was used.

Solutions were obtained for the unsteady flow over a flat plate with an oscillating flap of a

quarter-chord length at a free-stream Mach number of 0.8 and reduced frequencies of to = 0.06 and

0.1794. These values correspond to frequencies of 30 and 90 cycles per second for the wind tunnel
and model conditions in the experiments of Tijdeman and Schippers (ref. 9). The real part of the jump

in pressure coefficient from the difference method agrees very closely with solutions from a

subsonic kernel function method which solves the same differential equation. The imaginary part of

the pressure coefficient has somewhat smaller negative values near the leading edge for co=0.06,

although'the pattern is essentially the same as the results from the kernel function method. For

co = 0.1794, the imaginary parts from the two methods agree more closely than for co = 0.06. The

convergence was slow and required about 3000 iterations to converge to a maximum difference

between iterations of 2 x 10 starting from a value of zero for the perturbation potential at all

mesh points. See note added in proof on page 34.

The flat plate solution for a reduced frequency of 0.06 and Mach number of 0.8 was used as a

starting solution for the unsteady flow around a NACA 64A006 airfoil with a quarter-chord

oscillating flap at Mach 0.794 and reduced frequency GO = 0.064. Similar convergence of 2 x 10"^



was attained in 1200 iterations. The pattern of the pressure jump across the airfoil agrees with the

experiments of Tijdeman and Schippers (ref. 9), although the amplitude is considerably higher. The

solution for M = 0.804 and co = 0.253 (corresponding to a frequency of 120 cps) about the NACA

64A006 airfoil was obtained from the solution for M = 0.794 and o>= 0.064 as starting values.

Solutions were also found for M = 0.858 and co = 0.179 and for M = 0.853 and co = 0.060. The

patterns for the jump in pressure coefficient from the calculations were similar to the experimental
results of Tijdeman and Schippers in reference 9 but the amplitudes were generally higher.

Although only a few computed results were "obtained, the feasibility of this approach for
finding the unsteady pressure distributions around an oscillating wing in the transonic range is

demonstrated. This method predicts the observed pressure patterns, while linearized subsonic

theory does not. The numerical procedure for the unsteady flow is stable and convergent even when

the steady flow contains local supersonic regions.

All the calculations were made with a fine fixed grid. Garabedian and Korn (ref. 1) found that

first obtaining a solution of the exact steady flow potential with a coarse grid and then refining the

grid for greater accuracy significantly reduced the number of iterations required for convergence of

the final solution. A similar procedure should reduce the number of iterations for the unsteady

solution as well.

The complete matrix for the coefficients of the unknown values of the unsteady perturbation

potential at the points of the mesh contains only five or six nonzero diagonals. The time required

for solution also may be reduced by using a special method for solving linear equations with sparse

matrices to solve the complete set of difference equations rather than using column relaxation. This
may be especially useful for the coarse grid solution.

The basic technique followed here of representing the flow as consisting of separate steady and
unsteady flow potentials and then linearizing the unsteady differential equation by assuming small

amplitude of oscillation can be applied directly to the complete nonlinear differential equation for

compressible flow as well as to the nonlinear transonic small perturbation equation. The problem is
easier for the airfoil than 'for the three-dimensional wing since mapping techniques such as that of

Garabedian and Korn in reference 1 may be used to represent the boundary in a way convenient for

the mesh system. The same finite difference scheme could be used for the unsteady flow equation

after it is expressed in the same independent variables. The elimination of the small perturbation

restriction for the three-dimensional wing solution is considerably more difficult, since convenient

body coordinates are possible only for restricted classes of configurations. A suitable variable grid

around the actual wing boundaries must be devised with appropriately defined difference equations.



Further computations should be made with the airfoil program in its present form. The

sensitivity of the program to mesh size near singularities and to various ways of conducting the

column relaxation should be studied. Further calculations are needed to gain experience in

determining optimum values of overrelaxation for subsonic regions and underrelaxation for

supersonic regions, and to find criteria for the degree of convergence required for a good solution.

Some of the discrepancy between calculated and experimental results may be due

to the influence of the boundary layer and/or separation effects over the aft
portion of the airfoil. Unknown problems associated with the theory or with

the experiment, such as wind tunnel wall interference, may also be the cause

of this discrepancy.

INTRODUCTION

In recent years, significant advances have been made in the theoretical treatment of

two-dimensional steady transonic flow by such workers as Garabedian and Korn (ref. 1), M-urman

and Cole (ref. 2), Krupp (refs. 3 and 4), and Steger and Lomax (ref. 5). More recently, some

progress has been achieved by Newman and Klunker (ref. 6), and Ballhaus and Bailey (ref. 7)

toward the development of a useful method for predicting steady transonic airloads on finite wings.

There are, however, no satisfactory methods for predicting transonic loads on oscillating surfaces

for use in flutter and gust analysis of aircraft. Any completely adequate analysis for the transonic

region should include the effects of airfoil bluntness, thickness, camber, angle of attack, and

wing-body interference. It should include the effects of mixed subsonic and supersonic flows

containing embedded shocks and of the boundary layer with shock wave interaction.

A method for treatment of oscillating wings by finite difference methods is presented here.

The assumption of small perturbations from a uniform stream near the speed of sound allows the

reduction of the equations of motion to a simple, more tractable form and retains the necessary

nonlinearity for describing flows with local supersonic regions. The introduction of the perturbation

velocity potential restricts the solution to weak shocks which, for thin wings of reasonably good

design, is not too limiting an assumption. When the flow is steady the resulting nonlinear

differential equation reduces to the well-known transonic small perturbation differential equation

recently studied by Murman and Cole (ref. 2) and Krupp (refs. 3 and 4). The unsteady flow

differential equation is simplified by considering the flow as consisting of the sum of two separate

potentials representing the steady and unsteady effects and by linearizing the differential equation

for small amplitudes of harmonic oscillation.



SYMBOLS AND ABBREVIATIONS

a,b coefficients for y,z or 17,$" differences corresponding to second derivatives,
with appropriate subscripts (equation (23) in appendix)

c,d coefficients for x or £ difference corresponding to second derivative
(equation ( 1 9) in appendix)

C] ,d] ,C2 coefficients for second-order accurate difference corresponding to first
derivative (equations (20) and (26) in appendix)

c velocity of sound in units of UQ

C3j equation (92) in appendix

C4i'd4j equation (94) in appendix

csl,cs2,dsj,ds2 equation (105) in appendix

Ckl'ck2'ck3'ck4 equations (1 17) and (121) in appendix

E coefficients in difference equations, with appropriate subscripts

f(x,y,t) - instantaneous wing shape defined by ZQ = 5f(x,y,t)

f(x,t) instantaneous airfoil shape defined by yQ = 6f(x,t)

fQ undisturbed wing or airfoil shape

f i unsteady contribution to wing or airfoil shape

f" = f i + i fj unsteady wing boundary conditions

h vi +1 - viJm * Jm

zkKm
ni zk + 1 " z

i Km-i-i

ij,k x,y,z or. £,T?,f subscripts for points in the mesh

ia x index for first mesh point behind hinge

^max^max'^max maximum number of x,y,z mesh planes, respectively

ii x index for trailing edge

jm y mesh line just below airfoil



K (l-M2/M2e

km z mesh plane below wing

L,U superscripts denoting lower or upper boundary on

M free-stream Mach number

P(D) polynomial operator, D = (0^,02,03)

P(x,y) v?jx + ioji^i acceleration (or pressure) potential

^
q 'oz/e-iu>(7-

V *,2

s semi-chord of wing

sl . (y\ +2'yi +l)/h
1 Jm L JmT1

so (Yj "Yi _i)/hJm Jm

t,tQ time in units of S/UQ

UQ free-stream velocity

u,v,w x,y,z velocity components of flow at beginning of the derivation of the
equations

u " K-(7 + !)V?QX throughout remainder of text

r\.

v K - (7 + 1 VQX + ^ throughout remainder of text

x,y,z (XQ, jLtyQj VZQ) scaled coordinates

X0'YO'Z0 dimensionless coordinates in units of s

v *, -, fv +r IV i /V\X| ,y^ ,Z j vx>Yv **•> ZV ^

a sweep angle of leading edge

Dj/Dj

ratio of specific heats for air



Aip Jump in i^j at plane of wing or vortex wake

5 thickness ratio or measure of camber and angle of attack

Sl X2'x l

(5M)2/3

swept wing scaled coordinates (£ = x - y sin a)

sin a

H,v scale factors on YQ and ZQ, respectively (M = v - 5

p density made dimensionless to free-stream value

T parameter in analysis of differential operator

<j) dimensionless perturbation velocity potential

(p ' scaled perturbation velocity potential, <t> = ey

X <//x + ioji// acceleration or pressure potential

I//Q elCjr/r for planar wing , HQ^2\Xr) for airfoil

iMAjx ^ fundarnental source solution for integral equation

cj angular reduced frequency (s x frequency /UQ)



DESCRIPTION OF THE METHOD FOR COMPUTING
UNSTEADY FLOW FOR THE HARMONIC MOTION OF A WING

A detailed mathematical derivation of the method of finite differences applied to the solution

of the unsteady velocity potential for the flow about a harmonically oscillating wing is presented in

the appendix. Formulas are derived for the rectangular wing, for the swept wing, and for

two-dimensional airfoils. Boundary conditions on the wing, on the trailing vortex sheet, and on the

outer boundaries of the mesh are treated in sufficient detail to be coded for implementation on an

electronic digital computer. A brief discussion will be presented here and will be limited to the

oscillating airfoil, since only the two-dimensional problem was programmed to test the method.

The complete nonlinear differential equation was simplified by assuming the flow to be a small

perturbation from a uniform stream near the speed of sound. The resulting equation for steady flow

is (see appendix, equation 12)

[K - (7 - l>pt - (7 t

0 0
where K = (1 - Mz)/Mze, M is the free-stream Mach number of velocity UQ in the x-direction, x

and y are made dimensionless to the semichord s of the airfoil, and the time t to the ratio

With the airfoil shape as a function of time defined by the relation

y0 = 5f(x, t)

the linearized boundary condition becomes

The quantity 5 is associated with properties of the airfoil such as maximum thickness ratio,

camber, or maximum angle of attack and is assumed small. The coordinate y is scaled to the

physical coordinate yQ by the factor

and e is given in terms of 5 by .

e= ~(6/M)2 /3



The pressure coefficient is found from the relation

JThe preceding differential equation .is simplified by assuming harmonic motion and by

assuming the velocity potential to be separable into a steady-state potential and a potential

representing the unsteady effects. We write for a perturbation velocity potential

<p = (pQ (x, y) + pj (x, y)elcot (3)

and for the body shape

Since the steady-state terms must satisfy the boundary conditions and the differential equation in

the absence of oscillations, we obtain ,

with

y = 0, -1 < x < 1 (5)

On the assumption that the oscillations are small and products of <Pj may be neglected, equations

(1) and (2) with the aid of equations (3) and (4) yield

(6)

where

q= co2/e-icd(7

subject to the wing boundary conditions

+ iwf !(x) = F(x), y = 0, -1< x < 1

A computer program for solving the steady-state transonic flow about lifting airfoils based on

equations (4) and (5) was developed by J. A. Krupp (ref. 4) and is designated as program TEA-330

by The Boeing Company. The output of this program was used in computing the coefficients for



the differential equation of the unsteady potential. The similarity of the unsteady differential

equation with the steady-state equation suggests that the method of column relaxation used by

Krupp (ref. 4) for the nonlinear steady-state problem should be Han effective way to solve equation

(6) for the unsteady potential <Pj. Note that equation (6) is of mixed type, being elliptic or

hyperbolic whenever equation (4) is elliptic or hyperbolic. Central differencing was used at all

points for the y derivative and at all subsonic or elliptic points for the x derivatives. Backward (or

upstream) differences were used for the x derivatives at all hyperbolic points.

The boundary condition that the pressure be continuous across the wake from the trailing edge

was found in terms of the jump in potential A <Pj to be-

whereA<P t is the jump in the potential at x = xt just downstream of the trailing edge and is

determined to satisfy the Kutta condition that the jump in pressure vanish at the trailing edge. The
quantity AlPi is also used in the difference formulation for the derivative ^lyy to satisfy continuity

of normal flow across the trailing edge wake.

For the set of difference equations to be determinate, the value of <Pj or its derivative must be
prescribed on the mesh boundary. Following Klunker (ref. 8), we found an asymptotic integral

representation for the far-field <Pj potential and for the related pressure potential <Pj x + iai<iPj.

Because of the difficulty with convergence of the integral over the wake for the integral equation of

the velocity potential, upstream and downstream boundary conditions for the mesh were given in

terms of the pressure potential <P jx + io)<Pj for which the wake integral can be integrated in closed
form. The value of <P j was computed at one point on the upper boundary and one point on the

lower boundary which were conveniently chosen to facilitate rapid convergence of the wake

integral. The values of </>i at other points on the upper and lower boundaries were found by

integrating numerically with respect to x the quantity <Pj x +

The complete boundary value problem for the oscillating airfoil is illustrated in figure 1 . The

notation used in the computer program is also shown. Finer mesh in the y direction was used in

the vicinity of the wing plane. Finer grid in the x direction was used to obtain greater accuracy

near leading and trailing edges where velocity gradients are higher.

10
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DISCUSSION OF COMPUTED RESULTS FOR THE

HARMONICALLY OSCILLATING FLAP ON AN AIRFOIL

The numerical procedure for computing the transonic unsteady flow described in the foregoing

section was applied to the airfoil with the harmonically oscillating flap. For the basic steady
transonic flow, we chose the flow about a NACA 64A006 airfoil at zero angle of attack for

free-stream Mach numbers of M = 0.8 and 0.85. The steady flow potential <PQ used in computing the

coefficients for the unsteady method was computed by the program TEA-330 developed by

J. A. Krupp (ref. 4). The distribution of pressure coefficients on the airfoil for the two Mach

numbers is shown in figures 2 and 3. Mach numbers and the airfoil were chosen for the purpose of

comparing computed results with the experimental measurements of Tijdeman and Schippers in

reference 9 for an oscillating flap of quarter-chord length. We note that for M = 0.8 the airfoil is

subcritical, while for M = 0.85 it is supercritical over a small region. The reduced frequencies for the

flap oscillating at 30 cycles per second in free-stream Mach numbers of M = 0.8 and 0.85 for the

wind tunnel speeds used by Tijdeman and Bergh in reference 9 are w = 0.060 and 0.056,

respectively. The grid consisted of 75 points along y = constant lines and 58 points along

x = constant lines, yielding a total of 4350 points in the mesh. The far-field boundaries are at
x = -2.62 and 2.75 and y = ± 6 . This same grid was used for both the steady and unsteady

calculations.

The unsteady contribution to the location of the airfoil surface for the harmonically oscillating

flap as a function of chord position is given by

x

f1(x)=-0, - K x < l - L f

f1(x) = a ( x - l + L f ) , l - L f < x < l

where the airfoil is defined by -I < x < 1 and Lf is the length of the flap in units of.semichord. For

the experiments of Tijdeman and Schippers (ref. 9), Lf = 1/2, and the amplitude was 1.5°. The

boundary conditions in equation (82) of the appendix become

= 0, - K x < l - L f , y = 0

= (a/5) [ 1 + iw (x - 1 + Lf)], 1 - Lf < x < 1

12
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NACA 64A006 airfoil
Zero angle of attack
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Figure 2.—Distribution of coefficient of pressure, C , at Mach 0.794

NACA 64A006 airfoil
Zero angle of attack

-.8 -.6 -.4 .6 .8

Figure 3.—Distribution of coefficient of pressure, Cp, at Mach 0.853.
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Thus, the quantities F' and F', defined at the mesh points Xj and used in the difference

equations near the boundary, become

XU) = F.(L) = (a/g)[ ! + iw (x. _ 1+ Lf)]

.(U) = F.(L) = 0 i<{i 1 1 "' l ^ xa3

where ia is the x-index in the mesh satisfying the relation

X: < 1 - Lf < XJa *

' To check out the program, the flow at Mach number M = 0.8 over a flat plate was computed
for the oscillating boundary conditions of equation (7) and for o> = 0.06. For this case

<?QX =
 <CQXX - 0. The resulting differential equation is equivalent to the classical linearized unsteady

subsonic differential flow equation for harmonic motion; namely,

+ M2o)2(£ = 0

This equation has been studied extensively and several kernel function integral equation methods

have been developed to solve for the related acceleration or pressure potential, <?ix +

The jump in pressure coefficient computed by the present method for the flat plate at M = 0.8

and CJ = 0.06 is given in figures 4 and 5 for the real and imaginary parts, respectively. The

convergence of the solution was very slow. Overrelaxation with a parameter of 1.3 in the manner of

Murman and Cole (ref. 2) and Krupp (refs. 3 and 4) was used in the iteration process, and the

relaxation calculations were made by sweeping alternately downstream and upstream for many of

the iterations. No definite advantage in alternate direction sweeping of the field as compared with
the customary mode of sweeping downstream followed in references 2 through 4 was proven,

although Newman and Klunker (ref. 6) found that symmetry of nonlifting solutions for steady

subsonic flow was preserved. For the far-field boundary conditions, the value of the unsteady

potential <^j was computed for upper and lower mesh boundaries, and V^ + ico'/'j boundary
conditions were prescribed following the discussion in the section on far-field boundary conditions.

The far-field boundary data were updated every 100 iterations near the beginning of the

calculations and every 20 iterations for the later calculations. The more frequent updating seems to

be more efficient in obtaining the final result. With all values of <P\ in the mesh starting with zero,

the complete calculations shown in figures 4 and 5 were accomplished in about 3000 iterations to a

convergence of 2 x 1 0~-> for the magnitude of the maximum difference between iterations. In spite

14
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12.5

10.0 -

2.5 -

-1.0

• Present method
•Collocation method of Rowe (ref. 10)

Figure 4.— Real component of the jump in unsteady pressure coefficient across a flat plate
with a harmonically oscillating quarter-chord flap. Free-stream Mach number
M = 0.8 and reduced frequency co = 0.06.
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Present method
Collocation method of Rowe (ref. 10)

A'O
imag

-2.5 -

-1.0

Figure 5.—Imaginary component of the jump in unsteady pressure coefficient across a
flat plate with a harmonically oscillating quarter-chord flap.
Free-stream Much number M = 0.8 and reduced frequency co = 0.06.

of the complex arithmetic and the more complicated equations, the computing time for each

iteration is about 1 second on the CDC 6600 compared with the steady flow program which

requires about 2/3 second per iteration for the 58 by 75 grid.

The results are compared in figures 4 and 5 with calculations by the kernel function of

reference 10 for three-dimensional flow at the center of a rectangular wing of aspect ratio 20. The

real parts of the jump in pressure coefficient by the two methods agree quite well, but the

imaginary part from the present method gives amplitudes with less negative value near the leading

edge and larger positive value on the flap. The x,y mesh points were those used to compute the

steady-state potential using TEA-330 and contain a finer spacing near the leading and trailing edges.

The grid points used in the calculations are indicateu by circles on graphs of computed results. It

16



has been shown in reference 1 1 that there is a logarithmic singularity at the hinge point and an.
infinite square root singularity at the leading edge. Because of these singularities, no mesh points for

the unsteady flow should lie on the lines x = -1 and 0.5. Increasing the fineness of the x-grid in the
vicinity of x = 0.5 had no noticeable effect on the solution for the flat plate, however. The results
also appear to be insensitive to the far-field boundary conditions. Setting <Pjx + iu ;<pj =0 on all
four far mesh boundaries located at y =±6.5 and x =±3.5 yielded differences scarcely observable in

figures 4 and 5.

The solution for the flat plate with a free-stream Mach number M = 0.8 and reduced frequency

u> = 0.06 was used as a starting solution for co = 0.1794, corresponding to a frequency of 90 cycles

per second. The singularity at the leading edges for w = 0.1794 has the opposite sign from that at

w = 0.06. After 2800 iterations the solution converged to 10 , and the real part along with the

equivalent solution from the collocation method of Rowe is shown in figure 6. The agreement is

quite good. Similarly, the comparison of the finite difference solution for the imaginary part of the
pressure jump with the corresponding solution by the collocation method is shown in figure 7. The

agreement is better than that for w = 0.06 (fig. 5). The rate of convergence is illustrated in figures 8

and 9. The cause of the large number of iterations required for convergence is apparently the change
in sign of the leading edge singularity for u> changing from 0.06 to 0. 1794.

With the calculations of the flat plate solution for M = 0.8 and w = 0.06 as starting values for
<P\ , the solution of the complete linear differential equations for Mach 0.794 and u = 0.064 with

provided by the solution from TEA-330 was obtained in about 1200 iterations. Agreement with the

experimental results of Tijdeman and Schippers (ref. 9) is not as good as the agreement between the
classical linear solution and the present method for flat plate flow. The pattern of the present

method agrees with that obtained by Tijdeman and Schippers (ref. 9), as shown in figures 10 and

11. The computed values of real ACp are considerably larger than the experimental measurements.

The discrepancy between experiment and theory is not understood. There are a

number of possibilities: boundary layer or separation effects, or both, near

the aft portion of the airfoil, or unknown problems associated with the theory

or with the pressure measurements. However, the validity of the calibration of
the pressure tube system used by NLR is confirmed by Destuynder and Tijdeman in
reference 12, and should provide reasonable experimental results.

Starting with the M = 0.8 and u> = 0.06 mesh values of <Pj and with<?Q from TEA-330, we

computed the solution for M = 0.853 and w = 0.060 with another 1200 iterations to a maximum

error between iterations of about 3.5 x 10 . The results for the jump in pressure coefficient on the
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Figure 6.—Real component of the jump in unsteady pressure coefficient across a flat
plate with a harmonically oscillating quarter-chord flap. Free-stream[Mach
number M = 0.8 and reduced frequency co = 0.1794.
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Figure 7.—Imaginary component of the jump in unsteady pressure coefficient across a
flat plate with a harmonically oscillating quarter-chord flap.
Free-stream Much number M = 0.8 and reduced frequency co = 0.1794.

airfoil are shown in figures 12 and 13 for the real and imaginary parts, respectively. The pressure

peak for both the real and imaginary parts close to the midchord as observed by Tijdeman and

Schippers (ref. 9) is also predicted by the present method. Although magnitudes are somewhat

higher, the pattern of the theoretical imaginary part from the present method agrees with the

experiments.

By comparing the two solutions in figures 10 through 13, one can see the influence of
increasing Mach number on the propagation of disturbance from the oscillating flap. Note that the

real component of the pressure amplitude decreases with Mach number near the leading edge. A
peak builds up at the semi chord point due to the local supersonic region, which becomes subsonic
just downstream of the midchord. These observed properties are common to both the theoretical

and experimental results.

The solution for u> = 0.06 and M = 0.794 was used as the starting solution for w = 0.253 and

M = 0.804, corresponding to a frequency of 120 cycles per second. After 4000 iterations the

solution was converged to 4 x 10 for the maximum difference between iterations. The column

relaxation was swept alternately upstream and downstream and an overrelaxation parameter of 1.4

was used. This flow is completely subsonic. The pattern of the real part of the jump in pressure

coefficient from the finite difference method in figure 14 matches the experimental data as in the
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12.5

-1.0

Figure 8.-Rate of convergence of the real part of the jump in pressure coefficient on a
flat plate with oscillating quarter-chord flap for a change in reduced frequency
from cj = 0.06 to co = 0.1 794 and free-stream Mach number M = 0.08.

other cases, but here the magnitude is in somewhat better agreement. The imaginary part shown in
figure 15, however, has much higher negative values near the leading edge than the experimental

data, but the match is better aft of the hinge line.

The solution for w = 0.056 and M = 0.85 was also extended to cj = 0.179. This solution was

run 3600 iterations and the convergence is 1.93 x 10 maximum difference between iterations.

From figure 16 just downstream of midchord, a peak in the real part of the jump in pressure

coefficient has developed and increased to 12, while the imaginary part in figure 17 shows a peak of

-20 just upstream of midchord. The experimental measurements also show these peaks, but on a
much smaller scale. The amplitude buildup occurs near the sonic line in the decelerating region of

the flow for both values of reduced frequency (see figs. 12 and 13). From the experience in
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Figure 9.-Rate of convergence of the imaginary part of the jump in pressure coefficient
on a flat plate with oscillating quarter-chord flap for a change in reduced frequency
from co = 0.06 to co = 0.1794 and free-stream Mach number M = 0.08.
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Experimental results of Tijdeman
and Schippers (ref. 9)

Figure 10. —Real component of the jump in unsteady pressure coefficient across
NACA 64A006 airfoil with a harmonically oscillating quarter-chord flap.
Free-stream Mach number M = 0. 794 and reduced frequency co = 0.064.
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Present method

Experimental results of Tijdeman
and Schippers (ref. 9)

AC,

-1.0

Figure 11. —Imaginary component of the jump in unsteady pressure coefficient across
NACA 64A006 airfoil with a harmonically oscillating quarter-chord flap.
Free-stream Mach number M = 0. 794 and reduced frequency co = 0.064.
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Present method

AC
Preal

-8 -

-10 -

Experimental results of Tijdeman
and Schippers (ref. 9)

-12
-1.0 -0.8 -0.6 -0.4

Figure 14. —Real component of the jump in unsteady pressure coefficient across
NACA 64A006 airfoil with a harmonically oscillating quarter-chord flap.
Free-stream Mach number M = 0.804 and reduced frequency co = 0.253.
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Experimental results of Tijdeman and
Schippers (ref. 9)

-1.0

Figure 15.—Imaginary component of the jump in unsteady pressure coefficient across
NACA 64A006 airfoil with a harmonically oscillating quarter-chord flap.
Free-stream Mach number M = 0.804 and reduced frequency co = 0.253.
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Figure 16. —Real component of the jump in unsteady pressure coefficient across NACA
64A 006 with a harmonically oscillating quarter-chord flap. Free-stream Mach
number M = 0.858 and reduced frequency cj = 0.179.

28



AC

Present method

Experimental results of Tijdeman
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Figure 17. —Imaginary component of the jump in unsteady pressure coefficient
across NACA 64A006 airfoil with a harmonically oscillating quarter-chord
flap. Free-stream Mach number M = 0.858 and reduced frequency oj = 0.179.
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calculation with the amplitude of oscillation of 1-1/2°, it appears that calculations must be

continued until the maximum magnitude of the difference between iterations is about 10" .

From a study of figures 10 through 17, we see that solutions from the finite difference method

predict the essential features of the pressure distributions found by experiment, whereas the

linearized subsonic kernel function method does not. The larger amplitudes may be due to

inaccuracies in the method of measurement, to boundary layer and separation effects on the aft

portion of the airfoil, or to wind tunnel wall influence.

RECOMMENDATIONS FOR INCREASED ACCURACY AND REDUCED COMPUTING TIME

It is pointed out in the appendix that the difference equations for the flow field result in a

large set of linear equations for the values of the unsteady velocity potential at the mesh points.

Column relaxation methods were found to require a large number of iterations to obtain the

solution. Since the matrix of the equations contains only five or six nonzero diagonals for

two-dimensional flow (and only seven or eight for planar wings), the matrix is very sparse,

containing mostly zeros.

Special methods which take advantage of this property should be applied to solving this set of

equations. One possible technique is the Gram-Schmidt orthogonalization method of references 13

and 14, which construct a solution from a set of vectors orthogonal to the set of vectors spanned by

the coefficients and right-hand side terms of equations (127) and (128). Scalar products used in

constructing these orthogonal vectors wil) contain only six or seven products at most. The actual

number of operations should be considerably less than the 1200 to 3000 iterations of the column

relaxation required for the convergence by the column relaxation method. As formulated in this

manner, the complete calculations will have to be carried out several times to match far-field

boundary conditions and to satisfy the Kutta condition. Each updating of the far-field boundary

conditions and the Kutta conditions from the last solution requires only a modification of the

right-hand side terms in preparation for the next solution. Satisfying the Kutta condition could be

incorporated into the solution of the linear equations, but this would involve additional nonzero

elements in the matrix for those points adjacent to the plane of the wake. Many terms in the matrix

are duplicated, and taking advantage of this feature can reduce some of the computation. A study

of the various special methods available for solving large orders of linear equations should be made

to determine which method is best suited to this particular problem.
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It is also possible to improve the efficiency and accuracy of the column relaxation procedure.

This may take the form of finding optimum values of the overrelaxation parameter at subsonic

points and of underrelaxation at supersonic points, or possibly changing the mesh size near the

leading edge and near the hinge line.

In calculating the exact potential steady transonic flow over the blunt airfoil, Garabedian and

Korn in reference 1 found that obtaining first a solution with a coarse grid and then refining the

grid to obtain greater accuracy reduced significantly the number of iterations required for

satisfactory accuracy in the final solution. This procedure should improve both efficiency and

accuracy of the unsteady finite difference solution as well.

Experience in computing additional unsteady flows, such as harmonic pitching of the airfoil

and comparison with careful measurements on an oscillating airfoil, is needed to clarify the validity

of the method.

EXTENSION OF THE WORK TO THREE-DIMENSIONAL WINGS

In the appendix, a complete analysis based on transonic small perturbation theory is given for

applying the method of finite differences to the solution of unsteady flow about finite wings of

both rectangular and swept planforms. All formulas required for programming the method are

presented. Much of the computer logic in the airfoil program could be directly employed in the

program for finite wings. The basic approach would be essentially unchanged, but with the

additional dimension adding more complication and a greater number of points. The program either

of Newman and Klunker (ref. 6) or Ballhaus and Bailey (ref. 7) would be required to provide the

values of the steady perturbation potential at the grid points for the coefficients of the unsteady

flow difference equations.

EXTENSION OF THE WORK TO ELIMINATE THE SMALL DISTURBANCE ASSUMPTION

~" • The general procedure followed here for setting-up the linear equation for the unsteady

•velocity potential could be applied to the more complete potential equation. Garabedian and Korn

(ref. 1) transformed the independent variables of the differential equation by a conformal mapping

of the physical plane to map the flow field about a blunt airfoil into the interior of a unit circle.
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The transformed differential equation is expressed in difference form in the new variables and

solved numerically by relaxation in the manner of Murman and Cole (ref. 2) and Krupp (refs. 3 and

4). In this way the airfoil boundary conditions are satisfied exactly and far-field boundary

conditions are easily prescribed.

This same transformation of the independent variable could be similarly applied to the

differential equation for the velocity potential of unsteady two-dimensional flow. By representing

the complete flow as the sum of a steady-state potential and an unsteady potential, the transformed

differential equation for the unsteady flow could be linearized in the same fashion by using the
condition that the steady-state potential satisfies the nonlinear equation and by neglecting all terms

containing products of the unsteady potential and its derivatives. The unsteady boundary
N

conditions could be linearized by satisfying them on the boundaries of the stationary airfoil and

steady wake. The techniques for solution would differ more in the increase of actual computation

required for the coefficients than in the actual number of difference equations to be solved.

The Boeing Company has developed a similar method for solving the complete nonlinear

differential equation for the steady transonic flow potential about a blunt airfoil by using as

independent variables the velocity potential and stream function from the incompressible solution.

With the differential equation for steady flow expressed in these variables, the boundary conditions

on the airfoil are satisfied exactly. The same procedure could also be applied to this formulation.

There appears to be no basic reason why the numerical procedure used for the differential equation

based on the assumption of small perturbations near sonic velocity could not be carried over to the

blunt airfoil solutions.

Since no mapping technique exists for simplifying the application of the boundary conditions

on three-dimensional wings,'the problem of eliminating the restriction to small perturbations for

transonic flow is considerably more difficult. A fairly elaborate mesh system must be constructed
near the wing surface, and a method of satisfying the boundary conditions must be devised.

CONCLUSION

A method for applying the finite difference technique to the solution of the unsteady

transonic small perturbation differential equation has been developed analytically with sufficient

detail in this document that it can be programmed for computation on a high-speed digital

computer. Coefficients of the differential equation contain the nonlinear steady flow solution about

the wing and must be computed and supplied to the unsteady flow program at the outset of

32



computations of the unsteady flow. To test the method, the technique for the oscillating airfoil was
programmed and computations were made for the oscillating flap of quarter-chord length on a
NACA 64A006 airfoil.

Analysis of the truncation terms of the difference equation indicates that the stability of the
difference formulation for subsonic points is not dependent upon the relative grid sizes in the three
directions. For supersonic points, a viscous-like term was found in the truncation terms which is
similar to that found by Murman and Cole (ref. 2) to yield stable and smooth calculations near
shock waves. Calculations using the method indicate that the procedure is indeed stable and
convergent.

Five cases were computed involving two free-stream Mach numbers and two frequencies. The
numerical method was found to be stable for flows with local supersonic regions as well as strictly
subcritical flows. The pattern of the distribution of pressure coefficient on the airfoil in all cases
follows closely the distributions observed by Tijdeman and Schippers (ref. 9); however, the pressure
levels in the calculated cases are generally, higher than those found by Tijdeman and Schippers (ref. 9).
The discrepancy between theory and experiment may be due to boundary layer and
separation effects near the aft portion of the airfoil, possible wind tunnel
wall interference, or to unknown problems associated either with the theory or
with the pressure measurements. The validity of the calibrations used by Tijdeman
and Schippers (ref. ,9) is confirmed by Destuynder and Tijdeman in reference 12.

For 75 grid points in the x or stream direction and 56 in the y direction, the number of
iterations for convergence to a maximum difference between iterations of 2 x 10 varied from
1200 to 3000 depending upon the starting solution. Each iteration takes about 1 second on the
CDC 6600 as compared to 2/3 second for the steady-state program TEA-330 developed by Krupp
(ref. 4). More computations are needed to improve the rate of convergence by finding optimum
values of the overrelaxation parameter for subsonic points and of the underrelaxation parameter for
supersonic points, and to establish suitable criteria for acceptable convergence of the solution. Since
Garabedian and Korn (ref. 1) found that first obtaining a solution with a coarse grid and refining
the grid to carry on the calculations reduced significantly the number of iterations required for
solution of the steady-state equation, a similar procedure should also reduce computing time for the
unsteady problem. See note added in proof on page 34.

Efficiency also may be improved by solving the complete set of equations instead of the
column relaxation used in the study. Because the set of difference equations is linear in the
unsteady potential and because the matrix of coefficients contains only a few nonzero diagonals, a
special procedure for solving the complete set of equations at once seems feasible and should be a
subject of future study.

33



The present method was formulated on the assumption of small perturbations near the speed

of sound, but the method could be extended without too much difficulty to the flow around a

blunt airfoil for which the steady flow boundary conditions are not linearized but are satisfied

exactly. The two-dimensional problem is made easy by the possibility of using body coordinates to

simplify the application of boundary conditions in the finite difference method. Since no simple

body coordinate system can be formulated for the three-dimensional wing, a more elaborate mesh

system would be required in the neighborhood of the wing surface, making it more difficult to

eliminate the restriction of small perturbations. The unsteady boundary conditions presumably

would be linearized and applied at the steady-state wing position.

The results of the present study indicate the feasibility of the proposed method of finite

differences for finding the unsteady transonic flow about harmonically oscillating wings.

Boeing Commercial Airplane Company

P.O. Box 3707

Seattle, Washington 98104, February 25, 1974

Note added in proof:

Recent studies have shown that, by the use of larger values of the over-

relaxation parameters such as 1.8 to 1.9, the number of iterations to obtain a

converged solution was reduced by an order of magnitude when applied to a re-

computation of one of the flat plate examples.
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APPENDIX

Derivation of the Differential Equation and Boundary
Conditions for Harmonic Motion of the Thin Wing in Transonic Flow

Let

u = u 0 ( l+0 X o ) , v = u00yo, w = u00ZQ (1)

be the velocity components of the flow, where 0 is the perturbation velocity potential, XQ,yQ,ZQ
Cartesian coordinates, tg the time, and UQ the undisturbed flow velocity. As given in Landahl
(ref. 15), the equations of motion are

*o > (2)

c2 = 1/M2 - (7 - 1 ) [0t + 0XQ
 + (^x0

2 + <»y0
2 + ^z0

2)/2] (3)

where p is the density, c the velocity of sound, 7 the ratio of specific heats, and M the free-
stream Mach number. The coordinates (xn,yQ,ZQ) are made dimensionless to the wing semichord
and the time IQ to the ratio of the semichord to the velocity UQ. Since

(4)

we have from equation (3),

Similar relations for c2pxo/p, c2pyo/p, and c2pZQ/p may be written down by replacing the last
subscripted variable tQ with XQ, yQ, and ZQ, respectively. By expanding the derivatives in equation
(2), eliminating c2pt /p by equation (5), and eliminating c2pXQ/p, c2pyQ/p, and c2pz«/p by
equations similar to equation (5), the following differential equation for 0 results
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+ [Vo + 0xoxo + Vxoxo + Vyoxo + Vzoxo] C +

(6)

VW| 0yo

+ [Vo + Vo + 0xo0xozo + 0yoVo +'0zo Vo] 0zo

- [1/M2 - (T - 1} K + S + 0xo2/2 + 0y0
2/2 + 0zo2/2)] (Vo +

Since we shall consider small perturbations from a parallel flow, it is convenient at this stage to
discard third-order terms in equation (6). Combining terms and simplifying yields

- (7 -

U - M

(7)
20zo0zoto + Wyo0yoxo + 20zo0zoxo

We now introduce a small parameter e and scale factors ju and v on yo>zO anc^> by an order
of magnitude comparison of terms of equation (7), we determine which second-order terms in
equation (7) are to be retained for free-stream Mach numbers near 1 . Let 0 = ei^, x = XQ, t = tQ,
Y = MYQ' a°d z = VZQ- The quantity e is a small quantity whose magnitude in terms of the thickness
ratio is to be determined later in the development. The quantities ju and v are scale factors for
setting the orders of magnitude of the principal linear terms. With these substitutions the differ-
ential equation becomes

e[(l - M2) - (7 - l)M2e^t - (7 + l)M2e^x] ̂ xx + M
2e 0

+ (7-

36



Since our primary interest is in transonic flow, we assume that the small quantity e is of the same
order as 1 - M . Dividing the equation by M2e2 and setting (1 - M2)/M2e = K leads to

[K - (7 - 1 )*t - (7 + 1 Vx] Vxx + (M2/M2e>pyy + (i>2/M2

(7 - 1)(<PX + < / > t ) ( M < f y y + " < P Z Z ) ] = 0.

0 0 0 0
It is convenient to set i>z/Mze = 1 and juz/Mze = 1 , thereby making (£yy and <pzz terms of the same
order as the <^xx term. Equation (8) then becomes

-(2(px t+« t t)/e-

To determine n in terms of the thickness ratio 5 we consider the boundary conditions on the
wing; we let

F(x0, y0, t0) = z0 - 6f(x0, y0, tQ) = 0

describe the wing surface at each time tQ. Then the boundary conditions that the flow be tangential
to the wing surface become

DF/Dt=0

or

In scaled coordinates with <j> = e<p, we have

(f> - (5/e/i)(fY + ft) - (5/M)fY<£v - (5ju )f,,<A, = 0.
£ - 1 A . t A . A . V V
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Letting 6/e/x = 1 makes all the linear terms have the same order of magnitude. Then the boundary
conditions become .

*z - fx - ft - e^xfx - eM2fy*y = o.

9 9Since n = 5/e and juz/Mze = 1 , we can solve for M and e in terms of 5 . Thus

e = (5/M)2/3

and

H = v =5l/3M2/3 = Mel/2

Upon neglecting terms of the order of e in equation (9), we finally obtain the differential equation

*zz

(12)

The boundary condition from equation (11)

is to be satisfied on the wing, represented by its projection on the ZQ = 0 plane.

For convenience, we separate the perturbation potential y into a steady flow I^Q and an
unsteady flow <£j . Thus, we let

y.z.t). (13)

The steady flow term <^ must satisfy equation (12) independently. Thus, we obtain

This is the well-known transonic small perturbation equation for steady flow .studied recently by
Murman and Cole, Krupp, Newman and Klunker, and Ballhaus and Bailey (see refs. 2 through 7).
It is nonlinear and of mixed type. When <^QX < K/(-y +1), the equation is elliptic; and when
(?QX > K/(7 + 1 ), it is hyperbolic. The quantity K./(j + 1 ) is seen to be the sonic velocity for the
flow represented by the solution of equation (14).
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Substituting equation (13) into (12), making use of equation (14), and neglecting product
terms in y^ yields the following linear differential equation for the unsteady perturbation potential:

(15)

Here we have also neglected the coefficient <PQX of the <£jxt term as negligible compared to 1/e

We shall assume harmonic motion for the wing; then with

, y, z)elajt

equation (15) becomes

x^lx}x + ^lyy + ^lzz'(2ico/e^lx + ^2/e ~ & ~ ̂ ^Ozz^l = 0

This may be written as

0 (17)

/^where u = K - (7 - I>PQX and q = coz/e - io>(7 - l)<Poxx- Equation (17) is linear and like equation
(14) is of mixed type, being elliptic or hyperbolic whenever the solution of equation (14) is elliptic
or hyperbolic.

Formulation of the Difference Equations for Numerical
Solution of Unsteady Flow From Harmonic Motion of a Thin Wing

Since <^Q is a numerical solution of equation (14) whose values are known only at discrete points
of a mesh, equation (17) is also to be solved numerically. For this purpose equation (17) is expressed
in difference form. For subsonic flow points, we use central differences for derivatives in the x,y,z
directions. For hyperbolic or supersonic points we use backward (or upstream differences) in x but
retain central differences in the y and z directions. This is the practice followed by Murman and
Cole (ref. 2), Krupp (refs. 3 and 4), Steger and Lomax (ref. 5), and Newman and Klunker (ref. 6),
since only upstream data can influence a hyperbolic point in regions of local supersonic flow. Thus,
for subsonic flow at the point Xj, y;, z^, we have
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where

11. . = K (*V

= K +!)( (18)

and i ±*/2 denotes the value of the quantity at
T.

x = (xi + xi±1)/2,

the x midpoint of the mesh.

The x derivative may be written more simply as

X X 1 1 2J ^^

' 2diui-y2jk Gfy'k ' *i-1 jk)

where

For the first derivative, we use a second-order difference equation. Writing

^ijk) + dli^ijk-^i-ljk) (20)

and expanding the terms about the point ij,k, we find the values of c^ and d^ by setting the
coefficient of ^jx equal to 1 and of <P}XX equal to zero on the right-hand side of equation (20).
This leads to
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With these definitions, the complete x derivative term becomes

[u«pl = - 2[Ciui+i/2Jk + diUi.1/2J

Similarly, we write for the central differences of tpjyy and ip]zz terms

yryj-i
or

where

(21)

(22)

(23)

The formulas for azk and bzk are similar to equation (23) with z and k replacing y and j ,
respectively. Substituting equations (20), (21), and (22) into the differential equation for <p\ yields

-2(El

where

+2azkVijk-l -

El = ciui+i/2Jk - iwcli/e> E2 =
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In solving the equations, we relax a column at a time. At each planar point Xj, YJ, we solve for
; k = 2 to kmax - 1. Therefore, we place all other terms on the right-hand side and obtain for the

elliptic point form of the difference equation:

- <ayj + byj + azk + bzk + El + E2 ' <lij

(24)
+ bzkY>ijk+ 1 - ~E F i+ 1 jk ' E2^i- 1 jk - ayj^ij- 1 k ' byj ̂ ij+ 1 k

For fixed i j, and for k ranging from 2 to kmax - 1 , this is a set of kmax - 2 equations to be solved
for an equal number of ip^ provided that <py j and ^ijk'max are prescribed by the far-field boundary
conditions. This yields a system of equations with a tridiagonal matrix for the coefficients which is
simple to solve.

When the point is hyperbolic, backwards differencing in x is used. This may be achieved by
shifting all the i indices one less for the term (ui^ix)x. For <^jx we derive a three-point backwards
difference formula which is second-order accurate in the mesh spacing. For the point ij,k, we write

*lx = c2Mjk - ̂ i-ljk) + d2M-ljk - V?i-2jk>- <25)

We then determine c^i and d2i so ^at' wnen ^i-ljk anc* ^i+lik are exPanded in a Taylor's series in
x about ^jj^, the coefficient of i£jx on the right-hand side equals unity and the coefficient of <£>]xx

vanishes. This leads to

c2i = 1 /(xj - xj. j ) + 1 /( xj - x^)

(26)

The x derivative terms for hyperbolic points then take the form

= 2c.

- (2ico/e

42



The complete difference equation equivalent to equation (17) in tridiagonal form for hyperbolic
points becomes

- (ayj + byj + azk + bzk ' E3 +lClijk/2Mjk + bz
(27)

= (E3

where

Equations (24) and (27) are the difference equations for interior points in the flow field. Since
boundary conditions on the wing and on the vortex sheet are expressed in terms of the derivative of
<£>j with respect to z , it is convenient to locate the linearized boundary of the wing and wake on
the plane between k = km and k = km + 1 . For these values of k , equations (24) and (27) must be
modified to incorporate these boundary conditions, and the appropriate relations are developed in
subsequent sections.

Boundary Conditions on the Wing

For harmonic motion, the linearized boundary condition following equation (12) becomes

where we have substituted

zQ/5 = f(x,y,t) = f0(x,y)

for the shape of the wing surface with harmonic oscillations. The steady flow perturbation potential
satisfies the boundary condition <PQZ = fnx where ZQ = 6fQ(x,y) defines the undisturbed wing shape.
The boundary conditions are satisfied on the plane between the z mesh positions km and km + 1
or z = (zkm + zkm+l)/2. For convenience, we choose this plane as

z = zi, . = 0Km+l/2
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The boundary conditions in equation (28) modify the (£jzz derivative in the difference
equation. At the point i j,km, we have

zk +1-zk _!Km+1 Km l

z- zkm+l/2

Applying the boundary conditions, equation (28), leads to

where

(29)

(30)

and

hi =zi,i K

Similarly, for the value of ipjzz at z = zkm+l, we have

2

= 2bzkm+l (^ii - 2hlazkm+l Fij

The. superscripts L and U denote upper and lower surface values, respectively.

For k = km, the difference equation corresponding to equation (24) is

azkm*>ijkm-l yj + azk + El + E2 ' 1iJm

(31)

(32)
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where

= ciui-H6jk m

Similarly, for k = km + 1 , we have

-(ayj + byj + bzkm+1 + E! + E2

(33)

h l azk+lF i j ( U )
m

where

Analogous equations are easily written down for hyperbolic points by comparing equations (24)
and (27) and revising (32) and (33) accordingly.

Boundary Conditions on the Wake

The pressure and normal velocity component must be continuous across the vortex sheet shed
from the wing trailing edge. At z = (zkm + zkm+l)/2, these conditions become

^|x + ico<^|= ^ix-+iw^i (34)

for pressure continuity, and
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for normal flow continuity. The superscripts + and - designate limits as the sheet is approached from
above and below, respectively. Equation (34) may be written

= 0 (35)

where A<^j = <^j -Vj"- Along each line y = constant representing the linearized streamline from the
wing trailing edge, equation (35) may be integrated to give

(36)

where Ai^ij-f jj is the jump in the potential at the station y: for the first mesh point x location
beyond the trailing edge on the plane z = 0. This value is determined to satisfy the Kutta condition,
which requires that the pressure on both sides of the trailing edge be equal. Let ij be the index for
the value of x on the trailing edge. Then the condition that the pressure jump vanish at the trailing
edge at the station y.- becomes

= ° (37)

Solving for A<£j +jj yields '

" . . (38)

To satisfy continuity of <^jz across the vortex sheet, although i/?j may be discontinuous, we
write for <^ lz at z = zkm+ 1/2 = 0,

)/<zk + l ' z k )m • -m * Km

Hence, for k = km + 1, the derivative <p\zz becomes

= 2 a z k + l ^ijk - 2 ( a z k + l + b z k + l ^ i j k + l (39)
m m m

2bzkm+l ^ijkm+2 + 2azkm+l
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Similarly, for k = km, we havem>

jji, i - 2(a7i_ + b7i, )^i, + 2b7i, &$, +i - 2b7i, A^-= /vu-v-vljKjn 1 ZKm ZKm'njKm ZKm^lJKm+l ZKm ^1J (40)

By comparing equations (39) and (40) with equation (22) we see that, in the difference
equations (24) and (27) for k = km, the right-hand side has the additional term

while in the difference equation for k = km + 1 , the right-hand side has the additional term

By employing this form of the difference equations, we implicitly apply the condition of continuity
of ip jz at the plane z = 0.

Trnasformation of the Differential Equation for Swept Wings

Since a finer mesh is desirable in the vicinity of the leading edge, it is convenient to transform
the coordinates so that the swept wing is rectangular with the leading edge as one of the coordinate
axes. Let the leading edge be defined by x = y sin a or y = x/sin a. Then we introduce coordinates

= x - y sin a.

= - • (43)

The derivatives with respect to x and y in terms of the new variables then become
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and

where

X = sin a

Substitution into equation (17) then yields

=0 (44)

where
v = u + sin a = u + X

We consider the second-order operator of equation (44) and apply Hormander's theory (ref. 1 6)
to find under what conditions it is hyperbolic and to define the cone of influence of a point distur-
bance in |,T7,f space. The operator is

P(D) = vD,2 - 2\D{D2 + D2
2 + D3

2

where Dn = i9/3xn with Xj = £, x2 = T?, x^ = f. According to Hormander's definition (ref. 16), the
operator is hyperbolic in the £ direction if

and if

has only negative roots for D real. Here e^ is a unit vector in the | direction. The roots of
P(D + rej) are found from

v(Dj + r)2 - 2XXD.J + r)D2 + D2
2 + D3

2 = 0
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Solving for r yields

2T = -Dj + (XD2 ± -uD2 -vD3)/v < 0

Since T must be real for D real we see that u and v must be negative or u < -X . The condition
T < 0 becomes

D 3 > 0 (45)

The cone of support of the solution in physical space must also satisfy

0

for D|, D2, and D^ satisfying equation (45). Both regions are convex. The boundary of the region
is defined by the equality of the preceding two equations. Eliminating D^ from equation (45) by
means of the preceding equation yields

P 2(f 2v + 12) - 2 (\r 2 - r?$) + (r?2 + r2) = o

We now find the envelope in the physical space by finding the value of j3j for which

The equation for the envelope is found to be

?2[U(?2 + T?
2) + (7?X-^)2] =0

Let £2 + £2 = r2 and 77 = r cos 9, then we have, after solving for r,

r/£ = (X cos 0 ± vAi)/(u + X2 cos2 0)

or

, r-Ai/^O'j cos0 ± l)/(v1
2cos20 - 1)

where
^XAAKl
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Taking the minus sign gives us

This describes the cone of influence of the point 0,0,0 downstream of the point. Taking the plus
sign yields

i\/^u/€ =1 /(!+!>! cos 0)

This equation represents the boundary of the upstream region of influence on the point f,7j,^ = 0,0,0.

For the rectangular wing, X (or yj) goes to zero and the equations reduce to the usual circular
Mach cones for the regions of influence. For -u < X, the cone cross sections for f = constant are
ellipses, while for the limiting case i>j = 1 , or X = -u, they are parabolas and, of course, are not
closed. The cross sections in the r\ = 0 and f = 0 planes are bounded by two intersecting straight lines.

Since for u < -X2 or <^QX >(K + sin^oi)/(j + 1 ), the transformed differential equation is hyper-
bolic, we employ backward differences in the £ variable. Central differences are used when

l (46)

Difference Form of the Differential Equation for the Swept Wing

We first establish a second-order difference for <^j . By comparison with the second-order dif-
ference for <PJX , we write

^ln = clj^ij+lk-^ijk) + dij^ijk-^ij-lk) (47)

\

where Cjj and d^.- are given by the equations following equation (19) with 77 replacing x and j
replacing i.

Applying a second-order central difference operator for | to equation (47) yields

dlMjk - ̂ i-ljk)] (48)
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Then

(49)

For the other derivatives we have

= 2Civi+ /2 Jk(^i+ljk - <pijk) - 2diVi. /2 jk(«pijk - ^.lj

(51 )

where a^:, b^:, avk, and b^k are defined by equation (23) with appropriate variables and subscripts.
Substituting equations (49) through (52) into differential equation (44) and collecting terms yields

br?j + a?k + b?k + E2 + E3 -

(53)

where

E1

(54)
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Equation (53) is the difference equation in swept wing coordinates equivalent to equation (24) for
elliptic points.

For hyperbolic points, we have v < 0 or u < - X . For the £ derivatives we u,se backward
differencing. Thus

-^jk ' (55)

- 2di-lvi-3/2jlM-ljk ' ^i-2j

and

- ..,.
(56)

2Xdj [c2i(^j. i k - ̂ j- 1 j- 1 k> - d 1 i- 1

where C2j is defined by equation (26) with £ replacing x. Substituting equations (51), (52), (55),
and (56) into the differential equation (44) yields

(57)
El

where
E6 = c2iEl-ci-lvi-l/2jk

E7 = dli-lEl-di-lvi-3/2jk

E8 = Xcljc2i - bT/j

En =
(5g)
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and Ej is defined in equation (54). This is the difference equation for hyperbolic points in swept
wing coordinates equivalent to equation (27).

Root Chord Boundary Conditions for the Swept Wing

To limit the field to one-half the span for rj > 0, we require the symmetry condition

^ly = 0 at y = 0

or in swept wing coordinates

Since this is true along TJ = 0 for all £, then we also have

This relation conveniently enables us to eliminate the cross-derivative term y?j „£. Thus, on the line
of symmetry, the terms in the differential equation (44) involving the | derivatives becomes

[v^g^X^-aico/eVj] =[(v + 2X2)v?ir(2ico/e)vJ1] (59)

Let rj = 0 lie on the j = 1 horizontal mesh line. Then for points j = 0, 1 , and 2, the difference form
of the boundary condition is

= 0

We choose for convenience T?Q = -17 j . Then for elliptic points, we solve for <pjQk and obtain

^iOk = ^i2k ' X^2 + ̂ l^lM+l Ik ' ^iik) + dlMlk ' ^i-1

Similarly, for hyperbolic points

^iOk = ^i2k - ̂ 2 + ^1 )tc2Mlk ' ^i-1 Ik)' dli-l( ^i-1 Ik - ^i-

Also for j = 1 , we have



Eliminating <£jQk f°
r elliptic, points yields

^lTiT? = ^i2k-^ilk)/T ' l(T '2-T ' l)-(x/T?1)[c l i(^ i+ l lk-^ i l k)

(60)
+ dlMlk' ^i-llk*]

Similarly, for hyperbolic points

- ^lk)/T?1^2 -*?!)- (VT?l)[C2i(*ilk - *i_l lk)

(61)

For j = 1 the £ derivative for elliptic points is

[(v + 2X2M t - (2ico

where

! 3 = di(vi4i j k + 2X2) +

and for hyperbolic points

[(v

(62)

where

E15 = di-l(vi-3/2 Ik + 2x2)

Substituting equations (62), (60), and (52) into the differential equation yields the following differ-
ence equation for j = 1 .

ilk-l ' [br?l + a?k + bfk + E12 + E13

+ (Xcli/2r?1 - E12Vi+1 lk - (\dli/2r)l + E^V^ lk
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where

Similarly, for hyperbolic points, we have

- ( + a?k + bfk + Xc2i/2T?l '

E15 - (V2T?1)(c2i

These last two equations replace equations (53), (54), (57), and (58) for j = 1 points in the mesh,
which are the points on the plane of symmetry for the flow.

Wing and Wake Boundary Conditions for the Swept Wing

The boundary conditions on the wing and on the wake involve only the ^>j £ f term, which is
unaffected by the coordinate transformation. The difference equations for k = km and km + 1 are
found by modifying some of the terms in equations (53) and (57). For k = km, bk is deleted
from the coefficient of </>jjk , the v?jjk +1 term is omitted, and

$Km

is added to the right-hand side. Similarly, for k = km + 1 , the ^^ term is deleted along with
a£k +1 from the coefficient of y^jk +j and

m

is added to the right-hand side.

The wake boundary conditions for rectangular wings also may be carried over into the swept
wing coordinate system with little change, since

The second equation following equation (35), and equation (38), can be applied with only a change
in notation. For k = km, we add to the right-hand side of equations (53) and (57) the additional term
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and for k = k^. + 1, the additional termm (63)

Far-Field Boundary Conditions—Three-Dimensional Flow

In order to solve the difference equations in the flow field, we must prescribe boundary condi-
tions on the exterior boundary of the mesh. This is usually found in terms of the velocity potential.
This boundary information is not known a priori but must be computed and periodically corrected
in the iteration process used to find the solution. For this purpose we follow an analysis similar to
that of Klunker (ref. 8) for the steady-state equation and write the differential equation in the form

(64)

= (7

To convert the solution to the swept wing coordinates, we merely substitute x = £ + XT? and y = T?
into the solution of equation (64). For our purposes, it is convenient to introduce new variables in
terms of x and y. Let x = x, y = y VK7and z

co2M2

1 -M

_ T + 1
K K

We derive an integral equation for i^j in terms of boundary values by applying Green's theorem in
the form

' "7s r i^n'^ln 1 -M"
ds'

(65)

where the volume v is bounded by the surfaces S = Sp + + Sw + Sv-(see fig. 18). Here S is thew v- . . p

sphere about the specific point p. The surface S^ is the surface of discontinuity representing shocks.
The quantities Sw and Sy represent the wing and trailing vortex sheet, respectively, as shown in
figure 1 8. The quantity n is the normal directed into the fluid from the surfaces.

The fundamental solution \jj is a function of the vector xp - x', where xp is the vector refer-
ence point and x' is the point vector of integration.
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Figure 18.—Sections of the boundary surface S

To find the fundamental solution i//, we let

icoM2X!/(l -

With r -•• Vx i + y j + zj , the differential equation, L(i//) = 0, becomes

where Xj = coM/(l - M2). The solution of this equation. yielding outgoing waves is e /r and
leads to

i\i(Mxi -r)
= [ l /r (66)

for the fundamental solution. We let the radius of the sphere about the reference point Xp = (Xj ,
Y j , Z j ) shrink to 0. Since i//n = i//r, then the contribution of the surface integral on the right-hand
side of equation (65) about Sp yields

(67)
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Since L(i//) = 0, the volume integral in Green's theorem becomes

where the primes on the variables denote the running variables of integration. Integrating the first
term by parts with respect to x j ' and noting that a jump occurs on the shock surface S^ yields

( J C O S S 'iryv

where cos 6 1 is the inclination of the normal to the shock surface with respect to the x j axis. The
square brackets denote the jump in the quantity across the surface. For the integral over the shock
surface, we obtain

n \ds'

(68)

y'i j
cos03 jds'

where cos 69 an^ cos ^3 are the yj and zi direction cosines of the normal to the shock surface,
respectively.

For the thin planar wing, V\n — ̂ iz '', then the surface integral over the wing reduces to

j Odxj'dyf (69)
l

where Xg and x^. designate the xj coordinates for leading and trailing edges, respectively; y* is the
value of y j , for the tip of the wing, and A denotes the difference between upper and lower values
of the quantity on the wing, which is approximated by its projection in the plane zj = .0.

Similarly, the integral over the trailing vortex sheet, since i£ln is continuous, yields

(70)
• r - y t • x t ( y r -
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Now, continuity of pressure across the vortex sheet requires that

= 0- (71)

Solving the differential equation yields

V ' ^/

where Ai^t is the jump in tpj at the trailing edge of the wing. Substituting equation (72) into equation
(70) yields for the wake integral

L lO)Xt(yi ) , r
e l L A</>t(yi )dyj I e * yz- axj- (73)

.y J~ /-„'. ^ 1

We have now found the integrals over the volume and over all surfaces of figure 1 8. Substituting
equations (67) through (73) into equation (65) and combining integrals over the discontinuous sur-
face S yields

y 2 + [ f \ z ' ] cos

This can be shown to vanish identically for shocks by using the divergence theorm. The partial differ-
ential equation can be written

(75)

where

1
1 Ixi K

7+ 1 2icoM2
'
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Consider the integral over a small rectangle about the shock as shown in figure 19. Applying the
integral of the differential equation (75) over this small volume and letting the thickness At-K)
yields from the divergence theorem

At- v
(V • F + Q)dv'^As[F'• n] = 0. (76)

The quantity [F • n] is seen to be identical to the quantity enclosed by j [in equation (74), since
n *= (cos Q j; cos #2> cos #3)- This demonstrates that the integral in equation (74) is identically 0. Thus,
the Green's theorem of equation (65) becomes

y t/-x t(yi')/•y t/-x ty=ir/ /•*yt -Vyi

+ -:- (77)

" ^ ( T

At

Figure 19.-Shoot surface and volume used for divergence theorem, integral
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The wake integral can be integrated with respect to xj' for the combination <£j-x + icoipj, which
may be called the pressure potential. We consider

!w=Jixt

since 9/9xj = -9/9xj', we have

r°° z ' '
• lw=~J T7- ' (e l"X l>/ ' 7 l ' )dx 1 '=-e""" t t | / 7 i(x t-x 1 ' ,y l- y i ' ,Z l) . (78)

Since the wake integral is very slowly convergent, it is more convenient to express the upstream and
downstream boundary conditions in terms of y?jx + ico<pj rather than <pj . The pressure function from
equation (77) then becomes

xt(yi'>

(79)

' - d v '

where

X =

Formulation of the Problem of the Harmonically Oscillating Airfoil

To test the method developed in the preceding sections, we formulate the relations for the har-
monically oscillating airfoil, since they are simpler and will require less computing time. The equations
for the oscillating wing represent the wing as lying in the plane z = 0 with the direction of the undis-
turbed flow in the positive x direction. Relations were derived for the method of relaxation of the
difference equation by solving for the values of the potential along lines normal to the z = 0 plane
corresponding to fixed values i and j points in the mesh. To follow the conventional notation for
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airfoil problems, we now consider the airfoil cross section as lying in the x,y plane. Since there is no
variation with z then the small perturbation differential equation (17) for the airfoil becomes

=0 (80)

where

q =

By representing the airfoil in the x,y plane we effectively interchanged y and z in the derivation of
the fundamental equations. The unsteady boundary conditions on the airfoil corresponding to equa-
tion (28) then become

(82)

on y = 0, where yn = 5 fn(x) + 5 f j(x)elw describes the oscillating airfoil shape. The boundary con-
ditions of equation (34) become i/>jy continuous across y = 0 behind the airfoil, and equations (71)
and (72) for continuity of pressure lead to . .

-icj(xj-x t)l
(83)

where A^ is the jump in the potential at the first mesh point downstream of the trailing edge. Since
we have dropped variation with respect to z the difference form of the differential equation (80)
is found from equation (24) with az^ = bzjf = 0. For interior points in the flow field we then have

where

El =

E -
(84)'

kodu/e,

and we have dropped the subscript y on the coefficients a and b.

The boundary conditions on the airfoil are satisfied at y = 0, the midpoint between y = y= and
y; + 1 . From equations (32) and (33) the difference equations corresponding to equation (84) for
j = j and j + 1 becomem m
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and

(86)
h.a^FXU),

where

El = ciui+l/2jm - iwcli/e> E2 = djuj.m
(87)

m

Here

E3 = c i u i -H/2J+l ' iwcli/e> and E4

Downstream of the wake the boundary condition of continuity of pressure and normal velocity
component require that, for j = jm, equation (84) holds with the additional term on the right-hand side

and for j = jm + 1, the right-hand side of equation (86) has the additional term

Some of the coefficients of the difference equations for the harmonic motion of an airfoil in
transonic flow require the steady-state solution. For this we use a program called TSONIC or TEA-
330, which was developed by J. A. Krupp (ref. 4) and computes the solution of equation (14) for
the transonic flow over lifting airfoils. The output of this program is an array of values of the pertur-
bation potential <£Q corresponding to the mesh points of the rectangular grid about the airfoil.
Since the coefficients in the differential equation depend only on <^QX and <£QXX, it is convenient at
the outset to establish values of u = K - (7 + 1 )</>QX at each mesh point, since </>QX occurs only in this
quantity in the equation. For convenience of coding on the computer we write

= K - (7+

and (88)

= K - (7
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Only the quantity q contains the term </>QXX:

q = co2/e - ico(7 - 1

From equation (88) we have

(89)

Using this relation in the difference form for I£QXX yields

(90)

= [(xi+1 - x^CjCK - ui+lj) - (Xj - Xj.^d^K - uy)] /(T + 1).

where Cj and dj are defined following equation (19). Simplifying equation (90) leads to

Finally, for qj: we write

qij = w2/e + ic3i(ui+lj-uij) (91)

where

C3i = w(T - 1 )/(7 + 1 )(*i+ 1 - *i- 1 )• (92)

For the volume integrals in the far-field integral relation, we require I£QX at the points ij. For this we
write

which, with the aid of equation (89), simplifies to

(7 + 1 Vox = K ' C4iui+l j ' d4iuij (93)

where
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(94)

Equations (91) through (94) provide all the relations for the steady-state solution needed in the dif-
ference formulation of the harmonically oscillating airfoil. We have replaced the V?QJ: array by the
u:; array defined by equation (88).

Evaluation of the Jump in <p j on the Airfoil

Since the values of </?j are computed only at mesh points, we must interpolate these values to
the limit y = 0 in order to compute the values of A</?j required in the wake boundary conditions.
The limiting value of </?j( ' from above the airfoil and v5! from below are found by Taylor's
expansion about the points y = y; and y = y.- .1. We obtainJm JmT1

,95)

(96)

where h = yj +1 - yj .We use a second-order difference form for cpjy. Following the formula
developed for (£jx, we write for

(97)

(98)

By comparison with cj: and dj: following equation (20), we obtain

C3 = l/hs1(2s1 + 1) d3 = 4s1/h(2s1 + 1)
(99)

c4 = 4s2/h(2s2 + 1 ) ' d4 = 1 /hs2(2s2 + 1 )

where
s l = ( y i +2"yi +P/h and S2 = (^yi "yi -IVh1 Jm ^ Jm x z Jm Jm i) /n-
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The second derivatives at y = y.- and y = y; .1 becomeJm J l

m
— 1 (100)

m m m

Jm ^ 2 2

Substituting equations (97) through (101) into equations (95) and (96) and solving for <PI
<pj( ' leads to the following relations after some simplification:

*>ij + (^y - ̂ ij -i)/4s2(s2 + 1) + h(2s2 + D F / ^ + 1) (102)m m m

and

^l(U) = ^ij +l-G?i j +2-^ij -n)/4s1(s1 + l)-h(2s1 + l)Fi(
U)/4(s1 + l) (103)

m m m.

Finally, the jump in <p.] is given by

= (> (U) . ( (L) = . . Si (^..
1U

01 "' m ' "1Jm+1 (104)

m
where

csl = l/4Sl(Sl + 1) cs2 = l/4s2(s2 + 1)

(105
ds j = h(2s r + 1 )/4(s! + 1) ds2 - h(2s2 + 1 )/4(s2 + 1)

These formulas hold only for values of i corresponding to x values on the airfoil and are accu-
rate to the second order in mesh size. The jump in <^j is required for updating the far-field boundary
conditions as well as satisfying the Kutta condition on the airfoil trailing edge.
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Far-Field Boundary Conditions— Airfoil

A procedure similar to that used for three-dimensional wings is employed to obtain an integral
relation for the far-field boundary condition for the two-dimensional airfoil. We write for L(I/JJ) in
place of equation (64)

2icoM2

(106)
"

For the fundamental solution \f/ of the differential equation L(i//) = 0, the function I//Q(J) takes
the form

where r = V x j + y j and Xj = coM/(l - M2). The solution to this equation yielding outgoing
waves with the source at the origin is HQ'^^XJT). The fundamental solution then is

) (107)

where HQ^\Z) is the Hankel function of the second type. For small r

, ,«., -. iXiMrcosf l , - .>//^-(2i/rr)e 1 log(Xjr/2).

Since i//n = i//r, the integration of the surface integral of equation (65) over the circle about the
reference point X ] , y j becomes, on letting the radius of the circle go to zero,

(108)

The evaluation of the remaining integrals for the two-dimensional flow follows with little change
from the three-dimensional analysis. Noting that the factor multiplying <pj is -4i insteady of -4?r,
we obtain easily the following equations for the airfoil equivalent to equations (77):
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The quantities in the first two integrals are evaluated at yj = 0. Since 9/3xj' = -9/9xj, 3/3'yj' =
-9/3yj', equation (109) takes the more convenient form

y1) = (i/4y (AvJ 1 i / / y i +^A^ l y i ' )dx 1 " +(i&ptf4y e"

)/ [ (7+D' / /X l<floX l 'ViX l ' + iw(7-l)^Xl 'Xl '^i '/ ']dx1 'dy1 '
(110)

As shown for the planar wing, the integration of the second integral can be performed for the com-
bination </?jx +io)ipj. Thus

4)1 (A^Xy +xA<p l y Odxj'
J-\ [ [

(111)

The quantity X = '/'xi + k*3^ ^s a function of the arguments xj - xj ' , and yj in the first integral and
of xj - xj' and yj - yj' in the volume integral. In terms of x and y, we obtain

~K)/

(112)

where iMXix m r^ -,
i// = e x Hn^(Xi vx^ + Kyz)
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1 X H/2)(X j 7x2 + Ky2) / J x2 + Ky2

iXiMx
Xy = ico<// / ( l -M^ + XjKxye 1 ] X [2H}(

2\\} 7x2 + Ky2) / Vx2 + Ky2

j o o (H3)2)]/(x2 + Ky2).

Equation (112) holds everywhere in the flow field. Since we are only interested in the far-field
boundary values, we approximate x - x' in x and xy of the integral over the wing by x. The terms x
and Xy can be taken outside the integral, and the first term in equation (112) then takes the form

The second integral of the preceding expression can be evaluated once and for all at the begin-
ning of calculations since it depends upon the airfoil boundary conditions. For the oscillating flap,
the unsteady boundary conditions are the same above and below the airfoil, and hence the second
integral vanishes. Equation (112) then takes the form

=(i/4N/K) jxy /

+ / [(7 + l
~v

*1:
I " •* I

(114)

Because the wake integral in equation (110) is slowly convergent, it is best to formulate the
mesh boundary conditions in terms of the function ^jx + icoi^j. Let i = 1 be the column of x for
the upstream boundary. Since derivative boundary conditions are best formulated between mesh
points we have at x = (xj + X2)/2 and all y: along the upstream boundary the following difference
formula for the pressure function:

/ X 1 + X 2 \
V? lx + io>0j =(^2 j -<Pi j ) / (x2-x 1 ) + ico(^2j+<Pij)/2 = P( 5 ' y j / Plj ^1

where P(x,y) represents the right-hand side of equation (114).
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Solving for ^j yields

where

ckl

(117)

and

5 1 = x 2 - x 1 .

Substituting <#j: into equation (84) for i = 2 yields

- (aj + bj + E! + E2 - E2ckl - qy
(118)

Similarly for i = imax, the downstream mesh boundary, we have

WJ imax^J +ioj WJ . = ....... ...,„ =
A-J ~ Xi J / ^ * I ' ^T-v^nvl >• -^

max max

i / xi + xi 1 \J _ J ^ax ^ax'1 I _
= PV 2 ' y J / -

Solving for <# ; yieldsjmax

+ c P

where

ck3 - (1 - iw62/2)/0

52-x i^
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Equation (84) for i = !„,„ v - 1 with \D\ •, replaced by equation ( 1 20) leads tomdx 'max-1

+E 2 -E 1 c k 3 -q i .\\l^\ ,\\z ' K:> 'm 1J ' 1J_ _ . ,
max max max

(121)

~El ck4P i i"E9^ 9i-I K^ JmaxJ L nmax /J

Equations (118) and (121) follow the same pattern as equation (84) for interior columns if we
define in equation (84) for the right-hand sides

j = 'ck2Plj

'max-1

and add the terms £2(^1 and E^Cj^, respectively, to the coefficients of the diagonal terms.

The boundary conditions on the upper and lower mesh boundaries must be given in terms of
V?j . If the value of \p j at one point is given on the lower boundary, then the values of i^j at other
points on the lower boundary may be found by integrating

=P(x, y)

where P(x,y) is defined by the right-hand side of equation (114). Between x^.j and x^, integration
yields

/*xi
1COX; 1WX: 1 I i, ,v' , ,5ile -^ i - l l e =J e P(x',yi)dx'.

4-1

When the integral is evaluated by the trapezoidal rule at the Xj mesh points, then a simple recursion
formula results from i^j in terms of v'i-ii and P(x,y). Thus

For backward integration, we can solve for V > \ _ \ \ once \p^ is known by

^y^K^-x^)^. (123)

Similar equations may be written for the upper boundary at y = Jmax
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Since the value of <£j must be given at one point on each of the upper and lower boundaries,
it is wise to choose the points at which the wake integration can most easily be performed. The
wake integral is

V(x - x')2
 + Ky2)dx'.

We note that for x = 1, the integral can be simplified to

0/ay)/ e-iwz/(1-M2)Ho'

This integral converges like 1/z , but it can be expressed as an integral with exponential convergence
by using contour integration. Consider the contour in the complex plane of figure 20 for R going
to infinity. Since no poles lie inside the contour of C = C^ + Cj -H C^, then

/"
Jr.

- M) H()(2)(X1 ^z
2 + Ky2) dz = 0.

2 plane

Figure 20.—Contours of integration in the complex z plane
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Since the integral over CR vanishes as R goes to infinity, then we have

(2/Tr/ °° e'w W - M2) KO(X! Vt2 - Ky2)dt.
•</Ky

Differentiation with respect to y yields

fc
(9/9y)|

J-n

/7r)(8/dy/
J^y+e

/* T

f i l
•'O

-M 2 ) H (2)^ ^Ky2 - t2)dt
0

= lim {-(9/3y i e'"^1 ' M> H2) Ky2.- t2)dt'

(2/7r)(8/dy e'"^1 ' M> ^(XjV t2 - Ky2)dt

TT /O

y i e - W N y c o s H l ( X N K ysin0)d0

y sinh

where

|32= 1 -M2.

It is convenient to combine the real and imaginary parts in the form

(9/9y)j)/ e-
icoz/02 H0(

2)(X! v/z2 + Ky2)dz
•'

y sn
Q
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__

0/02 in 0 + 27r e-W N^ V coshy c o s Y (J^ y Xj sin 0) + (2/7r)e-
WN V cos K{(\{ vK y sinh 0)]d0

C°° r~ 9 • • i
+J e-co JK y cosh 8/p KI(X JK y Sinh 0)d0)

All the integrals are defined on the range of integration, except the second integral at 9 - 0. The
quantity in square brackets, however, goes to zero like d log 6 as 6 goes to zero. Assigning the
value of 0 for the integrand at 6 = 0, then defines the integrands for all 6 in the range of integration.

Analysis of Truncation Terms in the Difference Equations

Whenever a differential equation is replaced by a difference equation and some iteration scheme
is employed, a question arises concerning the stability of the calculations and correctness of the final
solution. When the quantities in the difference equations are expanded in Taylor's series about the
central point and all terms proportional to powers of the mesh spacing are neglected, the original
differential equation is obtained. A higher order differential equation results, however, when the
lowest order terms in the mesh spacing are retained, and the nature of this equation will yield some
information on the stability of the numerical method. To investigate the method set forth in this
document, we consider the differential equation for the harmonically oscillating airfoil and will
confine our study to an equally spaced x grid and an equally spaced y grid, but Ax not neces-
sarily equal to Ay. For the elliptic points, we obtain for the point i j

- ui-'/2J (^ij-

(124)

/2Ay2 + ( q / 2 ) = 0.

We now expand in Taylor series about the point i j, letting Uy = u and <P{\ = <pj . Substituting

ui+i/2J = u + (Ax/2)ux + (Ax/8)u x x
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Uj.1/2j = u - (Ax/2)ux + (A x2/8)uxx + • • •

^ly + (Ay2/2)<p lyy + • • •

into equation ( 1 24) and retaining lower order terms in Ax and Ay yields

uxxx</>Lx/2]

(Ay2/12>plyyyy =

To determine whether the differential equation is elliptic or hyperbolic depends only upon the
highest order differential operator; this is seen to be

[yyyy,

Since u is greater than 0, the differential equation is elliptic and hence there are no characteristic
directions to place restrictions on Ax and Ay for stability. -

For hyperbolic points the difference equations become

] /2 Ay2 + qy^j/2 = 0.

Expanding about the point i j yields the differential equation

- Ax {ui£>jxxx + lower order derivatives in x} = 0
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The lower order terms omitted have coefficients which are negligible in comparison with the corre-
sponding coefficients of the same derivative terms in the differential, equation. Sichel (ref. 17)
studied the viscous transonic equation

and investigated the nature of shock waves. Since u is less than 0, the dominant terms of the dif-
ferential equation become

(-uVjxx - i£j yy = (-u)Ax(p jxxx + lower order derivatives

Thus, the term (-u)Axipjxxx introduces a numerical viscosity which Murman (ref. 2) found caused
shock waves to develop smoothly in the iteration. From the foregoing analysis, the chosen method
of differencing appears to be a stable formulation.

Solution of the Complete Set of Difference Equations

It was pointed out earlier in the text that the complete set of difference equations are linear in
the (p^ and triat consideration of solving this complete set instead of column relaxation might be
feasible. The resulting matrix is exceedingly large since there is an equation corresponding to every
interior point of the rectangular mesh. For the computed cases, this is 73 x 56 = 4088 variables and
equations. However, special methods for solving this set may be sought which take advantage of
the particular sparsity of the matrix. To study the form of the equations we see that, for the
interior points of the mesh, the difference equations for elliptic points may be written

ij^i-lj = ij d 25)

and for hyperbolic points

Fij^i-2j = Rij- (1 26)

The indices i j here run from 1 to iax and jmax for interior points of the mesh.

For 0 values of the subscript, the terms vanish on the left side and become incorporated into
the RJ: since they are mesh far-field boundary conditions. Since there are imax columns and jmax

rows in the interior of the mesh, then there are N = imax x jmax variables with N equations to be
solved for them.
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We order the variables as follows: Let

where n = i + Q - 1 )imax ™ih. J < { < W' ! < J

Then equation (125) takes the form

ajX^j + E i iXn_1+c i iXn + DiiXn+1+bjXn4.i = Rfl (127)J max y n i y « ij »T* j irrimax . J

for the n*n equation at elliptic points, and equation (126) takes the form

ajXn-imax
 + FijXn-2 + EijXn-l + CijXn + bjXn+imax

 = Rij (128)

for the n equation at hyperbolic points. Since only the interior points about the airfoil are apt to
be hyperbolic, we will study the form of the equations assuming all elliptic points. Equation (1 27)
will contain all five terms on the left side when

i m a x < n < N - i m a x

For the other equations, we will have one negative subscript for X which represents the mesh far-field
boundary conditions and will be incorporated into the right-hand side term, Rj.-. All main diagonal
terms are nonzero, and we see that the coefficients of the terms adjacent to the diagonal terms are
also nonzero. Also, the term imax points to the left of the diagonal and the term imax points to the
right have nonzero coefficients when

i max < n < N - i max

Thus, the matrix has only five diagonals.

As seen from equation (128), the addition of a supersonic point in the flow field places a zero in

the diagonal to the right of the main diagonal and adds a nonzero value in the second diagonal to the
left of the main diagonal. Thus, a local supersonic region introduces a sixth nonzero diagonal to the
matrix.
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