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REDUCE II - A COMPUTER PROGRAM FOR THE SYMBOLIC REDUCTION OF
LARGE BLOCK DIAGRAMS
by Carl f. Lorenzo and John P. Riehi

-

Lewi_s Research Center

SUMMARY

A computer program, REDUCE I, has been written to reduce very large (linear)
block diagrams. The program requires as input a set of algebraic expressions repre-
senting the block diagram, the desired transfer function(s), and a string of variables
indicating the desired order of reduction. REDUCE II then calculates the transfer func-
tion(s) of any output variable to any or all input variables. The program is premised on
reduction, by loops, of the block diagram. The solution is presented in the compact form
of a set of nested functions (super G's), The super G's define the transfer functions in
terms of the system infermation {G's) and the preceding super G's.

The program can handle as many as 600 equations and 600 variables and is intended
as a tool for the analysis of complex control and dynamic systems. Several applications
are presented.

A FORTRAN evaluation program, EVAL II, accepts the symbolic output generated
by REDUCE II and evalvates it numerically to obtdin amplitude ratio and phase angle as
functions of frequency for any desired G functions,

INTRCDUCTION

The use of block diagrams for the analysis of dynamic problems is well known and
widespread. As the systems of interest increase in complexity, new techniques are
sought to aid the controls engineer in the analysis and reduction of such systems,

Indeed, at least part of the motivation of modern control theory is to deal with the
problem of large system complexities through the organizational features provided by
the matrix approach.

The concept of block diagram reduction is to simplify the complex diagram to an
equivalent diagram composed of a single block or a few blocks, that is, to topologically



simplify the block diagram.

In reference 1, the predecessor of this effort, a program was evolved which sym-
bolically reduced block diagrams to obtain S form and iw form algebraic solutions for
desired transfer functions. This approach suffices for intermediate-size diagrams and
also gives fully expanded closed-form solutions. However, the method is limited to sys-
tems of approximately 30 equations (for transfer functions (G's) which are not too com-
plicated) due to storage limitations {for the IBM 7094 computer). EXperience with the
predecessor program has shown that while the closed~form solutions are desirable for
many scientific endeavors, the bulk of the potential applications were of an engineering
nature and could not be performed due to the size limitation. Most of these engineering
applications required only numerical resualts representing the desired transfer function,
However, the applications tended to be large and quite complex.

Direct matrix methods (ref. 2), for example, couid be applied to these systems.
However, these methods would require a complete matrix manipulation for each frequen-
cy and would become quite expensive in terms of computer time,

Another possible approach is to use the symbolic techniques as a part of a reduction
scheme, together with a decompositional method which would not allow the solution to
grow within the computer. The development of this approach is the objective of this
study.

The report develops the mathematical concepts and a computer program (REDUCE
II) to implement this approach. A numerical evaluation program (EVAL II) to use these
symbolic results is also developed. Applications of the programs are presented.

REDUCTION TECHNIQUE

In general, dynamic and control systems are analyzed by considering the character-
isfics of the elements (individual fransfer functions) and combining these elements into a
system which is the block diagram. The block diagram elements are (1) summers,
which add or subtract two or more signals X's; (2) blocks, which accept one signal and
modify it through multiplication by a frequency-sensitive operator G(8); and (3) nodes,
which split a signal into two or more parts. These elements are then combined to yield
linear block diagrams. For details of block diagrams and their reductions, refer to ref-
erence 1. This study addresses itself to the reduction of very large linear block dia-
grams (of arbitrary topology) to obtain the transfer functions of a desired output to any
or all inputs. The symbolic computer language FORMAC (ref. 3) is used to achieve the

reduction. The FORMAC language is an experimental extension of FORTRAN IV for the
IBM 7094 computer,



Basic Philosophy

The fundamental philosophy of reduction used in the REDUCE II program entails two
points which are incorporated to maximize block-diagram-size capability. First, any
steps which promote significant expansion of the forms within the computer are avoided.
For example, substitution of values of the G's is not done in the reduction program.
Second, the reduction of the block diagram must proceed in such a manner as to have the
system of equations collapse rather than grow in the computer. That is, as variables
are eliminated in the reduction process, the coefficients of the remaining variables be-
come combinations of the original coefficients (G's). As this occurs, these combinations
are replaced by single-element coefficients (super G's), and the mathematical equation
defined by this substitution is immediately output from the computer.

Technique

The general approach to the reduction is as follows:

(1) The system of linear algebraic equations which represent the block diagram is
input to the computer in symbolic form.

(2) Input is an order string, that is, a string of variables which guides the manner
in which the reduction is to be performed and indicates when a substitution is to be
made. From these data, the program reduces the block diagram by loops and, after
each loop is reduced, substitutes a new G (a super G) for combinations of G's formed
by the reduction process, By reduction of a loop is meant the elimination of those vari-
ables which form a cycle or a eircuit in the graph theoretical sense (e.g., see refs. 4
and 5). By virtue of this technique, the system of equations in the computer can only
collapse; and hence, the largest system which can be handled is approximately the larg-
est system of equations which can be initially input to the computer, or in practical
terms, that set of equations which can be held in core.

From the mathematical point of view then, we are starting with a set of linear equa-
tions in the variable X with coefficients {G's) which are considered to be constant.
Through the reduction and substitution process, we are transforming the original set of
equations into a new set of equations which define the super G's in terms of the original
G's and previous super G's and info a single equation involving the X's of the transfer
functions.

Even within this framework, a large number of ways exist to proceed, since the
form of the equations composing the solution set has not been stipulated. However, the
following desirable properties of the solution set can be projected from the intended use:

(1) Since eventually the solution set is to be evaluated numerically for amplitude
ratio, phase angle, and so forth, the super G's formed should be nested. That is, a



given super G should depend only on the G's which precede it and on the original G's of
the block diagram,

(2) A zero divide occurs when the denominator of a super G is evaluated to be iden-
tically zero. The solution set should be of such a form that the likelihood of a zero di-
vide occurring when the solution set is evaluated is minimal.

(3) The solution set should be of such a form that subsegquent equation scaling is not
necessary. For example, the process could be carried out in such a manner as to allow
only super G's of 2 sum-product form, that is,

Symbols are defined in appendix A, Now, while this form would be highly desirable in
terms of property 2, it leads to a scaling problem. Experience has shown that for cer-
tain common block diagram topologies (notably some of the ladder networks) the last
super G, even for relatively small diagrams, can be a function of w to a very large
power. This, of course, would only allow evaluation to a very small value of w without
some form of scaling. If scaling is to be done, it should be integral with the formation
of the solution sef.

(4) Finally, it is desired that the solution set be as compact or concise as possible.
This is a purely practical requirement, since for very large block diagrams the volume
of punched cards and printout could become unwieldy.

Properties 2 and 3 can be conflicting requirements. Consideration of properties 2
and 3 suggests that a most desirable form for the super G's composing the solution set
would be

GGy, + GGy -
1+ GGy + GhGiGj' -

(1)

GsupER *

or as close to this form as possible. This form is characterized by the fact that, for
G's of the same order, the super G would be of net order 1 and since the denominator
has a unity additive term, the possibility of a zero-divide condition (by allowing any G
to equal zero) is null. The G = 0 special case is considered important since it is the
fundamental method of simplifying block diagram topology. It appears that super G's
of the form of equation (1) can always be made to oceur if the block diagram is reduced
by loops.

This is demonstrated by the following simple example. Figure 1 is a block diagram
of a loop which is being consilered separately from a larger block diagram which con-
tains it. The defining equations for the embedded loop are



X - Xy - X5 =0
Xg - Xy - Xg =0
Xg - GyX5 = 0
Xy - GoXy =0
Eliminating the loop by eliminating the variables X4 and X5 yields

G4G G
x o -1%2 o 72

2" 1
1+ Gle 1+ G1G2

Xs

and

G GG
1 X. + 172

X, = e
3 1 Xs
1+ GGy 1+ GG,

where X2 and X3 are the loop outputs defined in terms of X1 and X, the loop inputs.

The coefficients of X4 and XB are the super G's associated with the reduction of the
loop. These super G's are seen to be of the same form as equation (1).

Figure 1. - Block diagram of embedded loop,

The fact that this kind of a solution form is possible, even for a loop embedded in a
large block diagram, has been used as a fundamental premise in the structure of the
computer program presented in this report. Not every equation affected in the reduction
of a loop will contain the 1 + GG + . . . coefficient form. That is, those equations out-

-ide the loop, but containing loop variables, will not at this stage of the reduction contain

ne 1+ GG+ . . . form. They might at a later stage. However, postponement of the



super G substitution is not advised, since the coefficients can grow unreasonably large,
defeating the program purpose. Contingencies arise when the loops are very large or
difficult to identify. These details are considered later.

Program Flow

Before considering the flow of the reduction program it-will be helpful to consider
the relation between the reduction and evaluation programs. This relation is indicated
in figure 2, The flow chart is composed of two basic parts: the algebraic manipulations

Algebraic manipulations Numerical manipulations

]
Substitution of
system information G's

[

Numerical substifu- Numerical input:
tion of iw for S (1) value of constant
{2 Frequency

|

7

I

I

I

i

I .
Reduction of system of l ]&I r___’
eguations to set of equations |

f

|

|

!

Algebraic input;

(1) Solution form

12) Block diagram inputs

{3} Transfer functions des|red
14} Block tiagram equations
(5) Reduction order string

in G's and super G's only Complex numericat
evaluation of
solution set

[

Calculation of
magnltude and
phase angle

Figure 2. - Relation of algebraic and numerical programs.

are done in FORMAC, and the numerical calculations are done in the companion FOR-
TRAN evaluation program. The expansive step of substituting the values for the G
functions into the solution set is posiponed until the evaluation program, Thus, larger
block diagrams can be reduced. Also flexibility is added since the G's can be changed
at will when the numerical evaluations are performed. Hence, it is not necessary to re-
peat the reduction of a block diagram in order to change the system. The only require-
ment is that the topology of the block diagram is not changed. Specifically, the topology
can be simplified by leiting G equal zero, but not made more complex,

The logic and flow of the reduction program are illustrated in the flow chart of fig-
ure 3. An understanding of most of the program function is best obtained by referring to
a sample reduction as it would be performed by the program. The system to be reduced
is shown in block diagram form in figure 4,
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{2) Number of equations gﬁmﬁgnn;er X
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)

Write
(1) Equations
{2) Order string
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numbet of equations
minus 17
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Get redu_ctlon substituted into during
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Yes
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eliminated
]

/  Call SEARCH N No

(et variabie to be
eliminated and equa-
tions to be substituted
from and into

Eliminate variable from
all eguations containing it

!

Figure 3, - Reduction program flow chart,



X4
J

Figure 4, - Block diagram of system to be reduced.

The defining equations for this system are

Xy -Xy-Xg=0 (2)
Xy -Xg-Xg-Xg=0 (3)
Xy - GyX3=0 (4)

Xg - GoX, = 0 (5)

Xg - GgXg =0 (6)

X - GyX,y =0 ("

Xy - GgXg = 0 (8)

The inputs are X1 and X,, and the desired output is Xs; that is, form the transfer
functions X5/X1 and X5/X2. Since the program reduces by loops, the order string
first eliminates the inner loop, that is, the variables X, and Xg. After these are elim-
inated, a super G substitution is made and the next loop (X,, X, Xg, and Xg) is elimi-
nated. The process is continued until all variables but the output and inputs are elimi-
nated. A reasonable order string for this problem then is

x3:x6: ,X4,X7, XBJ Xg! ’

where the single commas denote a variable elimination and the double commas denote a

variable elimination followed by a super G substitution for those coefficients containing

more than two G's., A discussion of the order string selection 15 included in appendix B.
The system of equations 1s reduced in the following steps in the same manner as



would occur in the program based on the order string given:

STEP 1: Eliminate variable X3. Since X3 occurs in equations (3) and (4), the sim-
pler expression (eq. (4)) is substituted into the more complex (eq. (3)). Then, multiply-
ing equation {(3) by G, and substituting X, for G;X, yields

0=0 (4a)
STEP 2: Eliminate variable Xg and make super G substitution. Here X, occurs
in equations (32) and (5). Again, results from equation (5) are substituted into equation
(3a), giving
0=0 {(5b)
Combining coefficients yields

In making the super G substitution, the coefficients of the X's of all effected equations

(here only eq. {3c)) are now searched fora +1 Xj: U G form. If the form occurs,
the equation is divided through by it and super G's are formed. Hence, equation (3c)

becomes

where
-G
Gg = S S

ig the first super G.
STEP 3: Eliminate variable x4. Equaton (7) is used to eliminate X4 in equation
(3d); then

0=0 (Ta)



STEP 4: Eliminate variable X,. Here X, occurs in equations (2) and (8); hence,

X1-G5X5-X8=0
0=0
STEP 5; Eliminate variable XB' Using equation (6) in equation (2a) gives
GgXy - GgGgXy - X5 =0

0=0

{2a)

(8a)

(2b)

(6a)

STEP 6: Eliminate variable X, and make super G substitution. Substituting from

equation (2b) into equation (3e) gives

G GgXqy + X5 - G3G4G6X1 + GglGyGeGeXe = 0
Combining coefficients yields

G3G4G6X1 - GyGeX, - (1+ G3G4G5G6)X5 =0
Recognizing the 1+ form and forming the super G's gives

where
G, - G3G4%
and
-G,G
_ 476
Gg

(31)

{3g)

(3h)

This completes the reduction as indicated by the order string. The only remaining
step is to form the desired transfer functions Xs/X, and Xg/Xy. To form X5/X1, let

X2 = 0 in equation (3h); hence,

G7X1 = ‘Xs

10



% 21

Xl -1

Likewise for X5/X2, let X; =0 togive

G8X2 = ‘X5
% _Cs
X, -1,

While it did not occur in this reduction, if at some step a variable to be eliminated
occurs in three or more equations, the simplest equation is used to eliminate it in all
equations in which it occurs. Also, if a substitution is called for by the order sfring and

an effected equation does not have a (;1:1 + 3 TT G} form coefficient, a 1.0 can be add-
i k

ed to the largest coefficient and this factor u]sed to scale the equation. I this is done,
the solution is said to be of the ARTIFICIAL form. If 1.0 is not added but the coefficient
itself is used to scale the equation, the solution is called the NATURAL form. The
choice of form is made by the user. The details of program implementation are covered
in appendix C. The descriptions, listings, and flow charts for the computer programs
are detailed in appendix D, A user's mamual is provided in appendix E.

Discussion of the companion program EVAL II is also contained in these appendixes.

APPLICATIONS

Applications of the program were chosen to achieve two objectives: first, to study
certain operating characteristics of the program, namely, operating time and size capa-
bilities; and second, to demonstrate the program for typical controls block diagrams.

Application 1: Simple Ladder

For this first study, a simple ladder block diagram of the form of figure 5 was re-
duced. This topology is typical of finite difference approximations to the wave or diffu-
sion equations, For wave equations, this would be a string of coupled oscillators,

The basic equation form for each of the ladder's 600 rungs is

X .- GX, +GX,,g=0 forn=12 ..., 508

11



X X

X + o X4 508 e " 600
/——%——1#—# ——?ﬁ

Gy Gy 63 et 1 Gsog Gogg
;l-zé'——x‘i——ﬁg‘" Xape

Figure 5. - Block diagram of simple ladder network,

To terminate the ladder, the equation

X600 ~ C599%509 = 0

was used,
The reduction order string for this problem is

X6007 > %5997 1 X59857 - - - X5 Xy » X3

The transier function desired is that for Xz/Xr Typical input equations and the first
and last parts of the solution set of equations as generated by the program are presented
in figure 6. The solution set (fig. 6) is output in the form of FORTRAN expression and
not as a mathematical equation. That is, mathematically

Grog Gsog

G(601) = =

The time history of reduction of the 600-equation set is shown in figure 7. As might
be expected, the slope of the curve indicates that the reduction proceeds more quickly as
variables are eliminated. The total reduction time for the 600-rung ladder is about
3500 seconds,

The repetitive nature of block diagram topology allows the solution to be readily
checked. Also, the repetition, together with the order of solution chosen, allows one to
consider the problem as a new ladder one rung shorter after each variable is eliminated
Hence, it could appear as though 600 ladder networks of lengths 1 to 600 were reduced.
The initial rate of reduction of each of these ladders against the ladder size is shown in
figure 8. Here the rates vary from 0.1 variable per second for the 600-equation ladder
to 0.5 variable per second for a 25-equation ladder.

The 600-equation ladder is the practical upper limit for the computing system used
for this study. Larger problems could be input; however, peripheral storage (noncore)
would be required, thus heavily penalizing computing time.

12



THE BLCCK DIAGRAM INPUTS

(1%

THE 30LUTION IS FOR X(2)% TO X{(1)%

THE BLOCK DIAGRAM EXPRESSIONS

1 X0 2)-G{  1)¥x({  1MG(  1y*x( 3)s
2 X0 3)-6( 20 2)+a( 2% ( s
3 X0 M-al  3)¥x( )+a{ 3IMX(C 5)¢
I { G D PR3 Wyrxl{ B)+c(  4)*X(  6)%
5 X{ 63-G{ 5)¥X{ 5)+G{ G)*X( T)$
6 X({  7y-a(  6)RX{  &)+3(  6)¥X(  8)%
7OX{  8y-gf TY*X{  7)+a{  TIeX( 9%
8 x{ 9)-0f gryex( B)+a{ €)*x{ 10)%
9 X( 10)-c(  93*x(  9)+G( 9)*X({ 11)%
10 X{ 11)-6{ 10)}2K{ 10)+6{ 10)%¥L( 12)%
11 x( 12)-6{ 11)#*x{ 11)+5{ 1L)¥X({ 13)$
12 X( 13)=G{ 12)®x{ 12)+G{ 12)*¥X( 1433
13 X 1M-c( 13)*x{ 13)+6( 13)#¥X({ 15)%
14 x( 15)-6( 21L}%x({ 21W)+G6( 14)¥x( 16)%
15 X{ 16)-6¢ 15)#x{ 15)+&5{ 15)¥X( 17)$
16 X 17)-0( 16)Y*X{ 16)+G{ 16)¥X( 18)3%
17 x{ 18)-a{ 17)*x{ 17)+a{ 17)*X( 19)3%
18 ¥{ 19)-6( 18)*x( 18)+a( 18)*¥x({ 200%
593 AC 59M)-G( 593)*X( 593)+a( 593)#*x(
sol X( 59%)~G( 594(*X( 594)+a( B4 *X(
595 X( 596)-6( 595)®E( 595)+G( 595)%XL(
596 X{ 597)-G( 596)¥X{ 596)+3( 596)*x(
597 X{ 598)-G( 5g7)*X{ 597)+@({ 597)1¥x{
508 X( 599)-3( 598)*X( 593)+G( 598)*X(
599 X( 600)-G( B99)*X( 9599)5%

(a) Input expressions.

555)%
596)%
597)$
598}%
5931 %
600)%

% # % QUTPUT FROM REDUCE ITI * * ¥

DENOM( 1)=

-3(598)%3(599)-1.0
G{ 600)=a(598)
G( 600)=G{ 600G} /DENOM{ 1}

DENOM{ 2)=
G(597)*@(600}-1.0

G{ 501)=G(537)
G(  501)=G{( 601)/DENOM({ 23

DENOM{ 3)=

G(596}%3(601}-1.0

597)=
G(2)*G(1195}-1.0
a( 11g6}=a(2)}

DENOM(
3(1196)=G( 11963 /DENOM{ 597)

DENOM{  598)=

G(1)*a(1196)-1.0

G{ 1197)=6{1)
G( 1197)=G{1197)/DENCM( 598}
TRANSFER FUNCTION X( 2)/%(

THE NUMERATOR
G(1197)

THE DENOMINATOR
{(-1.0)

(b} Solution-set equations,

Figure 6. - Simple-ladder input and solution set.

1}
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Figure 7. - Reduction histary of 600-equation simple ladder,
6
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0 100 a0 300 400 500 600

System size, number of equatfons

Figure 8. - Reduction rate as function of problem size for 600-equation
simple ladder,



Application 2: Complex Ladder

For this application, a ladder of coupled four-terminal networks was reduced. The
ladder is composed of 150 rungs, each having two equations; the block diagram is shown
in figure 9. For a typical application, each rung of such a ladder would represent 2 dis-
tributed parameter representation of the wave equation. That is, the transfer functions
of the blocks would be complex hyperbolic functions or delay times. The topology has

wide application.

X X X
1 3 209
Gy Gs Gsg7
+ + X5 + x}ﬂl
+ + +
|
Gy Gg ‘ Grog
[ R R
Gy = 67 — ! : Grgy
+ T + +
Ko Bt ¥ X300 +
2 . X302
64 %4 Gg % G600
e P V'__“-‘-___‘_/ i S 2
Rung n=1 Rungn=2 Rung n = 150

Flgure 9. - Block diagram of complex ladder network {four-terminal elements).

The basic equations for each rung of the ladder, for n=1, 2, . . ., 150, are

Xone1 ~ Can-3%on-1 ~ CGan-oXon = 0
and
Xon - Ggn-1%one1 - GynXoneg = 0

The desired transfer functions are }(2/X1 and Xz/X302. The reduction order is
X301 X3000 X299, Xogg: Xagp » -+ - 12 Ko K550 Xy X3

The first and last parts of the solution-set input equations are presented in figure 10
The history of the reduction is shown in figure 11. The total time for the reduction is

1010 seconds.

Somewhat larger ladders of this type could be reduced with the program if the di-

mension of G is increased. This was not attempted in this study.
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300—

200—

100—

Number of variables eliminated

i | I i |
0 .2 .4 N .8 L0
Time, ksec

Figure 1L - Reduction history of 300-equation camplex
ladder,

Application 3: Jet-Engine-Inlet Shock-Position Control

The block diagram of figure 12 represents a system for control of the position of a
shock wave in a supersonic inlet for a jet engine using engine fuel flow. ''Modern'' con-
trol techniques were used to design a controller to minimize the occurrence of inlet un-
starts in the presence of a stochastic disturbance. The control designer wished to ob-
tain specific transfer functions from which system frequency domain behavior could be
studied. Since 2 PADE' approximation to the inlet plant dead time had been made for
control design purposes, it was important {o determine the effect of this approximation
on dynamic performance. Transfer functions X7/X1, X’E’/Xz’ and X7/X3 were obtained
for this reason. The equations representing the plant and controller (the block diagram})
as input to the program are shown in figure 13(a). Also shown is the order of reduction.

The block diagram inputs are X;, Xy, and X;. The results of this reduction {(using
the ARTIFICIAL form of solution) are given in figure 13(b). From these results, evalu-
ations with different plants and controllers can be made as long as the topology of the
block diagram does not become more complex. Essentially, any simplification of the
topology is possible.

For example, we can check the plant transfer function by simply evaluating X.-‘,/X2
with Gqg to Ggy equal to Zero. This check capability, by specifying certain G's to be
zero, i8 useful when working with very large systems. Alsgo, it is nearly always possi-
ble when the solution is of the ARTIFICIAL form.

The time required to execute this reduction is 25 seconds. The system is approxi-
mately equivalent to 50 elementary equations as determined by consideration of the num-
ber of simple summers and blocks of the block diagram,
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Figure 12. - Block diagram of jet engine inlet conttol.



THE

THE

THE

THE

THE
THE
THE

BLOCK DIAGRAM INPUTS

xi1)s
Xi21rs
X(3}s%

SOLUTION IS FUR XU{7)$ TO THE INPUTS
BLOCK DIAGRAM EXPRESSIONS

—XULDI+X(9)=GLIDIRX 126 =G 1L )aX[15)~Gl1Z#X{146)-0l13)»X{13)~-GI14)eX112)-GLA5}aX]
111%

KCLV+X(6)-X(T)1$

XU -X{17)-K(4) 8

X{2)ex{4)=%15)8

X(6Y-GlLIeX15})s

X{Ti-X{ldy-x(a1%

~X(2I¥G{9) ek (BI+GI2YeX14)%

X1111-G{2)#x{10)$

~XI121#GLRGI8 aX (B8 +GE3) =X (11} S

10 —X(L3)+G{3)#GITI%X(8I+G(3IsX{12)%

11 ~X(16)14GI31#Glo)eX(BI+GI3)#X(13)s

12 —X{15)+G(3)eG(5)eX{BI+G(31«X(14)8%

13 ~Xt15}+GL3)Gl4)eXtB)¢GI3)aX(15)8

14 =X(17)+G(1l6IeX{Ll6)+G{L1TI®X{ 51 +G(LBI#+X{14)+G{LFaX{13)+G(20)ex(121+5{21)2X(111}%
15 —X{123+G122)¢X (161 +G{23)¢ X{15)+G1246)eX114)+G(251X(13])%3%

O O o OB R e

REDUCTIDN GRDER 15

1 O XTL0D e XOLR) g X {120 4o X413 )0 aXTl4) oo X{L5 3o o XUL6) oo XLV »X{1B) +X(Bae XU6) 4 XT{1TEyX{4)
2 »aXi5)%

LARGEST VARIAHBLE SUBSCRIPT IS 18
NUMBER 1F EXPRESSIONS IS 15
LARGEST FUNCTION (G} SUBSCRIPY IS 25

(a) Input equations,

* & & QUTPUT FROM REDUCE I # = =

DENOMI 1}=
~G{3)aG{20)1-G{21i+1.0

GI 26)=
- ~G{31#G{201-G(21)
Gl 2631=G( 261 /DENIMIL 13

G{ 27)=
GL3IaGIBIG(2])
G 271=GL 27)/DENIML 1]

Gt 28)=

=GI31»5116)
Gl 28)=GI 28)/DENJMI 1)
Gt 29)=

(b} Solution-set eguations,

Figure 13, - Input and sofution set for jet-engine-control problem, -
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20

-G{31=5407)
Gl 29)=6G1 29)/7DENDMI 1)

Gt 3=
-G(3)%5(18)
Gy 32)=G(  30)SOENIM( 1}

Gt 31)=

=5{3)45{19)
G{ 3L1=G¢ 3LI/DENOM! 1)
G{ 32)=

Gt3)
Gl 32)1=Gl 32}/DENOML 1]

DENLIM{ 2}=
GE3)=GlLS+GI3 ) ##2  #GlL4)+1.0

G{ 33)=
~G{3)#51B)-Gl I} #xZ #G(B)=G{15)
G{  331=G( 33)/0ENDOMI 2)

Gl 34l=
Gi{3}wa2 aG(10)
Gl 341=G{ 34)}/DENIM{ 21

G{ 35)=
G{3i==?2 =GLI1L)
GI 35)=G{ 35)/DENDMI 2}

Gl 36)=
GU3)ae2 =G(l2})
Gt 35)=G{ 326)/DENOM{ 2}

G{ 37)=
Glal=a2 =#G(13)
G{ 371=G( 37)1/0ENIML 21

G{ 38:=
—G(3)ne2
Gl 38)=G{ 38)/0ENIMI 2)

DENOM{ 3=
GE3»GITI*G{264~-G{2)«((27)+1.0

Gt 39)=
GI3YeGITI*GI26)-L13)*G(2T)
G 39)y=G( 391/DENTIM{ 3)

{b) Continued.

Figure 13. - Continued,



Gt 4J)=
~G(3)1+3128})
G{ 42)=G{ 40}/DENOMI 3)

Gt 4l)=
=G(3)*51(29)
Gl &4l)=Gt 41)/DENDMI 3)

G{ 42)=
-G(31%3(30)
GO 421=G( 42)/0ENDM{ 3}

Gt 43)=
=~GI3}#5(3Y)-G{26)
GL  43)=G( 43)/DENDMI{ 3)

Gl 44})=
~Gi3je5(32)
Gl 44)=G(  44)/DENOM( 3

DENOM{ 4)=
=G(3)*5{37)-1.0

GL  45)=
Gi31eGITI-GI3)8G(23)
Gl 4531=G( 45)/7DENOM( 4)

Gl  46)=

—G{3)#53(34)
Gl 45)=G{ <46)/DENDM{ 4)
GL 473=

=Gl3)x5135)
G 471=G{ 47)/DENOMI( 4)

Gl 48)=
=G(3)=6136)
Gl 48)=Gl 4B)/DENDM{ 41

Gl 49)=
~GI3)=5138)
G{ 49)=G{ 49)/DENDM|{ 4}
DENOMI 5)=
~G(3}25(24)-G125)+1.0
G{ 53)=

{b) Continued,
Figure 13, - Continued,
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~G(3eG124)-G125)
G( S53)=G{ 50)/DENOML 5)

Gl 51)=
G(3)#GLeleG(25])
6{ 511=G{ 511/DENIM{ S

Gf 52)=
~-G(318G(22)
G(  52¥=G{ 52)/DENIN( 513

6L 53)=
—G(3)#G{23)
G{  53)=G( 53)/7DENIM{ 51

Gl 54)=
G{3)
Gl 54)=Gl 54)/DENIMI 5)

DENOM( &}= !
G{3)2Glo)2G{43)-G13)eG{39)+]1.0

G{ 55)=
GL3)1#G16)2G143)~GI31nG]39)
Gl 55)=G{ 55)/DENOM{ &)

G{ 58)=
~G(3)a5(40)
Gl 56)=G{ S&)/DENIMI 5]

Gi 571=
~Gl3)ap{4l)
GU ST)=G( S7)/DENIM{ &1

Gt 58)=
=G(3)#+6(42)-G(43)
Gt 58)=G{ 58)/DENIM( &)

Gl 53%1=
=G{3}=G{44)
Gl 59)1=G( 59)/7DENIM{ 6}

DENDOMLE T)=
=G{31+6{48)-1.0

Gt 6D)=
GI3)1#G{6)-G(3)=G(45)
Gt 63)=G( 60)/DENDMI T

(b} Continued,
Figure 13, - Continued,



Gt 6l)=
Gt 61)=GI(
Gt 621=
Gl 621=6GI
Gt 63)=
G{ &31=Gt
DENOIML

Gl 64)=
Gl  641=GI(
Gt 651=
Gl 651=Gt
Gl &5)=
Gl &6)1=GI
Gl 6&67)=
Gt 6&671=6t
DENGM(

G{ &8B3=
Gl 681=GH
Gl 69)=
Gl  691=G1
G{ 70)=
Gt TI)=G{
Gt Tli=

a8)

9}

~Gi3)=5146)
61)/DENIMI m

~-Gi3i=5(4T7)
62) /DENIML A

-G(3)e5{49)
&3) /DENDM{ 71

G(3)2G(5)#56150)-6G(3)+G(HL)+1.0

G?3l*6!5]16150)-Gl3liG(511
64 ) /DENIM{ 83

-G131+5152)
65) FOENDMIT 8)

~G{3)#5{53)-G(50]
661 /DENIM{ a)

~GI3)%5154)
671 /DENOM{ 8)

GL2I+G(S)*G(58)1-G(3)=G(55}+1.0

G(3)2G{51+4G(58}-C{31=G(55)
581 /DENIML 2}

—G13)4G(56)
69)/DENDML  9)

=G(3I*515T7I-G(S58)
TO)/DENOM( @)

(b Continued.
Figure 13, - Continued.
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-G(31e51(59)
Gt 7L)=Gt¢  T11/0EHIMI 2)

DENOME 101 =
~Gi{3e3{62)-1.0

Gt 721=
GI3 eGIoI-GI3 )0 1b0)
6l 721=G( TZ2yv/uEnIMO 1)

G{ T31=
~G{31e5{41)
Gl 73)=G( 73)/DENIM(  10)

Gi T&4)=
G325 163)
G  T4)=G( T4)/DENDML 10}

DENOMT  111=
GL3)eG{g)eG(561-G131eG164)+].0

Gl 7¥3)=
GU3)sGl 4 =G (66)~G(3)eGI04)
Gt 751=G( T5)1/DENIM( 11!

G{ Ta)=
—G(31#5{65)-Glo6]
Gi  75y=G[ Te6I/DENDMI 11}

Gt 17i=
~G13a5(67)
G{ TTy=Gi{  TTI/DENIML 11}

DENOML  12)=
G{3YnG{4)eGITO)-GL3I *G168)+1.0

G{ 78})=
GE3)1eGl4)eGITOI-GL3I#GI6E)
Gt T8I=G( T8y70ENIML 12}

Gi 1=
~G{31e5{621-G(T70)
Gt 73)=G1  TYIJUENDIML 12)

Gt B82)=
=GE3)#GLT)
GL A31=G( SOI/DENIM{  12)

(b} Continued,

Figure 13, - Continued.



DEfE:M{ 13)=
~5L31e5073)-1.0

Gl fAl)=
GIAY*GLAI-G(3GUT2D
Gt 311=G( &1 /0ENIMI L33

Gt 82)1=
—GL3ye5(74)
G{  82)=G{ B2}/ DENIM[ 13)

DENGM(  14)=
~GULISI+GITAIRGIBLI+1.0

Gl 83)=
—G{T5I+GITEIRG(EL)
Gl B3)1=G{ 83)/DENIM[ 14}

Gl B84&)=
GiTe) =51 82)
G{  8%)=G( 84)/DENIML  14)

Gi 851
-G{TT)
Gl B85)=G{ 85I/CENIML 14)

DERNDM( 15)=
=GUTEI+G{TII=GL8LI*#1.D

Gt 85)=
~G{T81+G{79)+GLRL)
Gl 856¥=G{ gel/RENOML 151}

GL BY)=
Gly91a5082)
G{ 87)=G( &T7)/DENIM{ 15]

Gt 88)=
~G{8ul
Gt HBBI=GI{  Bd)/LENIM{ 151}

DENOME  16)=
GU2YeGiBI)aG(BTI-G(2) 45 8a a5 {06 -Gl2) e {B859)#5(8T)41.0

G{ 83)=
GL2YRG(B 3 e GIBT)-GI2I%GIR4 #8060 -0{21sG(85])aG{RBT)
GI B?)=5 89Y/DENIML 16)

{h} Continued.

Figure 13, - Continued.
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Gt 901=
G{9)#GIB4)#G(BB)+GIB31#G(BB)~G{851G(HE)
Gt 90)=G{ 90)/0DENDM( 16)
Gl 91)=
~G{91#5{BS)*G(BTI—GI85)%G{86)
G 91)=GL SL}/DENIM( 16]
DENOME  17)= -
Gtag)~G190}+1.0
Gl 92)=
G{89)-G190)
Gt 32)=G{ 92)/DENIM( 17)
Gt 93)=
-6(89)1+G130)
G{ 931=G{ 93I1/DENIM( 1T}
Gt 9%41=
~6(90}
Gt 94%)=G{ 94)/DENDM( 17)
Gt 95)=
~G{91)
G{ 95)=G( 95)/DENOM({ 17)
DENOM{  18)=
G(1)=G(95)+6(93)+1.0
Gl 96)1=
G(11%G(95)1+G(33)
Gl 95)=G{ 96)/DENDM( 18}
Gt 97)=
GL1)#G(92}
G{ 97)1=G( 971/DENIM{ 18)
Gl 98)=
G(112G{94)
GL 9B)=Gl 9&)/DENOML 18)
Gt 991=
~6193)
Gl 991=G{ 99)/DENOM[ 18)

TRANSFER FUNCTION X{ TI/X({ 1}

{b) Continued.

Figure 13, - Continued,



THE NUMERATOR
G199)

THE DENOMINATOR
-6{96)

FIANSFER FUNCTIOGN X0 71/X(  2)

THE NUMERATOR
GLa?)

THE DENOMINATOR
=G(945)

TRANSFER FUNCTIOGN XU 7)3/xt  3)

THE NUMERATDR
G198)

FHE DENOMINATOR
=196}

{b} Conciuded,
Figure 13, - Concluded.

A numerical evaluation for the following set of G's (system information) was made
by using the EVAL program:

846.7(-0.833x10°2 8% + 0.182 - 0.5 8 + 1.0)
s8 ., 18.288% + 155.4 8% 4+ 743.9 8%, 203852 .+ 28235 4 846.7

G1=

Gy = 846,17

G3=

LR

Gy, Gg, - - -,Gg = 2.041662, -0.3595, -2.54, 8.723, -1.5025, -146.932

Gy Gyyr- - -»Gyg = 846.7, 2823, 2088, 743.9, 155.4, 18.28

Gyg:Gyyps - - -Gy = 998.9, 600.97, 155.18, 20,745, 1.300, 0.038

For the nonapproximate case, the plant transfer function becomes

7.06 e*l.DS
s + 6.33 52 +20.01S +7.06

G1=

The frequency range of interest is 0.01 to 4.0 hertz, in steps of 0.01 hertz. (Be-
cause of time and frequency scaling requirements of the user, frequency was multiplied
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by 100.) The execution time required to evaluate these 400 points plus an additional

600 points for the automated plot routine for all three transfer functions is 32 seconds.
Plots of typical results for the X,.‘./X1 transfer function are presented in figure 14. The
difference in the plots is of course the effect of the PADE' approximation at the higher
frequencies,

Nonapproximate plant
——— PADE* approximation

Amplitude ratio, 4B

5 g1 | L1 | Lot
(a) Amplitude ratio,

Phase angle, deg
o
I
N
I

O S T N S S T Y T T A
1072 1071 1 10
Frequency, Hz

{m Phase angle.

Figure 14. - Typical transfer function results, for jet-engine-control problem.

Applications: Some Commenis

Execution time. - A summary plot of reduction rate as a function of problem size
for the applications studied is presented in figure 15. Generally, the program reduces
more quickly for smaller problem size, as would be expected.

Storage. - Four terms are involved in considerations of storage for this program;
they are related by the equation

PROGRAM STORAGE + INITIAL EQUATION STORAGE

+G = CONSTANT

+ X3TORAGE * “STORAGE
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~Complex ladder

Reduction rate, variablesisec
=9

Simple ladder -

| | I § L |
0 100 A0 300 400 500 600
System size, number of equations

Figure 15. - Comparison of reduction rate as function of problem
size for camphex and simple ladders,

Since program storage is fixed when considering problem capability for a given computer,
we have

INITIAL EQUATION STORAGE + XamrAGE * GSTORAGE = CONSTANT
Now for large problems with relatively few inputs

NEQ = NUMBER OF EQUATIONS ~ NUMBER OF X's = NX

and for a given class of problem we can write

XsTORAGE - K'NEq

Also, it is clear that

INITIAL EQUATION STORAGE = K"NEQ

29



= K?!!N

G3TORAGE G

Combining these results yields

K'NEQ + K"NEQ + K‘”NG = CONSTANT
Hence,
NEQ + KNG = CONSTANT

Here NE is the original number of equations and NG is the total number of G's
(original plus super G's). This relation then should be useful in setting or changing
array sizes for either (1) different computers or (2) problems where the relation of N
to NEQ varies substantially.

CONCLUSIONS

Techniques have been established and a computer program written to allow the com-
puter reduction of large arbitrary block diagrams. The techniques used involve symbolic
manipulation of the defining equations by means of the FORMAC symbolic computer lan-
guage. With the program, transfer functions can be determined for any output variable
to any or all input variables. Since the primary objective of the work was to handle quite
large and complex block diagrams, the solution is not formed as a single relationship for
a desired transfer function. The solution, instead, is determined as a set of
algebraic equations. Each of these equations, called super G's, is defined in terms of
the original system G's and the super G's which precede it.

The transfer functions are represented as a set of nested equations. This form has
the advantage of being considerably more compact than the single relationship. Also,
since the solution-set relations can be output from the computer as they are formed, the
critical problem of computer storage is alleviated. Further, the nested form of the solu-
tion set allows straightforward numerical evaluation.

The program is premised on the reduction of the block diagram by loops. When this
is achieved, the solution is aufomatically scaled so that effective large powers of fre-
quency do not occur. Also, the denominators are such that the possibility of zero-
divides is small.

Two forms of the solution set are possible at the option of the user.

A program has been written to evaluate the solution set. This evaluation yields the
real and imaginary parts and the phase angle and magnitude and log magnitude ratios of
the transfer functions.
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The advantages of the technique developed in the present study over previous tech-
niques are as follows:

1. As in the predecessor program, the arrangement of the input data in the form of
arrays and the matrix manipulation for each frequency point are not required. (The
symbolic solution set need be generated only once and then is reevaluated for each fre-
quency. )

2. Unlike the predecessor program, the generation of a solution set instead of a
single function allows the solution of considerably more complex problems, that is, sys-
tems involving as many as 600 equations and a tofal of 1200 G's.

The user input to the reduction program consists of two basic pieces of information:
(1) the algebraic equations representing the block diagram; and (2) the order string,
which controls the manner in which the reduction is performed. The first part repre-
sents a minimal effort on the part of the user. The determination of the order string
does pose a small burden for the user. However, usually the consequence of a poor
choice for the order string is a relatively small increase in the size of the solution set.

The computing time required for the program varies with the size of the problem
being solved. Typical rates are 0.6 variable per second for small problems to an initial
rate of 0.1 variable per second for the larger problems.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 5, 1973,
501-24.
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Subscripts:

a,b,e,..

jskyn
EQ

i

08

v

32
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APPENDIX A

SYMBOLS

denominator of super G
transfer function for block in original block diagram

function defining part of solution set

V-1

constant

number of { )

Laplace variable

signal or variable in a block diagram

circular frequency, rad/sec

index numbers 1, 2, . . .

equations
inputs
order string

variables



APPENDIX B
ORDER STRING

The order string is a list of the block diagram variables. The order of the variables
occurring in the list is the order in which they are to be reduced in the program. The
variables are separated by commas. For example, X,, X0 X, indicates eliminate vari-
able X, then X, then X,.. Separation of a pair of variables by double commas indi-
cates that a super G substitution is to be made at that point,

The progr-um logic is premised on reduction of the block diagram by loops. The
loops of the block diagram are analogous to the cycles or circuits of graph theory (refs.
4 and 5). That is, a loop is a progression of variables in a block diagram that closes on
itself. Variables which split off (nodes) and leave the loop or those which enter the loop
(through a summer) will be called communicating spurs, or simply spurs.

The suggested best approach then will be to identify from the block diagram those
loops having the least number of communicating spurs. The variables composing the
loop, less the communicating spur variables, if possible, then form an order substring.
The order of reduction of the variables forming the loop does not appear fo be important.
In the example of figure 16, the loop comprised of X3, Xy XIO has only two spurs,

X1 4 e X3 & *3
Xy Ag
6y 6y Gy Gy G5
Xy X1
Xg + g * ) g

Figure 16. - Block diagram used to show reduction of order string.

namely X5 and X3 Hence, an appropriate substring would be X4, XIO or XIO’ X4.
Elimination of this loop would leave a new loop with variables Xe, X3, and XB with
spurs X5 and Xz giving a substring XB’ X3. After the reduction of each loop, a super
G substitution should be made, that is, separation by double commas., Hence, the order
string for this reduction might be

X].O’ Xéy L) X37X8: E XS’ ng ’ Xzs X'?

where we have considered X6 to be the output variable.
While it is not always possible to get an end loop, that is, one with only two spurs,
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the program appears to be quite forgiving; and even taking internal loops as shown in the
text, gives rise to the same general forms. This will generate a larger number of super
G's, however,

Several checks can be made after an order siring has been selected:

(1) All variables in the problem must be represented in the order string except the
output and the inputs (which, of course, are not eliminated in the reduction).

(2) No variable can be represented more than once.

(3) From algebraic theory,

NV - NEQ = Ni

for the original system of equations. And, for the order string,

(N,)

Vos:Nv'Ni'1

Hence

(Nylos = NgQ - 1
This check is also made by the program.

The choice of the order string for very large or very complex (interactive) diagrams
may be difficult. Occasionally, for such cases the solution generated will be valid only
over some limited frequency band. This is usually recognized by an instability occurring
in the numerical solution above some frequency. In such cases, it may be necessary to
change the order string to achieve a better solufion form.
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APPENDIX C

PROGRAM IMPLEMENTATION

The complete reduction and numerical evaluation of a block diagram is done in two
separate programs. The reduction program is called REDUCE II and is written in FOR-
MAC, and the evaluation program is called EVAL II and is in FORTRAN. FORMAC is
an algebraic manipulation language. FORMAC stands for FORmula MAnipulation
Compiler. It is an experimental language developed by IBM, and it runs on an IBM
7094/7044 computer. Bond describes FORMAC in reference 3. There are other alge-
braic languages which might be used in block diagram reduction. These languages are
detailed by Sammet in reference 6. Two programs are hecessary to maximize block-
diagram-size capability. This approach separates the numerical evaluation from the
reduction process. This separation is made since the numerical evaluations are per-
formed more efficiently in FORTRAN than in FORMAC. The two-program approach
also gives the user the ability to change component descriptions in EVAL II.

The program listings and flow charts are given in appendix D.

REDUCTION PROGRAM - REDUCE II

REDUCE 11 is the main program in the block diagram reduction. Initially, the block
diagram expressions, the inputs and the output, are read and counted. The reduction
order string is examined for algebraic compatibility. That is,

Number of variables in order string = Number of expressions - 1

Since the user may solve for the ratio of an output to an input or an output to all the in-
puts (see User's Manual (appendix E) for details), the block diagram inputs not used in a
specified transfer function are set to zero.

The reduction proceeds by choosing a variable to eliminate, solving for that variable
in one of the equations, and substituting the solution for that variable in the remaining
equations, Subroutine INSTRN finds the variables in a reduction substring and puts their
subscripts in common block STRING. Subroutine SEARCH picks the equations for elimi-
nation and substitution in the reduction STRING. SEARCH obtains the variable to be
eliminated from the information contained in common block STRING. The general rule
is to take the simplest equation as the one to be eliminated. By simplest is meant the
equation with the fewest variables. If the variable due for elimination is in more than -
two equations, some more selective rules are employed. These rules are embodied in
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the following priority schedule, which has as iis basis identification of the equations in
the loop specified by the order substring (when possible):

(1) If another variable in the reduction substring is contained in two or more equa-
tions that contain the variable to be eliminated, pick the simplest equation of this new
subset of equations fo substitute into the other eguations that contain the variable to be
eliminated.

(2) If there are no more variables in the reduction substring or if rule 1 is not satis-
fied, look for other variables in common among the equations that contain the variable to
be eliminated, If two or more equations contain a variable in common (other than the
variable to be eliminated), pick the simplest of these as the equation to be eliminated.

If neither rule 1 nor rule 2 can be followed, the simplest equation is picked as the one to
be eliminated. Further, if only one {or no) equation contains the variable to be elimi-
nated, an error message is written out and execution is stopped. With this method, the
number of equations and variables is reduced by one at each step. The variables that
appear in the transfer function are, of course, never eliminated. The final equation
contains only the variables of the transfer function and the G-functions.

In the reduction process, new combinations of G's (functions) are formed in sub-
routine SUPERG. It should be noted that the program assumes that an expression is an
equation. That is, if G(1)*xX(1)+X(2) is the FORMAC expression, then GX, + X, = 0 is
the implied equation, An expression prior to super G substitution might look like

(1. +G(1*G(2))*X(1)+G(3)*G(4)*X(5)-G(5 }*X(6)

The SUPERG subroutine would pick (1.+G(1)*G(2)) as a denominator and construct new
coefficients such as G(6) and G(7), where

G(6)=G(3)*G(4)/ (1. +G(1)*G(2))

and

G(T)=-G(5)/ (1. +G(1)*G(2))
SUPERG would punch these new coefficients in FORTRAN in the following style:

DENOM(1)=1. +G(1)*G(2)

G(8)=G(3)*G(4)
G(6)=G(6)/DENOM(1)
G(T)=-G(5)

G(7)=G{7)/DENOM(1)
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Upon leaving subroutine SUPERG this expression would be X(1)+G{8)*X(5)+G(T)*X(6).
The user has the option of selecting one of two forms for a super G. It is possible
to always have a denominator of the form

L+G ¥G*G *G d+Gr E*Gf*G g+Gk*G 1 *Gm -

This can be done by picking a coefficient of some variable and adding 1.0 to it. This new
term can be divided into all the coefficients of the variables in an expression. This pro-
cess tends to generate more super G's than when the super G's are allowed to form
naturally. By punching the word ARTIFICIAL on the first data card fo REDUCE I this
form of super G will be produced whenever SUPERG finds a coefficient with two or more
terms. If the user does not specify ARTIFICIAL or NATURAL (1.0 is not added to coef-
ficients), an error message is printed out and execution stops.

The output of the REDUCE II program is punched on cards and printed on paper.
The cards plus the user's data supply all the information for the EVAL II program. See
the user's manual for further information of card input and output. Since the program
should be as easy to use and as reliable as possible, the program input is given in alge-
braic terms for the most part. The user does not have to give a count of how many vari-
ables, expressions, inputs, and functions are to follow, as was required in the predeces-
sor of this program. The programs interpret the user's data for this information. The
only nonalgebraic piece of data is the first card, which specifies what form the user de-
sires the super G's to have. An attempt has been made to make the programs efficient
in terms of execution time. The subroutine COUNTX was written to be faster than the
corresponding FORMAC routines that could have been used., Auxiliary array sizes have
been kept as small as possible to maximize block-diagram-size capability. It is possible
to have a block diagram that is so large that it would be stored on an auxiliary storage
device (tape or disk file). I this does happen, there will be a substantial increase in
execution time because moving information to and from an auxiliary device is inherently
slow. REDUCE II does not call on SIN, COS, TANH, ATAN, ALOG, DUMP, PDUMP,
FMCDIF, EXPDMP, or FMCDMP. Using the dummy subroutines SIN, COS, TANH,
ATAN, ALOG, DUMP, PDUMP, FMCDIF, EXPDMP, and FMCDMP allows us to use the
storage space normally assigned to these routines.

The user may, for any particular job, change any of the dimensions of the program.
In particular, if more inputs are desired, the array INPUT should be lengthened. If
more equations or variables are needed, the arrays EQ and X should be changed. Also
the value of MAX(1) must be changed. If some other number of functions (G's} is to be
used, the G array and MAX(2) should be changed accordingly.
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EVALUATION PROGRAM - EVAL II

The EVAL II program evaluates the cards REDUCE II punched out. The user in-
serts some of these cards directly into EVAL II as FORTRAN coding. The remainder is
numerical data to identify transfer functions. The program covers a frequency band of
FSTART to FEND in steps of DELTAF. The output of EVAL II consists of a tabulation
of the transfer functions for each frequency point. Also a set of CALCOMP plots for the
frequency band can be obtained. The written information gives a transfer function num-
ber, the frequency point, the real and imaginary parts of the transfer function, the abso-
Iute value and phase angle of the transfer function, and the magnitude of the transfer
function in decibels, based on dB = 20 logm (absolute value). The plots are of magni-
fude against frequency and phase angle wgainst frequency. These plots can be made on a
linear or semilogarithmic set of axes. The user's manual {(appendix E) gives more in-
formation on the actual use of EVAL II. ‘ ‘

SUBPROGRAMS

REDUCE 1I uses the following subprograms that are not supplied with either FOR-
TRAN, FORMAC, or this report. These subprograms must be supplied by the user:

Function Description

ALS(N, X) Accumulator left shift of X by N binary places
IARS(N, X) Accumulator right shift of X by N binary places
LGR(N, X) Logical right shift of X by N binary places

AND(X1,X2) Logical intersection of X1 and X2
OR(X1, X2) Logical union of X1 and X2

EVAL II uses the following subprograms that are part of the CALCOMP plotting
package. These programs must be user supplied since CALCOMP has proprietary
rights on their use. They are LINE, SCALE, AXIS, SYMBOL, NUMBER, and PLOT.
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APPENDIX D

DESCRIPTION, FLOW CHARTS, AND LISTINGS FOR COMPUTER PROGRAMS

DESCRIPTION
Reduction Program - REDUCE II

The main program REDUCE II reads the input data, interprets data, and does the
actual block diagram reduction. It prints and punches out the transfer function gener-
ated.

Subroutine COUNT counts the number of variables in an expression. It returns the
number of variables and/or the variables to the calling program.

Subroutine SEARCH finds expressions containing the variable to be eliminated. It
constructs a list of the variable to be eliminated, the expression to be eliminated, and
the equations to be substituted into.

Subroutine SUPERG creates the super G's or combinations of functions formed in
the reduction process.

Subroutine SOUT outputs FORMAC expressions. This output consists of a printed
statement, a punched card, or both.

Subroutine INSTRN reads reduction substrings and provides a count of the number
of variables and the variables in the substring.

DELETE, REMOVE, FC, and NBR are used to remove § from FORMAC expres-
sions and to convert floating-point exponents to fixed-point exponents.

Subroutine COS with entry points SIN, TANH, ATAN, ALOG, DUMP, PDUMP,.
FMCDIF, EXPDMP, and FMCDMP is 2 dummy subroutine that is not called. It pro-
vides entry-point names that are the same as subprograms referenced by FORMAC but
are not executed by the programs of this report. This prevents the equivalent subpro-
grams from being loaded and conserves storage space.

Evaluation Program - EVAL II

The main program EVAL II reads and writes all the numerical input and output. It
calls the subprograms that evaluate the super G's and the transfer functions.

The function subprogram EXPFX, SINFX, COSFX, SINHFX, COSHFX, SQRTFX
evaluates the supplied system functions.

The G's, super G's, and transfer function cards (NO=, DO=) are inserted in sub-
routine COEFF. The actual evaluation of the transfer function occurs in COEFF,
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FLOW CHARTS AND LISTINGS

Reduction Program - REDUCE II

Read SUPERG
form card

[}

Classify as
ARTIFICIAL or
NATURAL form

Process hlock
transfer
functions

Read a card

in

Process
block
inputs

Process
black
expressions

Process
reduction
order string




Write error
message

Number of equations

consistent with
reduction string?

Write number
of expressions,
variables, and

Set any unused
inputs to zero

-*

Cal! INSTRN
to get a reduction

substring

ull

Call SEARCH

to find variable
and equations
for substitution

¥

Get a variable
to eliminate

¥

Get equation
1o be used to
eliminate variable

1

Solve this
equation

©
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N

Eliminate
variable from
remaining
equations

Done
with sub-

string
?

Call SUPERG to
form any super
G's possible

Finished?
All variables
eliminated

Solve for
numerator and
denominator

{

Punch cards
for
EVAL TI

Check to be sure
all equations
are zero




SYMARG

ATOMIC X{631}),61(1202)

COMMON /TRANS/ ARTIF

DIMENSEON IN(T0), OUT{17)s NEQ{L1DO}, EQ{601),s INPUTIS), NXARRY(3D)

1, MINXG(2)y GDRX(2)s MAX{2)}, LSAVE(SD)

DIMENSION TARTIF(3).NATUR(3)

LOGICAL LOCATE,TEST,FINISH,DONE;ARTIF

INTEGER 0QUT

REAL IS5.:IT.NUM

EQUIVALENCE [IN{Ll)4QUT(L),NEQ{L1I},y (MINXG{1)4M)y (MINXG(2)4MG)

EQUIVALENCE {PLUS1,ARTIF)

DATA TARTIF(1).NATUR(1)/15HARTIFICIAL FORM,13HNATURAL FORM /

DATA MAX/600,1200/

DATA DR/6H$00000/

DATA XX/&6HXOQ0DO/

DATA MINXGy,GORX/2%0, 1HX1HG/ )
R L L LT R P e eempare e e D YRS T PR

c M IS5 THE NUMBER OF VARIABLES
C Ml IS THE NUMBER OF EQUATIONS
c IK IS TYHE NUMBER OF INPUTS
c MG 15 THE NUMBER OF FUNCTIDNS AT INPUT
Cortdhkbbhpidhhhh d gk Lh Ak Rk ek e Rk kA SRR A SRR LR R L EREERREE AR R RN LS
1 CONTINUE
PLUSL=3.

READ{5+42) (IN{I}yl=1y3}
00 100 1=1,3
IFCINCE) EQe IARTIF{ 1)) PLUSLI=PLUSL*],
TF{INCI)LEQ .NATUR{IY) PLUSL=PLUSL-1.
100 CONTINUE
IF(PLUSL NELO.o AND.PLUSL.NEWb6.) GO TO 380
Crbkhbkkbbdhbhhb kEFR bR SRS RLEREEERERRREERREREERRRARE KRR KA AR R ERR LS

c READ THE BLOCK DIAGRAM PARTS
Casttkrr ik kh kb ke kbR Ak k ARG RFEERE R AR R E R R AR R R R KR
NX=0
Ml=1
IK=0
MG=D
=0
DO 19 J=1,%
NN=D
PREV=BL
2 K=1
3 Kl=l4®{K=1)+1
K2=K1+13

READ (S,42) (IN(L)sL=K1,K2]

GO TO (4993 13,17),4
Corshbdh Rt kidk kE RN AR AT RGN EEEEEERREER T R EERIEE SRR ANRER DR R RR R
C INTERPRET THE BLOCK DIAGRAM INPUTS
LT TR TP P DR L L SRR 222 22 s 22t R oIS s e T SRR R 2 I T
4 CONTINUE

po 5 1=1,80

F=FCLINIKL) o 1)

IF (FLEQ.DR )Y IK=IK+1l

IF (FsEQ.DR.AND,PREV.EG.DR) GD TD &

PREV=F
5 CONTINUE

K=K+l

GD TO 3

>

PR

PP PRI ERD DD

N

oW

43



8

L L T I T TP P T T Y TP BT P P

INTERPRET THE DESIRED 8LOCK DIAGRAM OQUTPUT
Cokkdd kbR kSR RERREE RS AEERREREERETE R RKE R S EE AT ERERERRE kR Fbkkhk

c

9

10

11

12

Cokkdddok kg kikohhokgkkhk bk kb kkhhbkbbkkkpkg ok pl kb kk kbR r R Rk R R TRk

C

€ tetodoadodk seage ol ol g e e o e ek SR Se Rk AR e o ol O el e ool o ool o o ool o ol bbbl oo oo o o ke o

13

14

15

44

34=0

IR=IK=~1

IF ([K.GT.5) GO TO 35

DO 7 JJdd=1,IK

LET INPUT(JIJIY=ALGCON IN{1),Jd4J
CONTINUE

WRITE (645%) ,
B0 B8 L=1,1K
Q=0.0

LET Q = BCLDCON INPUTIL).DUT,L17
WRITE (6451) OUuT{2)
GO TO 19

CONTINUE

JQ=0

DD 1D I=1,B0

IF [FCOINIK1):1).EQ.DR}) JQ=d0+1
JJa=0

LET NUM = ALGCON IN{1).44
IF (JQ.EQ.2) GO TO 11

LET DEN = ALGCON IN(1l),JJ)
CONTINUE

03000

LET Q@ = BCDCON NUM,0UT, 1T
IF (JQ.EQ.3) GO TO 12
WRITE (6,46) OUT{Z]}

HRITE (5449)

GO Y0 19

CONTINUE

WRITE (64471 OUT{2)

Q=0.0

LET Q = BCODCON DEN,OUT,17
WRITE (6448} QUT(2])

WRITE (64491

GO TO 19

INTERPRET THE BLOCK DIAGRAM EXPRESSIDNS

CONT INUE

Q=1.

DONE=+ FALSE .

DO 14 I=1,80

F=FCUIN(KL}, I}

IF {F.EQ.DR} Q=C.

IF (Fn EQ-DR.AND-PREV.EQ.DR' DDNE’.TRU&.
PREV=F

CONTINUE

WRITE (6533 ML,UIN(KK},KK=2K1,K2)

K=K+]1

IF (K.GT.S} GO TO 38

IF {Q.ME.D.) GO TO 3

DO 16 MM=1,2

CALL COUNT (IN{L1)GORX{MM),;NXS5,NXARRY,0)
IF (NXS.EQ.0) GD TO 16

DO 15 NN=1,NXS

MINXG{MM) =MAXO{ MINXG{MM ) , NXARRY (NN }

IF (MINXGI{MM) ,LE.MAXIMM)} GO TO 16

GO TO (33,32),MM

o plrD e ol PP PP R RPRPRERPEFERERPPPRPRERRPRPRRRE D
-
»



i6

CONTINUE

IF (M1.GT.MAX{1l))} GO TD 3&
JJ4=D

LET EQ{M1)=ALGCON IN(1).JJ
LET EQIML}=EXPAND EQIM1)
Ml=ML+1

IF {«NOT.DONE) GO TO 2
Ml=M1-1

GO TO 19

C*#***t*#**#t*#**##*#*#t#****###tt‘t*t##t##t##t**t#####*#t*#tt##*####tt*

c

INTERPRET AND WRITE THE BLOCK REDUCTION ORDER

C**tﬁtt*t#*#t***tt#*####*t*****titt#*t*ttt#t*##*t**#****##t#tt#t*#*#**#t

17

18

19

NN=NN+1

IF (NN.EQ.l) WRITE (&6444)

WRITE {6,533 NNULIN{L),L=K1,K2)
00 18 I=1,8D

CHAR=FC (IN(KL1}, I}

IF {(CHARLEQ.XX} NX=NX+l

IF {CHARL.EQ.DR} GO TD 19

6D To 2

CONTINUE

TF {NX,NE.M1-1)} GO TOQ 37

Cttt*it###t*#**#‘*##t*#t*#*#**tttt**#*#***t#*#t*#t#**#tt#tt#l#*#*###*##*

c

BACKSPACE THE INPUT UNIT

Ctt#t##t**#**##*###tt###*#*##‘ttt#itF*#t#*#*****###ttt#*####ﬁ#t‘#t###*#*

20

DO 20 L=1,NN
BACKSPACE 5

WRITE (6445) MyML MG
WRITE {6¢39)

C*#tt*tt*t*t*####*t####**#**#***t*t##t#*###*#t*t##****##t#ttt#**##t##*##

C

INITIALIZE AND SET UP EQUATIONS FOR SOLUTION

C#t***#*#####tt#t***ttt****###tttttt*t#*#**t*t*###t*#*#t***#t**t#*t**‘t&

C

c
c

21
22

if (JQ.EQ.2) GO TO 23
REPLACE THE INPUTS BY ZERD IF NOT DEN DR NUM

DD 22 L=1:M1

DD 21 J=1,1K

LET TEST = MATCH ID«NUMs INPUT(J)

IF (TEST) GO TO 21

LET TEST = MATCH ID,DEN. INPUT(I)

iF (TEST) GO 7O 21

LET EQ{L) = SUBST EQULI,UINPUTLI).O)
CONTINUE

CONTINUE

C#*t*#*#ttt***##l***t*#****#tt#tt*#t*###*t*###t#t##*#t*t#*#*#***#**#***#

23

CONTINUE

C##**t**t#****t#t##**t#t###t#t###**tttt*##***#**#*i*#ttt#*#*tt#t#t*###*#

c

REDUCE THE EQUATIONS

ctt**###tt#*tt###*#t#t*ttt#*l“##**tt#t***#*t##*t*tt#*#***F*t#*tt#***#tl

24

CONTINUE

C#t#*****t*#l*##*t###***t#*#*#tt*#*##*ttt##t#*tti##**t#*##*###*tt*t*****

C

GET THE REDUCTION STRING

C###*#*#####**#*#ttt****t#**tt*ﬁtt*#***#t***ttittt#**ﬁ*ttt*##**t*#*#ﬁ*##

CALL INSTRN {FINISH)
LKk=0

GET A VARIABLE TO ELIMINATE

CONTINUE

Db‘b>PPDPI’PFDDDDbhPPDI-D‘PDPDD}PFDF’D’)PDPPDDDFP}DP?PPPDI’)PPPPF

104
105
106
107
108
109
11}
111
112
113
114
115
1156
Lir
118
119
12D
121
122
123
124
125
126
127
128
129
130
131
132
133
13%
135
136
137
138
139
140
141
142
143
144
145
145
147
148
149
15)
151
152
153
154
155
156
187
158
159
163
1561
152
163
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CALL SEARCH (X+EQeM4M1,NEQ,DONE}
ii=1

J=NEQ{IT)
IF (J.EQ-D0) GO TO 27
C
c GET AN EQUATION CONTAINING THE VARIABLE
¢
I1=11+1
L=NEQILI)
c
c SOLVE THE EQUATION
c
LET RR = EQ{L)
LET EQIL}=D.
LET IT = COEFF RR.X(J}
LET RR = EXPAND RR-IT®X(J)
c
c ELIMINATE THE VARIABLE IN THE REMAIMING EGUATIDNS
C
26 IT=1I1+¢1
L=NEQ{II)
1If {L.EQ.D) GO TD 27
LK=LK+1

LSAVE(LK}=L
LET IS = COEFF EQIL)4X(J)
LET EQIL) = EXPAND EQ(LI-1S$%*X({J)
LET EQI{L) = EXPAND IS*RR-ITEEQ{L}
60 1O 26

27 CONTINUE
ERASE I[S,IT
iF (.NOT.DONE) GD TO 25
IFCFINISHY GO TO 280

DO 28 MM=1,LK

NN=LK-MM+}

L=LSAVE{ NN}
Ct#t*t##*#*t##**t*I*##t#t***t‘ttt“*tt*#**‘**#*‘t*t*t#*i*#******itl‘**#i
c CREATE SDME SUPER G°'S
C**t#t*t#****#**t**#t#*#t#t*t*t#*t*t‘*#‘t#t***Qtttt‘t********t##*******t

CALL SUPERG (EQULIsMGyGeX,MAXL2Z),M)

28 CONT INUE

G0 TO 24
c
C

280 L=NEQ{II~11}
C**Q*ﬁ*****#*#**********#*******‘t*‘#*.“*t******‘*“‘********‘**‘.*#***
c SOLVE FOR NUMERATOR AND DENOMINATDR
C*#**#‘t##‘*#***‘****‘***#*tt******"*t‘t****t**t*‘****t**t*‘“‘**‘**t**

LET R = EQ(L]

LET RD = COEFF R,NUM

LET EQ{L)=EQ{L)-RDENUM

LET EQfL)=EXPAND EQ(L}

LET RD = EXPAND -12%RD

PUNCH 61

CALL SOUTIRD42,1H )

CALL COUNTX (NUM, LHX ¢ NXS o NXARRY,0)

NNUM=MNXARRY{ 1)

DO 30 I=1,1K

IF {30.EQ.3) 6D TO 29

LET DEN=INPUTI(I)

46

LB S B 8 B2 F B B P B B B 5 N IS T S S o -

PR P> b DIl

oD p DI > I»

164
155
166
167
168
169
173
1 |
172
173
174
175
175
177
118
i19
18]
181
182
183
184
185
186
187
188
189
190
191
192
193
194

135
196
197
198
199
20D
201
202

204
205

207
208
209
219
211
212

214
215

217
218
222
222
223
2264



CONTINUE

CALL COUNTX {DENyLHX¢NXS4NXARRY+0)
DUT L1 }=NXARRYI(1}

LET RN = CDEFF R,DEN

LET EQ(LI=EQIL)I-RN*DEN

LET EQILY=EXPAND EQ(L)

L T s ey e TP e e e e ST 22 PR L R T T P S L S L

c

WRITE NUMERATOR AND DENOMINATOR

AL T T T UT PRI e e e e S P PP R TE LR 2 2 T L S S L L g

30

WRITE (6,43) NNUM,DUTII)

WRITE (6,50}

PUNCH 6Dy 1

CALL SOUT{RN,3,1H }

WRITE (6,521}

CALL SOUT (RD,1,1H )

CONTINUE

CALL CoMmouT

PUNCH 41, NNUM, I, (OUT(1)y1=1,1K)
ERASE RN,RD

C dok ololeald oo sk e ok ek ot ook o ok de ko ok kol e ok ol ot ok bl R ol e o o ek s el ok sl ok ek ko o ek ok i

C

CHECK ON THE COMPLETEDNESS OF THE SOLUTION

C#t***#t#*#**#**t*#ttt#**t*t**####tt**t*t#t**##**#*#**tt####t#tt*t**##tt

31

LET R=0.

DD 31 L=1l,M1

LET TESYT= MATCH IDsEQ(LI,R
1F (TEST) GO TO 31

HRITE (&£,62) L,tL

CALL SOUT (EGQI(LI,1l,1H }
CONTINUE

GO To 1

ETTIIZI SRR LITEIIS L2220 22232 PP BT A TR PR L PR 222 S b R Er s o ttdy

c

WRITE ERROR MESSAGES

C##*t#t####tt#t**t*#**#t*#*#*‘t#t*tt#tlt#t##tt#**t#ltt*#***#t**##****#**

32

33
34
35
36
aT

38

380

a9
40

41

43
44

CONTINUE

WRITE (6,57) MAX{2)
GO TO 36

HRITE (6,55) MAX{1)
GO TO 36

WRITE (6,56) MAX{1)
GD TG 36

WRITE 46,58)

sTae

WRITE (6440)

G0 TO 36

CONTINUE

WRITE (6,4591)

60 7O 36
WRITE(&,63)

sTarp

FORMAT (//10X,33H* = * QUTPUT FROM REDUCE II #* * #*}

FORMAT {10X,114H**ERROR** NUMBER OF VARIABLES IN REDUCTION STRING

115 NOT CONSISTENT WITH NUMBER DF EXPRESSIONS--EXECUTION STOPPED )

FORMAT (15 }

FORMAT (13A6,A2)

FORMAT [(LlHK 10X 20HTRANSFER FUNCTION X{,13,4H)/X{413,2H)} )

FORMAT {23HKTHE REQUCTION DRDER 1S, //}

FORMAT (34HOTHE LARGEST VARIABLE SUBSCRIPT [S,15,/,2%94 THE NUMBER

10F EXPRESSIONS IS,15,/438H THE LARGEST FUNCTION (G) SUBSCRIPT IS,I1

P> P

1> > I»

PRI PDD PP

Db

225
22%
227
229
230

232
233
234
235
236
237

23%
24)
241
242

243
244
245
245
247
248
249
250
251

253
254
255
256
257
258
259
260
261
262
263
264
265
2656
267
268
269
27)
27

272
273
274
215
276
277
278
273
283
2Bl
282

47



48

24}
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMATY
FORMAT

1SION)
FORMAT
FORMAT
FORMAT

2S5%R%ks)

FORMAT (10X,

END

(21HKTHE SOLUTION IS FOR ,A&,14H TD THE INPUTS)
{2LHKTHE SOLUTIDN IS FOR ,A6,2HYD)

(LH* 4 29X, A6)
{3DHKTHE BLOCK OIAGRAM EXPRESSIONS.//})
f1HK 15X, 13HTHE NUMERATOR)

(5%, 9A6)
(1HXK o 15X ,L5HTHE DENOMINATIR)
(3X,14,2Xy L3A6:A2)

(25H1THE BLOCK

{204
(20H
(204
{ 43K
(59H

*¥*¥ERROR**
**ERROR %%
**ERROR &%
EEERROR #%
**ERROR &%

DTAGRAM INPUTS,//)

MORE THAN,[4,10H VARIABLES)

MORE THAN,I4y10H EQUATIONS)

MORE THAN,I4,10H FUNCTIONS)

MDRE THAN 5 BLOCK DIAGRAM INPUTS)

MORE THAN 5 CARDS FOR A BLOCK DIAGRAM EXPRES

(6XeIHND(, 124 2H) =)
{6Xy 3HDO =}
{/7910Xs 69H**kxx THE SDLUTION FOR THIS PROBLEM MAY BE IN ER
1ROR BECAUSE EQUATION ,14,31H WAS NOT ELIMINATED, EQUATION ,I4,7HI

40HINVALID OPTION FOR THE SUPER G FORM CARD)

b PP DRDD D

283
2864
285
285
287
288
289
290
291
292
293
29%
295
295
297
298
299
300
301
302
303

304~



Subroutines COUNTX, COUNTG, and COUNT

This is This is
FORMAC entry BCD entry

Initialize Initialize so
ICODE, DONE, as to look at
IU, and QJ : 14 words
for FORMAC

expression

Let QJ=BCDCON ::

of expression
¥ : - r
¥
Storea G or
an_X in AX
AX=FC1{GORX, D
Y
Initialize
character
counter
Jta ZERQ

J=0

Increment C

character
counter by 1

J=1+]

Done
with last
expression

(Done)
?

Found a GiNkM
type coefficient:
increment

X counter NXS

there am sex
combi nation
when ITYPE
is1?

YBS




N

Put a character increment
infc2 character
counter

Have found
anXoraG-

Is

Find subscript

current
character
a number

Store digit of
subscript in TEMP

Form subscript
out of TEMP array

Is this
subscript
unigue
?

Store subscript
- in NXARRY (NXS)

NXS=NXS +1

50



SUBROUTINE COUNTX {EQyGDRX,NXS,NXARRY,ITYPE)
ENTRY COUNTGL{EQ,NXS,GORX,ITYPE)

SYMARG EQ

DIMENSION NXARRY(1)y MTEMP{4), DUT(15}, TEMP(4), OTEMPI14}
DIMENSION FC2(1)

EQUIVALENCE (MTEMP,TEMP)

EQUIVALENCE (UUT(Z):UTEMP‘I"

LOGICAL NBR,UDONE

LOGICAL ZERQD s

DATA AST,DL, RP/6H*GOG00.6H$00000'GHIGOOGOf
NX5=0

ICODE=D

ODONE=+ TRUE.

Iu=84

QJ”OQU

CONTINUE "

LET QJ’ECDCUN EQ,OUT,15

6O T0. &

ENTRY COUNT(ARRAY, GDRK:NXS.NXARRV ITYPE)
DIMENSION ARRAY(1lY

[COoDE=1

OOME=, TRUE,

NXS=0

IU=80

K=D

K=K+1

Kl={K-1}%14+1

K2=K1+1i3

L=D i :
PO 3 I=Kl,K2 . g -
L=t +1

OTEMP{L)=ARRAY( 1)

CONTVINUE -

IF (.NOT.DONE) GD TD 5

AX=FC1{GDRX.+0)

PREV1i=AX

CONTINUE

J=0 -

J=J+l

If {+MOT.DONE) GD TO 8

FC2=FC(OTEMP,J)

iIF (ITYPE.NE.1) GO TD 7

IFf (PREV1.EQ.AST, AND.FCZ EQuAST) NXS=NXS+1
PREV1=FC2

CONTINUE

IF (FC2.NE.AX) GD TO 14

DONE=,FALSE. * | . T

NXS=NXS+1 - S "
KTR=0 AR

J=lJ+2

IF (JoGTL1U} GD TG 15

CONTINUE

DO 10 J2=J,1V

J3=J2

FCZ=FCI(QTEMP,J2)

I[F (FC2.EQ.RP) GO TO 9

IF (LNDY.NBRIFC2:1)) GO TD 10

KTR=KTR+1

CROR TIPSR IR ROIRR RPN IR OIERERERIIDIRTIO@DEODOET

L R R RN Y R
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11

12

13

15

16

52

TEMP{KTRI=ARS{A0,FC2}
1F (J2.EQ.IUY GO FO 15
GD TO 10

CONTINUE

DONE=, TRUE.

GO 70 11

CONTINUE

CONTINUE

J=J3

IF (.NOT.DONE} GO TOQ 15
IF (ETYPEL.EQ.1) GO TO 14
NXARRY (MXS) =0

ITEN=]

DO 12 JI=1,KTR
KTR1=KTR-[1+1
MXARRY{NXS)=ITENSMTEMP(KTRLI+NXARRY{NXS)
ITEN=ITEN%*10

IF (NXS.EQul} GG TO 14
MNX51=NX5-1

00 13 If=1,NX51

IF ENXARRYINXS) NENXARRY{II)) GO TO 13
NXS=NXS5-1

GO 1O 14

CONTINUE

CONTINUE

DONE=.TRUE.

IF {FC2.EQ.DL) GO TOD 16
IF (J.LT.IU) GO TO &
CONTINUE

IF (ICODE-EQ.1) GO TD 2
IF {(QJ.NE.D.) GO TO 1
CONTINUE

RETURN

END

PP I OPRIRPPEIIRITIRIIPIOIONOIIREIE



Subroutine SEARCH

Put subscript of
variable to be
eliminated in NEQ(L)

-

Find equations containing
variable to be eliminated;
save subscript of one with
fewest variables

3or

Wrong' numbet of Look at other Are ther Look to see if there
Write el?llor equations variables in two Or more are any variables in
message 0,1,23, or reduction equations with common among the
ag more? substring them? equations
L 1
Put subscript of Find one with
equatjon with fewest - fewest number | Yes there two or
variables in NEQ(2) of variables more eguations
T ?
Put subscripts of
remaining equations .
. Treat equations
in NEQ{3), NEQ(4),. . . - . as if there were
] only two
Set NEQ(last)
to zero to signal
end of NEQ array

53
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SUBRUUTINE SEARCH (XsEQsMX,MEQ.NEQ,DONE)
DIMENSION NEQL1), NARRAY(30), EQ(1)
COMMON ZSTRING/ [A(200).M

SYMARG X.EQ

ATOMIC X({1)

LOGICAL DONME,Q

DATA 11/0/

DONE=.FALSE.

[I=01+1

NEQIL)=TACTI)

L=

MIN=229

DD 2 I=1,MEQ

CALL COUNTX (EQULI)s LHX NXSsNARRAY,0}
IF {NXS.EQ.0) GO TD 2

0O 1 J=1:NXS

K=NARRAY{J}

IF [K.NE.NEQ{1}}) GO TO 1

L=L+¢l

NEQ(L+2)=1I

IF (NXS.GE.MIN) GO TO 2

MIN=NXS

IMIN=]

G 1O 2

CONT INUE

CONTINUE

IMSAVE=IMIN

IF (L-2} 3,4,9

ERROR ONLY ONE EQUATION HITH VAR X(NEQ{1l}))

WRITE (6,17) NEQ1?

sTQP

NEQ(2)=IMIN

Li=L+}

L2=0L+2

0D & I=3,L1

IF (NEQUI)oNE.IMIN} GO TO &
I1=1+1

DD S J=1L,L2
NEQ{J-11=NEQ(J)

G0 70 7

CONTINUE

CONTINUE

NEQ(L2)=D o

IF (I1.NE.M] GO TO

Ir=n

DONE=,.TRUE.

CONTINUE

RETURN

IF (I1.EQ.M} GO TO 13
I1=1[+1

DO 12 I=11,M

I15=0

MIN=399

00 11 J=1,L

K=NEQ(J+2)

CALL COUNTX (EQ(K)ylHXyNXS,NARRAY,01}
0O 10 N=l,NXS

IF (NARRAY{N).NE.1A{1}) GO TD 10

PN e a et taNe et etatateNalatatans s lalstatatatatalatakakaiak et Ra oot Na N Na o ke a ol e Ra R a o Na e Rl a R el e

-
Q@ NP NN

-
-

bt g b et s
LB N R T

NN
-

AR N
L N

NN N
0 W~

W W
W e
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11

12
13

14
15
16

1$215+1

IF (NXS.GE.MIN) 60 TO 11
MIN=NXS

IMIN=K

G0 TO 11

CONTINUE

CONT INUE

IF (1S.LT.2) GO 7O 12

GD YO &

CONTINUE

L1=t-1

00 16 I=1,L1

K=NEQ(I+2)

CALL COUNTX {EQ(K)s1HXsNXS,NARRAY,0)
J=1+1

D0 15 N=Jd,l

K1=NEQ{N+2)

DO 14 N1=L,NXS

N2 =NARRAY (K1) '
IF (NZJEQ.NEQil)) GO TO 14
LET Q= FIND EQIKL),APP,ALL,(X{N2})
IF {.NOT.Q) GO TO 14

CALL COUNTG [EQ(KL)oNX1,LHX,1)
IMIN=K

1F (NX1<LT.NXS) TMEIN=K1

GO TO 4

CONTINUE

CONTINUE

CONTINUE

IMIN=IMSAVE

GO TO 4

FORMAT (10X,36H*e%x ONLY ONE EQUATION CONTAINING X(,I1446H) *&xx)

END

OO0 00000000 OCOO00000
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Cal! COUNTX to
count the number
of variables in
equation EQ

Number o
variahles
>07
Yes

Look at each
coefficient of
each variable

1

Keep track of
number of terms
of each coefficient

1

Examing each
cosfficient to
determine whether
there isa +1 or -1

number of
terms of some
coefficient
>l7

56

Examine coefficients
to see if one of them
has three or more factors

Subroutine SUPERG

coefficiant wi
or with most

Pick denominator as

th 1+ form
terms

Done
with all

Number
of factors
237

coefficients
?

Write and punch
denominator of
a set of super G's

Examine coefficients
of each variable
for uniqueness

i

Write and
punch unigue
numerators

\,’r’_

Substitute
super G's for
old coefficients

)

Construct denominator
by adding 1 to coefficient

Yes

Has 1+ form No
occurred

Form a super G
and write it out

Substitute
super G for

old coefficient

with most terms

No

ARTIFICIAL
form
desired Yes
?



SUBRGOUTY
SYMARG E
ATOMIC X
DIMENSIO
DIMENSIQ
COMMON /
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
OATA FIR

NE SUPERG (EQeMGyGe Xy MAXG MX)
Qe Xy G
11)+G(1)

N NARRAY(5G}
N ISAME(50)
TRANS/ ARTIF
TRITH

FIRST

PRESG

YES

ARV 1F

ST7 +TRUEL/

DATA MD/Q/

[F (MG.G
LET ERQSA
MAX=~]1

COUNT THE NUMBER OF %X*S IN EQUATION EQ

T.MAXG) RETURN
VE=EQ

CALL COUNTX {EQs1HX,NXS5sNARRAY,0D)

IF (NXS.
DO & K=l
I=NARRAY

£Q.0) GO TO 19
#NXS
(K}

LET RR=COEFF EQ.X{1I)

LET IQ=C
LET YES=
IF {YES)
LET YES=
[F {YES}
1Q=-10Q

CONTINUE
IF {(IABS
1F (MAX,

ENSUS RR,TERM

FIND RR,APPyALL,( 1.)
GO TO 1

FIND RR4APP,ALLy(-1.1)
GO TO 1

{10).EQ.l) GO TO 5
GT«0.AND. 1Q.GT.0) GO YO 2

1F (MAX.LT.0.AND. [Q.GT.0) GO YO 3
IF (MAXoLT40.AND. IQ.LT.01 60 TO 4

G Ta 5

IF (IQ.LT.MAX) GO TO S

MAX=10Q
L=l
G0 TO0 5

[F {1Q.LT.MAX) GO TO 3

CONTINUE

IF (MAX.NE.-1) GO TO 7

DO & K=1
I=NARRAY

1 NKS
(K}

LET RR=COEFF EQ.X{1)

CALL COU
IF (NGS.
FORM A N
MG=MG+1
IF {MG.G
L=1

LET EQ =
LET EQ=E
WRITE (6
WRITE {6
PUNCH 21

NFG (RRyNGS¢LlHGs 1}
LT.3} GO TO &
EW SUPER G

T.MAXG) GO TO 20

EQ ~ RR #* X{L}
XPAND EQ+ GIMG)I*X{L}
2% )
s2l) MG
+ MG

CALL SOUT(RRy 3y 1H+)

CONTINUE
G0 Ta 19

DCJUOUOOUUOUUDQUUDGUUDQDUUGUQUﬁUOOQQQOOQDOOD DUDD Oo0oOoDoOw
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10
11

12

13

14

15
16

58

DIVISION SEARCH AND CONSTRUCTION OF SUPER G'5

CONTINUE

PRESG=.FALSE.

LET RR=COEFF EQ,x{Ll)}

LET EQ=EQ-RR*X{L}

LET DD=1.

IF (. NOTLARTIF.OR.MAX.GT.0) GO YO @
LET 55=RR

LET RR=RA+L,
PRESG=.TRUE,

CONTINUE

MD=MD+1

WRITE (6,2%)

PUNCH 22,MD

WRITE (6422) MD

CALL SOUTIRR, 3y IH#)

IF {.NOTLPRESG) GO TD 9
MG=MG+]1

IF (MG.GT.MAXG) GD TD 20
WRITE{G,24)

WRITElG,21) MG

CALL SOUT1SSs11H+)

LET DD=G{MG)

PUNCH 274 NG s MD, MD
WRITE(6,23) MG, MG, MD
CONTINUE

KTR=0

PRESG=.FALSE.

LET EQ=EXPAND ED+DD*X(L}
KTR1=KTR

DD 18 I=1,NXS
N=NARRAY (I}

IF {N.EQ.L) GO 7D 18

IF (KTR.EQ.,D) GO TO 11
DO 10 J=1,KTR

IF INLEQ.IABSUISAME(J))) GD TD 18
KTR1=KTR1+1
ISAME(KTR1)=N

LET SS=COEFF EQ,XIN)

DD 15 J=1sNXS
K=NARRAY{ D)

1F (K+EQ.L.OR.K.EQ.N) GO TD 15
IF (KTR.EQ.0) GO 7D 13
DD 12 KK=)1.KTR

IF tK.EQ.IABS{ISAMEIXK)Y} GD TO 15
CONTINUE

LET TT= COEFF EQeX{K}
15=1

LET TRUTH=MATCH 10,:55,.TT
IF {TRUTH) GO TO 14

LET TRUTH= MATCH 1D455,~-T7
IF (JNOT.TRUTH) GO TO 15
18=-1

KTR1=XTR1+1
ISAME(KTRL}=K*]S
CONT I NUE

CONTINUE

MG=MG+1

IF IMG.GT.MAXG} GO TO 20
HRITE (6,24)

o oo oOoLDOoODooC Qg
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i7

i8
19

20

WRITE (6,21) MG

PUNCH 21,MG

CALL SQUT{SS¢3,1H+}
WRITE (69230 MG,MG,MD
PUNCH 233MGy MG, MD

LET DD=G{MG}

L1=KTR+1

DO 17 J=L1l,XTR]
M=1ABS(ISAME(J))
S=ISIGN{1,ISAME(J)}
LET EQ=EQ-S*3SS®X{M)
LET EQ= EXPAND E£Q+5%DD#X{M)
CONTINUE

ERASE DDsTF,S5S
KTR=KTR1

IF (KTR.EQ.NXS} GO TD 19
CONTINUE

CONTINUE

ERASE RR

RETURN

WRITE (6426)

LET EQ=EQSAVE

RETURN

ENTRY COMOUT

MO =MAXO(MD, 1)

PUNCH 25, MG,MD

RETURN

FORMAT { TXe2HG g T45 2HY =)
FORMAT { TXy SHDENOMI 5 [ 44 2H) =)
FORMAT {

FORMAT (1HK)

FORMAT (6X, iOHCOMPLEX G{¢l4sBH)+DENOM{,s14¢1H)} ‘

FORMAT (105HK**®*x WARNING THE NUMBER OF SUPER FUNCTIONS {5'S) EXCE
1EDS THE MAXIMUM NUMBER OF FUNCTIOMS (G'S) PERMITTED, /10X, 43HTHERE
2FORE SUBSTITUTION PROCESS STOPPED *%Xx&})

FORMAT{TX:2HG1 s 14, IH)I=LDENDM(, 144 12H) =14 ) FDENOM(,4.14,2H))

END

TXy ZHG o Ty 4HI =G, 14, BH) /DENOM( 4+ [ 441H) )

TOO00 O0O0DODDDOUOUDORODODOCOC ©

o0 QOO Co

107

109

119
112
113
114
115
116
117
118
119
120
12}
122
123
124
125
126
127
128
129

133
131
132
133
134

137
138
133
140
141

1462~
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Initialize
1I-1, MM-1,
FINIS H=FALSE

Entered
before

| ENTR=. TRUE. |
Read a
reduction

string card

¥
initialize
card column
painter I=1

1

Put rc_lhara(;ter
et Of It card column

in string

STRNG=

Subroutine INSTRN

Is
STRNG a
number

Is STRNG=,
?

Done with
subsiring
MM=MM-1

a blank
?

PREV=STRNG
I=1+1

]

Write
| grror
message

Yes

Store DIGIT
in INUMB(II)

i

Increment
digit counter

11=I1+1

| setfinish

to . TRUE.

fake an
X subscript

from INUM
array

i

Store subscript
in NUMBX{MM)

MM=MM+1

=

The number of
variables in
substring is MM

1

The variable
subscripts are
in NUMBX array




SUBROUTINE 1NSTRN {FINISH)
COMMON /STRING/ NUMBX(200),MM
DIMENSION ASTRNGEI4), INUM(4)
LOGICAL ENTR

DATA ENTR/.FALSE./

LOGICAL FINISH

DATA BLANK, DOLRSN,RGHTPR,CIMMA/L1H ,LHS LH) 4 LH,/
DATA INUM/G*0/

DATA MBL/0OD0GADS0606060/
FINISH=,FALSE.

I1=1]

MM=]

IF [ENTR) GO TO 2

ENTR=,TRUE,

READ (5,100 {(ASTRNG(J1ed=1414)
I=1

CONTINUE
STRNG=DR{FL { ASTRNG, 1),MBL)

If (STRNG.EQ.BLANK) GO TO 8

NOT A BLANK,SEARCH FOR A NUMBER
NUMBER=LGRI 30, STRNG )

IF (NUMBER.LT.D.0R.NUMBER.GT.9) GO TO 3
FOUND ONE OF THE INTEGERS N DF THE X SUBSCRIPT X{NNNN)
IF {11.GT.4) GD TD 9
INUMCTT ) =NUMBER

I1i=11i+}

GD TO 8

IF (STRMNG.NE.DOLRSN) GO TO 4
DOME WITH ALL INPUT STRINGS,TERMINATE BUFFERS AND RETURN
FINISH=,TRUE.

GO TO 7

IF { STRNG +NEL,RGHTPR) GO TO &
TERMINATE NUMBER BUFFER AND CONSTRUCT NNNN DF X{NNNN}
Il=11~1

ISUM=D

ITEN=1

00 5 J=1,1t

L=ll~-J+1

ISUM=ISUM+INUM{LI*ITEN
ITEN=ITEN%*10D

INUMILI=D

CONYINUE

IF {ISUM.GT,.600) GD TO 9

NUMBX {MM)=]S5UM

MM=MM+1

11=1

GO T 8

IF ( STRNG «NE.COMMA)} GO 7D 8
1F¥ (PREV.NE.COMMAT GO TO B
TERMINATE CURRENT STRING BUFFER
CONTINUE

MM=MM=-1

I=1+1

RETURN

PREV= STRNG

I=[+1

IF (1.LE.B80) GO TO 2

GO TO 1

mmaomMmMmMmMmMmMmmm mMmMmmmm mmmmMmmMmMmMmm mmMmMmmMmmm

mmrm

mmmmmmMmmMmmmMmmmm mm
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WRITE ERROR MESSAGES
CONTINUE

WRITE (6+11)

STOP

FORMAT {13A6,A2)
FORMAT (1DX ,45MSUBSCRIPT TOD LARGE FOR THIS VERSION
END

mmmmmmimm
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Subroutine SOQUT

Let Q=

BCDCON
X, OUT, 12

!

Call REMOVE

<>

|r Punch out
array

Yes
_ No

Print out array
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DUBHKUUSINE DUUT LAjlLUUCE FRNIFZ
OIMENSION DUT(12}

SYMARG X

DATA BLANK/LH /

1CODE=1 PAINT
1CODE=2 PUNCH
ICODE=3 PRINT AND PUNCH

C=PRNTP

CONT INUE

LET 0= BCDLON X,0UT412
CALL REMOVE 10UT)

IF (ICDDE.EQ.1) GA TO 2
PUNCH 4y (OUT(1)y1=2,12)
IF {ICODE-EQ.2) GO TO 3
WRITEI645) Co(OUT(I},122,12)
C=BLANK

IF (Q.,NE.D.} GO TD 1
RETURN

FDRMAT {5X, LH%*y 11A6)
FORMAT(AL,19X,11A6)
END

TnTm

ToHMHTATM™M MM

n MM

w N

[ T

11
12
13
i%

16
17
19

21~



Subroutine REMOVE

Get character
from BCD string

Has sequence of characters

=0 Ng. . .0 (where n; Yes —
is number 0-9) appeared
?
No
T?Sns‘leﬁ:em%, Yes Call DELETE
appeared \ Remove zero)
? { |
No Call DELETE
Are Remove
there any more Yes decimal poi nt/\

'No

Is last Yes

character $
?

No

Remove
dollar sign

&£

g

Return

65
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SUBROUTINE REMDVE (X)

INTEGER X{1)

LOGICAL NBR .
DATA AAST,AMINUS,AE.ALP, ARP,ADP,AZERD/6H®0D00D, 6H=-000DD, 6HEQDDOOD, 5
1H{00D0D, 6H) 00000, 6H,.00000, 6HOQODOD/ yMSH/ L/
DATA ADLR,K/6H$00000,1/
LMAX=X{1)+6

L=7

GO TO (2:+39%46),K

IF (FC(X,L)-.NE.AAST} GO TO 11
GO To 12

IF (FC(X4L).NE.AAST) GD YO 11
GO 70 13

IF {IFC{X,L).EQ.ALP} GD TO 14

IF (NBR(XsL1)Y GO TO 7

GO TO 11}

IF (FCI{X,LY.NE.AMINUS) GO TO 11
L=L+}

MSW=2

GQ YO 5

t=L+]}

IF (NBR{X,L}) GO TO 7

IF (FC{X,L).NELADP) GO TO 11
L=L+]

IF {FCU{X,L).NE.AZERDO) GO TO 11
L=L+1

GO TO (B49) M50

IF (L.EQ.LMAX+1} GO TO 10

JF (NBRUXsL}«OR.FC(X,L).EQ.AE} GO TO 11
GO TO 10

MSW=1

IF (L.EQ.LMAX+1} GD TO 10

IF {FC{X,L).NE.ARP} GO TO 11
CALL DELETE (Xs1-1}

CAtL DELETE (X,0L-21

K=1

GO TO 15

=2

GO TO 15

K=3

GO T0 15

K=&

L=lL+1

IF {L.LE.LHAX) GD TO }

I[F (FCUX,LMAX}.NE,ADLR] RETURN
K=]

CALL DELETE (X,LMAX)

RETURNM

END
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FUNCTIGN FC EX,L)
DIMENSION X(1)

DATA MASK/DT70000000000/
LMl=zg~1

IN=LM1/6+}

FC=AND{ ALS{ 6%MDDILM1, 6) 4 X(IW}) s MASK)
RETURN

ENTRY FCl(X,L)
FC=AND{ALSIL,X)4MASK)
RETURN

END

SUBROUTINE DELETE tXs1)

DIMENSION X(L)s ZERD(6), BLANKIG)

DATA ZERO/DQOTTITTTIITIT,0TT00TTTITTIT,0TITTOOTTTTTITOTT7FITAOTTTV,
107777TTTI0O0TT,O7TTTITTTTITO0/ » BLANK/D$00000000000,00056000000000,000
20060000000, 3000000600000, 0000000006000,0000000000060/

LMi=1L-}

1w=LM1/6+1

[P=MOD{LML,5)+1

X{IW)=OR{AND(X(IN),ZEROD{IP})4BLANK{IP})

RETURN

END

LOGICAL FUNCTIONNBR{X.L)

REAL X(1]

N=LGR(30,FC{X,L )}

MBR=.FALSE.

IF ((MNaGE-3).ANDe(NJLEL9}) NBR=.TRUE.
RETURN

END

SUBROUTINE COS(X)
ENTRY SIN{X)
ENTRY TANH(X}
ENTRY ATAN{X)
ENTRY ALOG{X)
ENTRY DUMP{ X)
ENTRY POUMP({X)
ENTRY FMCDIF(X)
ENTRY EXPDMP{X}
ENTRY FMCOMP(X)
sToe

END
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Evaluation Program - EVAL II

p
Read REDUCE II
cards

Y

ZDB=20 Ioglo Y1

Read NAMELIST
data

Yes @

No

Read plot type
and plot title

w = 2nf
Call COEFF

{

Q=NO(I¥DO
RTMP=Re{Q}

ITMP=Jm{Q}
v

¥
PRINT F, RTMP,
TTMP, Y1,
Y2, ZDB

f=H+DELTAF

Call LOGPLT;
make semilog or
linear plots

Y1-]q|

-l ITMP)
Y2=tan (—RTMP

|




-y

(o N e N X

REAL ITVMP,K,LENGTH

IKTEGER PLTTYP
COMPLEX NQ,D0,.0Q

CCMMON ZARRAY/ BA{14) NNUM,NN
COMMON /CEVAL/ T(LO),Z{10) ,WN{LO) +K{10)4NEXP,NSIN,NCOS,NSINH,NCOSH
1:NSQRTY

CUMMON FOMEGA/ W,DO,,NO(S5)

CCMMON /NONLIN/ EXPA(S) ;SINA{S) yCOSALS) EXPBIS),SINBIS}),LOSBI5)EX
IPC(5)+SINCI5) 4COSCASY LEXPDLI5) +SINDI5),COSDI5)4SINHA{S5),COSHA{S},3Q
ZRTA(S),SINHE{S ) ;COSHBIS5) ¢ SQRTR(5),SINHC{5) 4 COSHCL{5 14 SQRTCI5 1, SINHD
2{E),CO8H0(5)

COMMON JCLPLOT/ XPENsYPEN,NX NY+IPEN,XLABEL(10),YLABEL(10Q)

DIMENSICN Y1(804,5), Y2(604:+5)s KKK{&), P{14)y X(604)

DIMENSION NDEN(5)

DATA LENGTH/O./

DATA LOGPLO/SHLOGPLO/

DATA CONVT/5T,295T7795/

DATA YDB/3HCB./

DATA (KKK(J) 922,60 P(LY4{PlLYsL=3414)/50¢LsLe0s601r3ar2%0.910492%
104104 +¢5%04490./

OATA TWOPI/6.2831853/

DAYA XLAB/IHF/

DATA YLAB/3HABS/

DATA ILAB/SHANGLE/

DATA NK 4NWNNT N2/430/

NAMELIST ZINPUT/ NEXP,NSINyNCDOS+EXPA,SINA,COSA,EXPB,SINB,COSB,EXPC
14SINCsCOSCHEXPD,SIND,COSD+NSINHNCOSH,NSQRT , SINHA, COSHA,SQRTA,SINH
ZB ¢COSHB ySQRTB s SINHC yCOSHE s SQRTC » SINHD s COSHD o NK o K pNT 9 Ty NZ o Z o NWN o WN
AFSTART FEND,DELTAF s LENGTH

READ THE NUMERATOR AND DENOMINATOR INFORMATION SUPPLIED BY REDUCE II

READ (5,12} NNUM,IK,(NOEN{I},1=1,I1K}

READ THE NAMELIST INPUT., NOTE THAT THE PROGRAM ALWAYS RETURNS HERE
READ (5,INPUT)

WRITE {6418)

IUPPER=]

CHECK FOR A PLOTTING REQUEST.

IF (LENGTH4EQ.0.) GC TO 2

[UPPER=2

PLOTTING TD BE DONE. READ IN PLOT TITLE AND PLOT TYPE

READ (5,30) BA

WRITE (6+31) BA

READ (5,3Q) PLTTYP

CONTINUE

EXAMINE THE VARIOUS NAMELIST VARIABLE TQ GET THE !NPUT 10ENTIFIED,
ON THE PROGRAM OUTPUT LISTING

IF (NEXP.NEL.O) WRITE (6,19) llsEIPAllivEXPBll).EXPC‘I!:EXPDI[l I=1
14NEXP)

IF (NSINGNE.O) WRITE 16,20) (I,SINA(I), SINB{I),SINCE{I),SINDII),I=1
1NSIN)

1F (NCOS.MNE.O) WRITE (6,211 (I,COSA{I},COSB{I),COSCLI)Y,COSDII),1=1
1+NCOS)

IF (NSINHaNELO) WRITE (64220 (I4SINHA(I),SINHBUI]},SINMCAI),SINHD(]
1), I=1)NSINH)

IF [NCOSHNELO) WRITE (6,23) (1,COSHAIL),COSHB(1),COSHCLTY,COSHD(]
1) ¢121,NCOSH)

IF (NSQRT.NE.O1 WRITE (64247 (1,SQRTA(I),SQRTB(I]1+SQRTCLI N, Io]1,NSQ
1IRT}

IF (NK NE«Q) WRITE {64251 {1+K{I),ls]l,NK)

IF (NT.NE.O) WRITE (6426) {I,T{I)s1=1,NT)
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IF (NZoNELQ) HRITE {6,27) {1,Z{1),1=1,NZ)

IF {NWNGNELO) WRITE {64281 {1 ,WN{T1)oI=1 NN}

WRITE (&+13) (L+NNUF,NDEN(I}sI=1l,IK}

WRITE (6929) FSTARTLFEND,DELTAF

WRITE (6s14)

IF {DELTAF.EQ.0.0) 60 TO 1

START THE MAIN PROGRAM LOCP. IUPPER =1 1F THERE ARE NO PLOTS
2 IFf PLOTS ARE TO BE MADE

PO 8 NTYPE=1,.IUPPER

IF (NTYPE.EQ.2) GO 1O 3

DF=DELTAF

GC 70 4

DF=(FEND=-FSTART}/600,

J=0

F=FSTART

WaTWOPI *F

IF (J.GE.604% GO TO 8

J=J+]

THE CALL TO COEPF EVALUATES THE TRANSFER FUNCTION AT S=I1%¥4

CALL COEFF

X{4)=F

00 T [=)],IK

Q=NOC(I) 700

RTMP=REAL{Q)

ITMPAIMAGIQ)

Y1(iuali=0.

¥Y24J,1)=0.

ICB=0,

If (RTMPL.EQ.Qus ANDLITHPL.EQ.D.] GO TQ 6

YildoI)=CABSIQ)

I0B=20.*ALNGL0LYL(J,1))

Y2(J T)=ATANZ{ITMP RTMP I *CONVT

CONTINUE

IF (PLYTYP.EQ.LOGPLELANDJNTYPELEQL2) Y1{J,1}=20D8

IF {NTYPE.EQ.2) GO TO 7

IF {1+EQel+ANDLIK,GTo1) HRITE {6.15)

WRITE {(&316) T4F,RTMPITHPY1{Jd,1),Y2(2,1),1ID8

CCNTINUE

F=F+DF

IF (F.LELFEND) GO TO S '

CONTINUE

CCNTINUE ON WITH THE PLOTTING IF IT IS CALLED FOR

IF {LENGTH.EQ.0.0) 60 TO 1

KKK{&)=J

PI2)aAINT(LENGTH+,5}

Nxzw]

XLABEL(1)=XLAB

DC 11 I=1,1K

P{§)=0.

PET)30.

NY=33

IF {(PLTTYP.EQ.LOGPLC) GO TO 9

KKK{l)i=4

YLABEL{1)=YLAB

GC 10 10

CCNTINUE

KKK(11=2

IF {I.GT,1} KKK([l}==2

YLABEL{1)=YDB

CCNTINUE

54
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11

12
12

14

15
1€
17
1€
19
20
21
22
23
24
25
26
27
28
28

ag
i1

NN=NDENII} .

MAKE THE AMPLITUDE RATIC PLOT
CALL LOGPLT {X,YL(1,1),KKKsP)
WRITE {6,17)

IF (PLTTYP.EQ.LOGPLO) KKK(l)=-2
PL6)=-200.,00

P{T)=200.00

YLABEL(L1¥=ZLAB

NY=2S

MAKE THE PHASE ANGLE PLOT
CALL LOGPLT £Xo¥2(L L) sKKK,P}
WRITE {6,417}

CONTINUE

6c 101

FORMAT (15}

FORMAT (50X,2THNUMBER TRANSEER FUNCTIONs {/452X5 12, 9% 2HX 4124 4H
1/ X0 1241H001 K _

FORMAT (/773X 6HNUMBER 45X ,9HFREQUENCY, 13X, SHREAL PART s 9%y L4HIMAGIN
1ARY PART,6Xs14HABSOLUTE VALUE +6Xy LIHPHASE ANGLE »9%» L6HAMPLITIDE 1IN
¢ 0B.)

FORMAT (1MHK)

FORMAT (15,6F20.6)

FORMAT {LOX,9HPLOY MADE}

EORMAT (1H1,//+36H FORTRAN EVALUATION OF FORMAL QUTPUT)

FORMAT (LHO,3X¢1HI »5X,5HEXPA 20X ,SHEXPB ,10X,5HEXPC ¢ 10X s SHEXPD »
1/,115,4E15.5})

FORMAT {1HO+3Xo1HI ,5X,SHSINA L10X,5HSINE »10X,SHSINC + LOX ¢ SHSIND
17:015,4E15.51)

FORMAT {1HO#3X,1HI 5X,SHCOSA ,10%X,5HCOSE , 10X, 5HCOSC » 10X, SHCOSD
17/ 115,4E15.51))

FORMAT (1H013K11HIr5115H5!NHl:10X15HSINHE|10!;5”5!NHC,IOK'SHSINHD'
1/3(15,4E15.51)

FCRMAT (lHO.SX{lH[g5X15HC0$HA,10!75HCDSHB'lOXg5HCUSHC’101,5HCUSHD’
1/3(15,4E15.5%}

FORMATY {1HO 3% s 1HT s 5Xs SHSORTA 410X s SHSQRTB, LOX 4 SHSQRTC, /44 1543ELS545
14}

FORMAT (1HO 33X s1HL 3 SXo MK/ 9 {I5,E 551}

FORMAT {1"0!3!.1”115X01ﬂT1f!|15!51565),

FORMAT (LHO3Xs1HI 45X 1HZ o/ 1I5,ELG5))

FORMATY (1HO3X,1HI 45X 2HWN, /4 (I5,E15.51)

FORMAT (//,8H FSTART=4F1545:5XsSHFEND= ,F1545,5X s THDEL TAF=,F15.5)
FORMAT (13A64A2])

FORMAT (34HOCALCOMP PLOTS HAVE BEEN REQUESTED.//+5Xy134644A2)

END
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Subroutine COEFF

SLBROUTINE CUEFF
C PLY REDUCE 1] QUTPUT IN THIS SUBROUTINE
REAL K
CHSER Mkl d AR SRR AR AR DN ARSI R RN A AR R R SRR R SRR A RE R R D RER BTN KD &

C# * THE COMPLEX STATEMENT PUNCHED BY REDUCE I] FOLLOWS THIS CARD = » =
(R L LI A R R R 22 s 22 PR R R R LR A2 2RISR R RL EL T LY F Y
LCGICAL QONE

DATA DONE/<FALSE./

COMPLEX NO4OOQ+EXPFX oSINFX,COSFX 4SINHFX,, COSHFXSQRTFX, S

COMPLEX EXPF(5)+SINF{5),COSFIS),SINHF({5),COSHFI5),S5QRTF(5)

COMMAN /CEVAL/ TU10)+Z410)+WNILO) o K{1D) 4 NEXP,NSINyNCOS,NSINHNCOSH
14NSQRT

COMMON FOMEGA/ W,DO,NO{5)

IF {NEXP.EQ.0) GO YO 2

DO 1 Tal.NEXP

EXPFI{II=EXPFX{I)

IF (NSINGEQ.Q) GO TO 4

00 3 I=1,NSIN

SINFLI}aSINFX(TY

IF INCOS.EQ.0) GD TC &

CQ & [=1,NCOS%

COSF{I=COSFX(I}

IF (NSINH.EQ.OI GO YO 8

DC 7 I=1.NSINH

SINHF LI )aSINHFXLT)

IF (NCOSH.EC.0} GO 7O 10

BC 3 [=1,NCOSH

S CCSHF (I 1sCOSHFX{1)

iQ [F (NSORT.EQ.01 GO 710 12

0C 11 I=1,NSQRY
11 SCRTF(I)3SQRTFX{T)
12 CCNTINUE
5=CMPLX{0.0¢W)

CARERRAR AR AR BRERE R RS IRk R R kRN RN e NS SRRk o A ol ok o e ok o
C* * # THE USERS'S FUNCTICNS {G(S)*S) ARE INSERTED AFTER THESE CARDS % %
C*# % *# THE G'S MUST BE FOLLOWED BY THE SUPER G*S,THE NUMERATOR,AND # =

F R LSl

] L W]

C* *= % DENOMINATOR CARDS REDUCE 11 PUNCHED L
R AR St L EL R 2 Lo T Rl St D TS T L T L E Y Y PR A pr e p e
RETURN
END

2
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Function EXPFX

COMPLEX FUNCTION EXPFX(I1}

COCMPLEX X.Y

COMMON /OMEGAS W,DO .NO (5}

CCMMON /NONLIN/ EXPA{5),SINA(S),COSAL5),EXPBI5),SINBI5),CO5B(5},EX
IPCIS) ySINCIS),COSC{SIEXPOI{5},SIND(SI,COSDI5),SINHA(S],COSHA(S},5Q
CRTAIS5},SINHB(S5) yCOSHB{S ), SQRTBI(5)+SINHC {5} COSHCLS ), SQRTLUISY, SINHD
2{5}),LOSHD{5])
XaCMPLX{EXPCU{I }-EXPALI ) *euee2  EXPAL])*W)
Y=EXPD(I}*CSQRT{X)

EXPFX=CEXP{Y)

GC TO 1

ENTRY SINFX{I)

X=CMPLX (SINCOTI=SINA(T ) *W*R2 ,SINB([]1*W)
Y=SINDL{ T 1 *CSQRT{X})

EXPFX=LSIN(Y)

GC YD 1

ENTRY COSFX(I)
X=CMPLX{COSC{LY-COSAC(L ) eW¥2 ,COSBLIY*W)
Y=COSD{ [Y*CSQRTIX)

EXPFX=CCOS(Y}

GC TO 1

ENTRY SINHFX(I)
XzCMPLX{SINHCITI)=SINHALTI ) #W*%2,STNHBLY ) %W)
Y=SINHD (T Y®#CSQRT(X)

X1=REAL(Y)

Yl=AIMAG(Y)
EXPFX=CMPLXCSINHI{XE IxCOSIYL Y, COSHIXLI#SINIYL))
GC T0 1

ENTRY COSHFX(I)
X=CMPLX(COSHC{I ) -COSHA(T) *W2*2 ,COSHB( I} *W}
YaCOSHD LI ) ®CSQRT LX)

Xi=REAL(Y)

Y1=ATMAG(Y)

EXPFX=CMPLX{COSHIXLI*COS(YL) +SINH(X1)*SIN(Y1))
GC TO 1

ENTRY SQRYFX(I)Y
X¥=CMPLX(SQRTIC{II-SARTA{ ) 222 ,SQRTB( [} #H)
EXPFX=CSQRT (X}

RETYURN

END
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Subroutine CALTIT

SUBROUTINE CALTIT

CCMMON JARRAY/ BA(14) ,NDEN,NNUM
DIMENSICN FUNC{4)

DATA FUNCIL)/20HTRANSFER FUNCTION X /
AD=NDEN

ANsNNUM

CALL SYMBOL (~14541.9e154BA430,.,801
CALL SYMBOL (-140:1l.49415,FUNC 90,219}
CALL NU"BER ""' 85 lao‘!”! 100"0 igoo '-1)
CALL SYMBOL (~1ls93e521al5:2H/X4%300+2)
CALL NUMBER (=oBS5+3.T7092100yANy904¢~=1)
RETURN

END

Block Data

BLOCK DAYA

CCMMON /JCLPLOT/ XPEN;YPEN,NX4NY,IPEN,XL{1D),YL{10}
DATA XPENsYPEN,IPEN/2%#D.4~3/

END

e
NEO DN D W N e
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Subroutine LOGPLT

SLBROUTINE LOGPLT {XDOWN, YACROS,KKK,P)

THIS LOG PLCTTING PROGRAM WAS WRITTEM BY MR, BERT HENRY OF
LEW!S RESEARCH CENTER, IT wWAS MOCIFIED BY “R. JERRY LENHART AND
MR, JOHN RIEHL ALSO OF LEWIS RESEARCH CENTER

THIS IS A GENERAL ROUTINE FOR MAKING LOG-LOG AND SEMI-LOG CALCOMP
PLOTS ON PLAIN PAPER,

THIS SUBROUTINE UTILTZES THE SAME COMVENTIONS AS CALPLT EXCEPY FOR

. KKK{L) s P{3) 4P{4),P{6), AND P(7) AS INDICATED RELOW.
THE RDUTINE EXAMINES KKK(l) TO DETERMINE WHICH AXIS WILL
REQUIRE A LCG SCALE, THEN EXAMINES THE APPROPRIATE DATA
TO DETERMINE THE NUMBER OF CYCLES RIQUIRED, IF THE NUMBER
OF CYCLES DCES NOT EXCEED T CR 15 & Y OR X AXIS RE-
SPECTIVELY 1 , THE GRIDS ARE NRAWN
PERPENDICULAR TD THE LDG AXIS AT EVEN VALUES IN EACH CYCLE
IFf FORE THAN T OR LS CYCLES ARE REQUIRED, AN APPROPRIATE
MESSAGE IS PRINTED AND CONTROL IS RETURNED TO THE CALL-
ING PROGRAM,

FOR THE LINEAR SCALEy THE ROUTINE WILL COMPUTE THE SCALE IF AND ONLY
IF BOTH PL3) AND P{4), CR Pl&) AND P(T), ARE SET TO 0.0
FOR THE X OR Y AXIS RESPECTIVELY. GRID LINES WILL BE
DRAWN PERPENDICULAR TO THE AXIS AT THE TICK MARKS WHICH
ARE CONTROLLED &Y P{B]).

A CESCRIPTION CF THE SUBROUTINES ARGUMENTS FOLLOWS~,

XOCWK IS THE NAME OF THE ARRAY CONTAINING THE VARIABLE TO BE PLOTTED
AS THE ABSCISSA

YACRCS = THE NAME OF THE ARRAY CONTAINING THE VARIABLE TO BE PLOTTED
THE CRDINATE

K¥x(1} = 14 IF ¥ AXIS ONLY IS LOGARITHMIC

KKK(1) a8 2, IF X AXIS ONLY IS LOGARITHMIC

KKK(l1) = 3, [IFf BOTH X AND Y AXES ARE LOGARITHMIC

KKEK({1l} = &y [F BOTH X AND Y AXES ARE LINEAR

#44% [F KKK{L1) IS5 NEGATIVE THE APPROPRIATE NCN-LINEAR DATA IS

ASSUMED TO BE IN LOG BASE 10 FORM, IF POSITIVE THEN THE ODATA
WILL BE TRANSFORPED TQ LOG BASE 10 AND LEFY IN THIS FORM,

C KKK{2} = USED TC CONTROL SYMBOLS PLACED ON DATA POINTS

C KKK{2) 0, FOR ONLY A LINE PLOT

C KKK{2) 1+2+324 ETC, WILL PRODUCE A SYMBOL AT EVERY DATA POINTY, OR

C EVERY KKK{2) DATA POINTS

Cr—m—= A NEGATIVE KKK(2) WILL SUPPRESS THE LINE BETWEEN DATA POINTS

K¥x (3} = THE NUMBER OF CURVES TD BE PLDTTED (KN)

[aNalslaRa¥sNeNaNaelalsRulaNasla Nz kaNaia ks NalakeiaRslalulekakakaieinsininEninln]

KKK(4) = THE REPEAT CYCLE IN CASE VALUES ARE IN A MIXED ARRAY
KKK(E} = THE DESIRED SYMBOL
KKK{&) - KKK{KN+#5) = THE NUMBER DOF POINTS IN EACH CURVE

P(Jy = 1.0, OPTION FOR OUPX, AS USED IN PLOTMY
P(]1) = 2.0, OPTION FOR DUPY, AS USED IN PLOTMY
P{1) = 3.0, OPTION FOR NODUP, AS USED IN PLDTMY
P(z) = THE MAXIMUM WIDTH OF THE PLCTYED LINE
w2 aNOTER SRk
IF ABSCISSA VALUES ARE LINEAR, THEN
P{2} = MINIMUM VALUE OF ABSCISSA ARRAY OF QATA
PL€) = MAX[MUM VALUE OF ARSCISSA ARRAY OF DATA
1F ABSIKKK{L1}) = 1 AMD EITHER P{3) OR P{4) IS NON-ZERO, THEN THF X

slaNeNaYaNaluRalaNalaNal el

L N e e e
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SCALE WILL NDT BE COMPUTED BY THE PLOY ROUTINE.
p(t] = YTHE MAXIMUM HEIGHYT OF THE PLOTTED
MUST NOT EXCEED 10, INCHES.
xR ANOTES®R%%N
I[F ORDINATE VALUES ARE LINEAR, THEN
PLé) = THE MINIMUM VALUE OF THE ORDINATE ARRAY OF DATA
P{1) = THE MAXIMUM VALUE OF THE OROINATE ARRAY OF DATA
IF ABS(KKK({1)) = 2 AND EITHER P(&) OR P{7) 1S NON-ZERDs THEN THE Y
SCALE WILL NOT BE COMPUTED B8Y THE PLOT ROUTINE.
et e ANQTER Wk RE
If EITHER X OR ¥ ARE LINEAR, THEN
P(E) = DIVe (WILL CAUSE A TICK MARK T0O BE PLACED AT EVERY 10,0/0D1V IN
23RS RRERRkSREN
P(S) = P(10),= THE COORDINATES OF THE STARTING POINT OF THE ABSCISSA
PL11} = P{12),= THE COORDINATES OF YHE STARTING POINT OF THE ORDINATE
P{13) = THE ANGLE IN (GEGREES} OF THE ABCESSA AXIS
Pt14} = THE ANGLE IN (DEGREES) OF THE ORDINATE AXIS
PI15) = NON-2ERQ IF DATA IS TO BE ROTATED PER P{13} AND Pi14)

NOTESSassste
THE FOLLOWING CARD 1S NEEDED IN THE CALLING PROGRAM
COMMON ICLPLOTIXPENiYPENgNX.NVglPEN.KLABEL(lO’,YLAEEL(10'
HWHERE~
XPEN AND YPEN GENERATES THE INCREMENTS NECESSARY TO MOVE FROM CuR
POSITION TO XPEN,YPEN ~===NORMALLY=0.0
IPEN=3, FOR PEN UP
IPEN=2, FOR PEN DOWN
[PEA==3 DR=2 4PROVIDES A NEW REFERENCE POINT AT (XPEN,YPEN) RELATIVE
THE CURRENT REFERENCE POINT
TITLES
XLABEL = THE NAME OF THE ALPHABETIC ARRAY DF DATA FOR THE ORDINATE AX
YLABEL = THE NAME OF THE ALPHABETIC ARRAY OF DATA FOR THE ABC1SSA AXI
Nz THE NUMBER OF CHARACTERS IN THE ORDINATE AXIS TITLE, A MINUS NX P
THE ANNOTATION ON THE CLOCKWISE SIDE OF THE AXIS INSTEAD OF THE
COUNTER CLOCKWISE SIDE
NYs THE NUMBER OF CHARACTERS IN THE ABLISSA AXIS TITLE, A MINUS NY P
THE ANNOTATION ON THE CLOCKWISE $IDE OF THE AXIS INSTEAD OF THE
COUNTER CLOCKWISE SIDE
COMMON /CLPLOT/ XPEN ¢ YPEM MY s NY oI PEN, XLABEL {10}, YLABEL {10}
COMMON /SPECL/ TEST ORGSET,SPASET
CCMMON /XCPIDX/ NBLCNO,IRUNC,CPID{(8]
DIMENSION SAVARA(4)
DIMENSION XDOWN{l), YACROS{1), KKK{1l}, PI1}
ECUIVALENCE (S5TR,ISTR)
DATA RUNMES/6HRUN NC/
DATA BLKMES/6HBLK NC/
DATA INITAL/SO/
OATA STR/05C000C000000/
DATA SPACER/B./
I1F {INITAL.EQ.50)} GO TO 3
1¢ (P(1).EQ.4.0) GO TO 2
IF {IPENJ.NE.{-3)} GC TO 5§
IF (XPENLEQ.STR]) XPEN=O.
If (YPEN,EQ.S5TR) YPEN=Q.
GC TO 4
CALL PLOT [XPEN,YPEN,I1PEN)
RETURN
XTPEN=(Q.0
YTPEN=0.0
ITPEN=-13




c O Om

XEPAC=SPACER

IF {PI11.EQ.STR}Y P(1)=3.0

IF (P{21.EQ.STR) P{2)=10.0

IF (P(3),EQ.STR) P{3)=0,

IF {Pl41,EQ.STR) P(4)=0,

IF {P(5).EQ.STRY P(5)=210.0

IF (P(&1.EQ.STR) PLE)=0.

IF (PIT).EQ.STR) P{T1=0,

IF (PIB).EQ.STR) P(A1=10,0

IF (P{91,EQ.STR} P(9)=0.

IF (PII1C)LEQ.STR) PI10}=0.

IF (P{1Y).EC.STR) P(1l1l)=0,

IF (P{12)}.,EQ.STR) P(1l21=0.

IF tP{13).EQ.STR) P({13)=0,

IF {(PL14)4EQ.STR) P{14}=90,0

IF (P{15),EC.STR} P(15)=0.

IF (KKK(1).EQ.ISTR) XKKK{1li=1

IF (KKK({2).EQaISTR) KKK(2)=0

IF {KKK({31,EQ.ISTR) KKKI[3)=1

IF (KKK(4),EQeISTRY KKK{4)=1

IF IKKK{S5).EQsISTR) KKK(5)=1

IF {(KKK{&)EQ.ISTR) KKK(6)=]

INITAL=Q

CALL PLOY (XTPEN,YTPEN,ITPEN]
FBLOND=NBLOND

CALL SYNBOL (040414040.24CPID{11490.0,24)
CALL SYNMBOL (D4541a0+0.24RUNMES ,90.0,446)
CALL SYMBOL (0.542e5+042+[RUNDO490,0,46)
CALL SYMBOL (0e5+44050.20,8LKMES,30.0,6)
CALL NUMBER (04546504 0+0,20,FBLONC,90.0,-1)
CALL PLOCT (XTPEN.YTPEN,ITPEN)

GC TO 1

CALL PLOT {(XPEN,YPEN,1PEN)

NXl==]

FELONO=NBLONG

CALL SYMBOL $-3.590.040e15,8LKMES,0,0,6)
CALL NUMBER (=2+5¢0+.0¢0415+FBLOND,0.0,~1)
YTPEN=C.O

XTPEN=2,0

ITPEN=~23

CALL PLCT (XTPEN,YTPEN,ITPEN]}

CHECK FOR SCALING IN DUPX OPTICN

Jx=1

Jysl

IF [PI{3)}.NE.O.) GD TD &
IF (P{4)+EQ.04) JXa22

IF {(Pl6)NE.O.) GO TO 7
IF ‘P‘T'-EQ-O. ) J¥=2
J2TABS(KKK{1})

FPOPT=P (1)

KN=KKK(3)

NPTS=(

CC 8 I=1,KN
NPTSaNPTS+KKR(T1+5)

TRANSLATE AND ROTATE CATA IF DESIRED

IF {P(3).NE.3,) GO TO 9

IF (P(151.EQeDs) GO TO 63

CALL TRNSFM {(XDOWN, YACROS+NPTS+P{13),P(14})}
SETUP NUMBER OF POINTS FOR DUPX, AND DUPY

119
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130
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140
141
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144
145
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147
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160
161
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167
168
169
170
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178
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NEPTS=KN®KKK (&)
NPT=KKK(8)

IF (WKK(&).EQ.0) GO TO 29
GC TO (1Q411,12),1PCPT

C SETLP FOR AXIS SUBROUTINE

C
1¢

11

12

12

14
1¢

l¢
17

18

19
26

Z1
22

23

CHECK FOR DLPX,DUPY OR NOOUP OPTICN

NPL1=NPT

NP2aNSPTS

GC 10 13

NPL1sNSPTS

NP2=NPT

GC YO 13

NP1=NPTS

NP2=NPTS

GC TO i14,15+18,14),J

GC TO (15,16),4%

XMINsP (3

DELX={P(4)1-P(3))/P(2)

GC TO 17

CALL SCALE (XDOWNgP(2) 4NPL,XKKK(4),P(8) 4 XMIN,DELX)
CALL AXGRID (P{9)yPU10) +XLABEL NXyP(2)3P(13),XMIN)DELX,PLB)PIS},P
14141)

IF (J.EQs4) GO TO 19

CALL GRID (PLLLI4P(22),YLABEL JNY, YACROS NP2, KKK(1}4P(51,P{14},P(2)
F+4P{I3)¢ YMINLDELY T}

GC TO (24424423424} .44

CGC TO (2Q,21),4Y

Y¥IN=P(&)
DELY=(P(T7)=Fi56})/P15)}
GC TO 22

CALL SCALE {YACROS,P(5) NP2, KKK{4} ,P{B};YMIN,DELY)

CALL AXGRID (P{LL)4P(12):YLABEL NY,P{5],P(1&}),¥YMIN,DELY P(B) P(2),
1P(13)s15}

IF [J.EQ.%4} GO TO 24

CALL GRID (P{9),P{10) s XLABEL yNXyXDOWNsNPL KKK{L)sP(2),P(13),P(5),P
1014} XMIN,DELX)

€ SETLP FOR ENTERING LINE AND AX1IS SUBROUTINES

24

CCNTINUE

K2=Q

44J32=0

DC 28 IND=1,KN

K3=IND

K4=K2

TKSYMB=KKK{5)+IND~1

ISym=2 :

IF {KKK{2)4EQ.a999} ISYM=KN4+K325

C SETLP FOR CHECKXING QUPX,DUPY,OR NODUP OPTION

C

GC TO (25426427 ),1PCPY

C DUPy CPTICN FOR LINE

C
3=

IF [KKKI(&)Y.EQ.D) GO TO 28

K2Z=K2+XKK(56)

CALL LINE (XDOWN, YACROS{KA41) ¢ KKK (6 ) JKKK{4 ) KKK ISYM), TKSYMB, XMIN,
ICELX aYMINSDELY])

GC TD 28

€ DUPY CPTYICN FOR LINE

c
ZE

78

If {KKKI&6).EQ.D) GO TO 28
K2=K2+KKKI(H)

i19
180
181
182
183
184
18%
186
187
188
189
190
191
192
193
194
195
196
157
198
199
200
201
202
203
204
205
206
207
208
20¢%
210
211
212
213
214
215
21&
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238



CALL LINE (XDOWNUK&G+1} ¢ YACROS JKKK{E) ¢KKKI4YKKKETISYM)y IKSTYMB L XMIN
IDELX2YMEN,DELY)
GC TO 28

C NOOLP OPTION FOR LINE
C

]

e

29

IF (KKK(K2+45),EQ.D) GO TO 28
K2=K2+KKK(KI+5)

Ki=K2

JJI2=K2+42

CALL LINE (XDOWN{K&+1) s YACROS(K&+1) ,KKKIKI+S) KKK{4) KKKLISYM), IKS
1YMB , XMIN,DELXs YMINL,QELY)
CCNTINUE

CALL CALTYITY

XPENL=PL2)+XSPAC

IPEN=XPENL

¥PENL=IPEN

YPEN=0.8

IPEN=-3

CALL PLOT (XPENM1,YPEN,IPEN)
XSPAC=SPACER

RETURN

END

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

259~

79



(]

[zlzEaEelslelalaNeNeRalaNaNalalalel

a

80

Subroutine GRID

RIS SUBROUTINE WILL ORAW AXIS MWITH LDG SCALF AND ITS GRID LINES

SUBROUTINE GRID {X,o¥sBCDsAN XX Ny MySTZEsTHETALHGT s THTY y XXMINXXDEL
§oKCYMAXE

WFERE- X,¥ IS THE COORDINATE OF THE STARTING POINT OF THE AXIS.

aco IS THE LOCATION OF ALPHA INFORMATION FOR AXIS YITLE.

NN IS THE NUMRER OF CHARACTERS IN BCO TITLE. A NEGATIVE
NN PLACES THE TITLE ON THE CLOCKNISE S10E OF THE AXIS
LINE AND VICE-VERSA

XX IS THE KAME OF THE ARRAY IN THE AXIS DIRECTION
N 1S THE NUMBER OF POINTS GIVEN IN THE XX ARRAY
M 1S POSITIVE 1IF THE XX ARRAY IS Y0 BE CONVERTED TO LBG

BASE 10. FOR NEGATIVE M THE XX ARRAY VALUES MILL BE
TAKEN AS LOG BASE 10 VALUES

SIZE 1S THE LENGTH OF THE AX1S TO BE PLOTTED IN INCHES

THETA IS5 THE ANGLE IN DEGREES OF THE AXIS MEASURED 1IN
COUNTER~CLOCKWISE DIRECTION FROM THE X AXIS.

HGY IS THE LENGTH OF THE OTHER AXIS IN INCHES

THTY IS THE ANGLE IN DEGREES OF THE OTHER AXIS MEASURED
COUNTER-CLOCKWISE FROM THE X AXIS.

CIMENSION XX(1),y TIC(9), XSPC(9)s YSPC(3), VAL(S)
DATA (TIC{I)sI=1,9}/a0457575,40511525,0.0579924.0669467,.07918134.0
19651 ,01249387,.1760913,.30103/

DATA (VAL{I)sI=145)/Barbestiar2erla/

DATA RAD/.QLT4532925/

KATE=L

XMIN=1.E28

EMAX==XKIN

DO 2 I=1,.N

IF {M.1T7.00 GO TO &

XX ¢ i=ALOGLO (XX (1))

TP (XX{I}aGTLXMAX) XMAX=XX{I]

IF (XX{1ILLTLUMINY XMIN=XX(I)

CCNTINUE

KXMAX=XMAX

AMANK=KXMAX

(F (AMAXLGTL XMAXK) XMAXK=XMAXK+l,
KXMIN=XMIN

AFINK=KXMIN

IF [XMINLLT.XMINK) XAMINK=XMINK-1. e
KXCYC=XBAXK~XM] NK

IF (RACYL AGTaTs ANDQKCYMAXLERLTY GO TD 13
IF (KXCYCeGTa25.,ANDKUYMAXLEQe15) GO TO 14
SCALEX= SlZEIFLUATlKXCYC!

YXPIN=XMINK

NXDEL=VAL{5)/SCALEX

NCX=5K XCYC

NCXPTS=G*KXCYC

CTH=THETA%RAD

STH=SINI{CTH)

CYH=COS(CTH)

CTHY=(THTYY-50, ) #RAD

STHY=SINI{CTHY)

CTHY=COS{CTHY)

OC 3 [=1,9

XEPC(L}=TIC(I)®CTH*SCALEX
YEPCLIN=TICLII#STHESCALEX

ANz X+CTHRSLZE

N N N R o e e
OO NS W OO0D NP N -

NN RS
[- R TR U

WM NN
=00~
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\n

YNIY+STHRSIZ2E

ANX=XN

YNY=YN

CALL PLOT (XNyYN,31)

OC 4 I=1,NOXPTS

Jd=1~1

KK=MOD(JJ,9)+1

XN=XN-XSPC (KK}

YN=YN-¥YSPC{KK)

CALL SYMBOL (XN;YNyaely13,THETA,~2)
DC 5§ I=1,4
XSPCLIN=XSPC{2*]~1}+XSPC{2*])
YSPCULI=YSPC(2*I-1)+YSPC{2*)
XSPC1S)=XSPC(F)

YSPC{5)=YSPC(9}

XNU=XNX=STHY$HGT
YNU=YNY+CTHY®HGT

KOTO=1

IF {ABS(XSPCY.LT,1aE=3) KOTO=2
00 8 I=1,NDX

Jd=1=-1

KK=MOD{JJ,51)+]

CALL PLOY (XNU,YNU,3)

CALL PLOT (XNX,YNY,2}
XNX=XNX=-XSPC{KK)
YNY=YNY-YSPC (KK)
XNLU=XNU=-XSPC (KK}
¥NU=YNU=-YSPC (KK}

GC TO (&,7),X070

TEMM=YNU

YNU=YNY

YNY=TEMM¥

GC 1O 8§

TEMMaXNU

XML =XNX

ANX=TEMMN

CONTINUE

CALL PLOTY (Cey0Qssd)

NCTE=NOX+]

DXB=2=,05 .
DYB==,05%{1.-3.5THI+SIGN(.15,NN}
DXC=5S51ZE/24- o 12*%FLCATI(TABSINN)I+T}/2))
DYC={~.075+SIGN{.3TS,NN))

XNz X4DXB3CTH=-DYB*STH
YNay+DYQ+CTHEDXB*STH

SPC=.20

SP&=.06

XNT=SQRT(DXC**2+DYC*%2)

CO 12 1=1,NCTE

JJ=I-1

KK=MOD{JJs5)

LL25-KK

IF (KXK<NE.D) GO TD 9

CALL SYMBOL (XNyYN,ely2H1040a+2)
XT=XN+SPL

YTaYN+SPS

CALL NUMBER (XT¢YT 40T+ XMINK,049~1}
XNINK=XVINK+1l.

6C TO 10

CALL NUMBER (XNaYNs 1, VALILL)0.4-1)

113
11a
115
116
117
1114
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11

12
13
14
1t

1€
17

82

AN=XN4+XSPCALLL]

YN=YN+YSPCILL)

GO TO (11,12),KATE

1F (XNT.GT.SQRT{XN232+¥N*%2}} GC TO 12
XT=X+0OXCACTH=-DYC®STH

YT=¥+DYCRC TH+DXC*STH

CALL SYMBOL 1XT,YT'.14,BCD.THETA;IABSINﬂii
KATE=S2

CCNTINUE

RETURN

WRITE (&,17)

GO 10 1%

WRITE {6,161}

CCNTINUE

s70P

FORMAT (33HCNLY 15 CYCLES ALLOWED FOR X-AXIS)
FCRMAT (32HCNLY 7 CYCLES ALLOWEL FOR Y-AXIS)
END

Subroutine TRNSFM

SURROUTINE TRNSFM (X,Y 4N, THETX,THETY])
DIMENSION X{ll, Y11}

RETURN

END

119
120
121
122
123
124
125
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130
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134
135
136
137~
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Subroutine AXGRID

THIS SUBRCUTINE WILL CRAW A LINEAR AXIS WITH ITS GRID LINES
SUBROUTINE AXGRID { XY BCDaNsSIZE,THETA,XMIM,DX,DV,HGT, THTY)

W+ERE-

Xy Y

BCO

"N

SI1ZE
THETA
XMIN
OXx

ov

HGT
THTY

IS THE COORDINATE OF THE STARTING POINT OF THE AXIS.
BOTH ARE FLOATING PCINT AND PAGE INCHES.

1S THE LOCATICON OF ALPHA INFORMATION FOR AXIS TITLE.
USUALLY VARIARLE NAME. {NORMALLY SET UP WITH LITERAL)
IS THE NUMBER OF CHARACTERS IN RCD TITLE. A NEGATIVE
N PLACES THE ANNOTATICN ON THE CLOCKWISE SITE OF AXIS
LINE AND VICE-VERSA,

IS THE LENGTH OF THE AX!S TO BE DRAWN., SIZE 1S
FLOATING POINT AND SHOULD BE MULTIPLY OF (1G.0/0[VI.
IS THE ANGLE OF THE AXIS MEASURED COUNTER-CLOCKWISE
FROM X AXIS. TYHETA IS FLOATING POINT DEGREES,

[S THE VALUE OF VARIABLE AT THE FIRST POINT OF THE
AX[Ss XNIN IS FLOATING POINT. {SEE NOTE)

IS5 THE ODIFFERENCE BETWEEN SECONC AND FIRST VALUE OF
VARIABLE ALCNG AXI1S. DX IS5 FLOATING POINT. {SEE NOTE)
IS THE NUMBER OF PIVISION PER INCH OF PAPER TO BE USED
DV IS FLOATING POINT, (MAY RE 10.0,20.0425.0+25.4}
IS THE LENGTH OF THE OTHER AXIS

IS THE ANGLE BF THE OTHER AXIS TO BE USED.

NCTE- THE SECCND VERSION OF SCALE PLACES XMIN [N VARIABLELJ®*K+1)AND

OIv=hVv

Twl=240
IF (DIVelTaleeORMDIVeGTe25.4) DIV=10,0
TH=THETA*0.C174532925

THETY=({THTY-90, }%.0174532925
STHY=SINITHETY}

CTHY=COS{THETY)

CTH=COS[TH)
STHR=SIN{TH}
DIVA=DIV

IF 10IVv=-20.0) 14242

DIva=2,0*DIV

Twl=1,0
SPALE=1C.0/CIVA

DXB=—,05%(1.+2,*CTH)

OYB==,05%{ 1, =5, %STHI+SIGN(.15,N)
DXC=SIZTE/ 2.~ 12*FLCAT({IABS{N)IY/2)}
DYC={-oQTS5+SIGN{.5T54N} )
DNCTE=SIZE/SPACE/2.0+1.0

MCTESONGTE
IF LIDHNCTE-FLOAT(NOTE) 14GTe0499) NOTE=NCTE+1
SPC=CTH*SPACE%2,0

SPE=STHESPACE*2,.0

XN=X+DXB*CTH-DYB#*STH

Yh=Y+DYR#CTHF¥DXBRSTH

ACY=ABS{OX)1%10Q.0/DIV

Ex=0a.0

OX IN VARIABLE(J*K+K+1}. WHERE J IS NUMRER OF ELEMENTS IN
ARRAY AND K 15 THE REPEAT CYCLE OF MIXED ARRAY,

IF {ADY) 3,7,3
[F tADY‘IG0.0, 6'4’4

ACY=ADY/10.G

EX=EX+1.0
GC 10O 3

Rl - BEN s RN RN TR L
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ADY=ADY#10,.¢
EXsEX~1.0

IFf €ADY=1a} 5,747
ARSY=XMIN/LCOC*EX
NADY=ADY

IF (ABSIADY-FLOAT(NADY)1.56T.499} ADY=IFIX(ACY+SIGN(.O1,ADY})

ADY=STIGN{ADY DX}=THC
NT=SQRTIOXC*&#24+DYCR%2D

DC 10 I=1,NCTYE

CALL NUMBER (XNiYNoswulyABSVe0e+0)
ARSV=ABSV+ADY

XN=XN+SPL

YN=YN4SPS

IF (NT) 10.8,10
XT=X+OXCHCTH=DYCHSTH
YTaY+DYCECTH®DXCHSTH

CALL SYMBOL (XT4Y¥Ty.14,BCD,THETA, TABSIN))
IF {EX} 9:10,49
XTaXT4+.12%FLDAT(IABS{N) I*CTH
YTaYT4,12%FLOATIIABSINI I 2STH
CALL SYMBOL (XTs;YT,014,THIX10 JsTHETA,T}
XT=XT+{ 2285 %CTH-, 06%*5TH}
VT=Y¥T4( 124528 TH+, Q06%CTH]

CALL NUMBER (XT¢YT408;EX,THETAy~1)
NT=NT=-L

DNTIC=DIV#STIZE/10.0+1,0
NTIC=DNTIC

IF {({ONTIC~FLOAT(NTIC) }oGT.0499) NTIC=NTIC+]
XN=X+CTH®*SIZE

¥YhaY+STHHSTZE

XNX=XN

YNY=YN

XNU=XNX=3THY*HGT
YNU=YRNYSCTHYRHGT
SPC=CTH#10.,0/DIYV
SPS=8TH=10.C/DIV

CALL PLOT {XN,YH,3)
XN=FLOAT{NTIC=1)}%SPC+X
YN=FLOATINTIC=1 }%SPS+Y

00 11 I=1,NTIC

CALL SYMBOL (XN YN»Qe2%SPACEs13,THETA,-2)
ARKaXN=-5PC

YiN=YN=5P%

NTIC=sNTIC=-1

®OT0s1

iF (ABS{SPS)alTalaE-D3) KOTO=2
D0 14 I=1.NTIC

CALL PLOT (XNUsYNU,3)

CALL PLOT (XNU,YNU,3)

CALL PLOT (XNXyYNY.2)
ENN=XNE=-SPC

YNYSYNY=SPS

XNU=XNU=-3PC

YhU=YNU~SPS

GC TO (L24131.K0OTO

TEMM=XNY

RNU=XNX

XhX=TEMM

GO 7O 14

TEMM=YNU

YRU=YNY

YNY=TEMY

CCNT INUE

RETURRN

END

111
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APPENDIX E

USER'S MANUAL

HOW TO USE REDUCE I

The input to REDUCE II consists of five basic pieces of information:
(1) A card indicating whether the super G form is ARTIFICIAL or NATURAL
(2) The block diagram inputs
(3) The transfer function (or functions} desired
(4) A set of algebraic expressions representing the block diagram
(5) A sequence of variables separated by commas representing the reduction order
string
With the exception of the first card, the input data can be punched anywhere on a card.

Examples of Input to REDUCE II

Examples corresponding to the five basic types of input are described as follows:

(1) This card must have ARTIFICIAL or NATURAL punched on it starting in card
column 1.

(2) The block diagram inputs are specified as, for example,

X(T)$X(5)$X(1)$ %

A dollar sign separates each input. Two dollar signs in succession (no blanks between
them) indicate the end of the block diagram inputs. There may be no more than five in-
puts for a block diagram as the program is currently dimensioned, and only one card
may be used.

(3) The desired transfer function for the block diagram is given by, for example,

X(2)$X(1)8% or  X(2)$%

When two variables are indicated, REDUCE II solves the block diagram for the ratic of
the first variable given {the output) to the second (an input}). When one variable is given,
REDUCE I solves for the ratio of this variable to all the inputs. Again two dollar signs
in succession indicate the end of this information, and only one card may be used.

(4) Block diagram expressions are written as

(xN+G(A)*G(B)*. . . *G(F))*X(B)+G(M)*G(N)*. . . ¥X(C)+... $
85



where A, B, C, ... are integers, N isa numerical constant, the G(i)'s are functions,
and the X(i}'s are variables. This allows very general forms that consist of variables
X together with their coefficients, which are the sums and products of G's and con-
stants. Notice again that a dollar sign terminates an expression. No more than five
cards may be used per expression. An example of an expression card is

X(1)+X(2)-X(3)+G(4 )+ X(9)+(1. +G(1)*G(2))*X(4) $

FORTRAN notation is used to indicate subscripts and arithmetic operations. Also the
-0 to make this a mathematical equation is implied. On the very last expression, the
user must use two dollar signs in succession. This indicates to REDUCE II that there
are no more expression cards to follow.

(5) The reduction order string terminates the input to REDUCE II. Typically, it is

X(A), X(B), X(C), , X(D), X(E), , X(F), . . . X(M)$

where the A, B, C,... are integers. The double commas partition the string into sub-
strings and indicate a super G substitution. The dollar sign terminates the reduction
string and should not be immediately preceded by any commas. An example is

X(2), X(5), X(8), , X(10), X(7), , X(8) $

There must be no repetition of a variable in the reduction string. All variables but the
output and inputs must be represented in the reduction string. Any number of cards may
be used. Notice also that one dollar sign terminates the reduction string. These are all
the data that REDUCE II needs.

REDUCE II Output

The output consists mainly of a set of cards. Included in these cards are the super
G's, the transfer function (or functions), and the transfer function identifiers. EVAL II
uses this punched output in several places. The punched deck, after execution of
REDUCE II, appears in the sequence shown in figure 17.

REDUCE I prints a copy of the super G cards and the transfer function, Also the
user's input in printed. Should REDUCE II detect an error, a message is printed and
execution is usually stopped. A list of the messages and their causes follows:

Message Cause

{1) More than 600 variables The number of variables exceeds the maxi-
mum allowed.
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Message

(2) More than 600 equations
(3) More than 1200 functions
(4) More than five block diagram inputs

(5) More than five cards for a block
diagram expression

{6) The solution may be in error be-
cause equation  was not
eliminated, equation is

('7) Number of variables in order
string is not consistent with
the number of expressions -
execution stopped

(8) Only one equation containing X( )

(9) Warning - the number of super
functions (super G's) exceeds
the maximum number of functions
(G's) permitted, therefore sub-
stitution process stopped

(10) Subscript too large for this version

(11) Invalid option specified on super G
from card

~ Cause
The number of equations exceeds the maxi-
mum allowed,

The number of G functions before the reduc-
tion starts exceeds the maximum allowed,

The number of block diagram inputs exceeds
the maximum allowed.

Block diagram algebraic expressions may
not use more than five cards.

A variable used in the block diagram was not
eliminated. This is because it was not in-
cluded in the order string.

There are probably one or more block dia-
gram expressions missing, or there is a
mistake in the order string. Check the
input data.

Only one equation was found containing the
variable indicated. This indicates an
error in the order string or in an equation.
This error message will also be printed
if there are no equations with the variable
indicated. -

No more super G's will be created since the
dimension of G is exceeded. Although the
super G substitution process will stop,
the reduction process will continue. Itis
likely that the expressions will become
very large and that FORMAC storage
space will be exceeded.

Subroutine INSTRN has found a subscript
larger than 600 in the reduction string.

User has not specified NATURAL or
ARTIFICIAL form,
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4 Transfer function
identifier card

COMPLEX 61(),
DENOM(} card

3 Transfer function
cards DO=, NO(1}=, etc,

1 Suger G's and
DENOM cards

Figure 17. - REDUCE IT output card order,

HOW TO USE EVAL I

Before EVAL II can be used, the output from REDUCE II must be rearranged. The
FORTRAN-like cards go into subroutine COEFF of EVAL II. The other cards are data
to identify transfer functions. They also tell EVAL Il how many transfer functions are
to be evaluvated for any particular run. The cards shown in figure 17 are regrouped as
shown in figure 18. '

p Transfer function These cards immediately
identifier cards follow the $DATA card,

Transfer
function cards

These cards all qo into COEFF.
The COMPLEX G(}, DENGM()
2 Super G's and card goes ahead of all executable
DENOM cards staternents, The rest follow

a nomment card in COEFF,
See listing of COEFF,

! COMPLEX &),
BENOM()

J

Figure 18, - REDUCE 11 output regrouped,
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The user's functions or G's should be placed before the super G cards. These
functions may be of any form as long as they are in FORTRAN. Should they be one of
the following forms, the namelist input section of EVAL II can be used:

sin(dv as® + bs + ¢ ): SINHF(I) (E1)
cosh (d‘/asz +bs + c) - COSHF(I) (E2)
sin(d‘/asz +bs + c) - SINF(I) (E3)

cos (d Yas? 4 bs + c): COSF(I) (E4)

exp (d Yas? i bs + c): EXPF(I) (E5)
¥as? + bs + ¢ = SQRTF() . (E6)

where I is an integer constant.

EVAL I Input

Section I. - The first data cards to EVAL II are the transfer function identifiers that
REDUCE II punched out,
| Section II. -~ The next card of the EVAL input must contain $INPUT beginning in
icard column 2. This starts the namelist section of EVAL II data. The following input
kforms may appear in any order, but all must begin in card column 2:

(1) NEXP = Number, EXPA = List, EXPB = List, EXPC = List, EXPD = List,

(2) NSIN = Number, SINA = List, SINB = List, SINC = List, SIND = List,

(3) NCOS = Number, COSA = List, COSB = List, COSC = List, COSD = List,

(4) NSINH = Number, SINHA = List, SINHB = List, SINHC = List, SINHD = List,

(5) NCOSH = Number, COSHA = List, COSHB = List, COSHC = List, COSHD = List,

(6) NSQRT = Number, SQRTA = List, SQRTB = List, SQRTC = List,

(7) NK = Number, K = List,

(8) NT = Number, T = List,

(9) NZ = Number, Z = List,

(10) NWN = Number, WN = List,
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(11) FSTART = Initial frequency, FEND = Final frequency, DELTAF = Increment
(Frequencies are specified in hertz.)

(12) LENGTH = Length of the abscissain inches.

Any of these forms may use more than one card as long as each card ends witha
comma. The suffixes A, B, C, and D in the function names represent the variables
implied in the function argument. (Note: no D in SQRT.) For example, EXPA, EXPB,
EXPC, and EXPD represent the variables a, b, ¢, and d in the function

exp(:iVas2+bs+c)

(See eqs. (E1) to (E6) for additional forms. )

The term '"Number, ' as used in the preceding forms, means an integer number
which represents the number of a particular type of function or variable being used. For
the functions, this number must not be greater than 5; for variables, not greater than
10. The term "List" means a list of values that the variables are to take on. The ele-
ments of this list must be separated by commas and must be in the proper order. For
example, NK=2, K=1,6.25E-2 would set K(1) equal to 1. 0 and K(2) equal to 0. 0625.

For consecutive runs (runs where the transfer function form does not change), only the
changed numbers need to be given on a new input. For example,

$SINPUT
K(2)=1. 25E-2,

B

A card witha $ in card column 2 must be the very last card of section II. This
terminafes the namelist data.

Section III (optional). - If LENGTH in the previous section were set to zero, no
plots would be made. A positive LENGTH signals EVAL II to make CALCOMP plots.
This means that EVAL II needs (1) a plot title and (2) information to make linear or log
plots. This information the user punches onto two separafe cards.

(1) PLOT TITLE CARD ~ The user may use all 80 card columns for the plot title.

(2) PLOT TYPE CARD - To get 2 set of semilogarithmic plots, the word LOGPLOT
must appear on this card. LOGPLOT must start in card column 1. A blank card is suf-
ficient to get linear plots.

The user may run several cases of data in one execution of EVAL II. That is, many
combinations of system information may be examined in sequence, To do this, the user
may change any of the data values in section II. After completing the frequency band
FSTART to FEND in steps of DELTAF, EVAL II returns to the statements that read the
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section II (nanielist) data. EVAL II would read new data (or stop-execution if there is no
data) and start anew. Remember that if LENGTH is left greater than zero, a new plot
title and new plot type information must be supplied or the program will execute improp-
erly.

EVAL II Qutput

The output printed by EVAL II lists the following items: (1) All the numerical input;
(2) a table to show the correspondence between the transfer function and its identifying
number; (3} the frequency band FSTART to FEND in DELTAF; and (4) the identifying
number, frequency (Hz), real part, imaginary part, absolute value, phase angle (deg),
and magnitude (dB) of the transfer function.

The CALCOMP plots are of two types. The plots on linear axes have absolute value
and phase angle as a function of frequency. Those on semilogarithmic axes have deci-
bels as a function of frequency and phase angle as a function of frequency. Each plot is
identified with the user-supplied title and the transfer function given as X A/XB, where
A and B are integers.

A WORKED EXAMPLE

_ kgzfzgs? sinhay 0
1 1,242,V cosh(l)
12324

+ + _
X

The block diagram shown is quite simple but demonstrates the use of REDUCE II.
We want to solve this diagram for Xl to X’2 using naturally formed super G's. The
equations associated with the block diagram are

X3 - G1X2 =0

X4-G2X6=0
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The input data to REDUCE II for this example would be

NATURAL FORM

X(2)5%

X{1l)ss
X{3)-G(1i2X(2}%
X(21-X{1}1~-X(61%
X{4)-CG{2)=X(6)s$
Xt3peX{4)=-X(5)%
X{1)}-G{3)*X{5)8¢

XE3) s X84} X(6),X(5)8

The printed output from REDUCE II for this example is

THE BLOCK DI2GRAM INPUTS

X(23)%
THE SCLUTION IS FDR X({1)% TD THE INPUTS
THE FLOCK CIACRAM EXPRESSIOMS

X{3)=-ClLhxx(21})%
X¥X{2)=X(1)=X(€}%
XKta)=Cl2Y)%XiH)%
X(3)4X04)-X(E)s
XE1)=-Cl2)*¥X{c}%8

[V BT LN

THE REDUCTION ORDER 1S
1 XU3) XU &) s XUE),X[5)8%
THE LARCEST VARIABLE SUBSCRIPT IS £
THE NUMBER 0OF EXPRESSIONS 15 s
THE LARGEST FUNCTIDN {G) SUBSCRIPT IS 3
* % % OUTPUT FROM REDUCE 11 % * *
TRANSFER FUNCTION X{ 1¥/7X( 21

THE NUMERATOR
GU11EGL3)+G(2)*G (3}

THE DENOMINATOR
GE21*xG6(21+1.0
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The cards punched out by REDUCE II are

De=
#6(2126(3)+1.0
NCE 1=
2GELYRG(IT4G(2) *G{3)
CCMPLEX GH 3% +DENTMI L

1
1
]
The FORTRAN expressions for Gy, Go, and Gg are

G(1)=-K(1)*Z(1)*Z(1)+ Z(2)*S*S+«SINHF(1)/
(T(1)+Z(3)+Z(4)+SQRTF(1)+COSHF(1))

G(2)=K(1)+Z(5)+S
G(3)=1. /(Z(6)*SxS)

These expressions immediately precede the super G output in COEFF. See page 72 for
a typical example. The constants associated with this example are

K, = 7.6336x10°
T, = 1.0416x10" 2
Z,=0.75
Z, = 62.4
Zy = 6.48x10"
Z, - 32.2
Zy = 10

Z 1

6=

SINH(l)--—SINHG:] . VC +bs + asz)
COSH(I)-—-COSH(d- ‘/c +bs + asz)
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\/(_]._)"—'-VC +bas+as2

6

where

a =4,1006x10"

d=3.333

The following cards are the input to EVAL II for this example:

1
1
2

S$INPLY
NSINF=1, SINHA=4. 10062566, SINHB21DE-44SINHC=0o,SINHD=3,3333,

NCOSES3]) . CDSHA=40100625E'6'COSHﬂslaOE-4,CUSHC30-!CUSHD=303333'
NSQR‘ﬂl1SQRTA340100625E‘6'SQRTB‘I.E*‘;SQRTC’O.'
NK=1,K3.T5335938E6,»

NT=1,T51l.0416E~2,

NZ=6.Za.?éO,&Z.#.b.#ﬂET,BZ.Z.10.,1.9
FSTART=1laWwFEND25(0e +DELTAF214 yLENGTH=104+

4

A WORKECD EXAMPLE

LINEAR PLODT

The output from EVAIL I for this example is
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FORTRAN EvALUATIDN OF FORMAL OUTPUT

CALCOMP BLOTS HAVE BEEN REGQUESTED

A WDRKED EXAMPLE

I
i

N

FSTART=

NUMBER

A ekt P e e e e o e e e e e

el P Pt P e e e i B e e et Y e e e et o

SIMHA

0. &1 306E-05 0.190C0E~03

CNSHA

0.41206E-05 0.10904E-03

SORTA

0. 41 306E-05 0.10000E~-93

K
0.756336E+00

T
Ca1d4l6E-01

z
D+ T5300E+0D
C.62400E+02
0. 64800E+08
0.32200E+D2
0. LIJDNE+G2
D10300E+GL

1.00000

FREQUENCY
1.000000
2.000000
1.,000000
4.000000
5.000000
&.900000
7.0000q0
8,000004
9.000000

14.,000000
11.000000
12000000
13.000000
14.000000
15.000000
14,000000
LT.000000
18,9000600
1%.000000
20,000000
21 .000000
22.000000

23.000000
24,000009
25 .000000
2&,000000
27. (00000
28.,400000
2%.000000
30,000Q00
31.0004000
32.000000
33,000080
34.,000000
35,000Q00
36.0060000
37,000000
38.000000
39,000000
40000000
41.090000
%2.000000
43.000000
44 ,000000
45 ,000000
46,00D000
47,000000
%8,0G0000
49,0000600
50.000000
PLOT MADE
PLDT MADE

U

SINHA

CD5HB

SQRTR

FEND=

SINHC
0.

COSHE

SORTC
0.

50.00000

REAL PART
1.00026%
1.00105%
1.002390
1.0D4264
1.006595
1.009698
1.013295
1.017510
1.02237%
1.027924
1.034204
1.041365
1.049170
1.057993
1.06782]
1.078758
1.090931
1.10449]
1.119624
1.136558
1.155573
1.177T022

1.2013%2
1.229135
L.261115
1.29R8278
1.341946
13939256
L.456726
1.533872
1.630300
1.752605
1,907810
2.,094135
2254408
2.110127
1178423
0.153711
~D.136001
~0.0T1503
0.061374
¢.186983
G.292803
C.3BD37]
D.453432
0.515370
D.58BB20
D.5615761
D.&65T672
0.695668

SINHD
0.33333E+01

COSHD
0.33333E+01

NUMBER TRANSFER FUNCTION
1

XU 112X4 20

DEL TAF= 1.00000

IMAGINARY PART
=~0.000001
-0,003004
~0.000014
~0,000934
=0.0000647
~0.000118
=0.000190
~0.000291
=~0.000425
~0.000600
-0.000825
~-0.001112
~0.001472
=0.000L923
~0,0024485
=0.003185
~0. 004054
~0.005135
~0.006485
~0.D08B17S
=1, 010304
~0.413006

“~0. 016463
~D.Q20935
~0.026797
~0.034801
~D.04518%
~0.059864
~0,080787
~0.ll1810
~0.158890
~0.235092
~0,3565391
~0.602963
~1.053980
~1.819422
~2.424559%
~2.015335
~1.30357%
~D.838708
=0.569645
~0.612119
~0.313532
~D. 248257
~0.202922
=0.17017TL
~0. 145733
~D.1286993
~0.112305
~0.1800572

ABSDLUTE VALUE

l.D0026%
1.061058%
1.0023%0
1.004264
1.006495
1.D09598
1.013295
L. 0175149
1.022374
1.027924%
1.03420%
1.041266
1.049172
1.057995
L.067825
1.078763
1.090¢38
14104503
1.119643
L.136587
1.155619
1.1TTD94

1,201 465
1.229313
1.261400
1.298739
14342707
1.395211
12456944
1.53T1927
1638024
1,768303
1. 942485
2.179212
2.4B8a5%
2.TB620%
2.695788
2.020192
1.3108651
0.839758
0.572942
De4532553
0.%28994
Q454217
496708
9.542738
0.587491
0.628721
0.667192
0.702900

PHASE ANGLE
—0.000030
-0.0DD238
=0.000307
-0.00193¢
=0.003850
80056671
=0.019762
-0.016364
-0.023758
—0.0233437
«0.045719
~Q. 061162
-G¢.080388
=0 104148
-0.133356
-0.169141
~0.+212902
=0.2656397
-0.331851
=0.412119
~0.510994%
-0.633071

~0.7TB51058
=0.9T15R05
=1.217299
=1.526637
-1.,92B44%
-2.459133
=3.,1T4252
-4.161703
=5.568511
-7 .53997%
=10 .842202
-16.062654
-25.05584649
=40,7490D7
-84,0785T9
=85,636257
-95.955075
=94 884479
-83,.850584
-65.595722
b ISA0B2
-33.1312T2
=24,10971L
~1B.272824
-1%.3£9910
~11.653161
-9,490418
=§.226227

AMPLITIDE IN DB,
1.0022%6
0.009195
0.820730
0.036958
0.057957
0.0B3832
Dal14T17
0.15D0772
G.192198
0.235220
0.292123
0,351 731
0.418930
D.4894T1L
0.56599]1
0.658E819
0. 756004
C.8637%319
0,981593
1s1126586
la256293
l.416223

1.594320
1.793 248
2.017058
2.270+40
2.559623
2.892 195
2,2800%4%
3.73BT14
4a 286400
42951131
S.T6T153
67865491
T.219191
2,900259
8.61365]
4.107851
2.349741
=l.5186920
- 4.837784
- £.8686&04
=1.350979
“6.B54T29
-6.,0T6932
=5.3081%
=42 624406
=4.030847
=3,514981
-3.082131
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