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ABSTRACT

The interactions of control system and distributed flexible
structural dynamics is explored for mechanical arms. A modeling
process using 4 x 4 transfer matrices is described which permits
the closed loop response of many current arm configurations
to be evaluated. Root locus, frequency response, modal shapes,
and time impulse response have all been obtained from the digital
computer implementation of this model, which is oriented to
arm design and allows for easy variation of the arm configuration
through data cards. The model corresponds with experimentally
observed natural frequencies with an average error of less than
5% in the first three flexible modes in the seven cases considered.

The model was used to explore the limits imposed by structural
flexibility on a nondimensionalized two link arm with one and
two jointe for planar motion. Using simple position and velocity
feedback and careful adjustment of control gains adequate damping
(damping ratio of 0.65) can be imposed on dominant eigenvalues
which have a complex modulus of more than one-half the cantilevered
frequency of the arm with all joints clamped. The limitations
imposed by flexibility are roughly compared to strength limitations
to indicate when flexibility will tend to be the more immediate con-

straint on arm design.
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INTRODUCTLOX

The goal of this study was an inproved understanding of the interaction

of the various design components of manipulator arms so that arm design in the

future would be based on more reliable and more logical procedures and tools.

As a significant step towards that goal an arm modeiing procedure has been
established and implemented on the digital computer. This implementation is
design oriented, allowing for easy alteration in the arm configuration and
parameters. It foguses on an area previously lgnored by design procedures:
the flexibility ot the various structural components and the interaction
of that flexibility with the joint servo control to affect dynamic performe
ance. The model implementation is based on frequency domain techniques and
yields to the designer such information as natural frequencies, complex
eigenvalues, mode shapes, the system frequency response in the form of Bode
diagrams or polar plots, and via its inversc Fourier transform the time
impulse response. This model has been verified with several experimental
cases by comparing natural frequencies. It has been used to explore the
interaction of sgructural and servodynamics for simple but reascnably
general arm configurations. The rules developed appear to be reasonably
valid for more complex mecdels and thus as a first approximation for deaign.
Additional work has been done in expressing the laws of scaling for
arms relating the mass mament of interia which limits gross motion speed

to the limiting servo bandwidth which limits fine motion speed.
Arm Model
Since the arm model, its implementation and verification are an

important product of this research, its rationale, features, verification

and limitations will be discussed in some detail.
Modelinp Ratlonale

vut of 4 number of possible models a selectlon has been made which
results in features and limitations., The rationale for the selection will'

be discussed in the design context in which this study was carried out,

the modeling process was perhaps to separate gross motions from small motions.

This er.ables one to describe the arm as a linear system. The nonlinear

f

S
A n
e

Sk




equations of motinn for a ripgid arm are quite complex and lengthy and
the general flexible case seems beyond present capanilities. A linear
model also allows for better comprehension of the issues of design.
Aside from convendence one must ailscuss the validity and pertinence of a small
mction model. The validity of the model to describe small motions is 3upported
by the experiments discussed later. The pertinence of a small motion madel
to the design question is claimed on the basis of the following:

1) The frequency of structural vibrations is such that many cycles
will occur before the configuration of the arm has significantly changed.
Thus the interaction of the control system and structural “lexibility is
well described by a small motion nodel.

2) The first order effect of the prcss motion on tihe sStructural
arm vibrations can be represented by a disturbance loa.ilng, which is ade-
quately describeéd by the small motion model.

kY In most manipulator tasks the most striangent position accuracy
requirements, therefore the most need for consideration of structure/servo

interaction, occurs when the arm configuration is not rapidly changing.

Mixed Distributed Lumped Model. Observing manipulator arms of various designs

one will find for general purpose arms one or more slender members which
Renerally support the forces both transmitted to the payload and generated
by the body forces of gravity and acceleration on the arm itself. Although
these members are frequently not smooth enough to be called beams the
contention here 1s that tlicy can be modeled as such, Their compliance is
most significant whien supporting bending or torsional loads, If a signif-
icant portion of the masds of the arm is distributed throughout the length of
this member, the Jdistributed nature must be recognized in the modeling. The
mst stralphtforward approach is to describe the arm using partial differen-~
tial equations. Alternatives such as lumping the mass and flexibility of
the beam into separate elements apnroximate the distributed nature but
require validation and tunming by checking with the corrcsponding natural
frequencics of the distributed counterpart for example. This is especlally
cumbersome in design when the correspondence would be in doubt for each design
pavameter chanpe.

A beam is considered to be distributed in one dimension only, which is
recasonable for most arm models. It is concelvable that distributed effects

in two or three dimensions would be important, but a model valid for design



purposes can be constructed in most cascs without this complexity.

Other elements which are appended to the beam clement such as joints,
actuators, and some payloads seem to contribute essentially mass or essentially
compiianc: and arc more conveniently considered as lumped elements. The
control action itself i& concentrated at the joints of the arm and thus is
well consided as lumped. The lumped parameter dynamice are described by ordin-
ary differential equations and in this case the equations considered will be
linear.

It is not intended teo imply that by including distributed elements modeli g
the physical components of an arm or arm design will Le without need for desip or
judgement. Selecting from the possible model elements will improve with exper-
ience and the ultimate success of a model will depend on experimental fact.

Fraquency Domain Model . Frequency domain techniques, while still a workhorse in

many practical applications are not currently the vogue of controls engineers.
State space models, with optimal coatrol determined in the time domain are
more popular and yield promise in many areas including manipulators. In the
flexibla arm design context they lack the versatility and euase of model con-
struction and alteration that results with the present model.

The problem is especially acute with the mixed parameter problem at
hand. HBeam vibration control studies in the time domain have been published
(1),(2), 3, for single uniform beams. A manipulator model based on a singla
distributed beam described in terms of its lower modes of vibration with control
optimization in the time domain has been studied by Mirro(az When connecting

two or more distributed Leams the prohlem of houndary conditions between

(L Koehne, Manfred, "Optimal Feedback Control of Flexible Mechamical Sys:émn"
Proceedings I.F.A.C, Symposiunm, Banf, Canada, 1971.

(2) Komkov, Vadim; "Optimal Control Theory for the Damping of Simple Elastic
Systems", Lecture Notes in Mathematics No. 233, Springer-Verlag,
1972.

{3) Van de ‘egte, J.. "Optimal and Constrained Optimal Controls fcr '
Vibrating Beams", JACC Atlanta, Georgia Session Paper 19-C,
p.469. June, 1970.

(4) Mirro, John, "Automatic Feedback Control of a Vibrating Flexible Ream"
SM thesig, MIT Department of Mechanical Engineering, August, 1972.
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tiue <vstems of partial differential equatlons restricts time domain
mod: s severely, Lumped parameter models of flexible arms are discursed in (6).
Frequency domain techniques have long been available for beams
but the technique is not frequently used in the context of control
of distributed systems. The boundary condition problem is very con-
veniently solved utilizing the sequentiil (one dimensional) nature of
beams and of arms in general. The numerical techniques are relatively
straightforward. The lack of a mathematically conveniear optimality
criteria is not in icself a severe restric tion since there is no concise
definition of optimality for general purpose arms anyway. The frequency
domain techniques will be discussed in more detall in a later section.

Arm Modeling and Implementation

This section will discuss the procedure used for modeling, its
implementation, and the results :hat can be obtained.

Transfer Matrix Approach

The transfer matrix approach provides a versitile method of describing
the interaction between the linear components of a system when that inter~
action occurs at no more than two stations of the component. For beams
these two stations correspond physically to the two ends of the beanm,

For pure rotary springs these stations correspond to the ends of the
springs. Jor rigid body inertias these stations correspond to the points
of attachment. When three or more components interact at a single station
it iz still possible to use the transfer matrix approach if this inter-
action is well deigged. The transfer matrix method is well explained by

Pestel anc Leckie and only the ess ials will be discussed here.

The interaction between two components is described by means of a
vector of state variables. At the station between two components the
value of the state variables is identical. A transfer matrix is used to
describe the relation betwsen the state variables at the two statlons of
each component. If the component is a static component (does not involve

differentials with respect to time) such as an ideal spring, the transfer

L L= P

(3) Pestel, Eduard €., and Leckle, Frederick A., Matrix Methods in

e a

(6) Book, Wayne J., "Study of Design and Control of Remote Manipulators,
Part Tl Vibration Considerations in Manipulator Design"
NASA Contract NAS8-28055, N73-20138, Feb. 1973.
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matrix is a function only of the component parameters, For
dynamic components such as an ideal mass, the transfer matrix is also a
function of the time derivativeas of the ssate variables. For linear
components (described by linear differential equations) it is convenient

to deal with the Fourier transform of these equations which yields s
the steady state amplitude and phase (or complev amplitude)} of the state

variables under a pure sinusoidal excitation ¢:' frequency w. The -
transfer functions for these components are functions of w. o

The state vector z that is used in the arm models consists of fo.r
variables displayed in Figure 1 for a beam with flexure in the x-z
plane. These four state variables are sufficient to describe most arm
vibrations of interest. Arm flexure in two planes can be described if
these motions are decoupled. In addition torsional compliance of beams
can be accounted for when vibrations out of the plane of two beams is
studied. The sufficient conditions for decoupling the motion are discussed
later. 1In ganeral the neutral axis of the undaformed arm must lie in a
plane for these four state variables to sufficiently describe the arm.

Two link designs which predominate arms built today (except for short
wrist segments) automatically qualify. Additional arm links or beam

like supports modeled as part of the arm may of course be arranged in
nonplanar configurations. There is no cooceptual difficulty in extending
the state vector 'o the complete three dimensional case. The twelve
state variables then needed (flexure in two planes, twisting, and com-
pressicn) lengthen numerical computation disproportionately to the
information attained. State vectors with between 4 and 12 variables

may give added information in some specific cases. Four state variables
are all that will be considered here.

PR T T

For decoupled motion it is sufficient for small motions that a planar
arm have its joints esither in or perpendicular to the plane of the arm, i‘
which is usually the case. For a typical arm two sets of data describe
the amall motions of the arm. Ome inciudes only flexure. The other
includes distributed flexure and a lumped torsional compliance for out of
plane motlon. For arws that can be conflgured so as not to meet the
requirements for decoupled motion an extended state vector or a configur-
ation whlich does meet the requirements can be studled to obtain design
information.




Siven the tronsfer matrix B for a component and the statc vector
at one of its stations gz ., the state vector gt the other station
is given by the matrix multiplicaction.

2i-1 =B gt
It is thus & simple matter whean components are connected serially (twoe
components per station aexcept for the end components) to find an overall
transfer matrix by multiplication of the individual matrices to eliminate
the intermediate state vectors. This is demonstrated for an arm model in
Figure 2.

The elements of the transfer matrices for various components are
illustrated in Figure ). The expressions are developed from the differ-
ential aquation factored into time and space functions which can then be
solved independently. The developmants will not be piven here but Figure
3 displays the results, many of which are developed in (5).

Model Implemsntation and Use

Included in this section will be a brief description of the computar
programs used to implement the model including the basis for th. computations,
the type of input and output involved, and its meaning in the context of
manipulatov design.

Inforwation available from the modal includes natural fraquencies ,
complex eigenvalues, the steady state frequency response, the invarse
Fourier transform of this response wiuich is the time impulse response, and
the eigenfunctions which are the arm shapes vhen only one mode has beesn
axcited.

Numarical Operations with Transfer Matrices. The product of matrices such

&8s appears in Figure 2 essentially is the implementation of the model of

the srm which consists of beams, lumped masses, controlled joints and angles,
joined end on end. The implementation ©f the model provides ways of getting
useful information from that model. Ome por-ibility is to express analytically
the elements of each component matrix, multiply the matrices and obtain a
single matrix each clement of which is a sum of products of the original matrix.
While ¢! is is in fact done for & simple case in Appendix A, 1t is not recom~
mended for more complex cases unl?se the same configuration is to be used many
times. The alternative is to evaluate each term before the matrix product

H




is taken, then multiplying the numerical values. This is a procedure
which can be carried out in a scraightforward fashion by digital computer.
The advantage to nunerical avaluation of this nature is that the
complex functions need oot be manipulated avoiding large amounts of
designer time and potential for mistakes.
The disadvantages are of three types:
1) More computer time is required to evaluate expressions
which might be simplified using trigonometric and hyperbolic
ldenticies. The simplification is not apt tc be great unless there
are ldentical components or at least many identical parameters.
Additional computer savings may be observed vhen some of the
transfer matr.. s have many zero or unity elements. Straiphtforward
multiplication of these takes as long for the computer as do non-
zero or non-unity elements. It may not be difficult for the designer
to combine several simple elements into one matrix analytically
if this combination is to be usad frequently.
2) Nunerical arrors may become significant. The larger
auwber of calculations may ceuse roundoff errors to become sig-
nificant especially in some cases (evalustion of determinants)which
require taking the difforence of two large, nearly equal numbers.
This difficulty has been enco:atered only in rare and unusual cases
and buen solved by using extended precision in those cases. It is
also possible to get a numerical overflow in the product of zhe
transfer matrices,
3) For simple cases the analytical exprassions resulting from
the matrix product may give the designer inaight into the problem
that the numerical results obscure.
Boundary tonditions and Forcing Functions. The transfer matrix, whether it

describes a gingle component or a group of them, expresses the ralacion
between the state veriables at its two stations. In order for the transfer
relation to be valid between state vectors, at most four of che eight state
variables may be arbitraily established. In fact for physical systems only
two of thi state varisbles at each station may be determined and more ’
preciscly for these state vectors only one of the associated varisbles of
displacement or force and angle or moment may be arbitrairly specified. This
specification may be as a simple boundary condition, as a forcing funccion,
or as a linear combination ofvariables which may implicitly include the other
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variables of tiic same state vector. This last cace 1s In essence what
one does wien hie appends another component by multiplying another
transfar matrix. In this case one marely transfers the specification
to another station in the exctendad system,

For simple boundary conditions one prescribes two non-associated s
varisbles of the arm. Figure 4 displays the physically possible
combinations of zero state variables. The non-trivial solution of this .
case can result in solving for the natural frequency of complex eigen- s

values (for damped systems). Additionally one can solve for the eipen~-
fuBctions of the system(the mode shape at the eigenvalue‘. The imposition
of a forcing function yields the steady state forced response of the
syacem, assuming the forcing function is a sinusoid of frequency » .,
These techniques will be discussed in the following sections,

Natural Frequencies and Eigenvalues

If disturbed from the equilibrium position and then allowed to
move freely after t=0 (without disturbance or outsida input) the state
variables of a linear system will be described over time by a function
of the form
(1) =4 -alc ] “1‘ + azcj w2t 4 1303 wE cooty el W*

zy, = the i*h element of z |

For a lumped system there will be a finite number of these terms while
a4 distributed system may theoretically have a countably infinite
numbar.

¥or undamped syetems the wi appear as the fraquencies of vibration
and assume real values. For damped systems gome of the “; will have

L]
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complex or pure imaginary values and it is more conventional to deal
with the vigenvaluea &y = § Wy, Complex or pure imaginary values of s
(complex or pure rcal values of w ) will always occur in pairs with the
same real (imaginary) part and an imaginary (real) part with the same
absolute value and opposgpe 8ign. When this is the case we will deal
expiicitly only with the value of 8 (¥ ) with the positive imaginary

* The assumption lieres is that the @

y are distinct. For physical systems
this is always true if ane cares to look at the values with enough accuracy.

“he more general case Wi = W x does not restrict the rasults presented.

”



(real) part.

The valucs of“y for an arm system model depend only on t/«
psrameters of, and tha boundary condition on, the system. They are
independent of initial conditions, indepandent of which state varisble
is obsarved, and independent of the point in the system at which it is
being observed. The values a; depend on all of these quantities.

The time function (Eq. 1) which describes & state variable of the
system must be consistent with the differencial equations of the
individual components, the general solution of which is the same form as
Equation 1, also involving terma ,3“3‘. This general rolution is the
source of the transfer matrix for the component. For an isclated single
component the rest of the rest of the system acts as a complex boundary
coadition which wmust be considered when determining the values of the
w for that component. The state variables hetween two components assume
values over time that must conform with the general solution of two sets
of differential equations. This can only occur if the values of W are
the same in both solutions and in fact the same as the general solution
for tha antire system.

The transfer matxix technique allows one to simultaneously consider
all the componants and the boundary conditions on the system and thus
deteraine the wi of interest. Multiplying transfer matrices eliminates
the intermediace state variables at the interface between components
and expressss stats variables at one end of an arm directly in terms
of the otlier end. Imposing two boundary conditions at each ends
restricts th3 values ¥y can sssuss for a nontrivial solution of the
remaining state variables. These ¥; are the same Yy appearing in Eq. 1.
The restriction is developed in Fig. 5 for specific boundary condition
on a specific arm modal. In general for a system represented by a matrix

product U such that

- ‘1 : -
%10 Y11 Y12 Y13 Y 1n
F4 17 t u v 4
2 - 200 L yp 21 %22 Y23 M 2n
“30: Y31 Y32 Y33 Y3 Zan
%40 Bar Y2 Y3 Y (%4n

”n

[Sur ey Sypraens . .
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With the boundary conditions

20 - zjo a () at statfion O

and LN $# 0, 250 ¥ J at station n

(implying the remaining two variables at station n are zero)

Kequires for a nontrivial solution that the frequency determinant

| I '
E“ik Yag | w Ugp By - oy uiki =0
] lumeo
ST L
WE Wy

2) d =
u

Tue elements of U and thus the terms of the frequency determinant

are generally complex functions of w . This being the case one must
nunerically searcn for values of w where d=U. When dealing with systems
with no damping one can restrict the search to real values of w or complex
values of the eigenvalue s. In general however, one must search over the
complex plane for values of s=s;, where both the real and imaginary parts

of i arc zero. In order to use conventional search voutines one can search
for minimum values of Hat -{(lmd)’ +kRed)"' , then check to see if

d= 0+ JO for the values of s returned. This topic will be discussed in more

Jdetail in a later section on numerical implementation.
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viodal Shapes

Associated with each eigenvalue is an arm shape called the modal shape
wnich describes the relative amplitide of all points of the arm when
vibrating at that frequency. Looking at the problem from another perspective,
there is an arm shape which when it comstitutes the initial condition will
result in arm vibration described by a single eigenvalue, to the exclusion
of all other system aigenvalues.

*he transfer matrix method can be employed to find the mode shape

after the eigenvalue has been found. Refer again to the equation

2p = U2y

Two of the state variables at each end are specified by the boundary
conditions, and the remaining fou. &tate variables can be solved for
in terms of each other. By normalizing one of the state variables to be
equal to ona the remaining three are specified.

More specifically consider the boundary conditions resulting in Equation
(2). The homogeneous equations which preceed the frequency deterainant
are

Ir“ik Uik Ein
-0
ik %3] [Pan

1f 20 is required to equal one, the soluticn for zjn is

% bt ~-u

n e Y5

uiz ‘I.lj2

Selecting the appropriate 2 x 2 eubmatrix from u will enable one to solve
for the unspecified state variables at station 0.

In erder to visualize the modal shape valucs of the state variables
at intermediate points are helpful . For this one must refer to the transfer
matrices of the separate componentsa. For lumped components the knowledge
of the state variable at either end is usually adequate for visualization.
For distributed beams, however, the trigonometric and hyperbolic functions
describing the shape within the component are far from obvious. For plotting

H
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chesa functions one can sssentially divide the component into smaller
components thus creating additional intermediate state vectors (for purposes
of plotting only, not for finding eigenvalues). When plotted versus
distance along the axis of the arm the atate variables indicate the shape,
angle, moment and shear amplitudes along the arm.

Steady State Frequency Response

In the previous section two state variables at each end of the arm
were specified to be equal to zero, thus establishing simple boundary
conditiom which enabled one to search for the eigenvalues of the arm systen.
Another way to specify the system is to impose sinusoidal forcing functions
of Zfrequency {i and arbitrary but constant amplitude on from one to four
of the state variables (subject to the same constraints on combinations
of state variables as for boundary conditions indicated in Figure 4). The
procedure hare is actually more straightforward than for finding eignevalues.

Consider a linear system with at least a small amount of damping (present
in all physical systems) forced by a single sinusold of constant frequency
for some appropriately long time. The response of that system at any point
will be described completely by a complex amplitude times a sinusold of the
sane frequency 3 . Alternatively the response could be described by a real
smplitude and a phase angle. This complex amplitude as a function of & is
termed the steady state frequancy response.

Consider once again an arm model with describing transfer matrix u.
Now |™¥ -w

4 ¥
M U M
¥io v

Assume the rows and columns of U are rearranged to form [ such that the first
two state variables of the rearranged state vectors zg and z, are forced

with a sinusoid of arbitrary but constant complex amplitude. Then
gg = Uz,

Let us partition this matyrix exprassion such that

Cfel L fo, @ ¢ )
£ [o 11 12 Y
I U, Va2 r
y LA
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fy and f contain the forced state variables and r, and I, contain the

remaining state variables, termed the response variables,

» L "lnhheln &
4) Ip *Uy L tUni,

solving explicitly for L7 and X

-l U
from 3) r = U Ly U, U, £
from 4) r. = DU, £ 4+ 0. (01 fq - 0y, Oy £)
0 21 *n 22 YW oa2 20 12 31 In
3 1% U, 0.8 10, -0, 950 0 ]
22 “12 bV T Y22 12 i £,
el o, T g, |
fa 12 : 12 "M iaJ

Assuming Uzi exists.

Equation 5) expresses the four response state variables in terms of
the four forced state variables. The value of w at which che transfer
matrices will be evaluated will be the forcing frequency 2 . The forcing
vectors f, and fn wiil contain the ( possibly complex and distinct). forcing
amplitudes. Complex amplitudes can be used to represent a phase shift
betwaen the various forced state variables. X and I will contain
tha amplitudes of responses.

In practicve it is saeldom informative to force more than one state
variable simultaneously. Then it is posaible to simplify equation 5,
assunming therc i{s only one non gtero element in _foand jﬂ .

Once again it is usually preferable to numerically evaluate the in-
dividual component transfer matrices prior to multiplication, enabling

straightforward implementation on the digital computer.

n
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Impulse Time Response

It is well known that the steady state frequency response is
equivalent to the Fourier transform of the impulse time response
for lineayx systems. This has long been used to obtain the power
spectral density from time racords, The inverse transform of the complex
frequancy response (which contains magnitude and phase information) can
thus be used to obtain the impulse response. This enagbles one to visu-
alize the system time reasponse to an impulse disturbance., Thus if one
desires the impulse response of a glven state variable, displacement
w(t) for example, to an impulse disturbance at another state variable,
sheer force V at the same station for example, one first uses Equation
5 to solve for the frequency response of that variable, in our example
w (jw) . One then uses the inverse Fourier transform given by

oo

a0 = -L %y Qo) et a
i = respounse state variable index
i = response station index
to determine the time impulse response for example w(t).

In practice we desire to evaluate this response digitally using discrete
samples of both the time and frequency responses. This introduces
a great number of subtle consequences which will not be discussed in this
section. Suffice it to say that the inverse transform can be performed
economically with a slight change in the very efficlent FFT (Fast Foruiler
Transform) algorithm @ ). The use of the alporithm in the inverse
fashion is not well documented and will be discussed in a later section,

Lxperi=meres! Yarification of Arm “odel

To get some indication of the accuracy of the model two sets of
experiments have been performed. The first of these is summarized in
Figure & and Table 1. The second is summarized in Tipures 7 and 8 and
Table 2. In boch cases, the predicted matural frequencies of the undamped
systems are compared to the resonant frequancles observed when forcing
the system with a sinusiodal torque. In the first set of experiments,
the frequency was determined via stroboscope. The second experiment

was conducted by Octavio Maizza-Neto, also in the Department of Mechanical
(6) Bergland, G. D. "A Guided tour of the Fagt Fourier Transform",

IEEFE Spectrum, July 1969.
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It was performed using automatic frequency
sweeping and measurement of the amplitude of the endpoint of the

(.281) (.271)

average X errer 4.1%

table 1. Resulte of Experiment in Fipgure 6.
! e @ ) o 9 & 9 g
it = o wl o ol ) ot -
— P ] -] 7] o 7] -l [T
=% _&_ Y] 4 ] @ ] & 5]
Pl ~ [ ) I b bt Q
by 4 bt [ [~} S (% E (- " E
© 3 N Nt -
i o L o
'é e
o o ey - ® 3" 3" 3" 3" 3" 3
o
5 (kg) (m) (=) w (rad/sec)
tn  3.44x1073 L9201 .EB85 45 163 162 499 567 === wemm
{.0502) {.281) (.270)
out 3.44x107> 921 .885 45 157 161 549 565 1045 1025
(.0502) (.281) (.270)
in 1.12x10-3 .921 888 45 233 232 556 605 1357 1350
(.0163) (.281) (.271)
in 921 . 9406 45 263 264 585 635 1477 1464
{.281) (.288)
in 3-4&!10“3 921 589 0 201 211 520 583 1081 1100
{.0502) (.241) (.271)
in 1-12310-3 921 . 889 O 260 268 596 643 1359 1377
(0163 . (.281) (.270)
in 0 921 . 949 0 284 292 631 667 1466 1481
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Table 2 Comparison of I'redicted and observed (Fig. 7)

Model
(hz)

77.2

-145.0

278
477

735

1063

Natural Frequencies - Experimental Case

Experimental

(hz)

80.76
136.6
244 .6

401.6
417.0
688.3

{859.2
893.1

1366
1591

X Error

4.32
6.0%
13.8%
18.8%
14.47

15.6%
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tigure 8 piots the acceleration amplitude measufed versus frequency
for this case.

The motor rotor inercia was the only value which could not be
neasgured, Table 1 is based on values of that parameter taken from
a motor catalogue. By using 307 lower values the maximum error was
reduced to 3.74 for the first three natural frequencles, Thus 1t is
possible that the errors in Table 1, although not excessive (averaging
4% do not do the model justice.

Predictions of the first three natural frequencles appear good in
both cases, with accuracy decaying after that. Figurc 8 displays
acceleration amplitude.

The decay of the amplitude peaks indicate that the first two
modes will dominate the response. This decay will be even greater
for displacement amplitude. To obtain the relative magnitude of these
pesks one must divide by the frequency squared. Table 3 shows the
ralative amplitude of the first six modes for acceleration aund

displacement.

Table 3 Relative Amplitude of First Six Resonances

Number 1l 2 3 4 3 6
Relative 1 868  .162  .226 .1l66 170
Acceleration

Relative 1 .304  .0177 .00914 .00229 .00150
Lbisplacement

. A e b a—— P vo— ~———

The quality of the data seems good in both cases. The multiple
peaks at some resonances in Figurxe 8 ame probably due to the constantly
changing frequency which does not allow :he beam to reach steady state,
and with the mixing of two nearly equal frequencies from the torque motor
and the beams produces a beat like phenomenon.

For the higher modes a decay in accuracy is not surprising. Since
tiwe total motion involved in these vibrations is very small, nonlinear

effccts such ag backlash from the nonzero tolerance at the joint bhecome

. h

i
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Inverse Fourier Transform via Digital Methods

The calculations of the small motion respouse of the arm system have
besn carried out in the frequancy domain. This intormation is related
to the time domain response via an almoast symmetrical pair of trans-
formations -- the Fourier transform and its inverse. It is at best
awkward to perform thess transformations via analop hardware, and in
view of the digital nature of the culculations to this point digital
calculations are preferred. This introduces distortion due to sampling
of continuous phenomena.

The digital Fourier transform (DFT) and its inverse have exact pro-
perties in themsclves and can be used to approximate their continuous
counterparts. This can ba done moat efficiently using the algorithm
koowt as the fast Fourier transform or FFT to compute the DFT. Only
by understanding the DFT can the sampled approximation yield infor-
mation on the continuous case with the least distortion and greatest

afficiency.

Fourier Serieg for Continuous Functions., For a periodic time function
it is well known that there exists a representation in terms of a
weighted sum of sines and cosines, or in terms of :omplex exponentials
which are harmonics of the fundamental frequency fi. This is called

the Fourier series:

b
(7a) ) = 5 Lo F exp (39 L=, . .-2,-1,0,1,2,. . .

Where Erey
! = the fundamental frequency in rad/sec

more signiricant. isecause of the small amplitude it is not felt that this
significantly affects the model for practical use.

’
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T/2

(7b) F £(t) exp (- i0t) dt

-

i
~T/2

Where T = 21/@ = Period of on€ cycle in sec.

The Fi are the Fouriler coefficients.
It is uvsually possible to truncate the series at a finite number of
harmonics, which depends on the accuracy desired.

For aperiodic functions it seems intuitive that T goes to infinity

and O = 21/T goes to zero. In fact in the limit

(Ba) £(t) = % f P(w) exp (Jut) duw
Bb) £Gw) = |  £(e) exp (-gwt) de
il

F(jw) is the Fourier integral and is equivalent to the Fourier transform
of tha time signal.

The above are trus for any tire signals regardless of their origin.
Certain additional relations will hold when the time function is the
response of a linear system. When £(t) is the response of a linear
aystem to an impulse input to one variable at a point in the system
at tw0, F(jw) is the steady stats freaquency responss resulting from
a wnity amplitude sinusold forcing the same variable. Thias is in fact

what is obtained from the frequency domain arm modal.

Liscrete Approximations. Starcing in either the frequency or time

domain, ond c¢an at least formally transform to the other domain via
Equations (8). In practice however one must approximate the transform
by replacing the integration with susmation and replacing the dif-

ferential dw with the increment AW resulting in

£
3
E
a
:
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~ 2 n
{9) f(e) = f(t) = T L F(ji Mw) exp (Ji Awt) &w
iw-n
or a
£(t) = g-‘“,; ) F (34 M) exp (31 Awt)
fm-n

By comparing this with Equation (7) one realizes that this approxi-
mation must be periodic and of period 2n/Aw , indicating that dis-
tortion of some sort has occured.

Certain steps must be taken to assure that the distortions re-
sulting from the discrete approximations do not render the approxi-
mata time response %(c) usaless. For f(c) to result from a statble
physical system the response for t<(} (before any input) must be zero.
Noting in Equation (8b) the two sided nature of the Fourier integral,
and recalling the periodic nature of ?(t) one can correctly conclude
chat the results of Equation (9) must be at least approximately
zero for half of each period. This requires sufficient time for the
impulse response to settle out, placing a lower constraint on the
period 2m/Aw(or upper constraint on Aw).

It i{s not readily apparent in the frequency domain what an ade-
quately small value of Aw {a. If one knows the location of the system
eigenvalues he can estimate the settling time of each exponential.

For complex conjugate root pairs for sxample

Whare L = damping ratis of the root pair

w_ = distance from origin of the pair

t = time to point whers response remains within

272 of ateady atate

ik
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One may make Aw smaller by either increasing the numuer of samples

or by limiting the upper value of the frequency response considered.

Dy lowsring the upper value of frequency Qf that will be ccnsidered

one removes the components of the time response with frequency greater
than Qf. By looking at the frequancy response for the system one can
estimate ﬂf. Resonant peaks that are not down at least 20 dbh. from

the magnitude at we0 should be included 1if feasible. Thus for given
settling times and givan frequency Qi one arrives at a minimum sampling
interval in the frequency domain analogous to the Nyquist sampling
incerval in the time domain., Just as s 'l time intervals between samples
are required to evaluate the frequency response for large frequancy,
small frequency intervals are required to evaluate the time response

for long times.

Fal
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Numerical Implemantation
The arz modeling method has been implamented on a digital computer.
This section will describe brisfly the program and how the user may
interact with it. Also described are numerical difficulties that have

arisen in use and how they have bsen handled.

Computer Capabilities
Although it was originslly intended to include all the programs

in ons package for intsractive use by tha designer, this goal has

been abandonsd for ths pressent time due to the modsst core storage

of the machine usad. The Interdata Model 70,with 40K 16 bit words

of core storages at the M.I.T. Joint Civil-Mechanical Engineering
Computer Facility was used. This is a mini computer handling inter-
active graphics and console input which is very useful in a design
situation. An Intardata Model B0 with 32K 16 bit words of storage

was usad for some of the more extensive eigenvalue gearches due to &
lower price structurs and a faster CPU, The program as it presently
exists is divided into saveral compatible packages. Table 4 classi-
fies tha programs in seven more or less related categories. These could
at some point be combined into 2u integral program with complate
communication between all the program parts. Categories I, II, and III
utilize descriptions. of the arm and subroutines in VI and VI
Catagories IV and V use output from I1 and III to obte'n additional

information,

Nature of User Input
This sectfon will briefly describe the natures of the user inout to
the system to indicate the designer effort required (not to indicate

how to use the programs).

-
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Table 4. Program Category Outline for Numerical implementition
1 Natural frequency calculation (no damping)
A. Single Precision b
L. Double Preccision
[T Eigenvalue smearch (two dimensional search, systems with damping) i ‘
A. Card and console input only -
B. Interactive graphics implementation .
111 Jirequency response calculation
A. Logarithmic frequency scale
l. DBode plot
2. Polar (Uyquist) olot - *1‘

3. ‘fodified polar plot |

B. Linear frequency ascale {(equal increment in frequency for *

FFT {nput)
IV Mode shape calcui.:ion and display .
V Fast Fourier transform f
VI Componant transfer matrix caleculation .. i
A. Jistributed Beam ﬁ |

1. Barnoulli -Euler model

2, Timoshenko model (includes shear and raotary inertia)
b. Rigld llody

1. General

2. Uniform cross secilon
C. Angle in the arm shape

1. In the plane of vibration

2. Perpendicular to the plane of vibration

D. Controlled Rotary Joint

1. Transfer function control
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Z. Witn tlexible shaft and gedar reuwuction.

Parallel elements (combines certain elvments in parzlilel by
clamping them at each end).

Jilscontinuity in one state varjable {with its associated
variable equal to zero eg. pinned connection between beans
or pinned connection to ground)

Search Routines

l\l

B,

Pattern search - 2 dimensional

LY §5P root findiag algorithm

)

= 1
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Arm Degcription. Ths description of ths arm to be modeled is in terms

of the arm eclements or components sslected from Category VI of Table
4, Fach elemant requires one and sometimes more data carde giving its
paramecars and are arranged in the order of occurance on the arm. In
cartain cascs there are rastrictions as to what combinations of ele-
ments can be used. For instance angles in and out of the plane of
vibration would result in a nonplanar arm which cannot be handled hy
four etae variables. Other rastrictions include 1) arw discontinuity

can he used only with natural frequency or eigenvalue (I and 1I1)
calsulations as pressntly implemented.

R) Parallel elements cannot be used with mode shapc calculations.
3) Flexible shafts incorporated into the controlled joint must
connect to a pinned, clamped, or sliding end of the arm.

Calculation Descripgion Input. Presently the description of the de-
sired calculation for natural frequencies and frequency rasponse regquires
one card for describing arm boundary conditions, calculation type,
number of increments, and extrems fraquencies considered. In addicion
the forcing variable must be spacified for frequency response cal-
culatfons. A number of sslactions of output alternatives and extended
calculations ara available by data switch and cousole innut at run
time.

For eipeavalue calculations additional atarting points for the

two dimensionnl dearch can be raad in from card or console in one
implamentation, or input graphically via joystick and

crosshalrs in ancther implementation.
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Mode shape calculations require the input of the elgenvalues for
the aystem for the mode for which the shapes are to ba calculated,
boundary conditions, and the number of points at which the shape is to
be calculated for each heam alemen:t.

To calculate ths inverse Fourier transform to obiain the time im-
pulse response, the frequency rasponse must first be calculated with
squal spacing between calculations (IIIB). Ths results are stored on
disc to be used by tha FFT algorithm. The specification of the total
aumber of points to be used and the frequency range they cover is

inpui by card.

Natyre of Program Qutput

The program output is of the nature described in Table 4. In casss
vhers there are arrays of data (such as the values of frequency response)
this data can sither be plotted or plotted and printed to allow more
precise comparisons. In this case there is also a selection of which
endpoint state varisbles ars to be plotted. The three types of fre-
quancy plots are the Bode disaram, Polar plot of magnitude vs. phass,
and the modified polar plot which can ba used in stability analysis
for certain nonlinear arm elements. Tha gaphics asaisted eigenvalue

search program also yields a plot of the roots as they are found.

Numerical Difficulties

The arms modeled to date have resulted in few numerical difficulties.
The difficulties encountsred and ways of dealing with them are de-
scribad below.

False Roots in Eigenvalus Search. For a damped arm system the frequency

el —
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determinant is a complex numbsr. Evaluated at the system eigenvalue
both rial and imaginary parts should be zero. Since conventional root
finding algorithms deal only with rveal valuss, alternative mathods
must be found. At present the procedure is to minimize the complex
modulus vis a pattern ssarch program developed by Prof. D.E. Whitney.
The global minimums must be zaro, but the search routine mav return
false eigenvalues corresponding to local minimums. These can usually
be detected by simply looking at the modulus value. When the modulus
value is near zero there is a possibility that the nonzero determinant
is dus either to the finite word size of the computer or to the fact
that a false root has basen returned. To resclve this ambiguity one can
look at the real and imsginary parts of the determinant. If an actual
systea root has bean returned, and it is a single distinct root, the
real and imaginary parcts sust both change signs in the neighborhood of

the root. In normsl operation vhere the change in roots with desige

changas {s being observed the user confidence in root positions is high,

and only when unexpected root locations are returned is the doubt suf-
ficient to check the sign change. The experience has been that this
chack ssldom fails to confirm a root whoss determinant value was
reasonably loy (say less than 0.1). What is considered “reasonably

low” varias with the arm and tha position of the root.

Convargence to the Wrong' Eigenvalue Since the eigenvalue search
basas its actions on the shape of the determinant modulus over the
complex plans, it will converge to different roots depending on

vhere tha search is begun. Thus one can repsatedly “find" the sama root
and not find a icsired root. Undaxr thase circumstances graphical
Jdisplay and input bacomes very helpful, allowing the user to quickly

modifly the starting point of the search based on the displayed results

"
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of the praviocus secarch. Search routines specifically designed to take
advantage of the particular problem of complex root finding might
do much better and cut down on the user interaction required.

A more critical numerical problem arises when it is practically im-
possible to make the routine coverage to a root that exists. This has
baen observed for e..ceme values of arm servo control parameters,

It corresponds to shapes of the deteruinant that change very rapidly

in the region of the sigenvalues. It seems to be aggravated by two roots
wvhich are very close. Fortunately whan this happens it also seems

that the root changes very slovly with parameter changes so that roots

detarmined with different parameter values can be used.

Numerical Ovarflow In only one case has the problem of numerical over-
flov been encountered. Ths problem was solved for that case by using
extended computer word size, which may not be practical in all cases

for all computers.

n
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PART II

Characterization of the Arm Sarvo -- Structure Interaction
Two EBqual Link Example

In an effort to chavacterize the interaction of the joint servo

control and the structural flexibility of typlcal arm configurations

the following study wes undertaken. The most typical of genaral purpose

arm configurations seens to be ons with two long beam like segmants
of approximately equal length with rotary joints. An additional short
segment incorporating the end effector is also typical but will not
be conaidered in this lthdy.

The beaan segments in this study are considered to be identical
in all propsrties but have different boundary conditions. They are
joined by a servo controlled rotary joinﬁ. This “elbow’ joint is
assumad to operate on the position and vcloctty'.rror feedback of the
joint, analagous to a rotary spring and dashpot. One end of the twe
1ink arm has free boundsry conditions and the other end is clamped to
ground in tha first case, and in the second case is connacted to ground
via a rotary "shoulder’ joint with the sawms control scheme as the elbow
joint,

The modeling process diacussed in Part I was used to obtain the
dynamic characteristics of the two cases. The display of the dominant
eigenvalues is relied on haavily to convey the changes in system he-
havior due to changes in joint servo control parameters. In some
casas this is supplemented with the fraquency response and time impulse
response due to end point force distrubances. The frequency determinant

vas analytically simplified for this study as described in Appendix A.

3
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First let us consider the two identical link, one joint case il-
lustrated in Figure 9. This case includes distributed besm dynamics

on sither side of & controlled joint. It proves to bs very informa-

§
tive becauss after nondimensionslization the rasults for tha complete
rangs of independent parameters can ba displayed on one plot of the
root loeci. ot
Nondimensionalisstion of Parameters -

Table 5 displays the important physical parameters for this problem
and a set of convenisnt nondimensional groupings. They are nondimensional
fraquency (complex) @ which is multiplied by J-1 to obtain the aigen-
valus, the nondimensional servo frequency ?n'. and damping ratio 7. The
servo frequency would rasult from a rigid inertia equivalent to that

of the outer link with only the joint position feedback.

-
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As observed in Figure 10 and in Figure 11 in more detail this simple

cese has root loci which fall into three characteristic groups as

tollowa:
1. W << 386
PIRTI .386
3. ©

> 386

Appearing in Figure 12 are the higher ovder roots that are not
dominant.
Low Servo Bandwidth (Figures 10a and ila)

For case 1 with ﬁ& much less than ,386 rad./sec. and § not much
greater than 1.0 the behavior is essentially that of a rigid arm,
For § < 1 the complex conjugate roots r and r, near the origin in-
dicate oscillatory behavior. For { just greater than one the real
roots indicate overdamped behavior. There will theoretically also be
vibrations of an infinite number of modes of the distributed beams.
Their effect will be less important in most cases because their time
constants are several timas higher and their amplitudes several times
lower than the lower, dominant modes. As § is incrcased past one, one
of thess real rootes, rys mOVes towvard the origin and r, moves avay
from the origin, eventually meeting & third root, r3, moving toward
the origin. Further increases in { cause r, and r, to bscome complex.
As  gets very large these roots move in an arc and approach the
imaginary axis. The valus they approach is the clamped elbow natural
fraquency of the arm, which is tha value one on the vertical axis of

the nondimensional plot of Figurs 1l.

G s b e T s et - L - T
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Table 5. Nondimensional and Physical Variables for the Two

Flexible Link, One Joint Case

Physpical Variables Nomanclature Dimenaions
Joint position feedback gein (angulsr) k LF
Joint velocity feedback gain (anular) c LPFT
Frequency (complex) w (~3s) 71
Mass density / unit leagth u A
Total arm length L L
Stiffness product £ rr2

(E = Young's modulus and 1 = cross ssctional area moment of inertia)

From these variables we construct for convenience:

First natural frequency of a cantilevered bsam of length 2

w = 3.52 f—E-‘—;
a u!'

Sexrvo frequency for a rigid arm structure

u. - 24 %
vV ow?

If one replaces EI and U as independent dimensional paramaters with

w, and W,s one can form the following nondimensional groups:

Nendimesnional Varisble Nomenclature Grouping
Fraquency w W/,
Servo fragquency W, mslwc
Servo damping ratio 4 12 3¢
LR

e

IO
ik
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Critical Servo Bandwidth (Figures 10b and 11b)

As‘_. is incressed, the point at which r,

axis, and the point at wnich r, and r3 leave the imaginary axis move

and rz join the real

closer together. For a critical value of Ka found numerically to be s
asbout 0.386 thess two points meet and there exists a triple root for

Z = 0,915 in the region of (~.67 + 30.0). In this region the position

of the roots is very sensitive to alight variations in 3; and . This -
cricical point sesams to be the farthest from the origin that the -
nearest root of the arm can be located, and thus the fastest overdamped
response of thess dominant roots obtainable with simple joint position
and velocity feedback.

=

High Servo Bandwidth (Figures 10c and llc)
Por EL > 0.386 the root locus plot looks quite different than for
E; €¢ 0.386. A single root r, remains on the real axis moving toward
the origin as { increases. Tha two complex conjugate roots r, and r, i
renain imaginary for all values of {. They move from a value on the
inaginary axis for w0, through an almost semicircular path to a point ;

whose value is the clamped slbow natural frequency. As E; becomas

Emy

larger the ssmicircles become smaller and the real root becomes more -

-

negative for the same valus of damping ratio L. In this region the
spring 1is too stiff to allow wotion which would dissipate the vi-

brational anergy of the beam. This is sssentially a poor match

§
x
:
§
:
-4
i3
§
‘;

betwean the mechaniczl impedances of the structure and joint for

the purposes of dissipating enasrgy.

Conclusions and Summary for Two Link, One Joint Case

Figure 11d diaplays contours of constant position feedback gain

. h
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(equivalant to constant 5;) for a vide range of values of G;. Also
indicated in dashed lines are the contours of constant . This plot
shows the transition from the rigtid to tha floppy extreme casss for
the lowest complex conjugats pair.

Conclusions one might support with a graph of this type include:
1) Through carsful design one may ba able to achisve dominant system
eigenvalues on the order of one~half or mors of the lowest clamped
joint natura. fraquency using this seimple control, For example see
u.luc » 5, 7= 0.8,
2) Noticeable daviations from rigid behavior become apparent when
the eigenvaluss of the rigid dynanics are of a magnitude of about
one-fourth the loweat clamped joint natural frequency. For axample
ses ”EI”E = 0,33. Excitation of tha highar modes by periodic exci-
tations may require that flexibility be considered for any arm,
) Consideration of arm flexibility becomes crucial when a rigid
design procedure produces dominant eigenvalues the magnitude of
which {s greatar than one-third ths lowest claxped joint natural
frequency. A rigid analysis of the deshavior would indicate that in-
creased velocity fesdback would result in increased damping on the
dominant complex Toot pair. The opposite result occurs in the actual
flexible systam and tha effsct is to decraase damping for the complex
conjugate pole pair. Ses for example u.luc = 0,5, g« 0.8.

The case for two joints with this same control scheme discussed in
the following section supports thase conclusions. Additional factors
which should be considered are unsqual beam cross section, payload and

actuator masses, and s more sophisticated control,

rm
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Two Link, Two Joint Case

Having considered the two link one joint case the next logical
step in complexicy is two linke and two joints. This configuration
more resambles an actual manipulator although when the additional
joint is locked or if the joint drive is salf locking and not being
driven the previous result is more realistic. The step is made with
considerable increase in the difficulty with which one can thoroughly
understand the case. With the simplifying assumptions of identical
links and fesdback constrained to two variables per joint one must
deal with four independent parameters in the flexible case after
nondimensionalising tha problem and establishing the nominal joint
angles sbout vhich vibration 1is baing studied. While thia is not
80 great as to prohibit meaningful explorstion of cthe case, it makes
compact and intuitive display impossible.

Limiting Case - Rigid Links
In order to establish bounds for ths flexible link beshavior we

will first consider the limiting case of rigid links. In one nominal
position this casa can be descrided by three nondimensional para-
meters as shown in Table 6. As chosen here thess correspond to non-
Jimension gains in t-+ faadback of the velocity and position of the
proximal or shoulder joint and tha velocity of ths distal or albow
jeint. The probler is nondimensionalized with respact to the total
arm length, the eibow position fesdback gain and the u.adamped natural
frequancy with tha shoulder joint climped.

Lagrangs's equations were used to develop the frequency function
for the rigid link case and that development is aketched briefly

in Appendix B. For the constrained feedback thae rigid motion is very

N
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close to that of & double pendulum for small vibrations.

Nondimengionaligstion of Two link, Two Joint Example

By nondimensionalizing the two aqual link, two joint case we can
reduce a problem of eight paramaters to one of five parameters. For
root locus plots one of these paramsters is the location of the roots
which will be & function of the other four parameters. The choica of
nondimensional groupings will depend on convenience and the physical
significanca to the problom at hand., In the case of two links and
one joint the choice was influenced by the prior understanding of
a simple second ordsr system which was tha limiting case as the links
becane very rigid relative to the joint. When two joints are present
the rigid counterpart is & fourth order system which is generslly
not nearly so intuitively comforting.

By retaining nondinensionalization compatible with ths rigid anslysis,
however, we can draw on our previous analysis and readily see when theres
is a significant departura from the rigid behavior. Thus we chose thas
nondimensional groupings of Table 7 which snables us to see in vhat
range of flexibility the rigid analysis is valid. Notice we can move
from the ri;;d snalysis whose paramatars appear in Table 6 to tha
flaxible analysis by additionally specitying one valus, the ratio of
the clampad joint, cantilevered fraquency to the rigid (clamped shoulder)
frequency, w ./ p = E;.

Table 8 shows alternative paramsters that will be used for improving

on tha rigid analysis when the links are eignificantly flexibla.

F4)
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Table 6 Nondimensional and Physical Variables of the Two Rigid Link,
Two Joint problem

Phygical variables Nomenclature Dimensions
Distal Joint position feadback gain

(angular) k, FL
Distal Joint velocity faedback gain

(angular) <y FLT
Proxal Joint Position feedback gain

(angular) ky FL
Proxal Joint velocity fesdback gain

(angular) La, PLT
Mags Usnsity / unit length y rr? 172
Total Arm length L ' L
Frequency w -1

Construct the following variable equivalent to the natural frequency
of the ara with the proximsl joint clamped, and with simple position

feedback of gain k, to the distal joint with dimensions 7L

P o |22
Ny
Nondimensional variablas Grouping of Physical variables
w w/p
x ky /K,
E; cll.c/k2

<, ' czlc/kz

e i
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Table 7. Nondimensional and Physical Variables of the Two Flexible
Link, Two Joint Case., (For deviation from rigid analysis.)

Physical Variables Nomenclature Dimension

Distal joint position feedback gain (angular) kz LF
Distal joint velocity feedback gain (angular) ¢y LFT
Proximal joint position feedback gain (angular) kl L¥
Proximal joint velocity feedback gain (angular) ey LF!
Frequeacy (complex roota) e T-l
Mass density/unit length u F’I‘ZL"2
Stiffness product (E » Young's modulus, EI FL2
I = ¢ross section moment of inertia)
Total arm length L L

From these physical variables we construct for convenience:

First natural frequency of a cantilevered beam: w, = 3.52 /ZEI?ulA) g T“l

Rigid natural frequency with proximal joint clamped: p = J3n27;23 d o1
We will use the variables w_and p instead of Ei and u and noadimensional-

ize with respect to p, k nd L to obtain the following groupings :

2
w w/p
"k'l k, /k,
Ei clp/k2
Eé c,p/k,
5; wc/P

N

rezadly e Fhdime.

L S e L
~



Table 8. Nondimensional snd Physical Variables of Two Flexible

Link,
Two Joint Case. (Conacant link parameters.)

Physical Variables Nomenclature Dimension
Distal joint position feedback gain (angular) k2 LF
Distal joint velocity feedback gain {angular) c, LFT
Proximal joint position leedback gain (angular) kl LF
Proximal joint velocity feedback gain (angular) ¢y LFT
Frequancy (complex roots) w T-l
Mass density/unit length W préy 2
Stiffness product (E = Young's modulus, Rl FLZ

I = cross section moment of inertia)
Total arm length A L

From thess phyr :al variables we construct for convenience:

FPirst natural frequency of a cantilevered beam:

Cantilever beam endpoint rotational spring constant:

w, = 3.52 JETT 24y 8 772

o = EIfL d LF

Use w and a instead of u and EI. Nondimensionalize with respect to

L, mc. and o to obtain:

el
E
~
£

C
Ei kllu
k) kyfa
Zl clmc/a
-
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Performance Criteria

When dealing with the flexible or rigid case one needs to develop
some criteria for good dynamic performance. While some criteria are
obvious such as stability, others depend on the specific application of
the arm and in the practical design case are almost always the result of a
combination of subjective designer opinion and constralnts of weight, power,
or previous design decisions. The quadratic cost function of linear optimal
control is a popular way to specify perfcrmance but is more the result of
mathematical convenience than a correct estimation of the cost.

For an indication of how different criteria can result in different
systems refer to Figure 13. It displays eigenvalues of optimal fourth
order systems by three criteria: Integral of Time times Absolute Error
(ITAE), Solution Time criterion, and a quadratic cost function developed

by Tbunncnd(7) for manipulator arms. Townsend's control gains resulted

in all overdamped rcots and a rather sluggish system, The other two cri-
teria , ITAE and solution time, vesult in four underdamped roots and there-
fore a much faster response, but with some overshoot.

In an effort to make this analysis independent of the criterion
selacted the roots of the arm in a broad range of configurations which
might be termed acceptable will be discussed.

The transient performance of systems with various root pole place-
ments and desirable placements for poles is extevsively discussed by

Graham and Lnthrop.(s)

M Townsend, Allen L. Jr., "Linear Control Theory Applied to A Mechanical
Manipulator" SM thesis, Dedt. of Mechanical Engineering,
Massachusetts Institute of Technology, January, 1972

(8) Graham, Dunatan, and Lathrop, R.C., 'The Synthesis of 'Optimum' Transient
Response: Criteria and Standard Forms". Transactions
of the AIEE Vol.72 part 2, November, 1951.

o
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Feedback Control Configu-ation and Its Limitations

As suggested previously the control configuraticon which s being
considered in this section is8 not complete state variable feedback, even
in the rigid case, This would involve feedback between the joints (inter-
joint feedback) as well as within the joilnt (intrajoint feedback). Foyr
additional feedback gains would be involved, two velocity and two position
gains. The additional couwplexity would enable complete freedom in the
rigid case of placing the eigenvalues of the system where ever desired.
and in some arms the improved performance may well be worth the added comp-
lexity. GSuch interjoint feedback is extremely rare in .arms produced today,
even experimental armeé. In fact many arms do not have velocity feedback
and are dependent of friction in drive trains which is highly variable
from unit to unit, and cannot be readily controlled.

Thus vhile we can achieve many acceptable pole placements it would
be sccidental if we could achisve the optimal, cven if that optimum
were validly and precisely defined. For example we cannot match the
elgenvalues dictated by the standard fcrms of the ITAE or solution time
criteria or in general duplicate the sigenvaliueg of a quadratic cost
optimal system. More complete feedback would give one more degrees of
freedom in placing system eigenvalues arbitrarily, freedom not available
in the present cése. The feedhack gains determined from the matrix Riccatti
equation for a quadratic cosc criterion for example assumes all measured

state variables can be fed back to any control variable.

The justification for this simplificaiton thea is that it more adequately
describes the practical problem. This constraint in feedback 1is not entirely

a glmplification. Design techniques for complete state variable feedback
are more readily available than for restricted feedback.
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Discussion of the Root lLoci-Two Link, Two Joint Rigid Link

Figure 14 displays thse location of the complex conjugate root pair
for the case in question with no veolcity feedback or damping. We will
reference the roots as Tyr T r3, and L whagc ry » rz* and r3 = rk*.

The lowar indexes refer to roots nearer the origin. The relative posiction
of the damped roots is determined by the ratio of postion feedback at

the two joints kllkz . This relation is displayed in Figure 15. 1In the
nondimensional case considered the lower root asymptotically approaches 1 o
aa the inboard “spring" ky» is made stiffer, ,
The position of these roots is moved to the lefr as the velocity is fed back
with increasiag negative gain., The series of Figures 16a through 15d shows

remaining fixed at 1.

these variations in detail.

For any value of kilkz, the roots can be brought to the negative real
axis by increasing Cy and c, appropriately. The difficulty arises in achieving
sufficient damping for the pait ry and r, without greatly overdamping roots
ty and . For relatively low values of kllkz (see Figure 16a) 1i¢ is impossible
to achieve a damping of the order of 0.7 on ry and r, without bringing the
Toots Ty and T, down to become two real roots, one of approximately tha same
rnagnitude as *, and r,. For valuas of kllk2 = 2 a reasonable responss can be
obtained of a third order nature for ¢,- 6.5 ¢, = 0.1. As noticed in Figure
16, T, and r, are much nearer the origin but this can be compensated for by
incrsasing kz when dimensional valuas are completed, thus shrinking the scale
of the plot.

As kllkz is incressad to 5 snd 10, higher values of ¢, are required to
Jdarp the lower modes sufficiently. Tie high values of both ¢ angd ¢y in
turn overdamps the higher modes. bringing s slow real root near the origin.
However, as kllk2 continues to increase to 50 (see Figure 164) the lower
mode becomea essentislly independent of s and its damping can be controlled
by ¢, at will, This approaches the one Joint case, For kllk2 = 50, cy, ™ 2,
¢, s 1.7 the two complex conjugate pairs wlll both have damping greater than
0.7.

Thus there are many parameter values where performance might be satis-

- SR e LI P P

factory. The one paerfarred would depend on the application at hand. The ares
with kllkz large veams preferrable in terms of performance but the higher gains
would require larger shoulder motors if the operation is to remain within

"0
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the linear range. This is fessible however. It may be difficult to
achieve the low values of damping desired at the joints especially when
large gear reductions are involvec.

When kllk2 is small (the two gains are more nearly aqual), the lower
pair of roots remains much .earer the origin. (Figure l6a).
To have a response of comparable speed in a system with this control it is
necessary to have a higher kz, which has the effect of shrinking the
nondimensional scales of Figure 16. This may not be desireable siice a
larger value of kl rcquiFel more torque if the reasponse is to remain linear.
This requires more massive motors and drives at the outer joint, or
compliant transmission shafts which asggravate the vibration problems.

Shift from Rigid Roots for Flexible Links

To demonstrate the change of the roots as the links become more and
more flexible, examples were chosen from the rigid case which had reasonable
root locations. Appaaring in Figure 17 are the following cases, nondimensional-
ized as in Table 7.

% -2 G, =5 R
kyn 10 S, - 15 &= 2
X, = 50 % =10 e, = 1.7

For each case the stiffness parameter of the arm w, is varied from one to
10 and the root position is plotted. This is not presented as evidence of
the limits of flexibility for reasonable performance, but as evidence of the
limits of a rigid design procedure. As w, decreases the complex conjugate
root palr, Ty and rz become less damped in all cases, moving from the position
of the rigid root. The real root near the origin in these cases moves nearer
the origin indicating a slower response. For kl = 10 it is observed that the
rigid root near the origin does not move but an additional real root moves
in ceusing silmilar effects of slower response and increased phase shift.
Several things can bLe observed qualitativcly from these three examples.
Higher values of posltion feedback kl result in the complex conjugate pair
being moxe ’ensitive to W Inicially one might think that this favors lower
kl for more flexible links. This is not conclusive since to get a comparable

- e
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speed from the two ny-ttns-;l- w 10 and kllk2 = 50 one would have to use

a larger value of p» TR A vhen moving to dimensional parameters.

1f ons used p = 2 for thl’culc k11k2 =10, W, =W, P would also doudle. The
pressnt nond imansionalization scheme indicates limits of the rigid analysis

but is not well adapted to improving on that snalysis. For this reason

a slightly different schems will now be used which fixes the links while
alloving us to vary all the parvamaters of tha joint control system.

laprovement on Control with Constant Flexible Link Parsmeters In order to
demonstrate how ons might improve on tha servo control paramaters using the
flaxible model we will taks an example from Figure 17. First we will convert
from the nondimensional paramaters of Table 7, which allowed ease in comparison
to the rigid case, to the nondimensional paramaters of Table 8, which holds

the structural parameters constant and displays directly what we can accomplish
with the gontrol. The case chosen for demonstration is:

Varisble Stryctyrs] Paramecers Copstant Structural Paramsters
(Table 7 and Pigure 17) (Table 8 and Figure 18)

%= 50 ’il » 6.5

Te = 2 %, = 0.23

Firuc the valocity feeddack gnin'E} to tha outer joint is varied until
a maximum damping on the complex root pair is found as shown in Figure 18.
Thcn'Ei. the velocity feedback to the inner joint is varied until the slw
real root moves in, slowing the response. If tha maximum damping ratio
showm in the figure of 0,58 1is not adequats for the application at hand,
other values of k1 and kz could be tried or the slow real root with slow

response would have to be toleratel.

Effect of Structure Dynsmic Rigidity Requirements on Gross Motion Speed

The locked actuator natural frequeacy of an arm can be increased by a
redistribution of mass as well as hy making the entire arm more rigid. This
may involve s tapered structurs of relocation or actuator masses. This re-
Aocation requizres power transmission channels such as shafts, cables, or
hydraulic lines which add both weight and compliance, st least partially oft-
sstting the improvements.

My




T e T Rl e T

—

e I L R 2

.

4%

When it is necessary to incFease the structure's cross section
size in ofder to increase W, gross motion times suffer as described
below. The value of wc increases linsarly with r, the radius of the
structure's cross section, and the inertia of the arm increases as rz.

The task time te to perform a gross motion of given angle can be shown to
increase us r and thus as w, assuming no gravity and a bang-bang control
strategy with maximum torque Tm.

(ne might consider what penalty one must pay for operating consarv-
atively at a smaller ratio of “,/ w, than is necessary. Consider moving
from the iltmiting case of “k/ w, - 0.5. to the slightly conservative case
of “5’ w, = 0.3, by increasing r, with a damping ratio of .65 in both
cases In the limiting case the n.ndilmensional root is 80X farther from
the origin than tne conservative case. This oparating at ual w, = .3
would require an 80X larger valus of r at the expense of an 807 increase in
gross motion time.

The minimum value of r established by strength considerations may be
larger than the minimum required to yleld a sufficiently high value of W,
For a banding moment I; applied to a beam, we can show that the minimum

!
value of crogs sectional radius rnin is proportional to Tm}'a and that
r }
nin T
(10) “?c ;uin o E.! a -E_f-_ .
L

where 2is the total length of the arm.

As discussed previcusly “c determines the minimum settling time and thus the

fine wmotion control speed. A comparable gauge of gross motion speed with
bang-bang control of the second link inertia is

(11)
— % h oo
tf min 3 21.' .
'} rmin

It is postulated that there exists a preferred ratio of gross wotion speed
to fine motion speed. If 80, equations (10) and (11) might indicate when the

structure cross section is lower bounded by the gross motion speed require-
ments (via maximuw torque) and when it is lower bounded by the fine motion
speed requirements (via wc)._ Viewed alternatively it might indicate

"
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when we must increase r from Totn ©° achieve an adequate value

of W, As T, increases or & decreases the ratio of wc,min,(e,t;)
will increase and the value of r will tend to be determined

by minimum strength requirements with the resulting w, adequate

to achieve fine motion control, When Ty decreases and 1
increases the tendency will be for the W, resulting from oint®

be to low requiring r > rminfor adequate fine motion control.
These simple relations cannot predict where the limiting condition
will change, only the tendency or relative change as the arm

parameters change.
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APPENDIX A
Analytical derivation of Frequency Functions

CASE )1: Ons Joint, Two Links

w— ] e | —|
D) J

C pinned joint with spring and dashpot

The relevant state variables at each point in the system

NN

=

-w = deflsction perpendicular to the x axis
V = angle or slope of neutral axis with x axis
M = noment vector out of plane of vibration

V = ghear io the direction of w

The telations Bctunon the state variables at each and of the two ldentical

bean segments is given by the transfer matrix for a Bernoulli Euler beam.

= B2

Zyeft ~ “Erignt
- 1 . Lc ﬁ
- L Lcl ac, a 3
¥ . B"csl £ <o “’1’ 2 ac,
& &
M 8 czln B lcsln €y Ecl
4 & 4 '
v Rc,/ak fc,/a Be. ./ ¢
e \ P € 2 3 0.
Vhars
[ 2.4
¢y ™ (cosh B + cos 8 )/2 8" = wl u/EI
¢, » (sinh 8 + sin 8 )/2 a= 2251

e, ™ (cogh 8 ~ cos B )IZQZ

W = O

. = (sinh B - sin 8 )/28%

Mt

rvight




and

- O m E ©
[ ]

Across tha joint

1’::!'6-*

laft

ke iy

1 0
0 1
0 0
+ jwe

dunsity/unit length

circular fraquency of vibration
Young's Modulus

¢ross sectional area moment of inertia

Rlaft * K z right

0 0]

“
k0 |y
1 ¢ M
0 J.'J v
right

kn = spring constaat

¢ = dazping coefficient

- Y

Let Zy = the state vector at the left end of the arm

Zy = the state vector at the right end of the arm

Then "

BX By =~ Ug

1£ B describes the identical beam segments and K describes the spring loaded

Joint
Boundary Cond

2

itions require
:1rd-61 | 5" 1ﬂil )
Vg0 v,
My ty =0
LYo Lvl =0

+ L
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Thus the aquation
3y Vy
1
Contains a homogenaous cet of equutions
v t¥zwmeo

T 1t U2 ¥, w0

For this always to be true the determinant of the submatrix cf U muet = O i.a.
o B 1 %12

u
2L uy,

All that is requived 1 a great deal of algebraic nanipulation aad this require~
nent can be exprossed in terms of the elements of the matrices A &nd K as follows:

-aioh?f (1 = 2 cos?B) + coa?g + BL_ {[cos®8 sinh B cosh B
ks
~ cos B #in B cosh?s ] = 0

As kr-b o the axpression

~sinh?B (1 - 2cus®B ) + cos?8 = 0
dominates. This is equivalent to expressions for single beams of length 2 R,
A k_=w» 0, c-»0

cos?P sinh B cosh B - cos B sin B cosh?8 = 0

domlnates and ls equivalent to pluned beams without springs or dashpots.

Finally as EI becomes very icroe -+ 0, a=» 0 and via a serles expansion
of the trigonometric and hyperbolic function the frequency condition can be

shown to converge to

: _ 3k
W ad = 0

‘-;
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3
Which is true for a simple second order system with inertia wR /3

CASE 2 :Two Joints, Two Links

controlled joints

‘{Jb(;;’hs;

E—l—-}-—l-*i

Let us designsate this as

Bow U m KIB K2 B
which is equal to the transfer matrix
in the one joint example premultiplied

The frequency determinant requires
svaluation of additional terma,

1
0

0
0

oy

0
1
0

The frequency determinant is

u

11 Y12

Yoy Y22

by K1
Uex D
~ ™~
0 0 H’n dyp ==
Vg 0] 145y €32 eee.
1 0] (43 dypeenn
d d
. 11 12
d d
dyt 31 dy, v 32
k1 ky
dyy dgp = djpdyy * dyyd3p | dipdyy L
N, Y 5= T8
' 1 1

determinant for
the one joint case

requires only that d31 and d
for the one joint case would give d11 and dlz as

32

be evaluated since the detailed procedure

. dRy




A=5

® cos? + sinh?f + 8L (sinh @ + sin B)(cosh B =cos B )

d
11
4&25

® 2 (cosh B sinh B + cos B stn B) + _?? (sinh?B - sin?@)

12—~ T

d

The values of 631 and d32 are found by multiplication and simplification
to be:

431 = g32 (cosh 8 - cos B)(sinh B -~ ain B) + é‘(colhzﬁ -cos?f
bak ia
2

+ sinh?B + sin?p)

‘32 " E:v.: (sinh 8 - sin 8)? + _;g(coah B sinh & -cos B sin 8)
2

' I
Thess expressions, or values obtained from them, can then be fed into the

frequency dsterminant.
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APPENDIX B

Rigid Body Analysis of Two-Link Two-Joint Case

11 = mass moment of Ino:. . b
about c.g. of link 1

I2 = mass moment of Inertia
about c.g. of link 2

ml. mz nasg of links 1 ind 2

AN

Two Link Two Joint Arm
The kinstic energy of the system for small angles wl and wz

- 2 2453 2. yo.2 .
T _%“ (¢ Il + nlhl + nzkl)wl + (12 o+ hzlz)tp2 + 2hzﬁlnzw1¢2]

The potential energy (with no gravity) witn rotary springs of constant k
at the joints

and k

1 2

Vel (ky¥g + k(b = ¥

Lagrange's equations require for 4 = 1,2 that

4 [3(1-W]-23 (t-V)=0
dt l"?ﬁ; ' '3?: '

-




B=2

For the homogensous solution to linear differential equations

e - 1

YooYy
vherea w = frequency of vibration in radians/sec.

Computing the appropriate derivatives and arranging the results in macrix
form yields:

(81)

w
- 2 2y,.2 - -
kl*kz (Il+m1hl+n2£1)u kzhzllmzw / *1 0
-k - H - 2 2
kz hzllmzu kz (Iz+h2n2)u wz 9

The deterninant of the & x 4 matrix must be zero, which gives a condition
for determining the natural frequencies Ww.

Equal Links
If the two links are identical (Bl) simplifies to
k,+k, mntdut /3 “k,~2m? /2 ¥, 0
(82) -kz-z‘m‘lz kz-nl’u’IS ¥, } ()
vhere 4 = 11 “%m= w, =@ I1 “l,*mn 1213
which uﬁpnndl and simplifies to
(83)  kyk, - m 2% (ky+ Bk)) %3- w22 W w0

3

Equation (B3) will be used to obtain natural frequencies in both the damped
and undamped cases.
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Undamped Natural Fregquencies

1f we make the substitution of variables into equation(B3)

2 .l.‘w'
qQ - 3
)
and divide by k% wa obtain
(B4) _I:L-(ul+8)q’+_1_q“-o
K, ¥ )

The variable q corrssponds to the natural frequency with the inboard joint
clamped. The solution of (B4)xy£¢1dl two roots which are a nondimensicnal-
ized form of the natural frequencies of the original problem.

Damped Natural Frgquencies (complex)

The damped case can be obtained directly from equation (B3) by a_change
in notation.

ky = Kk +juve,
k, = k +iwe,
s=jw Iw=m it 3 -
The characteristic aquation for determining the values of s is

and

. Y 2 - -
78%/4 + 8 I(cl + 8cz) + 8 [I(kl + Okz) °1°2] + l(klcz + kzcl) + klkz 0

FiY

P R 303 kDA TR s, 3 i
o [
1Y b - -
i
> -1 - e
- : i
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Figure 1. Stats Vector for Arm Models

station 1

"——r—ﬁ?j station O
£<
¥x

[-wW] [-dispiacement
.| wr. [angle
£2 | M| * | moment
V1 shear force

at station ¢
g Bz,
B = beam . transfer matrix
Figure 2.Transfer Matrix Representation of an Arm
station 7 \

R

. &
station O L\




Figure 3a. Distributed Beam Transfer Matrix

Distributed Bear Transfer Matrix (Timoshenko model)

g n
-0y | Mer-@ene) | aes | Z[-0c,+(840%s)
?Q Co=T7C3 -ﬁq-nﬂ acy
B f;‘ ez frl=re +(84+r?)es)| co-tey l[e) = (7 +7)c3)
[:-:(f:."fs) . -“: €2 -f-‘ €3 €o=0cy
where :
g--g—’ ¢o = A(A}cosh 4, + A} cos Ay
]
- ‘M'ﬂ ¢y = A(i—f sinh 4, + i—: sin k.)
. -. = A(cosh 4, — cos
L el o= Aoy —cos )
"
f--é( W) c.-A(il-‘unhI,—r'nnl,)

i
Y=+ VVETHe =P Fie+n A=grp

(;As = Shear stiffness

EJ = Bending stiffness

M = Mass per unit lengpth

i = Radius of pyration of cross sectional areca
perpendicular to the beam's neutral axis

1l = lenrth of the beanm

W = vibration drcular [requency

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.
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Figure 3b. Angle Transfer Matrix

.f

1/cos &
_ o)

A = "
| v
| g tand
anJJJ “er ang
s NZin / J \stQIlOn ie1
. —ivl
where: R station i
m = ;1‘ mj
G R
m, = mass of elcement j

n= first joint (anple) element preater than 1,
or the total number of elements, whichever

is smaller

W = vibration circular frequency

Figure 3c.

-

R =

| Mmoo

|

Rigid liass Transfer Matrix

1
O

_%_______

c.g.

{
1

| muL -h) T mut -h)
mwo?(l -h)

- el = f— . — [ = mass moment of inertia,
1 b axis perpendicular to the
, = plane of vibration, through
o . tlie center of gravity, c.g.
c - h o
0 c
| - f o m = mass of the body
o L <
Z S
" "

O = vibration circular frequency




Figur: 3d

Controlled rotary Joint Tramnsfer Matrix

Oo- O O
@]
O

angle measurement

control motor

Pinned coonection between two elements. Relative angle is related to the

moment which affects each of the two elements. k (jw ) is essentially the

transfer function relating moment to angle. In the simplest case k =

constant a rotary spring determines the relation between angle and moment,
k (J w) can account for feedback of angular velocity and other derivatives
or integrals of the variable ¥ , for filter dynamics included for compen-

sation, and for servo motor and transmission dynamics.

=

:
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Figure 4. Physically Possible Boundary Conditions

/ .
= ==
s
¢Clamped W=z=y=0 Sliding Y=v=0
W
o) - .
Pinned W=Mz0 - Free M=V=0

Pigurs 5. Trequency Determinant

irea
¥

U= BiRAC,BeRe

pinned
£
w
c
N
t

u 7
24
zO‘

i
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w

Y
o 0O

For a nontrivial solution: )
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Figure 6 Experimental Verification - Clamped elbow joint

Ll
& Torque motor 4

rotor inertia = 3.98x10:a£t-1bf-tci
(5.75x10 nt-m~ sec”)
rods=dia.= ,25 in. (.00635m)
material - carbon steel
joint mass - 00117 slugs
(.0171 kg)

payleads, aluminum
dia.» 0,75 ins., (.0191m)
lenghts <307 ft (.0936 m)
060 ft (.0183 m)

Figure 7 Experimental Verification -pinned elbow joint

P =.00504, (.261) ,,
N E=432x10° (2.07x10°%)
N -1 -\l 7270104 (.00317)
N =.569x107 el . 23%10
N \(.96&::10 y \tom)
t§ 3 = D I o me4,875x107°
N 19 o] 0625 fo—. 882 ————sferzs i | _GOTL),
N (.280) (.0191) (.269) (.09906) ¢ 669x10~%
\ .
\Unics: J: f:.-lh.E-lec? (nt-m—sucz)
m: slups (kg)
. . r.: ft. (m)
b ;‘l"‘f“,";i‘ (nﬁ‘;gi';‘) 1nghts: fr. (m)

2
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Figure 9. One Joint, Two Link Arm Example
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Figure 10. Threc Characteristic Root Loci.
Each plot indicates the position of the three

dominant roots of the arm of Figure 9 for im()3o, )
different servo bandwidth. Arrows indicate
direction of yoot movement for increasing 1
values f damping ratio.
a. Rigid Degion (& _<<.356) )
Characteristic secolid order
syaten for reasonable values
of damping. Figure lla for detail.
Re()0o,)
-
~a
Im()To,)
1
q -

b. Transition Region. (w _=0,386)
A triple root occurs at the
q critical value of m'-0.386

for &= ,915.

> = > Figure 1lb for detail.
Re(jco,) '3 r'
‘
2 1 im(C3,)
- 1
- : r
¢. Floppy Reglon. (w_>>0.386) 1
It is no longer posnibie to bring
the dominant complex roots near the
real a.is. Figure llc for detail. . fy
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Figure 12. Higl.er Order Root loci - - \\6 ]
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0 w, /v = 0.500
Values of  appearing for each case are:
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Filgure 13. Systewm Roots ror Optlimal tourth Orger

Systems by Varioue Criteria
Criteria :
a Solution time
0 ITAE
o Townsend (Guagrai.c)

3.0

1.0

d I 1 L ] 1 | olol
7 -50 -4.0 - 3.0 -2.0 -1.0
RE(jw )
Figure 14. Root Nomenclature Indicated on Four
Undamped Roots.
(rz**Complex Conjugate of rz) ro=rf —~
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Figure 16a. Root Loci of Nondimencional Rigid Two Joint Arm: 1
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Figure 16b. Root Loci of Nondimensional Rigid Two Joint Arm: .
s ;
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Figure l6c. Root loci of Nondimensiaonl Rigid Two Joint Arm:

k=10

ky, =10
¢, varies from O.in stepsof 5
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Figure 17. Variatien in Roots with w_ . Nondimensionalization
by Table 7. ¢
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