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I. INTRODUCTION

The purpose of this study is to examine the effectiveness of the
geometrical theory of diffraction (GTD) in calculating the radiation
from slots in perfectly-conducting surfaces which are partially
covered with dielectric. Configurations of this type are of interest
in the design of antenna systems for spacecraft. We consider the
radiation from a narrow slot in a dielectric-covered perfectly-
conducting surface terminated at an edge as shown in Fig. 1. This is
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one of the most elementary structures involving dielectric-covered
slots; furthermore, measured pattems are available to check the GTD
analysis [1]. :

A theoretical approach to the problem based on the geometrical :
theory of diffraction [2] is described. The effect of the truncation of
the dielectric cover has been ignored in previous .analysis, yet this
yields the diffracted ray which plays a dominant role in determining
the radiation pattern. The total far-zone field is composed of a
. geometrical optics field and a diffracted field. The geometrical
optics field is the direct radiation from the slot to the field point
P; it vanishes in the shadow region below the plane containing the
surface AB. The slot also excites surface waves which are incident
at the termination of the dielectric cover at A and B. The termi-
nations yield singly-diffracted rays and reflected surface waves.

For simplicity the thickness t of the dielectric cover is restricted
so that only the dominant TMy surface wave mode is excited. The
contributions from the geometrical optics ray, the singly-diffracted
rays and all significant multiply-diffracted rays are summed to give
the field at P. "

The geometrical optics field and the field of the incident
surface wave are obtained from the solution to the problem of a narrow
slot radiating through a dielectric-covered ground plane of infinite
extent. The diffraction coefficient and reflection coefficient for
the surface wave incident on the edge A (or B) are determined in the
following way. The surface impedance of the grounded, dielectric cover

k
(1) Z =Zo°'—

where k_ and Z, are the wave number and characteristic impedance of

free space, and k., which is found from the.solution of a transcen-
dental equation, 1s the wave number of the surface wave in the direction
normal to the dielectric-covered surface (k, is imaginary for a lossless
dielectric cover). Next, consider a right-angle wedge, one of whose
faces is perfectly-conducting, the other with surface impedance Zs. The
canonical problem of the diffraction of a surface wave by this right-
angle wedge [3] is used to find diffraction and reflection coefficients,
which are adequate for sufficiently thin dielectric covers. However,

as the thickness of the cover increases, the radiation from the

vertical end face AA' (or BB') of the dielectric cover cannot be
neglected. This is taken into account using a Kirchhoff-type approxi-
mation, where the total electric field within the dielectric cover at
its end face radiates in the presence of a right-angle wedge. This
contributes a second term to the diffraction coefficient previously
obtained.



The calculated and measured patterns compare well, which justifies
the use of ‘the geometrical theory of diffraction in th1s type of
problem together with the approximations which have been used to
find the diffraction coefficient. The patterns are very sensitive
functions of the parameters, such as the thickness of the dielectric
cover and the frequency. When the dielectric cover is lossy, the
contributions from the diffracted rays decrease as the l1oss tangent
of the dielectric cover increases. This is due to the fact that the
surface wave is attenuated as it is incident at the termination of .
the dielectric cover. The ripples in the patterns in the illuminated
reg1on diminish and the 1eve1 of radiation in the’ shadow region
is reduced.

IT. METHOD OF ANALYSIS

According to the geometrical theory of diffraction, the total
far-zone field is composed of a geometrical opt1cs f1e1d and a dif-
fracted field. In the problem of a narrow slot in a dielectric-
covered perfectly-conducting surface terminated at an edge (see
Fig. 1), the geometrical optics field is the direct radiation from
the slot to the field point; it vanishes in the shadow region. The
singly-diffracted field is the field diffracted by the termination of
the dielectric cover at A (or B). The termination of the ground plane
at C (or D) yields a doubly-diffracted ray. In this chapter, the
contribution from each ray will be described in detail.

A. The Geometrical Optics Field and the Field of the Surface Wave

Consider a magnetic line source on an infinite, perfectly- ,
conducting ground plane covered by a dielectric slab of uniform thick-
ness as shown in Fig. 2.

MAGNETIC LINE SOURCE

Fig. 2.




This configuration simulates the behavior of a narrow slot radiating
through a dielectric cover. It is known that the line source excites
a surface wave which propagates along the dielectric slab. It is a
straightforward exercise to show that the geometrical optics field Ho
and the field of the surface wave due to a magnet1c line source of

unit strength are .

-J(ks,- 4
2) e = - we €, COS B e
ep COS 8 CO0S Zot + jvei - sinZg,sin gt v2nkgs,

meoe% A2 gy, - e'_lx-jebli

(3 Hy = - : 2 2.2 4 , 2
B sin ;wt[:sr k0 (er"l) + at(a ep” T Ty )] |

where ep = (e'-je")/eo, the relative die]ectric constant of the cover

ko is the free space wave number, k = ky/e,

= k /im = sinZs.
Lo = kgvey - sin?e,

r

Ty o
(5) >\ "B - ko 'Y kn = j}\

The value of T is determined from the transcendental‘equation

(ep-1)(kot)?
(6) tan gt = €p T;‘)z—- 1
“w

In the case where the dielectric slab is lossy, € and k are

. complex, and the root of Eq. (6) is complex. A method for ca]cu]ating,
the complex root of a transcendental equation is described in Appendix
2. It is seen from Eqs. (4) and (5) that the important parameters of
"the surface wave g and 1 are complex, so that the surface wave
attenuates as it propagates.

Throughout this report a t1me dependence of ed®t js assumed and
suppressed.




B. The Field of the Diffracted Rays

As noted in the preceding section, the slot excites a surface
wave which propagates along the dielectric cover (slab). This surface
wave is diffracted and reflected at the corners A, B shown in Fig. 1,
so we seek the diffraction and reflection coefficients from the
canonical problem of the surface wave incident on a dielectric-
covered perfectly-conducting right-angle bend as shown in Fig. 3a.
Since an exact solution to this problem is not available, we will
replace it by an approximate canonical problem, which will be solved
in two stages.

In the approximate canonical problem, shown in Fig. 3b, the
dielectric slab is replaced by the impedance surface described by
Eq. (1), with k. given by Eq. (5). If this impedance boundary is
positioned at the top surface of the cover, the field of the surface
wave external to the cover is unaffected; however, it is apparent that
the field within the cover is neglected. Thus one would expect the
approximation to be good only when the ratio K of the power in the
surface wave field external to the cover to the power within the cover
is large. It can be shown that

e k_ cos2k t

(1) K= XA
L cin?

A(kxt +% sin kxt)

It is seen that as t decreases, the ratio increases; and so the approxi-
mate canonical problem of Fig. 3b is useful only for thin dielectric
slabs. The behavior of K as a function of the thickness t of the slab
is shown in Fig. 4, for ep = 2.56,

Chu et al [3] have solved the problem shown in Fig. 3b; they give
expressions for the far-zone-diffracted magnetic field and the field
of the surface wave reflected at the edge. Their diffracted field is

_ Bn o -ikesy

A cos -g 2 jigt e 0
e

" A+ kg cos 6 VKo 51

(8) Hy; =-H

According to the GTD,
(9) H.. =H D c
11 w "1l T s

in which H is the surface wave field at the edge
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Fig. 3a. The surface wave incident on a dielectric-covered
perfectly-conducting right-angled bend.
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Fig. 3b. Surface impedance model for a dielectric-covered
perfectly-conducting right-angled bend.
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Fig. 4. The power ratio of the field of surface wave to
the field inside the slab.
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and Dy, is the diffraction coefficient. From the two preceding
equations,

BT

A cos & 5 i
(10) D 1 = — L T,
1 Jﬂko

A+ jkg cos 6

. where
| 45k T+ A2
(11) A= 5
'jél i
P 1)
Jv
2 e z-sin Ve,
(12) Iv =
ko sin vr sin eS
]
L - A
(13) 6 = %-+ i sinn™? o :

o

The field of the reflected surface wave at the impedance boundéhy :
is : '

-iBsq
(14? ‘Hls =H,Re ’

where g is given by Eq. (4), s 'is the distance along the impedance
surface measured from the edge, and the reflection coefficient of the
surface wave is

(15) R= -



. In treating the radiation from thicker dielectric covers, where = .
the: field within the cover cannot be ignored, it is apparent that the -
above approximation is inadequate. In particular, we note that there
is a significant contribution from the internal field in the form of
radiation from the vertical end faces of the slab at A- A"and B-B'
in Fig. 1. '

This radiation from the. vertical end faces of the dielectric
cover is taken into account by using a Kirchhoff-type approximation,

where the total electric field within the dielectric cover at its end . o

face radiates in the presence of a right-angle wedge. Here again. the
dielectric cover is approximated by an impedance surface. The equi-
valent source of this radiation is the magnet1c surface current ‘

. oo cos kx(x-t)
(16) K= £ (1+R) by ——
WeE Yy cos k,t

where k= /kZ - g2 ., The magnetic surface current radiates in the
presencé of the wedge structure shown in Fig. 5. R is calculated from
Eq. (15). To obtain an integral representation for the magnetic field,
one seeks the Green's function which satisfies the mixed boundary

condi tions.

Hip
Sy
\\\\\\ﬂ\\\\ < 7 s B B
. X' /-//z
| D
REACTIVE _~ ; ®_LINE
SURFACE -~ 1 SOURCE
. / by
/
PERFECTLY - -
CONDUCT ING \\, X =5 cos8
SURFACE y =s,siné@
X

Fig. 5. Line source located at (x = x' 6 = 0°) on a 4
right angled wedge with mixed boundary conditions.



3G

(17 —=-26=0 ., x=0, y<0
9X ’ .

and
56 |

(17b) —=0 - ., y=0, x>0
oy o .

This type of the problem can be solved by the introduction of an
auxiliary function which is a linear combination of the field and its
cartesian derivatives. The auxiliary function is chosen in such a way
that it satisfies the wave equation and simple homogeneous boundaries
conditions. Once the auxiliary function is obtained, the original .
field can be determined by solving a partial differential equation.
This idea is due to Stoker [4] and Lewy [5] who studied problems in
water wave theory. The far-zone Green's function, G(sl,e;x',O), is
derived in Appendix 1, where it is shown that '

4 e'jkosl
(18) G(Slse;xll 30) v Q(S;X',O) -

in which g(e;x',0) is a far-field pattern function which is independent
of s,. '

The diffracted field is then

-jkosl
(19) H.., =H,D fi—-—-—-
M2 w 12 s

where D;, is the diffraction coefficient associated with the diffracted
field H,,. From Appendix 1,

s cos ky(x'-t)
(20)  D,(6) = §8(1+R) [ ———— glesx',0)dx'
0 cos kyt

This ‘di ffracted field contributes a second term to the diffracted
field H;; previously obtained. Thus the total field diffracted from
a wedge with a dielectric cover on one surface can be approximated as

(21) -Hl(Sl,el) = H11(51,61) + H12(51,61)

10



-Jkos,
e

= H, [0y1(8,) + D_12(91)]

Sy

where it is more appropriate to replace 6 by 6, here. With the
inclusion of the H;, term, the surface impedance approximation can be
used to treat the radiation from dielectric covers of increased thick-
ness, as will be demonstrated in the next section.

The field diffracted from the termination of the dielectric cover
is in turmn incident on the edge of the ground plane at a distance h
directly below it. This gives rise to '

’ “dkoh ~JkoS2
- 3 31\ e
(22)  H,(s,.8,) = Hw[Du(_zl)'*'Dlz(z_ﬂ')]-m— %Dh(ez,o)?__ ,

So

a doubly-diffracted contribution from the edges C and D in Fig. 1.
Here Dp(62,0) is the hard scalar diffraction coefficient given in
Reference 6. The factor of % must be introduced at grazing incidence
(85" = 0) on the-edge. This contribution from the lower edges of the
ground plane has little effect on the pattern in the illuminated
region, which is dominated by the field directly radiated from the slot
plus the singly-diffracted contributions from the terminations of the
dielectric cover. On the other hand, this contribution appears as a .
significant ripple in the pattern of the shadow region below the
dielectric-covered ground plane. Thus, with reference to Fig. 1, the
total field for y >0 ' .

(23) . ={Ho + HIA +Hp + Hyp L ks 0\-
H.iB * HZC * HZD ., x <0

in which the first subscript 0,1,2 denotes whether the field is inci-
dent, singly-diffracted or doubly-diffracted and the second subscript
indicates the edge from which the diffracted ray originates. The ex-
pression for H when y < 0 is similar. '

A computer program based on Eq. (23) has been developed; it is
described in Appendix 3. In using this program it should be noted .
that e,. cannot be very close to 1, nor can the thickness of the cover
t be very close to zero. Thus, the present solution does not reduce
to the slot in the ground plane without a dielectric cover. The reason
for this limitation is that the distance from the slot required to
establish the dominance of the surface wave field increases as e¢,. > 1,
t > 0. Under these circumstances the field at the termination of the
cover is not simply that of the surface wave;however, this field can

11



.be determined so that the transition to the case of the ground plane
without a cover can be made. But this must await further work. The
pattern calculation shown in Fig..7 is based-on a separate solution
where the surface wave emanating from the slot is replaced by a space
wave propagating along the surface of the ground plane, and the
diffraction coeéfficients for the-hard boundary are employed -at.-edges
AandB. - 77« T LT e s A e

III. NUMERICAL RESULTS = -

Eq. (23)+is used to calculate the far zone patterns of the con-
figuration shown in.Fig.: 1. In each case the ground plane length L
is 12.13 inches, the height h is 1.71 inches and its width (in the
direction perpendicular to the page) is 22 inches. A 0.5 inch by
0.062 inch slot is positioned 0.1 inch to the right of the center of
the ground plane, thereby introducing a slight asymmetry in the
patterns. The axis of the slot is parallel .to the edges shown in
Fig. 1. The precise dimensions are shown in Fig. 6. The slot is
excited at frequencies so that only the TM, surface wave mode can
exist. The patterns are calculated in the plane of symmetry normal
to the axis of the slot for -various frequencies and cover thickness.

=|..?3.. SLOT.
— — L=12.128" =
. L" S R - } — .
-‘x—o.-:-i= 8.24. - AT-8.0. GHz: - ..
%— =10.8 AT 10.5 GHz
¢ .

Fig. 6. EXperiménta]4die1ectric-coVered‘ground plane -
S withslot. T o

- The calculated and measured patterns for a slot in the ground -
plane without a'dielectric cover are shown in:Fig. 7. -As explained at
the end of section II, ‘a separate calculation via the geometrical - -

12
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</
ﬁ Wi .

2100

270° 90°

S

(
180° F=8,0 GH:z
NO DIELECTRIC COVER

Fig. 7. Pattern of a slot in a perfectly-conducting ground
plane. Frequency = 8 GHz.
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MEASURED
— ——~—= CALCULATED

180°

Fig. 8. Pattern of a slot in a dielectric-covered ground plane,
Frequency = 8 GHz, t = 0,11 inch, €n = 2.57.
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MEASURED
= == == CALCULATED

90°

t = 0.098 1,
t. = 0.4

180°

Fig. 9. Pattern of a slot in a dielectric-covered ground
plane. Frequency = 10.5 GHz. t = 0.11 inch,
ep = 2.56.
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MEASURED
= == == = CALCULATED

210° 150°

. t=o0a27),
180° 1= 0.4,

Fig. 10. Pattern of a slot in a dielectric-covered ground
plane. Frequency = 8 GHz. t = '0.1875 inch,
€p = 2.56.
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theory of diffraction is required in this case. Typical calculated
and measured* patterns for the dielectric-covered slot are shown in
Figs. 8, 9 and 10; in these figures t. is the thickest dielectric cover
in which only the dominant TM, surface wave mode can propagate. In
the illuminated region, the position and level of the lobes of the two
patterns are seen to compare in detail, and overall the comparison of
the two patterns is good. In Fig. 8, where the dielectric cover is
relatively thin, the end face radiation contribution Hio(0q) of

Eq. (21) is unimportant and could be neglected. However, for the
thicker dielectric covers of Figs. 9 and 10, this contribution is
significant. The importance of Hyp is illustrated in Fig. 11, where

MEASURED
~=——=— CALCULATED

eoeee CALCULATED
o° (WITHOUT END FACE
0 RADIATION )

t =0.186),
tc= 0-4 XO

Fig. 11

*The measured patterns were provided by Mr. W. F. Croswell of the
NASA Langlky Research Center, Hampton, Va.
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patterms calculated with and without this contribution are shown in
the illuminated region. It is seen that this contribution is required
to bring the calculated pattern into agreement with the measured
pattern. In this case the slot is positioned in the center of the
ground plane, so the symmetry of the measured pattern with respect to
90° s an indication of its accuracy.

The patterns are very sensitive functions of the parameters, such
as the thickness of the dielectric cover and the frequency. This is
shown in Fig. 12, where it is seen that a frequency change of less than
two percent causes a substantial change in pattern detail. This
sensitivity to slight changes in the parameters could in part account
for the differences noted between the calculated and measured patterns.

The presence of a dielectric cover on the ground plane substan-
tially increases the pattem TJevel in the shadow region when the
dielectric is lossless. As the loss tangent, tan &, of the dielectric
increases, so does the attenuation of the surface wave incident on the
termination of the dielectric cover. This in turmn weakens the con-
tributions of the singly- and doubly-diffracted fields. As a result,
the ripples in the patterns in the illuminated region diminish, and
the Tlevel of radiation in the shadow region is reduced, as shown in
the calculated patterns of Figs. 13 and 14. 1In Fig. 14, when tan ¢ =
0.2, the diffracted field components have been so reduced, the pattern
is essent1a11y that of the directly- 1nc1dent (geometrical optics)
field.

IV. CONCLUSIONS

‘The calculated and measured patterns compare well, which justifies
the use of the geometrical theory of diffraction in this type of
problem together with the approximations which have been used to find
the diffraction coefficient. In particular, the.-method employed to
extend the approximation of the impedance boundary in treating edge
diffraction appears to be useful. The patterns of the slot in the
dielectric covered ground plane are very sensitive functions of the
parameters, such as the thickness of the dielectric cover and the
frequency. The presence of the cover substantially increases the
pattern level in the shadow region when the dielectric is lossless.
As the loss tangent increases, the ripples in the patterns in the
illuminated region diminish and the level of radiation in the shadow
region is reduced.

18



12.0 GHz
- = 2.2 GHz

30°  0.1875" THICK

90°

180°

t = 0.190 X at 12 GHz
t = 0.1936 Ao at 12.2 GHz
tc= 0.4 X

Fig. 12. Patterns of a slot in a dielectric-covered ground
' plane: calculated patterns at slightly different
frequencies. o
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270°

180° t=0.127 Aq
1c=0.4 )\ 0

Fig. 13. Patterns of a slot in a dielectric-covered ground plane.
Frequency = 8 GHz, t = 0,1875 inch, ep = 2.56 (1-j tans).
The values of tans are shown on the patterns.
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270° 90°

240°

t = 0.190),
1=0.4 ),

210° 150°

180°

Fig. 14. Patterns of a slot in a dielectric-covered ground plane.
Frequency = 12 GHz, t = 0.1875 inch, ey = 2.57 (1-§ tans).
The values of tané are shown on the patterns.
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'APPENDIX I
THE GREEN'S FUNCTION FOR A RIGHT-ANGLED WEDGE
WITH AN IMPEDANCE BOUNDARY CONDITION

Consider a right-angle wedge y = 0, x >0 and x = 0, y< 0, and
suppose there is a line source located at (p',0) as shown in F1g 5.

The Green's function G satisfies the following differential
equation:

(A-1) (v + K2) G(x,y5x',y") = -8(x-x") &(y-y"')

X =p COS 8
y =p sin @

where

and
X' =p' cos 8' = p'
ly' =p'sine' =0
The boundary conditions of interest here are given by
3G
(A-2a) — =0 s y=0, x>0
ay '
3G
(A-2b) —=-26=0 s Xx=0, y< 0
ax
Also, .

(A-2¢c) G satisfies the Sommerfeld radiation condition,
and
(A-2d) G is finite except at (x',y').

A is equal to -j kg Zs/Z,, where Zg is the surface impedance given
by Eq. (1), and in problem of interest here Ze is such that ReA > 0.
Our treatment of this problem closely para]leis that of Karp [7],

except for the manner in which the unknown constant A, which will be
encountered later, is found.
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Let us make a transformation

(A-3)  V(x,y) = (g_x - ) Glx.y) s

then V must satisfy the following differential equation:
(A-4) (72 + ko2) V(xoy) = (-2=+ 2) s(x-x') s(y-y')
Using the relationship (3/sx)s(x-x') = -(3/3x"')s(x-x"),

(A-5)  (v2 + kg2) V(x,y) = (537-+ A) s(x=x") s(y-y")

The boundary conditions for V(x,y) are then

oV )
(A-6a) —=0 s, y=0, x>0
C oy
(A-6b) V=0 s X=0, y<Ad

The function V{x,y) need not be finite at the origin since it
involves a differentiation of G. The solution to Eq. (A-5) can be
obtained by first solving for the Green's function Gy(x,y;x',y'), which
satisfies the differential equation

(A7) (72 + kg2) Golxoysx'sy') = - 6(x=x") s(y~y")

together with the same boundary conditions

BGO

(A-8a) — =0 . -, y=0, x>0
oy

(A-8b) G, =0 - , x=0, y<O

and the radiation condition.
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» AIt‘can be»shownnthat"‘i -

s

T RT T

(A-9) Go(x,y x' ,y ) = _l.z cos 35— 6 cos —3——-6' J2n+1(kpx)
- 3 ’ 3
e
2n+1(k°>)”""
3

where J. -is Bessel function-of orderiv and y 2 )s afHanké1”funCtidn~df o
second kind of order v. v \

"By applying the operator -(3738x" + 1) -to Go(x,y X' ,y ) ‘we' can--
obtain the following solution for V(x,y):

(A-10)  V(x.ysx'sy') = = (=2

3T+ A) Golx.ysx ixi),;(i

\\

The complete solution for V(x,y) is

(A- 11) V( ,y x ,y ) . (;ET‘+ A) 6 (x,y X ,y )

5 on+
o ZO ap oS’ -5—1- 6 12, (ko)
n=

3

The last summation contains' the-class of admissible singular solutions

*which satisfy the homogeneous equation for V. Since V cannot be too
s1ngu1ar at the edge, the only admissible funct1on of the s1ngular class
is the first term; hence, G

(A-12)

A particular solution of (A-3) is

0

(A-13)  Gp(x,y) = e J’ e A8 V(s,y) ds
X

The existence of the integral is guaranteed since Re" A >°0. '~
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. " The function Gp(x,y) does not satisfy all the conditions of the
. problem, for it is Rot a wave function on the negative x-axis, since its
y derivative is not continuous there. This defect can be remedied by
adding a complementary solution for G, cbtained from (A-3), to (A-13);
thus we obtain : . :

Ax+jvE02+A2 y
. ’ rcze . s y< 0
(A-14) G(X,.Y;X'J.Y'.) = Gp + < - e .
. ' LO s y>0

~c£'and C, are then determined by imposing the boundary conditions
[A-15a) G(x,0%) - G(x,07) =0, x< 0
and
| 3G(x,0%)  3G(x,07)

(A-15b) , 0, x<0
' oy oy ) .

Numerically it is very difficult to obtain c¢; and c,. This difficulty
can be avoided if we choose a suitable function [7], H(x,y), which has
the same singular property as Hfé)(kop) and is a homogeneous solution
for V. -

Let us consider the Green's function N which satisfies

(A-16) (72 + ko) N(xaysx'sy') = - 6(x-x") 8(y-y")

with the boundary conditions

' N . "
(A-17a) — =0 : y=0, x>0
Yy '
(A-17b) — = 0 x=0, y<0
: X

togethér with the

(A-i7c) Radiation Condition.
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It can be shown that

j e 2n 2n |

(A-18)  N(x,y;x',y') = - %hzoen cos 3 cos-—ge' Jgﬂfkp<) H%L}kp))
' SRR 3 3
where e, is the Neumann's constant
, N )
1 n=20
[ - -
n 2 : n=1’2,...
_ 3G, N
(A-19) Let H = r + ™

(A-20) (V2 + ky2) H =

H(x,y) is thus a soTution of the homogeneous wave equation with the
boundary conditions

oH

5;-= 0 y=0, x>0

(A-21a)
(A-élb) H=0 | x=0, y< 0

together with |

(A-21c) the Radiation Condition.

Note that the ]ead1ng term of aN/ax has the same singular property as

His(kge)
The complete solution for V is then
(A-22)  V(x,y3x'oy') = (2 + 1) Gy(x,y3x",y") + A H{x,ysx',y")

X

where A is a constant to be determined.
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That G séti#fies the wave equatibh canvbé"éhéwn‘from fhe fact that
Gy =V+2G A |
:Gm=V;XV+ﬂG
_ - 9

| | _ ) 2_ o . . . . '
_‘?]SO .V_yy"r-vkggl ko” V' + (ax' +,>‘_). 6(§x )G(yY) e

' T K26 = ’ o -
- Gxx + ny‘+ ko® G o | v
- M f -A§ ,
Vy+tAaV+a26-e ) e Vyy(§,y)d§ + k0 G
' Integratihg by parts twice in the above integral,

o]

; 2 8 Mx=x") ' oy
Gyy * ny + kg .G f '(EET'f A) e s(y-y') J s(s-x") 'ds
- . Oa(x=x") . '
==(5xrt ) e u(x-x") s(y-y")
_A(x'-x')'a

= -e u(x=x') 8(y-y')

X
= 6(x-x"') s(y-y')-

where u(x-x') is a unit step function.

In the far zone, we observe that G,, N, G and V have the ésymptotic

form
o -jkop’
~ e - 1 ]
. 'jkop ‘
(A-23b) N = e;;_———n(e;x',y')
o]
' ~jkap i
(A-23c). G = e/__o g(e;x',y")
o]
and -
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(A-23d) T = u(83x',y")

v
Since the far-zone field is of interest, only those terms which are

of 0 (1//p) are retained, the operator 3/5x can be approximated by
-j k cos 8; thus we obtain .

[(A-l)%,— - 2] Gy +J kg cos 8 AN

(A-24)  G(x,y;x',y') =<
J kg cos 6 - 2

_ Hwang [*] determines the constant A by transforming the function Gg
and N into the integral representations which are then evaluated asymp-
totically by the modified Pauli-Clemmow method of steepest descent. From
the asymptotic solution, we can identify the ray-optical behavior of the
field. The pole contributions give rise to the geometrical optics field
which is the sum of the incident field and the reflected field. From
this we obtain

(A-25) A =1

Thus,

J kg cos 6 N - A Gy

(A-26)  G(x,y;x',y') = -
' o J kg cos 8 - A

in the far zone, where N and G, are given by Eqs. (23a) and (23b).

*Hwang, Y.M., "Electromagnetic and Scalar Diffraction by a Right-angled
Wedge with a Uniform Surface Impedance", to appear.
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APPENDIX IT |
ON CALCULATING THE COMPLEX ROOT OF A TRANSCENDENTAL EQUATION

The problem of finding the complex roots of a transcendental
equation is usually reduced to the problem of finding the roots of two
simultaneous nonlinear equations. The two nonlinear equations occur
because the real and imaginary part of a complex function must also
equal zero when the complex function f(Z) = 0. The method of finding
the roots of simultaneous, nonlinear equations has been discussed in
many books; but sometimes it is tedious to reduce a complex function to
two real nonlinear functions. In this appendix we point out that
Newton's method for the real roots of a real function can be extended
to find the complex roots of a complex function.

Suppose that we seek a sp]utioh Zo of a function f(Z;e) such that
(A-27)  f(Zgee) =0

where ¢ is a cowplé§>paraneter.

Using Taylor's expansion,

(A-28)  F(Zgre) = F(Zgise) + £ (Zgpee) 42,

where Z,, is an initial estimate of the root, which is assumed to be
close to Z_. For example, Z,, could be found by solving a related
problem exgctly. A .

Let

From Eqs. (A-27) and (A-28),

f(z ,8)
(A-30) aZ,. = - —91— -7

la 1
1 Z .
f ( 0133)

Next, repTace L byZ,, = 7_01 + AZla, and repeat the procedure; in
this way we can gene?&te successive approximation, and after N iterations,
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N
(A-31)  Z =Zg1+ I 0Zj5

0 i=1
where
f(z ',5)
(A-32) 874, = - ——

!

When Z,, is chosen sufficiently close to the root Z, and f'(Zo-,e)
# 0, the process will converge, i.e., 'A21+Lal < [aZi4l. The iterative ‘
procedure can then be terminated when |aZjg* < &, where § is a specified

small number.
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APPENDIX III
THE FORTRAN IV PROGRAM FOR CALCULATING

THE FAR-ZONE RADIATION PATTERN- -

PATTERN CALCULATIUN UF SU11 RKabl2TOR I A DI sl #C RIC-COAATED METAL FLATE

THIS PROGRAM_IS GOON LY FOR_ O < D <

LAMDAD
THIS PR

= FRFF SPACE

DGRAM CAMGOT RE LISED

WAVE LEMGTHS
wHE M

LQesxLnsAnza

TSR =leU AND/NR 1N=0.0

ESR -

RELATIVE DIELICTRIC COMSTAVT

£SO -
EL -

FREE SPACF NIELECTRIC Cuk

STANT

NDIELECGTRIC CNivST£T (F_LNSSY SLAR

THICKMYESS BF " IELECTRIC C'ajING TN INCHES

PI=3,141592

ELyZs2K,CLI4yCRETA,CESTLYyCESR,TS,C1

C
C
C
C
C
C
C
c
C 1) -
C F - FREOUENCY IM CPS
C ) ~ FREE=SPACF wAYE ilUlakER
c RK = DIFLECTRIC ¥AYE #tin] SLAR
C V1 - THICKMESS (F T Ca M ITMCHFRS (R T INCLIDING
c THZ THICKMESS tle SLad ) -
C Wi - WIDTH OF DIELFCTRIC COATING FORM IHE SOURCE TO THE RIGHT
C CORMER IM INGHES
C XL - TUTAL 9 IPHT GF QIELECTRIC CUATING In INMCHES
C XLT = LOSS TAMGEMT (F LGSSY SLAR .
C i - COMVERSINS FACTOR(L INMCH = 0,025 4METFERS)
c cu - SURFACE-MAYE ATTEMIATION CUNSFanT
C C3ETA- SURFACE-“AVE PROPLGATION CONSTANT
C - HGG. - DIRECT RANIATION FIELD
C WY = DIFFRACTINN FIELD(RIGHT SIDE)
c HD2 - DIFFRACTIN FIELD(LEFT_SINE)
¢ HY - SLAR RADIATION FIELD
C CHT ~ TOTAL RADIATIUM FIELD
C FN - NORMALIZED CONSTANT (F THE JOTAL RADIATICN FIFLD IM DR AT
C 9n-NEGREF S
C HTT - TOTAL RANTATION FIELD INCLUD ING SLAR Raniailun
C DRHTT-TOTAL RADIATIDN FIELD 1IN DAR{WIIH SLAB RADIATIOM o
c PHD - ASPECT ANGLE 1IN DEGREES i
¢ .
COMMON BJ(150),RY(150)
NDIMENSINN AUH(180),AUHS(1R0)
COMPLEX HGQO yTHETS,B1 yR24R2,AL9 A2, A4yRDsH T CLSH gHR yHLy HN1 ¢HNZ 4 HY
COMPLEX HDT
COMPLEX CMoCD4C24HTT
COMPLEX HYF yHYR,GF ,GR
COMPLFX CCS®1,CCSw2
COMPLFX HDID 4HN2M 4HR] 4yHR11,HL14HL 11
COMPLEX HPZHO .
COMPLE X DHLsNHZ ,0H3,11H4 411 H5-4H
COMPLEX HDIN,HN11,HD20,HD21,D0D 4DVDR, 0OV IL
COMPLEX CSWaCI1,C12,X
COMPLEX

READ (541111 4FMD=111
FORMAT(F4 423F10.3,F

1212
1111

2VESRGF JFN oD o X LoH1,V14XLTV

6e294F T4 4E9,2)

W2=XL=v1
VWRITE(64,1313)F N i1}

B

g2

1313 FORMAT(1HL,* FREOUE
1 Wizt FRLG 45Xy ' 2

MCY="4E1043 4 'HZ
=1 ,FB44)

SLAB THICKNESS='yF &

’ ] I“-'—C—H

WRITE (&g ARAR)XLT "
ARBA FNRMATI' LOSS TAMGE

NT=',E15.8/)

"

HWRITE(641444)
1444 FORMAT(' PHD -

LSPECT

ANGLE

1IN FIELD IN DR //)
R=2.0xPI*F /3 ,0ENR

IN_DEGREES! /0

NEHIT = TNTAL RADIATIC

ESO = B.RS5E-12
T = 2.54FE-2

W=t aT
p2=2%T
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FERER]
Vi=V]1=T

V = (FSR=1.00%(A%%2 )% (N2 )

EL=CHPLX(BAA,=P)

CALL PSSy PUD GFyEL o XD 924 1ER)
ZR= (2 P Lk Y %D )26 g %P %1 JE=TxEL -

CHETA=CSORT (ZK=(7%2 /(011 )
CU=CSORT (ZK=R#*R~ (27 /{051 )))

CESIL =2/
CESR=EL/ESD_

CRETA=CONJG(CRETA)
Cu=CuUMNJGLCU)

CESTL=CUOMJIG(CESTL)
CESR=COUMJUG(CESRY)

C C2

CALL HTS(H4CliyR, TS, IER)
IS THE REFLECTION COEFFICIEMT

C2=-CCOSI(TS+P1)/3,)/CCHS(ITS=PI)/3,)
1=0 :

PHD =-1.0-
PHD = PHD + 2.0

PH = PHD=0.01745
I[=1+1

X=B%*CSORT (CESR=COS(PH)HCUS(PHY ) =D
HGU=-2.*PI*F*rESR*ESU*SIW(PH)*CFXP(CWPLX(.Oy—PI/41))/(1CESR*SIN(PH

L)#CCUSIXI=CHPLX( 40y 14)%CSERT (CE SR=COS(PH)I*COASIPH))=CSIM(X ) )%
1SOART (2 *PI1%R))

CSM=~7 %P #F #CE SR *CE SR¥E SO #CU%CUHCESIL/{ CBETA*CSIN{CESI L#N)=(CESR%
1(ZK=3%R) +CUN#( (1% CU%CE SR*CE SR+CESIL#CESI L) ))

CCSH 1=CSW*CEXPICHPLX( .0y 1o)%CBETARI])
CCSH2=CSH*CEXP(CHMPLX(.0, 1, I%CBETA®Y 2}

CI1=2.%CEXP{CHPLX(40Qy=PI/6.))%CSINITS/ 34 }/{RESIMN(PTI/ 3,)%CSIN(TS))
CI2=22 *CEXP{CMPLX{.0y=P1/23o b1 %CSIM(2%TS/ 20 J/(R*SIN(2, %P1/ 2, 0%

1CSIN(TSY))
C1=CSORT(R*R+CU*CL )

A=CMPLX (409 =4 o }%#C1/(CHPLX{ 093 4 )%C1ECT1=-SORT( Zo )5 (CI 1%CH-C12%Bx
1CEXP(CHPLX{eNy2.%P1/3.11)11)

HN=A%SORTA2 4/ (PT#R) )RCEXP(CHPLX (o 0y =5 ¢#P1/124)1/(-CU-CMPLX(,0y)%
1SIN(PH)) .

El1=Rxb]
E2=Rx:2 ~

IF(PHN LT L1R0L)IGBN TN 4t4) . :
DH={PHD =360, } %, N1765 :

444

GN TU &442
NH=PH

4449

HN1 =CCSHLIXHDXCNS((PI/2.0+DH) /3 .0)*CEXP{CMPLX(0.0s-EL1*CNS{PH)))
HN2 =CCSH2¥HN#CNS{(340%PI/2(=PH) /3 QI*CEXPICMPLXL{ N, 0,E2:5CNS{PH)) )

XM=1,5
XLtDA=3 .NFOR/F

DD=A%SORT(2 4 /{PT*R)IECEXF(CMPLX (o Gy 5 a%PI/12:) )/ (-CU+CHPLX{0,4H))
HD10=CCS 1300

HD20=CCSH2 *DD
1F(PHN o1 T.90.)GR TO 661

PHV =450, -PHD
6O _TU 662

661
662

PHV =90 ,=-PH]D
PH =00 .+PH)

TYVD=EANHVI)/XLIADA
CALL NFRCFINYDR 4 XN, YVD  PHV y XLMD A)
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CALL DFRCF (VYL Xoy YUl yPrc (X Ly 8)
NVDR=CUMIG{DBYDR) :

DY L=CJ6 (vt ()
Hid11=H0 10 HDVRZ(EXP[THPLX L CaCy +Rx{ 1) 4V ] )5 { 1a O+STM[PH) )= 15 COS(PHE))

1)) /SURT (M+v 1)
HN21=H0200 VN LCE XPLCAPLX L0, 0 B () #V 1) (104810 0H) )+ 25CNS( 0

C THIS SURRMTINE CUMPUTES THE SULAK RADTATINN FIELD

1)) 7SRART (V140 2R T e e

DHF =PHIT+30, 0
w=2 0%

CALL HSLAB {1,V 14F i1 CESR,ClU4CPETA,CESILsCCSY L PHF,AYF)
HYF =HYF 5GE XP (CPLX {0y =53 15CHS(PH)))

PHB=270,0-PHD
=2 0% 2

CALL HSLAR (P ,V1,F 4 ,CFSR4CU,CRETA,CESIL CCSW2,PHR,HYR)
HYR= HYRmCFKP(CﬂPlX(h.”,h #2%CUS(PH)Y)

HY=HYF +HYQ
HY = HY%*(1.,0-C2)

IF(PHD (LT .90, 0) Gy T 2221
IF(PHY (LT 1R0.0)G Ty 2222

IF(PANLLT.2Z70.0000 T(1I 2223
HT=HD 1 +HN 11 +HD 21

G0 TU 2224

2221 - HT=HGN+HN 1+ HN2 +4N ] ]

G Tu 2224

2222 HT=HGMH+HD 1+HN2 +4N2 ]

G TU 2224

2223 HT= HU?+HU?1+H011

2224 HTT=HT+HY

AHT=CARS(HT)

AHTT = CARS(HTT)
NRHT=20.*ALOGLIO(2HT)

NDRANTT = 20, 0%ALNGIN(ARTT)
ALTH{ 1) =08HT

AUHS (T )}=DRHTT
IF(PHD ¢LT.359.0)G0 TG 1

FN1=(AUKS{45) +AIFS{46))/2.
v2=FN-FN1

ANGLE=-1.
N03333 1=1,180

AMGLE=ANGLE 42,0 -
NAHT=AUH{T)+Y2

NRHTT=AUHS (1) +Y2
WRITE (6,444 YANGLF yNRHT,NDRKHTT

444

FORMAT (' PHD=?,F9,2,2%y 'NBHT=',F10.3,2Xs'DRETIT=',F10,. )

3333 CONTIMUF

G1) Tu 1212 4

1112 STUP

END
SURROUTINE HTS(U,CU,R T Sy1FR)

COMPLEX CUTS,TSC,TSI,DCU,TSR
Cy=ti/n

CALL THET(CY,CI) :
TSN=CPIX(3. 1915°2/7.L:CI) : e

«n

NEL=1.E-5
A= AluﬁﬁLui)/QFALLCU)

AAN=ABS(A4A)
I1S1=1S0

IF{AALLEDELIGH TH 10

A1 DbQu= CﬁfL&LRt“LLQLLyKLP'(r”)fArQELLAA) - e e e e e

2

CALL CRTSINCH 4B, TSI TSRHIER)

IF(IERLEN L1 )G T 3 — — e
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10

TSI=TSR

DEL=PDFL+] LE=5 e e e e e

IF (AALGT JNELIGO TU 1
CALL CRTS(CU 3 ,TSI,TS,IER)

RE TUIKN
FNi)

SUHRGUTINE CRTSICU A, TS TS, IER)
COMPLEX FyCU TSyNT S TST,0VSITC,TS

FCU ReTCI=(LSORT (1.44+CU%CU/(F53) ) =CSIN(TC))/CCNSIIC)
=) .

DTSO=F(CU4R,TSO)
T1=CARS(DTS)

TSI=TSO+NTSO
A=CABS({CSORT (1 +ClyxCl/{ K=R))~CSIN(TST))

NTSI=F(ClI,8,TSI)
T2=CARS(DTST)

IF(ALT1.D=-5160 TG 2
[FIT2,6T.T1)6GN0 TO 3

T1=T2
TS1=TSI+DTS]

CMEn+] .
IF (ML.GEL30)6G0 TN 5

6 TO 1
IER=0)

TS=T7SI1
GO T 7

IER=1
WRITE (644) -

FARMAT(Y THIS ITFRATION DOES NOT CONVERGE'Y)
GO TU 7 i :

IER=1 .
WRITE (6,6) ] :

FORMAT(Y THIS COMPUTATION DOES NOT CUNVERGE IM 20 ITFRATIONS')
RETURN .

END
SURRUUTINE HSYWP({N,F,ELy,XO,Z,IER)

COMPLFEX ELsZ4RZ,421,20,EP
20=CMPLX{X0y.0)

DEL=1.E-5
AIEL=ATMAG(EL)

REL=REAL(EL)
A=ARSIAIEL)/REL

21=70U
IF(ALLELNELIGO TH 10

EP=CinPLX{RELYy-RFL=:NEL)
CALL CRSHP(I 4F FP,71,RZ s IER)

IFITERGEDLLIG) TO 3
721=RZ

NEL=FL+1.E~5
IF{ALGTLDRELIGO TH 1

CALL CRSHP(h 4F4ELyZ1,4Z,41ER)
RETH RN

Faij) .
SURROUTIMF CRSWP(D 4HEL,204RZ,IER)

COMPLEX 2N gR7 sEL 97 oF 9G 4FP oGP JNZ0 ¢NF G921 4 D21 42K E1922
FO2)=73CSTIN(7) :

GIEL RS 4 ZK 4R 40 47 ) =F L% CSORT ((ZK=R%R )N =2 %7 )%CCOS(Z ) /ESD
FPI7)=2%CCNS(Z)+CSINIT)

GPIFLyESY s ZK 9B 9N 92 )=~ (FL/ESD )% (Z#CANSIZ I+ ZK-HuR)wNxN=2 % 7)*

LCSINM(7)) /CSNRT ((7K=R=H) X %D ~7 %7 )

ESl=H ,K5F-127
PI=3.14159
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R=2 ,%PI*H/3 FCR
IK=((2 %P %H %% )54 ,%PJ %] JE=T*EL

r=0 .
NZ0==(F(ZO0)=G(ELESO,2ZK4R,0,Z0)}/(FP{ZU)-GP(FL,ESO,ZKy By Ny ZN})

T1=CARS(NZ0))
21=7u+D70

DFG=F(ZI)=G(ELyFS(,2X43,0,21)
A=CARS(DFG) |

DZI==AF (2T )=G(EL ESD+ZK B yD9ZI))/(FP(ZTI)=GP{FLsESO,ZKyRe4N,Z1))
T2=CARS(DZI) .

IF(A.LT.1L.E-5)GN TG 2
IF(T2.,6T.,T1)GO TN 3

T1=12
71=21+D21

N=N4+1
IF (MJGEL30)GO TN 5

60 70 1
1ER=0

RZ=11
GO TO 7

IER=1
WRITE (644) °

FORMAT(' THIS ITFRATION DUES NOT CUNVERGE IN SFARCHING FOR COMPLEX
1 ROOT OF SURFACE ¥ AVE POLE?)

GO TO 7
1ER=1

o

WRITE (6,6)
FORMAT( ' THIS COMPUTATICN DOES NOT CONVERGE IN 20 I TERATIONS I SE

1ARCHIMG FOR COMPLEX RONT (iF SURFACE WAVE POLEY)
RETURN

END
SUBROUTINE SWP(Z,ESR4D,V,ESTLyBETALU ,TER)

THIS ROUTINE IS TO FIND THE RUOT OF THE POLFE DOF SURFACE WAVE RY
USING THE BISECTIONM METHOL ., FE SURE 10 CHECK THE FIRST TN

[w]nKe]

APPRUXIMATIONS X1 AND X2 SUCH THAY F(X1)*F(X2) IS NEGATIVF
FIX) = TAN(X) = ESR *SORT({V/{X*X))-1,0)

B=2.0%3,14159%72/3,0E08
RK=SQRT (E SRI*R

IF(D.LT2.54E-5)G0 TO 1000
N = 0

X1=SORT (V) *1.E-¢&
TV=1.5708

SV=SOQRT (V)
IF(SV.GFE.TVY)IGO TO 1111

X2=SQRT (V)% ,9999
GO _TY 992

1111 X2=TV-0.0001

992

Y1=F(X1)

Y2 = F({X2)
(X1+X2)/2.0

X =
N=Nf1
IF (N.GT.30) GO TO 2

100

TIF(F(X1)*=F (X))10N,101,102
X2 = X

IF({X2-X1)eLT.1.0E=5) (0 TO 101 4
GO TU 1

102

X1 .= X
IF({X2-X1),LT.1.,06E=5) GU TO 101

101

GO TU 1
ESIL=X/D

BRETA = SORT(RK#**2-ESIL%*%2)
U = SORT{RETA%%2-Pxx2)
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GO T 1001
000 U=(FSR=1,0)%3%R=0/ESR

QETA=SORT (U +A3%R)
ESTL=RESNRT(ESR=1,0N)

1001 IER=0
G TU 3
2 IER = 1
-PRINTS : )
&4 FORMAT(Y "G 'FAILFED TO CumVERGE IN 30 ITERATIONS IN SEARCH ING FOR.
1THE RDOOT 0OF THE PULE OF SURF ACE WAVE V)
3 RETURN
£ND

SUBRUUTINE THET(P,C) -
THIS ROUTINE IS TO COMPUTE A CONSTANT BY FIMDING A RNOT QF A

POLYNOMTI AL BY USING THF SECAND METHOD IN ORDER TO CUMPHTE THE
CHU=KOUYDUMJTANT'S COEFFICIENT

aNallel

F(X} = SINH(X)-P
X = 0.0

X1 = P
Y = F(X)

Y1 = F{X1)
N0 1 IT.= 2420

X2 = (XHF{X1)=X1%F (X)) /(F(X1)=F (X))

Y = Fi(X2)
IF(ABS{X2=X1)eLT.14E=5) GO TO 2
X = X1

1 X1 = X2
MRITE(6,+6)

6 FORMAT(/36HOFAILED TO COMVERGE IN 20 ITERATIONS)
GO_TO 3

C = X2
RE TURN

N

END
. SUBRUUTINE DFRCF (D ,XN,Y ,R,XLMDA)

THIS ROUTINE IS TO COMPUTE THE DlFéRACTIDN COEFFICIENT
COMPLEX F1J4F2J,0,R,T1,4D1,T2,02,4D,F1,F2yS

PI=3.1415927
RR=R%M, 01745329

ARGI={(PI+RR)/(2,0%XN)
ARG2=(PI-RR}/(2.,0%XN)

CX1=COS(ARG])
CX2=CNS(ARG2)

SX1=SIN(-ARG1) _
SX2=SIN(ARG2)

X1=(8BR+PI) /(2. O*XN*PI)
Nl=Xx1 "~

El=x1-nN1 *
IF(F1.6GTaNL5) N1=h1+1

IFIFlelT.=0.5) N1=N1-1 ) -
FM1=FLOAT(N1) ) :

X2={BR=P1)/{2 O%XN%P])
N2=X2 ™ . :

E2=X2~-N2
IF{E2,6T.0,5) N2=N2+]

IF(FE2eLT o=0.5) N2=N2-1
FN2=FLOAT (N2)

Al=1.0+4COS{-RR+2,0%XN*PI%FN])
A2=140+COS(=RR+2 LOXXNXP [ *EN2)

SA1=SORT (A1)
SA2=SORT(A2)

XX=(SORT (2 ,0%PT%Y ) )%SA)
YY=(SORT(2.,0%P]%Y))%SA2
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XXS=XX%XX
YYS=YY XYY

PO=SORT(PI/2.0)
CALL CS(C1,S1,XXS)

CCl=0.5~C1
S§1=0.5-S51

FlJ= PORCMPLX(SS1,CCl)
CALL CS(C2,52,YYS)

CC2=0.5-C2
§$§2=0.5-S52

F24= PO%CMPLX(SSZ,CC2)
P=-P] /6,0

Q=CMPLX(N.0,4P)
R=CEXP(0)

S=(=025%RZSORTIXLMDA) }/(PT=Xn)
T1=S*2 ,0%CEXP(CHPEX(0.0 ,XX5))

D1=TL1%F 1I=CXL={XX/5X1)
T2=S%2 O0%CEXP{CMPLX(0.0 4YYS))

D2=T2%F2J%=CX2%(YY/SX2)
N= N1+2

RETURM
ENDY

SURRUDTIMNE HSLAR (D,V1,4F 4 yCESR,CU,CRETA,CESIL,CCS", PAN,ET)
THIS ROUTINE IS T GOMPUTE THE SLAR RADIATION FIELD

COMPLEX CCS¥ oHY]1 oHT yCESRZCU,CHETA,CESILy XKX 9 XKXDyZ K
PI = 3.14159

ESU = B,AR5E-12
XLMNA=3 .0FQR/F

B=2.0%P1/XLiDA
ZK=CE SR %R %R

XKX=CSORT(ZK-CRETA%CRETA)
XK XD =XKX =D

HT=CMPLX(0.0,0.0)
“IM=D/ 10,05 %XLMDA)

DN 222 1 = 1,1M
M=2%[-1

DI=NHA/(2%1M)

. CALL CASER(D,F 4 ,V1,CESR,CULCBRETA,CE SIL,XLMDA,P]yPHEHY])

222

HT=HT+HY 1%CCOSIXKX*{D-DT1))
CONTIMUE

HT=CUMJG(HT)
HT=HT=D2CMPLX{ e Ne—1. }*CBETAXCCSW /{IM*CCUS{XKXN))

RETURM
END

SURRUIT INE CASER (1 ,F o4 V1 4CESR4CU,CRE TA, CEST Lo XLMNA, DI s PRN,H)
COMPLEX NHL JDHY yNH24HHY RN 14 HD243FGy,GRyCrSRyClUL,CBETAZCES L, 1K

COMPLEX C
PI=3.14159

RK=2,N*P1/XLiNA
IF{PHN LGT. 270.)PHD=PHD~360,

PH=PHN*,01745
UK=CJ /RK

ARG=RK3D] -
CALL GREENFIPHD y2RG LUK 4 XL:iJAFG)

HY=FG .
C=CEXP(CIHPIX(0,=P1/4,))/SORT (2 o *P]% BX)

XN=1,5
y=(h+v]1)-NI]

Y=Y /XLNMDA
PH1=1R0.,N~-PHD

CALL ”FRCF(HH],X\,YD,PHI XLrepAa)

_HD1=C*OHL CEXP{CMPLX{0, 0.(FK%jD+!1J*CnS(PH)-HK%Y)))/S“RJLYl -
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CALL DERCF (DAY, XS, ¥, 0., XLhanaY
Y2=(D+V1)/XLEDA

CALL DFRCFANH2 ¢ X 3¥2 JPHD XL £)

HN 2 =C#OHY MIH2 2CEXP (CHPLX L o Oy ( =RKE(D+V 1) =bK*Y ) )) /SOR (Y X 1+ V1))

TF(PRN LT 0,060 T(1 111z
1F(PH) LT 180,) GO Ti 1111

HzHY+H) 2
GO TO 2

1113

H=HD1
GNH_Tu 2

1111
2

H=HY+HD 1+HD 2
CONMT INUE

RETHIRN
END

SURRUUTINF GREENMF (PHDN 4 ARG 4LiK ¢ XLMD Ay F )
COmMY AY(150) RY (150}

COMPLEX F oM 3™M 3Gyl Py lIK 4 AT
PIX)=CEXP(CMPLX{0,X))

PI1=3.141592
PH=PHNXP [ /180N,

R=2 ¢ %PI/XLMDA
XN=1 65

AT=CrPLX(.041%)
N=(.O, «0)

DD 5 HM=1,20
I=mM-1

EM=2,
IF(I EO. O)FM=1,

BM=RESSJ(ARG 1 /XM yBRJ,4RY,IER) .
NM=EM3RMAP (T %PT /(2 4%XN) )ECUS (] %PH/XN)

N =N+
ANM=CABS (MM )

IF(ANHM LT« 1.E-30)16G0 TO 44
CONTINUE

44

G=(+0y.0)
NN 15 M=1,20

I=mM-1
RM=RESSJ(ARG (2 *T+14)/(2.%XN),BJ,BY y1ER)

GM=RMHP{(2 ¢ #T+1s) /(4 XN} ) #COSIL 2, %1 +10 Y ¥PH/ (2.%XN))
G=G+GM

AGM=CABRS(GM )
IF (AGH  oLT. 1.E-3C)GD TO 55

15
55

CONTIMUE
C=SORT(2,/{PTI*R}) /XN

G=G*CxP(-P1/44)
N=N:C*P(-P1/44)/2

RU=REAL(UK)
ATU=ATIMAG (UK)

IF((PHD .EQ. 90.) .OR. (PHD .E0. 270.1)160 70 11
IF((RU LEQ. 0.) JAND, (AIU .ED..0.))60 TO 22

F=(AI*COS(PH)MNHIK*G)/(AI=COS{PH)+UK)
GO_TO_ 33 - -

11

F=G
G0_Tu_33

22
33

F=N
RETIHIRN

END
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