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SHIFT REGISTER GENERATORS

AND APPLICATIONS TO CODING

ABSTRACT

The most important properties of Shift Register Generated sequences are
exposed. The application of Shift Registers as multiplication and division cir-
cuits leads to the generation of some error correcting- and detecting codes.
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SHIFT REGISTER GENERATORS

AND APPLICATIONS TO CODING

INTRODUCTION

Randomlike sequences of O's and 1's may be generated from any stage of a
Shift-Register with the proper type of feedback connections; if the feedback con-
sists only of modulo 2 adders, then the sequence is a linear sequence and the
Shift-Register Generator is called a linear Shift-Register Generator. These
devices are useful in communication systems and error detection and correction
systems.

The contents of a Shift-Register Generator at time t are a function of the
number of stages m, the location of the feedback taps, and the contents of the
SRG at time t - 1. Thus if the m-tuplet in the SRG at time t - 1 is considered
as the state of the SRG at t - 1 then the state at t is the state ( t - 1) operated
on by some transition matrix.

SRG sequences repeat themselves. The repetition period depends on m, the
number of stages, and feedback taps, but cannot exceed 2m - 1 bits.* When the
period is equal to 2m - 1 bits, then the sequence is called a maximal sequence.

MAXIMAL AND NON-MAXIMAL SEQUENCES

When the sequence is maximal, considering the contents of the SRG as an
m- dimensional vector, then the 2m - 1 successive shifts will cause the contents
of the SRG to assume all possible values of a binary m-tuplet; i.e., if the 2 m - 1
(excluding the all O's vector) vectors of the m -dimensional space are considered
as points, one can think of the maximal SRG as moving from one point to another,
thus covering once all 2 m - 1 points in one period.

In the case of a non-maximal sequence the 2 1 - 1 points are divided into 2
or more sets and the SRG will cover all the points of the set from which a point
is used as the initial condition of the SRG. Using the above it can be shown that
the number of zeros in a maximal sequence is one less than the number of ones;
thus there are 2m- 1 - 1 zeros and 2 ' 1 ones.t

*This will be shown later.

t his is the balance property of O's and 's of a maximal sequence.

A3.



As an example, consider the two 4-stage SRG's in Figures 1 and 2, where
comparison of paths is made between a maximal and a non-maximal SRG's. The
maximal sequence has a period 2 m - 1 = 2 - 1 = 15 and the non-maximal se-
quence has periods of 6, 6, and 3. (6 + 6 + 3 = 15) ,

Euler Function and SRG Equivalence

Consider a maximal m-stage SRG with certain feedback tap connections.
There exist different feedback tap connections for the same m that produce other
maximal sequences. The contents of the SRG will again assume all possible
values of the m-tuplets (except the all zero vector) but the path will be different,
as shown in Figures 1-3.

The number of maximal sequences that may be produced by a linear m-stage
SRG is

(2m . 1)

Period

1 2 34
Maximal Sequence 1 1 1 1 000 100 1 1 0 101 1 1 1 0 ...

110 10010

Null Sequence 0 0 0 0 0 0 0...

1•0

S10000

Figure 1. -A Maximal SRG

2



Pi

Sequence 1  is 1 1 1 0 0...

Sequence 2e 000 0 0 1 0 1...
S 2 " P3

S quence, 011,01 10 1 1 ...

ull Sequence 00 0 0 0 0 0 ...

1001 0101

1100 0011 0010 1010 1101 1011

0000

1110 0A11 0001 0100

1111 1000 0110

Sequence 1 Sequence 2 Sequence 3

Figure 2. A Non-maximal SRG

where Q(L) is the Euler function(') (2) and is equal to the number of integers
less than and relatively prime to L.

In equation form,

(L) =I pi e , (- ), ()

where pi are the divisors of L, and e i is the power to which the corresponding
divisors must be raised for L = lipi el with p being prime.

For example, for L = 6, p, = 2, p = 3, el = 1, e 2

4(6) = 20 (2-- 1) 30(3 - 1) = 2

for L = 12, p1 
= 2, P2 =3, el = 2, e 2 = 1

0(12) 21 (2 -1)30 (3 - 1) = 4

3



Period

I12 34
m Sequence 11110 1 0 1 00 1 000 1111 ...

Null Sequence 000 00 0 0 ...

1001 
0010

10 1 1 0100

10 10

1 0 1 0011

I 110 0111

Figure 3. Another maximal sequence m 4. '(The boxes with the individual vector have been
arranged identically to the ones in Figure 1 for comparison of the difference in paths.)
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similarly for p a prime number

((p) = p (p - 1) = (p- Af

Using the former method the number of integers less than 6 and prime to 6
is 2, (i.e., 1 and 5).

For L = 12 we have 1, 5, 7, 11; 4 in all. For L = 31 we have 1, 2, 3,4,...
29, 30; 30 in all. For a 4 stage register there are

(24 - 1) (15) 30 50 (3 - 1) (5 - 1)
4 4 4 2 maximal sequences;

these are given in Figures 1 and 3.

Up to this point the type of SRG's used are the ones where the feedbacks are
taken from a number of stages and the mth stage, added mod 2, and fed back to
the first stage. This type of SRG is called a Simple Shift Register Generator
(SSRG) in contrast to a Modular Shift Register Generator (MSRG) where the
feedback is taken from the mth stage and fed to a number of stages and the first
stage through mod 2 adders.

Each SSRG has an equivalent MSRG in the sense that tfhe sequences produced
by each stage of any of the two SRG's are identical, except for a time delay.
An SSRG and its equivalent MSRG's are shown in Figure 4.

SSRG MSRG

Figure 4.

In the p-nary case the maximal sequence is of length pm - 1, and it contains
all possible p-nary m-tuplets.

5



A polynomial of interest is fL (x)*; this polynomial (2) is of degree 4 (L) and
it contains all primitive Lt h roots of unity; if L = T pi with pi prime

(XL - 1) • T- (xL/PI PJ - l)"  F (xL/PA PPici- 1)

fL(x) j= °*** (2)

I-_(xL/pi - 1) .T- (xL/PPk - 1) .
---/- i i,jk

If f(x) can be factored into

ScDL)/m

fL(x) 17pi.(x) modp

then P,(x) are primitive polynomials and any Pi (x) will generate a maximal se-
quence.

Equations Determining the Contents of an SRG and the
Matrix that Characterizes a Given SRG

If the contents of an m -stage SRG be represented by an m-dimensional row
vector, then the contents of the shift register one shift later are given by the
product:

C(t + 1 )T = A* C(t)T (3)

where A is a transition matrix that characterizes the SRG in question.

Figure 5 demonstrates A and the associated generalized SRG. To construct
A one may treat C(ti) as a state vector; the element a, 1 of A is unity if the
contents of stage j of the SRG go to state i on the next shift. In the p-nary
case aij takes the value of the multiplier connected from stage j to stage i.

aj+l,j = for all j = 1,2,...m (i.e., a21 = a32= a4 3  .. mm = 1)
This shift register and associated matrix are shown in Figure 5a.

For the shift register of Figure 5b in addition to the above a34 = a = a66
= a81 = 81 = 1.

*fL (x) is referred to as the cyclotomic polynomial.

6



00000000 0 0 0 0 0 0

12 3 4 5 6 7
01000000 1 0 0 0 0 0

A 0 0 .1 0 0 0 0

0 0 0 1 O- 0 0

0 0 0 0 1 0 0

0000010

Figure So.

S2 4- 3 4 5 + 6 7

1 0000101

0101000

0 0 0 0 0 0 0

A =  00 1 0 0 0 .0

-.. 0 0 1 0 0

.0 0 1 0 1 1 0

R D IE SOF 0 Figure0 
0 0 0 0 1 0

ORIGINAL PAGE IS pOOR Figure.b.



It was previously stated that Equation (3) gives the contents of the SRG after
one shift; the contents of the SRG after two or more shifts are given by successive

applications of Equation (3); thus:*

C(t + 2) T = A *C(t + 1)T =  A *A C(t)T = A2 * C(t)T

Continuing in the same manner

C( + )T =. A2 *: C(t)T  (4)

A in the above equation may now be considered as a shift operator whose ex-

ponent e represents e number of shifts.

The matrix uation (4) represents m equations, (one for each stage of the

SRG).

If the content of stage i at time j is represented by Ui (j) then at time j + 1,
(one shift later), the content of stage i is

Ui(j + 1)T = A1 U i (j)T (5)

where A is now considered as a shift operator and obeys the characteristic

equation (to be derived later) of the SRG.

The equation

Ui (j + k) =Ui- k ( j )

holds if there are no mod 2 adders between stages i - k and i in the SRG; the
above equation says that the content of stage i at t = j + k is identical to

whatever the content of stage i - k was, k shifts before.

Equation (5) may be rewritten as

AkUi(j) = Ui-k(j)

T stands for the transpose.

8



meaning that the contents of stage i - k at time j will be identical to the
contents of stage i, k shifts after time j.

In general, instead of speaking of the content of stage i at a specific time j,
we may refer to the sequence generated by stage i sta.i'ting at timne t, as U (t),
and substitute Ui (j) by Ui (t) in Equation (5)

Ak U (t) = Ui(t + k) = Ui-k(t )

or

Ak Ui(t) = Ui-k(t)

In words the above equation says that if there are no mod 2 adders between
stages i - k and i the sequence produced by stage i - k is identical to the
sequence produced by stage i, k shifts later, or sequence .Ui lags sequence Ui-k
by k bits.

Simple Shift Register Generator (SSRG) and
Modular Shift Register Generator (MSRG) Equivalence

A generalized MSRG is of the form of Figure 6a with a standing for
modulo p addition, C1- standing for a unit delay (or a shift register stage) and
(h i ) for multiplication by hi; the arrow indicates direction and in the case where
p = 2 hi is 0 or 1. The matrices ASSRG and AMSRo for the circuits of Figure 6
are:

000 . ... 0 000h o  0100000. . . 0 0

100 ..... 000hl 00100..... 0 0

010... . . . 00 h2  00010. . . 0 0

001...... 00h3  .

AMSRG = ;AsSRG

h2 0000....000 1

0 0 0 . . . . 00 0.1 h-1 hohh 2h 3  .

0 -h.21



Figure 6a. An MSRG

m m-I m-2 m-3 ------- w 2 1

hm-1 m- 2  m- 3  
hm-4 i) C

Figure 6b. An SSRG

by inspection AMRG = AssG; it will be shown later that these two Shift Registers
have the same characteristic equation and therefore they are equivalent.

Characteristic Equation of a Shift Register Generator

The characteristic equation k (k) is found by solving(3 ) the equation

S(k) = det I A - I (6)

where I m is an identity matrix of order m.

Since* det IAT - X Im I = det A - X Im the SSRG of Figure 6a and the MSRG
of Figure 6b have the same characteristic function.

*See Appendix A.

10



This characteristic function is evaluated* to

(A) = (-1)m+i hi- 1 (-k)i- 1 + (-1) km with ho 0
i~1

(7)

m-1 -m-1

io (-1)-I hik i + (-1) m = (-1)M-i I.hiX -i
i=0

(-1 m = -1h + hl + h2 
2 + . m-1 m + (8)

a monic polynomial of degree m not divisible by X.

Applying the Caley-Hamilton Theoremt we have

S(A)= -[I+hA+hA2+..+h Am+A- + = 0 (9)

If the operation is mod 2 additiori the minus sign can be replaced by plus.

Example. Finding the Characteristic Equation of a 4-Feedback Tap SRG

Consider the 4-feedback tap MSRG of Figure 6. This is a Modular Shift
Register with all h's except ho, hp, hq, hr equal to zero; application of Equa-
tion (9) results in the characteristic equation

Am + A' +A AP +I = 0

Figure 6.

*See Appendix B.

t4(A) = 0 i.e. a matrix satisfies its own characteristic equation.

11



Cycles of a Feedback Shift Register Sequence

Let us assume that we start with the m-tuplet Cl in the shift register; at thenext shift the new contents are Cth 
hi

C: = AC:

and at the it h shift

Ci = Ai C (10)

We shall prove that there exists a shift 2 such that

Ct +1 Ae t C Cl . "2 Oc

POORwhich implies that

At = for CI 0 (11)

Suppose that there is no such f so that

At C = C

then f = m and this means that no m-tuplet will repeat itself for an infinitelylong sequence which in turn implies that the number of m-dimensional vectors isinfinite; this is a contradiction because the number of m-dimensional vectors of
a finite field p is pm - 1 (excluding the all zero vector; consequently

the maximum value of 9 (designated by L pm - 1) is obtained only when theroots of (x) are ;initive* i.e., the smallest 2 for which Xf = 1 is 2 = pm _ 1.

. rimitive polynomial In x is one which cannot be factored (irrecducible) and which will divideS1 ior no f less than pm  1. (4 )(l)o see Appendix C.

12



The number of irreducible (but non-primitive) polynomials of degree 4 is
(! 1 )i

C =Pl = 

y(_) ( (5) 50 (5 - 1)

m 4 4

Example:

Find the number and lengths of sequences for m = 6,. p 2; 2" - 1 = 63;
the factors are 63 = 32.7. Try 3; 3 divides 22 - 1 and e1  3. Try 7; 7 divides
23- 1; therefore fe, 7. Try 3 x 7 = 21, it is relatively pure with 2s - 1 = 31,
therefore f = 21; there are 3 subsequences - (63/21)

4 (21) 30(2) 70(6)
= 2

6 6

Therefore there are 2 irreducible but not primitive polynomials of degree 6.

When 0 (x) is factorable with non-repeating irreducible polynomials as
factors (this implies that A(x) are relatively prime) we may express k (x) as

(x) = 1 (x) 5, (x) 3 (x) ... , (x)

The number of sequences, ii , and corresponding lengths, fe ,for each of the
polynomials, €i, can be expressed as [1, ti ( i)] and it signifies that i (x) has
one sequence of length 1 (the all zero sequence) and i subsequences of equal
length i . The reason for the name subsequences is because the space spanned
by the i vectors of one of the Li sequences is disjoint from the space spanned
by any other of the Pi sequences, such that the sum of all F i x Ui vectors due
to all Li sequences will span the whole spaces of mi -tuplets (except for the all
zero vector).

Thus

14

PRECEDING PAGE BLANK NO~ FILMED /



where mi is the degree of 6i (x); the expression [1, j i(i)] is called the cycle
structure, thus if

O(x) = 1 (x) 02 (x)

and k 1(x), k2 (x) are irreducible with cycle structures [1, M,(,)] and [1, , 2 (f2)]
respectively, then the cycle structure of q (x) is

[1 + (L,) 1 +/ 2(2)] 1 +b= +.(Y + 12(2) + '(e) (12)

where*

/1 tPI A2 gcd(f, f2)

and

e = _ cm( 1 . 2)

then we have 1 sequence of length 1- (0' vector) u1, sequences of length f , 2
sequences of length 12 and / sequences of length 9.

The sum of the lengths of all sequences is

= 1 + 2, + L 2? 2 + FL1 2 gcd(2. £2) Cm(f1 £2)1

but

gcd( 1 , f 2 )fcm(2 1, f2) = el 2

Thus

, .= 1 + A + /L2 2 + / 1 2 1 fL 2 =(1 + 12~)l (1 + iL22)

S2m1 22 = 2mi+m2

*gcd - greatest common dividor

c m r lowest common multiple

15



which is the length of the sequences of an mi + m2 - stage shift register.

The abovesecuences can be generated by the circuit of Figure 7 with the
pro~itial conditions (contents).

Output

p 1 (A) P2 (A)

Figure 7. Implementation of a Sequential Circuit Whose 4(x) is the Product of OW(x) and 0 2(x)

For example, let X(4) = X4 + X3 + X2 + X + 1 with f = 5and ~ = 3
and , (2) = XS + X + 1 with 2 = 7 and L2 = 1. The cycle structures are
[1, 3(5)] and [1, 1(7)], the resultance cycle structure is

[1,3(5), 1(7), 3 • 1(35)] = (1, 1(7), 3(5), 3(35))

thus, besides the all zero sequence there is one sequence in the length 7, three
with length 5 and three with length 35 so that

1 + 7 + 3 x 5 + 3 x 35 = 128 = 24+ 3

When there are repeated factors the results are too complex to citehere.

The Shift and Add Property of Maximal Sequences

The interpretation of A as a shift operator becomes obvious because every
time A operates on a sequence the sequence shift by one position, hence the
exponent of A represents the number of shifts applied to the sequence or the
number of positions by which the contents of the Shift Register are advanced.
Since A is an advance operator A' is the delay operator and it will be denoted
by D where D = A'.

16



Shift and Add Property

If a maximal sequence is first advanced by an amount T i digits and then added
to itself mod p, the resultant sequence will be the same sequence with a unique
advance 7 2 from the original sequence, which is a function of r -and 4) (x)

Ui (t) + Ui (t + Tr) = U (t.+ 2 ) (13)

or

Ui (t) + Ui (t) A1 = Ui (t)A r 2 , (14)

dividing the last equation by Ui (t)

I + A' = At 2 (15)

if rI is known, 72 can always be found although for most of the cases the pro-
cedure may prove laborious and long.

If a given sequence is advanced more than once and if all the advanced se-
quences are added to the original one using mod p addition, the resultant sequence
will be identical to the original one and will have a unique advance from the
original sequence, i.e.,

U1 (t + rl) +., t-+7) +t + (t + 7) + .- ... Ui . (t + 7r) (16)

or

pm-

Ui (t) a Af = Ui (t) A' where af is 0,1, ... p- 1 (17)

The above equation may be easily proven if 2 terms of the summation are added
at a time and replaced by a single term using Equation (14).

O~(/J~l IS -O



If Equation (17) is divided by Ui (t) we have:

pm- 1

a. At  A (18)
e-o

Equation (18) expresses a linear combination of all possible pm - 1 powers of A
in terms of a single power, 7, of A if the arithmetic on the exponents 7- is
mod p m - 1. (For proofs see Appendix C.)

Example 1:

Consider/the MSRG A3 + A + I = 0. in Figure 8a with an equivalent (in this
case identical) SSRG in Figure 8b. From 8b it can be seen that stage 1 lags
stage 2 by 2 shifts, that stage 1 lags stage 3 by 1 shift and stage 3 lags stage 2
by 1 shift.

1 + 2 3 0 U 2  2 3

1st Bit 1 1 1 0
Figure 8b.

2nd " 1 10

3rd " 1N 0 0 1

4th " 0 1 0 1

5th " 0 0' 1 0

6th " 1 / 0 0

7th " 0 1 1 .1

8th " 1 1 1 0

9th " - 0 1 1

10th " I 0 0 1

11th " 0 1 0 1

Figure 8a.

18



Now consider the mod 2 addition of stages 1 and 2 from Figure 8b i = 1,
i-k =i - 2, k = 2;

U1 + U2  U, (I + A2 ) -At- t2 U1  (19)

Taking the characteristic equation A3 = A + I and squaring it A6 = A2 + I
rewriting (19)

At l = A2 + I

tl = 6 or stage 1 lags the mod 2 sum of I and 2 by 6 bits. The delay of

stage 2 from 1 is -2 or +5. . U2 lags U1 + U2 by t + (-2) = 6 - 2 = 4 or
t I + 5 = 6 + 5 = 4 mod 7. The delay'of U3 from U1 is -1 bits or +6. .. U3 lags
U1 + U2 by t + (-1) = 5 bits or t + 6 = 6 +6 = 5 mod 7. The above results
may be verified from the table of Figure 8.

Example 2:

Consider the shift register of Figure 9.

7 1 2 3 .4 5 6

Figure 9.

The characteristic equatio is A7 + A6 '+ I = 0

U U A2

U5 = U, A 3

19



so

U7 + Us + U = U2 [I +(A2 -A-3] = At U2

Let us solve for t.

If t refers to U2

AS + A3 + I = At+3

now

A3 + I = At+a + As

A6 + I = A7 = A2 (t+3) + AIO

so

A10 + A7 = A 2 (t+3)

A' (A3 + I) = A 2(t+3)

A 3 + I = A 2(t+3 ) -7

Now let us find A3 + I = At'

A6 + I = A2 tl = A7

so

2t i = 7 or 7 mod 127 = 134

t. = 67

20



A6 7 = A3 + I = A2(t+3)-7

A 74 = A2 (t+3) ..

t + 3 = 37.

t = 34

U2 lags U 7 e U2 . Us by 34 bits.

Auto-Correlation of a Maximal Sequence

Recalling the definition of auto-correlation of a sequence

x(t)x(t + )

t= 1 - 1(2) x(t)x(t + ) (20)

Sx2(t )  1
0

where r is the integral phase difference between the two sequences, and L is
the length of the sequence.

The terms of the above summation will be 1's if the corresponding digits of
the two sequences match, and -l's if they do not match. Consequently the terms
of the above summation may be considered as another sequence of -l's and l's
whose average must be taken.*

Rewriting the above in equation form

*This definition corresponds to the distance being the Hamming distance for the non-binary case.

21



1
Rxx (7) = L (number of matching digits or 1's

(21)

- number of differing digits or -1's) "

f

To solve for Rxx (7) one must find the difference between the matching and
differing digits. One way to do this is to transform the operation of multiplica-
tion to mod 2 addition.

Examination of Figures 10a and 10b, the tables representing multiplication
and mod 2 addition respectively, shows that multiplication may be replaced by
mod 2 addition if the 1's are replaced by O's and the -1's are feplaced by l's.

x/y -1 1 x y x'y x/y 1 0 x y x ey
or I. or

-1 1 -1 +1 +1 1 1 0 0 0

1 -1 1 +1 -1 -1 0 10 0 1 1

-1 +1 -1 1 0 1

x y. -1 1 1 xyi 1 1 0

Figure 10a. x *y Figure 10b. x e y

Then Equation (20) where x(t) and x(t + r) is either 1 or -1 may be replaced
by

R([) = 1~ [ 2y(t)]
ta1

rex (t) and x(t + 7) is either 0 or 1, and y(t) = x(t) e x(t + r).

The difference between matching and differing digits or the difference be-
tween the number of O's and 1's under mod 2 addition may now be found easily

'by making use of the shift and add property of maximal sequences, since the
above operation is equivalent to taking a maximal sequence of O's and l's,
shifting it by 7 bits, (7 0 mod 2" - 1), and adding it to the original sequence.

22 RAOD UCIAL I 0.
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We lmow from the shift and add property that the resulting sequence (whose
elements are the terms of the summation for Rxx (7r) will be the same maximal

sequence shifted in time by some integer delay 7-. Using the balance property
of maximal sequences, it is readily seen that there will be 2

" - 1 1's and 2n' 1 - 1
O's in the resultant sequence. Consequently

1
R:,(7 ) = L (nunber of O's - number of l's)

1. 1

For 7 = 0 ob iously /

R X () 1= X--
0

The Shift Register as a Linear Filter

Consider the Shift Register of Figure 11.

X (t - 1) X (t - 2) X (t - 3) X (t -- 4)

Y

Figure 11.

If the input sequence X is u(t) = .... 0001000000 ..........................
then the output sequence Y is Tu(t)=... 0001100100 .....................
u (t) will be referred to as the impulse function and .Tu (t) as the impulse response
thus
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T.u(t) = u(t) f u(t - 1) + u(t - 4) (22)

or in general

Tmu (t + i) = u (t + i) + u (t + i - 1) + u (t + i - 4); j = 1,2,

= u(t + i) + Du(t + i)+ D4 u(t + i)

= (I+ D+D 4)u(t + ) (23)

Since this is a linear circuit, if X is a linear combination of k impulse functions
as given by Equation (24)

X aiu (t + i) (24)
j=1

then Y will be the sum of the responses due to each of these unit step functions.

Thus in the general case ai  0, 1, 2,... p

k k
S TX = T(t + i) = (I + D D )  iu(t + i) (25)

i1 ijul

The transfer function of the filter is defined as

T = = I + D + D 4 = I + A 1 + A 4  = A-4(A 4 + A3 + I) (26)

If the input and output of Figure 11 are interchanged as shown in Figure 12 then

X = (D+D 4)X+y
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DX D4X

Figure 12.

or

(I-D-D 4 )X = y

and the transfer function becomes

XI
YTD - (27)I-D-D 4

in the binary case Equation (27) becomes

D (28)I + D + D4

By consulting Figure 6b it will be noticed that the characteristic equation of
the SRG of Figure 11 is

q(A) = I + A3 + A4 = A+4(A-4 + A + I) = A4(I + D + D4)

A4 T

or in general for binary

Tr = A-n 6 (A)
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Multiplication and Division with Shift Registers

Referring to Figure 11 let

X [ak,-aka-1' k- 2,' ak- 4 . . . = k+ Dak- + D2 ak-2 + D3 ak- 3 *

where D' is a delay operator representing a delay e'qual to i;- let yi be the re-
sponse due to a i with the zero vector as the contents of the SRG at time 0O then

yl = ak ak 0 0 ak  0 0 0 0 ....

Dy 2  ak- ak 1 0 0 ak-1. 0 ....

D2 Y3 = -2 ak 2 0 . 0 a 2 0 0

D3 y 4 = ak-3 ak3 0 0 ak-3 0 0 ....

D4 y S  ak_4 ak-4 0 0 -4 0 0 ....

DY6  ... ak- 5.... a-.

Since this is a linear network, i.e.,

if Y(ak) = y-- Y(ak + Dak_ + D2 ak 2 +..D +

X 26\.



thus O zIGAL PAG OPF

Y Dk'ak- i Dk-iyi (29)

=ak + D(ak+ak-l) + D2 (ak_1+ak-2) + D3 (ak 2 + ak-3)

+D 4 (ak+ak_ 3 +ak 4)+ DS(ak.l+ak 4+aks) + 

+ D 4 + i (aki +ak-i-3 +ak-i- 4) +

= (I+D+D 4 ) ak + (I+D+D 4 ) Dak 1 + (I+D+D4 ) D2ak-2 +

(I+ +D 4 ) (akDk 1 +D 2 +.

thus the Y sequenc is equal to the product of the X sequence and the factor
I+D+D 4 .

In general /or the circuit of Figure 13

Y = (h-', Dh +-D2h +D 3 h +. +Y-lh +Ih o ) (ak +Dak-l +D 2ak-2 +  -* )

= h(D)X(D)

n- hn-2 n-3 hn-4 ho

Y

Figure 13. Multiplication by hn + Dhn_ + D 2 h + . ..Dihn + . + D"h
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replacing D by A"

h(D) = I + A'lhn 2  + + .... + A-n-lh 1  A-nh0

SA-n [ho + Ah + Ah 2 + ... + A 1 n =+ A A-n 2An -4(A) T

and

X(D) = -k Akak + Ak *

then

Y = Dk+n [Akak + Ak-l k- + . [,2An

Thus after k + n shifts* the sequence Y' = TX - ao will be out of the SRG
output and the contents of the shift register will [000 .... 00 a0].

Thus the sequence described by the product of T and X will be out of the
register after n + k + 1 shifts.

Notice that the function of the network of Figure 12 becomes obvious by
applying the results of circuit theory

Y = TX

and this clearly indicates a multiplier.

By similar proceduret we could arrive at a division network by reversing
the inputs and outputs, i.e., the transfer function of Figure 13 is( ")

A"
TD k (A)

*
n O's added to the end of the input sequence of k + 1 as

tSee Appendix F.
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and

An X(D) ..Y -(D) (30)
< (A)

In general the a modular LMSC can be characterized by the equation

P(D) X = Q(D) Y

for example in Figure 14

(a)

(b)

Figure 14.' A LMSC and its Inverse

For Figure 14a

W = X + D2 X+ D3 X + D4 X + D3 W + D(W -X)

or

(I - D - D3 ) W = (I -. D + D2 + D3 + D4 ) X

and

T = (I -D+D 2 + D3 + D4 )/I -D 3 -D 4
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For Figure 14b

X = WD3 + (X - W) D + X(D 2 + D3 + D4 ) + W

or

X(I -. D-D 2 D 3  D4 ) W(I -D + D3

W I--D+ D3

X I -. D-D - D -D 4

1 ( ( n-2 ) ho

Figure 15. A Division:Circuit

Y I
- X - (31)X I -hn-1D - hn -2 D 2 - hn-3 D -... -hi D i -.. ' -ho Dn

Appendix F contains more general multiplication and division circuits.

Error Correction with SRG's

Let a sequence X of 2 m - 1 digits be fed into SRG. The output sequence
W = TX where T is the transfer function of the filter; if the noise sequence in
the channel is N the received sequence will be

Y = W+N
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if Y is used ' the input of the inverse filter, T ' , then L IAG'M O

=XN T Y = T- (W + N) _ X + T-I N

To better understand the generation of a code let us take an example with the
SRG of Figure 16 and p = 2.

Figure 16.

The sequence W is 7 bits long (2 s - 1 = 7). If the number of information bits in
X is 4 then there are 24 = 16 codewords whose first four bits are the informa-
tion bits and the last 3 are zeros.

Then

x i  (a I a 2 a3 a4 0 0 0) ai = 0 or 1

then

wi = T x i = (D3 + D + I) (a1 + Da2 + D2a 3 + D3a 4 )

the x's and the corresponding w's are shown in Table 1.

For the construction of Table 1, the impulse function 1000000 = x, was
first considered and the response w8 was found from W = TX; next the delayed
impulse functions x4 , x2 and x, were found by delaying w8 by the corresponding
amount; once those basic responses are mknown then for any i, if xi is expressed
as a linear combination of x I x 2 x4 and x 8

x i = bix I + b 2 x 2 + b 4 x 4 + bx, 8
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Table 1

The Input and Output of the Encoder

xa = 1000000 = 1101000 -c(4)

X4 = 0100000 0110100 .- c(5)

x 2 = 0010000 0011010 -c(6)

x = 0001000 0001101 -c(0)

x0 = 2x, = 0000000 wo+ 2w, = 0000000 -

x 3 = x 1 + x 2 = 0 01100 0 w 3 w + W = +w 2 0 1 01 1 1 - r(4)

x= x1 x4 = 0101 0 0 0 ws= w + w4 = 01 1 1 0 01 - r(1)

x6 = x2 '+ x4 = 0 1 1 0000 0w = w2 +w 4 = 01 011 1 0 - r(3)

x,= x+ x2 +x 4 = 0111000 w7 =w 1 +w 2 +w4 = 0100011 -c(2)

x 9 = 1001000 w9 =.1100101 -r(6)

X1o = 1010000 Wlo = 1110010 - r(0)

x 1 1 = 101100.0 wl= 1111111

= 1 1 0 000 w12  10 1 1 100 - r(2)

13 101000/ w13  11 0001 - c(3)

x 14 = 110000 14 = 1000110 - c(1)

x , -111000 wis= 1001011 --r(5)

the corresponding wi s

wi = b l w I + b 2 w 2 + b 4w 4 .+ b 8 w8

Consider now the sequence generated by < (D) = (I + D + D3 ) = 0 in the
binary case; this sequence is s (0) = 1110100; the reverse of s (0), r (0) =
0010111; the complement of r (0) is c (0) = 1101000.

It turns out that the code W is the space consisting of all shifts of the se-
quence, r and c and the two vectors 0000000 and 1111111.
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The set {(w , w, w 6 , w9, w,1 , w1 2, w15 ) which contains elements that are
formed by all possible shifts of the sequence r is sometimes referred to as a
simplex code. The addition of the additive identity (all zero vector) turns the
simplex code into a group code R. Our code as generated by the encoder of
Figure 16 consists of the elements of R and their complements.*

The received sequence Y is used as the input of the SRG of Figure 17

XN

+ 4----- +

Figure 17.

If the noise is zero then X, = X (the three last digits of XN are zero).

Suppose that one noise digit is a 1 (single error) then the noise vector can
be considered as an impulse function and the response of the division SRG of
Figure 17 to this impulse function is the sequence s, i.e., 1110100, then

X, = X+ 1110100

an altogether different vector from X. Since the number of codewords for this
example is 16, k = 4 and m = 3, the last three bits of any Xi are to be zero;
thus a non-zero vector in the last three bits of XN indicates errors; by delaying
the impulse discussed above the single error N's and the corresponding 3 last bits
in XN are shown in Table 2. Then the last three digits of XN could be considered
syndromes or the phase of the maximal sequence to be added to XN to obtain X.
Notice that the distance here is 3 or 4 so that all single errors are correctable.

In general for single error correction in a sequence of length n with m-0's
at the end and k = n - m information bits we must have each of the S's different
for each of the n impulses. For this to be possible, each set of m consecutive
bits in the sequence corresponding to the impulse response must be different.

The complement of (a 1, a a 3 ,a 4  .) is defined as (p - 1 -a 1 p-, p- 1 -a 2 p -a 3,

p - 1 - a 4, ... )with p as the modulus.
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Table 2

T1 N

N Error In
Information S

Bits

N,-1000000 1110 10 0- -,S1
N2 -0100000 0111 01 0--S2
N3 -001000 0 0 011 1 0 1-S3
N4 -0001000 0001 1 10--S 4

Ns - 0 0 0 0 1 0 0 0 000 1 11 S5
N6 -0000 0 1 0  0 0 0 0 0 1 1-S 6
N7 - 0 0 0 0 0 1 0 0 0 .0 0 0 1-S 7No - 0 0 0 0 0 0 0 0 0 0 0 0 0 ,--No

Since we have n non-zero impulses and 2m - 1 S's then for this to be possible n
must be equal to a less than 2m - 1 for all impulses to be correctable and each
of the m-bit subsequences of the impulse response of the-decoder should be
different. If n = 2m - 1 then this is possible only if the impulse response of thedecoder is a maximal sequence. To determine the optimality of this code the
Hamming Bound* equation will be used letting M be the number of codewords

M < 2. (n

For single error correction -e = 1 and

M< 2n /(n + 1)

*For single error correction the Hamming Bound gives the same result as the Varsharmov.
Gilbert-Sacks condition.
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When the equality sign holds the code is perfect*; for n = 7

M - - 2 = 16
23

this implies that the maximum number of codewords that the code could have is
16. Consequently, since our code has 16 codewords, it is optimum.

Let us now review the necessary conditions for the existence of a single
error correcting p-nary code generated from shifts of a feedback shift register
sequence. If each single error is characterized by its amplitude (p - 1 values)
and position (n positions) the number of distinct correctors must be at least equal
to n (p - 1).

Since each signal X is an n-tuplet with the first k symbols used for infor-
mation and the last m symbols being zeros (check symbols) the number of dis-
tinct (non-zero) corrector combinations is pm - 1. Thus:

n (p -- 1) < pm -- 1 (36)

p /. 1

n<p--1

which is the familiar Hamming bound (or Varsharmov-Gilbert-Sacks condition)
for the length of the code. Since n = m + k', the above equation can be rewritten
as

k< - m
- p-- 1

and it is an upperbound on the number of information bits (or number of words
M = pk).

*See (13)
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Again in the case of e uality the code is optimum. Thus for an optimum

code

Pp - 1
n(p - 1) = pm - 1; n = -. 1

This implies at we need pm - 1 distinct m-tuplets in the sequence S, which is

the impulse response of the decoder

S T-1 .(10000 .... 000)

The only way to have this number of m-tuplets is to insure that S is a maximal

sequence because only the maximal sequence has a length (period) equal to

pm - 1.

Then the code will be n symbols long

pm _. 1
U-

n-
n - p-1

Since the length of the sequence is pm - 1 > n one needs only a segment of that

sequence for each codeword; the only question is which segment. To illustrate

the above let us consider an example.

Let p = 3 and m = 2; the maximal length of the sequence is L = F - 1 = 8.

Thus to find a polynomial which is primitive and period equal to 8 we must

first find f, (k) because f (k) contains all primitive roots* with period 8.t

The order of the polynomial is four (4(8) = 22 = 4), and there are 2

(0 (8) 4
m 2

maximal sequences.

*See Appendix C. i

t Sice 8 23 p0 2 e 3
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The length of the code is

_Pm- 1 8
n 4

p-1 2

and k = n - m = 2; thus the number of the codewords is pk 32 -= 9.

By using Equation (2) on page 6

xs -" 1
f,(x) _ x4 + 1 (32)

this polynomial can be expressed as the product of two irreducible* polynomials

x4  1 = (x2 + x+ 2) (X2 + 2x+ 2)

1 (x) 2 (x). (33)

To find the matrices corresponding to k, (x) and 0 2(x) use the matrix in the
companion form

0 0' O \ 0

t(x) = et

\ 0 , 00. .0 . 0 1

ho  hi  hn-2 hn-1
L- -

*See Appendix C.
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thus

S(x)= x 2 + x + 2 = detL - x

A 2 ] for 1(x (34)

and

A = 1 for (x). (35)

Now we must see if the polynomial o 2(x) is primitive by raising its roots tointeger powers and observing the power L for which

(root)L = 1 37)
(37)

if the smallest non-zero L that satisfies the above equation is equal to p - 1then the root is primitive and so is the polynomial. Since by the Caley-Hamilton
theorem the matrix A satisfies the characteristic equation 2(x) then we could
carry the above test with the matrix A instead of the root.

impei 
e

2 (A) = A2 + 2A + 21 = 0 A2 = A+ I

by substituting all A2 by A + I we can obtain Table 3 for the powers of A.
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Table 3

A = I I

A' = A A

A2  A + I .A+I

A3 = A(A + I) -= A2 + A = 2A + I

A4 = A(2A + I) = 2A2 + A = 21

As = A(2I) = 2A

A6 = 2A 2  
= 2A + 21

A' = 2A2 + 2A A+. 21

A8 = A2 + 2A = 3A + I = I

It should be noticed that the same results could have been obtained by matrix
multiplication, i.e.

A

A2 = AA = [ .= = A + I

A3 = AA2= = = 2A + I

1 1fi 21 2 10[1 -
A4 = J= 2 = 2  J = 2

REPRODUCIBILITYW OF T .
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S- h 11 2 whihis equivalent to 2 2) is shown

in Figure 18; notice that the contents of the shift register at shift i represent

the coefficients of the polynomial representing Ai in Table 4; notice also that

Table 4

Number X - W Shift of s

S 0000 0000 0

010 0 0122 1

2 0200 0211 5
3 1 00 1220 2
4 1100 1012 8

5 -- - ho = 2 hich is equivalent01

6 2000 2110 6
7 2 10 0 22 02 3
8 2200 2021 4
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Shift Contents

0 0 "

1 1 0

3 .2 1

4 0 2

5 2 0

6 2 2

-7 1 2

8 0 1

Figure 18. The PRG with + 2(k) = A2  A - I =(A 2 +-2A + 21)= 0
and the Contents at Time i i = 0,. 8

the sequence s = 1120,_2210 is the maximal impulse response and it consists of
two subsequences

s = S1, 2S,

where S, = 1120.

The code can be generated by using the multiplication circuit which multi-
plies by the polynomial 0 2 (k) = A2 + 2A + 21. This can be accomplished with
the circuit of Figure 19.
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2 2

Z
z

Figure 19. The Encoder

so that

W = 2 (A) X) X( = (A2 + 2A + 21) X(A)

A2+n (I + 2D + 2D 2 ) X(D)

The decoder results from the division circuit which is constructed using the
following reasoning. Assuming that there are no errors the received signal
Y = W multiplied by some function F must result in the transmitted signal X

FW = X(38)

but since

= TX (39)

Equation (38) becomes

FTX = X (40)

Equation (40) implies that

F T (41)
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Since F is the output XN divided by the input Y Equation (41) can be rewritteni
as

XN I Y Y Y
or XN =

T 2(A) A2 + 2A + 21

Application of Equation (8) and Figure 6 with m = 2 gives ho = -2 h, = -2
and the decoder becomes the circuit of Figure 20

x

Y

Figure 20.

Since -2 = 1 mod 3 the decoder of Figure 20 is equivalent to the decoder of
Figure 21.

XN

is Mod 3

Figure 21. The Decoder Corresponding to the Encoder of Figure 11

The impulse respohse of the decoder is the sequence s of page 45; this se-
quence could also be obtained by long division as fol.lows.
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A2 A I 11 20 22 10 - S

1 22 I00

-1 -2 -2

0110 -

-1 -2 -2

0 2 1.0

-2 -1 -1

00200

-2 -1 -1

0 2 2 0

-2-1-1

0120

-1 -2 -2

0 0 1 0 0

The code W as generated by the circuit of Figure 19 is shown in Table 4 and
is seen to be segments (subsequences) of the reverse sequence r of page 38.

The response of the decoder circuit of Figure 21 to all single error patterns
is shown in Table 5. It should be noted that all eight (p- ) (1)) single error
patterns are correctable because the corresponding correctors (the ternary
representation of the last two digits in the response excluding the 0000 vector)are distinct.

To reconstruct the information symbols of X no change is required whenthe corrector S is 11, 01, 22, or 02 (and of course 00).

When the error becomes obvious the beginning of the sequence must beadded mod 3 to XN to correct it; one way to produce the beginning of the sequence
if one knows the end is to use the connection for the reverse sequence which is
produced by the shift register of Figure 22 (see Appendix E).
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Table 5

Error In Number
N Response = T 1 N Information- S . Represented

Symbols by S

100 0 1120 11 20 6

0 1 00 0 1 12 01 1 2 5

0 0 1 0 0 0 1 1 0 0 1 1-4

0001 0001 -0 0 01 1

2000 2210 22 1 0 3

0200 0221. 02 21. 7

0020 0022 00 22 8

0002 0002 00 02 2

The Hamming bound for this code gives the maximum k.

km = n -' m for e = 1

nmax = pm-I + p-2 + ... + 1

3+1 = 4

thus since in our case n is also equal to 4 this code is optimum.

X

2

Figure 22.
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SUMMARY

Thus far we have used the m-stage Shift Register for single error correction
by encoding k digits into k + m = n such that

n p - 1  (42)

with the equality resulting in an optimum code; it should be kept in mind that for
this class of single error correcting codes the check bits are equal to the num-
ber of stages of the shift /egister and n is determined fromr Equation (42). If n
is much smaller than th value indicated by the equality of Equation (42) then
the code may be able/o correct more than single errors. For example if p = 2
m = 4 then all singl errors will be correctable if

n < p - 1 s15

if n = 15 then k = 11 and the size of the code, if a SRG is possible, would be
211. Suppose that we don't need such a large size for the code but we still want n
to be the length of the maximal sequence (n = 15) then the code if selected
properly will be able to correct more than all the single errors if k - 4 then
M = 16 and we can use as codewords the 15 shifts of the maximal sequence and
the all zero vector. The Hamming distance for this code is 8 and the code will
correct all single double and triple errors and detect all quadruple errors.
These codes will be discussed later if we want k to be five M = 32, and the
code words will be the fifteen shifts of the maximal sequence, the fifteen shifts
of the reverse sequence the zero vector and the 1 vector. Since the distance is
the weight of each code word, and the minimum weight of the reverse codes is 7,
the code will correct all single, double and triple errors, and it will detect some
of the quadruple errors (some of the distances have the value 8).*

Pseudorandom Codes

In the last section the codes were in general segments of the maximal se-
quence; however the codeword was all L shifts of the maximal sequence. In
this section we shall consider codes whose words are the pk - 1 shifts of a
maximal sequence and the all zero vector.

*This is the code described in (17).
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For this code n = pk - 1, the number of information digits are k, and
they could be taken as the 1st k digits of the sequence. This code can be gen-
erated from a k-stage SRG of Figure 23 loading the stages of the generator
with the k information digits and then letting it shift for pk - 1 shifts.

X.
X ,

ak ak- 1  a 2  01

W

h k-- 2 hi ho

Figure 23. Pseudorandom Encoder

This code can be decoded by choosing the best match* between the received
sequence and all shifts of a locally generated sequence using an identically con-
nected SRG, or by a division circuit or by majority decision circuits. The
optimality of this code will be proved by finding the minimum distance and com-
paring it to the theoretical upperbound (see Appendix E) for systematic codes.

Since all non-zero codewords of this code are shifts of a maximal sequence
the distance vector is also the same maximal sequence shifted by some shift.

Since a maximal sequence of length pk - 1 contains all possible pk - 1
non-zero k-tuplets and since each digit has the same frequency except for the
zero digit that appears one less than any other element, each element must
appear pk-1 times in the sequence and the zero element must appear pk-1 - 1
times.

*This proccss is digital orrelation.

47



Applying the notions of Appendix E, the Hamming distance of each distance
vector (wvhich is also the minimum distance d.) is

dH = pk-I dw (ai) pk-1 (p

i=1

but for any systematic code it was proven in Appendix E that dH cannot be
larger than

n pk-1 (p -. 1)

S. 1

letting n = pk - 1 we find that d. cannot be larger than pk-i (p_ 1).

Consequently this code is optimum with respect to the Hamming distance.

Using a similar argument for the Lee distance for this code

d, = k-1 k-i (P + 1)(p - 1) pk-i (p2 
- 1)

but from Appendix E for any systematic code

n pk- (p2 
- 1)

d < 4 (pk . 1)

again letting n = pk 1

d <1 pk-1 (p2 -. 1)

Again we see that the pseudorandom code is also optimum with respect to Lee
distance.
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d-1This code will correct all single double triple up to e = -2 errors.

It should be pointed out that the correlation and majority decision decoding
are equivalent but use different mathematical notions.

In the case of correlation we correlate by counting the matches and mis-
matches of the sequence and a locally generated sequence. The length of the
maximal sequence is L and in the binary case we count A (= number of matches)
and D (= number of mismatches).

If A > D we decide that the sequence is correct. Since each sequence dis-
agrees with al othe L+ 1 L + 1agrees with all others in 2 bits it will take a change i 4 or more

bits 1 errors to have

A>D

for the wrong sequence.

L+1In the case of majority decision each bit (say a 0 ) is given by i alge-
braic equations.

If more than half of these equations contain erroneous bits, it is possible
that more than half of the equations will give the wrong solution for a0o. Thus it

L+1
takes at least 4- errors to decode incorrectly.

Further Application of Shift Register Generators

The error correcting encoding and decoding application described in this
document are simply some of the immediate applications of pseudorandom se-
quences and multiplication and division circuits to coding.

Some of the important applications of these circuits are their use for en-
coding and decoding a class of cyclic codes called Bose-Chauduri-Hocquenghem
codes,* (BCH), and the Recurrent or Convolutional Codes. Due to their special
importance, the BCH and recurrent codes will be discussed in a separate paper.

*The Hamming codes are a special case of the B-C-H codes.
-REPRODuC1BILITY--0F 
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APPENDIX A

The Characteristic Equation of the Transpose of a Matrix

It shall be proven here that the matrix A and its.transpose AT have the

same characteristic equation

let B =  A--Iil

where K is a constant and I the identity matrix

B = IA-XIIT = AT - XIT = AT- XI

det IAT - II = det BT = det B = det IA -11
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APPENDIX B

The Determinant of the Companion Matrix

Consider the matrix

S10000... 0 . ... 0

0 1 000 ... .....

00 X 100 ...... .

B= 00 0000 1.0 ..0 0 0

0000.......0oo i

ho h i h 2 h3 " hn- 2 h 1 + X

to find the determinant of the above matrix expand the determinant in terms of
minors of the elements of the last row

n-1

det- B ) + i hi- Mi + (hn-1 + X) Mn

i=l

for any i the minor is the determinant of the matrix B with the ith column and
last row deleted is shown below
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X 100 0000"QO

0 0 X 1 0 0 0 0 00 x ,o0oooo

000 i00000 C

O00 1 00 000
0 E0000 X 1000 0

0 0 de0 I i0 X 10 0 n0 -

0 0 0 0100 X 10

0000 000 X 1

i-1

= det C det E

but C is an upper triangular matrix with X in the diagonal.elements.

det C = (X)i-1

and E is a lower triangular matrix with unity diagonal elements thus

Mai = det C det E = ki- (1) = ki-I

so

n-1

det B - ) n + i h i - 1  
i - 1 + (h + ) n-I

i=1

-1) n+ i h iq gi- I +, k
i'1
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APPENDIX C

Some Important Concepts of Linear Algebra and some Results of

Galois Field Theory_

This Appendix is not intended to be a rigorous exposition of Linear Algebra

but rather a collection of definitions and results that are applicable to thema-

terial of this paper.

1. Definition: If the difference of two integers a and b is divisible by a

third integer p then a and b are said to be congruent modulo p or in equation

form

a b- mod p (C-l)

In general if 0 < r < p then for any integer t

r + tp- r mod p (C-2)

all numbers c + tp for t = ± 1, ±2, ±3, ..... form a class of residues

modulo p (Cr).

2. Addition, subtraction, and multiplication of the Cr' s present no prob-
lem but division is equivalent to finding a solution for x in

N-

r = sx + tp

letting r = 1, s = 3, and p = 6, there is no solution for x; to insure the

existence of a solution of x for all s then p must be a prime.

3. Fermat's Theorem: if an integer a is not dividible by a prime number
p then ap- 1  1 (mod p).

Corollary*= if a and p are defined as above there exists a unique
solution for ax b (mod p). and it is found by multiplying the left side by 1 and

the right by a- 1

1 * ax aP-lb (md p)

dividing by a • x " ap-2 b (mod p.)
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4. Groups: A group is an algebraic system with one operation and its
inverse. The two operations that we are familiar with are addition and multi-
plications, with inverses subtraction and division resp; however, the operations
associated with an algebraic system may be other thanifthe above and they
will be in general denoted by e. Thus if the Group A is a set of elements a1 ,
a 2, . . . . then a. 0 aj = ak implies that element ak results from the opera-
tion o on the elements a i and aj . The order of the. group is the number of
element in the group.

For a set of elements a1 , a2 .... to be a group under the operation 0, the
following four axioms must be satisfied.

i. Closure

For a i e A, a, E A then (a i e .a) eA

ii. Associative Law:

/ O aJ) a = a 1 0(a 0 ak)-.

iii. Identity el ment I

The gr p contains a unique identity element, I, such that

ai O I = I 0 a. = a.

iv. Inverses

There exists a unique inverse a; 1 for each element a i in the group
such that

a.0a" = a: 1 0a. = Iai a-' a, a.

Note: The fact that we were able to commute the identity and the inverse
does not imply that all other elements in the group can in general
be commuted unless the group is commutative.
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5. Definition: An Abelian or commutative group is defined as a set of
elements that obey the four axioms that define a Group plus the commutative
law. If the operation is addition the group is additive, I = 0 and a i = ai.
Tf the operation is multiplication the group is multiplicative, I = 1 and
a 1 = 1/a . Obviously, since division by zero is undefined axiom 4 holds for
all non-zero elements in the group and in axiom 3 the identity must be non-zero;
for example all real numbers form an additive group, and all real numbers
except zero form a multiplicative group. The group of matrices is not Abelian
because matrices are not in general commutative.

6. Rings: A ring R is a set of elements with two operations addition* (+),
and multiplication* (.), that satisfy

a. All addition axioms for an Abelian Group

b. The closure and Associative Laws for Multiplication

c. The Distributive Law: if a, b, c e R then

a (b + c) =a b+ a c

If the elements of a Ring satisfy the commutative law under multiplication, then
the Ring becomes a Commutative Ring.

7. Fields: A field is a set of elements that satisfy all axioms of a Com-
mutative Ring and furthermore it has

a. A multiplicative identity

b. A multiplicative inverse for every non-zero element

Thus a Field is

a. An Abelian Group under Addition

b. An Abelian Group under Multiplication

.b. The elements obey the distributive law

For example the elements 0, 1, 2, ... p - 1 (where p is prime) form a Field.

These two operations are not necessarily identical to the ones that we are familiar with.



Thus a set of s distinct elements forms a field of order s if the elementscan be combined by addition, subtraction, multiplication and division thedivisor not being the element zero (necessarily in the set), these operationsbeing subject to the laws of elementary algebra, and ifthe resulting sum, dif-
ference, product or quotient is uniquely determined as an element of the set.

The requirements set forth by the division are equivalent to the existenceof a solution of r = sx mod p discussed in 2, and necessitates that p be aprime.

The complete system of classes of residues modulo p forms a field if, andonly if p is a prime number.

9. Definition: A finite field as defined above is a Galois field.

Euler's Generalization of Fermat's Theorem.

If a is prime to m > 0.

a ) = 1 (,mod m)

where 0 (m) is Euler's function and it is equal to the number of integers lessthan mi and relatively prime to m.
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SUMMARY

0 >

Postulates of Real Numbers R o .

(a, b, c are in R) C. Cd

. .
I. Addition postulates:

(i) a + b in R (Closure) x x x x x x

(ii) a + b = b+a,(Commutative) x x x x

(iii -(+-b + c) = (a + b) + c (Associative) x x x . x x x

(iv) There exists "O" such that O+a=a

(Identity) x x x x x

(v) There exists b such that a+b= 0

(Inverse) x x x x x

II. Multiplication postulates:

(i) a.b in R (Closure) x x x x x

(ii) a.b = b.a (Commutative) x x

(ii) a.(b.c) - (a.b).c (Associative) x x x x x

(iv) There exists "1" such that 1.a-a

(Identity) x x x x

(v) There exists b such that a.b = 1
(For a / 0)
(Inverse) . x x x

III. Distributative law: a.(b+ c) = a.b + a.c .x x x

\zJv jZ1u
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The aforementioned notions of groups, rings and fields can be extended to
polynomials with a feN/lo-ical modifications on definitions.

a. For example two numbers are relatively prime if they have no common
divisors (except for unity). Two polynomials are relatively prime if they haveno common factors.

b. A number P is prime if it cannot be factored to a form

p = pel p 2 ....

where p, is prime larger then unity and e i > 0.

Similarly a polynomial is prime (or irreducible) if it cannot be factoredinto a product of prime polynomials.

c. A set of polynomials can form a group just like a set of any other
elements; under addition one adds the coefficients of similar powers.

d. Given a number p and an irreducible polynomial P (x) a congruence can
be established mod [p, P (x)] between two polynomials F (x) and f (x) by the
equation

F(x) 3 f(x) mod [p, P(x)]

which implies that

F(x) f(x) + p g(x) + P(x) * Q(x)

if P(x) is of degree n then the degree of f(x) is less than n and its coefficients
are less than p.

(The above is equivalent to dividing F(x) by G(x) to obtain f (x) and then
reducing the coefficients of f(x) mod p).

All polynomials of degree n - 1 form a field of p" elements (the number ofdistinct polynomials whose coefficients can assume one of p values, and there
are n terms i.e. powers of 0, 1, 2, ... n -1).
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Then the ordered n-tuplet consisting of the coefficients of the polynomial
completely characterizes the polynomial and there are p" of these n -tuplets that
form the field GF(pn).

Powers of Elements

We see then that we can treat polynomials as any other elements, so let us
cite some of the definitions that apply to elements of a group in general.

a. An element can be raised to a power, the element may be a simple one
such as a number; thus if we consider the group consisting of the numbers 0, 1,
2, 3, 4 (mod 5) then

20 = 1, 21 = 2, 22 = 4, 23 = 8 = 3, 24 = 16 = 1

On the other hand we could consider a root a of the equation

X2X +x+2 = 0

then

a2 + a +2 0 or a 2  a- 2 = 2a + 1 (mod 3)

ao = 1, a = - a- 2 = 2a + 1, a = 2a2 + a = 4a + 2a = 2a + 2,

Still another aspect is an element xe which is congruent to an element f (x)
of GF(p n ) mod [p, P (x)]; thus if p = 3 and P (x) = x + x + 2 such that x2 =
2x + 1 mod (3, x2 + x + 2)

= 1, x =x, x 2 = 2x + 1, x 3 =2x 2 + x = 4x + 1 + x = 2x + 2.

It should be noticed that in the last two examples there exists a one-to-one
correspondence between the powers of an element mod [p, P (x)] and the powers
of the roots of the polynomial P (x).
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Period of an Element

If a is an element, then the smallest positive integer e (e / 0) such that

ae = 1 mod p is called the period of the element.

Example: let a = 4 mod 5

a'= 4 a2 16 = 1 then e = 2

similarly the period of x mod (3, x 2 + 1) (x2 = 2) is '

S  x x2 = x = 2x x4 = 2x 2 = 4 = 1 e = 4

We also say that a belongs to the exponent e mod p or P (x).

Primitive Elements

If the cycle of an element a (mod p) is equal to the total number of non-

zero elements in the group then the element is primitive.

Corollary: Since a' = b(i < e) is another element in the group and since
ai = c E G b / c then the powers of this primitive element a generate all

the non-zero elements of the group.

Example: Element 2 of the Group (0, 1, 2, 3, 4) is primitive because its

powers generate all non-zero elements of the group

20 = 1 21 = 2 22 = 4 2 = 3 24 = 16 = 1

Element 4 is non-primitive (we could tell because e = 2 less than 4 the total
non-zero elements)

40 = 1, 41 = 4, 42 = 16 = 1, 43 = 64 = 4, etc.

then it does not generate elements 2 and 3.
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Similarly the powers of the element x generate all polynomials f (x) of

degree n - 1 of GF (pn) modulo 3, x2 + x + 2. Table 5 shows the coefficients

a b, c of ax 2 + bx + c Mod (3, x 2 + x + 2) and the coefficients d, e, f of

dC2 + ea + f of the powers of the root a of the polynomial x 2 + x + 2.

-Since all 32 - 1 =8 of the non-zero elements of GF(p") are spanned (or

generated) by the powers of x the polynomial is primitive and its period is

e = p -1.

Table C-1

The Powers of x Mod 3, (x2 + x + 2)

and the Powers of the Root a of x 2 + x + 2 = 0

Number
b c e f Represented

x0  0 1 ao 0 1 1'-

xi  1 0 a1 1 0 : 3

x 2  2 1 a 2  2 1 7

x 2 2 a 2 2 8

X4  0 2 04 0 2 2

xs 2 0 a s . 2 0 6

x6  1 2 0,6 1 2 5

x7  1 1 a7 1 1 4

x8 =1 0 1 a8 = 1 0 1

A primitive polynomial is also defined as an irreducible polynomial whose

roots are primitive.

"3 -WO
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Since usually the problem is to find the polynomial or polynomials belonging
to the period * e the procedure of finding all irreducible polynomials with period

e will be outlined.

First some preliminaries - since

Xe = 1 mod [p,P(x)

then

xe -1 = 0 mod [p, Pi(x)]

where Pi (x) are all irreducible polynomials belonging to e. Thus, since

xe - 1 0 implies

xe - 1 f(x) Pi(x) + 0 for each i

then each Pi (x) must be a factor of xe - 1; the expression of the product of the

irreducible factors of x" - 1 is given by the cyclotomic polynomial

S N

((x) = 0Pi(x)

( xx - 1) , e - ) ((X e Pi Pj i.j. k2 Pi Pj Pk Pf ...
i,j i.j,k, j k

f(x) =
i Pi jk Pi Pj Pk /

where

e pi pi prime

SThis is equivalent to finding polynomials that have period e.

64



As a matter of fa f (x) has all the primitive roots of period e. If
re(x) has N such fac rs and if the degree of each factor is n then the degree
of f, (x) is nN.

But it can by proven that the degree of fe (x) is ((e) thus:

Nn = ¢(e)

and

N (e)
n

if e = pn - 1 then fe (x) contains all irreducible polynomials if with primitiveroots.

Determining Whether an Irreducible Polynomial Is Primitive

The irreducible factors of xe - 1 (e = pm - 1) are identical to the ir-reducible polynomials of all degrees n such that n divides m; then

S - 1 = P1 (x) P2(x).... PN(x)

if the number of polynomials of degree n is I (n), then

(n) = pm

n/m

On the Periods of Non-Maximal Sequences

If e divides p" - 1 and e does not divide pi - 1 for any i < n then there
<(e)

are 0 irreducible polynomials of degree n with period e.

Obviously if pn - 1 is primet then e must of necessity be p" - 1 (maximalperiod).

*(1] p. 20 or 111 p. 138 
rd

'Mersenne prime
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APPENDIX D

The Reverse Sequence

Consider the shift register of Figure D-1.

n n-I 3 2

hn-1 n-3 h, ho

Figure D-1 -

X = (hn-D+h D2 + .... + h Dn 1 + hoDn) X (D-1

where

q(D) = (I -hn-I)D- hnD2 - .... -hDn- 1  hoD) (D-2)

A sequence r reveyse to X is obtained by letting the new sequence r be
the same function of the digits ahead instead of the past digits. This can be
accomplished by cha 'ging D' to D- i then the reverse sequence r is

r = (hn + h-2 2 + .... hD-n + hD-) r (D-3)

multiplying both sides by D".

D" r = (hn- 1 I"-1 + hn-2l' 2 1 + .... hzD + ho) r (D-4)
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rearranging

ho r = (D" - hn-1 D" - - h D -2h "- . h D) r'-

= (- hD - h D2 -- ... -h _I' + Dn)

1 2 h -... _

r D D2 + (D-5)

Comparing Equations (D-1) and (D-5) we can see that to obtain r we must
change ho to - and

n-i
h i to

hn- i

or hi to the negative mod p of - Thus the SRG for r is.the one in
Figure D-2.

Figure D-2

67
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Example consider the SRG of Figure D-3 p = 3.

I 1 0
11
S21

S- Mod.3 0 2
1 1 20

.2 2

1 2

01
1 0

Figure D-3

In this register the sequence is x = 1 1 2 0 2 2 1 0 and ho = h z = 1.
1 h "

Changing h° to - = 1 and h1 to -- = -1 = 2 we obtain the circuit of
Figure D-4. o

10
2 1
2 2

02
2 0

1 2

1 1

0 1

1 0

Figure D-4

The sequence of Figure D-4 is 1 2 2 0 2 1 1 0 which is the reverse of x.

a
Note: Division b mod p is accomplished by taking an integer t,
< t < p - 1, such that is integer.
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APPENDIX E

0 Optimality of Codes (Hamming and Lee Distance)

1 There are more than one ways of defining optimum codes; one way is tokeep n the number of symbols and M the number of words fixed and find a code2 such that no other (n, M)* code will result in a smaller probability of error(or larger e).
2
2 All e error correcting codes that do not correct any e + 1-tuple errors

are called perfect (close-packed) and the ones that do not correct any of the
0 e + 2-tuple errors are called quasiperfect. Obviously both perfect and quasi-perfect codes are optimum.

d-1Since e = 2 where d is the minimum distance between any two code--
words in the code,maximizing d is equivalent to maximizing e and consequentlythe performance of a code can be evaluated by means of the parameter d.

In the next section we shall find the maximum-minimum distance of a groupcode, however, we must first define what we mean by distance.

The cyclic (or Lee) [16] distance is the function

n

d = di
i=l

where

di = min (ai -bi, bi ai}

and wl, w2 two codewords are defined as

W1  = (a 1 a2 a 3 .... an)

w2 = (bib2b 3 .... bn)

*M = pk usually.
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Onthe other hand the Hamming distance is defined as the number of places in

which two codewords disagree

d d= di
i 1

where

41 if ai  b
d=

0 if ai bi

In the case of p = 2 or 3 the two above mentioned notions of distance

become the same.

Example: Consider the two words in GF (5)

(P.= 5)

w, =4321210

w2 =12 4134 . --

w --w =.,-3 -1 2 01 4 = 2 4 2 0 1 4

1 .W 2 = 3 1 -2 0 -1-4 = 3 1 3 0 4 1

the Lee distance vector is 2 1 2 0 1 1 and

d. = 2+ 1+ 2+ 1+ 1 = 7

the Hamming distance vector is 1 1 1 0 1 1 and the Hamming distance is

dH =5

Definition: A systematic code is a code W that consists of codewords

w. c W such that the first k digits are the information digits; the last m digits

are the check digits and they are linear combinations of the information digits
REPRODUCIBILITY O F
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a i  c a i =k + m

Theorem: A systemati code is also a parity check code.

Theorem: Every parity check code is also a group code and vice-versa.

Since for any co e d
e- 2 ,

where d is the-minimum distance between any two distinct codewords, thenfor fixed n and M (k) the code with the maximum d (d = min. distance) is anoptimum code.

On the Maximum d of a Systematic Code

Consider an array made up of all pk codewords of an (n, k) systematic
P-nary code. This arrangement generates an pk X n array (matrix) called theC matrix.

Theorem: Each element of GF (p) appears exactly pk-I times in eachcolumn of C.

Proof: Each column of C consists of pk elements; to prove that each ele-ment will appear pk-1 times is equivalent to proving that the number of times
that each element appears is-a constant K and consequently K q = q and

Clearly each of the information digits appear an equal amount of timesbecause each digit is used with all pk-1 combinations of the remaining k - 1information digits. Now let us consider a check digit in the it h position (k i)

k

ai c= i a.

j=1

Since ai is a linear combination of the information digits and since eachinformation digit appears pk-1 times then a. will also take each of the p valuesan equal ntunber of times.
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Example: Let ak+l= a1  + aS mod 3, Table 6 shows the values of ak +corresponding to all a 1 , as combinations

0 0 0

0 1 - 1

0 2 2

1, 0 1

1 1 2

1 2 0 ,

2 0 2

2 1 0

2 2 1

Now using the closure axiom of a group code, the sum (or difference) of anytwo words is also another codeword and in the case of difference (sum of w. andthe inverse of w.) the distance (Lee vector of all two word combinations) is aword in the code.

Thus each element of the distance vectors will appear npk 1 times in C.

In the case of Hamming distance each non-zero element contributes a dequal to 1 so the total d is
P

npk 1 dw(ai = npk- ' (0 + 1 + 1 + 1 + 1 .... 1) = npk- 1 (p -1)i=1

In the case of Lee distance

d, min ai, - ai

thus d. takes on the values shown in Table 7
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Table E-1

The Lee Distance Functions

a. 0 1 2 3 p+ p+3
2- 2 2- 1

p+1 p-I p-3ai 0 p- 1 p- 2 p-3 - 1 2 . 1 0
2 2 2 "' I. 0

dwl 1i 3p-i p-i p-3

dw 0 1 2 3 - - 1 2 2 2 1 0

and the total d, is

S = npk-1 21 + 3 + .p is odd

S k- 2) k-1 [p2 - 1] p odd

Since there is a total of pk - 1 words the maximum d cannot be larger than the
average distance; thus

npk-1 - 1)

p
dH k (E-l)

and

npk-I (p2 _. I)
dL 4 (pk 1) (E-2)
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APPENDIX F

Multiplication and Division Using Modular and Simple Shift Registers

Let t be the number of stages of the Modular Shift Register of Figure F-la

with X repr senting the input sequence and Y the output sequence; if D signifies

a ayo-operator and Di a delay of i units, then

Y = X + h DX + ht-2 D2 X + ... + h Dt1 X + h D X (F-l)

= [I + ht-1D) + ht 2 D2 + ... h, D ' + ho D] X

if Di is replaced by A- where A is an advance operator the above equation

becomes

Y = A t [ho + h A + hA 2 +... ht.At-' + At] X (F-2)

Since the characteristic equation is

t-1

S(A) - hi Ai + At  (F-3)

i0o

the Equation (F-2) can be rewritten as

Y = D' [(A) + 2At] X (F-4)

the multiplication of X by At + . hi Ai is obvious; the Dt factor indicates that

one will need t extra shifts to get the product sequences out of the shift register.

Referring to Figure F-1b with X and Y as the input and output sequences

respectively,

Y = X + ht- 1DX + ht-2D2 X + hoD t X
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ho hi h2 \- ht-

Figure F-la. MSRG Multiplier

and obviously this equation is identical to Equation (F-1) and will yield the same
results.

Referring to Figure F-2a the division by this circuit becomes apparent by
solving for Y in terms of X

Y = Dt (X + hoY ) + Dt-lhY h 2 Dt2y + .. + ht- 1 D1 Y (F-5)

t-1 -2 2----- 1

hi .2 h2 h ho

Figure F-lb. SSRG Multiplier
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or

Y= Dt X X X
)t (F-6)

I- h.ti t - hi Ai (A) (F-6)

-0 i O

Similarly referring o Figure F-2b we can develop Equations (F-7y and (F-8)

Z X+ ht-DZ+ ht2D2 Z+ hiDt - Z+ hoDtZ

X D A t X -AtX

t-1
- t1 Q(A)- hi Dh-i A, . hi Ai

iO in0

but

Y = Dt Z
(F-8)

thus

Y = DtZ = - x- x
O(A) O(A)

Another dividing circuit with an advance equal to t is shown in Figure F-3.

The equivalence of Figure F-3 to Figure F-2b is apparent because X re-mains in the same place but Y is moved ahead by t stages which accounts tothe advance of amount t.

Thus for the circuit of Figure F-3

Y = X + DYh1 + ht-2D2
Y + hoDtY
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2 3 -l ,

Figure F-2o. MSRG Divider .

• -- -- -- --
-, D'Z =y

Figure F-2b. SSRG Divider

t 2 3 2 -- 1

h- ) (ht h h

Figure F-3. -SSRG
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y x AtX AtX
t - 1 t-1 (A)

I - hi Dt-i At - -h -Ai
i=0 i=0

In general the circuit of Figure F-4 gives the following results.

Y = [Z] + X = (hoDt+hlDt-L+. ht-ID) Y+ (-goDt-g D t - 1- . ' g t - 1D ) X] +X

(- hoDt -. hDt-1 -... h-,_D + I)Y = (- go D' - gDt-1 -... ,_D + I) X

t-1 t-1

C gi Dt-i + - g i Ai + At

i=o i=o "__(A)XY = x

t-1 t-1 (A)
- hi Dt-i + I hi Ai + At

i=O i=O

* Y

Figure F-4
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