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PREFACE
 

This report, prepared under Contract NASW-2488, pre­

sents and illustrates a methodology for deriving meaning­

ful tasks for applying the technology of remote sensing
 

to the management of earth's natural resources and envir­

onment.
 

Although this report deals with the specific field of
 

Water Resources, the methodology developed is sufficient­

ly general to allow its utilization in other areas of po­

tential remote sensing application.
 

The report is compiled in a succint format for easy
 

reading and assimilation of the information presented. The
 

right-hand pages contain the significant information, gen­

erally in pictorial form, whereas the left-hand pages pro­

vide brief explanations and constitute the written text,
 

which connects presented information in logical sequence.
 



I. METHODOLOGY AND STRUCTURE
 



The contemporary concept of water as a free or near-


Ly free goo& will ndces-sariIy give way to more systemat­

ic and equitable delineations of costsand benefits. As
 

costs escalate, ensuing econom-h pressures wirl-generate
 

.increasdd competition-and conflict, to be resolved only
 

By-truly-comptehensi6v'-planning. Tn resoFving gptimum.
 

plans, there wiTll be-a strugg6 fdr supremacy between
 

achievement of economic effici-ency and- attainment of so­

cial goals, including aesthetic considrations.
 



LOGIC FLOW OF INVESTIGATION
 

* Why are water resources important? How important?
 

" What are the major interests and concerns of users?
 

How categorized?
 

" Who are the users? Represented by what agencies? How
 

do the jurisdictions and roles of these agencies com­

plement each other?
 

" What is the economic significance, the effort, the
 

state of knowledge, and the structure of the manage­

ment effort performed by water resources management
 

- agencies in each principal application? 

o What branches of science and engineering do they use?
 

What models? How do they collect and manipulate data?
 

o What kind of observable data do they need? How accur­

ately, when, how often, where? How many of these can
 

be acquired, directly or inferentially, from surface
 

observations?
 

e What subset of these is obtained by ERTS? How well?
 

a To what degree do ERTS Program Significant Findings
 

satisfy the above data requirements?
 

o How should ERTS research be focused to maximize the
 

yield of the program?
 

@ Can some observables, not visibly obtainable from ERTS,
 

be obtained from indirect correlations? What specifica­

tions should a future ERTS system possess?
 

o What is the most significant role which NASA technolo­

gy and capabilities can explicate in fostering national
 

ob3ectives in Water Resources?
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STRUCTURE OF-1NVESTIGATION
 

" SOCIOECONOMIC SIGNIFICANCE OF WATER RESOURCES.
 

" PRINCIPAL REQUIREMENTS AND CONCERNS OF USERS.
 

" PRINCIPAL USERS; THEIR INTERESTS; FUNCTIONSk.INTBR-


RELATIONSHI-PS-,
 

o 	PRINCIPAL CONCERNS AND APPLICATIONS OF WATER -MAN-


AGBMENT AGENCIES:
 

°r F-lod Management 

- Erosion and Sedimentation 

- Snowmelt 

CURRENTLY AVAILABLE SCIENTIFIC AND ENGINEERING DIS-


CIPLINES, MANAGEMENT AND DATA COLLECTIONS TOOLS.
 

o 	REQUIRED OBSERVABLES AND ROLE OF REMOTE SENSING IN
 

-'ACQUIRING 	THE REQUIREJY OBSERVABLES, BY ITSELF OR IN
 

CONJUNCTION WITH.A PRIOR KNOWLEDGE.
 

o PORTION OF REQUIRED OBSERVABLES WHICH ERTS CAN.AC--


QUIRE,
 

* SIGNIFICANCE AND FIT OF INITIAL SIGNIFICANT FINDINGS
 

BY ERTS,
 

o IMMEDIATE FOCUS OF ERTS INVESTIGATIONS IN WATER RE-


SOURCES.
 

-a DIRECTIONS OF FURTHER INVESTIGATIONS MOST PROMISING
 

TO ENHANCE REMOTE SENSING CAPABILITIES­

e PLAN,
 



SOCIOECONOMIC SIGNIFICANCE OF WATER RESOURCES
 

WATER IS BECOMING SCARCE,
 

THERE ARE TWO SOURCES-OF WATER:
 

CURRENTLY USED: PRECIPITATION
 

POTENTIAL: NEW TECHNOLOGY
 

NEW TECHNOLOGY, SUCH AS DESALINIZATION, IS AS
 

YET ECONOMICALLY NON-COMPETITIVE,
 

PRESENT SOURCE IS ADEQUATE THROUGH 1990, PRO-


VIDED UTILIZATION EFFICIENCY IS IMPROVED,
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MAJOR IMPACT OF WATER RESOURCES
 

-UPON THE PUBLIC
 

* EFFECTS OF WATER * DEMANDS FOR WATER
 

Excess Water Consumptive Uses 

,Iaterborne Substances Plow Uses 

- Hydrogeological Effects On-Site Usbs 



CONCERNS REQUIREMENTSj 
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PRINCIPAL REQUIREMENTS AND CONCERNS OF WATER USERS
 



Water, like any natural phenomenon, can be benefi­

cial or damaging, depending upon its impact on users,
 

the degree of control, and the user!s viewpoint.
 

For example, the excess water on a wetland can be
 

viewed simultaneouslyas a nuisance by farmers or devel.
 

opers, and as a boon'by sportsmen and conservationists.
 

Floods can be damaging to homeowners, but beneficial to
 

farmers by virtue of the fertilizing qualities of the
 

deposited sediment,
 

In the US,, however, the damage associated with the
 

effects of water exceeds the benefits. The general user
 

orientation is, therefore, directed at preventing the oc­

currence of these effects, or at alleviating their impact.
 



-PRINCIPAL REQUIREMENTS AND CONCERNS OF WATER USERS
 

THE EFFECTS OF WATER 
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DEMANDS FOR WATER
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Ultimate user of water: U.S. citizenry.
 

Citizens group into units to efficiently explicate
 

the tasks of everyday life and economic production, and
 

into politicallyoriented associations for making their
 

wishes known to authorities.
 

The first level grouping is conveniently labeled as
 
tGrass Rootg'users, Its major interests are twofold:
 

Cl) protection against damages from water, and (2) pro­

vision of supply adequate to meet the needs of households,
 

agriculture and industry.
 

At the middledlevel lie those entities to whom the
 

citizenry delegates the task of providing for, managing
 

and regulating their local needs.
 

Agencies at the Federal level elaborate and provide
 

policy guidance and services whose scope and data require
 

ments transcend the local level's geographic domain and
 

capabilities,
 

National citizens organizations provide their view­

points and needs at this level primarily through the Leg­

islative Branch,
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What is input to the user is output to the manager.
 

Water Management Agencies are tasked to service users
 

by managing the effects and providing supply to match de­

mand,
 

As demand increases, satisfying all needs of all users
 

becomes increasingly expensive. The establishment of eco­

nomic priorities becomes an ever more important element in
 

the supplyzdemand system.
 

t
The manager s span of interest extends, therefore, from
 

inputs to outputs, to economics, to social value judgements.
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Physical inputs, precipitation and snowmelt, acting
 
through watershed transfer functi6ns, generate "natural"
 

water outputs, Flow control matches the statistical in­

put quantities to the deterministic demand schedules.
 

Pollutant inputs undergo natural digestion processes
 

in water, Quality control provides the water quality
 

needed by users.
 

Water, acting with concomitant factors, gives rise to
 

hydrogeological effects. Conservation and stabilization
 

limit the damage from hydrogeological effects,
 



I SOURCE NATURAL QUALITYIDIGESTIONTS 

oxicants CONTROL PROCESSES CONTROL 

*Disease vectorsL.__ _ -'======
 

f--n­
'Supply 

Watershed Runoff Flow 
Rain -,-- Transfer Groundwater
 
Snowmelt I Function Overland Water Control M 


Glacier Melt --


Concomitant Hydrological 
Factors 
 Mechanisms 
0 Soil Morphology I-evto Landslides 

dol
Type /Cover 
*Winds I -. Mudslldes Stabilization 

MAJOR PHYSICAL PROCESSES AND INTERACTIONS AFFECTING WATER RESOURCES MANAGERS 

I Inputs a I Physical Control 
Ioutputs Mechanisms Functions 

_
L___ __ _=__ _ 

I 



2. THE EFFECTS OF WATER
 



FLOODS
 

By far the most significant effect of water is re­

presented by floods,
 

The economic significance of floods is measured by
 

the damage they cause,
 

Current yearly damage is approximately $2 billion.
 

From 1940 to 1970, the U.S. spent approximately $8 bil­

lion for flood damage mitigation,
 

If flood management and protection levels were fixed
 

at their 1970 status, flood damage would increase as shown
 

opposite, based upon forecasted economic growth in flood­

prone areas,
 



Yearly Flood 
D'amage 

Billion, 1970 Dollars 

4­

3­

!, I
 
1970 1980 1990 2000
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The terrain surface which the flood can invade is
 

called "flood plain".
 

Damage is related to the areal extent of the flood
 

plain,
 

Flood plains account for approximately 90 million
 

acres, or 5% of the US, land surface. Most of this
 

land is endowed with desirable land use characteristics.
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Flood damage is a function of the flood plain area,
 

of the height reached by floodwaters, and of the value
 

of economic producing units and infrastructures within
 

the flood plain.
 

It can be seen that the economic return of flood
 

mitigation varies significantly among the geographic
 

areas of the US,
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Floods are stochastic phenomena with seasonal trends.
 

Each region displays its own seasonal trends. Knowledg'e
 

of-temporal trends is important to schedule flood damage
 

abatement efforts and concomitant data.gathering activit­

ies,
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It is not economically practical to totally eliminate
 

flood damage.
 

The reason is that floods are statistical phenomena*
 

there is always a chance of a flood event exceeding the
 

capacity of any flood-containment system.
 

The cost of remedial measures must be commensurate with
 

the reduction of damage they bring about.
 

The key criteria of flood management is, therefore, ben­

efit/cost.
 

The damage model first relates the water level to the
 

damage accruing to typical economic units -- dwellings, in­

dustrial plants, crops and infrastructures.
 

I. 
Next, it relates the area flooded, and water level, to ­

the number of economic units within it. 
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The total damage is then related to the stage height,
 

i,e,, the water level in the watercourse.
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The stage height relates to runoff -- also known as
 

discharge,
 

The next important point is how often in time will
 

a given runoff be achieved. This is the discharge-freq­

uency relationship. Once these relationships are meas­

ured or calculated, the extent of economic damage can be
 

related to how often will the damage occur. In particul­

ar, it can be related to the average yearly damage, which
 

is the area under the Damage-Frequency Curve (Curve IV).
 

This area obviously represents the maximum annual benefits
 

achievable from flood damage reduction.
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The techniques for reducing flood damage vary from ad­

hoc methods and procedures, employed only when a flood is
 

impending, to policies, and to waterworks of a permanent
 

character,
 

Evacuation of persons and valuable objects reduces di­

rect damage, Levees confine the flow to within preassign­

ed limits, increasing the stage height permissible before
 

damage occurs,
 

Channel dredging and improvements increase flow veloc­

ity-, reducing the water level for a given flow.
 

Floodproofing techniques confine valuable ob3ects to
 

a dwellingts higher levels and/or specify appropriate tech­

ntques for waterproofing,
 

Retarding basins reduce peak flow by providing a "fly­

wheel", where floodwaters can accumulate.
 

Controlled reservoirs and bypasses provide a means for
 

modulating the flow; controlled water discharge from a res­

ervoir, prior to a flood, can provide "flywheel" volume for
 

the floodwaters,
 

Proper land management can reduce the runoff.
 

Choices between techniques depend upon the value of the
 

expected relief, and the cost of implementing the technique.
 



METHODS OF FLOOD DAMAGE REDUCTION 

TEMPORARY ALLEVIATION 
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Each flood-damage reduction technique has an asso­

ciated cost,
 

The water manager's problem is to achieve proper
 

benefit/cost, i,e,, to select the flood-control techni­

que and the size of the flood control works such that
 

the reduction of damage is greater than the cost of the
 

remedial measures.
 

Since floods are stochastic phenomena, the damage
 

must be defined as the "average damage" over a preas­

signed period of years,
 

This leads to the concept of "design flood", i.e.,
 

the maximum flood that recurs, on the average, within
 

the preassigned or "design" period of time.
 



TYPICAL FLOW-TIME DISTRIBUTION OF FLOOD 

3000 DISCHARGE m 3 /sec 

1.­
4-

5- (A 
5-f 

-S 
-s 

.4­
1500 4-;" 

4-•• 

.5-. 

3000
 
1500 .K--

A .> 

4-° 

I
I
300, 

1.01 1.1 1.5 2 3 5 10 20 30 50
 

RECURR ENCE INTERVAL 

(YEARS) 



Prediction becomes more reliable the longer the
 

measurement period.­
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The behavior of flood recurrences is akin to that
 

of random noise. Latest research indicates that the
 

behavior is, however, not completely statistical, but
 

appears to display Markovian-type dependencies.
 

This further heightens the dependence upon long
 

records.
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Few watersheds have records longer than 50 years.
 

Only principal streams from watersheds are instru­

mented, and then, largely at their output.
 

The problem is that the flood may not be uniform
 

over the watershed; yet users within subwatersheds also
 

need predictions for proper flood protection.
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For these reasons, methods have been sought since
 

the early 1900's to estimate design flood from limited I
 
measurements.
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These fall into four principal categories. 
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Category 1, historically the earliest to appear
 

Cearly 1900is), seeks to write generalized formulat­

ions of the form:
 

q = A'f CA) gCT)hCW) 

where
 

q = flow per unit watershed area, A
 

T recurrence interval
 

W = watershed parameters
 

fgk = functional relationships
 

n = a numerical coefficient
 

Over one hundred such formulations have been devel­

oped over the years,
 



MOST EMPLOYED CATEGORY 1 FORMULATIONS 
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Where 	the C's are empirically derived constants. 



Experience has hown that Category 1 formulations, al­

though still used, are only rule-of-thumb approximations,
 

with far from universal application. More significantly,
 

the extrapolation from the output of a watershed to the
 

outputs of component subwatersheds is unreliable.
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Category 1 formulations also show significant vari­

ations when applied to different regions.
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Category 2 methods, first devised circa 1930, consid­

er the flow as a stochastic variable. From measured data,
 

the average standard deviation and other probability func­

tions can be computed,
 

Sufficient length of record is needed to achieve ade­

quate confidence limits.
 

In general, the Category 2 design predictions are more
 

reliable than Category 1.
 

The predictions vary among formulations, as a funct­

ion of the assumed probability distributions.
 

They depart from actual flows, in part, because flood
 

events do not appear to follow a truly random distribution.
 

Recent theories, not yet reduced to practice, seem to ind­

icate Markovian-type dependencies between flood events.
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Output methods, Categories 1 and 2, suffer from the
 

fact that watersheds vary among themselves, even within'
 

the same region, Only adequately long flow records can
 

smooth out the variations,
 

The input variable, precipitation, is significantly
 

less dependent upon the physiographic characteristics of
 

the land' it is also more densely measure, at lower cost
 

and ov6r longer periods than streamflow records.
 

Category 3 methods, initially introduced in the for­

ties, generate formulations which associate precipitation
 

with macrocharacteristics of the watershed,
 



Category 3 methods are based on formulations of the
 

type:
 

q = nimgCT)hCW) 

where
 

q = flow
 

i = rain precipitation rate (cm/hr)
 

T = rain recurrence interval
 

W= watershed parameters
 

=
gh functional relationships
 

A = watershed area
 

n~m = numerical coefficients
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WIDELY'EMPLOYED CATEGORY 3 	FORMULATIONS 

U.S.: "Rational-Formula" 	 q= A i h(W), 

Soil Conservation Sbrvice: 	 q= A i h (W) 

q= CA0 7 7  D' 81
U -I Rodda Formula 

Where D = Drainage Density=
 

=Stream Length/Area
 



h and hi, in the previous formulas, are functions of
 

ground cover, subsoil permeability, relief, averaged over
 

the watershed, and then adjusted regionally.
 



VALUES OFf (h) USED IN THE RATIONAL, FORMULA 

Cover 

Soil Type Cultivated - Pasture- Woodland 

Sand, Gravel 0 2 0.15 0.10 

Clay, Loam 0.4- 0.35- 0.30- t 

Shallow Soil Above 0.5 0.45 0.40 
Bedrock 



The errors of Category 3 -formulations increase with
 

size -of watershed due to non-uniformity of rain.
 

These formulations are thus generally restricted to
 

watersheds not exceeding areas of order 100 square kilo­

meters.
 



VARIATION OF RAINFALL WITH AREA
 

PERCENT OF POINT RAINFALL FOR GIVEN AREA
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For large watershed areas, displaying significant
 

physiogtaphic variations, accurate predictions require
 

a more detailed description of the watershed than is af­

forded by integrated formulations.
 

Category 4 formulations seek to correlate precipita­

tion events with watershed output flow through a "water­

shed transfer function". The transfer function is de­

rived from a set of mathematical equations which describe
 

the phenomena governing the watershed's hydrologic regime.
 



PRINCIPAL-CATEGORY 4 METHODS IN USE IN THE U.S. 

,'Unit Hydrograph 

a Synthetic Hydrograph 

e API - Continous ­

a Strearnflow Regulation and 
Reservoir Regulation Model
 

e Sacranento Model
 

o SfanforclModel 

o SCS - TR20
 

oEC
 

o USDAHL 



The four hierarchies of flood management:
 

1, FLOOD WARNING , timely alert to minimize losses
 

of life and property.
 

2, FLOOD DAMAGE REDUCTION - selection of technique 

and implementation of waterworks, 

plus dynamic control system. 

3, MULTIPLE USE 	 flood mitigation plus optimiza­

tion of supply schedule to match
 

user demand schedule,
 

4, LAND USE MANAGEMENT - prediction of the effects 

of watershedts natural or man­

induced alterations. 

The accomplishment of these objectives hinges upon ac­

complishnent of seven principal tasks.
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Real-time does not mean"instantaneous"; rather, it
 

signifies measurements performed in a time sufficiently
 

short to allow effective control of the system. In the
 

case of flash floods, which typically occur a few hours
 

after rainfall, real-time is reckoned in minutes. In the
 

case of snowmelt, it could signify hours, or even a few
 

days.
 

Real-time measurements can be performed via DCS plat­

- forms, 

The other five major tasks possess significant comp­

onents of surface observables, amenable to the applica­

tion of Remote Sensing techniques.
 



POTENTIAL CONTRIBUTIONS OF REMOTE SENSING
 

TO
 

FLOOD DAMAGE ALLEVIATION
 

Cost Reduction Over Conventional Methods
 

o Flood extent measurement 

o Watershed characteristics 

Innovation Over Conventional Methods 

o Economic model of flood damage 

o Watershed transfer function 

e Real-time precipitation measure­
ment 

" Prediction of effects of altered 
land use 

" Erosion- sedimentation model 



3. WATER RESOURCE SUPPLY AND DEMAND
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In defining water usage, distinction iftust be made
 

between withdrawal and consumption.
 

Withdrawal is the total amount taken in by an act­

ivity. Withdrawn water may be returned to the water
 

supply and be available for further use by the same or
 

another activity. Consumed water is that which is not
 

usefully returned. It is evaporated or incorporated in
 

a product.
 

For example, industrial cooling water can be return­

ed almost entirely to the source, a large fraction of
 

irrigation water is lost through evaporation.
 

For irrigation and large waterworks projects, the
 

acre-foot unit is most commonly used to measure volume
 

of water. Metered water for industrial, household, and
 

municipal use is commonly measured in units of K gal
 

(thousand gallon), or in K cu. ft. (thousand cubic feet).
 

Most employed unit of flow for large projects is the
 

mgd Qmega gallons per day). The units employed abroad,
 

and increasingly being introduced in the U.S., are cubic
 

meter and cubic meter/second.
 



DEFINITIONS AND MOST COMMONLY EMPLOYED UNITS 

WIT.HDRAWAL: VOLUME OF WATER TAKEN IN 

CONSUMPTION: PORTION OF INTAKE VOLUME WHICH IS DISSIPATED 

MASS UNITS 

lAF 300 K gal. 1 K gal. 4m31 Hectare-meter (ha-m) 8.3 Acre-feet (AF) 

loom lo 208'208 53'L53" 

FLOW UNITS 

1 mega-gallon per day (rmgd) 4,000 m3/ day 0.046m 3/secon4 

(5,000 households) 

lm 3 /second 21.6 mgd 



Practically all the fresh water supply is generated
 

by precipitation, In the US., 70% of this input is lost
 
through evaporation and evapotranspiration before reach­

ing exploitable concentrations,
 

Of the remaining 30%, which goes into streamflow and
 

to replenish groundwater supplies, one third is withdrawn
 

by human activities, A little over 40% of this is consum­

ed,
 

Thus, the efficiency of utilization of the supply in
 

terms of withdrawals is 10%: in terms of net use, 7%.
 



SUPPLY AND DEMAND OF WATER - U.S. 
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The ma3ority, approximately 92% in 1970, of the fresh
 

water withdrawn is utilized in equal parts by agricultur­

al and industrial activities.
 

Urban and household use accounts for only 8% of with­

drawals,
 



ALLOCATION OF WATER DEMAND (1970) 
IRRIGATION 3.4% 

INDUSTRY 3.4% 

MUNICIPAL .6% 

STREAMPLOW­
,J:._, ,,iL: E.l- NON-WITHDRA 'p- JK.,J 


_-.-_-bl'_,_F -rJ[, _ -21T I,', f -,.. jI ,ECET - , , '
 

-,f,/
 

WITHDRAWN _-

NONWITHDRAWNI 

FEVAPO-TRANSPIRATION AND EVAPORATION 

TOTAL SUPPLY : 5700 krn3/yr 570 ivliion ha-m 



The industrial sector is expected to account for the
 

ma3or future growth in fresh water withdrawals due to
 

the cooling requirements imposed by the growing demand
 

of electrical energy,
 

Note that these forecasts are based upon extrapola­

tions of historical trends of population growth and per
 

capita demand increases, They do not reflect potential
 

slow-downs in demand caused by demographic or resources
 

crises,
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The economics of water incorporate combinations of
 

free market and social pricing policies- In many appli­

cations, consideration of social value overshadow those
 

of return on investment.
 

The price of water, therefore, varies rather widely
 

over the U,S, and among sectors of utilization.
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The total price paid for fresh water used by human"
 

activities in the U.S. is of order $10 billion in 1973,
 

at 1973 prices.
 

The worth of this water, expressed by the prices
 

that would be paid in a truly free market, is consider-,
 

ably higher. Good estimates of this true worth are not
 

available,
 

The forecasted growth in water "revenue" does not
 

take into account price increases potentially induced
 

by scarcities in certain U.S. regions.
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Total investments in waterworks from the beginning
 

of U.S. history are of the same order of magnitude as
 

the national debt.
 

These investments are reckoned in current dollars,
 

ie,, the dollar's value at the time it was spent. In
 

terms of 1970 dollars, the figure would be at least 50%
 
higher,
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Yearly expenditures for waterworks, now of order
 

$2.5 billion, will at least double by 2000 A.D.
 

The forecast does not take into account potential
 

acceleration caused by water scarcity in certain U.S.
 

regions, nor does it include the increased cost of cool­

ing installations for electric energy generation plants
 

induced by conservationist pressures.
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Even at a median rate of population and per capita demand 
growth, the fresh water supply per capita will just equal 
the demand within the next 50 years. This assumes no 
major technological innovations. 

U.S. POPULATION PROJECTION 
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The continued reliance upon current technology of
 

waterworks, in the absense of major technological in­

novation, portends an impending era of water scarcity.
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THE APPROACHING-U;S. -WATER PROBLEM
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The criticality of the water supply-demand gap var­

ies with the region.
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In part, it is due to the strong regional variations
 

in water supply, indicated by the unit runoff (volume of
 

runoff per unit time per unit area),
 



UNIT RUNOFF BY REGION= (n /DAY(m2)
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In part, it is due to the significant local varia­

tions in demand,
 

The currently critical regions.
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Not all U,S. water requirements are satisfied from the
 

freshwater supplied by precipitation. Some requirements,
 

notably cooling, are satisfied from sources of coastal and
 

inland sea water,
 

A significant portion of the US. water needs is sup­

plied by groundwater. This supply, however, depends dir­

ectly upon precipitation; it becomes depleted unless re­

charged frdm rainwater, Proper balance between recharge
 

and withdrawals must be maintained: long-term withdrawal
 

of groundwater cannot exceed the precipitation input.--.
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The composition of the supply varies as a function
 

of the region.3
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SOURCES OF WATER BY REGIONS
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Part of the runoff is contributed by snow. Averaged
 
over the U S,, snow might appear to contribute a relative­

ly small portion of the water supply.
 

Such a conclusion is, however, unwarranted. 
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When looked at in more detail, the conversion of pre­

cipitation to runoff is likely to be more efficient for
 

snow than for Yain. Snow is less subject to evaporation;
 

melt-waters flow over frozen or semi-frozen soil, and are
 

thus less susceptitle to infiltration. Furthermore, snow
 

tends to concentrate in specific areas; thus, water losses
 

are less for snow than for rainwater.
 

In the US,, the large snow-supply areas are, perhaps
 

by coincidence, located at the headwaters of water-criti­

cal regions. Thus snow, albeit a local phenomenon,- is
 

nonetheless locally important.
 

The actual contribution of snow to the U.S. water sup­

ply is poorly known, primarily because of the physical diff­

iculty of mapping its extent and water equivalent. Its as­

sessment is thus a significant challenge to satellite imag­

ery, 

Important investigations are:
 

1. Mapping the areas where snow is of importance.
 

2. Derivation of snowmelt models for-the local areas
 

where snow is a significant contributor to runoff.
 



- - m am mo a am a am m m a a a 

HIGH SNOW PRECIPITATION AREAS 

r, 250cm/YEAR MEAN SNOWFALL 

GREATER THAN 500cm/YEAR MEAN SNOWFAL L 





A fundamental concept in water resources planning
 

and management is that of "regulated flow". Let us see
 

its significance.
 
1 

A typical river runoff pattern, in any one year, ex­

hibits variations of flow. In the absence of regulatory
 

works, the "safe yield" of the river, namely the flow
 

which can be counted upon with certainty, is the lowest
 

occurring flow. This safe yield then, in the absence of
 

regulation, is the maximum "safe" demand which the river­

can supply.
 

If the water users can tolerate a specified time lap­

se over which the flow supply is less than the demand,
 

or in other words, a maximum period of water scarcity,
 

the demand can be higher than the safe demand. The 95%
 

availability line, for example, defines a demand which
 

is satisfied 95% of the time over the year. In the case
 

illustrated, there will occur a "5% of the time" period
 

of water scarcity, lasting 18 consecutive days.
 

It is clear that, even allowing periods of relative
 

water scarcity, the permissible demand is significantly
 

lower than the total available supply, which is the aver­

age flow.
 

In the typical case shown, the efficiency of utiliza­

tion of the river's runoff, expressed as the ratio "Usable
 

supply witk 95% availability/average supply", is approxi­

mately 23%,
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in practice, the demand for water is not constant.
 

The situation worsens if the period of low flow coin­

cides with a period of peak demand.
 

To increase the efficiency of the match between sup­

ply and demand, means are required to even out the vari­

ations in runoff river flow. These means are storage
 

waterworks, which are most notably represented by reser­

voirs.
 



-SEASONAL DEMAND OF WATER 

FLOW,m 3 /sec 

16 

14 

12­

10 

8N 

6 
I \ 

4 

2 

I 

/ 

URBAN AND 
-,INDUSTRY 

"AGRICULTURE 

J F M A M S J A S 0 N D S 



The size of reservoir required can be determined in
 

principle by computing the deficiency between the total
 

water mass avilable, i.e., the integral of the flow-time
 

curve, and the total mass demand, i.e., the integral of
 

the demand-time curve.
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In nature, the river flow pattern does not repeat
 

itself year after year. Real rivers exhibit signifi­

cant yearly variations of flow, whose peak-to-trough
 

ratio becomes larger the longer the time period under
 

consideration,
 

Individual rivers, depending upon the region, can
 

exhibit year-to-year fluctuations in-average flow of
 

as much as 10:1 over a 50-year period.
 

In the case of torrents, the fluctuation's peak-to­

trough ratio reaches infinity.
 

In a sense, the instantaneous flow of rivers dis­

plays h behavior not unlike that of random noise, al­

though with different statistics.
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Bven over an area as large as the continental U.S.,
 

the average runoff exhibits variations of order 3:1 ov­

er a 60year period,
 
I 

These fluctuations mandate that the sizing of reser­

voirs be performed on statistical bases, rather than by
 

the simplified proc-edure previously shown.
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The statistica-l information can take various forms,
 

and be displayed in diverse fashion. It boils down
 

eventually to the description, for each river, of the
 

statistics of theiminimum and maximum available flow.
 

Minimum available flow means the flow which, over
 

the period of years of record taken into consideration,
 

is never less than a specified flow over a preassigned
 

interval of consecutive days,
 

For example? a 98% reliable flow designates the ev­

ent likely to occur on the average every 50 years. In
 

the example illustrated, every 50 years there will bccur
 

one chance of the flow of the river being less than 0.6
 

m3/sec for 7 consecutive days, or less than 4.8 m3/sec
 

for 180 consecutive days.
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Statistical reservoir sizing is performed by compar­

ing the water mass generated by the low-flow sequence a­

gainst the demand. The maximum deficiency between demand
 

and supply is thestorage volume required to maintain the
 

demand at its design level during periods of "worst" low
 

flow,
 

The choice of the low-flow recurrence period depends
 

upon design criteria; 50 years (98%) is typical for the
 

larger projects,
 

The recent trend is to increase the design recurrence
 

period towards the 100-year evnts,
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Modern trend in the design of U.S. reservoirs is to
 

size them, not solely to provide water supply, but for
 

multiple use;-ie.; water supply plus either one or more
 

of:
 

Hydropower
 

Industrial/Electric Cooling
 

Recreation Uses
 

Navigation
 
Flood Protection
 

Multiple use gives rise to significantly expanded res­

ervoir capacity requirements,
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For example, if, in addition to supplying demand,
 

the reservoir must protect against floods, the high
 

flow sequence must be taken into account.
 

The procedure is similar to the one shown for low
 

flow events, The demand curve is replaced by the spill­

waj allowance, which is the maximum safe outflow from
 

the reservoir, The maximum excess between high flow wat­

er mass and the spillway allowance is the storage volume
 

required to accommodate the floodwaters.
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The sum of the storage required for supply/demand
 

matching, and for flood protection is, under the assump­

tions made, the total active storage required.
 

The assumptions were: (a) choice of the same recur­

rence frequency (98% or fifty-years) for both supply and
 

flood, and (b) constant demand.
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Departure from these assumptions, taking into account
 

the realistic requirements of the water users, can lead
 

to reservoir storage requirements more optimal than the
 

simple sum of demand plus flood requirements, with conse­

quent improvements in benefit/cost. This requires obtain­

ing the statistics of the demand, which is yet a poorly
 

explored area,
 

Particilarly for agricultural irrigation demand, the
 

application of remote sensing technology appears well suit­

ed to this data-gathering task. Important investigations
 

are:
 

1. Mapping of the evapotranspiration potential.

1 

2. Derivation of evapotranspiration models, cdpable
 

of short-term (daily-weekly) response, and which
 

can accept as input variables parameters measure­

able remotely (insolation, cloud cover),
 

This subject is further expanded, later in this volume,
 

under the subsection "Irrigation".
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The physical design of a r-eservoir must take into
 

account, in addition to the storage required to meet
 

single or multiple demand:
 

Excess storage' requirnd to compensate for evapora­

tion,
 

Excess storage required to compensate for the build­

up of sediments entrained by the river.
 

Excess storage required to compensate for ground
 

seepage,
 

Bxcessstorage required to cope with floods.
 

Excess storage required to at least partially cope
 

with extreme water shortage or unusual flood ev­

ents,
 

As we shall see further on, reservoir storage is be­

coming increasingly scarce and costly. The planning and
 

management of the excess storage volume is becoming in­

creasingly important.
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Water regulation projects must, in the U.S., satisfy
 

economic benefit/cost criteria.
 

During the last decade, social and environmental cri­

teria have acquired increasing significance; their inclu­

sion within overall project criteria is now required.
 

In most practical cases, more than one physical imp­

lementation is possible: several potentially viable res­

ervoir sites are generally available. Thus, several de­

sign alternates are chosen and analyzed.
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Several significant Economic, Social and Environ­

mental factors enter the benefit/cost and impact trade­

offs of each alternate implementation of the project.
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In the conventional reservoir siting procedure, prom­

ising candidate sites are initially sel-ected, based upon
 

topographic and geographic characteristics.
 

Bach site displays characteristic relationships be­

tween capacity inundated area and water height, which are
 

functions of the topography. Similarly, the cost of dam­

ming is influenced by topography and the site's geology.
 

Evaporation and leakage losses are influenced by geography,
 

climate, topography and soil characteristics.
 

Many of the environmental impacts are affected by the
 

extent of the flooded area.
 

The physical selection of reservoir sites requires
 

availability of topography on regional scales (1:1,000 to
 

1:250,000), and on local scales (1:50,000 to l:10,000).Lo­

cal scales are obtainable from aircraft-borne stereoimag­

ery. Regional scales could be obtained from stero satellite
 

imagery.?
 

The assessment of the environmental impact, and of por­

tions of the economic and social impact, is amenable to cur­

ent-capability remote sensing.
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As the water volume in a reservoir increases, so do
 

the surface and the wetted areas.
 

Surface area gives rise to evaporation losses: wetted 

area to leakage losses. -

When these losses equal, or reach an appreciable frac­

tion of the inflow, further increases in reservoir capaci­

ty are not economically 3ustified.
 

There is thus a maximum economic size of reservoir
 

which depends upon the climate, soil characteristics and
 

structure, and upon the reservoir's geometry.
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The evaporation loss is particularly critical in those
 

regions where the potential evapotranspiration -- defined
 

as the evaporation from a free water surface - exceeds the
 

rainfall,
 

Under these conditions, the reservoirts water surface
 

will lose more water than is contributed by the-rainfall.
 

The difference constitutes a loss which must be supplied
 

from the incoming flow.
 

For large reservoirs in arid U.S. regions, the deficien­

cy between rainfall and evaporation can cause yearly losses
 

as high as 6% of reservoir capacity.
 

More important is the uncertainty of present evaporation
 

models, estimated at approximately 30% for 5% confidence.
 

This results in an uncertainty in optimal reservoir size of
 

2% for the larger reservoifs. As can be deduced from the
 

cost figures which follow,the corresponding cost penalty
 

can range as high as $1.5 million for large reservoirs.
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Current U.S. reservoir capacity is allocated among
 

different uses, Storage for cooling and pollution di­

lution is still quite limited.
 

Total current U.S. reservoir capacity is 23 Million
 

ham,
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The US. reservoir capacity implemented so far is
 

but a fraction of the total which is effectively uti­

lizable, However, most of the better U.S. reservoir
 

sites have already been exploited.
 

This means that additional capacity must be paid
 

for at higher prices than those already paid for the
 
"bestt sites, 

How does one go about calculating this increased
 

cost?
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First of all, each region possesses a characteris­

tic storage-flow relationship which is a function of
 

the statistical variability of the region's watercour­

ses.
 

The storage-flow relationship expresses how much
 

reservoir storage must be provided to smooth out the
 

river's variability to a specified reliable flow.
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Next, each region possesses a distribution of poten­

tial reservoir storage, which is a function of the reg­

ion's geography and topography.
 

Some regions possess many small sites, others possess
 

distributions featuring more of the larger sites.
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Third, the cost of developing reservoirs varies
 
within each region as a function of its topography
 

and geography, As a general trend, small reservoirs
 

cost more per unit storage capacity than large ones.
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The combina-tion of the two previous relationships --

Distribution of Reservoirs by Capacity, and Cost of Star­

.age Versus Reservoir Size - for any region, yields the 

cumulative cost to develop reservoir capacity within that 

region. 

The above two relationships, and the corresponding cu­

mulative costs, vary significantly among regions.
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The marginal cost is the incremental cost of develop­

ing additional reservoirs over and above the present le­

vel of storage capacity.
 

Note that the marginal cost increases sharply as the
 

level of reservoir development increases.
 

This reflects the previously noted fact that the more
 

cost/effective reservoirs have been developed first.
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The marginal cost of reservoir development, and con­

sequently of flow augmentation, varies by two orders of
 

magnitude among U.S, regions.
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A means to normalize waterworks development costs
 

between regions is in terms of the costs required to
 

satisfy a common percentage increase in the demand.
 

The opposite chart expresses the marginal costs,
 

by region, required to increase the 98% reliable flow
 

by 1%.
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3,3 INDUSTRIAL WATER REQUIRETIENTS
 



The manufacturing industry is generally consid­
ered a significant user of water.
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This is because the quantities of water required
 

to produce a unit quantity of most industrially man-
 I
 
ufactured products 
are large.
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In reality, water usage by the manufacturing in­

dustry is modest when compared to the total demand.
 

The reason is that the manufacturing industry employs
 

considerable levels of recirculation. Recirculation
 

practice will further increase in the future.
 

Recirculation is generally cheaper than the ac­
quisition of new water.
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As would be expected, the recirculation ratio does
 

and will continue to vary as a function of each region's
 

water availability.
 

The point is that the manufacturing industry lends
 

itself to concentrated application of water-conservation
 

practices. Thus, industrial water use can and will be
 

maintained within bounds.
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3.4 URBAN WATER RBQUIREMBNTS,
 



Municipal water uses at present represent a rela­

tively small fraction of U.S. withdrawal demand, but
 

feature high levels of consumption and the highest
 

prices.
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The average prices paid by consumers for munici­

pal water vary from region to region.
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They also vary significantly as a function of the
 

quantity of water consumed. The principal beneficiary
 

of the lower pricing for high quantities is that por­

tion of industry located within urban water distribu­

tion systems.
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Part of the high cost of municipal water relative
 
to other water uses is attributable to its high qual­

ity requirements and the elaborate capillary distribu­

tion system,
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3.5 VATER REQUIREMENTS FOR POLLUTION DILUTION
 



Municipal outflows act as carriers and solvents
 
for household, commercial and industrial wastes, Thus,
 
the outflow of municipal water is a major cause of
 

waterways pollution. A not indifferent fraction of
 

this waste-carrying water is discharged into open wat­

erways without treatment. Primary treatment consists
 

in the removal of suspended material: in the process,
 

some BOD is removed. Secondary treatment adds biolog­

ic digestion, such as by activated sludge, to primary
 

treatment.
 

Tertiary treatment, in addition to the first two
 

effects, removes nutrients such as phosphates, to in­

hibit eutrophication of the waterways.
 

Average performance levels of waste treatment in­

stallations are:
 

Suspended
 
Solids
 

Removal BOD Removal
 

Primary Treatment 50,70% 25-50%
 

Secondary Treatment 50-75%
 

Tertiary Treatment 85-95%
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Each industrial or household activity has associated
 

with. it a certain amount of waste, For organic wastes,
 

the intensity of pollution in the effluent is commonly
 

expressed in terms of Biological Oxygen Demand, or BOD.
 

Ultimate ROD is the amount of oxygen, in milligrams, which
 

the metabolizing micro-organisms require to completely
 

break down the waste into harmless end-products.
 

An equivalent definition is in terms of Population
 

Equivalent, or PE, the average amount of household wastes
 

generated per capita per day, and which corresponds to 0.25
 

lbs., or 113 grams of oxygen requirement per day to achieve
 

complete decomposition.
 

Clean water at 200C contains approximately 10 mg/liter 

of dissolved oxygen, If a ROD load of n mg/liter is added 

to this clean water, the resulting dissolved oxygen (DO) 

will be l0-n'mg/liter under steady-state conditions. For 

comparison. ­

= At dissolved oxygen levels of approximately 4 mg/lit­

er, higher fish life begins to die out,
 

= At 1 mg/liter, all aerobic life ceases.
 

= Acceptable ROD levels in bodies of water containing
 

organic effluents range from 0.1 to 5 mg/liter, de­

pending upon application.
 



U.S. (AVERAGE) ULTIMATE BOD 
OF INDUSTRIAL WASTES 

(CHEMICAL 

FOOD 

LEATHER 

TEXTILE 

I HOUSEHOLD SEWER 

PETROLEUM 

0 

J PAPER 

500 1000 1500 2000 

BODu - mg/liter 

2500 3000 



The cost of wastewater treatment increases with the
 

degree of treatment,
 

tPercent treatment level" is defined as the percent­

age reduction in biological oxygen demand achieved with­

in the effluent,
 

For example, US, urban sewer possesses a typical
 

ultimate BOD of 500 mg/liter; 90% treatment would reduce
 

this to 50 mg/liter,
 

What this means is that the dilution required for
 

treated waste is less than that for untreated, In the
 

example cited, treated waste would require only 10:1 di­
lution to reduce the pollutant level to a tolerable 5
 

mg/liters, whereas untreated waste would require a dilu­

tion ratio of 1001,
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The cost of treatment also varies with the type
 

of waste,
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An effect equivalent to treatment can be obtained
 

by massive dilution, For example, if a sewer effluent
 

with a BOD of 500 is diluted 10 times, an equivalent
 

BOD of 50 mg/liter will result. To achieve tolerable
 

pollution levels of 5 mg/liter, a dilution ratio of
 

l00;1 is required,
 

To dilute 1 PBEII3 grams of oxygen per day, to a
 

level sar of 5 mg/liter per day, requires a diluting
 

amount of water equal to 113,000 , or 22,6 m3 . Since
 

the average household effluen sewer is already 200
 

liters/person, the additional required dilution ratio
 

is 22,6 or 113:1,
-UT­
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Choice of the optimum mix between treatment and
 

dilution is economically very important due to the
 

large, and ever-increasing, effluent PE level of the
 
U.S. as a whole,
 

The problem is under active consideration by the
 

Environmental Protection Agency.
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One extreme of the mix is the "all treatment" ap­

proach, The other is the "all dilution" approach.
 

Neither extreme is optimal; there is an in-between
 

mix whlich possesses the lowest cost,
 

The impact of each policy upon additional storage
 

and flow requirements, averaged over the U.S. and bas­

ed upon a (barely) tolerable resulting DO level in wat­

ercourses of 4 mg/liter, is shown opposite.
 

Note that-the "all dilution" approach would require
 

quadrupling the existing reservoir capacity.
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T-he costs of each policy for the entire U.S. indi­

cate that the 'all dilution" approach is by far the
 

most expensive, The optimum mix would require a 20%
 

increase in reservoir development by AD 2000.
 

This applies to a Cbarely) tolerable resulting DO
 

level of 4 mg/liter in most U,S. watercourses.
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To achieve higher DO levels, and thus cleaner water­

courses, the flow requirements (and corresponding reser­

voir development levels and costs) increase drastically.
 

Although the final policy decision by BPA is still un­

known, the point is that pollution dilution is likely
 

to become a major new factor in water demand.
 

The key economic "driver" is reservoir development.
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3,6 WATER REQUIREMENTS FOR IRRIGATION
 



Agricultural irrigation is at present the major
 

consumer of water in the arid Western regions.
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Irrigation water is needed to supplement deficien­

cies in precipitation water. The effect of too much
 

water can be as deleterious as that of insufficient
 

water,
 

It should be noted that yield-versus-applied water
 

relationships vary significantly as a function of the
 

type of crop? soil characteristics, and climate.
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Irrigation water is generally characterized by heavy
 

conveyance losses,
 

On the average, approximately half of the withdrawn
 

water reaches the irrigation site.
 

Approximately 70% of this water is lost through sur­

face runoff, percolation into the ground, and evaporation:
 

thus, typically only 15% of the withdrawn water reaches
 

and is used by the crops.
 

There exists thus a significant "leverage" between
 

water used by crops and total withdrawal: relatively small
 

changes in crop water can cause notable variations in the
 

quantity of total irrigation water withdrawal.
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How is the water used by crops?
 

Plants Require water for three basic purposes:
 

" To live, i.e., to metabolize the atmospheric
 

CO2 and turn it into plant tissue.
 

" To grow, i.e., to add plant tissue.
 

" To cool the plant.
 

The principal metabolic reaction, photosynthes­

is within the leaf, occurs between atmospheric CO2
 
and water. In addition, water, carrying trace nut­

rients, must circulate upwards from roots to leaves.
 

A certain amount of evapotranspiration is neces­

sary to generate the pressure differential needed to
 

circulate water from roots to leaves.
 

The excess.is used up for cooling purposes.
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By far the largest amount of water used by plants is
 

for evgpotranspiration, which can reach as much as 98%
 

of the total water absorbed by the plant.
 

The figures shown opposite are typical- they vary
 

significantly with soil type, climate and amount of ir­

rigation water,
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Evapotranspiration is driven by the difference in
 

relative humidity between plant leaf and air, and by
 

the soil humidity, since if the soil humidity is too
 

low, water cannot be drawn by the plant,
 

Uncertainty exists among investigators as to whether
 

plant growth and evapotranspiration are significantly
 

affected by soil humidities above the wilting point.
 

The input phenomena which affect the leaf-air rel­

ative humidity are:
 

o Solar Radiation , its absorption by the leaf
 

raises leaf temperature and corresponding va­

por pressure,
 

o Atmospheric Temperature - increases evapotrans­

piration by 20 to 30 percent per 100 C.
 

o Wind Speed , which carries vapor away, causing
 

increased plant transpiration. Some investi­

gators indicate that a 5 mph wind increases
 

transpiration 20%, 10 mph 35%, 15 mph 50%.
 

Considerable uncertainty exists among investigators
 

as to the exact relationships between driver phenomena
 

and the actual quantities of water evapotranspirated.
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For example, some researchers report that evapotrans­

piration is essentially constant, above the wilting point,
 

for any given ambient temperature.
 

The wilting point is the soil's water content, below
 

which the plant is unable to maintain turgor: it varies
 

as a function of soil type because different soils have
 

different resistances to water extraction by plants.
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For this reason, several investigators recommend
 

that the total water supplied to crops be such as to
 

maintain soil humidity above, but c-lose to, the wilt­

ing point,
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Considerable discrepancies exist among empirical
 

evapotranspiration models.
 

Shown opposite are the predictions, for the same
 

geographical area and the same crop, among the better
 

known and most employed evapotranspiration formulations.
 

In view of tle importance of water usage by agricul­

ture, which occurs mostly within regions where the marg­

inal cost of water is high, and of its high content of
 

surface observables, the application of remote sensing
 

to the optimization of irrigation policies and practices
 

can provide significant improvements.
 

Important investigations are:
 

1. Assessment of what constitutes optimal crop water
 

requirenents. Much of this task can probably be
 

performed by improved correlation of existing da­

ta,
 

2, Determination of evapotranspiration models which
 

best fit the conditions of each specific region.
 

3. Quantification of the observables which are best
 

amenable to direct or indirect remotely sensed ob­

servations. Typically: insolation, crop spectral
 

reflectance indicative of plant turgor, and event­

ually, as improved sensing means become available,
 

atmospheric humidity and temperature,
 

A major portion of the above investigations can be per­

formed by improved correlation of existing regional data.
 



TYPICAL ERRORS OF PRINCIPAL 
EVAPOTRANSPIRATION FORMULATIONS 

Alfalfa, San Joaqum Valley 
average of 2 years
 

MONTHLY
 
EVAPOTRANSPIRATION 
cm 

15- ­-
15 

10 Measured
 

Blaney-Criddle - -

Thornthwaite--­

5 

0
 

MAY JUNE JULY AUGUST
 



3.7 ATER REQUIREMENTS FOR INDUSTRIAL COOLING
 



A significant fraction of industrial water usage
 

is devoted to cooling industrial processes.
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In absolute values, the overwhelming user of cool­
ing water is the electrical energy generating industry.
 

Cooling is needed regardless of the primary fuel
 

employed, In the case of nuclear fuel, the efficiency
 

is somewhat less than for fossil fuel. Approximately
 

20% more cooling water per kilowatt hour generated is
 

required in nuclear installations with respect to fos­

sil fuel fired plants,
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A compact way to look at the electrical energy
 

cooling requirements is to describe the required
 

cooling in terms of BoLling Potomacs. This is the
 

heat quantity required to bring River Potomac (flow
 

of 1 billion gals/day) from normal temperature (20°C)
 
to the boiling point C100°C),
 

By comparison, note that the present total U. S.
 

98% regulated flow is equivalent to 375 Potomacs.
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In practice, dumping of treated water is severely
 

r-estricted by law.
 

The reason is its estimated effect on &quatic life.
 

Fish thrive best within a limited temperature range. A
 

prolonged temperature rise much above the range of each
 

species will cause death, The problem is not so much
 

the killing of adult fish, since they can escape towards
 

cooler waters; rather, the fact that temperatures well
 

within the adult's tolerance are lethal to larvae, thus
 

inducing extinction of the species within the warmed wat­

ers,
 

The other problem is that higher temperatures favor
 

growth of acquatic plants, which consume oxygen, thus
 

imposing additional environmental stress upon fish.
 



THE EFFECT OF TEMPERATURE ON FISH 
AND IMPORTANT MARINE FLORA 

Co 
40 

30 [ 

SPAWNING ] 

20 

10 

E LETHAL 

OPTIMUM GROWTH 



By contrast, higher temperatures favor bacterial
 

action, which aids the digestion of pollutants.
 

Although evidence for widespread damage and delet­

erious modifications in the ecological balance from
 

heated waters is not conclusive, Federal law now re­

stricts the temperature differential between heated ef­

fluent and river to 50C in Summer, 100C in Winter, and
 

limits maximum outlet temperature to 320C,
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These restrictions vastly increase the required
 

cooling water flow,
 

For example, the 100 CWinter) temperature restric­

tion increases the required flow 8 times over and above
 

that of Boiling Potomacs, The 50 C (Summer restriction)
 

causes a sixteen~fold flow increase, As the 320C upper
 

limit is approached, flow requirements increase even
 

further,
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A feel for the magnitudes involved can be obtained
 

by looking at the practical situation forecasted for
 

the River Potomac.
 

Present plans by Potomac Electric Company for-con­

structing a fossil'fuel fired electric generating plant
 

on the Potomac require the worst-condition CSummer) flows
 

shown opposite,
 

The 99% reliable flow specified by PEPCO would sup­

port an electrical energy generation of no more than
 

2,6 billion kilowatt~hours per year.
 

This (based on 4,5bO hours yearly equivalent full­

load operation) approximately equals 6 ten-thousandths
 

of the expected US. electrical energy demand in 1985.
 

Since totdl U,S, river flow is equivalent to 375 Po­

tomacs, all US, inland flow could support approximately
 

22% of the 1985 US, electrical energy demand, if each
 

river were used once. In practice, some of the larger
 

watercourses-could support more than one plant, located
 

serially_ along the river: on the other hand, much of the
 

inland flow res-ides in small rivers, too small to support
 

economically practical powerplants,
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It can be seen from the preceding that cooling flow
 

computations must be performed on a statistical basis,
 

similarly to those for demand-supply matching.
 

When looked at in this way, the 99% reliable flow 

of the Potomac yields a low flow duration of 2.4 months 

for the 20year recurrence interval (1% of 20 years = 

2,4 months), 

In turn, this yields a maximum cooling potential of
 

360 megawatts electric. For the typical 4,500 yearly
 

hours of equivalent peak-load operation, this yields a
 

total energy generation, when the cooling flow is used
 

once, of 1,6 billion kilowatthours, or only 3.7 ten­

thousandths of the U,S. electrical energy demand expect­

ed in 1985.
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How to alleviate this problem? Current technology
 

offers three basic cooling techniques.
 

The cleanest environmentally is the Closed Cycle
 

technique, wherein waste heat is transferred to the at­

mosphere, It is also the most expensive.
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The most economical technique, if sufficient flow
 

is available, is the Flow Cooling Technique discussed
 

previously,
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In between these two extremes lies the Evaporative
 

Cooling Technique, which utilizes the water's heat of va­

porization (600 Cal/Kg), Its problem is the large amount
 

of steam generated and released to the atmosphere: approx­
3
imately 100 m (25,000 gallons) per minute of water equiv­

alent per 1,000 megawatt electric output.
 

If all U,S, plants were to operate on this technique
 

by 2000 AD, the equivalent of 29 Potomacs (116 million m3/
 

day) would be turned into steam continuously. This should
 

not cause macroscale climate changes, but is sufficient to
 

impact local microclimates,
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In net, current technology offers means to restrict
 

the temperature of rivers to within the legally specif­

ied limits -- but at high cost,
 

The dilemma lies between preservation of riverine
 

fish species and increased costs of electricity.
 

A possible alternative is offered by the potential
 

tapping of estuarine tidal flows. Note for example that
 

the Chesapeake Bay's daily tidal flow is one and one-half
 

orders of magnitude greater than the flow of the Potomac.
 

In addition, the volume within the Bay provides a thermal
 

reservoir of very large capacity,
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fompare the total cooling potential of U.S. rivers
 

assumed to be used once through - and based upon 98% re­

gulated flow, with the once-through cooling potential
 

of the tidal flow of a single estuary. Eight estuaries
 

like the ChesapeakeBay, completely tapped, could provide
 

a cooling flow equivalent to that of all U.S. rivers.
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For these reasons, dependence upon estuarine and
 

bay waters for electric energy generation cooling has
 

already been exploited and is expected to grow in the
 

future.
 

However, considerably more utilization of estuar­

ine and tidal flow is needed to meet the forecasted
 

U,S. electrical energy demands of the future.
 

Particularly important in this respect are the
 

pressures exerted by conservationist groups who oppose
 

and delay new plant construction,
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Optimal exploitation of estuarine and bay tidal flow
 

requires detailed knowledge of the statistics of circul­

ation and diffusion of the water mass in estuaries and
 

bays.
 

Determination of these statistics is lengthy and cost­

ly by conventional surface methods: this is the principal
 

reason why they are as yet insufficiently known.
 

This task is eminently amenable to application of re­

mote sensing techniques.
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4. REMOTE SENSING- PIOGRA-M-STRUCTURE
 



Recapitulating, the economic significance of the
 

principal Water Resource areas can be stated as fol­

lows:
 

(1) for the effects of water, in terms of yearly
 
damages, This is the maximum benefit achievable from
 

alleviation of the deleterious effects.
 

1 

(2) for the demands for water, in terms of the pric­
es paid yearly by water users. It should be understood
 

that these prices undervalue the true worth of water,
 

because of widespread policies of price support.
 

Onsite uses will be investigated in the next phase
 
of th& work. Nevertheless, indicative economic values
 

are attached to these uses. These were based upon­

(1) for-Inland Navigation: the yearly prices paid
 

for waterborne freight.
 

(2) for Recreation: the yearly number of person-days
 
spent upon inland waters for recreational purpos­

es, multiplied by a "value" number computed by
 

the Department of Interior.
 

(3) for Commercial Fishing: the landed price of year­

ly catch,
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In spite of its economic significance and of the
 

threat of approaching scarcity, no single U.S. Agency
 

has overall responsibility for establishing water pol­

icy,
 

Closest to this role is the Water Resources Coun­

cil, formed by Cabinet-level representatives from the
 

principal Water Management Agencies. One of the Coun­

cil's functions, effected through its Inter-Agency Com­

mittee on Water Resources, is to elaborate programs,
 

policies, and activities for Congressional approval.
 

NOAA maintains the nationwide rain and snowgage
 

network, provides :real.time and' statistical -inforjm­

ation on precipitation, and performs river flow fore­

casting.
 

USGS maintains the nationwide rivergage network,
 

and provides real~time and statistical river flow in­

formation.
 

Corps of Engineers plans and implements major wat­

erworks.
 

Soil Conservation Service performs a similar func­

tion for the smaller watersheds (less than 100,000 hec­

tares),
 

States conduct waterworks planning and management
 

for smaller projects. For large projects, they enlist
 

the assistance of Federal Agencies, notably COB and SCS.
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Although Water Resources activities are manifold,
 

they can be boiled down to the major essentials shown
 

opposite,
 

A significant conclusion emerges from the study
 

performed so far: water demand requirements, added to
 

the requirements for protection against the effects of
 

water, will in the near future grow to be large, and in
 

many cases, conflicting.
 

This fact, coupled with the high costs of increas­

ing the reliable supply, points to the approaching need
 

for setting up, at least in the water-scarce regions,
 

specific Water Policies.
 

Such policies should guide, for example, decisions
 

as to whether to implement Pollution Dilution versus Pol­

lution Treatment procedures; as to whether to bound the
 

regionally-produced electric energy, relying instead upon
 

importation as to how much additional water should be de­

voted to agriculture; and so forth.
 

Information gathering by Remote Sensing should prove
 

of significant value in constructing the data base upon
 

*hich to structure such Regional Water Policies.
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The principal specific Water Resources areas,
 

where remote sensing can significantly contribute
 

to enhancing the efficiency of current methods,
 

and/or to improve upon present practices, are re­

capitulated opposite.
 

The area of Waterworks Management remains to be
 

analyzed in the next phase of this work.
 



The utilization of remote sensing for specific ap­

plications cannot generally be accomplished immediately,
 
but requires precursor phases of information structuring
 

and technique development and validation.
 

Precursor phases can be subdivided into four categor­

ies, shown opposite in descending order of content of pre­

cursor effort. Examples of each are:
 

AD 	Development of Watershed Runoff Models, specif­

ically tailored to accept and utilize remotely
 

sensed information.
 

TD 	 Development of computerized techniques for dis­

tinguishing snowlines.
 

TV 	Test and validation of rain and rivergage net­

work via DCS
 

X Mapping of areal extent of snow,
 



EVOLUTONARY PHASES IN THE UTILIZATION
 

OF REMOTE SENSING TO WATERLRESOURCES APPLICATIONS
 

AD Applications Development -A program of data-gath­

-correlaftirn ground truth measurements, required
 

for, and precurox'to, structuring a specific Yemote sen.
 

sing applicatiom
 

-erfhg, 


TD Technique Development - A program to determine spe­

cific aspects 6f remote sensing,-capability. 

TV Technology Validation - A prgram to test,.and-checkc
 

out a specific set of, hardware employe--intreote sensing
 

information gathering,
 

X Experiment A quasi~operational pxrognam wherain re­

motely aensed information is applied to improvecost/effect­

iveness of current procedures or to supersede current pro­

cedures witf more advanced procedures,
 



PRINCIPAL NEAR-TERM REMOTE SENSING 
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(AD Type) 

Cl) WATERSHED MANAGEMENT MODEL
 

Limited or no rivergage feedback
 

Sensitive to watershed modification
 

Capable of predicting subwatershed performance
 

C2) WATERSHED PLANNING MODEL
 

Applicable to ungaged watersheds
 

Sensitive to watershed alterations
 

Capable of predicting subwatershed performance
 

C31 FLOOD DAMAGE MODEL
 

Floodplain extent
 

Floodplain economic model
 

C4) SNOWMELT RUNOFF MODEL
 

C5) STORAGE WATERWORKS SITING 

Physical Parameters 

Environmental/Social Impact Parameters 

(6) AGRICULTURAL WATER DEMAND
 

Real-time management of evapotranspiration
 

demand
 

(7) CIRCULTATION-DIFFUSION MODEL
 

Current-pattern
 

Dispersion pattern
 

As afunction of cyclic driving phenomena and
 

of the statistical influence of the environ­

ment
 

C8) ECOMAP
 

For Powerplant and Pollutant outlet siting
 

Environmental/Social Impact Parameters
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PRINCIPAL IMMEDIATE REMOTE SENSING
 

APPLICATIONS (X Type)
 

(1) GEOGRAPHIC IMPORTANCE OF SNOW
 

Mapping areas where snowmelt is significant
 

(2) REAL-TIME PRECIPITATION MEASUREMENT
 

For strategically-located raingages of difficult access
 

For applications wherein quick response is significant
 

(Flash-Flood Warning)
 

(3) TRANSIENT WATER SUPPLY
 

Playa ikes or equivalent, in areas where water supply is
 

critical
 

C4) INUNDATION MAPPING
 

Measurement of flood extent as it occurs and comparison
 

with predictions
 

(5) SURVEILLANCE/SPOTTING OF POLLUTANT OUTFLOWS
 

Qualitative detection of pollption plumes for subsequent
 

ground action
 

(6) WETLANDS MAPPING
 

Not analyzed in this report
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the methodology set forth initially in this volume, a
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