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A METHOD OF AUTOMATICALLY STABILIZING

HELICOPTER SLING LOADS

By Joseph Gera and Steve W. Farmer, Jr.

Langley Research Center

SUMMARY

This report examines the lateral dynamic stability of a typical external helicopter

load. A simple linear model representing the yawing and the pendulous oscillations of the

sling-load system was used in the analysis. The effects of geometric and aerodynamic

parameters, and of the helicopter airspeed, on the stability of the two modes of motion

were studied. The feasibility of stabilizing external loads by means of controllable fins

attached to the cargo was also examined. Linear optimal control theory was applied to

the design of the control law for the stabilized sling. It was found that the use of constant

feedback gains over the entire airspeed range considered was sufficient to stabilize a load

such as an empty shipping container. A flexible computer program including real-time

simulation of the motion with graphic display was developed during the course of this

study.

INTRODUCTION

Experience with present day helicopters indicates that carrying loads externally is

a more flexible mode of operation than internal loading and transportation of cargo. The

development of the next-generation large flying-crane-type helicopters requires a critical

evaluation of current external-load handling systems and techniques. One of the problems

encountered in the external transportation of cargo is that cruise speeds with low-density

high-drag suspended loads are restricted because of aerodynamic instability of these loads,

particularly at the higher airspeeds. According to references 1 to 4, the problem of

aerodynamic instability becomes apparent when at moderate forward speeds the various

types of loads develop, first, yawing oscillations and, at still higher speeds, complete

rotations. This motion is then coupled with lateral pendulous oscillations resulting in a

difficult piloting task or a danger of load-helicopter contact. Except for near hovering

flight, the longitudinal motions of the cargo do not cause handling difficulties; conse-

quently, these motions will not be considered here.

Several experimental studies have been conducted to investigate the effect of multi-

point suspension systems on sling-load instability. These suspension systems provide a
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small amount of restoring moment in yaw, but may be insufficient to stabilize all types of
suspended loads beyond some relatively low value of forward speed. A suggestion was
made by William H. Phillips of the NASA Langley Research Center that a stabilized sling
be used to overcome the aerodynamic instability of most slung loads. The sling would be
equipped with a longitudinal spreader bar and actively operated aerodynamic controls or
fins. The sling would be a permanent part of the helicopter's cargo handling system. An
unloading operation, utilizing such a sling, is shown conceptually in figure 1. By properly
sizing the controls or fins, it is expected that all types of loads could be stabilized with
relatively small fin deflections over a wide range of airspeeds. One of the objectives of

this investigation is to examine the lateral-directional stability of a typical sling load as

a function of geometric characteristics and the aerodynamic derivatives of the load. Heli-

copter sling loads can be of all sizes and shapes so that generalizations are difficult to
make. Field experience indicates, however, that aerodynamic instability occurs most

frequently while carrying large low-density loads such as an empty shipping container.
Accordingly, the lateral-directional stability of the linear model of the standard shipping
container has been examined in some detail over a wide range of aerodynamic coefficients

and operating conditions. Linear-optimal control theory was applied to the mathematical

model to obtain feedback gains and to establish validity of the stabilized sling concept.

SYMBOLS

ao  section lift-curve slope, 27 rad- I

af fin lift-curve slope, rad-1

A fin aspect ratio

B control effectiveness matrix

C D  drag coefficient, D/qS

Cn yawing-moment coefficient, N/qSw

aC n
Cn = , per rad

2Vo aCn
Cn r  W ar , per rad

Cy side-force coefficient, Y/qS
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aCy
C y , per rad

2V o 8Cy
CY- w r, per rad

D drag force, N

F coefficient matrix of open-loop system

g gravitational acceleration, 9.81 m/sec 2

I identity matrix

Iz  moment of inertia about vertical axis, kg-m 2

k radius of gyration, (Iz/m)1/2, m

1 length of shipping container, 6.1 m

L cable length, m

m mass, kg

N yawing moment, N-m

qSw per sec 2
N f = Iz Cn9 sec

N -z1 aN, per sec 2

4' Iz a IP

qSw 2

Nr= 2IzV Cnr, per sec

N,1 2- S af, per sec 2

N,2 wlS/(2 a, per sec2
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Nw S a , per sec 2
N6 ,1 - 1z \(iS \2Wa

_ qSw( \ ( 2 2
N,2 2 " - af, per sec 2

P solution of matrix Riccati equation

q dynamic pressure, 1 pVo2 , N/m 2

Q 4 by 4 state-vector weighting matrix

r yawing velocity, rad/sec

R 2 by 2 control-vector weighting matrix

S reference area, 5.95 m 2

S1  forward-fin area, 0.61 m2

S2  rear-fin area, 1.61 m2

t time, sec

u control vector, (61 62 )T

v lateral velocity of load center of gravity, m/sec

V total velocity, m/sec

Vo  towing speed, m/sec

x state vector, (y v 4 r)T

w reference length (width), 2.4 m

y lateral displacement of load center of gravity, m

Y side force, N
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Y q Y m/sec2

O, =- af, m/sec 2

YS,1 = -m\ af, m/sec 2

Y, 2 = qSw af, m/sec 2

a sensitivity parameter

Vo

651,2 control fin deflections, rad

S1', 2  lateral cable angles, rad

Xi  ith characteristics value of F

Ap characteristic value associated with pendulous mode

XY characteristic value associated with yaw mode

p atmospheric density, kg/m 3

ZP angle of yaw, rad

OpW y angular frequency of pendulum and yaw mode, respectively, rad/sec
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The symbols d or () denote time derivatives; the superscript T denotes
dt

matrix transpose.

ANALYSIS

Stability Investigation

The full nonlinear equations of motion of a helicopter and a sling load with a two-

point or bifilar suspension have been derived in reference 5. Mathematical treatment of

these equations is possible only after linearization. In reference 5 aerodynamic forces

and moments acting on the load were neglected in the process of linearization. For hov-

ering flight this is a valid assumption; for the case under consideration the effects of aero-

dynamic forces and moments are as important as those transmitted by the cables and were

added for this analysis. It will be assumed that the motion of the load has both a yawing

and a pendulous component in the lateral direction. The helicopter is assumed to be in a

level, nonaccelerating flight at all times. Longitudinal deflections of the cables due to

drag on the load and the cables themselves are neglected. These assumptions correspond

to the load being suspended from the top wall in a wind-tunnel test section with the tunnel

speed being constant. This condition is similar to the test conditions which are described

in reference 6 in connection with an experimental investigation of external sling-load insta-

bilities. Small oscillations will be assumed and the effect of the stabilizing fins will be

included separately. The notation used is shown in sketch a.

y

v Y

V
0

Direction of helicopter
motion

Sketch a
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The linearized lateral equations of motion of a suspended body are given in refer-

ence 7. After minor modifications these equations also describe the motion of a heli-

copter sling load as shown by

aY aY aY aY
my r  + - + y +

iz N a N 8aN

along with the kinematic relationship

= ( + 1)vo

In the following discussion, let 5 = v and 4 = r. Further, define the stability deriva-

tives as

1 aY
P m 0a

1 aN
N m ap

and the other derivatives similarly. The above equations then become

y 0 1 0 0 y

v Yy Y V-Y Y v
d - V (1)
dt

4' 0 0 0 1

r N N N Nrr
Vo3 - /3 P 4r

All derivatives are due to aerodynamic forces and moments except Yy and N4 ' .

These two derivatives can be evaluated with the aid of sketch b.
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ECargo cables

L

Direction of Et2

helicopter motion

mg

Sketch b

The gravitational portion of restoring force acting at the center of gravity as shown

is

-mgy
Y= L

so that

1 8Y . g
may = L

The restoring moment due to the bifilar suspension can be expressed as

N- 12mg
4L

from which

1 8N 1 2 g
=N =

z  N1 4k2 L

where k is the radius of gyration of the suspended load.
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The derivative Yk is due to the component of aerodynamic drag of the load acting

in the lateral or y-direction. The magnitude of this component for small oscillations is

-D(p + %). Since

D(9 +) Vo

it follows that

1 aY -D
m a Y = mV o

The definitions of the remaining derivatives follow those used in conventional-

airplane stability analysis and are given in the list of symbols.

The five nondimensional aerodynamic derivatives, CD, CyP, CYr, Cn, and

Cnr , associated with a boxlike shape such as the standard shipping container are not pre-

cisely known. Wind-tunnel measurements made on small models are subject to scale

errors, while theoretical predictions do not take into account large regions of separated

flow. Also, there are indications that in the case of strictly nonaerodynamic shapes the

validity of the linear air reaction assumption may be open to question. The numerical

values of the above derivatives were selectively chosen from several sources, none of

which claimed any degree of precision. Therefore, values of some of the derivatives

were adjusted slightly until time histories of the motion variables agreed at least quali-

tatively with flight test experience with container- type cargo. Such flight tests are

described in some detail in reference 3. After some experimentation, a set of aerody-

namic derivatives were selected for the remainder of the analysis. The set which repro-

duced qualitatively the motion of the slung cargo is given in table I.

The mathematical model exhibited two kinds of lateral oscillations: a pendulum-

like motion and a yawing motion which usually had a higher frequency. Also, the yawing

motion had a greater tendency to become unstable as the towing velocity increased.

Figure 2 shows the individual effect of changing the cable length, load mass radius

of gyration, and atmospheric density on the characteristic values associated with the

pendulum-like motion at various forward velocities. At low velocities the frequency of the

motion approaches that of the simple mathematical pendulum given by Vi?9 rad/sec.

At the highest velocities, typically at 61.3 and 77.3 m/sec, the pendulous motion became

a divergence and a subsidence. The real characteristic roots associated with these

motions are not shown on the graph. The effects of cable length, load mass, and atmos-

pheric density on the pendulous motion are what might be expected intuitively.
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From figure 2(c) it is interesting to note that increasing the radius of gyration had
a definite effect on the pendulous motion; at higher velocities, damping is reduced. Intui-
tively, one would expect no effect of the radius of gyration on the pendulous motion. The
decreased damping was caused by the close coupling between the pendulous and yawing
oscillations. Thus, in the case of the slung helicopter cargo it is not possible to con-
sider either mode separately.

The behavior of the characteristic roots associated with the yawing motion is shown
in figure 3. At low velocities the frequency of the yawing oscillations is close to the natu-
ral frequency of a simple bifilar pendulum. The frequency in terms of the parameters
used herein is given by

At higher velocities the restoring moment due to the bifilar suspension is overcome by
the yawing moment due to sideslip. Examination of the. effect of load mass in figure 3(b)

reveals that in the medium velocity range increasing the mass has a stabilizing influence
on the yawing motion. Increasing the radius of gyration results in increased damping at
the higher airspeeds according to figure 3(c). At low airspeeds, however, the increased
radius of gyration has the opposite effect. The atmospheric density has only a weak effect
on either the pendulous or yawing oscillation.

On the basis of the results presented in figures 2 and 3, it can be stated that the
cargo configuration which would have the greatest tendency to exhibit unstable oscillations
as the airspeed is increased is the low density cargo. Field experience, reported in ref-
erences 2 and 3, confirms this result. Consequently, the low-density cargo with medium
cable length and atmospheric density at sea level was selected for an examination of the
effect of small changes in the aerodynamic derivatives at low (25.7 m/sec) and medium
(51.5 m/sec) forward velocities. This was accomplished by applying the procedure
described in reference 8. The procedure consisted of computing the complex number

a*i trace of ([adj(F - XiI) )

a trace of (adj(F - XiI

where F is the coefficient matrix in equation (1), Xi is the ith distinct characteristic
value of F, and a is the parameter whose effect on the real and imaginary part of k i

is sought. The computation of - is straightforward, but tedious, for even low-order
dynamic systems. In table II the results of the computation are summarized; and the
relative importance of the five aerodynamic derivatives are shown. The numerical
entries in the table refer only to the single root located in the upper half plane in all
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cases, rather than to each of the conjugate pair associated with an oscillatory motion.

The derivative Cn, is seen to have the greatest influence on the character of the motion.

Furthermore, it is through this derivative that the two modes are closely coupled. It is

interesting to note from the table that the times to damp to half amplitude of the two

modes are influenced by Cn. and CYr to the same extent, but in the opposite sense

as far as the stability of the two modes are concerned. In general, experience with the

sensitivity coefficients indicates that they reflect the true effect of the parameter change

only in a small region about the characteristic value, Xi in question; gross changes in

a may even result in a location of Xi in the complex plane opposite to the direction

indicated by the sensitivity coefficient a.

Load Stabilization

In the preceding section it was shown that the assumed mathematical model can

become unstable at forward velocities exceeding about 50 m/sec. Even if allowances are

made for the additional drag due to the load, helicopters in use today are capable of

exceeding 50 m/sec in forward flight. Automatic stabilization of slung loads would there-

fore allow a better utilization of crane-type helicopters by speeding up such repetitive

operations as the unloading or loading of containerized shipping cargo when it must be

carried over some distance. Stabilization of sling loads can be accomplished through the

automatic flight control system of the helicopter, if it is so equipped, or by the use of

external stabilizing devices such as controllable fins. The latter method appears simpler

in principle and is effective in the flight regime where it is needed most, that is, in high-

speed forward flight. Such a load-stabilizing device would be a permanent part of the

load-carrying system of the helicopter using controllable fins positioned by electrome-

chanical servoactuators with the necessary power being transmitted through the load-

carrying cables. The fin position commands would be continuously computed, based on

the lateral position and velocity of the cargo relative to the helicopter. The objective of

the commands would be to keep the cargo at the constant position at zero lateral velocity

relative to the helicopter. Thus, the problem of stabilizing the load can be regarded as

the classical regulator problem.

Sketch c shows the configuration chosen for the controllable fins. It consists of a

spreader bar which would be attached rigidly to the cargo. Positive deflections of the

front and rear fins are also shown on the sketch.
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Relative wind

Center of gravity
1

Sketch c

Note that the fin deflections are defined in such a way that at zero sideslip angle

positive 61 and 62 result in positive yawing moment about the center of gravity. It

will be assumed that the forces on the front and rear fin contribute to the total side force

and yawing moment of the load, but that the mass of the spreader bar and fin assembly is

negligible relative to the mass of the load. The fin lift-curve slope af is approximated

by the expression

a
oaf ao

1+-
nA

where ao is the section lift-curve slope for infinite aspect ratio and A is the aspect

ratio of the fin. In the remaining discussion, an aspect ratio of unity and a fin section
lift-curve slope of 2r per radians will be assumed.

In the linear equations of motion the addition of the controllable fins is accounted for

in the following way:

y 0  1 0 0 y 0 0

d L P ' YOP,1 Y, 2 ) Y -Yp- Y,1 - Y,2 Yr v ,1  Y,21
dt ( +

S0 0 0 1 0 0

S+ N N,2) N - N + N, + N,2 N, r N5,1 N6 ,

or in vector-matrix form
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* = Fx + Bu

where the additional entries in the 4 by 4 matrix F and the elements of B are defined

in the list of symbols.

The addition of the controllable fins obviously alters the aerodynamic characteristics

of the shipping container even if the fins are assumed to be in a stationary position alined

with the longitudinal axis of the container. Because of the small size of the fins relative

to the overall dimension of the shipping container and the uncertainty of the aerodynamic

data, it was assumed in the present analysis that the fins do not contribute to the damping

derivatives Cyr and Cnr and their effect on the drag coefficient CD is negligible.

Figure 4 shows the effect of attaching a front and rear fin to the shipping container when

both fins are locked at zero deflection. The graph indicates slight changes in the charac-

teristic values but the overall characteristics of the motion are unaltered.

The objective of bringing the cargo from any initial displacement or velocity into the

plane of symmetry of the towing helicopter in the shortest time by as small control deflec-

tions as possible is equivalent to the minimization of the functional J defined as follows:

J m [uT(t) Ru(t) + xT(t) Qx(t dt

where R and Q are any symmetric, positive definite and nonnegative definite matrices,

respectively. Under these hypotheses an optimal feedback control law, u*(t), exists and

is given by

u*(t) = -R-lBTpx(t) (2)

where the matrix P satisfies the algebraic matrix Riccati equation

PF + FTp- PBR-1BTP +Q = 0 (3)

For a detailed treatment of linear systems optimization the reader is referred to one of

the numerous textbooks on the subject (e.g., ref. 9). Application of the theory to the pres-

ent problem provides for two significant advantages in addition to the immediate result of

the linear control law expressed by equation (2). These are as follows: first, a sufficient

condition that the closed-loop system will have no unstable characteristic values as long as

the matrix Q be chosen as a diagonal matrix with positive real elements, and, second, the

fin deflections 61 and 62 can be kept within reasonable bounds by means of increasing

or decreasing their relative weights in the performance index through appropriate choice

of R. Thus, the problem of designing the feedback control law which guarantees stability

13



is essentially reduced to solving the algebraic equation (2) for the matrix P. This was

accomplished by an iterative technique described in reference 10.

The optimal control law is relatively simple; it is a linear combination of the ele-

ments of the state vector x(t) at any instant. In order for it to be of any engineering

use, however, these elements must be measurable. It turns out that for small displace-

ments the state vector can be easily computed by measuring the cable angles E1 and E2,
as defined previously, and the rate at which these angles change. The formulas that are

involved are as follows:

y= El 2

L~ (E1 E2)

Then, by taking the time derivatives of the two expressions,

y L/2 0 L/2 0

v 0 L/2 0 L/2 1

L/Z1 0 -L/1 0 E 2

r 0 L/l 0 -L/l E 2

In addition to the cable angles e 1 and E2 and their time derivatives, the cable length

must be known or measurable; measurement of the cable length should present no unusual

problems. Thus, the complete construction of the state vector x = (y v 1P r)T appears

feasible. The remaining obstacle associated with the application of the optimal control

theory is that the elements of the matrix F change with forward velocity and a new set

of optimal gains must be computed for significant changes of the matrix F. Alternately,
one can hope for determining a single set of gains which will result in desirable proper-

ties of the closed-loop system over the entire speed range. In this investigation the latter

approach was successfully used. The success of this approach was brought about by exten-

sive use of a high-speed computer with on-line recording and display devices. Several
sets of gains were found which stabilized the load at any speed, and over the entire range

of aerodynamic coefficient and geometric parameters considered in the stability investi-
gation. Since the computing procedure is believed to be unique, it is described in some
detail in the appendix.
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Results With Controlled Fins

The computer program described in the appendix can be used as a design tool.

Feedback gains, which were not only optimal for a particular set of geometric and aero-

dynamic configurations but also stabilized the system for a wide range of conditions, were

found very quickly and efficiently. An example of these computations is described for the

light cargo with small radius of gyration and medium cable length at a towing speed of

51.5 m/sec. This configuration was markedly unstable in yaw at this speed and was one

of the least stable configurations examined. Minimization of the functional J, penalizing

nonzero values of both the control and state, namely,

0= uT(t) Ru(t) + xT(t) Qx(t) dt

for a choice of the matrices R and Q, where

S0 0 0

o0 0 0 1 0
50 0 0 0

resulted in the following feedback control law

^+0.0019 -0.0398 -2.566 -3.068-
u*(t) = x(t) (4)

+0.0074 -0.0196 -2.048 -2.838J

It should be noted that the feedback control law specifies different gains for the two con-
trol fins. The difference is particularly noticeable for the lateral displacement. This

result arises from the fact that it is more effective to translate the cargo by yawing and

using the resulting side force for lateral translation than by using the control fins as
direct-force devices.

Time histories of the closed-loop system variables are shown in figure 5. For
comparison, time histories are also presented using the same feedback gain matrix at the
airspeeds 15.4 m/sec and 77.3 m/sec. The figure shows that the fin deflections are mod-

erate with maximum rates well within the capabilities of current servoactuators. The

overall stability characteristics are shown on figure 6 where the characteristic values

associated with the yawing and pendulous motion are shown for various values of towing
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speed. In contrast to the open-loop system, the closed-loop configuration is seen to be

well damped in yaw and stable at all towing speeds. The level of stability is actually

increasing with towing speed.

The feedback gains of the previous example were found to stabilize the system over

the entire range of geometric parameters and speed range. Also, the closed-loop configu-

ration was found to be insensitive to moderate changes in the aerodynamic derivatives.

No detailed investigation was performed on the effect of varying the aerodynamic deriva-

tives in a systematic fashion. This would have involved generation of large amounts of

data based on a set of assumed aerodynamic derivatives; it was felt more desirable to

make the computer program as flexible as possible for future use with better known aero-

dynamic data.

The linear control law expressed in equation (4) was used to simulate failure of the

front-fin or rear-fin servoactuators. In this simulation it was assumed that as soon as

servo failure is detected, the actuator would be disengaged so that the fin can aline itself

with the relative wind. In this position, the net contribution of the faulty fin to the overall

lateral force and moment acting on the cargo would be negligible. This type of failure of

the front fin, for example, can be simulated by setting the coefficients Y, 1 , Np , , Y6 ,1,

and N ,1 equal to zero.

Figure 7 shows the position of the characteristic values in the complex plane with

either the front or rear fin failed for the configuration used in the previous figure.. The

effect of servo failure is negligible on the pendulum mode of the motion. Although the

effect on the yaw mode is noticeable, it is significant that the motion remained stable

throughout the whole range of towing speeds.

CONCLUDING REMARKS

External helicopter loads of the rectangular-box type suspended from long cargo

slings are usually unstable aerodynamically beyond some value of airspeed. The use of

a stabilized sling has been suggested to avoid operational problems due to this instability.

According to the available documented experience, load instability occurs, even at

moderate speeds, while carrying large low-density objects such as an empty shipping con-

tainer. Most frequently, the instability is a divergent yawing oscillation.

A linear mathematical model of the externally carried helicopter load was studied.

Only the lateral modes of motion were considered with and without the stabilized sling.

It was also assumed that the helicopter motion is unaffected by the sling load. The fol-

lowing conclusions were drawn from the study.
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The dynamic stability characteristics of the suspended helicopter cargo were repro-

duced, at least qualitatively, using realistic combinations of geometric and aerodynamic
parameters in the linear model.

Linear optimal control theory was applied to the problem of stabilization, and it
proved to be effective in the design of feedback control laws which stabilized the motion
over the whole range of configurations with the use of constant feedback gains. The vari-
ables used in the feedback law can be reconstructed by measuring the lateral angular
deflections and velocities of the suspension cables. Implementation of the feedback con-
trol law requires moderate deflections and rates from the controllable fins. Use of a
single fin for stabilization also appears feasible.

A computer program developed for the present investigation proved to be an effective
design tool. Its flexibility would allow meeting design criteria other than just stabilizing
the suspended cargo.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., April 15, 1974.
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APPENDIX

REAL-TIME DIGITAL COMPUTER PROGRAM FOR

HELICOPTER SLING LOADS STUDY

A real-time digital computer program was developed for the math model of this

study. The program was written in Fortran IV language, occupying 55 000 octal locations

of memory, and run on the Control Data series 6000 digital computer complex. Figure 8

is a functional block flow diagram of the computer program. All constants, initial con-

ditions, aerodynamic derivatives, and integration parameters are defined in the first two

blocks. An optimization loop takes the initial conditions and constants and calculates the
feedback gains. Once the feedback gains have been calculated, this section of the computer
program is no longer cycled through. The program then gives the choice of either selec-
ting an open-loop or a closed-loop system to be run for data gathering.

The real-time solution of a set of differential equations is a discrete or step process.
The time it takes for each step is called frame time. The computer reads inputs at the
beginning of each frame time and the outputs are transmitted at the end of each frame time.

During each frame time, the computer does all calculations necessary to advance the equa-
tions of motion one integration step. The simulation program of this report operated at
32 frames per second, so that the frame time was 30.125 milliseconds.

The integration scheme used was a second-order Runge-Kutta. A fourth-order
Runge-Kutta integration scheme was tried for a check of the RK- 2 scheme with no notice-
able difference in the computed response. As a check on the size of the frame time used,
the program was run at 64 frames per second and 128 frames per second to insure that
the computed responses of the dynamic system were not being degraded. No changes in
the computed responses of the dynamic system were detected. The real-time program
was also checked with an independent batch program to insure coding correctness. The
printouts from the real-time-simulation (RTS) program and the independent check program
of the eigenvalues and state variables compared exactly to seven or eight decimal places.

This program was operated in real time instead of batch processing because this
allows control of and interaction with the computer program by the researcher at the
real-time control station. Figure 9 shows a typical program control station with all com-
ponents that are available for use. Using the function sense switches and discrete inputs
on the control panel, the researcher can make a data run, change a program parameter or
initial condition, and then immediately make another data run. For the problem of this
report, data runs were made by varying initial conditions on several variables, the aero-
dynamic coefficients, and geometric constants.
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APPENDIX - Concluded

The real-time system also provides the capability of displaying the program on the

cathode-ray tube (CRT). Through the use of a keyboard at the CRT console, programing

errors can be corrected and/or additions to the program can be made while it is still resi-

dent in the computer. The CRT was also used to present a visual display representing the

moving shipping container. This display was observed to determine whether the data run

was satisfactory. Thus the real-time facility gives the researcher the ability to make

data runs while observing the results on a time-history recorder and/or a CRT display.

(For a more complete description of the real-time facility, see ref. 11.) In this manner

data runs were made during a 2-hour period on the RTS facility that would have taken

several days using batch processing.
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TABLE I.- ASSUMED NOMINAL CONFIGURATION AND AERODYNAMIC

CHARACTERISTICS OF SHIPPING CONTAINER

Mass, kg o ...................................... 2266

Radius of gyration, m ................ ................. 1.9

Atmospheric density, kg/m 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.23

Cable length, m ................... ................. 30.5

CD ...... ................................... 1.1

Cy, rad'1 .......... ...................................... -1.5

Cyr , rad- 1  ...................................... 2.0

Cn,rad 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .  -0.25

Cr , rad- 1 ..............................- 1.25
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TABLE II.- EFFECT OF AERODYNAMIC DERIVATIVES ON CHARACTERISTIC VALUES

Pendulous mode, , for - Yawing mode, y, for -
S8a

V o = 15.4 m/sec V o = 51.5 m/sec Vo = 15.4 m/sec Vo = 51.5 m/sec

Cno 0.01215 + 0.002347j -0.17637 + 4.56045j -0.01215 + 0.1462j a0.17637 + 0.67729j

Cyp 0.014173 + 0.00107j 0.06915 + 0.08087j -0.00175 - 0.00032j a -0.02775 - 0.03839j

CD 0.01238 + 0.00085j 0.01308 + 0.00278j 0.00004 - 0.00013j a 0.02833 + 0.01102j

Cnr 0.00002 - 0.00007j 0.02023 + 0.02107j 0.01026 + 0.00022j a 0.01404 - 0.00839j

Cyr 0.00001 - 0.00008j 0.00068 + 0.00004j -0.00001 + 0.00012j a -0.00068 + 0.00087j

aUnstable mode.
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(a) Cable length.

Figure 2.- Effects of changing cable length, load mass, radius of gyration, and
atmospheric density on the pendulous motion at various towing speeds.
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(b) Load mass.

Figure 2.- Continued.
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(c) Radius of gyration.

Figure 2.- Continued.
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(d) Atmospheric density.

Figure 2.- Concluded.
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(a) Cable length.

Figure 3.- Effects of changing cable length, load mass, radius of gyration, and
atmospheric density on the yawing motion at various towing speeds.
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Figure 3.- Continued.
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Figure 3.- Continued.
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(d) Atmospheric density.

Figure 3.- Concluded.
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(a) Pendulous motion.

Figure 4.- Effect of stationary fins on pendulous and yawing motions
at various towing speeds.
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(b) Yawing motion.

Figure 4.- Concluded.
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Figure 5.- Closed-loop behavior of container at various towing speeds.
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Figure 6.- Closed-loop behavior of the characteristic values associated with

yawing and pendulous motions as a function of towing speed.
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(a) Front fin failed.

Figure 7.- Effects of fin failure on yawing and pendulous motions

at various towing speeds.
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(b) Rear fin failed.

Figure 7.- Concluded.
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Figure 8.- Functional block flow diagram.
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Figure 9.- Typical program control station.




