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ABSTRACT

The interactions of control system and distributed flexible

structural dynamics is explored for mechanical arias. A modeling

process using 4 x 4 transfer matrices is described which permits

the closed loop response of nany current arm configuration:.

to be evaluated. Root locus, frequency response, modal shapes,

..ad time impulse response have all been obtained from the digital

computer implementation of this model, which is oriented to

arm design and allows for easy variation of the arm configuration

through data cards. The model corresponds with experimentally

observed natural freq-,!encies with an average error of less than

5% in the first three flexible modes in the seven cases considered.

The model was used to explore the limits imposed by structural

flexibility on a nondimensionalized two link arm with one and

two jointe for planar motion. Using simple po6ition and velocity

feedback and careful adjustment of control gains adequate damping

(damping ratio of 0.65) can be imposed on dominant eigenvalues

which have a complex modulus of more than one-half the cantilevered

frequency of the arm with all joints clamped. The limitations

imposed by flexibility are roughly compared to strength limitations

to indicate when flexibilicy will tend to be the more immediate con-

straint or. aim design.
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INTRODUCTION

The goal of this study was an improved understanding of the interaction

of the various design components of manipulator arms so that arm design in the

future would be based on more reliable and more logical procedures and tools.

As a significant step towards that goal an arm modeling procedure has been

established and implemented on the digital computer. 	 This implementation is

design oriented, allowing for easy alteration in the arm configuration and

parameters.	 It focuses on an area previously ignored by design procedures:

the flexibility of the various structural components and the interaction

of teat flexibility with the joint servo control to affect dynamic perform- 4

ante.	 The model implementation is based on frequency domain techniques and

yields to the designer such information as natural frequencies, complex

eigenvalues, mode shapes, the system frequency response in the form of Bode

diagrams or polar plots, and via its inverse Fourier transform the time 3
impulse response.	 This model has been verified with several experimental

cases by comparing natural frequencies.	 It has been used to explore the

interaction of structural and servodynamics for simple but reasonably

general arm configurations. 	 The rules developed appear to be reasonably

valid for more complex models and thus as a first approximation for design.

Additional work has been done in expressing the laws of scaling for

arms relating the mass moment of interia which limits gross motion speed

to the limiting servo bandwidth which limits fine motion speed.

Arm-Model

Since the arm model, its implementation and verification are an

Important product of this research, 	 its rationale,	 features, verification

and limitations will be discussed in some detail.

Modeling Itatioualu

Out of a number of possible models a selection has been made which

results in features and limitations.	 The rationale for the selection will

be discussed in the design context in which this study was carried out.

Small _nutione about a reference Position. The most pervasive decision in

the modeling process was perhaps to separate gross motions from small motions. {yj-

This et.ables one to describe the arm as a linear system. The nonlinear
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equations of motion for a rigid arm are quite complex and lengthy and

the generai flexible case seems beyond present capabilities. A linear

model also allows for better comprehension of the issues of design.

Aside from convendence one must discuss the validity and pertinence of a small

motion model. '.he validity of the model to describe small :notions is supported

by the experiments discussed later. The pertinence of a small motion model

to the design question is claimed on the basis of the following:

1) The frequency of structural vibrations is suet: that many cycles

will occur before the configuration of the arm has significantly changed.

Thus the interaction of the control system and structural F lexibility is

well described by a small motion node!.

2) The first order effect of the Bross motion on the structural

arm vibrations can be represented by a disturbance loa.!ing, which is ade-

quately described by the small motion model.

3) In most manipulator tasks the most stringent position accuracy

requirements, therefore the most need for consideration of structure/servo

interaction, occurs when the arm configuration is not rapidly changing.

Mixed Distributed Lumped Model. Observing manipulator arms of various designs

one will find for general purpose arms one or more slender members which

generally support the forces both transmitted to the payload and generated

by the body forces of gravity and acceleration on the arm itself. Although

these members are frequently not smooth enough to be called beams the

contention here is that they can be modeled as such. Their compliance is

most significant when supporting bending or torsional loads. If a signif-

icant portion of the mass of the arm is distributed throughout the length of

this member, Lite distributed nature must be recognized in the modeling. The

nwst straightforward approach is to describe the arm using partial differen-

tial equations. Alternatives such as lumping the mass and flexibility of

the beam into separate elements ap p roximate the distributed nature but

require validation and tuning by checking with the corresponding natural

frequencies of the distributed counterpart for example. This is especially

cumbersome in design when the correspondence would be in doubt for each design

parameter change.

A beam is considered to be distributed in one dimension only, which is

reasonable for most arm models. It is conceivable that distributed effects

in two or three dimensions would be important, but a model valid for design

J 1
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purposes can be constructed in most cases without this complexity.

Other elements which are appended to the beam clement such as joints,

actuators, and some payloads seem to contribute essentially mass or essentially

compliant,: and are more conveniently considered as lumped elements. The

control action itself is concentrated at the joints of the arm and thus is

well consided as lumped. The lumped parameter dynamics are described by ordin-

ary differential equations and in this case the equations considered will be

linear.

It is not intended to imply that by including, distributed elements modeli••g

the physical components of an arm or arm design will 'ue without need for desig (,r

Judgement. Selecting from the possible model elements will improve with exper-

ience and the ultimate success of a model will depend on experimental fact.

Frequency Domain Model .. Frequency domain techniques, while still a workhorse in

many practical applications are not currently the vogue of controls engineers.

State space models, with optimal control determined in the time domain are

more popular and yield promise in many areas including manipulators. In the

flexible arm design context they lack the versatility and ease of model con-

struction and alteration that results with the present model.

The problem is especially acute with the mixed parameter problem at

hand. Beam vibration control studies in the time domain have been published

(1),(2), (3). for single uniform beams. A manipulator model based on a singly

distributed beam described in terms of its lower modes of vibration with control

optimization in the time domain has been studied by Mirro (4 . When connecting

two or more distributed beams the problem of boundary conditions between

(1) Koehne, Manfred, "Optimal Feedback Control of Flexible Mechanical Systems"
Proceedings I.F.A.C. Symposium, Beef, Canada, 1971.

(2) Komkov, Vadim; 'Optimal Control Theory for the Damping of Simple Elastic
Systems", Lecture Notes in Mathematics No. 253, Springer-Verlag,
1972.

(3) Van de Veete, J.. 'Optimal and Constrained Optimal Controls fcr
Vibrating Beams", JACC Atlanta, Georgia Session Paper 19-C,
p.469.	 June, 1970.

(4) Mirro, John, "Automatic Feedback Control of a Vibrating Flexible Beam"
SM thesis, MIT Department of Mechanical Engineering, August, 1972.
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the ,stems of partial differential equations restricts time domain

mod,." severely. Lumped parameter models of flexible arms are discvssed in (6).

Frequency domain techniques have long been available for beams

but the technique is not frequently used in the context of control

of distributed systems. The boundary condition problem is very con-

veniently solved utilizing the sequential (one dimensional) nature of

beams and of arms in general. The numerical techniques are relatively

straightforward. The lack of a mathematically convenient optimality

criteria is not in itself a severe restriction :lnce there is no concise

definition of optimality for general purpose arms anyway. The frequency

domain techniques will be discussed in more detail in a later section.

Arm Modeling and Imolementation

This section will discuss the procedure used for modeling, its

implementation, and the results Lhat can be obtained.

Transfer Matrix Approach_.

The transfer matrix approach provides a versitile method of describing

the interaction between the linear components of a system when that inter-

action occurs at no more than two stations of the component. For beams

these two stations correspond physically to the two ends of the beam.

For pure rotary springs these stations correspond to the ends of the

springs. For rigid body inertias these stations correspond to the points

of attachment. When three or more components interact at a single station

it 1s still possible to use the transfer matrix approach if this inter-

action is well defined. The transfer matrix method is well explained by

Pastel anc Leckie (5) and only the ess ials will be discussed here.

The interaction between two components is described by means of a

vector of state variables. At the station between two components the

value of tt,e state variables is identical. A transfer matrix is used to

describe the relation between the state variables at'the two stations of

each component. if the component is a static component (does not involve

differentials with respect to time) suA as an ideal spring, the transfer

(5)— 1
1etel, Eduard C., and Leckie, Frederick A., Matrix Methods in

ulastomechanics . McGraw-Hill, 1963

(6) Book, Wayne J., "Study of Design and Control of Remote Manipulators,
Part Ti Vibration Considerations in Manipulator Design"
NASA Contract NASS-28055, N73-20138, Feb. 1973.
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matrix is	 a function only of the component parameters. For

dynamic components such as an ideal mass, the transfer matrix is also a

function of the time derivatives of the #sate variables. For linear

components (described by linear differential equations) it is convenient

to deal with the Fourier transform of these equations which yields

the steady state amplitude and phase (or comple x amplitude) of the state

variables under a pure sinueoidal excitation o:: frequency w. The

transfer functions for these components are functions of w.

The state vector z that is used in the arm models consists of fo,.r

variables displayed in Figure 1 for a beam with flexure in the x-z

plane. These four state variables are sufficient to describe most arm

vibrations of interest. Arm flexure in two planes can be described if

chose motions are decoupled. In addition torsional compliance of beams

can be accounted for when vibrations out of the plane of two beams is

studied. The sufficient conditions for decoupling the motion are discussed

later. In general the neutral axis of the undeformed arm must lie in a

plane for these four state variables to sufficiently describe the arm.

Two link designs which predominate arms built today (except for short

wrist segments) automatically qualify. Additional arm links or beam

like supports modeled as part of the arm may of course be arranged in

nonplanar configurations. There is no conceptual difficulty in extending

the state vector 'o the complete three dimensional case. The twelve

state variables then needed (flexure in two planes, twisting, and com-

pression)	 lengthen numerical computation disproportionately to the

Information attained. State vectors with between 4 and 12 variables

may give added information in some specific cases. Four state variables

are all that will be considered here.
	 d

For decoupled motion it is sufficient for small motions that a planar

arm have its points either in or perpendicular to the plane of the arm,

which is usually the case. For a typical arm two sets of data describe

the small motions of the arm. one includes only flexure. The other

Includes distributed flexure and a lumped torsional compliance for out of

plane motion. For arms that can be configured so as not to meet the

requirements for decoupled motion an extended state vector or a configur-

ation which does meet the requirements can be studied to obtain design

information.

W i
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:Avon the transfer matrix g for a component and the state vector

at Otte of its stations z i ., t1te state vector x rl 
at the other station

is given by the matrix multiplication.

Ai-1 ' $ ii
It is thus a simple matter when components are connected serially (two

components per station except for the end components) to find an overall

transfer matrix by multiplication of the individual matrices to eliminate

the intermediate state vectors. This is demonstrated for an arm model in

Figure 2.

The elements of the transfer matrices for various components are

illustrated in Figure 3. The expressions are developed from the differ-

ential equation factored into time and space functions which can then be

solved independently. The developments will not be given here but Figure

3 displays the results, many of which are developed in (5).

Model Implementation and Use

Included in this section will be a brief description of the computer

programs used to implement the model including the basis for tb4 computations,

the type of input and output involved, and its meaning in the context of

manipulator design.

Information available from the model includes natural frequencies

complex eigenvalues, the steady state frequency response. the inverse

Fourier transform of this response wi,ich is the time impulse response, and

the eigenfunctiona which are the arm shapes when only one mode has been

excited.

Numerical Operations with Transfer Matrices. The product of matrices such

as appears in Figure 2 essentially is the implementation of the model of

the arm which consists of beams, lumped mass&*, controlled joints and angles,

Joined end on end. The implementation of the model provides ways of getting

useful information from that model. One poe , tbility is to express analytically

the elements of each component matrix, multiply the matrices and obtain a

single matrix each element of which is a sum of products of the original matrix.

tWle tl.s is in fact done for a simple case in Appendix A, it is not recom-

mended for more complex cases unlose the same configuration is to be used many

Limes. The alternative is to evaluate each term before the matrix product

sl
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is taken, then multiplying the numerical values. This is a procedure

which can be carried out in a straightforward fashion by digital computer.

The advantage to numerical evaluation of this nature is that the

complex functions need not be manipulated avoiding large amounts of

designer time and potential for mistakes.

The disadvantages are of three types:

1) More computer time is required to evaluate expressions

which might be simplified using trigonometric and hyperbolic

Identities. The simplification is not apt tc be great unless there

are identical components or at least many identical parameters.

Additional computer savings may be observed ,hen some of the

transfer matr.c. s have many zero or unity elements. Straightforward

multiplication of these takes as long for the computer as do non-

zero or non-unity elements. It may not be difficult for the designer

to combine several simple elements into one matrix analytically

If this combination is to be used izequently.

2) Numerical errors may become significant. The larger

nwaber of calculations may cause roundoff errors to become sig•'

nificant especially in some cases ( evaluation of determinants)which

require taking the difference of two large, nearly equal numbers.

This difficulty has been eneo +:atered only in rare and unusual cases

and bran solved by using extended precision in those cases. It is

also possible to gat a numerical overflow in the produc t of the

transfer matrices.

3) For simple cases the analytical expressions resulting from

the matrix product may give the designer insight into the problem

that the numerical results obscure.

1Sounda.Ky Conditions and For inn Functions. The transfer matrix, whether it

describes a single component or a group of the *, expresses the relation

between the state variables at its two stations. In order for the transfer

relation to be valid between state vectors, at most four of the eight state

variables may bL arbitraily established. In fact for physical systems only

two of the btato variables at each station may be determined and more

precisely for these state vectors only one of the associated variables of

displacement or force and angle or moment may be arbitrairly specified. This

specification may be as a simple boundary condition, as a forcing function,

or as a linear combination ofvariables which may implicitly include the other

.r

a,

'+lib lyY^



a

variables of t he same state vector. This last ca „ e is in essence what

one does when he appends another component by multiplying another

transfer matrix. In this case one merely transfers the specification

to another station in the extended system.

For simple boundary conditions one prescribes two non-associated

variables of the arm. Figure 4 displays the physically possible

combination& of zero state variables. The non-trivial solution of this

came can result in solving for the natural frequency of complex elgen-

values ( for damped systems). Additionally one can solve for the eigen-

fu nctions of the system (the mode shape at the eigenvalue N . The imposition

of a forcing function yields the steady state forced response of the

system, assumin& the forcing function is a sinusoid of frequency 	 .

These techniques will be discussed in the following sections.

Natural Frequencies and 6ieenval_^s

If disturbed from the equilibrium position and then allowed to

move freely after t+0 (without disturbance or outside input) the state

variables of a linear system will be described over time by a function

of the form

(1) sik '& •1e j It + 
aZej myt + a3ej wi + .. . ai ej Wit*

zik - the ith element of z k

For a lumped system there will be a finite number of these terms while

a distributed system may theoretically have a countably infinite

number.

Wor undamped system the wi appear as the frequencies of vibration

and assume real values. For damped systems some of the w i will have

complex or pure imaginary values and it 1s more conventional to deal

with the clgenvalues si m j wi. Complex or pure imaginary values of a

(complex or pure real values of w ) will always occur in pairs with the

same real (imaginary) part and an imaginary (real) part with the same

absolute value and opposite sign. When this is the case we will deal

explicitly only with the value of s (w ) with the positive imaginary

* The assumption hare is that the wi are distinct. For physical systems

this is always true if one cares to look at the values with enough accuracy.

.he more general case wi - w k does not restrict the results presented.

i 1
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(real) part.

The values ofW i for an arm system model depend only on t,v

parameters of, and the boundary condition on, the system. They are

independent of initial conditions, independent of which state variable

is observed, and independent of the point in the system at which it is

being observed. The values a i depend on all of these quantities.

The time function (Eq. 1) which describes a state variable of the

system must be consistent with the differential equations of the

individual components, the general solution of which is the same form as

Equation 1, also involving terms GJ " it . This general solution is the

source of the transfer matrix for the component. For an isolated single

component the rest of the rest of the system acts as a complex boundary

condition which must be considered when determining the values of the

W for that component. The state variables between two components assume

values over time that must conform with the general solution of two sets

0 differential equations. This can only occur if the values of W are

the same in both solutions and in fact the same as the general solution

for the entire system.

The transfer matrix technique allows one to simultaneously consider

all the components and the boundary conditions on the system and thus

determine the sK of interest. Multiplying transfer matrices eliminates

the intermediate state variables at the interface between components

and expresses state variables at one and of an arm directly in terms

of the other end. imposing two boundary conditions at each ends

restricts th3 values Wi can assume for a nontrivial solution of the

remaining state variables. These Wi are the same Wi appearing in Eq. 1.

The restriction is developed in Fig. 5 for specific boundary condition

on a specific arm modal. In general for a system represented by a matrix

product U such that

210	 u11 u12 u13 
u141	

'ln

x	 220 a UZ	
u21	 u22	 u23 u24 1	 I22n

^A	 430 
	 u31 u32	 u33 u34 i	 iZ3n

2401	 41 u42 u43 u44J	 I24n

4

a I

%^•b^ 1
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With the boundary conditions

z 10 n zj0 - 0 at station 0

and	 zkn ¢ 0	 zin 0 0 at station n

(implying the remaining tw variables at station n are zero)

iu:quires for a nontrivial solution that the frequency determinant

2) 
d	 Iuik	 uzfci	 n uik uji - °jk uik1 w' 0

	

I

u.,	 u X 1	 i

	

JK	 J	
w= wi

;ne elements of li and thus the terms of the frequency determinant

are generally complex functions of w . This being the case one must

numerically searcn for values of w where d-U. When dealing with systems

with no damping one can restrict the search to real values of w or complex

values of the eigenvalue s. In general however, one must search over the

complex plane for values of sasi , where both the real and imaginary parts

of 4 are zero. In order to use conventional search routines one can search

for minimum values of	 I IdII - (Imd)° +	
n

Red	 then check to see if

d- 0+ 10 for the values of s returned. This topic will be discussed in more

if 	 in a later section on numerical implementation.

10
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:Modal Shames

Associated with each eigenvalue is an arm shape called the modal shape

which describes the relative amplitide of all points of the arm when

vibrating at that frequency. Looking at the problem from another perspective,

there is an arm shape which when it constitutes the initial condition will

result in arm vibration described by a single eigenvalue, to the exclusion

of all other system eigenvalues.

The transfer matrix method can be employed to find the mode shape

after the eigenvalue has been found. Refer again to the equation

AO - Uzn.

Two of the state variables at each end are specified by the boundary

conditions, and the remaining fou_ state variables can be solved for

in terms of each other. By normalizing one of the state variables to be

equal to one the remaining three are specified.

More specifically consider the boundary conditions resulting in Equation

(2). The homogeneous equations which preceed the frequency determinant

are

uik	 u  R	 [:in^
`'Kj jn

If zin is required to equal one, the solution for z jn is

zjn w -uik	 w _u
ui z	 ujR

Selecting the appropriate 2 x 2 submatrix from u will enable one to solve

for the unspecified state variables at station 0.

W artier to visualize the modal shape values of the state variables

at intermediate points are helpful . For this one must refer to the transfer

matrices of the separate components. For lumped components the knowledge

of the state variable at either and is usually adequate for visualization.

For distributed beams however, the trigonometric and hyperbolic functions

describing the shape within the component are far from obvious. For plotting

.s.

J& 1
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these functions one can essentially divide the component into smaller

components thus creating additional intermediate state vectors (for purposes

of plotting only, not for finding eignnvalues). When plotted versus

distance along the axis of the arm the state variables indicate the shape,

angle, moment and shear amplitudes along the arm.

Steady State Frequency Response

In the previous section two state variables at each end of the arm

were specified to be equal to zero, thus establishing simple boundary

condition which enabled one to search for the eigenvalues of the arm system.

Another way to specify the system is to impose sinusoidal forcing functions

of frequency T and arbitrary but constant amplitude on from one to four

of the state variables (subJeet to the same constraints on combinations

of state variables as for boundary conditions indicated in Figure 4). The

procedure here is actually more straightforward than for finding eignevalues.

Consider a linear system with at least a small amount of damping (present

in all physical systems) forced by a single sinusoid of constant frequency

for some appropriately long tine. The response of that system at any point

will be described completely by a complex amplitude times a sinusoid of the

same frequency It . Alternatively the response could be described by a real

amplitude and a phase angle. This complex amplitude as a function of R is

termed the steady state frequency response.

Consider once again an arm model with describing transfer matrix u.

DSOw

rMV1.w
u M
0 V

Assume the rows and columns of fj are rearranged to form U such that the first

two state variables of the rearranged state vectors z0 and z. are forced

with a sinusoid of arbitrary but constant complex amplitude. Then

10 - udn

Let us partition this matrix expression such that

	

A0 - rf 0 - u11	 u12

IÌ r	 621	 U22	 rn

0.

t

at I

I



L and fla contain the forced state variables and r o and rn contain the

remaining state variables, termed the response variables.

3)	 fa	 011 fn + 012 pit
y	 `.

4)	 4 	 L21 fn + 022 r 

solving explicitly for ro and r 

from 3) ru ' 012 1 f0 - 012-1 011 fn

from 4) r0	 U21 fn + 022 (0 12 f0 - 012-1 011 fn)

5) 1 	 F I10	 522 0121	i 021 - 022 0121 X11	 Sol---------r-------_---- -
pit	 U12-1
	 -U12 Ull

Assuming U12 exists.

Equation 5) expresses the four response state variables in terms of

the four forced state variables. The value of w at which the transfer

matrices will be evaluated will be the forcing frequency S2 . The forcing

vectors f ) and fn will contala the (possibly complex and distinct) forcing

amplitudes. Complex amplitudes can be used to represent a phase shift

between the various forced state variables. r Q and r  will contain

the amplitudes of responses.

In practice it is seldom informative to force more than one state

variable simultaneously. Then it is possible to simplify equation 5,

assuming there is only one non zero element in f 0 and fn.

Once again it 1s usually preferable to numerically evaluate the in-

dividual component transfer matrices prior to multiplication, enabling

straightforward implementation on the digital computer.
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Im ulse Time les pr se

It is well known that the steady state frequency response is

equivalent to the Fourier transform of the impulse time response

for linear systems. This has long been used to obtain the power

spectral density from time records. The inverse transform of the complex

frequency response (which contains magnitude and phase information) can

thus be used to obtain the impulse response. This enables one to visu-

alize the system time response to an impulse disturbance. Thus if one

desires the impulse response of a given state variabl o , displacement

w(t) for example, to an impulse disturbance at another state variable,

sheer force V at the same station for example, one first uses Equation

5 to solve for the frequency response of that variable, in our example

W (jw)	 One then uses the inverse Fourier transform given by

6) zhi (t) - 2rr	 1	 zhi Qw ) ej wt	 dwW

L^

s 

h - response state variable index

i - response station index

to determine the time impulse response for example w(t).

In practice we desire to evaluate this response digitally using discrete

samples of both the time and frequency responses. This introduces

a great number of subtle consequences which will not be discussed in this

section. Suffice it to say that the inverse transform can be performed

economically with a slight change in the very efficient FFT (Fast Foruier

Transform) algorithm (1). The use of the algorithm in the inverse

fashion is not well documented and will be discussed in a later section.

L•x nr!-cr^_-! "cr±ficat!mn o' ern '"oicl

To get some indication of the accuracy of the model two sets of

experiments have been performed. The first of these is summarized in

Figures b and Table 1. The second is summarized in Figures 7 and 8 and

Table 2. In both cases, the predicted natural frequencies of the undamped

systems are compared to the resonant frequancies observed when forcing

the system with a sinusiodal torque. In the first set of experiments,

the frequency was determined via stroboscope. The second experiment

was conducted by Octavio Maizza-Neto, also in the Department of Mechanical

(6) Bergland, G. D. "A Guided tour of the Fast Fourier Transform",

If?EF: Spectrum, July 1969.



Engineering at MIT. It was performed using automatic frequency

sweeping and measurement of the amplitude of the endpoint of the

system via accelerometer.

t

.w

Table 1.	 Result:. of Experiment in Figure 6.

N b d b W b
a
NC

m
4G N

w
V

v
~

v
M

v u v

~ d

7 ++

N

^

rNJ0. Y d

a

^0

^n

^J

a 6i o
w w

V o

p, W N~ 9 3• 3- 3~ 3^ 3A 3
SP 7

O
9:

(kg) (m) (m)
w (rad/sec)

in 3.44x10 3 .921 .885 45 163 162 499 567 --- ----
(.0502) (.281) (.270)

out 3.44x10 3 .921 .885 45 157 161 549 565 1045 1025

(.0502) (.281) (.270)

in 1.12x10 3 .921 .888 45 233 232 556 605 1357 1350
(.0163) •(.281) (.271)

in 0 921 946 45 263 264 585 635 1477 1464
(.281.) (.288)

in 3.44x10 3 .921 .889 0 201 211 520 583 1081 1100
(.0502) (.281) (.271)

in 1.1410 
3

.921 .889 0 260 268 596 643 1359 1377
00163) (.281) (.271)

in 0 .921 .949 0 284 292 631 667 1466 1481
(.281) (.271)

average 2 error 4.12
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•	 Table 2 Comparison of Predicted and observed	 (Fig.	 7)

Natural Frequencies - Experinental Case

Model Experimental. h Error
(hz) (hz)

77.2 80.76 4.3w

145.0 136.6 6.0%

275 244.6 13.8%

477
417.0 114.4%

795 688.3 15.6%

1063 859.2
893.1

23.8%
t19 %

1366

1591

L

.t {

or

r

x'3
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figure 8 plotb the acceleration amplitude measuieu versus frequency

for this case.

The motor rotor inertia was the only value which could not be

measured. Table 1 is based on values of that parameter taken from

a motor catalogue. By using 302 lower values the maximum error was

reduced to 3.7% for the first three natural frequencies. Thus it is

possible that the errors in Table 1, although not excessive (averaging

4% do not do the model justice.

Predictions of the first three natural frequencies appear good in

both cases, with accuracy decaying after that. Figure 8 displays

acceleration amplitude.

The decay of the amplitude peaks indicate that the first two

modes will dominate the response. This decay will be even greater

for displacement amplitude. To obtain the relative magnitude of these

peaks one must divide by the frequency squared. Table 3 shows the

relative amplitude of the first six modes for acceleration and

displacement.

Table 3 Relative Amplitude of First Six ResoMAcrs

Number	 1	 2	 3	 4	 5	 6

Relative	
1	 .868	 .162	 .226	 .166	 .170

Acceleration

kelative	
1 ^v .304	 .0177 .00914 .00229 .00150

4.

L'

w+r

a -

Displacement

T'.ie quality of the data seems good in both cases. The multiple

peaks at some resonances in Figure 8 are probably due to the constantly

changing frequency which does not allow he beam to reach steady state,

and with the mixing of two nearly equal frequencies from the torque motor

and the ocams produces a beat like phenomenon.

For the higher modes a decay in accuracy is not surprising. Since

the total motion involved in these vibrations is very small, nonlinear

effects :iuch as backlash from the nonzero tolerance at the joint become
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Inverse Fourier Transform via Digital Methods

The calculations of the small motion response of the arm system have

bean carried out in the frequency domain. This information is related

to the time domain response via an almost symmetrical pair of trans-

formations -- the Fourier transform and its inverse. It is at best

awkwaru to perform these transformations via analog hardware, and in

view of the digital nature of the calculations to this point digital

calculations are preferred. This introduces distortion due to sampling

of continuous phenomena.

The digital Fourier transform (OFT) and its inverse have exact pro-

perties in themselves and can be used to approximate their continuous

counterparts. This can be done most efficiently using the algorithm

known as the fast Fourier transform or FFT to compute the OFT. Only

by understanding the OFT can the sampled approximation yield infor-

mation on the continuous case with the least distortion and greatest

efficiency.

Fourier Series for Continuous Functions. For a periodic time function

it is well known that there exists a representation in terms of a

weighted sum of sines and cosines, or in terms of :omplax exponentials

which are harmonics of the fundamental frequency R. This is called

the Fourier series: 	 m

(7a)	 f(t)	 T iE	 Fi exp (jnt) i	 .-2,-1,0,1,2,1	 .

Where	 j a J -1

a - the fundamental frequency in rad/sec

more significant. "cause of the small amplitude it is not felt that this

significantly affects the model for practical use.

k

r

a .

.
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v

2

^(7b)	 F 	 a	 £(t)	 exp (-j iftt) dt
-T/2

Where T - 2+r/0 - Period of on e cycle in sec.

The F  are the Fourier coefficients.

It is uaually possible to truncate the series at a finite number of

harmonics, which depends on the accuracy desired.

For &periodic functions it seems intuitive that T goes to infinity

and A - 2ir/T goes to

(

 zero. In fact in the limit

(8a) f(t)	 2n 1 m P (jw) exp U wt) dw
Sao

(8b) f (j(tr ) - S 

p

	 f(t) exp (-jwt) dt

F(jw) is the Fourier integral and is equivalent to the Fourier transform

of the time signal.

The above are true for any time signals regardless of their origin.

Certain additional relations will hold when the time function is the

response of a linear system. When f(t) is the response of a linear

system to an impulse input to one variable at a point in the system

at t-0, F(jw) is the steady state frequency response resulting from

a unity amplitude sinusoid forcing the same variable. This is in fact

what is obtained from the frequency domain arm model.

uiscrete AMroximations. Starting in either the frequency or time

domain, one can at least formally transform to the other domain via

Equations (8). In practice however one must approximate the transform

by replacing the integration with summation and replacing the dif-

ferential dw with the increment Aw resulting in

L'

„w

a .

t^
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ti

(9)	 f (t) o f (t)	
n	

E

in -n

or	 n

	

f(t)	 E

in -n

F(ji Aw) exp (ji Awt) Gw

F (j i Aw) exp O i Awt)

•rBy comparing this with Equation ( 7) one realizes that this approxi-

mation must be periodic and of period 21f/Aw , indicating that dis-

tortion of some sort has occured.

Certain steps must be taken to assure that the distortions re-

sulting from the discrete approximations do not render the approxi-

mate time response f(t) useless. For f(t) to result from a stable

physical system the response for t <o (before any input) must be zero.

:voting in Equation (8b) the two sided nature of the Fourier integral,

and recalling the periodic nature of f(t) one can correctly conclude

that the results of Equation (9) must be at least approximately

zero for half of each period. This requires sufficient time for the

impulse response to settle out, placing a lower constraint on the

period 2n/Aw(or upper constraint on Aw).

It is not readily apparent in the frequency domain what an ade-

quately small value of Aw is. If one knows the location of the system

eigenvalusa he can estimate the settling time of each exponential.

For complex conjugate root pairs for example

t 7 _"
s	 wn

Where	 a damping ratio of the root pair

W  
n distance from origin of the pair

t 4 n time to point where response remains within

22 of steady state
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One may make Gw smaller by either increasing the num"r of samples

or by limiting the upper value of the frequency response considered.

By lowering the upper value of frequency 
2  

that will be considered

one removes the components of the time response with frequency greater

than af . By looking at the frequency res ponse for the system one can

estimate Z1V Resonant peaks that are not down at least 20 db. from

the magnitude at uP0 should be included if feasible. Thus for given

settling times and given frequency of one arrives at a minimum sampling

interval in the frequency domain analogous to the Nyquist sampling 	 V

Interval in the time domain. Just as rad ' l time intervals between samples

are required to evaluate the frequency response for large frequency,

small frequency intervals are required to evaluate the time response 	 s,

for long times.

4
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Numerical Implementation

The arm modeling method has boon implemented on a digital computer.

This section will describe briefly the program and how the user may

interact with it. Also described are numerical difficulties that have

arisen in use and how they have been handled.

Computer Capabilities

w

rr`

Although it was originally intended to include all the programs

in one package for interactive use by the designer, this goal has

been abandoned for the present time due to the modest core storage

of the machine used. The Intordats Model 70,with 40K 16 bit words

of core storage at the M.I.T. Joint Civil-Mechanical Engineering

Computer Facility was used. This is a mini computer handling inter-

active graphics and console input which is very useful in a design

situation. An Intardata Model 80 with 32K 16 bit words of storage

was used for some of the more extensive sigonvalue searches due to a

lower price structure and a faster CPU. The program as it presently

exists is divided into several compatible packages. Table 4 classi-

fies the programs in seven more or less related categories. These could

at some point be combined into na integral program with complete

communication between all the program parts. Categories I, II, and III

utilize descriptions , of the arm and subroutines in VI and VII

Categories IV and V use output from II and III to obtr 4z additional

information.

Nature of User I"ut

This section will briefly describe the nature of the user in put to

the system to indicate the designer effort required (not to indicate

how to use the programs).

a 1
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Table 4. Program Category Outline for Numerical Implementation

I Natural frequency calculation (no damping)

A. Single Precision

L. Double Precision

iI Eigenvalue search (two dimensional searct,, syst(!^.ti with dapping)

A. Card and console input only

B. Interactive graphics implementation

III frequency response calculation

A. Logarithmic frequency scale

1. :ode plot

2. Polar (Nyquist) plot

3. 'codified polar plot

B. Linear frequency scale (equal increment in frequency for
FFT input)

IV ?lode shape calcul-:lon and display

V Fast Fourier transform

VI Component transfer matrix calculation

A. Distributed Beam	 o
a'

1. Bernoulli -Euler model

2. Timoshenko model (includes shear and rotary inertia)

B. Rigid Body

1. General

2. Uniform cross ser.;lon

C. Angle in the arm shape

?	 1. In the plane of vibration
i•

2. Perpendicular to the plane of vibration

U. Controlled Rotary Joint

1. Transfer function control
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[. 'ditn flexible shaft and gear reduction.

L. Parallel elements (comoines certain elements in parallel by
clamping them at each and).

F. :)iscontinuity in one state variable (with its associated
variable equal to zero eg. pinned connection between bear..,;

or pinned connection to ground)

VII Search koutines

n. Pattern search - 2 dimensional	 .+

B. LbM bbP root finding algorithm

a 
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Arm Description. The description of the arm to be modeled is in terms

of the arm elements or components selected from Category VI of Table

4. Each almost requires one and sometimes more data cards giving its

parameters and are arranged in the order of occurance on the arm. in 	 t

certain caaas there are restrictions as to what combinations of ele-

wants can be used. For instance angles in and out 'if the plane of

vibration would result in a nonplanar arm which cannot be handle- *-y

four state variables. Other restrictions include 1) arm discontinuity

can be used only with natural frequency or eigenvalue (I and II)

calculations as presently implemented.

2) Parallel elements cannot be used with mode shape calculations.

3) Flexible shafts incorporated into the controlled joint must
211

connect to a pinned, clamped, or sliding end of the arm.

Calculation Description Inaut. Presently the description of the de-

sired calculation for natural frequencies and frequency response require;

one card for describing arm boundary conditions, calculation type,

number of increments, and extreme frequencies considered. In addition

the forcing variable must be specified for fre quency response cal--

culations. A number of selections of output alternatives and extended

calculations are available by data switch and console 	 at run

time.

For oiA,envalue calculations additional starting, points for the

two dimensional search can be read in from card or console in one

Implementation, or input graphically via Joystick and

eroashairs in another implementation.

V

0. ^
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Mode shape calculations require the input of the eigenvalues for

the system for the mode for which the shapes are to be calculated,

boundary conditions, and the number of points at which the shape is to
r

be calculated for each beam element.

To calculate the inverse Fourier transform to obtain the time im-

pulse response, the frequency response must first be calculated with 	 +,

equal spacing between calculations (IIIB). The results are stored on

disc to be used by the FIT algorithm. The specification of the total

number of points to be used and the frequency range they cover is

input by card.

: 4

Nature of Prearar Outsut

The program output is of the nature described in Table 4. in cases

where there are arrays of data (such as the values of frequency response)

this data can either be plotted or plotted and printed to allow more

precise comparisons. Io this case there is also a selection of which

endpoint state variables are to be plotted. The three types of fre-

qty plots are,	 the Bode diagram, Polar plot of magaitude vs. phase,	 1

and the medifisd polar plot which can be used in stability analysis 	 1

for certain nonlinear arm elements. The graphics assisted eigenvalue

search program also yields a plot of the roots as they are found.

Nume^ Difficulties

The arms modeled to data have resulted in few numerical difficulties.

The difficulties encountered and ways of dealing with than are de-

scribed below.

False Rootsin Eijamalw Search. For a damped arm system the frequency
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determinant is a complex number. Evaluated at the system eigenvalue

both real and imaginary parts should be zero. Since conventional root

finding algorithms deal only with real values, alternative methods

must be found. At present the procedure is to minimize the complex

modulus via a pattern search program developed by Prof. D.E. Whitney.

The global minimums must be zero, but the search routine ma y return

false sigsnvalues corresponding to local minimums. These can usually

be detected by simply looking at the modulus value. When the modulus

value is near zero there is a possibility that the nonzero determinant

is due either to the finite word size of the computer or to the fact

that a false root has been returned. To resolve this ambiguity one can

look at the real and imaginary parts of the determinant. If an actual

system root has been returned, and it is a single distinct root, the

real and imaginary parts suet both change signs in the neighborhood of

the root. In normal operation where the change in roots with design

changes is brig; observed the war confidence in root positions is high,

and only when unexpected root locations are returned is the doubt suf-

ficient to check the sign change. The experience has been that this

check seldom fails to confirm a root whose determinant value was

reasonably low (say lass than 0 . 1). What is considered "reasonably

low" varies with the arm and the position of the root.

(:onvarasncs to the 'Wrong" Eisenvalua Since the eigenvalue search

bases its actions on the shape of the determinant modulus over the

complex plans, it will converge to different roots depending on

where the search is begun. Thus one can repeatedly "find" the same root

and sot find a i6wired root. Under these circumstances graphical

display and input becomes vary helpful, allowing the user to quickly

modify the starting point of the search based on the displayed results

v

al
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of the previous search. Search routines specifically designed to take

advantage of the particular problem of complex root finding might

do much batter and cut down on the user interaction required.

A more critical numerical problem arises when it is practically im-

possible to make the routine coverage to a root that exists. This has

been observed for " .evu values of arm servo control parameters.

It corresponds to shapes of the determinant that change very rapidly 	 •^

in the region of the siganvaluea. It seems to be aggravated by two roots

which are very close. Fortunately when this ha ppens it also seems

that the root changes very slowly with parameter changes so that roots

determined with different parameter values can be used.

M A

Numarieal Overflow In only one case has the problem of numerical over-

flow bass encountered. The problem was solved for that case by using

extended computer word siss, which may not be practical in all cases

for all computers.
a

f
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PART II

Charactorisation of the Are Servo -- Structure Interaction
Two Zqusl Link Example

In an effort to characterise the interaction of the joint servo

control and the structural flexibility of typical arm configurations 	 t
the following study was undertaken. The most typical of general purpose

arm configurations seems to be one with two long beam like segments 	 '

r.+
of approximately equal length with rotary joints. An additional short

segment incorporating the and effector is also typical but will not

be considered in this study.

The beam segments in this study are considered to be identical

in all properties but have different boundary conditions. They are

joined by a servo controlled rotary joint.. This "elbow" joint is	 se

assumed to operate on the position and velocity error feedback of the

joint, analagous to a rotary spring and dashpot. One and of the twc

link arm has free boundary conditions and the other end is clamped to

ground in the first case, and in the second case is connected to ground

via a rotary "shoulder" joint with the same control schema as the albow

Joint.

The modeling process discussed in Part I was used to obtain the

dynamic characteristics of the two cases. The display of the dominant

eigsnvalues is relied on heavily to convey the changes in system be-
3i

havior due to changes in joint servo control parameters. In some

cases this is supplemented with the frequency response and time impulse

response due to and point force distrubances. The frequency determinant

was analytically simplified for this study as described in Appendix A.
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RS Link. One Joint Casa

first let us consider the two identical link, one joint coast il-

lustrated in figure 9. This case includes distributed beam dynamics

on either side of a controlled joint. tt  proves to be very Informa-

tive because after nondimensionslixation the results for the complete

range of independent parameters can be displayed on one plot of the

root loci. W-.

Mono nansionalisatiog Jf Parameters

Table S displays the important physical parameters for this problem

and a sat of convenient nondimessional groupings. They are nondimansional

frequency (complex) 4 which is multiplied by 47-1 to obtain the eigen-

value, the nondimensional servo frequency we and damping ratio S. The

servo frequency would result from a rigid inertia equivalent to that

of the outer link with only the joint position feedback.

i

a
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As observed in Figure 10 and in Figure 11 in more detail this simple

case has root loci which fall into three characteristic groups AS

tol low :

1. W «	 . 3tl6

L. W a	 .386

3. m »	 .386

Appearing in Figure 12 are the higher order roots that are not

dominant.

Low Servo Bandwidth (Figures 10a and ila)

For use 1 with we much less than .386 rad./sec. and C not much

greater than 1.0 the behavior is essentially that of a rigid arm.

For C < 1 the complex conjugate roots r 1 and r2 near the origin in-

dicate oscillatbry behavior. For C just greater than one the real

roots indicate overdampod behavior. There will theoretically also be

vibrations of an infinite number of modes of the distributed beams.

Their effect will be less important in most cases because their time

constants are several times higher and their amplitudes several times

lower than the lower, dominant nodes. As C is increased past one, one

of these real soots, r l , moves toward the origin and r2 moves away

from the origin, eventually mating a third root, r 3 , moving toward

the origin. Further increases in C cause r2 and r 3 to become complex.

As C gets vary large these roots move in an arc and approach the

imaginary axis. The value they approach is the clamped elbow natural

frequency of the arm, which is the value one on the vertical axis of

the nondixonsional plot of Figure 11.

`	 n

S<

.r
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Table 5. Nondisensional and Physical Variables for the Two
Flexible Link, One Joint Case

Physical Va b s	 Nomenclature	 Dimensions
Joint position feedback Main angular	 k	 LF

Joint velocity feedback pin (anular) 	 c	 LFT

Frequency (complex)	 w (-Js)	 T-
1

`lass density / unit length	 u	 PT2L 2

Total are length	 k	 L

Stiffness product	 EI	 FL 

(E n Youns ' s modulus and I n cross sectional area moment of inertia)

From these variables we construct for convenience:

First natural frequency of a cantilevered beam of Length L
a. {

3.52 
EI

wa	
vi4

Servo frequency for a rigid arm structure

wr 24 k
via

If one replaced EI and V as independent dimensional parameters with

we and ws , one can farm the folloving nondimansional groups:

Nondimeanional Variable Nomenclature Grouping

Frequency w w/o

Servo frequency ŝ wa/wc

Servo damping ratio 12, 2c

u x.	 4b

Z.

44
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Critical Servo Bandy df^i (Figural lOb and llb)

As w  
is increased, the point at which r  and r 2 join the real

axis, and the point at wnieh r 2 and r 3 leave the imaginary axis move

closer together. For a critical value of .found numerically to be

about 0.386 these two points meet and there exists a triple root for

C s 0.915 in the region of (-.67 + j0 . 0). In this region the position

of the roots is very sensitive to slight variations in Z  and C. This

critical point seems to be the farthest from the origin that the

nearest root of the arm can be located, and thus the fastest overdamped

response of these dominant roots obtainable with simple ,Joint position

and velocity feedback.

high Servo Baadw dth (Figures 10@ and Ile)

For We >> 0.386 the root locus plot looks quite different than for

Us <4 0 . 386. A single root r 3 remains on the real axis moving toward

the origin as ; increases. The two complex conjugate roots r  and r2

remain imaginary for all values of C. They move from a value on the

imaginary axis for CoO, through an almost semicircular path to a point

whose value is the clamped elbow natural frequency. As iY a becomes

larger the semicircles become smaller and the real root becomes more

negative for the same value of damping ratio C. In this region the

spring is too stiff to allow motion which would dissipate the Vi-

brational energy of the beam. This is essentially 	 a poor match

between the mechanical impedances of the structure and joint for

the purposes of dissipating energy.

Conclusions, and Summary for Two Link, One Joint Case

Figure ild displays contours of constant position feedback gain

at ,
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(equivalent to constant w e) for a vide range of values of Wa . Also

indicated in dashed lines are the Contours of constant C. This plot

show the transition from the rigid to the floppy extreme cases for

the lowest complex conjugate pair.

Conclusions one might support with a graph of this type include:

1) Through careful design one may be able to achieve dominant system

eigenvalues on the order of one-half or more of the lowest clamped

3oint naturaa frequency using this simple control. For example sae

we/we m 5. C a O.S.

2) loticeable deviations from rigid behavior become apparent when

the eigeay.lues of the rigid dynamics are of a magnitude of about

one-fourth the lowest clasped joint natural frequency. For example

ace WsNe a 0.33. Excitation of the higher modes by periodic exci-

tations may require that flexibility be considered for any arm.

Consideration of arm flexibility becomes crucial when a rigid

design procedure produces dominant eigsnvalues the magnitude of

which is greater than one-third the lowest clamped joint natural

frequency. A rigid analysis of the behavior would indicate that in-

creased velocity feedback would result in increased damping on the

dominant complex root pair. The opposite result occurs in the actual

flexible system and the effect is to decrease damping for the complex

Conjugate pole pair. gee for example Ws/WC a 0.5, C - O.S.

The caws for two joints with this sap control scheme discussed in

the following section supports these conclusions. Additional factors

which should be considered era unequal beam cross section, payload and

actuator masses, and a more sophisticated control.

tr
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Two Link. Two Joint Cass

Having considered the two link one joint case the next logical

step in complexity is two links and two joints. This configuration

more resembles an actual manipulator although when the additional

joint is locked or if the joint drive is self locking and not being

driven the previous result is more realistic. The stop is made with

considerable increase in the difficulty with which one can thoroughly

understand the case. With the simplifying assumptions of identical

links and feedback constrained to two variables per joint one must

deal with four independent parameters in the flexible case after

nondimsnelonalising the problem and establishing the nominal joint

angles about which vibratios is being studied. While this is not

so grant as to prohibit meaningful exploration of the case, it makes

compact and intuitive display impossible.

Limiting Case - Rigid L!M

in order to establish bounds for the flexible link behavior we

will first consider the limiting case of rigid links. in one nominal

position this case can be described by three nondimensional para-

meters as shown in Table 6. As chosen hers these correspond to non-

dimension gains in t•+ feedback of the velocity and position of the

proximal or shoulder joint and the velocity of the distal or elbow

jcint. The problor is	 noadimsnsionalited with respect to the total

arm length, the elbow position feedback gain and the undamped natural

frequency with the shoulder joint climpod.

Lagrange's equations wars used to develop the frequency function

for the rigid link use and that development is sketched briefly

in Appendix B. For the constrained feedback the rigid motion is very

r
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close to that of a double pendulum for small vibrations.

Nondimensionalisation of Two link, Two Joint ExAspla

By nondimsmsionalising the two equal link, two joint case we can

reduce a problem of eight parameters to one of five parameters. For

root locus plot* one of these parameters is the location of the roots

which will be a function of the other four parameters. The choice of

noodimenaional groupings will depend on convenience and the physical

significance to the problem at hand. In the case of two links and

one joint the choice was influenced by the prior understanding of

a simple second order system which was the limiting case as the links

became vary rigid relative to the joint. When two joints are present

the rigid counterpart is a fourth order system which is generally

not nearly so intuitively comforting.

By retaining noudisensiosaliastion compatible with the rigid analysis,

however, we can draw on our previous analysis and readily see when there

is s significant departure from the rigid behavior. Thus we chose the

nondisensional groupings of Table 7 which enables us to ase in what

range of flexibility the rigid analysis is valid. Notice we can move

from the rigid analysis whose parameters appear in Table 6 to the

flexible analysis by additionally specifying ons value, the ratio of

the clasped joint, eantiloversd frequency to the rigid (clamped shoulder)

frequency, We / p 0 `wc.

Table 8 sbowe alternative parameters that will be used for improving

on the rigid analysis when the links are significantly flexible.

r.r
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Phveieal variables Nomenclature Dimensions

Distal Joint position feedback gain
(angular) k2 FL

Distal Joint velocity feedback gain
(angular) c2 FLT

Proxal Joint Position feedback gain
(angular)

k 
FL

Proxal Joint velocity feedback gain
(angular) Rai FLT

Mass Density / unit length U FT 	 L-2

Total Are length R L

Prgueney T-1
a 1

w

1%

Table 6 Nondiwensional and Physical Variables of the Two Rigid Link,
Two Joint problem

Construct the following variable equivalent to the natural frequency

of the are with the proxiasl joint clasped, and with simple position

feedback of gain k2 to the distal joint with dimensions T-1.

24k2
P ^

U R!

Nondieenslonal variables
	

Grouping of Physical variables

W/P

k
	

kl/k2

c 
	 c1Rc/k2

cZ	 c2Ro/k2

1	 11



36

Table 7. Nondimensional and Physical Variables or the Two Flexible
Link, Two Joint Case. (For deviation from rigid analysis.)

Physical Variables
	

Nomenclature Dimension 	
j•

Distal joint position feedback gain (angular)

Distal joint velocity feedback gain (angular)

Proximal joint position feedback gain (angular)

Proximal joint velocity feedback gain (angular)

Frequency (complex roots)

Mass density/unit length

Stiffness product (E a Young's modulus,
I w cross section moment of inertia)

Total arm length

k2 LF

c 2 LFT

k  LF

c  LF!

U, T 1

V FT2L 2

BI	 FL 

R	 L

rr

a 7

From these physical variables we construct for convenience:

First natural frequency of a cantilevered beam:	 we - 3.52	 EI i^24) d T-1

Rigid natural frequency with proximal joint clamped: 	 P-3-,z3 d T-1

We will use the variables w and p instead of EI and ',i and nonuimensional-
ize with respect to p, k 2 , find k to obtain the following grouping>

w/p

kl	kl/k2

c 	 clp/k2

c2	 c2P/k2

Wc	we/p

1
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Table 8. Nondimensional and Physical Variables of Two Flexible Link,
Two Joint Case. (Constant link parameters.)

Physical Variables	 Nomenclature Dimension

Distal Joint position £seuback gain (angular)	 k2	 LF

Distal joint velocity feedback gain (angular)	 c2	 LFT

Proximal joint position feedback gain (angular)	
k 
	 LF

Proximal joint velocity feedback gain (angular)	 c1	 LFT I
Frequency (complex roots) 	 w	 T-1

Mass density/unit length 	 FT 2L 2

Stiffness product (E - Young's modulus,	 F.I	 FL 
I - cross section moment of inertia)

Total arm length

From these phyr :al variables we construct for convenience:

First natural frequency of a cantilevered beam:	 We - 3.52 EI k4 ) - T-1

Cantilever beam endpoint rotational spring constant: a - EIA ¢ LF

Use W and a instead of y and El. Nondimensionalize with respect to
1, WCC and a to obtain:

W	 W/Wc

kl	kl/a

k2	k2/a

cl	 cIWc /a

c2	 c2Wc/a

to
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Performance Criteria

When dealing with the flexible or rigid case one needs to develop

some criteria for good dynamic performance. While some criteria are

obvious such as stability, others depend on the specific application of

the arm and in the practical design case are almost always the result of a

combination of subjective designer opinion and constraints of weight, power,

or previous design decisions. The quadratic cost function of linear optimal

control is a popular way to specify performance but is more the result of

mathematical convenience than a correct estimation of the cost.

For an indication of how different criteria can result in different

systems refer to Figure 13. It displays eigenvalues of optimal fourth

order systems by three criteria: Integral of Time times Absolute Error

(ITAE), Solution Time criterion, and a quadratic cost function developed

by Townsend 
(7) 

for manipulator arms. Townsend's control gains resulted

in all ovardamped roots and a rather sluggish system, The other two cri-

teria , ITAE and solution time, result in four underdamped roots and there-

fore a much faster response, but with some overshoot.

In an effort to make this analysis independent of the criterion

selected the roots of the arm in a broad range of configurations which

might be termed acceptable will be discussed.

The transient performance of systems with various root pole place-

ments and desirable placements for poles is extensively discussed by

Graham and Lathrop.(8)

(7) Townsend, Allen L. Jr., "Linear Control Theory Applied to A Mechanical
Manipulator" SM thesis, Dept, of Mechanical Engineering,
Massachusetts Institute of Technology, January, 1972

(8) Graham, Dunstan, and Lathrop, R.C., "The Synthesis of 'Optimum' Transient
Response: Criteria and Standard Forms". Transactions
of the AIEE Vo1.72 part 2, November, 1953.

,
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Feedback Control Configu':ation and Its Limitations

As suggested previously the control configuration which Is being

considered in this section is not complete state variable feedback, even

in the rigid case. This would involve feedback between the joints (inter-

joint feedback) as well as within the joint (intrajoint feedback). Four

additional feedback gains would be involved, two velocity and two position

gains. The additional complexity would enable complete freedom in the

rigid case of placing the eigenvalues of the system where ever desired.

and in some arms the improved performance may well be worth the addee comp-

lexity. Such interjoint feedback is extremely rare in-arms produced today,

even experimental arms. In fact many arms do not have velocity feedback

and are dependent of friction in drive trains which is highly variable

from unit to unit, and cannot be readily controlled.

Thus while we can achieve many acceptable pole placements it would

be accidental if we could achieve the optimalg even if that optimum

were validly and precisely defined. For example we cannot match the

eigenvalues dictated by the standard forme of the ITAE or solution time

criteria or in general duplicate the sigenva.lueg of a quadratic cost

optimal system. More complete feedback would give one more degrees of

freedom in placing system eigenvalues arbitrarily, freedom not available

in the present case. The feedback gains determined from the matrix Riccatti

equation for a quadratic cost criterion for example assumes all measured

state variables can be fed back to any control variable.

The justification for this simplificatton then is that it more adequately

describes the practical problem. This constraint in feedback is not entirely

a simplification. Design techniques for complete state variable feedback

are more readily available than for restricted feedback.

a

L`

at A

`	 h



42

Discussion of the Root Loci-Two Linker Two Joint Rigid Link

Figure 14 displays the location of the complex conjugate root pair

for the case in question with no veolcity feedback or damping. We will

reference the roots as r1 , r2 , r3 , and r4 where r1 * r2* and r3 - r4*.

The lower indexes refer to roots nearer the origin. The relative position

of the damped roots is determined by the ratio of postion feedback at

the two joints k 
1 
A 2. . This relation is displayed in Figure 15. In the

nondimensional case considered the lower root asymptotically approaches 1

as the inboard "spring" k 1 , is made stiffer, k 2 remaining fixed at 1.

The position of these roots is moved to the left as the velocity is fed back

with increasing negative gain. The aeries of Figures 16a through 15d shows

these variations in detail.

For any value of ki/k 2 , the roots can be brought to the negative real

axis by increasing c 1 and c2 appropriately. The difficulty arises in achieving

sufficient damping for the pait r 1 and r 2 without greatly overdamping roots

r3 and r4 . For relatively low values of k1 /k2 (see Figure 16a) it is impossible

to achieve a damping of the order of 0.7 on r 1 and r2 without bringing the

roots r3 and r4 down to become two real roots, one of approximately the mama

+iagnitude as r1 and r2 . For values of k1/k2 - 2 a reasonable response can be

obtained of a third order nature for ci 6.5 c 2 a 0.1. As noticed in Figure

16, r1 and r2 are such nearer the origin but this can be compensated for by

increasing k2 when dimensional values are completed, thus shrinking the scale

of the plot.

As k 
1 
A 
2 
is increased to 5 and 10, higher values of c 2 are required to

lamp the lower modes sufficiently. Vie high values of both c 1 and c2 in

turn overdamps the higher modes. bringing a slow real root near the origin.

However, as k1/k2 continues to increase to 50 (see Figure 16d) the lower

made becomes essentially independent of c 1 , and its damping can be controlled

by c2 at will. Thia approaches the one joint case. For k 1 /k
2 a 50, c1 a 2,

c 2 • 1.7 the two complex conjugate pairs will both have damping greater than

0.7.

Thus there are many parameter values where performance might be satis-

factory. This one pevferred would depend on the application at hand. The area

with k1/k2 large moms preferrable in terms of performance but the higher gains

would require larger shoulder motors if the operation is to remain within

A
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kI r 10

kI - 50

clr5

cIr15

cI r 10

"E2 r .5

72 - 2

C2 r 1.7
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the linear range. This is feasible however. It may be difficult to

achieve the low values of damping desired at the joints especially when

large gsarraduetions are involved..

When k 
I 
A 2 is small (the two gains are more nearly equal), the lower

pair of roots remains much ' .earer the origin. (Figure 16a).	
f`

To have a response of comparable speed in a system with this control it is

necessary to have a higher k 2 , which has the effect of shrinking the

nondimansional scales of Figure 16. This may not be desireable since a

larger value of k  requires more torque if the response is to remain linear. 	
Ode

This requires more massive motors and drives at the outer joint, or

compliant transmission shafts which aggravate the vibration problems. 	 Y

Shift from Risid Roots for Flexible Links

To demonstrate the change of the roots as the links become more and

more flexible, examples were chosen from the rigid case which had reasonable

root locations. .Appearing in Figure 17 are the following cases, nondimensional- 	
a 1

ized as in Table 7.

For each case the stiffness parameter of the arm we is varied from one to

10 and the root position is plotted. This is not presented as evidence of

the limits of flexibility for reasonable performance, but as evidence of the

limits of a rigid design procedure. M we decreases the complex conjugate

root pair, r  and r 2 become less damped in all cases, moving from the position

of the rigid root. The real root near the origin in these cases moves nearer

the origin indicating a slower response. For k I r 10 it is observed that the

rigid root near the origin does not save but an additional real root moves

in causing similar effects of slower response and increased phase shift.

Several things can be observed qualitatiicly from these three examples.

Higher values of position feedback k  result in the complex conjugate pair

being more sensitive to w.c . 
Initially one might think that this favors lower

k  for more flexible links. This is not conclusive since to get a comparable
^^itiR 1

ts'
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speed from the two systems k a 10 and kl/k2 a SO one would have to use

a larger value of p 0 3 ks/Uis	 when moving to dimensional parameters.

If one used p a 2 for the case kl/k2 •10, c owc p would atso double. The

present nondimensionalisation scheme indicates limits of the rigid analysis

but is not well adapted to improving on that analysis. For this reason

a slightly different scheme will now be used which fixes the links while

	

f	 allowing us to vary all the parameters of the joint control system.

1wroveagnt on Control with Constant Flexible Link Parameters In order to

demonstrate how one might improve on the servo control parameters using the

flexible model we will take an example from Figure 17. First we will convert

from the nondimensional parameters of Table 7, which allowed ease in comparison

to the rigid ease, to the nondimensional parameters of Table 8, which holds

the structural parameters constant and displays directly what we can accomplish

with the control. The case chosen for demonstration is:

Variable Structural Paralasters 	 Constant Structural Parameters
I

(Table i and Figure 17) 	 (Table 8 and Figure 18)

Ti1^ 50
	 k1 n 6.5

'tint 	 2	 -92 - 0.13

Pivot the velocity feedback gain c2 to the outer joint is varied until

a msxisnae damping on the complex root pair is found as show in Figure 18.

Than c1 . the velocity feedback to the inner joint is varied until the s l n+

real root moves in, slowing the response. If the maximum damping ratio

shown in the figure of 0.58 is not adequate for the application at hand,

other values of k1 and k2 could be tried or the slow real root with slow

response would have to be tolerates.

	

ri	
Effect of Structure Dvnamic RisiditY Requirements on Cross Motion Speed

The locked actuator natural frequency of an arm can be increased by a

redistribution of mass as well as by making the entire arm more rigid. This

may involve a tapered structure of relocation or actuator masses. This re-

location requires power transmission channels such as shafts, cables, or

hydraulic lines which odd both weight and compliance, at least partially off-

	

_	 setting the improvements.
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When it is necessary to incr ease the structure's cross section

size in otder to increase ^, gross motion times suffer as described

below. The value of we increases linearly with r, the radius of the

structure's cross section, and the inertia of the arm increases as r2.

The task time t  to perform a gross motion of given angle can be shown to

increase as r and thus as we assuming no gravity and a bang-bang control

strategy with maximum torque Tm.

One might consider what penalty one must pay for operating consarv-

atively at a smaller ratio of wa/ we than is necessary. Consider moving

from the limiting case of wa/ we a 0.5. to the slightly conservative case

of wa! c - 0.3, by increasing r, with a damping ratio of .65 in both

cases In the limiting case the nvndlmensional root is 80% farther from

the origin than :ne conservative case. This operating at wa/ we - .3

would require an 80 % larger value of r at the expense of an 80% increase in

gross motion time.

The minimum value of r established by strength considerations may be

larger than the minimum required to yield a sufficiently high value of We

For a banding moment 
i 

applied to a beam, we can show that the minimum

{	 value of trots sectional radius r ain is proportional to T2 
113 

and that
i

!	 rsiln	 T
(10) WC,Win a R - a -^--

e x

where Lis the total length of the arm.

As discussed previously we determines the minimum settling time and thus the

fine motion control speed. A comparable gauge of gross motion speed with

bang-bang control of the second link inertia is

(11)

d	 oc T 	 or_ TIm
t z f min	 3	 i,s

2	 RL r min

it is postulated that there exists a preferred ratio of gross motion speed 	 i

to fine motion speed. If so, equations (10) and (11) might indicate when the

structure cross section is lower bounded by the gross motion speed require-

mans (via maximum torque) and when it is lower bounded by the fine motion

speed requirements (via wc). Viewed alternatively it might indicate 	 3.j

r+3

t

s A
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when we must increase r from rmin to achieve an adequate value

of wc . As Tm increases or R decreases the ratio of wc,min /( 0/tf)

will increase and the value of r will tend to be determined

by minimum strength requirements with the resulting w e adequate

!	 to achieve fine motion control. When Tm decreases and R

increases the tendency will . be for the we resulting from r
min to
	

r3

be to low requiring r > rmin for adequate fine motion control.

These simple relations cannot predict where the limiting condition 	 .,

will change, only the tendency or relative change as the arm

parameters change.

.01

r

i

t
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APPENDIX A

Analytical derivation of Frequency Functions

CASE 1: One Joint, Two Links

pinned point with spring and dashpot

The relevant state variables at each point in the system

-w a deflection perpendicular to the x axis

ty m angle or slope of neutral axis with x axis

K a moment vector out of plane of vibration

V m shear in the direction of w

The relations between the state variables at each and of the two identical

bear segments is given by the transfer matrix for a Bernoulli War beam.

aloft 0 Bzright

-w c0 icl act	 atc3 -w

6Ac3A c0 so 	 A,	 act

K 94c2/a 94A.c3/a c0	 icl M

3

V 94c1/at 9Ac2/a dbc3/A,	 c0 V
loft right

t
Where

c0 a (cosh 9 + cos 9 )12 94	 W L LEI

c1 a (sinh 9 + sin 9 )/2 a	
L2 

/El

c2 w (cosh 9 - cos 9 )/292

c3 a (sinh 0 - sin 0 )/293

or.

1
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and	 U	 density/unit length

W	 +	 circular frequency of vibration

8	 +	 Young's Modulus

I	 cross sectional area moment of inertia

Across the joint	 =left	 K z right

-w	 1 0 0 0 -v

*	 0 1 1/k 0

M	 0 0 1 0	 M

V	 0 0 0 1	 V

left	 right

k+kA +jwc
s'

N + spring constant
e + damping coefficient

j •

Let i0 - the state vector at the left and of the arm

z1 - the state vector at the right and of the arm

?hen	 - B K B z 1	U zl

if E describes the identical beam segments and K describes the spring loaded

point	 t
Boundary Conditions require 	 j

'	 I

10	 -we-0	 z1 - wl

*db o 	 W1

M1 -0V	
VL 00 J	 i

a;
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Thus the equation

=0 a U =1

Contains a homogeneous ast of equutio.s

-all w  + u12 5i - 0
	

A,

u21 w
l + u22 

1P2 00

For this always to be true the determinant of the submatrix cf U mutt - 0 i.e.	 al„

u11	 u12
- 0

u21	
u22

All that is required is a great deal of algsbrait manipulation and this require-

aent can be expressed in termv of the elements of the matrices A and K as fo:lows:

-sinh2$ (1 2 coal$) + COa 2 0 + St (toa 2 8 sinh 8 cosh 8
W

- cos 0 sin 0 cosh'$ ) - 0

As kr -PP • the expression

-sinh 2 $ (1 - 2coa 2 $ ) + c08 2$ - 0

dominates. This i,e equivalent to expressions for single beams of length 2 R.

Ask -40 0, c -► 0
Y

cos 2 $ sinh $ cosh 8 - cos 0 sin 8 cosh 20 - 0

dominates and Lb equivalent to pinned beams without springs or dashpots.

Finally as EI becomes very 1-rge a-*, 0, a-e• 0 	 and via a series expansion

of the trigonometric and hyperbolic function the frequency condition can be

shown to converge to

W2 = 3k	 - 0

i
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t

Which is true for a simple second order system with inertia p i /3

CASE 2 tTwo Joints. Two Links

controlled joifts
v,^ rI`	 Y-

Now U a KlS K2 B	 f

which is equal to the transfer matrix

in the one joint example premultiplied
by K1

Let us designate this as	 U a 
K1 

D

The frequency determinant requires
fff	

evaluation of additioaal terms.

Z
1 0 0	 0	 d	 d -----

11 11

Un 	
0 1 IN , 0	

d21 d22 ----

0 0 1	 0	
d31 d32

0 0 0	 1	 ---------

The frequency determinant is

u11	 u12	 d11	 d12

°21	 u22	
d21+ ^1	 d22 + d32

kl	 kl

S ,

t

d11 d22 - d12 d21 + d11 d32 _ d12 d 3 1	 0
_ J	 kl	

k 

determinant for
the one joint case

requires only that d31 and d32 he evaluated since the detailed procedure

for the one joint cane would give 
d11 

and d12 as

t
s	 ^

t

1

NI
.J
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6

dll 
n cos =B + sinh a8 + -A1 (sinh B + sin 6)(cosh B -cos p )

4k2a

d12 n i (cosh B sinh B + cos B sin B) + 0 1 (sinh = B - sin=B)
k	 4k2a

r
The values of d 31 and d32 are found by multiplication and simplification

to be:

d31 
n 

O l t (cosh B - cos B)(sinh B - sin B) +.J!(cosh a 8 -cos=B
4ak2 	2a

+sinh°B + sin=B)

d32 n .1. 9,5 -(sinh B - sin $)' + $L(cosh B sinb B -cos B sin B)
4a k2	 a

Thews expressions, or values obtained from them, can then be fed into the 	 a
frequency determinant.

1	 :."	 1

I	 ^

r

4	 ,t	 's^T
i•.i
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APPENDIX B

Rigid Body Analysis of Two-Link Tao-Joint Case

Y1 mass moment of Ina:. -
about e.g. of link 1

I2 - mass moment of Inertia
about e.g. of link 2

aI . m2 mass of links 1 :nd 2

Two Link Two Joint Arm

The kinetic eaargy of the system for small angles *1 and *_

T - I [( I1 + mlhi + m2al) ^' + (I2 + ham2 ) .a + 2h2

	

2	
f1m2V+1*21

The potential energy (with no gravity) with rotary springs of constant k  and k2
at the joints

V - 1 (Y1 + k2 (*2 - * ) 112

Lagrange 's equations require for i - 1.2 that

d[ 2 (T	 - V) j -(T - V)	 0
at	 i	

i
w 

a A

3

i

a	

R	

.;
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For the homoganeous solution to linear differential equations

where w - frequency of vibration in radians/sec.

Computing the appropriate derivatives and arranging the results in matrix

form yields:

k,4 (11ft hi+m2Ri)wz	-k2h2Rlm2w2"1	 W1	 0

(E1)	 '"
-k2-h2Rlm2w=	k^ (12+hZm2)wt	^2	 0

The determinant of the 4 x 4 matrix must be zero, which gives a condition

for determining the natural frequencies w.

kua1 Links

if the two links are identical (E1) simplifies to

kl+kZ 4mRzwz / 3	 -k2^ Rimwz/2	 ^1	 0

(82)	 -k2-R1mws/2	 k2 -NOwz/3	 W2	 0

11 - 12 - m Rz/3where R - R1 + i29 IS - ml - L

which expands and simplifies to

(B3) klk2 - m i
t w2 (k1+ 8k2) +

3

r r

36 m
2 R w	 -0

Equation (B3) will be used to obtain natural frequencies in both the damped

and undamped cases.
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Undamped Natural Frequencies

If we make the substitution of variables into equation(B3)

m LA Wa
q2'

3'k2

and divide by k 2
2 	obtain

(54)	 k, - (1, + 8) q a + 7 q a - 0

k2 k	 42

The variable q corresponds to the natural frequency with the inboard point

clamped. The solution of (B4) yields two roots which are a nondimensional-

ised form of the natural frequencies of the original problem.

Damped Natural Frequencies (complex)

The damped cue can be obtained directly from-equation (B3) by a change

in notation.

k1 =WP- k1 + jw K1

k2 --?> k2 + JW c2

and	
s^jw	 I 0 mP/3

The characteristic equation for determining the values of a is

784 /4 + 6 11(c1 + Be,) + 82 (I(k1 + 8k2) - cic2 1 + s(kIc2 + k 2 
c 1 ) + k 

1 
k 2 - 0
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Figure 1. State Vector for Arm Models

O
C

N	 «
M

Y

z

F-W	 -displacement
_ angle

M	 moment
Vshear force
	 :,

I	 at station 1

icps B Z1

B = beam. transfer matrix

Figure 2.Transfar Matrix Representation of an Arm
eon+inn 7



Figure 3a. Distributed Beam Tranufer Matrix

Distributed bear Transfer M: Urix (Timoshenku model)

CO - OC1	 I If e, - (a + T)C 31 CCy	
I 0 1 ( - ac, + (i3`+03)C3I

b^ C3 Co-TC2 (Cy -TC3) OC1

aCZ I ^ (-7CI+0''r73)C3) C O -TC2 I(CI - (Or +T)C3)

n! (C
	 "C3) i• ^ 	 Cy I 	 C3 CO	 OCy

B -

whcrt

I

	

a s	 Co o A(At cosh A3 + Ai cos A-g)

(•	 Cl o A (
!

sinh A, + ^^ sin Az^

c k9 WS

GA, 
P	 CS ^ A(cosh Ai — cos A2)

+	 — 
&

(µ^^^s}	 Cs a A \' siah Al — 1 sin As/
Al 	 A:

_ 1
A* " + ^^^ t 2(° — r)s T ((o + '►)	 A Al 1 

Ay

	GA	 Sitcar stiffIicsss

	

1:J	 Bendin, stiffness

:::ass per unit length

	

i	 I-ndius of r.yrztion of cross sectional area

perpcndiculnr Lo Lhe beutn's neutral axis

1 - len;!th of the bear)

W - vibraLlon circular frequency

-A 1

r ^,
1
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Figure 3b. Angle Transfer '.Iatrix

1/CosyS	 0 0 0
A	 0	 1 0 0

0	 0 1 0
LM 'W25in ton ¢ 0 0 cos¢

z i	 1 T 1
+1	

station i • 1

	

where;
ms	

station Ij
^ m
=i	 J 

of elcr^e^^t j
J

	n 	 first joint (angle) element greater than i,
or the tor_al nunbcr of elements, whichever
is Smaller

	

W	 vibration circular frequency

	

Figure 3c.	 Ri;.Id ;;ass Transfer :Satrix

r	 1	 9	 0 0
'	 0	 1	 0 0

rnw2	 MW2(Q -h) 0 1

zi	 ?: zii
l

1 a mass mor-vnt of inertia,
axis por:wndicular to the
plane of vibration, through
tLe center of gravity, c.g.

m	 mass of the body

W	 vibration circular frequency
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Fig,ur: 3 d 	 Controlled rotary Joint Transfer Matrix

r

'	 0	 0	 0

0	 1 1/k(jw) 0
C =

0 0	 1	 0

1^O 0	 0	 1
L

control motor

Pinned connection between two elements. Relative angle is related to the

moment Which affects each of the two elemerts. k Qw ) is essentially the
transfer function relating moment to angle. Ir.. the simplest case k z

constant a rotary spring determines the relation between angle and moment,

k Q w) caz account for feedback of angular velocity and other derivatives
or integrals of the variable 1̂  , for filter dynamics incluued for compen-

sation, and for servo motor and transmission dynamics.

.-q.



ConditionsFigure 4. Physically Possible

Clamped W = y =0 Sliding Y=V=0

L^

Free M=V=O

I

i

i

^^

Pinned W--M=O

Figure S. Frequency Detsminant
m

s,

U=BR C B R1 2A3 a 5 6

	

9	 0

	

ft	 - 	 91
	 U13 u14 -W

e
Z=
0 	 00=

 U^Z)U 2 U23 U24 	 0

	

 3 U33 U34	 0
V	 U41 42 U43 U44

0	 6

U11 U12	

= rolU31 
U32Jr , 6

For a nontrivial solution:
ull U32 12 31



joint
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Figure 6 Experimental Verification - Clamped elbow joint
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Figure 7 Experimental Verification -pinned elbow joint
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Figure 8. Amplitude of Acceleration vs. Frequency
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Figure 9. one Joint, Two Link Arm Example
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Figure 10. Thret Characteristic hoot Loci.
Eaeh plot indiCatea the position of the rho--
dominant roots of the arm of Figure 9 fi
different servo bandwidth. Arrows indii
direction of root movement for increasii
value. )f damping ratio.

a. Rigid Region (w <<.3b6)
Characteristic secoed order
system for reasonable values
of damping. Figure ila fat detail.

c. Floppy Region. (w »0.386)
It is no longer possible to bring
the dominant complex roots near the
real &%it. Figure llc for detail.

n(jwa )

b. Transition Region. (w =0.386)
A triple root occurs at the
critical value of mQ 0.386
for L- .913.
Figure llb for detail.
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Figure 13. System Roots for Optix.jl fourth Orccr
Systems by Various Criteria
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Figure 14. Root Nomenclature Indicated on Four
Undamded Roots.
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Figure 16a. Hoot Loci of Nondimnelonal Rigid Two Joint Arm:
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Figure 16c. loot Loci of Mondiwasiaool Rigid Two Joint Arm:
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YiRure 17. Variation in Roots with ut . Nondimensionalization
by Table 7.
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