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A FINITE DIFFERENCE METHOD FOR THE SOLUTION
OF THE TRANSONIC FLOW AROUND HARMONICALLY
OSCILLATING WINGS

by F. Edward Ehlers
Boeing Commercial Airplane Company

SUMMARY

A finite difference method is presented for the solution of the unsteady pressure distribution
on harmonically oscillating wings in transonic flow. The differential equation for the velocity
potential of compressible flow was simplified first by the assumption of small perturbation from a
nearly sonic parallel flow and then by representing the flow as a sum of two separate potentials for
the steady and unsteady flow. '

On the assumption that the amplitude of the unsteady oscillation is small, the unsteady
transonic flow differential equation was linearized. The resulting differential equation contains
coefficients which depend upon the mean steady flow and which must be computed beforehand
from the solution of the nonlinear transonic small perturbation differential equation. When time is
eliminated from the linear unsteady flow equation by the assumption of harmonic metion, then the
resulting linear differential equation is of mixed type, being elliptic or hyperbolic in regions of the
flow where the steady flow equation is elliptic or hyperbolic, respectively.

Because of the similarity of the unsteady linear differential equation to the steady nonlinear
transonic small perturbation differential equation, a technique of column relaxation similar to that
of Murman and Cole (ref. 2) and Krupp (refs. 3 and 4) was applied to find solutions to the
differential equation expressed in difference form. For subsonic mesh points in the flow, central
differences were employed for all derivatives; for supersonic points, backward (or upstream)
differences were used for derivatives in the streamwise direction only. The boundary conditions for
the wing were applied in the plane of the projection of the wing surface and incorporated in the
difference equations for mesh points adjacent to the oscillating wing. On the plane vortex sheet
downstream of the trailing edge, the condition of continuity of pressure and the Kutta condition on
the trailing edge specify relations between the jump in potential along lines in the free-stream
direction and the value of this jump just downstream of the trailing edge.

Integral relations based on the wing and wake boundary conditions were derived for the wing
and the airfoil oscillating in harmonic motion in the manner of Klunker (ref. 8). These relations are



used for the mesh far-field boundary conditions, which are updated during the computations. The
use of far-field boundary conditions makes it possible to reduce the region of calculations, thereby
saving computer time and storage.

Expanding the terms in the difference equation in Taylor series about the central point and
retaining the lowest order terms in the mesh size lead to the original differential equation plus
additional higher derivative terms which vanish as the mesh size goes to zero. For equally spaced
points and subsonic flow, the resulting fourth-order differential operator is of second order in the
mesh spacing and elliptic in form. Hence, there is no dependence upon the ratio of the mesh sizes
for stability. For locally supersonic points, the additional truncation terms are of first order in the
mesh spacing. This term is a third derivative in the free-stream direction and introduces a simulated
viscosity proportional to the mesh size which was found to stabilize the calculations for shocks
developing in the flow in solving for the steady flow equations by Murman and Cole (ref. 2) and
Krupp (refs. 3 and 4). From this study, the differencing method would appear to be stable.
Subsequent experience has shown this to be true for the oscillating airfoil. .

The mathematical development of the method described in the foregoing for oscillating
rectangular wings, swept wings, and airfoils is presented here in sufficient detail to be coded for
actual numerical calculation. To test the feasibility of the method, the equations for the
harmonically oscillating flap on a NACA 64A006 airfoil were coded for the CDC 6600. For the
basic steady flow, the program (TEA-330) developed by Krupp in reference 4 for the transonic flow
over a lifting airfoil was used. ‘

Solutions were obtained for the unsteady flow over a flat plate with an oscillating flap of a
quarter-chord length at a free-stream Mach number of 0.8 and reduced frequencies of w= 0.06 and
0.1794. These values correspond to frequencies of 30 and 90 cycles per second for the wind tunnel
and model conditions in the experiments of Tijdeman and Schippers (ref. 9). The réal part of the jump
in pressure coefficient from the difference method agrees very closely with solutions from a
subsonic kernel function method which solves the same differential equation. The imaginary part of
the pressure coefficient has somewhat smaller negative values near the leading edge for w = 0.06,
although’the pattern is essentially the same as the results from the kernel function method. For
w = 0.1794, the imaginary parts-from the two methods agree more closely than for w= 0.06. The
convergence was slow and required about 3000 iterations to converge to a maximum difference
between iterations of 2 x 107 starting from a value of zero for the perturbation potential at all
mesh points. See note added in proof on page 34.

The flat plate solution for a reduced frequency of 0.06 and Mach number of 0.8 was used as a
starting solution for the unsteady flow around a NACA 64A006 airfoil with a quarter-chord
oscillating flap at Mach 0.794 and reduced frequency w = 0.064. Similar convergence of 2 x 107
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was attained in-1200 iterations. The pattern of the pressure jump across the airfoil agrees with the
experiments of Tijdeman and Schippers (ref. 9), although the amplitude is considerably higher. The
solution for M = 0.804 and w = 0.253 (corresponding to a frequency of 120 cps) about the NACA
64A006 airfoil was obtained from the solution for M'=0.794 and w= 0.064 as starting values.
Solutions were also found for M = 0.858 and w =0.179 and for M =0.853 and w =0.060. The
patterns for the jump in pressure coefficient from the calculations were similar to the experimental
- results of Tijdeman and Schippers in reference 9 but the amplitudes were generally higher.

Although only a few computed results were "obtained, the feasibility of this approach for
finding the unsteady pressure distributions around an oscillating wing in the transonic range is
demonstrated. This methoa predicts the observed pressure 'patt’erns,. while linearized subsonic
theory does not. The numerical procedure for the unsteady flow is stable and convergent even whien
the steady flow contains local supersonic regions. ‘

All the calculations were made with a fine fixed grid. Garabedian and Korn (ref. 1) found that
first obtaining a solution of the exact steady flow potential with a coarse grid and then refining the
grid for greater accuracy significantly reduced the number of iterations required for convergence of
the final solution. A similar procedure should reduce the number of iterations for the unsteady

solution as well.

The complete matrix for the coefficients of the unknown values of the unsteady perturbation
potential at the pointls of the mesh contains 6nly five or six nonzero diagonals. The time required
for solution also may be reduced by using a special method for solving linear equations with sparse
matrices to solve the complete set of difference equations rather than using column relaxation. This
may be especially useful for the coarse grid solution.

The basic technique followed here of representing the flow as consisting of separate steady‘and
unsteady flow potentials and then linearizing the unsteady differential equation by assuming small
amplitude of oscillation can be applied directly to the complete nonlinear differential equation for
compressible flow as well as to the nonlinear transonic small perturbation equation. The problem is
easier for the airfoil than for the three-dimensional wing since mapping techniques such as that of
Garabedian and Korn in reference 1 may be used to represent the boundary in a way convenient for
the mesh system. The same finite difference scheme could be used for the unsteady flow equation
after it is expressed in the same independent variables. The elimination of the small perturbation
restriction for the three-dimensional wing solution is considerably more difficult, since convenient
body coordinates are possible only for restricted classes of configurations. A suitable variable grid
around the actual wing boundaries must be devised with appropriately defined difference equations.



Further computations should be made with the airfoil program in its present form. The
sensitivity of the program to mesh size near singularities and to various ways of conducting the
column relaxation should be studied. Further calculations are needed to gain experience in
determining optimum values of overrelaxation for subsonic regions and underrelaxation for
supersonic regions, and to find criteria for the degree of convergence required for a good solution.
Some of the discrepancy between calculated and experimental results may be due
to the influence of the boundary layer and/or separation effects over the aft
portion of the airfoil.  Unknown problems associated with the theory or with

the experiment, such as wind tunnel ‘wall interference,‘ may also be the cause

of this discrepancy.

INTRODUCTION

In recent years, significant advances have been made in the theoretical treatment of
two-dimensional steady transonic flow by such workers as Garabedian and Korn (ref. 1), Murman
and Cole (ref. 2), Krupp (refs: 3 and 4), and Steger and Lomax (ref. 5). More recently, some
progress has been achieved by Newman and Klunker (ref. 6), and Ballhaus and Bailey (ref. 7)
toward the development of a useful method for predicting steady transonic airloads on finite wings.
There are, however, no satisfactory methods for predicting transonic loads on oscillating surfaces
for use in flutter and gust analysis of aircraft. Any completely adequate analysis for the transonic
region should include the effects of airfoil bluntness, thickness, camber, angle of attack, and
wing-body interference. It should include the effects of mixed subsonic and supersomc flows
contammg embedded shocks and of the boundary layer with shock wave interaction.

A method for treatment of oscillating wings by finite difference methods is presented here.
The assumption of small perturbaﬁons from a uniform stream near the speed of sound allows the
reduction of the equations of motion to a simple, more tractable form and retains the necessary
nonlinearity for describing flows with local supersonic regions. The introduction of the perturbation
velocity potential restricts the solution to weak shocks which, for thin wings of reasonably good
design, is not too limiting an assumption. When the flow is steady the resulting nonlinear
differential equation reduces to the well-known transonic small perturbation differential equation
recently studied by Murman and Cole (ref. 2) and Krupp (refs. 3 and 4). The unsteady flow
differential equation is simplified by considering the flow as consisting of the sum of two separate
potentials representing the steady and unsteady effects and by linearizing the differential equation
for small amplitudes of harmonic oscillation.

.
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SYMBOLS AND ABBREVIATIONS

coefficients for y,z or n,{ differences corresponding to second derivatives,
with appropriate subscripts (equation (23) in appendix)

coefficients for x or & difference corresponding to second derivative
(equation (19) in appendix)

coefficients for second-order accurate difference corresponding to first
derivative (equations (20) and (26) in appendix)

velocity of sound in units of ug

equation (92) in appendix

equation (94) in appendix

equation (105) in appendix

equations (117) and (1 Zi) in appendix

(x1,X2,X3) = (§,n,5)

coéff icients in difference equations, with appropriate subscripts
instantaneous wing shape defined by zg= 6f(x,y,t)
instantaneous airfoil shape defined by y( = 6f(x,t)
undisturbed wing or airfoil shape

unsteady contribution to wing or airfoil shape

unsteady wing boundary conditions

im 1 Vi

Z ~Z
k" %k

X,y,Z Or jE,'r),é‘ subscripts for points in the mesh

x index for first mesh point Behjnd hinge

maximum number of X,y,z mesh planes, respectively
x index for trailing edge

y mesh line just below airfoil



K (1 -M2/M2

K ~ z mesh plane below wing
. LU super’scripts denotingilower or upper boundary on Fij
M : : free-stream Mach number
P(D) polyhomial operator, D = (D,D5,D3)
P(x,y) p1x tiwy acceleration (or pressure) potential
a  02fe-iwly - Dy
r \/x12+y12+212
s semi-chord of wing
$1 , (ij+2 "V + )/h
$9 (ij - ij-l)/h
t,tg time in units of s/ug
ug free-stream velocity
u,v,w X,¥,Z velocity components of flow at beginning of the derivation of the
equations
u ' T K-(y+ l)gpox throughout remainder of text
v K- (y+ Dygy + X'z'throughout remainder of text
X,¥,Z ‘ (X, KY(» V() scaled coordinates
X0:Y0-20 dimensionless coordinates in units of s
X1,Y 1,21 WK, z4/K)
a | sv?eep angle of leading edge
B Vi-m2
81 ~ Dy/D
v ratio of specific heats for air



_ Jump in p; at plane of wing or vortex wake

thickness ratio or measure of camber and angle of attack

X2 Xy

(6M)2/ 3

swept wing scaled coordinates (¢ = x - y sin @)
sin o

wM/(1 - M2)

scale factors on Yo and zq, respectively (u=v =24 1/ 3M2/ 3)
density made dimensionlelss to free-stream value
parameter in analysis of differential operator
dimensionless perturbation velocity potential
scalgd perturbation velocity potential, ¢ = ey
Yy +iwy acceleration or pressure potential
@Iy for,‘planar wing, HO(.2)()\I') for airfoil

eiM}‘l X ¥ fundamental source solution for intégral equation

angular reduced frequency (s x frequency/uo)



DESCRIPTION OF THE METHOD FOR COMPUTING
UNSTEADY FLOW FOR THE HARMONIC MOTION OF A WING‘

A detailed mathematical derivation of the method of finite differences applied to the solution
of the unsteady velocity potential for the flow about a harmonically oscillating wing is presented in
the appendix. Formulas are derived for the rectangular wing, for the swept wing, and for
two-dimensional airfoils. Boundary conditions on the wing, on the trailing vortex sheet, and on the
outer boundaries of the mesh are treated in sufficient detail to be coded for implementation on an
electronic digital computer. A brief discussion will be presented here and will be limited :(o the
oscillating airfoil, since only the two-dimensional problem was programmed to test the method.

The complete nonlinear differential equation was simplified by assuming the flow to be a small
perturbation from a uniform stream near the speed of sound. The resulting equation for steady flow
is (see appendix, equation 12)

[K-(v- Doy - (v + Dogloyy +oyy = 2oy +oy)le =0 )

where K = (1 - M2)/M2 €, M is the free-stream Mach number of velocity Ug in the x-direction, x
and y are made dimensionless to the semichord s of the airfoil, and the time t to the ratio s/UO.
With the airfoil shape as a function of time defined by the relation )

yO = 6f(X, t)

the linearized boundary condition becomes

oy = fy(x, ) +fy(x, 1) (2)

The quantity & is associated with properties of the airfoil such as maximum thickness ratio,
camber, or maximum angle of attack and is assumed small. The coordinate y is scaled to the
physical coordinate y by the factor

y= 61/3M'2/3yO
and € is giveﬁ in terms of & by

e= ~(8/m)2/3



The pressure coefficient is found from the relation

Cp=-2e(py +vp)

-The preceding differential equation is simplified by assuming harmonic motion and by
assuming the velocity potential to be separable into a steady-state potential and a potential
representing the unsteady effects. We write for a perturbation velocity potential

P =90 (X, ¥) top (x,y)el@t 3
and for the body shape
f(x, t) = f(x) + f1 (el Wt

Since the steady-state terms must satisfy the boundary conditions and the differential equation in
the absence of oscillations, we obtain

| :
[K~C(r+ D ogx] oxx +0gyy =0 _ (4)
with

voy =fp(x), y=0,-1<x<1 ' (5)

On the assumption that the oscillations are small and products of %] may be neglected, equations
(1) and (2) with the aid of equations (3) and (4) yield

{[K - (7 + 1)‘POX]‘PIX}X + ‘plyy - (21w/€)§p1x + q«.pl = 0 (6)

where

q = w/e = iw(y - Dopyy

subject to the wing boundary conditions

Ply = £1(x) tiwf|(x)=F(x), y=0,-1<x<1

A computer program for solving the steady-state transonic flow about lifting airfoils based on
‘equations (4) and (5) was developed by J. A. Krupp (ref. 4) and is designated as program TEA-330
by The Boeing Company. The output of this program was used in computing the coefficients for

9



the differential équation of the unsteady potential. The similarity of the unsteady differential
equation with the steady-state equation suggests that the method of column relaxation used by
Krupp (ref. 4) for the nonlinear steady-state problem should be "an effective way to solve equation
(6) for the unsteady potential ¢;. Note that equation (6) is of mixed type, being elliptic or
hyperbolic whenever equation (4) is elliptic or hyperbolic. Central differencing was used at all
points for the y derivative and at all subsonic or elliptic points for the x derivatives. Backward (or
upstream) differences were used for the x derivatives at all hyperbolic points.

The boundary condition that the pressure be continuous across the wake from the trailing edge
was found in terms of the jump in potential A¢ to be-

/_\801 = A¢te—iw(x—xt)

where A @, is the jump in the potential at x =X just downstream of the trailing edge and is
determined to satisfy the Kutta condition that the jump in pressure vanish at the trailing edge. The
quantity A®; is also used in the difference formulation for the derivative ? vy to satisfy continuity
of normal flow across the trailing edge wake.

For the set of difference equations to be determinate, the value of ¢ or its derivative must be
prescribed on the mesh boundary. Following Klunker (ref. 8), we found an asymptotic integral
representation for the far-field ? potential and for the related pressure potential Pi1xt iw‘Pl.
Because of the difficulty with convergence of the integral over the wake for the integral equation of
the velocity potential, upstream and downstream boundary conditions for the mesh were given in
terms of the pressure potential ?i1xt iw¢1 for which the wake integral can be integrated in closed
form. The value of ¢| was computed at one point on the upper boundary and one point on the
lower boundary which were conveniently chosen to facilitate rapid convergence of the wake
integral. The values of ¢; at other points on the upper and lower boundaries were found by
integrating numerically with respect to x the quantity ¢, +iw®,.

The corﬁplete boundary value problem for the oscillating airfoil is illustrated in figure 1. The
notation used in the computer program is also shown. Finer mesh in the y direction was used in
the vicinity of the wing plane. Finer grid in the x direction was used to obtain greater accuracy
near leading and trailing edges where velocity gradients are higher.

10
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DISCUSSION OF COMPUTED RESULTS FOR THE
. HARMONICALLY OSCILLATING FLAP ON AN AIRFOIL

The numerical procedure for computing the transonic unsteady flow described in the foregoing
section was applied to the airfoil with the harmonically oscillating flap. For-the basic steady
transonic flow, we chose the flow about a NACA 64A006 airfoil at zero angle of attack for
free-stream Mach numbers of M = 0.8 and 0.85. The steady flow potential ¢ used in computing the
coefficients for the unsteady method was computed by the program TEA-330 developed by
J. A. Krupp (ref. 4). The distribution of pressure coefficients on the airfoil for the two Mach
numbers is shown in figures 2 and 3. Mach numbers and the airfoil were chosen for the purpose of
comparing computed results with the experimental measurements of Tijdeman and Schippers in
reference 9 for an oscillating flap of quarter-chord length. We note that for M = 0.8 the ‘airf'oil is
subcritical, while for M = 0.85 it is supercritical over a small region. The reduced frequencies for the
flap oscillating at 30 cycles per second in free-stream Mach numbers of M = 0.8 and 0.85 for the
wind tunnel speeds used by Tijdeman and Bergh in reference 9 are w =0.060 and 0.05-6,
respectively. The grid consisted of 75 points along y = constant lines and 58 points along

= constant lines, yielding a total of 4350 points in the mesh. The far-field boundaries are at
x=-2,62 and 2.75 and y=26. This same grid was used for both the steady and unsteady
calculations.

The unsteady contribution to the location of the airfoil surface for the harmonically oscillating
flap as a function of chord position is given by

fl(X) =‘0, -1<xx1 —Lf

fi(x)=a(x-1+L), 1-Le<x<1

where the airfoil is defined by -1€x < 1 and Lf is the length of the flap in units of semichord. For
the experiments of Tudeman and Schlppers (ref. 9), Lg= 1/2, and the amphtude was 1.5°. The
boundary conditions i in equatlon (82) of the appendix become

#1y=0, -1<x<I-Lf, y=0 (7

01y =(@/8) [1+iw (x- 1+ L], 1 -Ly<x <1

12



NACA 64A006 airfoil
Zero angle of attack
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Figure 2.—Distribution of coefficient of pressure, Cp, at Mach 0.794.

- NACA 64A006 airfoil
Zero angle of attack
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Figure 3.—Distribution of coefficient of pressure, Cp, at Mach 0.853.
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Thus, the quantities Fi(U) and Fi(L), defined at the mesh points x; and used in the difference

equations near the boundary, become
F (U =F(D) = @/8)(1 +iw (x;- 1 + L], i>1,,

U _ D) - . .
Fi(_ )=pM=0, i<i,

where i.a is the x-index in the mesh satisfying the relation

< 1-Le<x:
i, £ X5

+]

“To check out the program, the flow at Mach number M = 0.8 over a flat plate was computed
for the oscillating boundary conditions of -equation (7) and for w =0.06. For this case
%ox = Poxx = 0. The resulting differential equation is equivalent to the classical linearized unsteady
subsonic differential flow equation for harmonic motion; namely,

(1 - M2)py, + 0y - 2iM2ep, + M2w2p =0

This equation has been studied extensively and several kernel function integral equation methods
have been developed to solve for the related acceleration or pressure potential, @1, +iw®).

The jump in pressure coefficient computed by the present method for the flat plate at M = 0.8
and w =0.06 is given in figures4 and 5 for the real and imaginary parts, respectively. The
convergence of the solution was very slow. Overrelaxation with a parameter of 1.3 in thé manner of
Murman and Cole (ref. 2) and Krupp (refs. 3 and 4) was used in the iteration process, and the
relaxation calculations were made by sweeping alternately downstream and upstream for many of
the iterations. No definite advantage in alternate direction sweeping of the field as compared with
the customary mode of sweeping downstream followed in references 2 through 4 was proven,
although Newman and Klunker (ref. 6) found that symmetry of nonlifting solutions for steady
subsonic flow was preserved. For the far-field boundary conditions, the value of the unsteady
potential ¢ was computed for upper and lower mesh boundaries, and ?1x tiw?¥] boundary
conditions were prescribed following the discussion in the section on far-field boundary conditions.
The far-field boundary- data were updated every 100 iterations near the beginning of the
calculations and every 20 iterations for the later calculations. The more frequent updating seems to
be more efficient in obtaining the final result. With all values of ¢; in the mesh starting with zero,
the complete calculations shown in figures'4 and 5 were accomplished in about-3000 iterations toa
convergence of 2 x 107 for the magnitude of the maximum difference between iterations. In spite

14



~=OQ—0=—= Present method -
Collocation method of Rowe (ref. 10)

125

10.0 B

AcC
P real

0 1 - 1
-5

Figure 4. —Real component of the jump in unsteady pressure coefficient across a flat plate
with a harmonically oscillating quarter-chord flap. Free-stream Mach number
M = 0.8 and reduced frequency w = 0.06. :
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——e——o6— Present method
Collocation method of Rowe (ref. 10}

5.0

25

A'C
Pimag 0 i M/’MJ}M,

Figure 5.—Imaginary component of the jump in unsteady pressure coefficient across a
flat plate with a harmonically oscillating quarter-chord flap.
Free-stream Mach number M = 0.8 and reduced frequency w = 0.06.

of the complex arithmetic and the more complicated equations, the computing time for each
iteration is about 1 second on the CDC 6600 compared with the steady flow program which
requires about 2/3 second per iteration for the 58 by 75 grid.

The results are compared in figures 4 and 5 with calculations by the kernel function of
reference 10 for three-dimensional flow at the center of a rectangular wing of aspect ratio 20. The
" real parts of the jump in pressure coefficient by the two methods agree quite well, but the
imaginary part from the present method gives amplitudes with less negative value near the leading
edge and larger positive value on the flap. The x,y mesh points were those used to compute the
steady-state potential using TEA-330 and contain a finer spacing near the leading and trailing edges.
The grid points used in the calculations are indicateu by circles on graphs of computed results. It

16



has been shown in reference 11 that there is a logarithmic singularity at the hinge point and an.
infinite square root singularity at the leading edge. Because of these singularities, no mesh points for
the unsteady flow should lie on the lines x = -1 and 0.5. Increasing the fineness of the x-grid in the
vicinity of x = 0.5 had no noticeable effect on the solution for thelﬂat plate, however. The results
also appear to be insensitive to the far-field boundary conditions. Setting ¢, + iw¢| =0 on all
four far mesh boundaries located at y =+6.5 and x =+ 3.5 yielded differences scarcely observablé in
figures 4 and 5.

The solution for the flat plate with a free-stream Mach number M = 0.8 and reduced frequency
w = 0.06 was used as a starting solution for w = 0.1794, corresponding to a frequency of 90 cycles
per second. The singularity at the leading edges for w = 0.1794 has the opposite sign from that at
w = 0.06. After 2800 iterations the solution converged to 10'5, and the real part along with the
equivalent solution from the collocation method of Rowe is shown in figure 6. The agreement is
quite good. Similarly, the comparison of the finite difference solution for the imaginary part of the
pressure jump with the corresponding solution by the collocation method is shown in figure 7. The
agreement is better than that for w = 0.06 (fig. 5). The rate of convergence is illustrated in figures 8
and 9. The cause of the large number of iterations required for convergence is apparently the change
in sign of the leading edge singularity for w changing from 0.06 to 0. 1794.

With the calculations of the flat plate solution for M = 0.8 and w = 0.06 as starting values for
¢, the solution of the complete linear differential equations for Mach 0.794 and w = 0.064 with

u=K-(y+ 1)y .

provided by the solution from TEA-330 was obtained in about 1200 iterations. Agreement with the
experimental results of Tijdeman and Schippers (ref. 9) is not as good as the agreement between the
classical linear solution and the present method for flat plate flow. The pattern of the present
method agrees with that obtained by Tijdeman and Schippers (ref. 9), as shown in figures 10 and
11. The computed values of real ACp are considerably larger than the experimental measurements.
The discrepancy between experiment and theory is not understood. There are a
number of possibilities: boundary layer or separation effects, or both, near
the aft portion of the airfoil, or unknown problems associated with the theory
or with the pressure measurements. However, the validity of the calibration of
the pressure tube system used by NLR is confirmed by Destuynder and Tijdeman in
reference 12, and should provide reasonable experimental results.

Starting with the M=0.8 and w =0.06 mesh values of ¢ and with ¢ from TEA-330, we
computed the solution for M = 0.853 and w = 0.060 with another 1200 iterations to a maximum
error between iterations of about 3.5 x 107>, The results for the jump in pressure coefficient on the
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Figure 6.—Real component of the jump in unsteady pressure coefficient across a ﬂat
plate with a harmonically oscillating quarter-chord flap. Free-stream Mach
number M = 0.8 and reduced frequency w = 0. 1794
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Figure 7.—Imaginary component of the jump in unsteady pressure coefficient across a
flat plate with a harmonically oscillating quarter-chord flap.
Free-stream Mach number M = 0.8 and reduced frequency w = 0.1794.

airfoil are shown in figures 12 and 13 for the real and imaginary parts, respectively. The pressure
peak for both the real and imaginary parts close to the midchord as observed by Tijdeman and
Schippers (ref. 9) is also predicted by the present method. Although magnitudes are somewhat
higher, the pattern of the theoretical imaginary part from the present method agrees with the

experiments.

By comparing the two solutions in figures 10 through 13, one can see the influence of
increasing Mach number on the propagation of disturbance from the oscillating flap. Note that the
real component of the pressure amplitude decreases with Mach number near the leading edge. A
peak builds up at the semichord point due to the local supersonic region, which becomes subsonic
just downstream of the midchord. These observed properties are common to both the theoretical
and experimental results.

The solution for w =0.06 and M = 0.794 was used as the starting solution for w = 0.253 and
M = 0.804, corresponding to a frequency of 120 cycles per second. After 4000 iterations the
solution was converged to 4 x 10™ for the maximum difference between iterations. The column
relaxation was swept alternately upstream and downstream and an overrelaxation parameter of 1.4
was used. This flow is completely subsonic. The pattern of the real part of the jump in pressure
coefficient from the finite difference method in figure 14 matches the experimental data as in the
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Figure 8.—Rate of convergence of the real part of the jump in pressure coefficient on a
flat plate with oscillating quarter-chord flap for a change in reduced frequency
from w =0.06 to w = 0.1794 and free-stream- Mach number M = 0.08.

other cases, but here the magnitudé is in somewhat better agreement. The imaginary part shown in
figure 15, however, has much higher negative values near the leading edge than the experimental
data, but the match is better aft of the hinge line. ‘

The solution for w = 0.056 and M = 0.85 was also extended to w = 0.179. This solution was
run 3600 iterations and the convergenée is 1.93 x 10'5 maximum difference between iterations. -
From figure 16 just downstream of midchord, a peak in the real part of the jump in pressure
coefficient has dbeveloped and increased to 12, while the imaginary part in figure 17 shows a peak of
-20 just upstream of midchord. The experimental measurements also show these peaks, but on a
much smaller scale. The amplitude buildup occurs near the sonic line in the decelerating region of
the flow for both values of reduced frequency (see figs. 12 and 13). From the experience in
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. Fi‘gure 10.—Real component of the jump in unsteady pressure coefficient across

NACA 64A006 airfoil with a harmonically oscillating quarter-chord flap.

Free-stream Mach number M = 0.794 and reduced frequency w = 0.064.
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Figure 11.—Imaginary component of the jump in unsteady pressure coefficient across
NACA 64A006 airfoil with a harmonically oscillating quarter-chord flap.
Free-stream Mach nuinber M = 0.794 and reduced frequency w = 0.064.
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Figure 14.—Real component of the jump in unsteady pressure coefficient across

NACA 64A006 airfoil with a harmonically oscillating quarter-chord flap.

Free-stream Mach number M = 0.804 and reduced frequency w = 0.253.
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Figure 15.—Imaginary component of the jump in unsteady pressure coefficient across
NACA 644006 airfoil with a harmonically oscillating quarter-chord flap.
Free-stream Mach number M = 0.804 and reduced frequency w = 0.253.
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Figure 16.—Real component of the jump in unsteady pressure coefficient across NACA
64A006 with a harmonically oscillating quarter-chord flap. Free-stream Mach
number M = 0.858 and reduced frequency w = 0.179. .

28




AC

Present method

Experimental results of Tijdemanr
and Schippers (ref. 9)

R o T

pimag

-12 +

-16 -

Figure 17. —fmaginary component of the jump in unsteady pressure coefficient
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flap. Free-stream Mach number M = 0.858 and reduced frequency w = 0.179.
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calculation with the amplitude of oscillation of 1-1/2° it appears that calculations must be
continued until the maximum magnitude of the difference between iterations is about 107,

From a study of figures 10 through 17, we see that solutions from the finite difference method
predict the essential features of the pressure distributions found by experiment, whereas the
linearized subsoni¢ kernel function method does not.- The larger amplitudes may be due to
inaccuracies in the method of measurement, to boundary layer and separation effects on the aft
portion of the airfoil, or to wind tunnel wall influence.

RECOMMENDATIONS FOR INCREASED ACCURACY AND REDUCED COMPUTING TIME

It is pointed out in the appendix that the difference equations for the flow field result in a
large set of linear equations for the values of the unsteady velocity potential at the mesh points.
Column relaxation methods were found to require a large number of iterations to obtain the
solution. Since the matrix of the equations contains only five or six nonzero diagonals for
two-dimensional flow (and only seven or eight for planar wings), the matrix is very sparse,
containing mostly zeros.

Special methods which take advantage of this property should be applied to solving this set of
equations. One possible technique is the Gram-Schmidt orthogonalization method of references 13
and 14, which construct a solution from a set of vectors orthogonal to the set of vectors spanned by
the coefficients and right-hand side terms of equations (127) and (128). Scalar products used in
constructing these orthdgonal vectors will contain only six or seven products at most. The actual

~number of operations should be considerably less than the 1200 to 3000 iterations of the column
relaxation required for the convergence by the column relaxation method. As formulated in this
manner, the complete calculations will have to be carried out several times to match far-field
boundary conditions and to satisfy the Kutta condition. Each updating of the far-field boundary
conditions and the Kutta conditions from the last solution requires only a modification of the
right-hand side terms in preparation for the next solution. Satisfying the Kutta condition could be
incorporated into the solution of the linear equationé, but this would involve additional nonzero
elements in the matrix for those points adjacent to the plane of the wake. Many terms in the matrix
are duplicated, and ‘taking advantage of this feature can reduce some of the computation. A study
of the various special methods available for solving large orders of linear equations should be made
to determine which method is best suited to this particular problem.
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It is also possible to improve the efficiency and accuracy of the column relaxation procedure.
This may take the form of finding optimum values of the overrelaxation parameter at subsonic
points and of underrelaxation at supersonic points, or possibly changing the mesh size near the

leading edge and near the hinge line.

In calculating the exact potential steady transonic flow over the blunt airfoil, Garabedian and
Korn in reference 1 found that obtaining first a solution with a coarse grid and then refining the
grid to obtain greater accuracy reduced significantly the number of iterations required for
satisfactory accuracy in the final solution. This procedure should improve both efficiency and

acéuracy of the unsteady finite difference solution as well.

Experience in computing additional unsteady flows, such as harmonic pitching of the airfoil
and comparison with careful measurements on an oscillating airfoil, is needed to clarify the validity
of the method.

EXTENSION OF THE WORK TO THREE-DIMENSIONAL WINGS

In the appendix, a compiete analysis based on transonic small perturbation theory is given for
applying the method of finite differences to the solution of unsteady flow about finite wings of
both rectangular and swept planforms. All formulas required for programming the method are
presented. Much of the computer logic in the airfoil program could be directly employed in the
program for finite ‘wings. The basic approach would be essentially unchanged, but with thé
additional dimension adding more complication and a greater number of points. The program either
of Newman and Klunker (ref. 6) or Ballhaus and Bailey (ref. 7) would be required to provide the
valués of the steady perturbation potential at the grid points for the coefficients of the unsteady

flow difference equations.

EXTENSION OF THE WORK TO ELIMINATE THE SMALL DISTURBANCE ASSUMPTION

-~ The general procedure followed here for setting- up the linear equation for the unsteady
‘velocity potentiai could be applied to the more complete potential equation. Garabédian and Korn
(ref. 1) transformed the independent variables of the differential equation by a conformal mapping
of the physical plane to map the flow field about a blunt airfoil into the interior of a unit circle.
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The transformed differential equation is expressed in difference form in the new variables and
solved numerically by relaxation in the manner of Murman and Cole (ref. 2) and Krupp (refs. 3 and
4). In this way the airfoil -boundary conditions are satisfied exactly and far-field boundary
- conditions are easily prescribed.

This same transformation of the independent variable could be similarly applied to the
differential equation for the velocity potential of unsteady two-dimensional flow. By representing
the complete flow as the sum of a steady-state potential and an unsteady potential, the transformed
differential equation for the unsteady flow could be linearized in the same fashion by using the
condition that the steady-state potential satisfies the nonlinear equation and by neglecting all terms
.containing products of the unsteady potential and its derivatives. The unsteady boundary
conditions could be linearized by satisfying them on the boundaries of the §tationary airfoil and
steady wake. The techniques for solution would differ more in the increase of actual computation
required for the coefficients than in the actual number of difference equations to be solved.

The Boeing Company has developed a similar method for solving the complete nonlinear
differential equation for the steady transonic flow potential about a blunt airfoil by using as
independent variables the velocity potential and stream function from the incompressible solution.
With the differential equation for steady flow expressed in these variables, the boundary conditions
on the airfoil are satisfied exactly. The same procedure could also be applied to this formulation.
There appears to be no basic reason why the numerical procedure used for the differential equation’
based on the assumption of small perturbations near sonic velocity could not be carried over to the
blunt airfoil solutions.

Since no mapping technique exists for simplifying the application of the boundary conditions
on three-dimensional wings, the problem of eliminating the restriction to small perturbations for
transonic flow is considerably more difficult. A fairly elaborate mesh system must be constructed
near the wing surface, and a method of satisfying the boundary conditions must be devised.

. CONCLUSION

A method for applying the finite difference technique to the solution of the unsteady
transonic small perturbation differential equation has been developed analytically with sufficient
detail in this document that it can be programmed for computation on a high-speed digital
computer. Coefficients of the differential equation contain the nonlinear steady flow solution about
the wing and must be computed and supplied to the unsteady flow program at the outset of
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computations of the unsteady flow. To test the method, the technique for the oscillating airfoil was
programmed and computations were made for the oscillating flap of quarter-chord length on a
NACA 64A006 airfoil.

Analysis of the truncation terms of the difference equation indicates that the stability of the
difference formulation for subsonic points is not dependent upon the relative grid sizes in the three
directions. For supersonic points, a viscous-like term was found in the truncation terms which is
similar to that found by Murman and Cole (ref. 2) to yield stable and smooth calculations near
shock waves, Calculations using the method indicate that the procedufe is indeed stable and

convergent.

Five cases were computed involving two free-stream Mach numbers and two frequencies. The
numerical method was found to be stable for flows with local supersonic regions as well as strictly
subcritical flows. The pattern of the distribution of pressure coefficient on the airfoil in all cases
follows closely the distributions observed by Tijdeman and Schippers (ref. 9); however, the pressure
levels in the calculated cases are generally, higher than those found by Tijdeman and Schippers (ref. 9).
The discrepancy between theory and experiment may be due to boundary layer and
separation effects near the aft portion of the airfoil, possible wind tunnel
wall - interference, or to unknown problems associated either with the theory or
with the pressure measurements. The validity of the calibrations used by Tijdeman
and Schippers (ref. 9) is confirmed by Destuynder and Tijdeman in reference 12.

For 75 grid points in the x or stream direction and 56 in the y direction, the number of
iterations for convergence to a maximum difference between iterations of 2 x 10'5 varied from
1200 to 3000 depending upon the starting solution. Each iteration takes about 1 second on the
CDC 6600 as compared to 2/3 second for the steady-state program TEA-330 developed by Krupp
(ref. 4). More computations are needed to improve the rate of convergence by finding optimum
values of the overrelaxation parameter for subsonic points and of the underrelaxation parameter for
supersonic points, and to establish suitable criteria for acceptable convergence of the solution. Since
Garabedian and Korn (ref. 1) found that first obtaining a solution with a coarse grid and refining
the grid to carry on the calculations reduced significantly the number of iterations required for
solution of the steady-state equation, a similar procedure should also reduce computing time for the
unsteady problem. See note added in proof on page 34.

Efficiency also may be improved by solving the complete set of equations instead of the
column relaxation used in the study. Because the set of difference equations is linear in the
unsteady potential and because the matrix of coefficients contains only a few nonzero diagonals, a
special procedure for soiving the cémplete set of equations at once seems feasible and should be a
subject of future study. ' -

33



The present method was formulated on the assumption of small perturbations near the speed
of sound, but the method could be extended without too much difficulty to the flow around a
blunt airfoil for which the steady flow boundary conditions are not linearized but are satisfied
exactly. The two-dimensional problem is made easy by the possibility of using body coordinates to
simplify the application of boundary conditions in the finite difference method. Since no simple
body coordinate system can be formulated for the three-dimensional wing, a more elaborate mesh
system would be required in the neighborhood of the wing surface, making it more difficult to
eliminate the restriction of small perturbations. The unsteady boundary conditions presumably
would be linearized and applied at the steady-state wing position. '

The results of the present study indicate the feasibility of the proposed method of finite
differences for finding the unsteady transonic flow about harmonically oscillating wings.

Boeing Commercial Airplane Company
- P.O. Box 3707
Seattle, Washington 98104, February 25,1974

Note added in proof:

Recent studies have shown that, by the use of larger values of the over-
relaxation parameters such as 1.8 to 1.9, the number of iterations to obtain a
converged solution was reduced by an order of magnitude when applied to a re-

computation of one of the flat plate examples.
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APPENDIX

Derivation of the Differential Equation and Boundary
Conditions for Harmonic Motion of the Thin Wing in Transonic Flow

Let

u= uO (1 + ¢x0)’ V= .uO¢y0: w= u0¢20 v - (1)

be the velocity components of the flow, where ¢ is the perturbation velocity potential, XY 020
Cartesian coordinates, t() the time, and ug the undisturbed flow velocity. As given in Landahl
(ref. 15), the equations of motion are

pig + o1+ 9y )y * 00y Dy + (8;); =0, @

2= 1M?-(r-1) [¢t Foxot (¢X02 * ¢Y02 * ¢Zo2)/ 2] 3)

where p isthe density, ¢ the velocity of sound, <y the ratio of specific heats, and M the free-
stream Mach number. The coordinates (xq,y,Zq) are made dimensionless to the wing semichord
and the time tg to the ratio of the semichord to the velocity ug,. Since

dc?/(y-1) = c2dplp 4
we have from equation (3),
oo == [$1otg * Pxgto * ot * HyoProto T Peglagty | (%)
Similar relations for cszo/p, czpyo/p, and. czpzo/p may be written down by replacing the last
subscripted variable t with xq, yq, and z(, respectively. By expandmg the der1vat1ves in equation

(2), eliminating czpt /p by equation (5), and eliminating c2px /p, ¢ py /p,and ¢ pZO/p by
equations similar to equatlon (5), the following differential equatlon for ¢ results
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%ot Pxgto T PxoPxoto " yo®yoto * P2oPzgtg -

' [%XO *Pxgxo * PxgPxo%0 * PyoPyoxo ¢Zo¢zox0] (" *%xo)
' ’ (6)
*[Ptov0 * Pxov0 * PxoPxovo T PvePyovo * *20%70v0 | *yo

+ + + + +.
[¢tozo Pxo20 * Px?x070 * Pv0®voro ¢Zo¢zozo]¢lo

] [1/M2- (y- 1) (¢t0+¢xOf¢XO2/2-+ ¢y02/2+¢zo2/2)] (¢XOXO+¢yOyO+¢ZOzO)=O

Since we shall consider small perturbations from a parallel flow, it is convenient at this stage to
discard third-order terms in equation (6). Combining terms and simplifying yields

[1 - M2 (y- 1)M2_¢t0 -(rt 1)M2¢x0] Px0x0 * Pygvg T P2z

M2 M2 C M2
M xotg - Mot~ M [2¢X0¢X0t0+2¢yo¢yoto

(N
* 202002t * “PyoPygrg T 2zofz0xg

We now introduce a small parameter € and scale factors u and » ony(,zg and, by an order
of magnitude comparison of terms of equation (7), we determine which second-order terms in
equation (7) are to be retained for free-stream Mach numbers near 1. Let ¢ = €9, X = Xq, t = tp,
y= KY and z = vz(y. The quantity e is a small quantity whose magnitude in terms of the thickness
ratio is to be determined later in the development. The quantities u and v are scale factors for
setting the orders of magnitude of the principal linear terms. With these substitutions the differ-

ential equation becomes

el(1- M) - (v- DM%epq - (v + DMPep, oy, + e by,
+ V2€<pZZ - 2M26¢Xt - Mzecptt' - VM262[2¢x<pxt
+ 2“2‘*"y‘pyt + 2"29922 Gt 2“2‘*”y""yx + 2"Z‘PZ‘f’zx

+(y- Dl + wx)(¢yyn2 +9,, )] = 0.
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Since our primary interest is in transonic flow, we assume that the small quantity e is of the same
order as 1 - M2. Dividing the equation by M2¢2 and setting (1 - M2)/M26 =Kleadsto

[K - Oy - D - (7 + Doyl ogy + (02M2e)pyy + (02 M2e)p,,
- Qugy +ogple - [2ogoys + 2200001 + 20,0, (8)

+ 2u2<py¢yx +2020,0,, +r - Dl + wt)(#zwyy + v2wzz)] =0

It is convenient to set V2/M26 =1 and u2/M26 = 1, thereby making Pyy and g, terms of the same
order as the Py x term. Equation (8) then becomes

[K - (7' l)\ﬂt - (7 + l)px]‘pxx +‘pyy +“DZZ
- (2¢xt +w‘tt)/e - 2¢X¢Xt + 2#2[\0y‘pyt + "DZ‘pZt . (9)

Toyeyt T 00 T (1- Dot ¥ o d(ayy + 9,021
To determine u in terms of the thickness ratio & we consider the boundary conditions on the

wing; we let

F(xqg, y0, tg) = zg - 8f(x, ¥, tg) = 0

describe the wing surface at each time t(). Then the boundary conditions that the flow be tangential
to the wing surface become

DF/Dt=0

or

- 5fxO(1 + q)XO) - 5fY0¢yO + ¢ZO - 8ft0 =0. (10)

In scaled coordinates with ¢ = ey, we have

oy - (Bem)(fy + ) - (8/m)ypy - Bu)fyoy = 0.
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Letting 8/eu = 1 makes all the linear terms have the same order of magnitude. Then the boundary
conditions become .

2 -
ng-fx-ft-e‘prx-eu fycpy—O. (1)

Since u = §/e and uz/-M2e =1, we can solve for u and € in terms of & . Thus

e = (8/M)2/3
and

p=p=5 1/302/3 = mel/2
Upon neglecting terms of the order of € in equation (9), we finally obtain the differential equation

K- - Do - (r+ Dodogy + oy + 0y,
(12)
- 2050yt - (204t t oyy)/e = 0.

The boundary condition from equation (11)

‘pz=fx+ft

is to be satisfied on the wing, represented by its projection on the zg = 0 plane.

For convenience, we separate the perturbation potential ¢ into a steady flow ¢ and an
unsteady flow ¢. Thus, we let

v =9o(x,y,2) + 91(x,y,z,t). (13)
The steady flow term pg must satisfy equation (12) independently. Thus, we obtain

[K - (v + Doyl oxx * Poyy + 9022 = 0- (14)
This is the well-known transonic small perturbation equation for steady flow studied recently by
Murman and Cole, Krupp, Newman and Klunker, and Ballhaus and Bailey (see refs. 2 through 7).

It is nonlinear and of mixed type. When 0x < K/f(y + 1), the equafion is elliptic; and when

Pox > K/(y + 1), it is hyperbolic. The quantity K/(y + 1) is seen to be the sonic velocity for the
flow represented by the solution of equation (14).
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Substituting equation (13) into (12), making use of equation (14), and neglecting product
terms in ¢ yields the following linear differential equation for the unsteady perturbation potential:

[K - 7+ Dipyd @1 - [0 Doy + (r + Doy 100,
| (15)
to1yy T P12z - 2Pkt +9 /e =0.

Here we have also neglected the coefficient pox Of the ¢y ¢ term as negligible compared to 1/e.

We shall assume harmonic motion for the wing; then with

N

01 =9)(x, y, el A (16)

equation (15) becomes
{ [K-(v+ 1)¢0x]¢1X}X T oyy t 0142 Qiw/e)pry + [w?/e - (v - Diwpgy,) ey =0
This may be written as

whereu =K - (v - l)pgy and g = w2/e —iw(y - Dygxx- Equation (17) is linear and like equation
(14) is of mixed type, being elliptic or hyperbolic whenever the solution of equation (14) is elliptic
or hyperbolic. '

Formulation of the Difference Equations for Numerical-
Solution of Unsteady Flow From Harmonic Motion of a Thin Wing

Since () is a numerical solution of equation (14) whose values are known only at discrete points
of a mesh, equation (17) is also to be solved numerically. For this purpose equation (17) is expressed
in difference form. For subsonic flow points, we use central differences for derivatives in the x,y,z
directions. For hyperbolic or supersonic points we use backward (or upstream differences) in x but
retain central differences in the y and z directions. This is the practice followed by Murman and
Cole (ref. 2), Krupp (refs. 3 and 4), Steger and Lomax (ref. 5), and Newman and Klunker (ref. 6),
since only upstream data can influence a hyperbolic point in regions of local supersonic flow. Thus,
for subsonic flow at the point x;, Yj» 2k, We have

Wp10x = {Uir 15 k@i 1jk - 2380 i 1 - XD~ Uik 051/ - XD} (21K g - x1.p)]
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where

Uitisik = K- O + D@oi+1jk -0 03k Xi+1 - %)

- (18)
Uik = K- + Dok - 90i-1jKk)/ (i - Xj.1)
and i 2 denotes the value of the quantity at
X = (X + x421)/2,
the x midpoint of the mesh.
The x derivative may be written more simply as .
(uey)x = 2604k (i 1k - Piji) (19)
- 2dju 1aik (i - %5-1jK)
‘where
6 = 1/(Xjr1 - Xi-DXj] - %)
di = 1/(Xi+1 - xi_l)(xi - Xi-l)
For the first derivative, we use a second-order difference equation. Writing
P1x = C1ilir 1jk - Pijk) T 91i@ijk - Pi-1jK) (20)

and expanding the terms about the point i,j,k, we find the values of cy; and d; by setting the
coefficient of | equal to 1 and of y{ ., equal to zero on the right-hand side of equation (20).
This leads to

°13 = (Xj - Xj.1)ej,
d1i = (X1 - X4



With these definitions, the complete x derivative term becomes
[up| i - Qiw/edpy 1y = - 2ciuipgik + divi sk
+i(w/e)dy; - c11vijk
* 2[cjujpapik - iweyj/e] ‘Pi+1j§

F2ldjug 5 tied /el vk

Similarly, we write for the central differences of ¢, vy and ¢} ,, terms

oy =—2 Pij+1k “¥Pijk Pijk ~¥ij-1k (21)
lyy Vit Y| yjep -y ¥j - ¥j-1
or ' '
Plyy = 28yieij-1k - 2@y; +byideik + Zoyigiae < o
Plzz = 22k¥5jk-1 - 2(@zk + D75k + 2bp5k+1
where
ay; = V(41 - ¥5-D05 - Yj-1)
by = V41 - ¥3-D05+1 - Y9 | _ (23)

The formulas for a,; and b, are similar to equation (23) with z and k replacing y and j,
respectively. Substituting equations (20), (21), and (22) into the differential equation for ¢; yields

-2(Ey + Epdoyik + 2E 104415k T 2E29i 15k T Qijk¥ijk
T2ayiek - 2@y bypeijk t 20yidi ik
+2a,105ik-1 - 2(@zx + bydviik + 2b055K41 = 05

where

El = ciui+1/2jk - iCOCli/E, E2 = dlul+1/2Jk + 1wdll/e
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In solving the equations, we relax a column at a time. At each planar point x;, yj, we solve for
Pijk> k=2tok . -1 Therefore, we place all other terms on the right-hand side and obtain for the
elliptic point form of the difference equation:

a,k%ijk-1 - (@yj T byj tagy + b+ Ep + Eg - a4/ Dy

. 24)
+byroiik+1 = Ewir1jk - B2¥i-1jk - 2yj¥ij-1k - Pyj¥ij+1k

For fixed i,, and for k ranging from 2 to k,;,,, - 1, this is a set of K hax — 2 equations to be solved

for an equal number of Pijk provided that ij1 and Pijkinax are prescribed by the far-field boundary
conditions. This yields a system of equations with a tridiagonal matrix for the coefficients which is
simple to solve.

When the point is hyperbolic, backwards differencing in x is used. This may be achieved by
shifting all the i indices one less for the term (up] x)yx- For ¢ x we derive a three-point backwards
difference formula which is second-order accurate in the mesh spacing. For the point i,j k, we write

?1x = ©2i(Pijk - Pi-1jk) T 92i(#i-1jk - Gi-25k)- (25)
We then determine c4; and do; so that, when ¢;_; ik and gj4 ik are expanded in a Taylor’s series in

X about ijk- the coefficient of ¢, on the right-hand side equals unity and the coefﬁc:lent of v1xx
vanishes. This leads to

02i = 1/(xj-xi.) + 1/(xi - x3.9)
| (26)
dpj = -dyjq-

The x derivative terms for hyperbolic points then take the form
[up]y - Qiw/edoq] k= 2¢i 1 i@k - ¥i-1ik)

-2d;.14;.3/2jk(¥i- 1k - #i-2ik)
- iw/e ) enilijk - Pic1jk) - 91i-1(A-1jk - Pi-2Kk)]-

42



The complete difference equation eqﬁivalent to equation (17) in tridiagonal form for hyperbolic
points becomes

2,k Piik-1 - (Byj + byj + azx +byx - B3 +iik/ 20k Dra Wik |
' (27)
= (B3 + Eg)ojqjk - Bavigjk 1k ~ 2yj%i-1k - yjfij1k
where
E3 = ¢j Uik - iwepyfe
Eq = d; qui 305k - iwdyj./e
Equations (24) and (27) are the difference equations for interior points in the flow field. Since
boundary conditions on the wing and on the vortex sheet are expressed in terms of the derivative of
"y with respect to z , it is convenient to locate the linearized boundary of the wing and wake on
the plane between k =k, and k = k, + 1. For these values of k, equations (24) and (27) must be
modified to incorporate these boundary conditions, and the appropriate relations are developed in
subsequent sections.
Boundary Conditions on the Wing
For harmonic motion, the linearized boundary condition following equation (12) becomes
Pl = fxxy) Hiwf(xy) (28)
where we have substituted

20/ = f(x,y,t) = fo(x,y) + £ (x,y)el®t

for the shape of the wing surface with harmonic oscillations. The steady flow perturbation potential
satisfies the boundary condition ¢, = fy, where zg = 6f(x,y) defines the undisturbed wing shape.
The boundary conditions are satisfied on the plane between the z mesh positions k) and k, + 1
or z = (zky, + Zkm+1 )/2. For convenience, we choose this plane as ' '

e
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The boundary conditions in equation (28) modify the ¢ l.zz derivative in the difference
equation. At the point ij,k;,, we have

o, | ik, ik -1
01y = @
bz 2y w12k 1|12

Ky~ Hkpp -1 (29)
z= Zkm+1/2
Applying the boundary conditions, equation (28), leads to
= (L) . e One
Plzz 2hlekmFlj 2azkm(‘pukm ‘pljkm-l) (30)
where
F1 = FD(x yp) = £, Dy + ieof; Wy
and ‘ ~
hy = -
17 2k +17 %k
Similarly, for the value of ¢ ,, at z = zk, +1, we have _
5 [‘pijkm-+2 " Yijk 1 ]
Plzz = ‘ -¥
1227 (22 2 )L P2 Bt 2 |
‘ Z=Zx +1/2
m / (31)
122 = 25k _+1 (iik,+2 " Pijk +1) " 2012k +1 FyY)
12z " zkpy 1Ky, ik, ZKm J
The superscripts L and U denote upper and lower surface values, respectively.
For k = k;;,, the difference equation corresponding to equation (24) is
a .. (a:+b.:+a. +E;+En-q: 2)::
zk Pk -1 (ayj + by; 4k, T F1T E2 qukm/ )‘pljkm
(32)

=_E . . -E . g C - e - b..::: - L
191+ 15k B2%ictik ) - 3yii1k yj‘p13+1km-h1bzkmFij( )



where

El = cipi+1/2jkm - iwcli/e

E2 = diui-l/zjkm + 1wdll/e

Similarly, for k =k, + 1, we have

Aayj * byj + by 41+ By + Eg- Gy +1/ Dk +1.% dak #1905k +2

(33)

- Eip, bt _(U)
= Eq@istjk+1 - E2ic1jk 41 7 3yii-1kpy+1 ~ yjoiirti 1+ Bz e Fig

where

El = Ciul+1/2ka+1 - iwCII/G

Ej = djuj ik +1 *iwdyjfe

Analogpus equations are easily written down for hyperbolic points by comparing equations (24)
and (27) and revising (32) and (33) accordingly. :

Boundary Conditions on the Wake

The pressure and normal velocity component must be continuous across the vortex sheet shed
from the wing trailing edge. At z = (zk,, + zkm+1)/2, these conditions become

Vi Fiwe] = ¢y +iwg] (34)

for pressure continuity, and
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for normal flow continuity. The superscripts + and - designate limits as the sheet is approached from
above and below, respectively. Equation (34) may be written

(d/dx)(Ap) +iwAp) =0 (35)
where Agpl = ¢1+ - 1'. Along each line y = constant representing the linearized streamline from the

wing trailing edge, equation (35) may be integrated to give

By = Agy el @Oiip ) (36)

where Apj;+1j is the jump in the potential at the station Yj for the first mesh point x location
beyond the trailing edge on the plane z = 0. This value is determined to satisfy the Kutta condition,
which requires that the‘pressure on both sides of the trailing edge be equal. Let iy be the index for
the value of x on the trailing edge. Then the condition that the pressure jump vanish at the trailing
edge at the station ¥j becomes

iy (A 4 - A0y ) + dpj (A - Ay g +iwhAg; =0 37y

Solving for A‘Pi1+1 i yields

Api 415 = Doy [1- @y +iw)fer] +(dyg fer) DA g - (38

" To satisfy continuity of ¢lzl"écr0§s the vortex sheet, although | may be discontinuotus, we
write for«.plzat Z=ka+1/2=0’ - . ) .

R P G R R R T L IS R )
Hence, for k =k, + 1, the derivative ‘plzi becomes

Plzz = 27k +1 Pijk ~ 2@z +1F Dok -+ DGk +1 3

+2bg 419k, +2 T 2k 41 A%
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. Similarly, fork = km, we have

122 = 222k ik 1 2agk * Oak Mgk + 20zl Wi +1 - 2bak Ay (40)

By comparing equations (39) and (40) with equation (22) we see that, in the difference
equations (24) and (27) for k = k;;;, the right-hand side has the additional term
while in the difference equation for k = k, + 1, the right-hand side has the additional term
Sk +18%5 (42)

By employing this form of the difference equations, wé implicitly apply the condition of continuity
of 9y, at the plane z = 0. ' ’
Trnasformation of the Differential Equation for Swept Wings
Since a finer mesh is desirable in the vicinity of the leading edge, it is convenient to transform

the coordinates so that the swept wing is rectangular with the leading edge as one of the coordinate
axes. Let the leading edge be defined by x =y sin @ or y = x/sin o. Then we introduce coordinates

E=x-ysina

n=y (43)
§=z

The derivatives with respect to x and y in terms of the new variables then become

P1x = P1E

Ply= OIS Av g =vin - Mo
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and

Plzz = P18

Plyy = Plnn~ 2Mepen + 7\2“’152

where
A=sin o
Substitution into equation (17) then yields

Vo g - 201, - Qiw/e)oi g + 01 pp to1gr a0 =0 ' (44)

where
v=u+sin201=u+)\2

We consider the second-order operator of equation (44) and apply Hormander’s theory (ref. 16)
to find under what conditions it is hype;bolic and to define the cone of influence of a point distur-
bance in &,n,¢ space: The operator is -

P(D) = vD; 2 - 2\D D, + D52 + D52

where D, =19/0x,, with x| = §, x5 =0, x3 = {. According to Hormander’s definition (ref. 16), the
operator is hyperbolic in the ¢ direction if

P(1,0,0)=v=u+A2%#0
and if
P (D +78))
has only negative roots for D real. Here e is a unit vector in the £ direction. The roots of

P(D + 7e}) are found from

(D +7)%- 2Dy + )Dy+ D2 + D32 =
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Solving for 7 yields

T=-Dy + ()\D2 * \J-uD22 -vD32) v <0

Since 7 must be real for D real we see that u and v must be negative or u < A2, The condition
7 < 0 becomes

Dy%v-2\D Dy + Dy? + D3>0 (45)
The cone of support of the solution in physical space must also satisfy ‘
(D +nDy+{D3 = 0
for Dy, Dy, and Dy satisfying equation (45). Both regions are convex. The boundary of the region

is defined by the equality of the preceding two equations. Eliminating D3 from equation (45) by
means of the preceding equation yields

FBD= 612G +£9)-28/M2-ap) + (% +5H =0
with 8; = D/D,. ’
We now find the envelope in the physical space by finding the value of 8 1 for which
Fp=F @)= o

The equation for the envelope is found to be |

21uG? + 0%+ (192 = 0
Let 52 + {'2 = rz- and n =r cos 0, then we have, after solving for r,

r/€ =\ cos 0 . J-u)/(u + A2 cos? 0)

or

rd-u/t = (vycosf 1)/(1)12 cos2 6 - D

where
"1 =7\/\/:u <1
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Téking the minus sign gives us

r /g =1/(1-vy cos )

This describes the cone of influence of the point 0,0,0 downstream of the point. Taking the plus
sign yields 4

rfu/E=1/(1+ V| cos )

‘This equation represents the boundary of the upstream region of influence on the point §,n,& = 0,0,0.

For the rectangular wing, A (or») goes to zero and the equations reduce to the usual circular
Mach cones for the regions of influence. For -u <A, the cone cross sections for { = constant are
ellipses, while for the limiting case v| = 1, or A= -u, they are parabolés and, of course, are not
closed. The cross sections in the n = 0 and ¢ = 0 planes are bounded by two intersecting straight lines.

Since for u <-A2 or pox = (K + sinza)/(fy + 1), the transformed differential equation is hyper-
bolic, we employ backward differences in the ¢ variable. Central differences are used when

pox < K+sin2 a)f(y+1) | (46)

Difference Form of the Differential Equation for the Swept Wing

We first establish a second-order difference for e By  comparison with the second-order dif-
ference for ¢, we write :

P1n = Cj@ij+1k - Pijk) T @ik - G110 (47)

.

where Cij and dij are given by the equations foliowing equation (19) with 5 replacing x and j

replacing i.

Applying a second-order central difference operator for ¢ to equation (47) yields

P1gn = o1 [C1i0ir i+ 1k - i1 + A1 @+1k - 2i-15+1K)]
+(dj-cyy) [Cli(‘Pi+1jk - wiik) T d1 il - ‘pi-ljk)] ' (48)

=415 [C1i0i+ 151k ~ @ii-110 + 9150551k - Pi-1:1)]
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Then
“2Mp) g - 2iw/€)py g = -2hei101(Pir 11k - Gij+ 1K)

+d1i(Bij+1k - Pi-15+1k)]

(49)
- 2liew/e + Mdyj - el [egilei1jk - wigk) + d1iWijk - ¥i-110)]
+2Adyjleqieietj-1k - i1 + 91 Pg- 1k - Pi-1j-1K))
For the other derivatives we have
vergle = 26vir 4 livjk - i) - 291V 4 k(K - 9315k (50)
P1nn = 200j(Pij+1k - Pijk) - 2anj(Pik - Pij-1k) ' (51)
P15t = oekWijk+1 - wijk) - 2apk(Pijk - Pijk-1) (52)

where Anis bﬂj’ ark and b{k are defined by equation (23) with appropriate variables and subscripts.
Substituting equations (49) through (52) into differential equation (44) and collecting terms yields

a;k‘pl_]k-l - (a,,n + bn] + ag—k + bgk + E2 + E3"- qijk/2)cpijk

+ Dkl = - Ea%ij+1k - Esvij-1k - Eovitijk

- B35 1k tAChjiC1ivitj+1k - 1i%i-15+1k] ey
~ Adyjle)ipirj-1k - 41395 13-1k ]
' where |
By = io;/ﬁ +A(dyj-cyj)
Ej = ¢jvir 4 jk - Ercii
E3 =djvi 1 j t E1dy4 | (54)

By =2cgjleqj-di + by

ES =- )\dlj(cll - dll) + am
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Equation (53) is the difference equation in swept wing coordinates equivalent to equation (24) fbr
elliptic points. '

For hyperbolic points, we have v<( or u <- )\2. For the & derivz{tives we use backward
differencing. Thus
ve g g = 2¢11Y51 )2ikWijk - #i-15K) " (55)
- 2d;.1vi-3/2jk i 1jk ~ Pi-2jk)

and

-20@] gy - 2iwe)gfe=-2h¢i1Coi( Wi+ 1k - Pi-1j+1K) - 91i-1(Pi1j+1k

- 9105+ 110] - 2B L09i(wgjk - 0410 - d13-10i1jk - 121 56)

* 2Adjle9i( 1k - Wie1j- 1) 7 4151011k - @i-24-110).

where co; is defined by equation (26) with £ replacing x. Substituting equations (51), (52), (55),
and (56) into the differential equation (44) yields

akPijk-1 - (@nj + O +ag + by + Be + aji/2) ik

* bekijkri = Egvij+ik - Eovyj1k + (E7 - Egdojpjx “n
‘E10%i-1j+1k * E119515-1k + E7%i2jk
A 1510541k - M 1190251k

where
Eg = coiBq - ci1vie1 2k

E7=4dy; 1By -dipvi3i
Eg = )‘Cljc2i - bm-

Eg = }‘dleZi + i (58)
| Ejg=Acyjen; +dpi1)

B =Adjjcp; +dyjq)
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and El is defined in equation (54). This is the difference equation for hyperbolic pomts in swept
wing coordinates equlvalent to equation (27)

Root Chord Boundary Conditions for the Swept Wing
-To limit the field to one-half the span for n = 0, we requlre the symmetry condition

‘gp1y=0 - at ‘y=0

or in swept wing coordinates

Pln "'7\8015 =0

Since this is true along n = 0 for all £, then we also have

Plng t M1 =0

This relation conveniently enables us to eliminate the cross-denvatlve term ¢y nt: Thus, on the line
of symmetry, the terms in the differential equation (44) involving the § derivatives becomes

ey oy - Qiwledey] =10 + M2 )01 - Qiwle)gy Ty (59)

Let =0 lieonthe j=1 horizontal mesh line. Then for points j=0, 1, and 2, the difference form
of the boundary condition is

Q1 T A1 = ik - wio)/ (12 - nb)' MeilPie11k - ¥ilk) |
Hdyileik -1 =0
We ghoose for convenience ng = -n1- Then for elliptic poihts, we solve for ¥j0k and obtain
Piok = Pi2k ~Mm2 + npleyi 1k - P + 1k - 951 1x0)]
Similarly, for hyperbolic points ‘ '
Piok = Pi2k - N2 + 1DIeiin - 0ic1110- 4151 €91 1k - $i-21K)]
Also for j=1, we have

®1mn = 200k - i @22 - m ) - (i1 - vigid (1 + 1)) | 53



Ehmmatmg ¢10k for elhptlc points yields
O1an = Wizk - i/n (2 - ’71) Anpleriirt 1k - %i1K)

(60)
+di(@i1k - P 110]
Similarly, for hyﬁerbolic points
P1nm = 2k - i1/ (g - 11) - Wnplegiik - @i 1K)
. (61)
41510511k - 912110
Forj=1the & derivative for elliptic points is
[(v+ 222 - iw/edoy) = 2B 201 1k - 9i1K)
(62)

-2E13(#i1k - ¥i-11K)
where .
El 2 = Cl(vl+1/2]k + 2?\2) - 100011/6
E13= (Vg + 222 +iod /e
and for hyperbolic points
((v+ 27\2)¢1g - (2iw/e)p ] £= 2E14(¢11k “Gil11K)
- 2E15(pi 11k - #i-21K)
where
B1q = ci(iag1k + 209 - iweyyfe

Eps=di) (V32 1k + 0%~ icwd g fe

Substltutmg equatlons (62), (60), and (52) into the differential equation ylelds the following differ-
ence equation forj=1.

Q1k/2) @itk * PerPilk+1 = bp1¥iok

+(\epi/2n1 - E19)eier 1k - (A 1i/2n1 + E13)wiq 1k

54



where

bm‘: 1/2n1(ny - 1)
Similarly, for hyperbolic pdints, we have .
aekPilk-1 ~ (O +agi + b ¥ Ao/ 20 - Brgdeyik
*beditie1 = by ik + [Erq + Eps- M2n(ey;

+dy o1k - Brs- My /200«

These last two equations replace equations (53), (54), (57), and (58) for j = 1 points in the mesh,
which are the points on the plane of symmetry for the flow.

Wing and Wake Boundary Conditions for the Swept Wing

7 The boundary conditions on the wing and on the wake involve only the ¢ ¢¢ term, which is

unaffected by the coordinate transformation. The difference equations for k =k, and k, + 1 are
fognd by modifying some of the terms in equations (53) and (57). For k =k, bgkm is deleted
from the coefficient of Pijk m the Vijk  +1 term is omitted, and -

' L
- hlbgkmFij( )

is added to the right-hand side. Similarly, for k =k, + 1, the Pijkm term is deleted along with
ag'kmﬂ from the coefficient of ‘pijkm+1 and

U
h1a§km+1Fij( )

is added to the right-hand side.

The wake boundary conditions for rectangular wings also may be carried over into the swept
wing coordinate system with little change, since

P1x ~ Plg

The second equation following equation (35), and equation (38), can be applied with only a chahge
in notation. For k = km, we add to the right-hand side of equations (53) and (57) the additional term
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and fork =k, + }, the additional term _ - (63)

“agk 1895

Far-Field Boundary Conditions—Three-Dimensional Flow

In order to solve the difference equations in the flow field, we must prescribe boundary condi-
tions on the exterior boundary of the mesh. This is usually found in terms of the velocity potential.
This boundary information is not known a priori but must be computed and periodically corrected
in the iteration process used to find the solution. For this purpose we follow an analysis similar to
that of Klunker (ref. 8) for the steady-state equation and write the differential equation in the form

L)) = Kpj oy - Qiw/edpry + Plyy ¥ P12t (w2/€)¢’1 (64)
= (v + D(pgxP1x)x T1w(r - De19vpxx -

To convert the solution to the swept wing coordinates, .we merely substitute x = ¢ +Anandy =19
into the solution of equation (64). For our purposes, it is convenient to introduce new variables in
termsof x and y. Letx| =x,y =y VK, and z| = zVK. Then

2icwM?2 : w2M?
L = L + + T
(p1) ‘Pl_xlxl L _M2:|‘Plx1 ‘Plylyl ‘Plzlzl |:l _M2]‘Pl

_v+1 iw(y-1)
=K YoxPixx TR A1%xgxg

We derive an integral equation for ¢ in terms of boundary values by applying Green’s theoremin

the form
‘ N At 2iwM? ,
[ [YL(py) - 91 L(¥)] dv [ (‘plwn - Yot [.1 2 :]cplwnx>ds (65)

where the volume v is bounded by the surfaces S = Sp + Sd + S‘W + S, (see fig. 18). Here Sp is the
sphere about the specific point p. The surface S is the surface of discontinuity representing shocks.
The quantities S, and S, represent the wing and trailing vortex sheet, respectively, as shown in
figure 18. The quantity n is the normal directed into the fluid from the surfaces.

- x', where x., is the vector refer-

The fundamental solution ¢ isa function of the vector x p

p
ence point and x’ is the point vector of integration. .
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Figure 18 —Sections of the boundary surface S

To find the fundamental solution {, we let

inle/(l - MZ)
=e Yo

Withr = Vx; 2 +y 2 + 2,2, the differential equation, L() = 0, becomes

Yo'+ 2¢gr+ 7\12ll/() =0

ANt
where A{ = wM/(1 - M2). The solution of this equation yielding outgoing waves is e 1 /rand
leads to \

_ el)\l(Mx-l . r)/r (66)

for the fundamental solution. We let the radius of the sphiere about the reference point Xp- = (X1, '
Y{,Zy) shrink to 0. Since Y, = Y, then the contribution of the surface integral on the right-hand
side of equation (65) about Sp yields '

- 4mp(X{, Y1, 21) (67)



Since L(y) = 0, the volume integral in Green’s theorem becomes
ﬁ [YL(ep) -9 L¥)1 dV
1 _ ’
= K‘[[(’Y + l)d/(‘plxlupoxll)xlr + l(.!)(’y - l)dj(poxlpxlsol ] dv

where the primes on the variables denote the running variables of integration. Integrating the first
term by parts with respect to xl' and noting that a jump occurs on the shock surface S yields

(7+1 ’ ’y+1 ,
f "l’(‘pOxl Pixy g VTR lP[sD()Xl'tplxl'] cosBlds

oyt
R/ "bxl‘pOXI ‘plxl

where cos 0 is the inclination of the normal to the shock surface with respect to the x; axis. The
square brackets denote the jump in the quantity across the surface. For the integral over the shock

surface, we obtain

- iwM? 2iwM?
- 2iwoM (. ) d
/;d<‘plwn w‘pl_n+ [-1—1_“’1\-4—2 jlqolll/nx>ds de ll/{ lp14] ) [¢1]nx} S
= ‘l/ [ ’] -M [ ] COSG
.[Sd“%‘ 1-M? e11) cost)

*lpry, ] 00y + Ty cos 03} ds”

(68)

where cos 02 and cos 03 are the y and zZ] direction cosines of the normal to the shock surface,

respectively.

For the thin planar wing, ¢1 n =) 21 r; then the surface integral over the wing reduces to

Xt(YI')
[ (@1 ¥y wln)ds’ ~f f (Aw1¢zl'.-M«Plzl':)dede (69)
W Vi Yx(y])

where xp and X¢ designate the X] coordmates for leading and trailing edges, respectively; y¢ is the
value of y, for the tip of the wing, and A denotes the difference between upper and lower values
of the quantity on the wing, which is approximated by its projection in the plane z1=0.

Similarly, the integral over the trailing vortex sheet, since ¥y 18 continuous, yields

/' W1¥p - Yo )ds 2‘[ B, g (70)
Sy n n Ly, t(Y1 N Zl Xl dyq’
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Now, continuity of pressure across the vortex sheet requires that

(A¢1)xl" tiwlAp) =0 - ' _ (71)

Solving the diffe_rential equation yields
v v -xi(y] )
Api(xi,y ()= Apyly e 1T (72)

where Ay is the jump in g at the trailing edge of the wing. Substituting equation (72) into equation
(70) yields for the wake integral

Yt 1w x¢(y1 ) , AT diex 1' '
e Ap(yy)dy, , © vz, dxg ‘ (73)
Yt x¢(yq)

~

We have now found the integrals over the volume and over all surfaces of figure 18. Substituting
equations (67) through (73) into equation (65) and combining integrals over the discontinuous sur-
~ face 84 vields ‘

M2
vy+1 _ 2iwM [ )
' - ' 1] -=——, [p;lng ) cos@
+ [¢1yl’] cosf, + [<plzl'] cos 03 lds’
This can be shown to vanish identically for shocks by using the divergence theorm. The partial differ-
ential equation can be written '

Fiy. + : =
1x4 F2y1+F3zl+Q‘A"l 0 . (75)

where

M2
N Y+1 . _2iwM
F1=%1x, - X 0xf1x; 1-M2%!

Fa=o1y, F3=014,

c 202

_lw M~ .
.Q-—QI_M -1w(7-1)cp0xlxl.
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Consider the integral over a small reétangle about the shock as shown in figure 19. Applying the
integral of the differential equation (75) over this small volume and letting the thickness At—0
yields from the divergence theorem

lim' / (v - F+Q)dv' ~As[F - n] =0. . (76) _
At=>07Y ) .

The quantity [F « n] is seen to be identical to the quantity enclosed by { } in equation (74), since
n = (cos 61, cos 0, cos 03). This demonstrates that the integral in equatlon (74) is identically 0. Thus,
_the Green’s theorem of equation (65) becomes

{ x¢(y1) )
1 —z,/ f [Ap ¥y ~VAP 1, 1dxydy)
"yt “xe(v1) _

i Yt i Xt(yl’) ) , b —i(.a)Xll f .,
=] e Ap(y1)dy N ¥z, X (77

1 . , 2
+4';T—K v{(’y+ l)m.XI’SOIXl’\UXII-Iw(’Y- 1)‘p1 wmxl’xl }dV

Figure 19.—Shocx surface and volume used for divergence theorem.integral
60



The wake integral can be integrated with respect to xl' for the combination P1x tiwy, which
may be called the pressure potential. We consider

> -]
. '
-iwx .
IwJ e 1 [w21,X1 +1w¢21']dx1'

Xt

~

since 3/0x; =-0/0x{', we have

0o : :
0 -lwx . -lwx ' , :
Iy =f —axl' (e 1 lPZl')dxl' =-g t\ﬁzl(xt- X1,Y1-Y1s21) (78)
X
t

Since the wake integral is very slowly convergent, it is more convenient to express the upstream and
downstream boundary conditions in terms of ¢, + iwy  rather than ;. The pressure function from
equation (77) then becomes

Vi £ X(v1)
9y i) = o= t t [A¢ X, ' - XApq, 1]1dx; dy,’
1x 1 4,,y ) Y 1Xz " " XEP ]z, 149Y1
Yt TXelyg

Yt . ’
iwx(y1) ) ; !
o L Aoy WD) XYy aDdyy (g

! . N v
*4?1(/;’(7 + 1000k P1x Xy 1O DRp ey ‘ dv

where

X= Wy tiwy

Formulation of the Problem of the Harmonically Oscillating Airfoil

To test the method developed in the preceding sections, we formulate the relations for the har-
monically oscillating airfoil, since they are simpler and will require less computing time. The equations
for the oscillating wing represent the wing as lying in the plane z = 0 with the direction of the undis-
turbed flow in the positive x direction. Relations were derived for the method of relaxation of the
difference equation by solving for the values of the potential along lines normal to the z = 0 plane
corresponding to fixed values i and j pointsin the mesh. To follow the conventional notation for
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airfoil problems, we now consider the airfoil cross section as lying in the x,y plane. Since there is no
variation with z then the small perturbation differential equation (17) for the airfoil becomes

[upyx - (2iw/eloy )y + @1y +ae] =0 (80)

where
u=K-(y+ l)tpox

' 81
q = w?/e - iw(y- Dygxx- . D

By representing the airfoil in the x,y plane wé effectively interchanged y and z in the derivation of
the fundamental equations. The unsteady boundary conditions on the airfoil corresponding to equa-
tion (28) then become

’

Oly = f1'(x) +iwf(x) (82)

ony =0, where yg =96 fp(x)+ 4 f l(x)ei‘*’t describes the oscillating airfoil shape. The boundary con-
ditions of equation (34) become«ply continuous across y = 0 behind the airfoil, and equations (71)
and (72) for continuity of pressure lead to

-ieo(x;: -x ) '
Ap;=Ap;e 17 X{ > X, (83)

where Ay is the jump in the potential at the first mesh point downstream of the trailing edge. Since
we have dropped variation with respect to z the difference form of the differential equation (80)
is found from equation (24) with a . = b,k = 0. For interior points in the flow field we then have

(84)
a¢ij-1 - (@ + 05+ Ey +Ep - a3/ 20055 + byge1 = - Ewiarj - Bovigje

where

El = Clu1+1/2j - iwcli/e, E2 = dlul_l/zJ + 1wdll/e)

and we have dropped the subscript y on the coefficients a and b.

The boundary conditions on the airfoil are satisfied at y = 0, the midpoint between y = Yj and
Vil From equations (32) and (33) the difference equations corresponding to equation (84) IPOI.'
j= jm and jm + 1 become . _

Pl 1” @ T EL Y By ay /ey =-Bioiy -Faayy -hyby FiD,
(85)
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and

' Uj,+1 v
- (bjm+1 + E3 + E4 - T )gpijrrn_'_l bjm+lkpijm+2
(86)
= . U
= -E3£Pi+ljm+1 - E4tpl_1.]m+1 + hlajm+lFl( ),
where
) ' (87)
E3 = Ciuje/gj +1 - iwepjfe, and By =djui g5 41 +icdyfe
Here

Downstream of the wake the boundary condition of continuity of pressure and normal velocity
component require that, for j = im> €quation (84) holds with the additional term on the right-hand side

b]mA(pl
and for j = j, + 1, the right-hand side of equation (86) has the additional term
-ajm+1 A‘pl

Some of the coefficients of the difference equations for the harmonic motion of an airfoil in
transonic flow require the steady-state solution. For this we use a program called TSONIC or TEA-
330, which was developed by J. A. Krupp (ref. 4) and computes the solution of equation (14) for
the transonic flow over lifting airfoils. The output of this program is an array of values of the pertur-
bation potential ¢ corresponding to the mesh points of the rectangular grid about the airfoil.
Since the coefficients in the differential equation depend only on Pox and @y it is convenient at
the outset to establish values of u =K- (y + 1)pgy at each mesh point, since ¢, occurs only in this
quantity in the equation. For convenience of coding on the computer we write

Yi-1/2j = i = K- (v + D@y - 00517/ (% - X41)
and (88)
u+1/2§ 7 vig 5 = K- O + Degjt1 - @03/ (Xit1 - X3)-
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Only the quantity q contains the term ¢g,
a= w?/e -iw(y- Deoxx-
From equation (88) we have
oij - 201) = (% - Xi. K - u)/(y + 1) (89)
Using this relaﬁon in the difference form for POxx &ields

Poxx = Ci¥0i+1j - 0ii) - di(¥oij - Y0i-1j)

: (90)
= (X1 - %K - ui415) - (%4 - X3.1)d5(K - ug) 1 /(y +1).
where c; and d; are defined following equation (19). Simplifying equation (90) legds to
Poxx = (55 - w1 /0y + D(Xjgp - X1
Finally, for qjj we write | |
’ q;j = wlz/e‘ +icgi(ugi ) (91)
where
c3i = Wy - Dy + D(Xjy4q - X41)- (92)

For the volume integrals in the far-field integral relation, we require pg, at the points i,j. For this we
write

©0x = ©1i(P0i+1j - P0ij) + 91i(%0ij - P0i-15)

which, with the aid of equation (89), simplifies to -

| 93
(v + Dwgy = K - cqjujt1j - dajvjj ©3)

where
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c4 = (% - Xi. /(i p = X3.1)
94)
dgj = (i - X/ (X - X4op)-

Equations (91) through (94) provide all the relations for the steady-state solution needed in the dif-
ference formulation of the harmonically oscillating airfoil. We have replaced the Poij array by the
uy; array defined by equation (88).

Evaluation of the Jump in ¢ on the Airfoil
Since the values of ¢ are computed only at mesh points, we must interpolate these values to
the limit y = 0 in order to compute the values of Ay; required in the wake boundary conditions.

The limiting value of (pl(U) from above the airfoil and ¢ (L) from below are found by Taylor’s
expansion about the points y = Yj andy = Vi 41 We obtain
m m

L) 2/ .
S(,l(» )= ot (h/2)¢1y|jm +(h /8)¢1yyljm t+ (95)

(U) - ... _ - + 2 +...
K2 % +1 (h/2)cp1y|jm+1 (h /8)‘F’13,ylj-m_|_1 , (96)

where h = Vip+1 ~ Vi We use a second-order difference form for Ply- Following the formula
developed for ¢y,, we write for Ply

= . -0 . -0, (U)
Ply it c3("*01]m+2 ‘pl]m‘ijl) + d3(‘101]m+1 ®1-7) ©97)
o1y, =cqlor D g Y Hdgley e . | (98) |
vl i ligm i -
By comparison with ¢y i and d i following equation (20), we obtain
c3 = 1/1’151(281 +1) d3 = 4Sl/h(281 +1)
. _ (99)
C4= 482/}'1(282 +1) ' d4 = 1/h82(252 +1)
where
Sp =0 42y M and sy =0y Yy,
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The second derivatives at y = yjm andy = Vi +1 become
. m

Pij. "Pij -1
Whn ¥ 417 1 1 Y Y
m m m
=2F(M/hsy + 1) - 2oy -9ii.1)/h2sy(s5 + 1)
m
= 8)) (101)
Plyyl . = @ +2-9 +D-2F D hesy +1)
Wi +#1 n2g¢s; +1) Iy U '
Substituting equations (97) through (101) into equat1ons (95) and (96) and solvmg for ¢1(U) and
(L) leads to the following relatlons after some simplification:
o, L) = oy, * (o - D/4sa(sp+ D+ h2sy+ DEM4esy + 1) (102)
- m
and
01D =gy 41-(o5 +2-wy5 +4s1Gs1+ 1) -h(2sp + DFDaGs) + 1) (103)
m m m. -
Finally, the jump in ¢; is given by
=, (U L)- "
ap =0 (-4 )= vj +17 9 " %1 W 2795 +1) .
m m m
(104)
el ey )~ W FD + dgpFL)
m  “m
where
15 1/451(81 +1) € = 1/482(82 +1)
(105
dSl = h(2Sl + 1)/4(81 +1) ' dS2 = h(282 + 1)/4(52 +1)

These formulas hold only for values of i corresponding to x values on the airfoil and are accu-
rate to the second order in mesh size. The jump in ¢, is required for updating the far-field boundary
conditions as well as satisfying the Kutta condition on the airfoil trailing edge.
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Far-Field Boundary Conditions—Airfoil

A procedure similar to that used for three-dimensional wings is employed to obtain an integral
relation for the far-field boundary condition for the two-dimensional airfoil. We write for L(yp 1)in
place of equation (64)

2wM? w?M?2

L(W1)=¢1X1X1 B 1 -M2 ¢1X1 +‘p1y1yl + 1 _M2 1

+ 1 icw(y-1) (106)
=Y Y-
=K (‘pOXI‘Plxl)x] R ¢ ¥1¥0x X

’

For the fundamental solution Y of the differential equation L(y) = 0, the function Y (1) takes
the form

Vo' + o'+ 29 =0

where r = Vxl 24 V] 2 and A\j = wM/(1 - M2). The solution to this equation yielding outgoing
waves with the source at the origin is Ho(z)()\lr). The fundamental solution then is

i\ M
y=c T TH @0 (107)
where H0(2)(z) is the Hankel function of the second type. For small r

log (A r/2).
Since Y, = ¥, the integration of the surface integral of equation (65) over the circle about the
reference point x,y becomes, on letting the radius of the circle go to zero,

- 4ip (X, ¥ (108)

The evaluation of the remaining integrals for the two-dimensional flow follows with little change
from the three-dimensional analysis. Noting that the factor multiplying @ is -4iinsteady of -4,
we obtain easily the following equations for the airfoil equivalent to equations (77):

1 : o0
. ' -i r-1
«p1=(1/41£ (Acp.lwyl'-wAmyl')dxl +(A¢t/4i)/ elw(xl )tl/ylrdxl'
- 1

+(1/41K/[(7 + l)djxl"p()xl' ‘plxll -iw(y - 1)¢0x11x1:¢1¢]dx1’dy1’ (109)

v
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The quantities in the first two integrals are evaluated at yl = 0. Since 9/ axl =-9/ axl, 9/ ayl =
-9/ ayl equation (109) takes the more convenient form

© w(x)'- 1)
>

1 .

1

_ (110)

+(i/4K] for + ¥, 90x;"P1x," T10(Y- Doy 'x 91 yldx;'dyy’
v

As shown for the planar wing, the integration of the second integral can be performed for the com-
bination ¢1xl +iwpy. Thus

1
P1x, Tiwe =(i/4?[; Ao Xy, *XAp1y Ndx)" + (Ap/4)Yy,
| (111)
+(i/4K3[ [ + D 90x"#1x)" * 1607 - Dgy 1 o1 x1dxp'dyy

!
i .

The quantlty X = l[/x + iwy is a function of the arguments Xl xl and y in the first integral and
of xj - Xl andyq - yl in the volume integral. In terms of x and y, we obtain

1
Q14 +iwp = (i/4 \TK3/' (Ap Xy + xAp1yNdx’ +(4pi/4 JK)Yy,
. : -1 '

+@aJR Ty + Dxywox 1y +io(r- Doy xe1x1dx'dy’ - (112)
A"
where iMA (7 o
V] =el IXHO(Z)()\I x2+Ky2)

-
<
I

2Ky e H, @ (A le2 + Ky2)/ ¥x2 + Ky?2
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1)\1MX

iwp/(1-M2)-Apxe D H Ao Jx2 +Ky2) 1 x2 + Ky?

=
1

\ inM :
Xy = iwby/(1-M)+ N Kaye 1 (20, D B2+ Ky?) I x2+ Ky?

. : 113
-?\IHO(Z)O\]~/X12+KY2)]/(X2+KY2)- (1

Equation (112) holds everywhere in the flow field. Since we are only interested in the far-field
boundary values, we approximate x - x' in x and Xy of the integral over the wing by x. The terms X
" and Xy can be taken outside the integral, and the first term in equation (112) then takes the form

1 £ 1
(i/4y/K0lxy / Apydx’ +x /1 Apyydx'].
1 d

The second integral of the preceding expression can be evaluated once and for all at the begin-
ning of calculations since it depends upon the airfoil boundary conditions. For the oscillating flap,
the unsteady boundary conditions are the same above and below the airfoil, and hence the second
integral vanishes. Equation (112) then takes the form ‘

1

1 :
P1x Tiwp) = (i/4\/E) {Xy[ Agpldx' + Atptllly
' ) (114)

-t / [(y + Dxyeoy w1y +ico(y- l)wox’x'&PlxldX'dY"
v .

Because the wake integral in equation ( 110) is slowly convergent, it is best to formulate the
mesh boundary conditions in terms of the function ¢1x Tiwp). Leti=1 be the column of x for
the upstream boundary. Since derivative boundary conditions are best formulated between mesh
points we have at x = (x| + x2)/2 and all ¥j along the upstream boundary the following difference
formula for the pressure function:

: - . Xp*txp o
P1x Fiwey = (pg)- w1/(xg - X]) +iw(py; +91))/2 = P(_—Z—’ Yj)= Py; (115)

where P(x,y) represents the right-hand side of equation (114).
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Solving for o1 yields

91 = k1925 " °k2P1j (116)
where
orp = (1 +iwd /2)/(1 - iwd | /2)
‘ . (117)
ck2=81/(1-iwd/2)
and . '
51 = X2 - Xl .
Substituting o1 into equation (84) for i = 2 yields
ajkpzj_l - (aJ + b] + El + E2 - Ezckl - qu/Z)csz + bj¢2j+1
(118)
=-E1p35 + EgcpoPy;
Similarly for 1=ip,,., the downstream mesh boundary, we have
. R . . . + 0. . . .
‘plmaxj ‘plmax'IJ tic @lmaxj "olmax'lJ _ P< Xlmax ¥ i ax] > - p 19
. - . - s y. = . . (1
*imax ~ Ximax 2 2 | J Imaxd
Solving for ; i yields
max
. .=C . -+ cAP: . 0
Piinaxd k3% 157 ka4t 0 (120)

max~

where .
Ck3 = (1- iw62/2)/(1 + iw52/2)

ck4 = 62/(1+iw52/2)
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Equation (84) fori=1iy,,, - 1 with wimaxj replaced by equation (120) leads to

840 11" @D FE +Ey- E1<>1<3 A o152 1
(121)

"E21

Oy 1541 T BrokaPy

Imax -2y

max

Equations (118) and (121) follow the same pattern as equation (84) for interior columns if we
define in equation (84) for the right-hand sides

vl =-ckobyy

¢, 4P; ;
wmaxj k4 i axd

and add the terms E5Cy | and E3Cy 3, respectively, to the coefficients of the diagonal terms.
The boundary conditions on the upper and lower mesh boundaries must be given in terms of

01- If the value of @] atone point is given on the lower bounda'ry,.then the values of ¢y at other
points on the lower boundary may be found by integrating

P1x tiwp; =P(x,y)

where P(x,y) is defined by the right-hand side of equation (114). Between X;.1 and x;, integration
yields

X-
ix: iwX- 1, ' , ,
vi1e '-oiq1 e i-1 J !X P(x’, y)dx'.
X1

When the integral is evaluated by the trapezoidal rule at the x; mesh points, then a simple recursion
formula results from ¢;; intermsof ¢; 11 and P(x,y). Thus '

-Aw(x; - X;.1) -iw(X; - Xj.1)

Pi1 T¥i-11° +[P(xj y) + P(xj gy e 1 (xj-x4.1)/2. (122)

For backward integration, we can solve for ¥j.11 once ¢;p is known by

10(X; - X:_ 1) iw(x- - Xi_
sr=are - Pogype ’1)+P(xi_1,yl)](xi-xi_l)/l (123)

Similar equations may be written for the upper boundary aty = Yj .
max
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Since the value of ¢ must be given at one point on each of the upper and lower boundaries,
it is wise to choose the points at which the wake integration can most easily be performed. The
wake integral is

(iApi/4 JK)@ /BYJ e-iw(x - D +iMA (x-x) HO(Z)O\]\/EX -x)2 + Ky)dx'.
1

We note that for x = 1, the integral can be simplified to

(a/ay)f giwz/(1-M?) gDy 22 + KyDdz
%

This integral converges like 1/ 23, but it can be expressed as an integral with exponential convergence
by using contour integration. Consider the contour in the complex plane of figure 20 for R going
to infinity. Since no poles lie inside the contour of C=Cg + C; + C5, then

f erlz/(1 - M?) HoD\ V22 + Ky dz = 0.
A 4

z plane

Figure 20.—Contours of integration in the complex z plane
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Since the integral over CR vanishes as R goes to infinity, then we have

o . (& —
‘[0 e~10]é/(1 - M2) H0(2)(>\1 22 + Ky2)dz = -i_[o e-(.dt/(l - M2) HO(2)0\1 Ky2 . t2)dt

+ (2/71%](_ ew H(1-M2) Ko\ Vt2 - Ky2)dt.
y

Differentiation with respect to y yields

(a/ayJ eriwz/(1 “M2) H0(2)O\1 22 + Ky2)dz
0 A

VKy-e - |
= lim {- (a/ayl P t/(1-M2) g D0, Viy2 - Dyt
€ 0

+(2/m)@ /a% et/ -M?) KoV 12- Kyt }
y+e -

/2
=2 VK y‘lf e K v 03 0/6% (DK y sin 0)d0
0

+ (2/7rJ W JKy cosh6 /82 KA JK vy sinh 6)dé
0 v |

where

g2=1-M2,

It is convenient to combine the real and imaginary parts in the form

(b/&y}/ .e’i““’z/ﬁ2 H0(2)O\1 Jz2 + Ky2)dz
0

/2 | :
=2 VK ylif e K v cos 0/62 § (x| K  sin 6)d0
o
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w2
+[ e VK y cos /6> Y{(JK yAq sin 6) + 2me @K v cosh 0/8 g ( JK y sinh 6)]d6

oo _ 2 . .
+// g K y cosh 0/f KWK y sinh 6)d6
/2 ' '

All the integrals are defined on the range of integration, except the second integral at § = 0. The
quantity in square brackets, however, goes to zero like § log 8 as 0 goesto zero. Assigning the
value of O for the integrand at 8 = 0, then defines the integrands for all 6 in the range of integration.

Analysis of Truncation Terms in the Difference Equations

Whenever a differential equation is replaced by a difference equation and some iteration scheme
is employed, a question arises concerning the stability of the calculations and correctness of the final
solution. When the quantities in the difference equations are expanded in Taylor’s series about the
central point and all terms proportional to powers of the mesh spacing are neglected, the original
differential equation is obtained. A higher order differential equation results, however, when the
lowest order terms in the mesh spacing are retained, and the nature of this equation will yield some
information on the stability of the numerical method. To investigate the method set forth in this
document, we consider the differential equation for the harmonically oscillating airfoil and will
confine our study to an equally spaced x grid and an equally spaced y grid, but Ax not neces-
sarily equal to Ay. For the elliptic points, we obtain for the point i,j

Uig1 (P15 - 0550/ 28%2 - ujy, (95 - 9i.17)/2A%>
-(iw/f)[soiﬂj-«Pi_1'j]/2Ax . ) - (124)
+ 9551 - 2035 * @1 11282 + (5 2)5 = 0.

We now expand in Taylor series about the point i,j, letting U =u and Pij = 1 Substituting

¢i+1j =yt Ax<p1x + (A Xz/z)‘pl'xx;‘" .o e
Pi-lj = Y1 - Axpp FAXZDp gt
Uitiei = u+ (Ax/2)uy + (Ax2/8)ug, + -+ *
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Ujggi = U- (Ax/[2)uy +(A x2/8)uxx +
Gij-1 = 91 -Avey t (Ayz/z)kplyy +

into equation (124) and retaining lower order terms in Ax and Ay yields

(3/0x)(up)x) - 2iwp /e + 014y +apy |
+ (sz/lz)[uwlxxxx - U@ xxx - 4w xxx/€ T 3uxx""rlxx/2 + Uy 1x/2]

To determine whether the differential equation is elliptic or hyperbohc depends only upon the
highest order differential operator; this is seen to be

2 2
AxUP yyxx T BY P yyyy.

Since u is greater than O, the differential equation is elliptic and hence there are no characterlstlc
directions to place restrictions on Ax and Ay for stability.

For hyperbolic points the difference equations become
U1 /2105 - 0117/ 24%2 - U;3/2iir 1 - 930 28%2
-(@ w/e)[3(¢ij - ¢i_1j)/2Ax - (9515 - vi_zj),’2AX]

+ lyjj.q - 204 * ¥ij+1] /24y2 + q;5j/2 = 0.

Expanding about the point i,j yields the differential equation

(u‘plx)x - 21w‘p1x/6 + ‘plyy + q‘pl

- Ax {u‘plxxx + lower order derivatives in x} =0
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The lower order terms omitted have coefficients which are negligible in comparison with the corre-
sponding coefficients of the same derivative terms in the differential equation. Sichel (ref. 17)
studied the viscous transonic equation

Ux¥xx - ‘pyy = V¥yxx

and investigated the nature of shock waves. Since u is less than 0, the dominant terms of the dif-
ferential equation become

(Wi =P lyy = (-u)Axp 1xxx T lower order derivatives

Thus, the term (-u)Ax¢] .y introduces a numerical viscosity which Murman (ref. 2) found caused
shock waves to develop smoothly in the iteration. From the foregoing analysis, the chosen method
of differencing appears to be a stable formulation.

Solution of the Complete Set of Difference Equations

It was pointed out earlier in the text that the complete set of difference equations are linear in
the Pij and that consideration of solving this complete set instead of column relaxation might be
feasible. The resulting matrix is exceedingly large since there is an equation corresponding to every
interior point of the rectangular mesh. For the computed cases, this is 73 x 56 = 4088 variables and
equations. Howeéver, special methods for solving this set may be sought which take advantage of
the particular sparsity of the matrix. To study the form of the equations we see that, for the

interior points of the mesh, the difference equations for elliptic points may be written

aj‘p.ij-l t cijeij t B4+ T Dijwitnj t Ejjei1= Rjj (125)

and for hyperbolic points
20351 * Cijwij + bwij+1 + Bija-1j + Figwioj = Ryj ' (126)
The indices i,j here run from 1 toi . and j .. for interior points of the mesh.
For 0 values of the subscript, the terms vanish on the_left side and become incorporated into
the R-- since they are mesh far-field boundary conditions. Since there are i, columns and jo. o

TOWSs 1n the interior of the mesh, then thereare N=i . Xj variables with N equations to be
solved for them.
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We order .the variables as follows: Let
Xn =5

where n =i+ (- Digay With 1 <i<ipay, 1 <J<jpax

Then equation (125) takes the form

ajxn'imax + Einn-l + Cinn + Dinn+1 + ijn+imax = I‘{ij (127)
‘for the nth equation at elliptic points, and equation (126) takes the form
4R tvipax T 02 T EiXn g ¥ CXp Xy =Ry (128)

for the nth equation at hyperbolic. poiﬁts. Since only the interior points about the airfoil are apt to
be hyperbolic, we will study the form of the equations assuming all elliptic points. Equation (127)
will contain all five terms on the left side when

imax <D< N-ipay

For the other equations, we will have one negative subscript for X which represents the mesh far-field
boundary conditions and will be incorporated into the right-hand side term, Rij' All main diagonal
terms are nonzero, and we see that the coefficients of the terms adjacent to the diagonal terms are
also nonzero. Also, the termi .. poinfs to the left of the diagonal and the term iy, points to the
right have nonzero coefficients when

jmax <n< N-ip.y
Thus, the matrix has only five diagonals.

As seen from equation (128), the addition of a supersonic point in the flow field places a zero in
the diagonal to the right of the main diagonal and adds a nonzero value in the second diagonal to the -

left of the main diagonal. Thus, a local supersonic region introduces a sixth nonzero diagonal to the
matrix.
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