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I. INTRODUCTION

The purpose of this study is to examine the effectiveness of the
geometrical theory of diffraction (GTD) in calculating the radiation
from slots in perfectly-conducting surfaces which are partially
covered with dielectric. Configurations of this type are of interest
in the design of antenna systems for spacecraft. We consider the
radiation from a narrow slot in a dielectric-covered perfectly-
conducting surface terminated at an edge as shown in Fig. 1. This is
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one of the most elementary structures involving dielectric-covered
slots; furthermore, measured patterns are available to check the GTD
analysis [l].

A theoretical approach to the problem based on the geometrical
theory of diffraction [2] is described. The effect of the truncation of
the dielectric cover has been ignored in previous analysis, yet this
yields the diffracted ray which plays a dominant role in determining
the radiation pattern. The total far-zone field is composed of a
geometrical optics field and a diffracted field. The geometrical
optics field is the direct radiation from the slot to the field point
P; it vanishes in the shadow region below the plane containing the
surface AB. The slot also excites surface waves which are incident
at the termination of the dielectric cover at A and B. The termi-
nations yield singly-diffracted rays and reflected surface waves.
For simplicity the thickness t of the dielectric cover is restricted
so that only the dominant TMo surface wave mode is excited. The
contributions from the geometrical optics ray, the singly-diffracted
rays and all significant multiply-diffracted rays are summed to give
the field at P.

The geometrical optics field and th? field of the incident
surface wave are obtained from the solution to the problem of a narrow
slot radiating through a dielectric-covered ground plane of infinite
extent. The diffraction coefficient and reflection coefficient for
the surface wave incident on the edge A (or B) are determined in the
fol lowing way. The surface impedance of the grounded, dielectric cover

(1) 2,.^

where kQ and Z0 are the wave number and characteristic impedance of
free space, and k^, which is found from the>solution of a transcen-
dental equation, is the wave number of the surface wave in the direction
normal to the dielectric-covered surface (kn is imaginary for a lossless
dielectric cover). Next, consider a right-angle wedge, one of whose
faces is perfectly-conducting, the other with surface impedance Zs. The
canonical problem of the diffraction of a surface wave by this right-
angle wedge [3] is used to find diffraction and reflection coefficients,
which are adequate for sufficiently thin dielectric covers. However,
as the thickness of the -cover increases, the radiation from the
vertical end face AA1 (or BB 1 ) of the dielectric cover cannot be
neglected. This is taken into account using a Kirchhoff-type approxi-
mation, where the total electric field within the dielectric cover at
its end face radiates in the presence of a right-angle wedge. This
contributes a second term to the diffraction coefficient previously
obtained.



The calculated and measured patterns compare well, which justifies
the use of the geometrical theory of diffraction in this type of
problem together with the approximations which have been used to
find the diffraction coefficient. The patterns are very sensitive
functions of the parameters, such as the thickness of the dielectric
cover and the frequency. When the dielectric cover is lossy, the
contributions from the diffracted rays decrease as the loss tangent
of the dielectric cover increases. This is due to the fact that the
surface wave is attenuated as it is incident at the termination of
the dielectric cover. The ripples in the patterns in the illuminated
region diminish and the level of radiation in'the'shadow region
is reduced.

II. METHOD OF ANALYSIS

According to the geometrical theory of diffraction, the total
far-zone field is composed of a geometrical optics field and a dif-
fracted field. In the problem of a narrow slot in a dielectric-
covered perfectly-conducting surface terminated at an edge (see
Fig. 1), the geometrical optics field is the direct radiation from
the slot to the field point; it vanishes in the shadow region. The
singly-diffracted field is the field diffracted by the termination of
the dielectric cover at A (or B). The termination of the ground plane
at C (or D) yields a doubly-diffracted ray. In this chapter, the
contribution from each ray will be described in detail.

A. The Geometrical Optics Field and the Field of the Surface Wave

Consider a magnetic line source on an infinite, perfectly-
conducting ground plane covered by a dielectric slab of uniform thick-
ness as shown in Fig. 2.

'ff ff rf S r fS S fr ' f S f S f s S f f r

MAGNETIC LINE SOURCE

Fig. 2.



This configuration simulates the behavior of a narrow slot radiating
through a dielectric cover. It is known that the line source excites
a surface wave which propagates along the dielectric slab. It is a
straightforward exercise to show that the geometrical optics field H0
and the field of the surface wave due to a magnetic line source of
un i t strength are _

a)e_e._ COS
(2) H0 = -

cos cos ct + j/e - sinzesin0

u e eo r,,, H _ _(3) Hw = - - — — — - .. - e
3 Sin C t [ e k 2 ( £ - l ) +

-xx-je|y|

where er = (e'-je")/e0, the relative dielectric constant of the cover

k0 is the free space wave number, k =

(4)

(5) X = V^ - k0* , kn = jx .

The value of 5,, is determined from the transcendental equationw

(6) tan = er
(£r-l)(k0t)2

- I

In the case where the dielectric slab is lossy, e and k are
complex, and the root of Eq. (6) is complex. A method for calculating
the complex root of a transcendental equation is described in Appendix
2. It is seen from Eqs. (4) and (5) that the important parameters of
the surface wave g and x are complex, so that the surface wave
attenuates as it propagates.

/

Throughout this report a time dependence of eJut is assumed and
suppressed.



B. The Field of the Diffracted Rays

As noted in the preceding section, the slot excites a surface
wave which propagates along the dielectric cover (slab). This surface
wave is diffracted and reflected at the corners A, B shown in Fig. 1,
so we seek the diffraction and reflection coefficients from the
canonical problem of -the surface wave incident on a dielectric-
covered perfectly-conducting right-angle bend as shown in Fig. 3a.
Since an exact solution to this problem is not available, we will
replace it by an approximate canonical problem, which will be solved
in two stages.

In the approximate canonical problem, shown in Fig. 3b, the
dielectric slab is replaced by the impedance surface described by
Eq. (1), with k given by Eq. (5). If this impedance boundary is
positioned at tne top surface of the cover, the field of the surface
wave external to the cover is unaffected; however, it is apparent that
the field within the cover is neglected. Thus one would expect the
approximation to be good only when the ratio K of the power in the
surface wave field external to the cover to the power within the cover
is large. It can be shown that

e k cos2k t
(7) K = r x x

x(kxt +% sin2kxt)

It is seen that as t decreases, the ratio increases; and so the approxi-
mate canonical problem of Fig. 3b is useful only for thin dielectric
slabs. The behavior of K as a function of the thickness t of the slab
is shown in Fig. 4, for er = 2.56.

Chu et al [3] have solved the problem shown in Fig. 3b; they give
expressions for tne far-zone diffracted magnetic field and the field
of the surface wave reflected at the edge. Their diffracted field is

(8) H n = - H w

According to the GTD,

Hn = Hw

in which H, is the surface wave field at the edgew

X + jk0 cos e^o

-J'kosi
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and Dn is the diffraction coefficient. From the two preceding
equations,

A cos
(10) Dn = U±- e

A + jk0 cos e i™

where

(11) A-

A* I - ^ l A - I2/3 k0 e

. IT

2 e sin ve
(12) Iv kQ sin VTT sin

(13) e = J+ j sinh"1 r~

The field of the reflected surface wave at the impedance boundary
is

His = Hw R e

where 3 is given by Eq. (4), si is the distance along the impedance
surface measured from the edge, and the reflection coefficient of the
surface wave is

cos i<e. + IT)
(15) R = - —

cos



In treating the radiation from thicker dielectric covers, where
the field within the cover cannot be ignored, it is apparent that the
above approximation is inadequate. In particular, we note that there
is a significant contribution from the internal field in the form of
radiation from the vertical end faces of the slab at A-A' and B-B1

in Fig. 1.

This radiation from the vertical end faces of the dielectric
cover is taken into account by using a Kirchhoff-type approximation,
where the total electric Yield within the dielectric cover at its end
face radiates in the presence of a right-angle wedge. Here again the
dielectric cover is approximated by an impedance surface. The equi-
valent source of this radiation is the magnetic surface current

(16)
cos kx(x-t)

cos kxt

where k = Az - $z . The magnetic surface current radiates in the
presence of the wedge structure shown in Fig. 5. R is calculated from
Eq. (15). To obtain an integral representation for the magnetic field,
one seeks the Green's function which satisfies the mixed boundary
conditions.
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Fig. 5. Line source located at (x = x1 e = 0°) on a
right angled wedge with mixed boundary conditions.



3G
(17a) —- AG = 0 , x = 0, y <0

and

8G
(17b) —= 0 , y = Q, x > 0

a y • • • . . . : '

This type of the problem can be solved by the introduction of an
auxiliary function which is a linear combination of the field and its
cartesian derivatives. The auxiliary function is chosen in such a way
that it satisfies the wave equation and simple homogeneous boundaries
conditions. Once the auxiliary function is obtained, the original
field can be determined by solving a partial differential equation.
This idea is due to Stoker [4] and Lewy [5] who studied problems in
water wave theory. The far-zone Green's function, G(s l 5e;x ' ,0) , ,is
derived in Appendix 1, where it is shown that

(18) G(s1,e;x',0) * g(e;x',0)

in which g(e;x',0) is a far-field pattern function which is independent
Of Sj.

The diffracted field is then

e"Jk°Sl

(19) H12 = Hw D12

where D12 is the diffraction coefficient associated with the diffracted
field H12. From Appendix 1,

t cos kv(x'-t)
(20) D12(e) = J3(1+R) J g(e;x',0)dx' .

o cos kxt

This diffracted field contributes a second term to the diffracted
field Hn previously obtained. Thus the total field diffracted from
a wedge with a dielectric cover on one surface can be approximated as

(21) H^s

10



• Hw[D11(e1)

where it is more appropriate to replace e by QI here. With the
inclusion of the Hi2 term, the surface impedance approximation can be
used to treat the radiation from dielectric covers of increased thick-
ness, as w i l l be demonstrated in the next section.

The field diffracted from the termination of the dielectric cover
is in turn incident on the edge of the ground plane at a distance h
directly below it. This gives rise to

-jkQh ~Jl<os2

(22) H 2 (s 2 ,0 2 ) = Hw[Dn(|^)+D12(|l)]l—- lDh(e2,0) *

a doubly-diffracted contribution from the edges C and D in Fig. 1.
Here D n (e 2 ,0) is the hard scalar diffraction coefficient given in
Reference 6. The factor of h must be introduced at grazing incidence
(e2 ' = 0) on the edge. This contribution from the lower edges of the
ground plane has little effect on the pattern in the i l luminated
region, which is dominated by the f ie ld directly radiated from the slot
plus the singly-diffracted contributions from the terminations of the
dielectric cover. On the other hand, this contribution appears as a
significant ripple in the pattern of the shadow region below the
dielectric-covered ground plane. Thus, with reference to Fig. 1, the
total field for y >0 .

(23) H =
H0 + H + H + H«n , x > 01A 1B 2D

fl + H2C + H2D , x < 0
in which the first subscript 0,1,2 denotes whether the field is inci-
dent, singly-diffracted or doubly-diffracted and the second subscript
indicates the edge from which the diffracted ray originates. The ex-
pression for H when y < 0 is s imilar .

A computer program based on Eq. (23) has been developed; it is
described in Appendix 3. In using this program it should be noted
that er cannot be very close to 1, nor can the thickness of the cover
t be very close to zero. Thus, the present solution does not reduce
to the slot in the ground plane without a dielectric cover. The reason
for this l imitat ion is that the distance from the slot required to
establish the dominance of the surface wave field increases as e« -*• 1,
t -»• 0. Under these circumstances the field at the termination of the
cover is not simply that of the surface wave;however, this f ie ld can

11



be determined so that the transition to the case of the ground plane
without a cover can be made. But this must await further work. The
pattern calculation shown in Fig. 7 is based on a separate solution
where the surface wave emanating from the slot is replaced by a space
wave propagating along the surface of the ground plane, and the
diffraction coefficients for the hard boundary are employed at edges
A and B. •""" > , : ' • - ' \ ' J ; -

III. NUMERICAL RESULTS " - . - . . • • •

••• "Eq. (23) £ i s used to calculate'the far zone patterns of the con-
figuration shown in Fig.: 1. In each case the ground plane length L
is 12.13 inches, the height h is 1.71 inches and its width (in the
direction perpendicular to the page) is 22 inches. A 0.5 inch by
0.062 inch slot is positioned 0.1 inch to the right of the center of
the ground plane, thereby introducing a .slight asymmetry in the
patterns. The axis of the slot is parallel to the edges shown in
Fig. 1. The precise dimensions are shown in Fig. 6. The slot is
excited at frequencies so that only the TM0 surface wave mode can
exist. The patterns are calculated in the plane of symmetry normal
to the axis of the s]6t for Various frequencies and cover thickness.

SSS:sSS-f S / / S f f S S SSS * f / / S S S f S S / f

0.103"

h =1.713" SLOT

L=|2.I28"-

-T-=8,24 At 8.0 GHz

-Y~ = 10.8 AT 10.5 GHz
Ao

Fig. 6. Experimental dielectric-covered ground plane
with slot.- ; :

The calculated andmeasured patterns for a slot in the ground
plane without a'dielectric cover are shown in Fig. 7. As explained at
the'end of section II, a separate calculation via the geometrical

12
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Fig. 8. Pattern of a slot in a dielectric-covered ground plane,
Frequency = 8 GHz, t = 0.11 inch, e = 2.57.
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Fig. 9. Pattern of a slot in a dielectric-covered ground
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theory of diffraction is required in this case. Typical calculated
and measured* patterns for the dielectric-covered slot are shown in
Figs. 8, 9 and 10; in these figures tc is the thickest dielectric cover
in which only the dominant TM0 surface wave mode can propagate. In
the illuminated region, the position and level of the lobes of the two
patterns are seen to compare in detail, and overall the comparison of
the two patterns is good. In Fig. 8, where the dielectric cover is
relatively thin, the end face radiation contribution H 1 2 (e i ) of
Eq. (21) is unimportant and could be neglected. However, for the
thicker dielectric covers of Figs. 9 and 10, this contribution is
significant. The importance of Hi2 is illustrated in Fig. 11, where

MEASURED

-30

• CALCULATED

• • • •• CALCULATED
(WITHOUT END FACE

RADIATION )

30'

-60 60

t =O.I86\0

tc=0.4\0

Fig. 11

*The measured patterns were provided by Mr. W. F. Croswell of the
NASA Langley Research Center, Hampton, Va.
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patterns calculated with and without this contribution are shown in
the illuminated region. It is seen that this contribution is required
to bring the calculated pattern into agreement with the measured
pattern. In this case the slot is positioned in the center of the
ground plane, so the symmetry of the measured pattern with respect to
90° is an indication of its accuracy.

The patterns are very sensitive functions of the parameters, such
as the thickness of the dielectric cover and the frequency. This is
shown in Fig. 12, where it is seen that a frequency change of less than
two percent causes a substantial change in pattern detail. This
sensitivity to slight changes in the parameters could in part account
for the differences noted between the calculated and measured patterns.

The presence of a dielectric cover on the ground plane substan-
tially increases the pattern level in the shadow region when the
dielectric is lossless. As the loss tangent, tan 6, of the dielectric
increases, so does the attenuation of the surface wave incident on the
termination of .the dielectric cover. This in turn weakens the con-
tributions of the singly- and doubly-diffracted fields. As a result,
the ripples in the patterns in the illuminated region diminish, and
the level of radiation in the shadow region is reduced, as shown in
the calculated patterns of Figs. 13 and 14. In Fig. 14, when tan 6 =
0.2, the diffracted field components have been so reduced, the pattern
is essentially that of the directly-incident (geometrical optics)
field.

IV. CONCLUSIONS

The calculated and measured patterns compare well, which justifies
the use of the geometrical theory of diffraction in this type of
problem together with the approximations which have been used to find
the diffraction coefficient. In particular, the' method employed to
extend the approximation of the impedance boundary in treating edge
diffraction appears to be useful. The patterns of the slot in the
dielectric covered ground plane are very sensitive functions of the
parameters, such as the thickness of the dielectric cover and the
frequency. The presence of the cover substantially increases the
pattern level in the shadow region when the dielectric is lossless.
As the loss tangent increases, the ripples in the patterns in the
illuminated region diminish and the level of radiation in the shadow
region is reduced.

18
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Fig. 12. Patterns of a slot in a dielectric-covered ground
plane: calculated patterns at slightly different
frequencies.
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Fig. 13. Patterns of a slot in a dielectric-covered ground plane.
Frequency = 8 GHz, t = 0.1875 inch, er = 2.56 (1-j tanfi).
The values of tans are shown on the patterns.

20



330 30°

300

270«

240

60'

tc=0.4Xf l

210

ISO

Fig 14. Patterns of a slot in a dielectric-covered ground plane.
Frequency = 12 GHz, t = 0.1875 inch, er = 2.57 (1-j tans).
The values of tan6 are shown on the patterns.
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APPENDIX I
THE GREEN'S FUNCTION FOR A RIGHT-ANGLED WEDGE

WITH AN IMPEDANCE BOUNDARY CONDITION

Consider a right-angle wedge y = 0, x > 0 and x = 0, y< D, and
suppose there is a line source located at (p',0) as shown in Fig. 5.

The Green's function G satisfies the following differential
equation:

(A-l) (v2 + l^2) G(x,y;x',y') = -6(x-x ') 6(y-y')

where

rx =p cos e

|y =p sin e

and

(x1 = p1 cos e' = p'

ly1 = p' sin e1 = 0

The boundary conditions of interest here are given by

dG
(A-2a) — =0 , y = 0, x > 0

9G
(A-2b) — - XG = 0 , x = 0, y< '0

3x

Also,

(A-2c) G satisfies the Sommerfeld radiation condition,

and

(A-2d) G is finite except at (x',y').

X is equal to -j k0 ZS/Z0, where Zs is the surface impedance given
by Eq. (1), and in problem of interest here, Z§ is such that RpX > 0.
Our treatment of this problem closely parallels that of Karp [7],
except for the manner in which the unknown constant A, which will be
encountered later, is found.
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Let us make a transformation

(A-3) V(x,y) = (If- A) G(x,y) ;

then V must satisfy the following differential equation:

(A-4) (72 + kQ2) v(x,y) = (-2-+ A) 6(x-x ' ) 6(y-y')
O.X

Using the relationship (a /9x)6(x -x ' ) = -

(A-5) (V2 + k02) V(x,y) = (-^r+ A) 6(x-x ' ) s(y-y') .

The boundary conditions for \T(x,y) are then

(A-6a) —= 0 , y = 0, x > 0

(A-6b) V= 0 , x = 0, y< -0 .

The function V(x,y) need not be finite at the origin since it
involves a differentiation of G. The solution to Eq. (A-5) can be
obtained by first solving for the Green's function G0(x,y;x' ,y'), which
satisfies the differential equation

(A-7) (v2 + k02) GoU.yjx'.y1) = - 5 (x -x ' ) <5(y-y')

together with the same boundary conditions

aG
(A-8a) —- =0 , y = 0, x > 0

(A-8b) G0 = 0 - , x = 0, y< 0

and the radiation condition.
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.It can be shown that

(A-9) ^ (x .y ;x ' . 1 ) - - 1 cos 6 cos e' J2n+1(kP<)
n=0 J . J ^.

(2]
where Jy is Bessel function of order 'v and H-n's'a Hankel function of
second kind of order v. v \

By applying the operator -(a/ax1- + x) to G0(x,;y;'x' ,y' ), we- can '• - " -
obtain the following solution for V(x,y):

V(x,y;x ' ,y ' ) = -(-^r+ x) G0(x,y;x' ,y'
\ • '•

The complete solution for V^x,y) is

(A-ll) V(x,y;x'-,y'j =>(-r+^) ' -.x •&*'•• ,y

The last summation contains • the.-cla'ss of admissible singular solutions "•
which satisfy the homogeneous equation for V. Since V cannot be too
singular at the edge, the only admissible function of the singular class
is the first term; hence, "' •-' ' •'"' ' - • - : • • : ' • -v

an = 0 , n > 1

A particular solution of (A-3) is

oo

XX ( -X§ 77,Gp(x,y) = -e e" V(i.y) d§ .
x

The existence of the integral is guaranteed since 'Re X > 0
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The function Gp(x,y) does not satisfy all the conditions of the
problem, for it is hot a wave function on the negative x-axis, since its
y derivative is not continuous there. This defect can be remedied by
adding a complementary solution for G, obtained from (A-3), to (A-13);
thus we obtain

/ XX+j A
c2e ". , y< 0

(A-14). G(x,y;x',y') = Gp + 1
10 , y > 0

G! and c2 are then determined by imposing the boundary conditions

(A-15a) G(x,0+) - G(x,0") = 0 , x< 0

and

8G(x,0+) 8G(x,0~)
(A-15b) = 0 , x< 0 .

ay ay

Numerically it is very difficult to obtain GI and c2. This difficulty
can be avoided if we choose a suitable function [7], H(x,y), which has
the same singular property as H^ (k0p) and is a "homogeneous solution
for V.

Let us consider the Green's function N which satisfies

(v2 + k0
2) N(x,y;x',y') = - 6(x-x ') 6(y-y')

with the boundary conditions

8N
(A-17a) — =0 y = 0, x > 0

(A-17b) — = 0 x = 0, y< 0
8x

together with the

(A-17c) Radiation Condition.
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It can be shown that

N(x,y;x',y') = - 7 I e cos ~TQ cos -V J9n(kp.)
3n-n £ 1 1 ^
" ° : --K. 3 ~3

where en is the Neumann's constant

en =
1 n = 0

2 n = 1,2,••• .

(A-20) .-.(V2 + k0
2) H = 0 .

H(x,y) is thus a solution of the homogeneous wave equation with the
boundary conditions

(A-21a) ^=0 y = 0, x > 0

(A-21b) H = 0 x = 0, y< -0

together with

(A-21c) the Radiation Condition.

Note that the leading term of 9N/3x has the same singular property as
^(k0p).

The complete solution for \T is then

(A-22) V fx .y jx ' . y 1 ) = -(g|r+ A) G0(x,y;x',y l) + A H(x,y;x',y')

where A is a constant to be determined.
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That G satisfies the wave equation can be shown from the fact that

Gx = V" + x G

Gxx = V+ A Y+ A2 G

also Vyy = -V§§ - k0
2 V + (£r + A) « ( § - x ' ) 6(y-y')

' . - ' • Gxx + Gyy > ko2 G =
AX 7 -A§ _

Vy + A V + A2 G - e e Vvv(§,y)d§ .+ k 2 G .x ;x yy o

Integrating by parts twice in the above integral ,

A ( x -X ' } °°
Gxx + Gyy + ko2 G = - (9F r+ A) e «(y-y') 1 fi(i-x') d§

J\

A(X-X ' )
= -(g|r+ A) e u ( x - x ' ) 6(y-y')

A ( X - X ' )
= -e -iu(x-x') 6(y-y')

= 6 (x -x ' ) 6(y-y ')

where u(x-x') is a unit step function.

In the far zone, we observe that GQ, N, G and Y have the asymptotic
form . - . . ' . •

p-Jkop

(A-23a) G ^ ^ - g ( e ; x ' , y ' )

Q
(A-23b) N - 2 - n C e j x ' . y 1 )

JP

Q~Jkop

(A-23c) G - § - g(9;x ' ,y ' )
Sp

and

28



(A-23d) V «- u(6;x',y') .-/a
Since the far-zone field is of interest, only those terms which are

ofO(l / /p) are retained, the operator 3/9x can be approximated by
-j k cos' e; thus we obtain

^ A-Dr^r - *] G0 + j k0 cos e A N
(A-24) G(x,y;x',y')~ & -^—

j k0 cos 9 - x

Hwang [*] determines the constant A by transforming the function G0
and N into the integral representations which are then evaluated asymp-
totically by the modified Pauli-Clemmow method of steepest descent. From
the asymptotic solution, we can identify the ray-optical behavior of the
field. The pole contributions give rise to the geometrical optics field
which is the sum of the incident field and the reflected field. From
this we obtain

(A-25) A = 1 .

Thus,

j k. cos e N - x G0
(A-26) G(x,y;x ' fy')« —

j k0 cos e - x

in the far zone, where N and G0 are given by Eqs. (23a) and (23b)

*Hwang, Y.M., "Electromagnetic and Scalar Diffraction by a Right-angled
Wedge with a Uniform Surface Impedance", to appear.
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APPENDIX II
ON CALCULATING THE COMPLEX ROOT OF A TRANSCENDENTAL EQUATION

The problem of finding the complex roots of a transcendental
equation is usually reduced to the problem of finding the roots of two
simultaneous nonlinear equations. The two nonlinear equations occur
because the real and imaginary part of a complex function must also
equal zero when the complex function f(z) =0. The method of finding
the roots of simultaneous, nonlinear equations has been discussed in
many books; but sometimes it is tedious to reduce a complex function to
two real nonlinear functions. In this appendix we point out that
Newton's method for the real roots of a real function can be extended
to find the complex roots of a complex function.

Suppose that we seek a solution Z0 of a function f(Z,e) such that

(A-27) f(Z0,e) = 0 ,

where e is a complex) parameter.

Using Taylor's expansion,

(A-28) f(Z0,e) * f(Zol,e) + f '(ZQl ,e) AZ1&

where ZQ1 is an initial estimate of the root, which is assumed to be
close to Z . For example, Z01 could be found by solving a related
problem exactly.

Let

(A-29) AZj = Z0 - ZQi .

From Eqs. (A-27) and (A-28)',

(A-30) AZ. = - ^— - A Z .
-f i t~7 \

O l *

Next, replace Z by ZQ2 = ZQl + AZ l g , and repeat the procedure; in
this way we can generate successive approximation, and after N iterations,
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- Z01 + AZ i a

where

f(Zoi,e)
(A-32) AZ i a = -

f ' ( Z , e ) .

When Z01 is chosen sufficiently close to the root Z0 and f '(Z0,-,e)
1 0, the process will converge, i.e., lAZ- + ] J < |'AZ.ja|. The iterative
procedure can then be terminated when |AZ-fa|^< st where 6 is a specified
small number.
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APPENDIX III
THE FORTRAN IV PROGRAM FOR CALCULATING

THE FAR-ZONE RADIATION PATTERN-

C P A T T E R N C-^LC 'JLAT Ii.l,\i ME SL'.i ' i k al.'i I f T 0 H IM
C T H I S PRfGRAi" IS Giilli: U - - ' L Y FdH 0 < D
C
C
C
C
C
C
C
C
X
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

A !)I 4L EC ,R IC-C n ATP| ) ' - 'E ' lAL P L A T E
< 0.4*L»"|nio

L A > O A O = FREE SPT.E >. 'AVE LENGTHS
THIS P R O G R A M Cl^ ' iHT Rg IjSEO '.>.'HEN E Si = 1 . 0 Ah.Ul/HQ 0 = 0.0

ESR - R E L A T I V E H I E L 5 C T R I C CON ST AM T
ESO - FREE SPACE D I E L E C T R I C CONSTANT
EL - D I E L E C T R I C CO'-ST A''-;T Of LOSSY S L A B
0 - T H I C K N E S S r,F "..ULECi RIC C'.'ol
F - FRFnu=i«!CY .IN CPS

ING i,\i I;<HFS

B - FREE-SPAT.F l - . -AVE i -MMfsER
RK -- D I E L E C T R I C '-- 'AVE ;-'li.v, f»E R FOR L O S S L E S S SLAB
VI - T H I C K - M E S S CF T' i C A T E D GRf.Hih

THE T H I C K " ' E ' S S HE S L A ? )
Wl - H I O T H OF HI E L E C T R I C C O A T I N G

C O R ^ • E R IM INCHES

D PLANE IN I.vCHFi! i-irn INCLUDING

FORM THE SfH.lRCE TO THE RIGHT

XL - T O T A L HIHHT l iE D I E L E C T R I C C O A T I N G I IM INCHES
XLT - LOSS TAi \>G- l 'T OF L O S S Y S L A H
T - COMVERSin,- ' F A C T i ' K I l INCH = 0.025 4ME TE^S )
CO - SORFACE- ! - 1 «VE A T T E N U A T I O N CUi^S lANT
CRE.TA- S U R F A C E - ' - ' A V E PROP i-GAT ION CO"
HGQ. - D I R E C T R AH ] AT ION FIELD
•hlDl - - D I F F R f i C T i n i v F I E L D I H I G H T SIOE
HD2 - O I F F R A C T i n i M F IELD ( L E F T S IDE)
HY - S L A B RAD I AT KIM F IELD
HT - T O T A L R A D I A T I O N F IELD

STAN T

)

FN - NORMAI . IZPO C O i V S T A M T OF THE T O T A L RADIA l IO I v F IELD IM OR AT
90-DEGREE S

HTT - T O T A L RAniMIl i 'X FIELD INCLUfJ
D R H T T - T O T A L R A D I A T I O N FIELD IN D*MW
PHD - A S P E C T ANGLE IM D E G R E E S

IMG SLAti RADIA l I uM
I TH SLAB R ADI ATI UM)

COMMON RJ( 150 ) ,RY ( 150)
DIMENSION A l lHJ ipn ) ,AUHS( 1«0) '
COMPLEX HGO , T H E T S , B 1 , 8 2 , B 3 , A 1 , A 2 , A ,
COMPLEX HDT

HD,HT,GCS!-' ,HR,HL, HP1 ,HD2,HY

COMPLEX C N , C n , C 2 » H T T
COMPLEX HYF ,HYR ,GF ,GR
CONiPLFX CCSV.'l ,CCS'-'2
COMPLEX MOID ,HO?n ,HR1 ,HR11 ,HL1,HL11
COMPLEX HP, HO
COHPLE X OH1 ,OH2 ,OH3,DH4 ,i)M5.,H

1212
1111

1313
7

6 0888

5 1444

4

COMPLEX HD10.HD1 1 ,HD20 ,HD21 |DD ,DVDR
COMPLEX CSH ,CI 1 , C I 2 , X
COMPLEX E L , Z , Z K , C H , C R E T A , C E S I L , C E S R
PI=3. 141592
RE AD (5, 1111 ,EMD = 1 1 1 2 ) E S R , F ,FN ,D , X L ,
F O R M A T ! F4 .2 ,E10.3 ,F6 .? ,^F7 .4 ,E9.? )

URITE ( 6 , 1 3 1 3 ) F , D , H 1 , W 2
F O R M A T ! 1H1 , ' FREOUENCY= SE10.3, 'HZ

1 \- i \- > ,F R.4 ,5X ,".-? = ' ,E R.4 )
!-.'R ITE ( f c f HfTH« ) X L T
FORMAT! ' LOSS T AMGEMT =' ,E 15 .8 / )

, 0V DL

r T S . C l

W 1 , V 1 .XLl'

SLAb T H I C K M £ S S = ' ,FK 4 , 'Ii"CH

W R I T E (6, 1444 )
F O R M A T ! 1 PHD - A S P E C T ANGLE IN D E G R E t S 1 / ' HKH U - T O T A L R A D I A T I f ,

IN FIELD IM O R ' / / )
R=2.0*PI*F/3 .OEOR
ESO = K.85E-12

j T = 2.54E-2
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y_i.=y !*i.
V =
C A L L S V ' P ( F ,F. SR ,n ,y ,FS1L , - -F:TA, l )
X i )=F SI

P = X L T < = A A
JLLrr-^LELX ( A A , _ - P _ )

CALL MSI- P(n ,F ,E L ,xir, 7., it •? ) "
Z K = ( (? . *PI*F )s»? )*4.spi =?j .F-7»EL
C H E T A = CSORT ( Z < - ( 7. *Z / (0 * r> ) ) )
qi = C S Q R T ( ZK-R*Brii.*Zyjl>»i-JJ_>
C E S I L =Z/0
r.FSR.=PL/ESCi

\ = CHi\'JG
r ? ( c i i _ )

CESI l = C l> ! JG(CES]L )

C A L L H T S O J , C H , R , T S , I E R 1
C C? IS THE R E F L E C T I Q M C O E F F I C I E N T

C 2 - - C C O S I ( T S + P I ) / 3 . ) / C C O S ( ( T S - P I ) / 3 . )
1=0 '
PHO =-1.0
PHD = P HO + ?.0
PH =

= B*C'SORT ( CESR-CnS I PH) s - C ! ! S ( P H ) ) *r.)
= -? .'-PI *h *CESR«F. SU*S I"-! (PH I *CH XP ( C*1 PLX ( .O.-PI /4'. ) ) /( ( C FS R»S IN ( PH

1) *CCUS( X ) - C r P L X ( .0, 1 . ) * C S O k T ( Ct S«-COS ( PH )*CH S( PH ) ) *C SI N ( X ))

CSW=-?.*PI -F*CESR*CESR-- ; ; ESO*CU*CU*CE SI L/ ( CB ET A*CSI M( C ESI L*0)*( CESR*
R*CESK +CJEJSJJL*C£5I_LJJLJ _

.0, 1. ) *CHET A*H1)
X P ( C ' - ' P L X ( .0 , 1. )»CHETA*H Z)

= 2 . * C t X P ( C f - 1 P L X ( .0.-PI/6.) ) *CSI i> ! ( TS/3. )/( K * S I M ( P I / 3. ) *CS IM( TS )
? = 2 . ^ C F X P ( C M P L X ( .0,-PI/3. ) ) »CS IM(Z . *TS / : - . I /( M*SI 'v ( 2. '••P I/ 3. I*

I C S I M ( T S ) )
_

A=CMPLX ( .0,-4 . J * C l / ( Cf - 'PLX( .0,3 . )*C1*CI 1-SORTI ?. ) * (C I l*Cll-C'12*R*
I C E X P ( C M P L X ( . o , 2 . * P I / 3 .

HO = A "-SORT (2 . / (P I -R
IS IN (PH) ) '

F. ? = R *!•.' 2
IF (PHH.LT .IPO. )C,Q

G!l TU 4^A2
A4^1 DH=PH
^,442 Hf) 1 =CCSi-)l*HD*CnS (

HO 2 = C C SH ?. *nr> *Cn S (
X M — 1 ^! -' — 1 . J

) ) * C E X P ( CMP LX( ,0,'-5 .*P 1/12. )) / ( -CU-CHPLX I ,(),ri) *

"N

TO 4441

( P I / 2 . 0 + O H J / 3 .01*CEXP( C M P L X I 0.0,-E1*CDS ( P H ) ) )
(3 .0*PI/2.f '-PH) /3 . 0 ) *CEXP( f ,MPLX( O.O, F?*CnS( PH ) ) )

D O - A S S O R T (2 , / (PI ' *R) ) = . = C E X P ( C i i P L X ( . 0,-5.*PI/1?. ) ) / (-CU + C^PL X( .0, H) )
Hnio=cc.S'-'l'fK
Hi)2n=ccsi-'2*nn
IF (PHH .LT.90. )GH TO 661
PHV=450.-PHD
Gf) T(l 662

661 PHV=90.-PHO
662 PH!-; =-00. + PHI)

C A L L nFKCF (HVOR ,XM ,YVO, PHV,XLWA)
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C A L L OFRCF (I^T)L. X";' , Y V ( ' ,PHr ,XL-'l.)
n\/ i )R = r.iiAi.u;(|!V!iR ) ___ _ ____ •_
nVO L^Dl'v JG nVv'i) U '

+v
l) ) / S I . I P T ( ' • > + » i )

20*iivnL*r,e XP( Q-._PLX (O .o , H*( (1+VJL )*J 1.0+SH'l '"-I >. L*±'2*Cn£i"H) )' ..... ........ "~i ) > /S'm i v + n )
C THIS .SHKK;'Jim.^r..r.O.'-iPnjP.!> TH£__S_L.AH S AD 1 A T l O f M F IELn ___

C A L L HSLA^ (0 ,vi ,F ,:•' ,Cl tSR ,CD,CHETA,C f iS I L.CCS"' l . P H F . H Y F )
HYF=HYF»CF.j<P IC
PHB=270.0-PHO
K' = 2.Q*',-'2
C A L L MS LAR (D,v l,F ,!•' tCFS 1 ? ,CU ,C BET A, CE SI L ,CCS'-v 2 ,PHH,ri Y y )

P(C'i PI.X (0 .0 ,H* - - ' ? *CUS( PW ) ) )

HY = H Y » ( 1.0-C2 )
IF (PHP.LT.9~0.0)Gi i TO 2?21
IF ( PH'"> . LT .1 PO .0 ) r,<l pj ?J_22_
IF ( P HO . L T . 27 o". 0 ) r,u T f l"2 2 2 3
HT = HI)) +HO 11+HD? l
•GO TU 2224

2221- HT = HGO + Hii i+Hr>2+HM]
GO TU 2224

2222 HT = HGCi+Hf)
GO TO 2224

2223 HI
2224 HTT=HT+HY

A H T = C A R S ( H T )
AHTT = C A R S ( H T T )

1 ( A H T )
OHHTT = 20.0*ALnr,}0( AHTT )
AUH(I)=OHHT
AUHSI I )= [ )RHTT
IF (PHP_. LT. 359.0 )<•„-! TO 1
FN1=( AUHS l45 )+AHHS|46 ) )/2 .
Y2=F.M-FJ«l .
A N G L f c = - l .
0(133331 =
ANGLc=ANGLt+2 .0

I ) + Y 2

rmHTT=AUHS( I ) +Y2
HRITif (ft ,444 ) AMGLF ,n3HT,DBHTT

444 F O R M A T ! ' PHI)= ' ,F9 . 2 , 2X » ' r>BHT= ' ,F 10 . 3, 2X ,,' DRH 11= " , Fl 0. V
3333 CDNTIMUF

r,i.) TU 1212
1112 STL)P

END
r HT s (L

CdMPLf.X CD f T S , T S n , T S I fOCU t T S R
CY=u/n _ ̂ _
CALL T H E T ( C Y , C I )
T Sfl = 0-LPJ.X (3 ...14 15Q 2 /2._. -C I 1.
f )EL=l .E-5

__A g.a I f-! A GJ_CJ i ) /.tt.F A LI C() 1
A A = A B S ( A )
T.SI=T5iU
IF ( A A . L E .DEUGO Td 10

C A L L C R T S ( O C M , K , T S I f T S K , I E R )
.Jfi 3
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T S I = T S R
nEL=OFL+l.F.-
IF ( A A . G T .06 L) nil Tli 1

10 C A L L C R T S t C l l . * t T S I .TS.IF. R )
RETUKiV
F\'i>
SUBROUTINE C < 5 T S < r . U , = . , T S i - , T S , IER )

ifiLtJAjJLTJ'U j-L?. LtllJ 5 l...t!G-iJ so..
FICU f R,TO = ( C S O R T ( 1 .+Cl '*CU/( h*rt) ) -CSIN ( TO ) / C C M S (1C )

[)TSO = F ( CU ,R ,TSfl
1 = C A R S 1 0 T S I ]J

T S I = T S O - H ) T S n
A = C A B S ( CSOHT ( 1 . + C I ) * q i / ( s*n ) ) - C S l N ( TSI ) )
P T S I = F ( C I I , B , T S I )

IF ( A .LT. l .D-5 )<;.') TO 2
IF ( T 2 . G T . T 1 )f,fj TO 3

T S I = T S H - » T S I

IF (N.RE .301GO TO 5

2
GO TU 1
IER=0 '
T S = T S I
GO TU 7

3 IER = 1
W R I T b (6,4 )

4 FURi- iAT! ' T H I S I T E R A T I O N DOES NOT C O N V E R G E 1 )
GO TU 7 .' • ,

5

6
7

IER=1 -
W R I T E ( 6 , 6 )
F O R M A T ! ' 1 TH IS COM. PUT AT ION' DOE S NOT CONVERGE IN JO I T FR A TI PMS ' )
RETURN ' • .
EM)
SUBROUTINE HS'.-JP(0,F , E L , X ( ) ,Z , I E R )
COMPLFX E L , Z , R Z , Z I , Z U , E P
Zfl = CMPLX I XO , .0)
PEL=l .E-5
A 1 E L = & I . M A G ( E L
RE L = R E A L ( E L )
A = A R S ( A I E D / R E L
Z I = Z U
IF ( A . L E . n E L ) m TO 10
EP = C r , P L X ( R E L',-RFL*nF L)
C A L L -r .KSHPd) , F , E P , Z I , R Z , I E R )
IE ( I E R . E 0 . 1 jr,i.) TO 3
? . I = R Z '

I F ( A . G T . O F L > G O TO 1
10 C A L L C R S V I P ( I ) ,F ,EL,ZI ,Z ,IER )
3 « E T U kM

,H.EL ,zo ,RZ , IER )" ' _______
COi- iPLEX 7.0 ,R7 , E L , Z , E , G ,FP,r,p",nZO ,'nE G, Z I , DZ I , ZK , E 1 ,ZZ
F ( Z ) = Z * C S I M ( Z )

R ( E L , F SfJ , Z K , ̂  ,0 , 7 I =F L* CSOHT ( ( Z K-H* H )*fl* [)-Z *Z ) *r.C()S (Z ) /E SO
FP( Z ) = Z * C C O S ( Z 1-t-r.SlMI 7. )
RP (F L,t s i I ,ZK ,^,n , z - > = - ( ( • L/Esn i* ( z * c a i s « z ) + ( ( z . K - H * t s ) - n * n - z * Z )

ir.sIM (z )
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n=2.*PI*H/3 .E08
Z K = ( ( 2 . S P I » H )«»? )S4.=BPIS1 .E -7 *E L

P Z O = - ( F ( Z O ) - G ( E L . E S O , Z K t B , 0 , Z O ) ) / ( F P ( Z O ) - G P ( E L , E S n t Z K , B , n t Z O )
T 1 = C A B S ( D Z O )
zi=zu+ozn

1 DFG = F ( Z I ) - G < E L , F S O , Z K , B , l > , Z I

n Z I = - ( F ( Z I ) - M E L , E S O , Z K , T , D , Z I ) ) / ( F P ( Z I ) - G P ( E L f E S O , Z K , R , 0 , Z I
T2 = CARS(IUI '
IF (A .LT . l .E -5 )0n TO 2
I F ( T 2 . G T . T 1 )GQ TO 3
T l = T - 2
Z I = Z I + D Z I
N =N +1
IF (N.GE.30)60 TO 5

2
GO TO 1
IER'=O
R Z = Z I
GO TO 7

3

*

5

IER = 1
W R I T E (6,4 ) '
" F O R M A T ! 1 THIS ITER AT ION 'DOES NOT

1 ROOT OF SURFACE W A V E P O L E ' )
GO TO 7
IER = 1

CONVERGE IN SEARCHING FOR COMPLEX

5

6

7

GO TO 7
IER = 1
W R I T E (6,6)
F O R M A T ! 1 THIS Cr iMPUTATir iN DOES NOT CONVERGE IN

1ARCHING FOR COMPLEX ROOT OF SURFACE W A V E P O L E 1 )
RETURN

?0 I T E R A T IONS IN SE

END
SUBROUTINE SWP (1 ,ESR,D,V ,ES IL ,BETA ,U , IER)

C
C
C

THIS ROUTINE IS TO FIND THE ROOT OF THE POLE OF SURFACE
USING THE B ISECT KIM METHOC. PE SURE 10 CHECK THE F I R S T T
A P P R O X I M A T I O N S XI AMD X2 SUCH THAI F ( X 1 ) * F ( X 2 )
F I X ) = T A M ( X ) - ESR * S O R T ( ( V / ( X * X ) ) - 1 . 0 )

W A V E B Y
i-n

IS N E G A T I V E

B=2.0*3.14159*Z/3.0E08
RK= S O R T I E SR')»R
IF (O.LT .2 .54E-5 )GO TO 1000
N = 0
Xl=SORTlV) * l .E -4
TV = 1.570B
SV=SORT ( V )
IF ( S V . G E . T V )GO TO 1111
X 2 = S Q R T ( V ) * . 9 9 9 9
GO TO 992

1111 X2=TV-0.0001
992 Y 1 = F ( X 1 )

Y2 = F ( X 2 )
X = ( X 1 + X 2 1/2.0
N = N + 1
IF ( i M . G T . 3 0 ) GO TO 2
I F ( F ( X 1 ) * F ( X ) )100,101, 302

100 X2 = X
I FUX2-X1 ) .LT.l .OE-5 ) (0 TO 101
GO TO 1

102 XI .= X
IF ( ( X 2 - X 1 ) . LT. l .nR-5) G(.i TO 101
GO TO 1

101 ESI L = X/I)

KETA = S O R T { R K * * 2 - E S I L * * 2 )
(.1 -
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1001

2

A
1

3

C
C
C

GU TU 10

« r T A = Sl.iR
F.SIL = K*S

IER = 0
Gi) TO 3
IE* = 1
PRINT*-
F O R M A T ! •
THE ROOT
RETURN

01

O R T ( F S R - 1 .0)

', 'FAILED TO DIVERGE IN 30 ITERATIONS IN SEARCHING FOR.
OF T-HE POLE OF SURFACE W AVz ' )

SUBROUTINE THFT(P,C)
THIS ROUTINE IS TO COMPUTE A COM ST AM T HY FINDING A ROOT OF A
POLYNOMIAL RY USING THF
CHU-KOUYUU'MJI AN "S CUE FF

SECANt) METHOD IN ORDER TO COMPUTE THE
ICIENT •

F < X ) =
X = 0.0
XI = P
Y = F (X)
Yl = F ( X I )
no i I .= ?.,?_r\
X3 = ( X * F ( X 1 )-Xl*F (X ) ) / ( F ( X l ) - F (X ) )
Y g F ( X ? )

IF( A H S ( X 2 - X 1 ) .LT .l.E-5 ) GO TO 2
X = XI

1

6

2
3

XI = X2
W R I T E (6 .6 )
FORMAT (/36HOF AILED TO CONVERGE IN
GO TO 3
C = X2
RFTURN

20 ITERATIONS)

•SUBROUTINE DFRCF IP ,XN ,Y ,B tXLMD A)
THIS ROUTINE IS TO COMPUTE THE D IFFRACTION COEFFICIENT
COMPLEX FlJ,F2J,0,R,Tl,ni,T2,02,0,F1,
PI=3.1415927

A R G 1 = ( P I + R R ) / ( 2 . 0 * X N )
A R G ? = ( P I - R R ) / ( 2 . 0 » X N )

C X 1 = C O S ( A R G 1 )
C X 2 = C n S ( A R G ? I

1 = S I N ( A R G 1 )
S X 2 = S I N ( A R G 2 )
X1=(BR+PI

E1 = X1-N1 *"
IF (E l .GT.0 .5) N1=M1+1
IFIE1.LT.-0.5 ) N1=N1-1
Fi\! l=FLOAT(iMl )

X2=(HR-P1
N?=X2
E2=X2-N2
IFIE2.GT.0.5)
IFJF2.LT.-0.5.) N?=M2-1
FN2=FtOAT(N? )

S A 1 = S O R T ( A 1 )

S A 2 = S " R T ( A 2 )
X X = ( S O R T ( ? . 0 * P I * Y ) ) * S A ]
Y Y = ( S O R T ( 2 . 0 * P I * Y ) ) *SA2
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xxs=xx-xx
YYS=YY*YY

(PI /2.0)
CALL CS(C1tSItXXS)
CC1=0.5-C1
SS1=0.5-S1
F1J= PO*OiPLX(SSI,CC1
CALL CS(C?,S?,YYS)
CC2=0.5-C2
SS2=0.5-S2
F2J = P u * C M P L X < S S < » C C 2 )
P--PI/fc.n
a = C M P L X ( D . O , P
R = C F X P ( U )

XL"'":M) ) / ( P I * X M
T 1 = S * ? . 0 * C E X P < C " P L X ( 0 . 0 , X X 5 ) )

I * ( X X / S X l )
= S*2 .0 *CEXP< C M P L X < 0 . 0 , Y Y S

( Y Y / S X 2 )
0= D1+D2
RETURN
(END'
SUBROUTINE H S L A R to ,vi ,F ,<•• ,CESR ,cu ,CBF T A , C E S i L t C C S ' - ' t PHO.H
fHIS "(JUTINE iS Tf) COMPUTE THE SLflB R A D I A T I O N F I E L O
COMPLEX CCSv l .HYl , H T , C E S R , C U , C h E T A , C E S I L t X k X , X K X [ ) , Z K
PI = 3 .14159
ESU = H.R5E-12
XLMnA=3.0F.() f i /F

X K X = C S O R T ( Z K - C B E T A * C 8 E T A )
XKXn=XKX*0

,HT=CMPLX(n .n .c .o )

nn 222 i = I,IM
M = 2 * I - 1

. CALL C A S E R t D ,F ,H ,V UCESR tCU ,CBETA,Ce SI L tX LMOfl» PI , PH|j,HYl :
HT=HT-i-HYl*CCnS( XKX*( t ) -DI ) )

222 COiMTIMUE
HT=CUMJG(HT )
HT=HT*0*CMPLX( .0 »-l. )*CBET A*CCSW/ ( IM*CCUS( X K X H ) )
RETURN
EMU
SUBROUTINE CASER (P,F ,H ,V l ,CESR,CU,CHeTA,CESI L tXLfcDf l , HI ,PHn,H)

r-H2»H ,HY,hO l ,Ht )2 fFG,KK,CiESf« ,CU,CHE1 A t C F S ILi UK
COMPLEX C

PI=3. 14159

IF(PHfl .GT. 270. IPHOzPHU-SbO.

PH=PHI1*. 01745

ARG-BK.*UI-
CALL OREPNF IPHO , ARG ,UK ,X\.Xh A,FG)

HY=FG
C = CFXP( CHPLXC.0 . -P I /4 .

XN=1.5
Y= (D+V 1J-Q1
Y|)=Y/XLMI)A
PHl=lRO.O-PHn
CALL nF«CF(DHl,X> ,YO ,PH1,XLKDA)
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CALL DFRCF (HHY.X" ,Y» ,0 .0 ,XL f - 'PA)

C A L L nl-RCF ( f > H 2 , * • • ' ,Y2 ,PKi ,XLM>M
(D. P L X ( . 0, ( -KK»'<I)+V 1 )-bK»Y )

1113

1111

2

IF (PHn.LT .0. Ifiil
IF ( PHO .LT.lflO. )
H = HY+H|)2
fill TO 2
H = HD1
fiO TO ?.

CO NT IMUF.
RfiTURN
FMO
SUBRUUTIWF f iREEI\
CnM-U)*' RJ( 150 ) , F
COMPLEX F ,M ,MH ,f

PHrpHn^i/i^o.

T(! !1K-

fid Til 1111

'F (PHI) , ARG ,HK , X L M D A , F )
W ( 150)

; ,W-i-,P,IIK ,AI
' .0 ,X ) )

R = 2 .*PI /XO 'OA
XN = 1 .5
AI=D1PLX( .0,1'.
N=( .0,.0)
DO 5 M=l ,20
I=M-1
EM=?.
1 F ( I .80.

, B Y , I £ R )
XiV ) ) :?COS( I *PH/XiM-)

A N M = C A B S ( N H )
IF IA iMM .LT. l .E-30)GO TO

5 CONTINUE
G=( .0,.0)
DO 15 M=l ,20

BM = R E S S J ( A R G , ( 2 . » ! + ! . ) / ( 2 . » X M 1 , B J , B Y , I E R )
RH*P((2.* I+1. ) / ( 4 . * X M ) ) * C O S ( ( 2 . * I + 1. ) * P H / ( 2 . * X M )

G=G+GM
C A B S ( G M )
Gf-' .LT. l.E-30)GD TO 55

15 CONTINUE
55 C = S O K T ( 2 . / ( P I » B ) I /XM

G=G*C*P( -P I /4 . )

R U = R E A L ( U K )
= A I M A G ( U K

IFKPHI) .EO. 90.) .OR. (PHD .EO. 27() . ) )GU TO 11
IFKRII .EQ. 0.) .AND. ( A H ) .EO. 0. )) GO TG 22
F = (A I *COS(PH)«N+ I IK*G) / ( AI *CO S < PH )+11 K)
RO TO 33 •

11 F=G
fin TO 33

22 F=N
33 RETURN

EMO
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