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SHIFT REGISTER GENERATORS

 AND APPLICATIONS TO CODING

 ABSTRACT

The most important properties of Shift Register'Generated sequences are
exposed. The application of Shift Registers as multiplication and divisicn cir-
cuits leads to the generation of some error correcting- and detecting codes.
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SHIFT REGISTER GENERATORS

/AND APPLICATIONS TO CODING

INTRODUCTION

\ Randomlike sequences of 0's and 1's may be generated from any stage of a

Shift~-Register with the proper type of feedback connections; if the feedback con-
sists only of modulo 2 adders, then the sequence is a linear sequence and the
Shift-Register Generator is called a linear Shift-Register Generator. These
devices are useful in communication systems and error detection and correction
systems.

The contents of a Shift-Register Generator at time t are a function of the
number of stages m, the location of the feedback taps, and the contents of the
SRG at time t - 1, Thus if the m~tuplet in the SRG at time t - 1 is considered
as the state of the SRG at t - 1 then the state at t is the state ( t -~ 1) operated

on by some transition matrix, b

- SRG sequences repeat themselves, The repetition period depends on m, the
number of stages, and feedback taps, but camot exceed 2™ - 1 bits.* When the
period is equal to 2% - 1 bits, then the sequence is called a maximal sequence.

Il

MAXIMAL AND NON-MAXIMAL SEQUENCES

When the sequence is maximal, considering the contents of the SRG as an
m- dimensional vector, then the 2™ - 1 successive shifts will cause the contents
of the SRG to assume all possible values of a binary m~tuplet; i.e., if the 2™ ~ 1
_ (excluding the all 0's vector) vectors of the m-~dimensional space are considered
.. as points, one can think of the maximal SRG as moving from one point to another,
thus covering once all 2™ - 1 points in one period.

I

In the case of a2 non-maximal sequence the 2® - 1 points are divided into 2
or more sets and the SRG will cover all the points of the set from which a point
is used as the initial condition of the SRG. Using the above it can be shown that
the number of zeros in 2 maximal sequence is one less than the number of ones;
thus there are 2™} ~ 1 zeros and 2! ones,! :

. o
¥This will be shown lacer. O.(P p‘IPO\ .
; N Ty
This is the balance property of 0°s and 1’s of a maximal sequence. Ny %C OQ)Q
' 2.
'4@@7}‘ o
s 2
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As an example, consider the two 4~stage SRG's in Figures 1 and 2, where &4
comparison of paths is made between a maximal and a non-maximal SRG's. The
maximal sequence has a period 2™ -1 = 2% = 1 = 15 and the non-maximal se~
quence has periods of 6, 6,and 8, (6 + 6 + 3 ='15) . .

”

7oy

Euler Function and SRG Equivalence

Consider a maximal m-stage SRG with certain feedback tap connections.
There exist different feedback tap connections for the same m that produce other
maximal sequences, The contents of the SRG will again assume all possible
values of the m-tuplets (except the all zero vector) but the path will be different,
as shown in Figures 1-3, ‘ L
. The number of maximal sequences that may be produced by a linear m-stage
- 8RG is _ A N S -

o2~ 1)y
—_— ,
D L
‘ l_b /VEL ‘ - S __Period -- | : -
11213 (4 \ K. N :
) Maximal Sequence 1111000100113101011110...

" Figure 1. . A Maximal SRG
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1 -
AT1166M11100.

Sequence,
3 P? T ..f’.
/ S Sequence,f 000101000101,
P ' :
l-»] 4 3 -

Sequence 1 . . Sequence 2 - . Sequence 3

Figure 2. A Non-maximal 5RG

where @ (L) is the Euler functmn( D (2) and is equa.l to the number of mtegers
less than and relatively prime fo L.

In equation form,

) , N
\‘_. - -

@) = I;I piea"'l ;- 1), o | @

.—

- where p, are the divisors of L, and e, is the power to which the corresponding
- dxvxsors must be raxsed for L = Ilp e with p being prime.

Y
For example, for L = 6, p, = 2, P, =38, e, =1,¢,= 1
®(6) = 2°(2-1)3°(¢(3~1) = 2

fOIjL=12,p1=2,p2=3,e1=2,e2=1-

®(12) = 2! (2-1)3° (é—-l) = 4

-]

)
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' : !
m Sequence 1111010110010001111...

© e Period
A e

— ety
TN

]

L%

-h-,.)

Mull Sequence 000060000 ..

0107 N

}'. ooooj

The boxes with the individual "vec?or have been:
1 for comparison of the difference in paths.)

Figure 3. Another maximal sequence m = 4, {
- arranged identically io the ones in Figure



similarly for p a prime nwnber
®p) = PP (p-1) = (p= 1) 7,
Using the former method the number of integers less than 6 and prime to 6
is 2, (i.e., 1 and 5}. . : -
For L = 12 we have 1, 5, 7, 11; 4 in all. For L = 31 we have 12,3, 4,...

' 29, 30; 30 in all. For a 4 stage register there are

(2 ~ 1) _ o(15) _ 3959(3-1)(5-1) _ _
P = a = _‘ 2 = 2 maximal sequences;

these are given in Figures 1 and 3.

Up to this point the type of SRG's used are the ones where the feedbacks are
taken from a number of stages and the m'" stage, added mod 2, and fed back to
the first stage. This type of SRG is called a Simple Shift Register Generator
(SSRG) in contrast to 2 Modular Shift Register Generator (MSRG) where the
feedback is taken from the m*®? stage and fed to a number of stages and the first
stage through mod 2 adders.

- Each SSRG has an equivalent MSRG in the sense that the sequences produced
by each stage of any of the two SRG's are identical, except for a time delay.
An SSRG and its equivalent MSRG's are shown in Figure 4.

SSRG

&
3

|

il - ¥, Y

& e
t i i /’\ t ]
1]2 m-p mg M-y m 1 P loch q b, r _JQ m

Figure 4.

In the p-nary case the maximal sequence is of length p™ ~ 1, and it contains
all possible p-nary m-tuplets. . :



!
A polynomial of interest is f, {x)*; this polynom1a1 (2) is of degree ¢ (L) and
it contains all primitive Lt® roots of unity; if L= Op’ with p; prime !

F =1 T (xt/ees - 1)‘-- TT dserieem - 1y

i R | ,

fL(x) = | : . e (2)
H(x“"l - 1) 1"_[ (xl—/m PiPk ~ 1),

ik

If f, (x) can be f ctored into ' . . - .
/ .. . q)(L)/m - . ..\

fL(x) = ]_—_-[Pi'(rx) “mod p

ieg ;.

then P, (x) are primitive polynomlals and any P, (x) will generate 2 maximal se~
quence. . .

Equatlons Determlmng the Contents of an SRG and the
Matrix that Characterizes a Given SRG

If the contents of an m-stage SRG be represented by an m-dimensional row
vector, then the contents of the shift register one shift later are given by the
- product: . ‘ I

'c(t+'1)“ = A C(e)T o - ®

where A is a transition matrix that characterizes the SRG in question.

Figure 5 demonstrates A and the associated generalized SRG. To construct
A one may treat C(t,) as a state vector; the element a, . of A is unity if the
. contents of stage j of the SRG go to state i on the next shift. In the p-nary
case a;, takes the value of the multiplier connected from stage j fo stage 1i.
841, = 1forall j =1,2,...m (le., a,; = a3, a,,=...8, ., = 1)
This shift reglster and associated matrix are shown in Figure 5a,

For the shift register of Figure 5b in addztmn to the above a

. 34 © 8Bg3 T 34
= 845 < 8y = 1. '

S

*f, (x) is referred to as the cyclotomic polynomial,
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FigureSa.
— +
] 1| 2 o 3! 4]
\\. o Sy
,\\u
N 6 0 0 0 1 0
1 0 0 0 0 0O
o 6 1 0 1 0 o
A=1]0 0 1 0 0 o
B 0.0 0 ! 0 o
‘\\ 0 0 1 0 1 1
. 0 0 0 0 0
OF THE
%%El)g&DAL PAGE IS POOR Figure 5b.



. . i
It was previously stated that Equation (3) gives the contents of the SRG aftei'
- one shift; the contents of the SRG after two or more shifts are given by successive
applications of Equation (3); thus:* -

— . ”

s
-

C(t+2)T = A--C(£+ DY = A-A-Cc@) = A '-C(t)T.

Continuing in the same manner

cs )T = Al )T ' )

£

A in the above equatlon may now be cons.ldered as a shift operator whose ex~
ponent ¢ represer;t7€he number of shifts. -

The matrix Equation (4) represents m equations, (one for each stage of the
SRG). . . A e . .

.

If the content of stage i at time j is represented by U ( j) then at time j +1,
{one shift later) the content of stage i is . . _

UG+ DT = ALY )T o ®

where A is now considered as a shift operator and obeys the characteristic
equation (to be derived later) of the SRG.

The equation N
U (it k) = U ()

holds if there are no mod 2 adders between stages i - k and i in the SRG; the
above equation says that the content of stage i at t = j '+ k is identical fo
whatever the content of stage i - k was, k shifts before.

Equation (5_} may be rewritten as

AU (3) = U (D)

*
T stands for the transpose.



. ‘meaning that the contents of stage i - k at time j will be identical to the
contents of stage i, k shifts after time j.

In general, instead of speaking of the content of_ stage i ata specific time j,
we may refer to the sequence generated by stage i starting at timie t, as U(t},
and substitate U, (j) by U, (t) in Equation (5) :

AU (t) = U (t+k) = U;'_;‘(t)
or | : | P
AU (t) = U (t)

In words the above equation says that if there are no mod 2 adders between
stages 1 -~ k and i the sequence produced by stage i - k is identical to the
sequence produced by stage i, k shifts later, or sequence U, lags sequence Uj -
by k bits. - :

-

Simple Shift Register Generator (SSRG) and
Modular Shift Register Generator (MSRG) Equivalence

A generalized MSRG is of the form of Figure 6a with & standing for
modulo p addition, TJ standing for a unit delay (or a shift register stage) and
(h,) for multiplication by h_; the arrow indicates direction and in the case where

p =2 h; is ¢ or 1. The matrices Aggo.and A, . for the circuits of Figure 6
400....2.000h, | (0100000...0 0 |
10Cc..... 000N, 00100. . ... 0 0
010...... 00h, 00010.....0 O
001......00h, .- ‘

Aysre © | ., L i“‘!‘s_sxzc;,=

0000....000 1
| hohyhohye L hm-zhm_‘lj




k Figure 6b. An SSRG

»

by inspection A,.. = Asgc; it will be shown later that these two Shift Registers
have the same characteristic equation and therefore they are equivalent. A

Characteristic Equation of a Shift Register Generator

The characteristic equation ¢ (\) is found by solving(3) the equation

.o ¢(A) = det | A=A | - (®)

where I, is an identity matrix of order m..

B Since* det [AT ~ A1 | = det|A - A I_| the SSRG of Figure 6a and the MSRG
of Figure 6b have the same characteristic function,

*See Appeadix A.

10



-

This characteristic function is evaluated* to o ' o |
i

BO) = ) P R (AT P A with b £ 0 7

i®}

™
m-l l - - s moi .
= ) CUTERA s e = eaptt | ) s e

//—’ . ' . o
(-LE-¢g(r) = —[ho +hyA + hA?+ ..+hm_1h“"1]+ AP (8)

a monic polynomial of degree m not divisible by A,

\ Applying the Caley~-Hamilton Theorem' we have

¢ = -I:I * hjA+ h,A% + .+hm_1A'““1]+ A= ()

If the operation is mod 2 addition the minus sig‘n-can be replaced by plus.
Example., Finding the Characteristic Equation of a 4-Feedback Tap SRG

Consider the 4-feedback tap MSRG of Figure 6. This is a Modular Shift
Register with all h's except h,, h, h,, h, equal to zero; apphcatwn of Equa-
tion (9) results in the characbenstlc equatlon ‘

A’“+A'+A‘I+AP+1 = 0

1 P pti 9

q+] r r+ ] m

€
&

Figure 6.

*See Appendix B.

‘ Tqb(A) = 0 i.e. a mauix satisfies its own characteristic ‘equation,

11



Cycles of a Feedback Shift Register Sequence

Let us assume that we start with the m-tuplet C, in the shift register; at the

next shift the new contents are C,

T .. ..
cr = _Ac;f . ) ’
and at the ith ghift P ’
CiT‘* 1 = Ai CIT . R . (10)

'We shall prove that there exis

ts a shift ¢ such that

-_ - .o IBIL
Cp.y = K¢ = ¢, ) A,QRIGEVALF ITY Op i
. . L POOR
which implies that )
At =g for C, £ o. ._ o ,.(11)
Suppose that there is no such { so that :
Al G - o : _ :

then ¢ = » and this means that no m-tuplet will repeat itself for an infi
long sequence which in turn implies that the number of m

nitely
-dimensional vectors is

infinite; this is a contradiction because the number of m-dimensiona] vectors of

a finite fieid p is ™ -1 (excluding

g

the all zero vector; consequently
]

fph-1

the maximum value of - (designated by L = p® « 1) is obtained oﬁly when the

roots of ¢ w’rim‘iﬁve* i.e., the smallest ¢ for which £ = 1 is L =

* primitive polynomial in ¥ is one which ¢

'_pm"ln

annot be facrored {icreducible)} and which will divide

xt = 1forno fless than p® =1L (3 2100 con Appeadix C.

“

.

12



The number of irreducible (but non-prixhitive) polynomials of degree 4 is

¢(€,)/m

S0 a5y | s9(5-1) -
Mot T T T T T

Example:

Find the number and lengths of sequences for m = 6, p = 2;" 2" -1 = §3;
- the factors are 63 = 3%.7. Try 3; 3 divides 2?2 -1and £, # 3, Try 7; 7 divides
23 = 1; therefore £, # 7. Try3 x 7 = 21,itis relatwely pure w1th 25-1 = 31,
therefore £, =21; there are 3 subsequences - (63/21)

®(21) | 39(2) 7°(6) _ _
6 - 6 - '

Therefore there are 2 irreducible but not primitive polynomié.ls of degree 6.
When ¢ (x) is factorable with non-repeating irreducible polynomials as
factors (this implies that & (x) are relatively prime) we may express ¢ (x) as

B = by (x) by (x) By (x) . . B, (%)

The number of sequences, i, , and corresponding lengths, £, , for each of the
polynomials, ¢, can be expressed as {1, ., (£,)] and it signifies that ¢, (x) has

- one sequence of length 1 (the all zero sequence) and u, subsequences of equal
length €, . The reason for the name subsequences is because the space spanned
by the £, vectors of one of the u; sequences is disjoint from the space spanned
by any other of the u, sequences, such that the sum of all €, X p, vectors due
to all x, sequences W111 span the whole spaces of m,; -tuplets (except for the all
Zero vector)

Thus T l
eip'l = Pml =1
"/'
/
14 :

PRECEDING PAGE BLANK N FILMED /-



where m, is the degrec of ¢, (x); the expression {1, #;(2,)] is called the cycle
structure, thus if ‘

B = B (x) by (x)

and ¢, {x), ¢,(x) are irreducible with cycle structures {1, s, (€)1 and {1, #q{E,)]
respectively, then the cycle structure of ¢ (x) is

tooTy

(1400 [Lrma@)] = 14 u@) ¢ uy@y) * al) az

where* ' o

BOS pgp, ged(ly 2y)

and - P : R

€= fem@,l,)
then we have 1 sequence of length 1-(0' vector) !“1\ s'equences of length By py
- sequences of length ¢, and x sequences of length ¢, :

The sum of the lengths of all sequences is -

‘\“

) .~\-'. j ) ‘ 8 L . . . i
e, = . 1+ pply oty My, ged(l,, £;) tem(E,, 22) ’
but
Bed@ L) fem(ly 2) = it \
Thus
Goo= L4l +uyly +pp e, = (1 Pl (1t eyt

2N Pz = omitey

*20d o greaiest common dividor

fem — lowest common multiple

15
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™

which is the length of the sequences of anm, + m, - stage shift register.

-

The ab/oy,e,se'q’uences can be generated by the circuit of Figure 7 with the
pProper-initial conditions (contents). e P

S

Otjtppf

"

g
9
€
9

ENC R ; P(A)

Figure 7. lmplementation of a Sequential Circuit Whose ¢{x) is the Product of ¢,{x} and ¢2(x)

Nee

For example, let ¢, (A\) = A* + A3 + A2 + X + 1 with g, =5andp, =2
and $,(\) =A% + A + 1with £, = Tand p, = 1. The cycle structures are
{1, 3(5)] and [1, 1(7)], the resultance cycle structure is

[1,3(5), 1¢7), 3+ 1(35)] = [1,1(7), 3(5), 3(35)]

thus, besides the all zero sequence there is one seduence in the length 7, three
with length 5 and three with length 35 so that

1+7+3%x5+3x35 = 128 = 24+3 ‘ -

When there are repeated factors the results are too domplex. to cite here.

The Shift and Add Property of Maximal Sequences

The interpretation of A as a shift operator becomes obvious because every
time A operates on a sequence the sequence shift by one position, hence the
eprnent of A represents the number of shifts applied to the sequence or the
number of positions by which the contents of the Shift Register are advanced.
Since A is an advance operator A™! is the delay operator and it will be denoted
by D where D = A™%,

16



Shift and Add Property

If a maximal sequence is first advanced by an amount T, digits and then added
to itself mod p, the resultant sequence will be the same sequence with a unique
advance 7, from the original sequence, which is a function of 7, and ¢ (x)

.U; () +U, (t+7) = ‘U-i (t.+.7,) o _ (13)

or - . - . : c |

U (t)+ U, (t) A1 = U (t) A2 o L (14)
dividing the last equation by U, (t) .
I+A™: = AT - (15)

if 7, is known, T, can always be found although for most of the cas es" the pro-
cedurc may prove laborious and long. ¥

‘ If a given sequence is advanced more than once and if all the advanced se-
quences are added to the original one using mod p addition, the resultant sequence
will be identical to the original one and will have a unique advance from the

original sequence, i.e,, ) ‘ ! -

v, (t+7,) R, (£47y) + U, (¢ +_r-3)"".+ R A o TR 1

Pl

\ U; (1) Z ag A"l = U, (t) A" where ay is 0,1, ...p-1 - (17)
: =0 . T '

~

The above equation may be easily proven if 2 terms of the summation are added
at a time and replaced by a single term using Equation (14),

\



If Equation (17) is divided by U, (t) we have:

pm =1

E ap A’E = AT = (18)

o

I/ . - _
Equation (18) expresse/ a linear combination of all possible p™ - 1 powers of A
in terms of a single power, 7, of A if the arithmetic on the exponents s
7
mod p” . {For proofs see Appendm C.)

Example 1: - - -

. Consider/the MSRG A® + A + I = 0.in Figure 8a with an equivalent (in this

case identical) SSRG in Figure 8b. From 8b it can be seen that stage 1 lags

~ slage 2 by 2 shifts, that stage 1 lags stage 3 by 1 shift and stage 3 lags stage 2
by 1 shift. .

==

1
Ist Bit - T .0
' C ~ Figure 8b.
2nd ** 1 0 1 1
3d . N . .0 0 | 1
tth * o .. 1 0
. . \“\" ’
Sth 0 0 0
&h” . 1 v oo o o
Tt o R T LA A
gth " v 1 g )
9th BT R o 1 -
© 10 R | c o ' 1
ilth " 0 . 1 0 : ) ‘
o
Figure 8a. ' _ il

18



Now consider the mod 2 addition of stages 1 and 2 from Figure 8bh i = 1,
ik =1 -2,k = 2;

Uy +U, = U (1 +4A%) = AU, “ )

Taking the characteristic equation A3 = A + I and squaring it A = A? + 1
rewriting (19) - o -

Il

Atz A? + 1

t,, = 6 or stage 1 lags the mod 2 sum of 1 and 2 by 6 bits. The delay of
stage 2from 1is -2 or +5, ~ U, lags U, + U, by t, + (-2) =6 - 2 = 4or :
t,*+5=6+5=4mod7. The delay of U, from U, is -1bits or +6. -~ U; lags
U, +U, by t; + (-1) = 5bitsor t, + 6 = 6 + 6 = 5mod 7, The above results
may be verified irom the table of Figure 8, '

Example 2: : - “\..':‘.

" Consider the shift register of Figure 9.

19



80

U, +Ug + U, =_U2 1 + A2 ;'r-A'.-"]‘ = At

Let us solve for t.

now

80

If t refers to U,

A + T =

F)

— -

AS + A3 4+ T = At+s

AP+ 1 =

A7

AIO + A7
A?(A.?p + I)

AB+1 =

Now let us find A3 + I = A1

80

il

Att3 4 AS

A2(t*3) 4 alo

TA2(t+3)

= A2(t+3;

A2(t+3) -7

AS + T = A1 = A7

2t, = 7or 7mod 127 =

t =

1

20

134

67

N



AST = A3 4 I -_-fAzcﬁs)--?
t

AT4 = pA2(t+3)

; =

.

so . . .
\ U, lags U, e U, @ U, by 34 bits.

Auﬁo-Correlation of a Maximal Sequence

Recalling the definition of auto-correlation of a sequence ‘-\__;'
L -
: x(t)x(t + T) -
2 _ L -
t=1 . : 1

R‘."(T), = - — = 'I:‘Zx(t)x(t + 1) (20) .

sz(t) _ t“.l o

0

.

where 7 is the integral phase difference between the two sequences, and L is &
the length of the sequence. :

The terms of the above summation will be 1's if the corresponding digits of
the two sequences match, and -1's if they do not match. Consequently the terms
of the above summation may be considered as another sequence of =1's and 1's
whose average must be taken.*

Rewriting the above in equation form

*This definition corresponds to the distance being the Hamming distance for the non-binary case.

21



1 .
R, () = L (number of matching digits or 1's

1)

= nurber of differing digits or ~1°'s)’
(.

To solve for R, , () one must find the difference between the matching and

differing digits. One way to do this is to transform the operation of multiplica~ "
tion to mod 2 addition.

Examination of Figures 10a and 10b, the tables representing maultiplication
and mod 2 addition respectively, shows that multiplication may be replaced by
mod 2 addition if the 1's are replaced by 0's and the ~1's are feplaced by 1's.

i:xfy -1 1 N 4 y y{1]0 S Xy | x2y
or - Y
5 B B B SR N ER 1 "1 ]of1 ¢ - ojof oo
] a _
11-11 1 R B to f1]o 01| 1
. ’ i
|
=1 {411 =1 i V(01 1
woy. =1 1 1i T xey V1] 0

Figure 10b. x @ y

]

|

‘Figure 10a. x.='y *
: ' i

|

Then Equation (26} where x(t) and x(t + 7) is either 1 or -1 may be replaced

L

L
) : 1
Ry = T ) [1-29()]

t=1

’//\»hefe x{t) and x(t + 7) is either Qor 1,and y(t}) = x(t) ® x{t + 7).

The difference between matching and differing digits or the difference be-
tween the number of 0's and 1's under mod 2 addition may now be found easily
“by making use of the shift and add property of maximal sequences, since the
above operation is equivalent to taking a maximal sequence of 0's and 1's,
shifting it by v bits, (r # 0 mod 2% - 1), and adding it to the original sequence.

REPRODUCIBILIW @iﬁ T

ORIGINAL PAG); 1 5 ?‘g}%
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We know from the shift and add property that the resulting sequence (whose
elements are the terms of the summation for R__(7) will be the same maximal

sequence shifted in time by some integer delay 7,. Using the balance property
of maximal sequences, it is readily seen that there will be gn-1 1's and 2n~1 g
0's in the resultant sequence. Consequently 7

R /(7 1 (number of 0's — number of 1's)

1.

ol

(2:\"1 ../1 -z 2n‘1)

‘where L=2"~1,

For 'r:= 0 obyiously

1 T
o =R e S

The Shift Register as a Linear Filter

I
| ol
i

Consider the Shift Register of Figure 11.

X (=) X(-2 O X{t-3) X (1~ 4)
:-———--——-b— —— g |
o ' )
| Figure 11, -

If the input sequence X is u(t) = ..., 0001000000 ,.c.0eirierennacvanenonnrs
then the output sequence Y is Tu(t) = ... 0001100100 ....uvvevrnnnnnsnsnnas

u (t) will be referred to as the impulse function and Tu(t) as the impulse response
thus '

23



T u(t) = out) fu(t - 1) +u(t - 4) (22)

.

or in general

U .

Taut+i) = u(t+i)+u(t+i-1)+u(t+i-4) i 1,2,

u(t+i)+Dut+ i)+ Diu(e + i)

(T+D+D¥)u(t+ i) - - | (23)

Since this is a linear circuit, if X is a linear combination of k nnpulse functions
as given by Equa.tlon 24) :

y -
N

X = . i
;a‘u‘:_t + i) . (24)‘

then Y will be the sum of the responses due to each of these unit step functions.

Thus in the general case a, =0,1,2,... p -1

Y = mx =T Zau(t-i-x) = (1+D+n4)zau(t+1) @5)

llll ) ;Bl

- The transfer function of the filter is defined as

I+D+D* = T+ A1+ A% = A4(@at+ A3+ (26)

-
n
5¢] =
1t

If the input and output of Figure 11 are interchanged as shown Iin Figure 12 then

/ X = (D+DYX+Y

24



DX . ' D4X

L

Figure ]

or

(I-D=-D")X = Y

and the transfer function becomes P o R
- . x _ ' I ‘ - \‘ ’ . _;"' .
\\5\ b TY T Tpip - en

in the binary case Equation (27) becomes

= I L o - o8
" I+D+pD | _ (©8)
. N A
~. ‘ : :
By consulting Figure 6b it will be noticed that the characteristic equation of .
the SRG of Figure 11 is

\

SA) = T+ A+ A% = A4+ A4 T) = AT +D+ D

= AT
m

or in general for binary T

T, = Aﬂi¢(A)

o

25
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Multiplication and Division with Shift Registers

Referring to Figure 11 let

- 1 . 1

= = 2
X [ak'ak—l'ak—2‘ak-3’ak—4 o] g * Da,_, + D%a Bgoz oo

where D! is a delay operator representing a délay equal to iylet y, be the re-
sponse due to a; with the zero vector as the contents of the SRG at time 0~ then

yy T a, g 0 0 a, 0 0 0 0

Dy, = a_, a_; 0 0 a_, 0 0
D!y, = a _, 8,, 0 0 a._q, 0 0
D3y, = a,_; a_3 O 0 a,_, 0 0
| D4ys = .‘ B ..ak;“ 8, _ 4 0 0 ak-4 0 0
|
Diy, =- i Co s s ...,
.\‘\ I
!

Since this is a linear network, i.e., }
|

if¥(a) = vy~ ¥(a *Da_; +D?a,_, +l..0) = y; + Dy, + DAy, + ...

- ]
- H

-

\ | _ . 26.



UCIp
thus - . ORIG@JAL pAILmTY OF Thp

GE I8 pogp
Y( D“"iak,i)
i=0 .

- .—’

.ZDk_iyi ‘ | . | '{_: (29)

a + D(ak+ak-1) + Dz(ak-{"ak-g) + D3’(ak',2 + ak"'S)

n

H

4 5 -
.+ D*(a +a,.,ta,.,)+D (ak_1+ak_4+ak_s‘2 t.s.

44
+D (8o taygta )+ ...

£

(I+D+D*) a + (I+D+D*) Da,_, + (I+D+D*) D?a, _, + ...

it

(1+D+D*) (a, +Da,_,+D?a _,+...)

thus the Y sequenc is equal fo the product of the X sequence and the factor .
i1+D+D4, 7 '
s

" In general for the circuit of Figure 13

(h, +Dh_+D%h__,+D%h__ +. . DI + D7) (s, #Da, . tD%,+ .. 1)

e
H

k=2
= h(D)X(D) : ' N 2 = S
X
hn—3
& U
Figure 13. Multiplication by h, + Dh_., + D?h Dih . t.
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replacing D by A”! N

Rantoe

R = T+ &7h + K%, 4 Ll AT A
= & [y + Any ¢ A%, ¢ Lo 4 N R I
Md . . . | - . *
‘then

¥ o= D (AR + ATla v ] [28 - e ]

-

Thus after k + n shifts* the sequence Y'= TX - a, will be out of the SRG
output and the contents of the shift register will {000 ..., 00 gl. .

~ Thus the sequence described by the product of T and X will be out of the
register after n + k + 1 shifts. ' ‘ ' '

Notice that the function of the network of Figure 12 becomes obvious by -
applying the results of circuit theory :

\\

Y = TX

R

and this clearly indicates a multiplier. .

By similar procedure! we could arrive at a division network by réversing
the inputs and outputs, i.e., the transfer function of Figure 13 is(11}

T. = il
° $ (A)

*00's added to the end of the jnput sequence of k + 1 as

-
P

28

TSee Appendix F, - ya



and

. Y = - An x (D) . o f“ . (30‘)
¢ (A) -

In general the a modular LMSC can be characterized by the equation

PD)X = Q@)Y " -

for example in Figure 14

(b)

Figure 14, A LMSC and its Inverse

For Figure 14a

W = X+D2X+ DX + D¥X + D3W + D(W ~ X)

or

| (.I-D-Dé)w= (1-D+D%+ D+ D% X

and Dol
T = (I-D+D?+D%+D4)/I - D - Db

29



For Figure 14b

-

X = WD+ (X=W)D+ X(D?+ D%+ D) + W

or

X(I-D-D?-D% -D4) = W(I - D+ D%y

.i
I-D+D?
I _.D...I?ﬂ ...Ds _.D4

i
{
i
L

w,.
TD=E=

&
. \‘\.. M
Figure 15. A Division :Circuit .
Y _° 1
Ty = x = - : . (31)
I-h _.,D-h_,D*-h__,D “«.~h ;D' - ... -hyD"

Appendix F contains more general multiplication and division circuits.

. Error Correction with SRG's

Let a sequence X of 2™ - 1 digits be fed into SRG. The output sequence
W = TX where T is the {ransfer funciion of the filter; if the noise sequence in
the channel is N the received sequence will be

Y = W+N

30



. : .7 - . . ' “1 . H
if Y is used as the input of the inverse filter, T"!, then Py 0 gp Thp
Xy = T'Y = TTL(W+N) = X+ TN

To better understand the generation of a code let us take an example with the
SRG of Figure 16 and p = 2, :

Figure 16. -

The sequence W is 7 bits long (23 =1 = 7). If the number of information bits in
X is 4 then there are 24 =16 codewords Whose first four bits are the informa-
tlon bits and the last 3 are zeros. '

- Then

ﬂ}en /_ - PR . . . . X . ';r

w, = Tx; = (DP+D+1I) (a; + Da, + D*a; + Da,)

the x's and the corresponding-w's are shown in Table 1.

For the construction of Table 1, the impulse function 1000000 = X, Was
first considered and the response wg was found from W = TX; next the delayed
impulse functions x,, x, and %, were found by delaying wg by the corresponding
amount; once those basic responses are known then for a.ny i, if x; is expressed
as a linear combination of x, x and x, . . - :

o
_ i ‘ _
. X, blx1 + bzx2 + b“m:4 + baxs

2%y



Table 1

The Input and Output of the Encoder

—c (4)

xg =1000000 W, =1101000
X, =0100000 01106100 ~c(5)
X, =0010000 0011010 ~c(6)
X, =0001000 0001101 - c(0)
Xg = 2%, =0000000 + 2w, =0000000 ~ —
X3= x;3+tx, =0011000 T Wy = +w2=0J0110111-r(4)
Xs= X;*+x, =0101000 ws=w, +w, =0111001 ~r(l)
Xg= X+ x, =0110000 Wg=wytw, =0101110 ~r(3)
X =%t x,+x, =0111000 w, =w, +w,+w, =0100011 ~c(2)
X, =1001000 wg =1100101 « r(6)
X,=1010000 wo=1110010 - r(0)
X,,=1011000 | w;,=1111111 _
xp,=1100600 w;3=1011100 «1(2)|
%=1 01ooq// w;,=1010001 ~¢(3)
X,4=4110000 W,4=1000110 ~c(1)
- X, 1111000 w;s=1001011 ~ r(5)
the correspj/nvdi.{g_wi is ™
W, T byw; ¥ byw, + byw, + bywg
Consider now the sequence generated by ¢ (@) = (I + D + D3) = 0 in the

binary case; this sequence is s (0) =

1110100; the reverse of s{0), r(0) =

0010111; the complement of r(0) is c(0) =

1101000,

It turns out that the code W is the space consisting of all shlfts of the se-
guence, r and ¢ and the two vectors 000000 and 1111111,
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The set {wy. wg, we, Wg, W 5, Wy, “’15} which contains elements that are
formed by all possible shifts of the sequence r is sometimes referred to as a
simplex code. The addition of the additive identity (all zero vector) turns the
simplex code into a group code R. Our code as generated by the encoder of
Figure 16 consists of the elements of R and their complements.* - '

The received sequence Y is used as the input of the SRG of Figure 17

Xyt j\ ‘
' L <—( + <
I

Figure 17.

- -

If the noise is zero then X; = X (the three last digits of X, are zero)

Suppose that one noise digit is a 1 (single error) then the noise vector can
be considered as an impulse function and the response of the division SRG of
- Figure 17 to this impulse fumction is the sequence s, i.e., 1110100, then

Xy .= X+ 1110100
~ | .
an altogether different vector from X. Since the number of codewords for this
example is 16,k = 4 and m = 3, the last three bits of any X, are to be zero;

thus a non-zero vector in the last three bits of X, indicates erro*s by delaying
the impulse discussed above the single error N's and the corresponding 3 last bits
in X, are shown in Table 2. Then the last three digits of X, could ke considered

: syndrome.; or the phase of the maximal sequence to be added to X, to obtain X.
Notice that the dlstance here is 3 or 4 so that all single errors are correctable.

In general for single error correction in a sequence of 1enrrth n with m—0's .
at the end and k = n - m information bits we must have each of the $'s different
for each of the n impulses. For this to be possibie, each set of m consecutive

bits in the sequence corresponding to the impulse response must be different.

*The complement of {al,az,a.s,a,‘, s+ » ) is defined as (p—l—al,p—l-a,z,];-l —a,,
p=1-—a,.:.}withp asthe modulus.
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Table 2 ' . |

RV
N '. Error In
Information S
Bits

Ny-1000000 1110 1008,
N,~0100000 0111 010-—s,
N,~0010000 0011 “1 0 1S5,
N,-0001000 0001 110~—s,
Ng-0000100 0000 11 1~s,
Ng=0000010 0000 01 18,
Ny-0000001 0000 0015,
Ny- 0000000 000 0 00 0-—N,

Since we have n non-zero impulses and 2® - 1 S's then for this to be possible n
must be equal to & less than 2™ ~ 1 for all impulses to be correctable and each
of the m-bit subsequences of the impulse response of the-decoder should be
different. If n = 2™ - 1 then this is possible only if the impulse response of the
decoder is a maximal sequence. To determine the opiimality of this code the
Hamming Bound* equation will be used letting M be the number of codewords

‘-‘MSQ'/Z(?)- | ‘

i=o o T

For single error correction-e = 1 and

M<20/(n+ 1)

*For single error correction the Hamming Bound gives the same resulc as the Varsharmov-
Gilbert-Sacks condition. -
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When the equali;cy sign holds the code is perfect*; for n = 7

this implies that the maximum number of codewords that the code could have is
16. Consequently, since our code has 16 codewords, it is optimum,

Let us now review the necessary conditions for the existence of a single
error correcting p-nary code generated from shifts of a feedback shift register
sequence. If each single error is characterized by its amplitude (p - 1 values)
and position (n positions) the number of distinct correctors must be at least equal

o ni{p-1).

Since each signal X is an n-tuplet with the first k symbols used for infor-
mation and the last m symbols being zeros {(check symbols) the number of dis-

tinet (non-zero) corrector combinations is p® - 1, Thus: L
; o~

- LPR-1 | (36)

. : - —/-/ . . .
" / . ' ’ L R “
S . -' . ‘. ‘ ; .' . T
/ 7 - 7 ' . , pm -1 - L. ._"_

<
"= P11~

-,
\.‘.\

\ which is the familiar Hamming bound (or Varsharmov-Gilbert-Sacks condi‘tidn) o
~for the length of the code. Since n = m + k, the above equation can be rewritten

as

p* 1

k £ -
=5 =1
and it is an upperbound on the number of information bits {or number of words
M = pk). ' : : \
¥See (13)
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élity the code is optimum. Thus for an optimum
>

Again in the case of e

code

This implies fhat we need p™ = 1 distinet m-tuplets in the sequence S, which is
the impulse/response of the decoder .

S = T-! (10000 .... 000)

.

- The only way to have this number of m-tuplets is to insure that S isa maximal
sequence because only the maximal sequence has a length (period) equal to

pm-lo

Then the code will be n symbols long . - R
_ o1
n —

Since the length of the sequence is p™ -1 > n one needs only a segment of that
sequence for each codeword; the only question is which segment. To illustrate

the above let us consider an example.
Let p = 3 and m = 2;the maximal length of the sequence is L = p® - 1=28. '

Thus to find a polynomial which is primitive and period equal to 8 we must
first find fg () because f, () contains all primitive roois* with period 8.t

The order of the polynomial is four (®(8) = 22 = 4), and there are 2

2 )

maximal sequences. |

*See Appendix C. "@@Q e
TSinceg = 23 p, =2 €, =3 : @@G %
1 1 i &Rﬂé (o

7



The length of the code is

‘and k = n -m = 2; thus the number of the codewords is p* = 32 '= 9,

By using Equation (2) on page 6

fo(x) = —— = x4+1° - (32)

this polyﬁomial can be expressed as the product of two irreducible* polynomials

[

xt+ 1 (x2 4 x + 2) (x* + 2x + 2) -
$1(x) ¢, (x) _ . | _ - (33)

»

To find the matrices correSpondmg to ¢, (x) a.nd ¢2(x) use the matrix in the
companion form

0\.:. R 0

0 o
0.0 0 1
:‘o h, -2 hn"_u

*See Appendix C,
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thus

410 .1 -
S(x) = x4+ x+2 = det xI
! [ho hj
A = for ¢, (x) -~ T (34)
1 2 .
L
and '
| o 17 . : o
A = for ¢, (x) . o (35)
BN | : e

Now we must see if the polynomial qszfx) is primitive by raising its roois to
integer powers and observing the power L for which

(reot)t = 3 (37)

* if the smallest non-zero L that satisfies the ahove equation is equal to pm « 3
then the root is primitive and so is the polynomial. Since by the Caley-Hamilton
theorem the matrix A satisfies the characteristic equation ¢, (x) then we could
carry the above test with the matrix A instead of the root,

imblipn

) = Ar2avar = 0 U o,

by substituting all A2 by A + I we can obtain Table 3 for the powers of A.

\
\-\.
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Table 3

el
Ao. = 1 - I
— .
AL = A A
Al ='.A+'I. A+ I
A = A(A+I) = A2+ A = 2A+f
A* = AQA+I) = 2A2+A = 21 -
: | )
AS = A(2I) = oA
M=o = QA+ 21
A7 -= 252+2A_ = A+2I
A8 = A2 + 2A =",3A+I-=1, B -

" It should be noticed that the same results could have been obtamed by matrix
' mu.ltlphcatlon i.e. -

a2

A3

At

. 0 1]
A =
N S S
N ] ] _
[0 170 1 1
AA = -
1 141 1 1
. —O 1- -1 1 R rl
AAZ = - |
1 o1l 25 2
-l 1112 0] lo 2

39

1.
2
0

A+1
2+ 1
21

REPRODUCIBILITY OF THE .
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(o2 o 0 2] : l
AS = = = 2A
1 1} |0 2 12 2]
_ - _ - L {.‘
[0 110 2 2 2
AS = = = 2A+ 21
1 1] [2 2 (2 1]
0 11 2 2] 2 1] .
A? - . = - A+ 21 ‘ s
1 1] |2 1 1 0]
o Nooa 1 0]
A8 = = ] = I
1 ooj 1 2f o 1]

The shift register that obeys ¢,(A)in the form of Equation {(10) {p0) =
A2 - h A - hy = A% - X - 1 whichis equivalent to A2 + 2X + 2) is shown
in Figure 18; notice that the contents of the shift register at shift i represent
the coefficients of the polynomial representing A! in Table 4; notice also that
/ "

ol
il
!

'I‘ableiiz£ )

! .
Number X W Shift of s
0 /o‘__ooo 0600 0
/ 6100 0122 1
2 0200 0211 5
3 1000 1220 2
N 4 1100 1012 8
5 1200 1101 7
6 2000 2110 6
7 2100 2202 3
8 2200 2021 .4
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7 .

B

'l .

0

2

i
!

N

1

Figure 18. The PRG with + ¢,(N) = AT = A = T =(A? + 24 + 21)= 0

.

the sequence S...= 1120, 2210 is the mra:'éimal im

.two subsequences

where S1 ='1120,

s = 81,28l

and the Contents at Time i i =0,...8

pulse response and it consists of

The code can be generated by using the multiplication circuit which multi-
= A* + 2A+ 21, This can be accomplished with

plies by the polynomial b, (N)

the circuit of Figure 19,

41
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DX Dx

S -

. W
e \u—“z: o

Figure 19. The Encoder

so that

W = ¢ (A) X(A) = (A? + 24+ 21) X(A)

A*'n (I + 2D + 2D?) X(D)

The decoder results from the division circuit which is constructed using the
following reasoning, Assuming that there are no errors the received signal
Y = W multiplied by some function F must result in the transmitted signal X

i

FWo= x 0 L (38
.
but since
| W= TX | @)
Equation (38) becomes s //’ ’
FIX = ‘X .  40)

Equation (40) implie/sthat _ N _ |
. . . r \_ . _ 'I .
/ ~ F=x ey
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\

|

Since F is the output X, divided by the input Y Equation (41) can be rev‘rritteni
as : ' : ‘ !

X Y oy 7Ty o«
L) . I -
Y or Ky T (A A7 4 24+ 21

o (ld

Application of Equation (8) and Figure 6 with m =2 gives hy, = -2 hy, = -2
and the decoder becomes the circuit of Figure 20

R

-q—-r—b- L

NV -t o= A

Figu-re 20. -

>

Since -2 = 1 mod 3 the decoder of Figure 20 is equivalent to the decoder of
Figure 21, ' -

*

~
XN
T ¥
Y @) s Mod 3
A .
o~ ' Py Y
(v - o<

Figure 21, - The Decoder Corresponding to the Encoder of Figur‘e 11

The impulse response of the decoder is the sequence s of page 43; this se-
quence could aiso be obiained by long division as follows.
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A AT 11202210«8
1t 22 Vioo
~1 -2 -2

0110 ST -
B ) '
0 2 1.0
-2 -1-1 ) 5
| 0020 0 )
. - ~2-1-1 B
' - 0 220 .
\ SN - =2-141
o | 0120
L -1-2-2
0 010 0

The code W as generated by the circuit of Figure 19 is shown in Table 4 and
- is seen to be segments (subsequences) of the reverse sequence r of page 38.

The response of the decoder circuit of Figure 21 to all single error patterns
is shown in Table 5. It should be noted that all eight ((p- 1) (?)) single error

patterns are correctable because the corresponding correctors (the ternary
representation of the last two digits in the response excluding the 0000 vector)
are distinct. .

" To reconstruct the information symbols of X no change is required when
the corrector S is 11, 01, 22, or 02 (and of course 00),

When the error becomes obvious the beginning of the sequence must be
added mod 3 to X, to correct it; one way to produce the beginning of the sequence
if one knows the end is to use the connection for the reverse Sequence which is
produced by the shift register of Figure 22 (see Appendix E).



Table 5 °

: : Exror In Number -
Response = T"' N Information- .. S |-, Represented
Symbols - by S
1000 1120 1.1 2 0 6
0100 0112 ¢ 1 1 27 5
0010 0011. 00 11 4,
0001 C000 1 .00 S 001 1
2000 2210 22 14 3
0200 0221 . 0 2 2 1. 7
0020 0022 00 2 2 '8
0 0 0 2 0 6 ¢ 2 0 0 0 2 2
—
-The ﬂamming bound for this code gives the maximum k.
. . . ) . - 1 . . -
km" = nm“' -m for j‘ef' = 1
nmax = pnf'l +FM'2 PR + 1 -
N e s 4|
thus since in our case :is also equal to 4 tﬂis code is optimum.
1.
s ;’/’/‘
. _ﬁ' ',-H Y
AN \ % T
Figure 22.
RE’pR ..
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SUMMARY

Thus far we have used the m-stage Shift Register for single error correction

by encoding k digits into k + m =n suchthat - . __ R
f
p* -1 :
niS—T . ) (42)

with the equality resulting in an optimum code; it should be kept in mind that for
this class of single error correcting codes the check bits are equal to the num-
ber of stages of the shift register and n is determined from: Equation (42}, If n
is much smaller than thé value indicated by the equality of Equation (42) then

the cede may be able /2 correct more than single errors, For exampleif p = 2
m = 4 then all single’errors will be correctable if

n<p®—1 = 1§ -

ifn = 15then k = 11 and the size of the code, if a SRG is possible, would be
211, Suppose that we don't need such a large size for the code but we still want n
to be the length of the maximal sequence (n = 15) then the code if selected
properly will be able to correct more than all the single errors if k = 4 then
-M = 16 and we can use as codewords the 15 shifts of the maximal sequence and
the all zero vector. The Hamming distance for this code is 8 and the code will
correct all single double and triple errors and detect all quadruple errors.
These codes will be discussed later if we want k to be five M = 32, and the
code words will be the fifteen shifts of the maximal sequence, the fifteen shiftg
of the reverse sequence the zero vector and the 1 vector. Since the distance is
the weight of each code word, and the minimum weight of the reverse codes is 7,
the code will correct all single, double and triple errors, and it will detect some
of the quadruple errors (some of the distances have the value 8).*

Pseudorandom Codes

In the last section the codes were in general segments of the maximal gse-
quence; however the codeword was all L shifts of the maximal sequence. In
this section we shall consider codes whose words are the p* =1 shifts of a
maximal sequence and the all zers vector. : ‘

*This is the code described in £17).
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For this code n = p¥ - 1, the number of information digits are k, and = |
they could be taken as the 1st k digits of the sequence. This code can be gen~
erated from a k-stage SRG of Figure 23 loading the stages of the gcenerator
with the k information digits and then letting it shift for p* - 1 shifts,

o P
k4
Ty

»

f Yy
ay QG “ 9, |

R

o o A -

N/ h L/ -

Figure 23. Pseudorandom Encoder

This code can be decoded by choosing the best match* between the received
sequence and all shifts of a locally generated sequence using an identically con-
nected SRG, or by a division circuit or by majority decision circuits. The
optimality of this code will be proved by finding the minimum distance and com-
paring it to the theoretical upperbound (see Appendix E)} for sysiematic codes.

Since all non-zero codewords of this code are shifts of a maximal sequence’
the distance vector is also the same maximal sequence shifted by some shift.

Since a maximal sequence of length p* - 1 contains all possible p¢ -1
non-zero k-tuplets and since each digit has the same frequency except for the
zero digit that appears one less than any other element, each element must
appear p*~! times in the sequence and the zero element must appear p*~*! -1
times. ’ :

A T . .
This process is digital Correlation. -
/




Applying the notions of Appendix E, the Hamming distance of each distance
vector {which is also the minimum distance d;) is

s

P ks
dﬂ = pk-‘ Zdw (ai) = Pk-l (P = 1)

i=1

LY

but for any systematic code it was proven in Appendix E that d; cannot be
larger than N

! -~

npl (p— 1)
pk -1

letting n= p* - 1 we find that d; cannot be larger than p*~! (p~ 1).
Consequently this code is optimum with respect to .the Hamming }listance.
Using a similar argument for the Lee distance for this code

P *

. e (P L(p—1) _ pel(p? -1
dL = pk 1 Z dw(ai) = pk 1 ( )4( ) =: T )
i=] : .. .

but from Appendix E for any systeniatic code )

npt ! (p? - 1)
4 (p*~ 1)

“dL_i

again letting n = p* = 1
d <_]_‘_ k=1 ( 2_.1)
L=gP P
Again we see that the pseudorandom code is also optimum with respect to Lee

distance.
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~1
~ errors,

This code will correct all single double triple up to e

.

It should be pointed out that the correlation and majority decision decoding
are equivalent but use different mathematical notions. s

In the case of correlation we correlate by counting the matches and mis~
matches of the sequence and a locally generated sequence. The length of the
maximal sequence is L and in the binary case we count A (= number of matches)
and D (= number of mismatches). I

If A >D we decide that the sequence is correct. Since each sequence dis-

' L+ 1 L+1
agrees with all others in 5 bits it will take a change in- 4 Or more

, L+1 —
/bits(/4 ' errors) to have
, o o A>D
\for the wrong sequence, - B ' - '

L+1
In the case of majority decision each bit (say a,) is given by 5 alge-

braic equations.

If more than half of these equations contain erroneous bits, it is possible
that more than half of the equations will give the wrong solution for a,. Thus it
L+1 ‘ S
takes at least T4 errors to decode incorrectly.

Further Application of Shift Register Generators

The error correcting encoding and decoding application described in this
document are simply some of the immediate applications of pseudorandom se-
quences and multiplication and division circuits to coding,

Some of the important applications of these circuits are their use for en-
coding and decoding a class of cyclic codes called Bose-Chauduri-Hocquenghem
codes,* (BCH), and the Recurrent or Convolutional Codes. Due o their special
importance, the BCH and recurrent codes will be discussed in a separate paper.

h

-

*The Hamming codes are a special case of the B-C-H cﬁdes. :
- REPRODUCIBILITY__OF THE

ORIGINAL PAgR IS POOR
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APPENDIX A

The Characteristic Equation of the TranSpdse of a Matrix

It shall be proven here that the matrix A and jts transpose AT have the

same characteristic equation
let B = |A-AI|

where A is a constant and I the identity matrix

BT = |A-AIlT = AT-AIT = AT-AI
. . .o ‘ l’\\.
det JAT = AI| = det BT = detB = det A = A1
¢ _"-



APPENDIX B

The Determinant of the Companion Matrix -

T e »
-

Consider the matrix

A1000 0 0
0OA1000O ) 0 -
00 A 100 . .0

I\‘

B= 0000001 ) o
000 0 0 . 0O X1 ©
00 0 0 L. .00 A 1

N NI

~ | hy h: h, b By gh . * A

to find the determinant of the above matrix expand the determinpant in terms of
mmors of the elements of the last row :

det'B Z LR M+ (hooy M

for any i the minor is the determinant of the mairix B with the i'*" column and
last row deleted is shown below :



A .
r \.f. “‘\
"1 00!00 00 0]
" § = e ”
OX10100000 ’
i-1 ‘ )
. I '
00AN1,;00000
i 'L
000Ar}00000 “ e
S N i
M., = det ! = det [--1-
ni 0000! 10000 :
. i ‘
0000, X100 0| o 10
|
000010A100|pa;
!
0000l00Ar10
0070 0000 A 1]
‘. , - \.-/
i-1 -
= det Cdet E "

\but C is an upper triangular matrix with A in the diagonal_"elements.

det C = (A)i7!

.

and E is a lower triangular matrix with unity diagonal elements thus
M,; = det CdetE = AiTl(1) = )il

g0
n= 1 . -
E- 1)n+i hiul ;\i'l + (hn—l + '}\) Kl\'i

i=1

’ def—B

1]

| Z(:-n"**hi_l AIT1 4 Am o

izl

N

- 54
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APPENDIX C . }

Some Important Concepts of Linear Algebra and some Results of
' Galois Field Theory _
T e ”
r"'ﬂ
This Appendix is not intended to be a rigorous exposition of Linear Algebra
but rather a collection of definitions and results that are applicable to the ma-

terial of this paper.

1. Definition: If the difference of two integers a and b is divisible by a
third integer p then a and b are said to be congruent modulo p or in equation
form _ i

a b modp S (C-1)

In general if 0 < r < p then for any integer t

N

r +tp = r mdp (C-2)

all numbers ¢ +tp fort = +1, 2, £3, ..... form a class of residues
modulo p (C). : ‘ _

2. Addition, subtraction, aﬁd multiplication of the C_'s present no prob-
lem but division is equivalent to finding a solution for x in

: | AN
~. - i

i .
r = sx+¢t ,’
— !

i

letting r = 1, s = 3, and p = 6, thereis no solution for x; to insure the
existence of a solution of x for all s then p must be a prime. '

3. Fermat's Theorem: If an integef a iis not dividible by a'prime rumber
pthen a?™! = 1 (mod p). . ‘
Lo
Corollary = if a and p are defined as above there exists a unique
solution for ax = b (wod p) and it is found by multiplying the left side by 1 and
the right by aP~t - . :

\\ - .
7 1+ ax = a* " b (mod p)
dividing by a "X = aP 2 b (mod p.)
REpr =
0
A 55 ORIGEVEUCIPILITY , .
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4. Groups: A group is an algebraic system with one operation and its
inverse. The two operations that we are familiar with are addition and multi-
plications, with inverses subtraction and division resp; however, the operations
associated with an algebraic system may be other tharthe above and they
will be in general denoted by 6. Thus if the Group A is a set of elements a,

Ay, ++.. then a; © a; = a, implies that element a, results from the opera-
tion © on the elements a, and a; . The order of the group is the number of
element in the group. -

For a set of elements a,, a, .... to be a group under the operation 0, the
following four axioms must be satisfied. )
, .

i. Closure

Fpr a; €A, a; €A then (a; © a;). €A

il. Associative Law:

L w—

iii. Identity ?ement I
The 70 p contains a unique id‘entity element, I, such that

a; 01 = 102 =-a

iv. Inverses

There exists a unique inverse a;! for each element a, in the group
such that

a, @ a;! = ajloa =1
Note: The fact that we were able to commute the identity and the inverse
does not imply that all other elements in the group can in general

be commuted unless the group is commutanve.

by
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1
1
|

5. Definition: An Abelian or commutative group is defined as a set of
elements that obey the four axioms that define a Group plus the commutative
law. If the operation is addition the group is additive, I = 0 and a; =-a.,
Tf the operation is multiplication the group is multiplicative, I = 1 and
a;! = 1/a,. Obviously, since division by zero is undefined axiom 4 holds for
all non-zero elements in the group and in axiom 3 the identity must be non~zero;
for example all real numbers form an additive group, and all real numbers
except zero form a multiplicative group. The group of matrices is not Abelian

because matrices are not in general commutative.

-

6. Rings: A ring R is a set of elements with two operations addltlon (M),
and multiplication™ (.), that satisfy .

a. All addition axioms for an Abelian Group

b. The closure and Associative Laws for Multiplication

¢. The Distributive Law: if a, b, ¢ € R then . R
- C ' N

'(b+c) = a*bta-c
If the elements of a Ring satisfy the commutative law under multlphcatz.on then
the Ring becomes a Commutative Ring.

7. Fields: A field is a set of elements that satisfy all axioms of a Com-
mutative Ring and ﬁxrthermore 1t has RN : :

a. A multiplicative identity

-~

T

h. A mﬁltiplicative inverse for every non~zero element
| Thus a Field is

a. An Abelian Group under Addition

b. An Abelian Group under Mulfiplication

-b. The elements obey the distributive la.-.Q

For example the elements 0,1, 2, ... p~- 1 {where p is prime) form a Field,

*These two operations are not necessarily 1denncal to the ones that we are familiar with.

//



Thus a sct of s distinct elements forms a field of order s if the elements
can be combined by addition, subtraction, multiplication and division the
divisor not being the element zero {necessarily in the set), these operations
veing subject to the laws of elementary algebra, and ifthe resulting sum, dif-
ference, product or quotient is uniquely determined as an element of the set,

The requirements set forth by the division are equivalent to the existence
of a solution of r = sx mod p discussed in 2, and necessitates that p be 2
Drime. s

-

- The complete system of classes of residues modulo p forms a field if, and
only if p is a prime number. ) ‘

9. Definition: A finite field as defined above is a Galois field,
Euler's Generalization of Fermat's Theorem. o - oL

If a isprimetom > 0. -

allm) = 1 (mod m)

" where ®(m) is Euler's function and it is equal to the number of int'egers less
than m and relatively prime to m. ' D

hY

. _77\\

o

a8



SUMMARY

R

)
: =
i Lt
2 g
Postulates of Real Numbers R ;. 2 T
: R
(&, b, ¢ are in R) T S
88
€ wa O
|
I
I. Addition postulates: ok
i
i .
() a +* b in R (Closure) s X X .

(ii) a + b = b+a_(Commutative)
/

’/(m“} 6+ c) = (a +b) + ¢ (Associative) x X
{iv) There exists "0 such that 0+a=a :

(Identity) I S
o (v) There exists b such that a+b=0 g
\ (Inverse) .o

. Multiplication postulates:

(i) a.b in R (Closure)
(i1) a.b = b.a (Commutative)
(il) a.(b.c) - (a.b).c {(Associative)

(iv) There exists '"1'" such that 1l.a-a
(Identity)

(v) There exists b such that a.b =1
: (For a # 0)
- (averse) -

I0. Distributative law:\ a.(b+c) =a.b+a.c

69
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Commutative Ring

(Multiplicative)
Field

Group |
(Multiplicative)
Abelian Group
(Additive)
‘Abelian Group
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The aforementioned’notions of groups, rings and fields can be extended to
polynomials with a few'logical modifications on definitions,

&, For example two numbers are relatively prizne_if they have no common
divisors (except for unity), Two polynomials are relatively prime if they have
no common factors.

b. A number P is prime if it cannot be factored to a form
P T IRt | o

where P; 1s prime larger then unity and e, > 0.

Similarly a polynomial is prime (or irreducible) if it cannct be factored
into a product of prime polynomials, ‘

¢. A set of polynomials can form a group just like a set of any other
elements; under addition one adds the coefficients of similar powers.

N

d. Given a number p and an irreducible polynomial P (x) a congruence can
be established mod [p, P (x)] between two polynomials F (x) and f (x) by the _
equation . ‘ .

»

F(x) = £(x) mod [p, P(x)]
which implies that
FGO 2 £ +p - g(x0) + P(x) - Q(x)

if P(x) is of degree 5 then the degree of f(x) is less than n and its coefficients
are less than p. ;

(The above is equivalent to dividing F(x) by G(x) to obtain f (x) and then
reducing the coefficients of f(x) mod p). :

All polynomials of degree n -1 form a field of p” elements (the number of
distinet polynomials whose coefficients can assume one of p values, and there

are n terms i.e. powers of 0, 1, 2, RERTLE YN ;

T Lk



Then the ordered n-tuplet consisting of the coefficients of the polynomlal

completely characterizes the polynomial and there are p" of these n-tuplets that
form the field GF(p").

Powers of Elements o T -

We see then that we can treat polynomials as any other elements, so let us
cite some of the definitions that apply to elements of a group in general,

a. An element can be raised to a power, the element may be 2 simple one

such as a number; thus if we consider the group consisting of the numbers 0, 1,
2, 3, 4 (mod 5) then

n
0
1
R
b
H
&
I
[

20 =1, 21 =3 22 =4 23

On the other hand we could consider a. root a of the equation_

xrxr2 =0
then - L
=.-a=-2 = 2¢+1 (mod 3)
~
a® = 1, a3 = 2a2 +a=4a+ 2a = 2a + 2,

Still apother aSpect is an element x° which is congruent to an element f {x)
of GF(p™ mod [p, P(x)];thusif p = 3and P(x) = x? + x + 2 such that x =
2x + 1 mod (3, xz + x + 2)

N

x0 =1, x! =x x2 = 2x+ 1, x3>=-2x2+x=4x+1+x=2x+2,

It should be noticed that in the last two 'exafnnles there exists a one~to~one

correspondence between the powers of an element mod Tp, P (x)] and the powers
of the roots of the polynomial F {x).

D 3:} ~ T
@7;’6{ ST 4 v CIbIL ;
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Period of an Element

If a is an element, then the smallest positive integer e (e # 0) such that
a® = 1 mod p is called the period of the element.

Example: let a = 4 mod § ‘ . T

I
bo
"
e
tn
1

similarly the period of x mod (3, x2+ 1) (x?

x! = x x2 = 2 x3 = 2x 3“ 2x? = 4 = 1 e = 4

We‘al'so say that a belongs to the exponent e mod p or P(x).

Primitive Elements

If the cycle of an element a (mod p) is equal to the total number of non-
zero elements in the group then the element is primitive. -

Corollary: Since a' = b(i < €) is another element in the group and since
al = ¢ €G b Z ¢ then the powers of this primitive element a generate all
the non-zero elements of the group. )

Example: Element 2 of the Group (0, 1, 2, 3, 4) is primitive because its
powers generate all non~zero elements of the group

T

20 = 1 21 = 2 22 = 4 28 = 3 24 = 16 = 1

Element 4 is non-primitive (we could tell because ¢ = 2 less than 4 the total
non-zero elements) ‘

4 =1, 4 =4, 42 =16 =1, 4 = 64 = 4, etc.

then it does not generate elements 2 and 3.
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Similarly the powers of the element x generate all polynomials f {x} of
degree n - 1 of GF {p") modulo 3, x* + x + 2. Table 5 shows the coefficients
a, b, ¢ of ax? + bx + ¢ Mod (3, x2 + x + 2) and the coefficients d, e, f of
da? + ea + f of the powers of the root a of the polynomial x? + x + 2.

»
7

-

Since all 32 - 1 = 8 of the non—zéro elements of GF(p") are spanned (or
generated) by the powers of x the polynomial is primitive and its period is

e =p" - 1.
. Table C-1
o
The Powers of x Mod 3, (x2 + x + 2)
and the Powers of the Root a of x2 + x+ 2 =0
Number
b ¢ € £ Represented
x° 0 1 a® 0 1 | 1~
x! 1 0 al 1 0 3
x2 2 1 a? 2 1 7
x3 2 2 a? 2 2 |- 8
x* o] 2 ot 0. 2 2
x® 2 |_ o as . 2 0 6
~ .
x0 1 2 " ab 1 2 5
x7 1 1 a’ 1 1 4
% =1 0 1 a® =1 0 1

A primitive polynomial is also defined as an irreducible polynomial whose

roots are primitive. N

PR o
ORJG ODCTO[&Q L
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. |

Since usually the problem is to find the polynomial or polynomials belonging

to the period ¥ e the procedure of finding all 1rredu01ble _polynomials with period
e will be outlined.

First some preliminaries — since

x* = 1 mod [p,P(x)
then ‘ o .
x*-1 = 0 imod [p. P,(x)] ) T

whers P, (x) are all irreducible polynomlals belongmg to e. Thus, since
x* -1=0 1mphes i
. : ‘ i

i
1

xt -1 = f£(x) P,(x) + 0: for each 1

then each P, (x) must be a factor of x® - 1; the expression of the product of the
irreducible factors of x* - 1 is given by the cyclotomxc polynomial

/f 0 = f:lrim

A

LT . .
ch P; prime

4]

a 1
-
L

.

*This is equivalent w finding polynomials that have period e.
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As a matter of fa f, {x} hag all the primitive roots of period e. If

f.(x) has N such factérs and if the degree of each factor ig n then the degree_
of f_(x) is nN. R ' T s :
i

But it can b/a proven® thé.t the degree of f . (x) is ®(e) thus:

Nn = Qi(e) -
- o N = 2
) n

~if e = p" -1 then f, (x) contains all irreducible polynomials if with primitive
roots. , :

Determining Whether an Irreducible Pclynomial Is Primitive -

\rm

The irreducible factors of x® -1 (e = p® - 1) are identical to the ir-
reducible polynomials of all degrees n such that n divides m; then -

x*~1 = P(x) Pg(xj conr Py(x)

if the number of polynomials of degree n is I{n), then

. \‘ W0 J‘
-~

Qo .(n) = pn

On the Periods of Non-Maximal Sequences

If e divides p® -1 and e does not divide pi ~ 1 for any i < n then there

are

irreducible polynomials of degree n with period e.
Obviously if p® - 1 ig pri-mazaT then e must of necessity be p® -1 {maximal
period), . ‘

i
|

\ )
"\ . i

-

i

1

!

*{1] p. 20 o (11] p. 138 ‘R@R ),
; > 30D
1 Mersenne prime 1 ORIGJN’J CIBIZ
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~ APPENDIX D

The Reverse Sequence IR ’

Consider the shift register of Figure D-1.

X
»{ n n-1

T N
Figure D-1 - L
X = (h_D+h _,D2+,,.,+ }n,Dﬂ'l +h,DP) X : ®-1)
where o
$(®) = (I—h_D=h_,D2=~..., ~h D1 =h Dr) (D-2)
- ' . "/ B \\. B
PO

A sequence r reverpse to X is obtamed by letting the new sequence r be
the same function of the digits ahead instead of the past digits. This can be
accomphshed by cha gmg Di to D~i then the reverse sequence r is

r = Ah, D"l +h D2+ h,DI*n + heD™") r (D-3)

multiplying Both sides by D",

s = (h. Dl h D72+ ..., hD+hy)r (D-4)
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rearranging

(D=~5)

Comparing Equations (D~1) and (D-5) we can see that to obtain r we must

‘change h, to 5 and
i o ..

R
hi to -

n=i

h,

-

n=i
—

or h, to the negative mod p of

. Thus the SRG for r is.the cne in

1
I |

hO
Figure D-2. : N
; :
> h-1 : 3 2
e L__ %
| 1
N> anaN AV, -
l ]
Figure D.2
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Example consider the SRG of Figure D-3 p = 3.

=
—

. e ”
/ﬁ

O = NN O N ed g
AN DN s o—m O

S

Figure D-3

In this register the sequence is x =112 0221 0 and hy = h, = 1.
. 1 o
Changing hy to 7~ =1 and h, to ~~ = -1 = 2 we obtain the circuit of
Figure D-4. 0 o _

.
DS

© et = N O KN -
= e N O R RN D

|

—
o

Figure D-4
The sequence of Figure D~4is 1 2 2 0 2 1 1 0 which is the reverse of x.

Note: Division =~ mod p is accomplished by fa.king an integer t,

b
t +
1 = tjp—l,suchthatpb 2

is integer.
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*M = pk usually.

- APPENDIX E

Optimality of Codes (Hamming and Lee Distance)

There are more than one ways of defining optimum codes; one way is to
keep n the number of symbols and M the number of words fixed and find a code
Such that no other  (n, M)™ code will result in a smaller probability of error
(or larger e). ’

All e error correcting codes that do not correct any e + l-tuple errors
are called perfect (close~packed) and the ones that do not correct any of the
e + 2-tuple errors are called quasiperfect. Obviously both perfect and quasi-
perfect codes are optimum.

d-1
Since e = ~5 Wwhere d is the minimum distance between any two rode-

words in the code, maximizing d is equivalent to makinﬁzing e and cdnsequently

- the performance of a code can be evaluated by means of the parameter d.

In the next section we shall find the maximum~-minimum distance of g group
code, however, we must first define what we mean by distance.

The cyclic (or Lee) [16] distance is the function

where

d, = min {a; - b,, b, - a;}

*

~and wy, w, two codewords are defined as

1 T (ajaa, ... a) .

n

Wy = (byby,by .... b))
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Onthe other hand the Hamming distance is defined as the number of places in
which two codewords disagree

n ‘ T e .r’
d = Zd.t
i%1
. where : - . - - -
_ 1 ifa # b, - |
di = .
0 if a, = b, :

In the case of p = 2 or 3 the two above menticned notions of distance
become the same. ;o

Example: Consider the two words in GF &)

®=5

w, =432120
w,=124134 . -

wy=w, =~3 1201 4=242014

Vi-w,= 31-20-1-4=313041

the Lee distance vector is 212011and

\ _ ' .dL=2+1'+2+1+1=7‘

the Hamming distance vectoris 1 1 1 0 1 1 and the Hamming distance is

Definition: A systematic code is a code W that consists of codewords
w, €W suchk that the first k digits are the information digits; the last m digits
are the check digits and they are linear combinations of the information digits
; ' REPRODUCIBILITY Ci 14§
Y OF THE
ORIGINAL PAGE 1S POOR,
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e

optimmum code.

kl . T

a, = C. a. i = k+ 1, ., e Kt m .
2 i% hE o

-

d -
Theorem: A systematic¢ code is also a parity check code.

J -

¥ .

Theorem: Every patrity check code is also a group code and vice-—versa..

I

Since for any cyie ; _d-1
) e = -/

where d is the/‘minimum distance between any two distinet, codewords, then

for fixed n and M (k) the code with the maximum d (d = min. distance) is an

On the Maximum d of a Systematic Code -

Consider an array made up of all p* codewords of an {0, k) systematic
P-nary code. This arrangement generates an p¥ x n array (matrix) ealled the

»

Theorem: Each element of GF (p) appears exactly p*"! times in each
column of C.

Proof: Each column.of C consists of pk elements; to prove that each ele-
ment will appear p*~! times is equivalent to proving that the number of times
that each element appears is-a constant X and tonsequently Kq = q® apd
K =qg="1,

Clearly each of the information digits appear an equal amount of times
because each digit is used with a]] P*"! combinations of the remaining k - 1
information digits. Now let us consider a check digit in the itb position (ki)

wieewy T k

i E Ci aj

i=1

a

Since 2; is a linear combination of the information digits and since each -
information digit appears p%-1 times then a, will also take each of the p values
an equal number of times. ‘ - .
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Example: Let 841~ 8y * a, mod 3, Table 6 shows the values of 24y
corresponding to all a,, a; combinations -

0 0 0
0 1 1
0 2 2
1. 0 1
1 1 2
12 0
2 0 2
2 1 0
2 2 1

Now using the closure axiom of a group code, the sum (or difference) of any
two words is also another codeword and in the case of difference (sum of w, and
the inverse of w. ) the distance (Lee vector of all two word combinations) is a
word in the code. e ,

Thus each element of the distance vectors will appear np“"‘_times in C.

In the case of Hamming distance each non-zero element contributes a d,
.equal to 1 so the total d_ is
.

~
-

P | o
np"-lzdw(ai) LA CAE R LR LR PP SRR A

i=]

In the case of Lee distance

thus d_ takes on tHe values shown in Table 7
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Table E-1

The Lee Distance Functions

-— . P

p-1lip+1|p+3 -1
2" 2 2 || P

ptl|lp—1|p-3

~a,t0lp-1 p—-2|p-3 5 3 3 vee 1 0
p~l|lp~1|p~-3
d, ;0 1 2 3 | =3 5 5 . 1 0
and the total d_ is '

L . -1 7 A .

d, = np"'12[1 +2+ 3+ ,., p2 ] o P is odd .
+i .--1 n . -

= npk'—l,(p2 ) (P2 ) :_. zpk-l [p2_1] p odd

Smce there is a total of p* - 1 words the maxxmum d cannot be larger than the
average distance; thus ’

k=1 ' ‘
{(p— 1)
d, < E-1
H = ok 1 (E-1)
and
o =1 (p2 - 1) :
d < E-2
L S Tk o O . , (E-2)
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APPENDIX F

Multiplication and Division Using Modﬁlar and Simple Shift Registers

Let t be the _number"'of stages of the Modular Shift Register of Figure F-1a
with X representing the input sequence and Y the ouiput sequence; if D signifies

;’)elmator and Di a delay of i units, then -
| Y = X+h_, DX+h_,D?X+ ...+h D7 X+ heD'X t{F-1)

if D' is replaced by A-* where A is an advance operator the above equation
becomes . : . '

#

[T+ h. D+hyD?*+ .. D7+ hy

t

bt] X

N

Y = At[hg +h A+ hyA+ . b ATTH A X (F-2)

Since the characteristic equation i&

=1 ST
* the Equation {F-2) can be rewritten as
Y = Dt [~o(A) +24t]X (F~4)

the multiplication of X by A" + }; h, Al is obvious; the Dt factor indicates that
one will need t extra shifts to get the product sequences out of the shift register.

Referring to Figure F~1b with X and Y as the input and output sequences
respectively, - ‘ '

Y = X+h_,DX+h DX ... + heD'X



Y
f

Y

‘ Figure F-la. MSRG Multiplier -

and obviously this equation is identical to Equation (F-1) and will yield the same
results.
Referring to Figure F-2a the division by th1s circuit becomes apparent by

solving for Y in terms of X i

Y = D'(X + h, Y)+D" 11'1 Y+h D‘ 2‘.<'+ ‘e +ht_1D1Y (F=3)

]
/

Figure F-1b. SSRG Muitiplier -
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or

0 ptx X . '
Y = = - = -l-— ‘F..ﬁ)
t~1 g t=1 qS(A)
I - iDt"i ‘At - E h, Al _
£0 i=0 L

s .

Similarly referring to Figure AFL2b we can develop Equations (F-7) and (F-8)

L
. - ™
X+ hDZ+h,_;D?Z+... h, D12+ Dtz
‘ P-7
- X _ AtX C o AtX ? . ( )
) £-1 - t=1 YY) o
I --ZhiD"i U Zhi Al s -
' =i S §
‘ but -
Y = btz - '(F-S)
thus o N,
. ) '\4...
- DPATX | x /

E A7 Sl 7oy

Another dividing circuit with an advance equal to t is shown in Figure F-3,
The equivalence of Figure F-3 to Figure F

mains in the same place but Y is moved ahead
the advance of amount t.

=2b is apparent because X re-
by t stages which accounts to

Thus for the circuit of Figure F-3

¥ = X+DYh_, +h,_,D?Y +.,., bty

+
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Figure F-3. SSRG

(K

Y
Wl Y 2 2T, 3 e
}l] hz
Figure F-2a. MSRG Divider
— =Y
X DZ D2
=D hyo1 Z hymg e 3 :
- O “
N .Figure F-2b. SSRG Dlwder . '
2z
e t=1 b= +-2 ————— 3
A g %



X _ AtX _AX

¥ = t-1 - Tepmi - P (A)
I- z b DEmE - At - z Al "
i=o0 i=0

In general the circuit of Figure F-4 gives the following results,

LRI

= (@ +X= [(hDt+h, D14, . h, D) Y+ (~g,Dt-g, D1~ . g _ D) X] +X

-
(=heD* b D" = . h _ D+ I)Y = '(-- goD* — g, D71~ ...—g_,D+I)X

=1 t=1

.- E g, Dt-io+ 1 - E gi Al + At .
Y = 79 l X = =0 Xﬂ = q5g (Hx:
t=1 . , e “e &, (A)
- E hi Dt"'l + I T E hi AI. + Al

i=o . i=0 -

Y
¥
.

i
o

2 < T N $ Zr N
L/
i
hr-—l . Y
-+ @ ~t - i
Y

Figl..lra F-4
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