HYDROGEN ENERGY
CUMULATIVE VOLUME 1953 THROUGH 1973

ENERGY INFORMATION CENTER
THE UNIVERSITY OF NEW MEXICO
ALBUQUERQUE, NEW MEXICO 87131

A Cooperative Effort of
The Technology Application Center and
The College of Engineering
REPRODUCTION RESTRICTIONS OVERRIDE

NASA Scientific and Technical Information Facility

COPYRIGHT © 1974 by
THE TECHNOLOGY APPLICATION CENTER
UNIVERSITY OF NEW MEXICO

The publisher reserves all rights
to reproduce this book, in whole
or in part, with the exception of
the right to use short quotations
for review of the book.
NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
FOREWORD

Our modern world presents an ever increasing number of new technical problems, many of which have potential solutions embodied in reports of previous research. Recognizing the fact that some of these problems may be solved by designs, techniques, and technology already in existence, NASA's Technology Utilization Program developed a system of six centers for disseminating the results of existing research, both aerospace and nonaerospace. The Technology Application Center (TAC) of the University of New Mexico is one of these centers; its primary mission is to promote the timely and beneficial use of new technology.

One of TAC's major efforts has focused on the identification of new high-interest areas of technology, and the assembling and updating of references on these subjects. A typical subject area of increasing worldwide interest and concern is the broad field of energy. The voluminous amount of both technical and nontechnical information on this subject—now scattered among a growing number of announcement and publishing mediums—necessitated, in TAC's view, a comprehensive compilation of such information. To fulfill that need, the College of Engineering and TAC joined resources to establish the Energy Information Center of the University of New Mexico.

As a corollary to compiling such an information base, one of the goals of the Energy Information Center is to publish a number of reference works, each centered on a specific energy source, conversion system, or carrier. This abstract bibliography on hydrogen as a carrier and secondary energy source is the first such product to be published through the Center.

William A. Shinnick
Director
Technology Application Center
The University of New Mexico
January 1974
ACKNOWLEDGMENTS

The volume HYDROGEN ENERGY was conceived by the technical editor, Dr. Kenneth E. Cox, during his participation in the 1973 NASA/ASEE Summer Design Program on "Hydrogen as an Energy Carrier." A precursor document was provided for use at this summer program through a cooperative experiment between Dr. John F. Harvey, Dean of the University of New Mexico General Library, and the Technology Application Center. This document served as a catalyst for HYDROGEN ENERGY.

Encouraging and extending these efforts was the Energy Information Center, recently established through the joint auspices of the College of Engineering, under Dean R. C. Dove, and TAC. HYDROGEN ENERGY is the first document to be published by the Center.

Thanks are further extended to Zanier Lane of the UNM General Library who assisted in the first literature search; Eugene Burch, Assistant Director of TAC who worked with the graduate student compilers, John Leffler and Mani Natarajan; and to Lee Doswell who typed most of the original manuscript.

Also acknowledged are the untiring efforts of John Nowak who programmed the computerized indexes; and Virginia Burt who compiled the final master copy.

This publication was further made possible by the Technology Utilization Program of NASA from which both the Energy Information Center and the Technology Application Center derive the majority of their support.

Walter W. Long

Co-Directors

Energy Information Center

Thomas K. Feldman, Ph.D.

Preceding page blank
The use of hydrogen, either in gaseous or liquid form, will necessitate the development of a large-scale transmission and distribution system. A hydrogen gas pipeline system, similar to or partially integrated with existing natural gas pipelines, appears to be the most practical solution. In a nuclear economy, hydrogen is to be preferred as the energy carrier over electricity for most purposes. This is due to its ready substitution and usage for all energy needs, as well as its low transmission costs. Siting of nuclear plants in a nuclear-hydrogen scenario could be far distant from cities thus obviating one of today's most pressing problems. Hydrogen can also provide for the storage capacity needed to meet both daily and seasonal peaking requirements. These requirements may be satisfied most economically by large-scale underground storage in depleted natural gas formations.

Recent high interest in the area of the hydrogen economy has been shown by the increasing number of conferences, study groups, and meetings being held on this topic. Among the latest and most outstanding of these were the "Cornell International Symposium and Workshop on the Hydrogen Economy" held August 20-22, 1973, the earlier "Working Symposium on Liquid-Hydrogen-Fueled Aircraft" held at NASA's Langley Research Center on May 15-16, 1973, and the NASA-ASEE 1973 Systems Design Institute held on the topic of "Hydrogen as a Future Energy Carrier" at Johnson Space Center from June through August 1973.

The growth of information on the above concept, known as "Hydrogen Energy" or as the "Hydrogen Economy," has been both rapid and diffuse in the years since 1968 when interest and work developed in this field. At the present time, publications on the "Hydrogen Energy" concept average about 100 per year. Consequently, a number of important references may not be widely known and may be difficult to obtain. Examples of these include government reports, industrial contractor reports, university research reports, journal articles, and recent papers given at technical society meetings that are not yet abstracted.

Recognizing the need for complete and up-to-date information on energy in general, and particularly on the "Hydrogen Energy" concept, the ENERGY INFORMATION CENTER was recently established at the University of New Mexico under the auspices of the College of Engineering and the Technology Application Center.
INTRODUCTION

A conservative study of the demand for energy in the United States indicates a doubling of the consumption of energy from the present to the year 2000. Most of today's energy needs are met by fossil hydrocarbons that have finite reserves and are becoming in short supply throughout the world. To conserve these fossil sources and ensure a high standard of living, a synthetic nonpolluting fuel derived from a renewable primary energy source must be used. Hydrogen, a recyclable fuel that can be produced from water, appears to be one answer embodying great potential.

Hydrogen is compatible with most of today's fuel requirements with one exception; certain on-board storage difficulties for automotive-type vehicles are foreseen. Industry can, however, use hydrogen as a fuel in most applications where fossil fuels are now used. The industrial-chemical use of hydrogen will not be radically altered; in fact, hydrogen could find many more applications such as its use in the direct reduction of metallic ores. Residential and commercial use of hydrogen appears both feasible and practical, especially in new buildings. However, the changeover of existing structures does present some problems due to cost and safety considerations. Finally, the use of hydrogen as a fuel in electrical power generation appears to be not only feasible, but may provide higher efficiencies than presently possible in conventional generating plants.

The handling and safety considerations for gaseous hydrogen appear to be no more complex than for existing gaseous fuels such as natural gas; and society can adapt to the use of hydrogen as a fuel with a reasonable time period for information, education, and guidance.

It should be stressed at this point that hydrogen, per se, is not a primary energy source but a synthetic fuel or "energy carrier." A source of energy such as nuclear, solar, or wind energy must be utilized in order to produce hydrogen. Methods commercially available today to produce hydrogen are the electrolysis of water and possibly the gasification of coal with steam. Closed-cycle water/thermochemical decomposition methods are rapidly being developed, both in Europe and in this country, due to their promise of high conversion efficiencies.
The most modern computerized literature search techniques, as well as the assistance of many workers in this exciting field, have been used to compile this extensive bibliography with abstracts on all aspects of the "Hydrogen Economy." In addition to publishing this initial bibliography, the Energy Information Center will publish a quarterly update on the same subject and provide copies of selected references upon request.

This bibliography seeks, as its main goal, to cover the topic of hydrogen as an energy carrier. However, other aspects of hydrogen have not been neglected.

The technical editor has added some technical and personal bias to the abstracts by identifying certain articles with an asterisk (*). These articles are considered to have leading merit and give the user greater familiarity with the field.

Although a considerable effort has been made to ensure that the bibliography is substantially complete, readers and researchers in the field are asked to notify the Technical Editor of any omissions and to supply the missing articles or reports.

Kenneth E. Cox, Ph.D.
Technical Editor
Technology Application Center, and
Associate Professor, Department of
Chemical and Nuclear Engineering
The University of New Mexico
A number of features have been incorporated to help the reader use this document. These consist of:

- A TABLE OF CONTENTS listing general categories of subject content and the indexes available. Locations of these within the document are indicated by black edge tabs. More specific coverage by subject terms or title can be located through the appropriate index.

- An INDEX OF AUTHORS

- An INDEX OF CORPORATE SOURCES, where identified.

- An INDEX OF PERMUTED TITLES to afford access through any major word in the title.

- An INDEX OF PERMUTED SUBJECT TERMS to provide access through any terms assigned as being indicative of the major subject content of each citation.

 NOTE: COORDINATE TERM SEARCHING of subject content is inherently available through the user's consideration of associated terms in this subject term permutation.

- An OPENENDED NUMBERING SYSTEM to facilitate easy incorporation of subsequent updates into the structure and organization of this basic search. In this manner, numbers assigned to new citations in each update category will follow directly the last assigned numbers in the previous publication.

- A FLAGGING OF CERTAIN DOCUMENTS with an asterisk (*) added to the citation number, indicates the editor's personal opinion that the document cited has special significance or merit toward edifying the reader.
<table>
<thead>
<tr>
<th>SECTION</th>
<th>CITATION BLOCK NUMBERS**</th>
</tr>
</thead>
<tbody>
<tr>
<td>I GENERAL</td>
<td>10,000</td>
</tr>
<tr>
<td>II PRODUCTION</td>
<td>20,000</td>
</tr>
<tr>
<td>III UTILIZATION</td>
<td>30,000</td>
</tr>
<tr>
<td>IV TRANSMISSION, DISTRIBUTION & STORAGE</td>
<td>40,000</td>
</tr>
<tr>
<td>V SAFETY</td>
<td>50,000</td>
</tr>
</tbody>
</table>

INDEX OF AUTHORS

INDEX OF CORPORATE SOURCES

INDEX OF TITLES (PERMUTED)

INDEX OF SUBJECT TERMS (PERMUTED)

* To use, bend book to fan open the page fronts. Locate desired section keyed to index mark along right edge of this page.

** Citation numbers appear on upper right corner of each page.
CONTENTS

SECTION NUMBER AND COVERAGE

10,000 I. GENERAL: CONCEPTS, CONFERENCES, SURVEYS, REVIEWS

20,000 II. PRODUCTION

20,000 A. Electrolytic

20,000 1. Conventional Concepts

20,500 2. Advanced Concepts

21,000 B. Thermo Chemical Decomposition of Water

21,000 1. Multistep Processes

21,500 2. Single Step Processes

22,000 C. Fossil

22,000 1. Coal

22,100 2. Liquid

22,600 3. Natural Gas

23,000 D. Other

23,000 1. Chemical Sources

23,200 2. Biological Methods

23,400 3. Separation Methods

23,600 4. Photolysis of Water

30,000 III. UTILIZATION

30,000 A. Space Vehicles - Rocket Engines, Turbo Compressors

31,000 B. Aircraft - Engines, Gas Turbines, Ram Jets

32,000 C. Land Vehicles - Automobile Engines, Gas Turbines & Other

33,000 D. Combustion - Research, Testing and Physical Properties

34,000 E. Fuel Cells

34,000 1. Reviews, Basic Operating Principles, State of the Art

34,100 2. Design and Development

34,100 a) Design Processes and Considerations

34,200 b) Development and Testing

34,200 i) General

34,500 ii) Water and Heat Removal

34,600 iii) Electrodes

34,800 3. Applications - Existing and Theoretical

35,000 F. Commercial Industrial

Preceding page blank
CONTENTS (continued)

<table>
<thead>
<tr>
<th>Citation Block Numbers**</th>
<th>Section Number and Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,000</td>
<td>IV. TRANSMISSION, DISTRIBUTION, AND STORAGE</td>
</tr>
</tbody>
</table>
| 40,000 A. | Liquid State - Cryogenic Fluid
40,000 1. General - Surveys, Symposiums, Reviews, etc.
40,100 2. Liquification Process
40,200 3. Thermophysical Properties
40,300 4. Instrumentation - Flow Meters, Liquid Level Meters, etc.
40,400 5. Storage Tanks, Insulations
40,500 6. Pumps, Lines, Valves, Seals, Bearings
40,600 7. Transportation, Handling & Distribution Systems |
| 41,000 B. | Slush, Solid, Metal |
| 42,000 C. | Gaseous State, Compressed Gas |
| 43,000 D. | Metal Hydrides |
| 50,000 V. | SAFETY |
| 50,000 A. | General |
| 51,000 B. | Fire, Explosion |
| 52,000 C. | Material Properties |
| 52,000 1. | Hydrogen Permeation & Embrittlement |
| 52,500 2. | Properties, Cryogenic Temperatures |

** Citation numbers appear on upper right corner of each page.
I. GENERAL
As the fossil fuels run out, they will become more expensive, making the direct use of nuclear electrical energy relatively more economical. In this situation a case can be made for utilizing the nuclear-energy sources indirectly to produce a synthetic secondary fuel that would be delivered more cheaply and would be easier to use than electricity in many large-scale applications.

In many respects hydrogen is the ideal fuel. Although, it is not a "natural" fuel, it can be readily synthesized from coal, oil or natural gas. More important, it can be produced simply by splitting molecules of water with an input of electrical energy derived from an energy source such as a nuclear reactor. Perhaps the greatest advantage of hydrogen fuel, however, at least from an environmental standpoint, is the fact that when hydrogen burns, its only combustion product is water.

"THE ECOLOGY FUEL" THE HYDROGEN ECONOMY CONCEPT

"As the United States' supply of nonpolluting fossil fuels begins to dwindle, the gas industry has begun a search for alternative sources of clean-burning energy, such as the gasification of coal and importation of LNG Nuclear and solar energy are the only effectively abundant energy sources that can be considered to fill the country's long-term energy gap. But almost all work to harness these energy forms is directed toward using them to produce electric power....... An all-electric economy is undesirable for a number of reasons....... For the past 10 years, IGT has been studying a synthetic chemical fuel than can easily be produced from nuclear or solar energy and other readily available sources: Hydrogen."

The article discusses not only the production of hydrogen, but the storage, transmission and safety aspects.
"Although years of research and work are ahead of us, we feel that the great potentiality of such a system justifies time and effort."

(HYDROGEN, ENERGY, FUEL, ECONOMY, PRODUCTION, STORAGE, TRANSMISSION, USE)

Because of the limited supplies of fossil fuels available, our energy supply pattern will undergo some radical changes in the near future. One change is that energy in any form is going to cost more in proportion to the other things we can buy. Another change is that the sources of energy which we use will have to change and relatively "inexhaustible" supplies such as nuclear energy will have to play an increasing part. These changes will precipitate a number of other radical changes, which themselves will be tempered by our increasing desire to avoid "pollution" or to minimize the effects of our technological progress upon our environment.

One of the changes that is possible is the development of a fuel system based upon a synthetic chemical fuel derived from nuclear energy and fully recyclable materials such as air and water. Of the various fuels that can be considered, the most likely to come into use is hydrogen. An energy industry based upon hydrogen for energy storage, distribution and utilization has been termed "The Hydrogen Economy." There is growing interest in such a concept on the part of various industrial companies, the U.S. Government, the Atomic Energy Commission, the American Gas Association, and others.

In the "Hydrogen Economy," hydrogen will be produced from nuclear energy by today's known technology using water electrolysis. Direct-current electric power from a nuclear power station can be used to electrolyze water into hydrogen and oxygen at efficiencies of about 100% (in comparison to today's figures of between 60 and 70%). New methods will also be developed for water-splitting using the nuclear reactor heat directly.

Hydrogen will be used for all the present applications of natural gas and more. Burners can be designed
to handle hydrogen in heating, cooking and industrial operations. Gas turbines and piston engines will operate better on hydrogen. Fuel cells that use hydrogen as a fuel are simpler and cheaper than those that use hydrocarbon fuels. As we have already mentioned, hydrogen is an extremely clean fuel, the controlled burning of which produces only water. The benefit of such a clean fuel on the environment will be considerable.

Hydrogen will be transmitted from the remote, possibly offshore, power stations in underground high-pressure pipelines similar to those used for natural gas today. In many instances, the same lines can be used, with modifications to the compressor stations. There appear to be no insurmountable problems in doing this. Hydrogen will be distributed in networks similar to those used for today's natural gas. Some extra safety considerations are necessary, but appear to be acceptable.

(HYDROGEN, ECONOMY, ENERGY, FUEL, STORAGE, TRANSMISSION, USE, SYSTEMS, STUDY, COST)

GAS INDUSTRY'S ROLE IN THE NUCLEAR AGE

Moving to a nuclear age, the problems of electricity transmission, distribution and storage become accentuated. Hydrogen is the simplest conceivable synthetic fuel that exists as an alternative to electricity. A hydrogen energy system has benefits in transmission and distribution costs over electricity, additionally hydrogen is an ideal fuel in many respects for combustion or for reconversion to electricity via the fuel cell.

(HYDROGEN, ENERGY, ECONOMY, FUEL, STORAGE, TRANSMISSION, USE, ELECTROLYSIS)

A NEW CONCEPT IN ENERGY TRANSMISSION
Gregory, D.P., (Institute of Gas Technology, Chicago, Ill.), Public Utilities Fortnightly, V 89:21-29 Fe 3 '72, Avail:TAC

As we move from a fossil fuel economy toward a nuclear power age to meet the burgeoning energy demands of this country, the problems of electricity transmission, distribution and storage become accentuated. An alternative exists to the growing number of overhead power lines ap
pearing around our cities. Hydrogen is a synthetic fuel that could be made from water and electricity at the power stations and used as a means of underground energy transmission. It is an ideal fuel in many respects for combustion to obtain heat or for reconversion to electricity near the user. Economically, transmission of a gas is far cheaper than transmission of electric power, especially underground. This concept is not without its problems; nevertheless, it surely deserves detailed consideration in the future.

(HYDROGEN, ENERGY, FUEL, ECONOMY, STORAGE, PRODUCTION, TRANSMISSION, USE, ELECTROLYSIS)

H73 10005* "THE HYDROGEN ECONOMY"

This chapter sets out to study the impact on industry and society of a transition from fossil fuels to hydrogen as our basic source of stored energy. Some speculative assumptions have had to be made, among them the basic one that hydrogen will indeed be accepted as a fuel and will take the place of methane in the natural-gas industry. Having made these assumptions, we will attempt to discuss real effects and not to speculate further. We will consider future hydrogen production techniques, problems, and its characteristics in pipeline transmission; means for storing hydrogen to provide short-term energy reserves; the use of hydrogen as a conventional fuel for cooking, heating, vehicle propulsion, and the generation of electricity locally; the storage of electrical energy using hydrogen fuel cells; and the expanded use of hydrogen as a chemical raw material. In line with the theme of this book, electrochemical aspects will be emphasized and the impact of our assumptions on the pollution of the environment will be discussed.

(HYDROGEN, ENERGY, FUEL, USE, SAFETY, ELECTROLYSIS, ENVIRONMENT)

H73 10006 PRODUCTION AND DISTRIBUTION OF HYDROGEN AS A UNIVERSAL FUEL
Gregory, D.P. and J. Wurm, 7th Intersociety Energy Conversion Engineering Conference, San Diego, Calif., Aug 72, Avail:TAC

As we deplete our fossil fuels, their cost will in-
crease until alternative energy sources become competitive. The cost of providing an energy supply is strongly influenced by the cost of delivering or transmitting the energy from its source to its point of use. Modern technology leans toward electrical energy as a means of supplying our increasing energy needs and toward nuclear-electric power as an ultimate substitute for fossil fuel. Electric power, however, is a most expensive energy form to transmit and deliver and cannot readily be stored. A synthetic chemical fuel could be storable and cheaper to transmit. When we consider the various synthetic chemical fuels that could be made from nuclear power, hydrogen appears as the cleanest and simplest candidate for an energy-distribution medium. Its combustion products are compatible with the atmosphere. Hydrogen could, in principle, be distributed as universally as natural gas is today, using most of the same technology. But its use would present some new technological problems. It could do all of the jobs done by natural gas, and more. Its universal availability would give rise to new technological opportunities. Transition to a "hydrogen economy" would have to be a well-planned, nationwide operation. Since hydrogen can easily be made today from conventional fossil fuels, it could bridge the gap between the fossil age and the nuclear age by a well-thought-out conversion program.

(HYDROGEN, PRODUCTION, FUEL, ENERGY, TRANSMISSION, USE, SAFETY, ENVIRONMENT)

H73 10007. WHEN HYDROGEN BECOMES THE WORLD'S CHIEF FUEL
Anon, Business World, p 89+ Sept. 23 '72
The sea is full of it. It doesn't pollute. And it returns to the sea after it's burned.
(HYDROGEN, FUEL)

H73 10008. HYDROGEN: LIKELY FUEL OF THE FUTURE
Anon, Chemical and Engineering News, V 50:14-17, Je 26 '72, Avail:TAC
By now almost everyone must know that there are serious problems relating to energy fuels. Many ways out of the "energy crisis" have been proposed. One route, however, has until recently received relatively little attention. That route is a fuel economy based on hydrogen, a concept that shows promise of becoming a major subject in energy discussions of the future.
In this article, the first of a three-part series, C & EN considers arguments and actions relating to hydrogen's use as an energy carrier in a hydrogen fuel economy of the future. For hydrogen ever to achieve large-scale use, there must be large-scale production. Part two of the series, to be published July 3, will survey present and future hydrogen production technology. Large-scale production of hydrogen implies the ready availability of cheap hydrogen in large quantity. Part three, to be published July 10, considers the implications of such hydrogen availability on the industrial sector in general. (HYDROGEN, ENERGY, FUEL, ECONOMY, CARRIER, USE)

H73 10009 "HYDROGEN: CANDIDATE FOR UNIVERSAL FUEL"

In the push for alternatives to fossil fuels to reduce the threat of an energy crisis, most attention has been focused on nuclear power generation and synthetic gas and oil. However, in the urgency to provide alternatives, those involved may be overlooking the virtues of hydrogen as a universal fuel. (HYDROGEN, FUEL, ENERGY, ECONOMY, USE)

H73 10010 "THE H2INDENBURG SOCIETY"
Anon, Chemical and Engineering News, V50:3, May 29 '72, Avail:TAC

This society was founded in Boston in April, 1972 and is "dedicated to the safe utilization of hydrogen as a fuel." (For information, contact the Secretary W.J.D. Escher, Escher Technology Associates, St. Johns, Mich.) (HYDROGEN, SAFETY)

H73 10011 HYDROGEN-ENERGY SYSTEM

This is a review of economic, technological and ecological aspects of production, transportation and utilization of hydrogen as one of the most important sources of energy in the future. The following highlights are detailed - energy supply; nuclear electric power; nuclear chemical power, hydrogen fuel; and hydro-
gen production, transmission and production cost. The benefits of the system described are indicated. 7 refs. (HYDROGEN, ENERGY, ECONOMY, NUCLEAR, PRODUCTION, TRANSMISSION, STORAGE, USE, COST)

H73 10012* STUDY, COST, AND SYSTEM ANALYSIS OF LIQUID HYDROGEN PRODUCTION FINAL REPORT
CFSTI: HC $3.00/MF $0.65 CSCL 07A, 323 p, Je 68, refs, Avail:TAC

This report contains information related to contemplated large-scale liquid hydrogen systems. Descriptions of feasible processes and equipment are presented. Information concerning availability and cost of required raw materials and energy are projected. Composite system analyses based on preliminary NASA hypersonic transport (HST) liquid hydrogen requirements indicate estimated average product cost of 7.7 to 8.8 cents per pound. (HYDROGEN, STUDY, PRODUCTION, LIQUID, COST, SYSTEM ANALYSIS)

H73 10013* HYDROGEN: TOMORROW'S FUEL?
Chopey, N.P., Managing Editor, Chemical Engineering, P 23-26 Dec 25 '72, Avail:TAC

It isn't going to happen soon, but hydrogen derived from water could eventually supplant all fossil fuels, as well as all electrical distribution networks. (HYDROGEN, WATER, FUEL)

H73 10014 "SECOND THOUGHTS ON THE HYDROGEN ECONOMY"
Anon, Science News, V 104:9 Sept 1 '73, Avail:TAC

A major problem facing proponents of the various so-called "exotic" energy sources is whether or not such sources can be made socially and economically feasible - issues theoretically inclined scientists sometimes have trouble judging. The idea of using hydrogen as the basic fuel of the future, for example, has recently gained popularity and a conference last week at Cornell University offered a rare opportunity for multidisciplinary debate on the subject. (HYDROGEN, ECONOMY, ENERGY)

H73 10015 "HYDROGEN-HEATED TOWNS PLACED ON ENERGY CRISIS SOLUTION LIST."
Anon, Albuquerque Journal, Sept 11 '73, Avail:TAC
New American towns which would operate solely on hydrogen power could be one solution to the energy crisis, a University of New Mexico professor, Dr. Kenneth Cox, believes.

(HYDROGEN, ENERGY)

H73 10016 ANOTHER HYDROGEN CAR OUT WEST
Anon, Industrial Resources, V 14:25 Oct 72, Avail:TAC

Los Angeles -- In recent months, a number of experts have suggested the future energy needs of the U.S. may be met by a "hydrogen economy."

The references were mainly to the use of hydrogen fuel in the utility field. However, a group of engineering students at the University of California at Los Angeles have built a modified automobile that again raises the possibility of using hydrogen to power tomorrow's cars.

The revamped automobile built at UCLA was penalized by the weight of the storage container for the gaseous hydrogen. Although the car was a prizewinner in the recent nationwide Urban Vehicle Design Competition, the container design restricted the car's range before refueling to only 96 km (60 miles).

(HYDROGEN, ENERGY, ECONOMY, TRANSPORTATION)

H73 10017 HYDROGEN AND POWER: A LETTER

In this letter, C. Sharp Cook discusses the "hydrogen-energy" concept on a commercial basis.

(HYDROGEN, ENERGY)

H73 10018 HYDROGEN PRODUCTION FOR BETTER NUCLEAR UTILIZATION
Thornton, R.M., (Georgia Institute of Technology, Atlanta), Transactions of the American Nuclear Society, V 15:27-28 N2 72, From Conference on nuclear power for tomorrow; Atlantic City, N.J. Aug 22 '72, See CONF-720817, Avail:TAC

One of the foremost restrictions placed on the rapid growth of nuclear power has been the economic necessity of using it as a base-load network. If the base load could be raised enough to "flatten" a utility's power demand curve, then nuclear systems could become the sole power-generation source for society. To promote this,
a study into the feasibility of using off-peak electrical power from nuclear plants to produce hydrogen by electrolysis was made.
(HYDROGEN, NUCLEAR, OFF-PEAK, ELECTROLYSIS)

H73 10019 SOLAR SEA POWER
Zener, G., Physics Today, V 26:48-53 Ja 73, Avail:TAC

Heat engines operating in the tropical oceans, capitalizing on the temperature differential between upper and lower levels, could provide a source of economical, pollution-free electricity.
(HYDROGEN, ECONOMY, ENERGY, ELECTROLYSIS, FUEL, VEHICLE, OXYGEN)

H73 10020 CRYOGENIC H₂ AND NATIONAL ENERGY NEEDS
Hord, J., Cryogenic Engineering Conference, Atlanta, Ga., Aug 8 '73, Avail:TAC

Our impending fossil fuel shortage is a clear challenge to the cryogenics industry and government to provide efficient and economical means of satisfying specific national fuel requirements. Large scale production of liquid hydrogen was stimulated by the U.S. space exploration program. Now, civilian demands for synthetic fuels beckon cryogenic hydrogen.

National and world energy shortages are briefly summarized to demonstrate the relevance of synthetic fuels in satisfying future energy markets. A perspective of national energy needs, as they relate to cryogenic hydrogen fuel, is given. Hydrogen and alternate synthetic fuels are briefly reviewed and potential applications for cryogenic hydrogen are described. Technical research and development efforts, required to satisfy specific current and future national needs, are identified. The mechanism for implementation of synthetic fuels and the indistinct timetable for transition to these fuels are discussed.
(HYDROGEN, ENERGY, USE, CRYOGENIC, FUEL, SYNTHETIC)

H73 10021 IS HYDROGEN THE FUEL OF THE FUTURE?
Trotter, R.J., Science News, V 102:46-47 J1 15 '72, Avail:TAC

Shrinking fossil-fuel resources and rising environmental concerns have made imperative, as all the world
must now be aware, the development of new power sources. Alternatives such as nuclear, hydroelectric, solar, geothermal, tidal and meteorological power will all be used to produce nonfossil chemical fuels.

One such fuel, hydrogen, is being examined with increasing interest as a possible major fuel of the future. (HYDROGEN, FUEL, FUTURE)

H73 10022 HYDROGEN AND POWER: A LETTER
In this letter, the writer discusses the commercial feasibility of hydrogen economy compared with conventional energy sources.
(HYDROGEN, POWER, ECONOMY)

H73 10023 HYDROGEN FIGURES IN MANY ENERGY PROPOSALS
Anon, Chemical and Engineering News, V 50:33-34 Oct 2 '72, Avail:TAC
It is no longer necessary to justify use of hydrogen as an energy storage medium. Most of the technical and scientific communities that are wrestling with concepts for restructuring the national energy system accept hydrogen, although they also have become acutely aware of the packaging and transportation problems that remain to be solved. Hydrogen now figures in many alternative energy systems proposed.
(HYDROGEN, ENERGY, STORAGE, MEDIUM, SYSTEM, TRANSPORTATION)

H73 10024 HYDROGEN FUEL ECONOMY; WIDE-RANGING CHANGES
Anon, Chemical and Engineering News, V 50:27-28+ Jl 10 '72, Avail:TAC
It's difficult to predict the shape of private or industrial life in a hydrogen fuel economy, but parts of the outline can be penciled in. Transportation technology would be affected. Changes would take place in domestic and commercial uses of fuel. Probably one of the major impacts in the industrial area would stem from availability of large quantities of low-priced hydrogen. Transport and storage of hydrogen are yet another part of the picture.

The feasibility of using hydrogen as a fuel in internal combustion engines has been demonstrated (C&EN, June 26, page 16), and fuel cells based on hydrogen are another possibility for powering vehicles. But hydrogen's
reach could extend beyond just surface transportation.
(HYDROGEN, FUEL, ECONOMY, USE, TRANSPORTATION, STORAGE, INTERNAL COMBUSTION, FUEL CELL)

H73 10025 HYDROGEN FUEL USE CALLS FOR NEW SOURCE
Anon, Chemical and Engineering News, V 50:16-18 Jl 3 '72, Avail:TAC

The replacement of hydrocarbon fuels by hydrogen in the long term would require a new source of hydrogen and a new technology to produce, transmit, and distribute it. The only "endless" source of hydrogen is the sea. However, until present supplies of gas, oil, and coal become economically unattractive, they will remain the best source of hydrogen, fuels, and chemicals.

In the not-too-distant future, coal conversion probably will take up most of the slack left by depletion of natural gas deposits. During the same time, it's possible that electrolytic hydrogen will influence the gasification era.
(HYDROGEN, FUEL, ECONOMY, COAL, CONVERSION, ELECTROLYSIS)

H73 10026* A HYDROGEN ECONOMY

The medium of energy transport from an atomic reactor to sites at which energy is required should not be electricity, but hydrogen. The term "hydrogen economy" applies to the energetic, ecological and economic aspects of this concept.

The concept envisages atomic reactors held on platforms floating on water. They are in water sufficiently deep to make heat dissipation easy. The electricity they make would be converted on site to hydrogen and oxygen by electrolysis. The hydrogen would be piped to distribution stations and thereafter sent to factory and home. Reconversion to electricity would take place in on-site fuel cells, the only side product being pure water.

The main difficulties which we would face in getting started toward a hydrogen economy are (i) conservatism; (ii) the absence of education or training in electrochemical engineering; and (iii) the public's fear of hydrogen.

//
(HYDROGEN, NUCLEAR, ENERGY, FUEL, FUEL CELLS, OXYGEN, ELECTROLYSIS)

H73 10027 HYDROGEN - FUEL OF THE FUTURE?
Armagnac, A.P., Popular Science, V 128:64-67 Ja 73, Avail:TAC

Teamed with atomic power, element No. 1 might be the prime answer to air pollution and our "energy crisis."
(HYDROGEN, FUEL, FUTURE)

H73 10028 HYDROGEN GETS TOP BILLING AS FUTURE "CLEAN FUEL"

Hydrogen offers a cleaner source of energy than fossil fuels and provides the consumer with a single fuel that can be derived equally well from fossil fuels and sea water, allowing for flexibility of energy system usage. Oil importation from overseas will reach a crisis stage by 1980, making a search for feasible alternatives imperative. Hydrogen is cheaper to produce and transport and easier to store than fossil fuels.
(HYDROGEN, FOSSIL FUELS, ECONOMICS)

H73 10029 A HYDROGEN-ELECTRIC UTILITY SYSTEM WITH PARTICULAR REFERENCE TO FUSION AS THE ENERGY SOURCE

The use of hydrogen for large-scale energy storage, transmission, and distribution is discussed. A numerical example is given for one specific configuration—a fusion reactor linked to an electrolyzer plant. The advantages lie in the abundance of hydrogen, the low cost and high reliability of transmitting energy by pipeline, and the elimination of many constraints on plant siting. Problems arise from inefficiencies in electrolysis and in the reconversion of hydrogen to electricity. These inefficiencies result in more waste heat and drive up costs to the customers. Technological improvements can be expected which will lead to more efficient performance.
(HYDROGEN, USE, STORAGE, TRANSMISSION, ELECTROLYSIS)
Automobiles, airplanes, powerplants, and steel mills will turn into models of ecological virtue, and we can rejuvenate rivers, and ... more, when we switch to a nuclear-hydrogen energy system.

(HYDROGEN, ENERGY, FUEL, ENVIRONMENT, NUCLEAR, ECOLOGY)

An assured long-term supply of energy is essential for the growth and maintenance of a modern industrial nation such as the United States. The current energy crisis this country is facing is well documented. Therefore it seems highly appropriate to investigate alternative energy systems which could provide the U.S. with the means of overcoming these problems. By 1985, the U.S. would be importing over one-half its petroleum and would have a shortfall in natural gas supply of about one-half of demand.

Synthetic fuels from nonfossil sources appear to be the most likely alternative for supplying the long-term needs for gaseous and liquid fuels. Hydrogen is a particularly attractive synthetic fuel for the following reasons:

1. It is essentially clean burning, the main combustion product being water.
2. It may be substituted for nearly all fuel uses.
3. It can be produced from domestic resources.
4. It is available from a renewable and universal raw material--water.
5. Nearly all primary energy sources, nuclear, solar, etc., may be used in its production.

The main obstacles to the use of hydrogen as a universal fuel are its high cost relative to the current low prices for fossil fuels and, for some applications, the unresolved problems of handling a low-density or a cryogenic fluid. Safety considerations, while important, are not believed to present a serious technical obstacle to its widespread use.

(HYDROGEN, ENERGY, SYNTHETIC, FUEL, SYSTEM, SAFETY, CRYOGENIC, ELECTROLYSIS)
HYDROGEN--A CLEAN FUEL FOR URBAN AREAS
Engineering Conference, Boston, Mass., Aug 71, Avail:TAC

The use of hydrogen as a clean general-purpose fuel for the more densely populated
sections of an urban area is studied as a means of reducing air pollution and to
provide for the effective utilization of off-peak electric power. A forecast of the 1985
electric power supply for the entire metropolitan New York City region, including
suburban counties, indicates that sufficient hydrogen could be produced by the
electrolysis of water, using the off-peak electrical power available throughout the
region, to provide over half of the energy required for transportation or, alternatively,
nearly all of the space heat requirements within the New York City limits where
the environmental problems are most severe. Additional hydrogen could be produced
from coal and delivered to the City by pipeline to provide the balance of the energy
needs for transportation as well as for household, commercial, and industrial use. A
combined hydrogen and electrical energy supply would eliminate all of the CO₂,
CO, hydrocarbon, SO₂, and particulate emissions from energy conversion devices
located within the City. The by-product oxygen produced along with the hydrogen in
the electrolysis operation provides an ample supply throughout the metropolitan
region for the treatment of sewage and industrial wastes, for use as the oxidizer
to eliminate NOₓ emission from incinerators and for the treatment and revitalization
of polluted bodies of water. (HYDROGEN, FUEL, ENVIRONMENT, URBAN, ENERGY, ELECTROLYSIS)

HYDROGEN AND SYNTHETIC FUELS FOR THE FUTURE
Michel, J.W., American Chemical Society Symposium on "Chemical Aspects of
Hydrogen as a Fuel," Chicago, Ill., Aug 73, Avail:TAC

Early in 1972 the Energy R&D Goals Committee of the Federal Council on
Science and Technology organized a study to assess a number of basic energy
technologies which could favorably influence the U.S. future energy
supplies. Various federal agencies sponsored eleven technical panels to perform this
assessment and to prepare R&D plans for developing the priority technologies.
The findings of one of these panels, "Hydrogen and Synthetic
Fuels," sponsored by the USAEC, is the primary subject of this paper.

While there are currently serious problems in providing adequate electricity, the longer-term energy problems seem to be more associated with providing an assured supply of environmentally acceptable portable fuels. The importance of this supply is apparent when it is realized that electrical energy only meets one-tenth of our end-energy needs today - the remainder is supplied from fossil fuels, mainly petroleum and natural gas.

While production of synthetic fuels requires thermal or electrical energy and thus may appear to complicate an already difficult problem, this energy can be obtained from domestic and, for the most part, clean sources, e.g., nuclear or solar. Further, because of low transport costs, synthetic fuels can be produced at remote, well-regulated plants and thus would not contribute to the primary pollution problems that exist in our urban centers. An additional consequence of such a system is that of conservation of our limited fossil fuel resources, particularly petroleum, so that they may be used as valuable chemical product feedstocks and in metallurgical processes. The synthetic fuels, especially hydrogen, may be consumed with very little or no air pollution as well as with higher conversion efficiencies and thus could be more attractive for urban uses than the fossil fuels in current use.

The intent of this paper is to summarize the findings of the Synthetic Fuels Panel which evaluated the major aspects of new fuels systems, i.e., production, storage and transportation, end uses and an overall systems analysis. While the emphasis was on hydrogen and other fuels from nonfossil sources, a section on the use of coal to produce hydrogen and methanol is also included to help define the interim time period before our dependency on nonfossil fuels occurs.

HYDROGEN, ENERGY, SYNTHETIC, FUEL, ASSESSMENT, POLLUTION, PRODUCTION, STORAGE, METHANOL

HYDROGEN: SYNTHETIC FUEL OF THE FUTURE
Maugh, T.H., Science, V 178:849 Nov 24 '72, Avail:TAC

Nuclear fission and fusion -- and perhaps solar energy -- will almost certainly be the major energy sources and should, in theory, be capable of supplying all our energy needs. Most developmental work on these
sources has emphasized the production of electricity, however, while only 10 percent of energy and use is supplied by electricity. The remainder is supplied by the combustion of fuels to produce heat energy that is used in industry, homes, and transportation. It is likely both that electricity will play a larger role in applying future energy demands and that heat energy from nuclear reactors will be utilized in large nuclear/industrial complexes, or nuplexes. Nonetheless, there will remain a strong demand for portable, fluid fuels, particularly for applications in transportation, and the most likely response to this demand will be vastly increased production of hydrogen.

Hydrogen, of course, is not an alternative primary energy source, because large amounts of energy will be required to produce it. Rather, it holds promise of being a highly efficient energy carrier that would prove valuable in situations where transfer of energy as electricity is inefficient, impractical, or impossible. It is this potential that has generated such widespread interest in the possibility of a "hydrogen economy."

In many ways, hydrogen is virtually an ideal fuel. When it is burned in air, the only possible pollutants are nitrogen oxides derived from the air itself, and concentrations of these are generally lower than concentrations produced by other fuels.

(HYDROGEN, SYNTHETIC, FUEL, FUTURE, ENERGY, NUCLEAR, CARRIER, ECONOMY)

H73 10035* HYDROGEN AND ENERGY
Marchetti, C., Chemical Economy & Engineering Review, V 5 N1 Ja 19 '73, Avail:TAC

The challenge of the century for chemical engineers---thermochemical cycles to produce hydrogen---may bring a revolution in the technology and management of energy and food.

Hydrogen has a peculiar position in nature:
-it is the most abundant element;
-it plays a key role in fueling the universe;
-it is the first chemical product in photosynthesis i.e. the chemical mediator between sunlight and the biosphere.

Hydrogen can become the main energy mediator between the newly harnessed nuclear energy and human society, so avoiding most of the political, ecological, long-term
Procurement problems connected with the use of fossil fuels. Via proper microorganisms it can be employed to produce "primary" food, easing the pressure on agriculture. This fact will have even more revolutionary consequences.

(HYDROGEN, ENERGY, NUCLEAR, FOOD, ECOLOGY)

H73 10036 HYDROGEN, MASTER-KEY TO THE ENERGY MARKET
Marchetti, C., Euro Spectra, V 10:117-130 N4 Dec 71, Avail:TAC

An analysis of the potential uses of hydrogen shows that practically the whole of the energy market can be served by this "clean" energy medium.

(HYDROGEN, ENERGY, MARKET, ENVIRONMENT)

H73 10037 THE HYDROGEN ECONOMY--AN ULTIMATE ECONOMY?
A PRACTICAL ANSWER TO THE PROBLEM OF ENERGY SUPPLY AND POLLUTION
Bockris, J. O'M., (Flinders Univ. of South Australia, Bedford Park) and A.J. Appleby, (CNRS, Laboratoire d'Electrolyse et Service d'Electrophorese, Bellevue, Fr.), Environment This Month. The International Journal of Environmental Science, Lancaster, Eng. V 1:29-35 N1 J1 72

The use of H₂ as the medium of energy between remote energy producing sites and population centers is considered. Hydrogen could be used to generate electricity at the site or could be used directly as a fuel. Production of H₂ by water electrolysis and radiolysis is described, and the consequences of a H₂ economy on all aspects of human life requirements are discussed. A H₂ economy would be entirely nonpolluting and would make high energy densities possible for all regions of the world, hastening the spread of uniform high living standards.

(HYDROGEN, ECONOMY, ENVIRONMENT, ENERGY, ELECTROLYSIS, POLLUTION, FUEL)

H73 10038 THE MASTER OF A NEW AGE
Lessing, L., Fortune, V 63:152-156+ N5 May 61, Avail:TAC

The first and lightest chemical element, hydrogen, runs like an invisible stream through many of the most portentous developments of the age. It is rising by improved processes to ever greater volume in the oil and chemical industries. It is powering, later this
year, the upper stage of the Atlas-Centaur rocket, first in a line of new liquid-hydrogen vehicles that will finally give the U.S. thrust to go ahead in space. It also provides the working fluid for the nuclear rocket, an advanced engine for space. Finally, by various chemical and thermonuclear means, hydrogen is on the verge of yielding within limitless sources. Quite aside from its ominous accomplishments in the bomb, therefore, hydrogen appears to be the master fuel of a new age.

(HYDROGEN, ENERGY, VEHICLE, NUCLEAR)

THE COMING HYDROGEN ECONOMY
Lessing, L., Fortune, V 86:138-142 N5 Nov 72, Avail:TAC

The vision involves moving by stages from an economy based on the hydrocarbons -- coal, oil, and natural gas -- to a pure hydrogen economy. Hydrogen, by far the most abundant, energetic, and the cleanest of all the elemental fuels in the universe, "may well be decisive technology of this century."

(HYDROGEN, FUEL, HYDROCARBON, ECONOMY)

HYDROGEN: KEY TO THE ENERGY MARKET
de Beni, G. and C. Marchetti, Euro Spectra, V 9:46-50 N2 Je 70, Avail:TAC

The conclusions arrived at in this study, which are shortly to be published, are that hydrogen can be an extremely flexible intermediate which would make it possible to penetrate the whole of the market without any sudden changes in technology being necessary. In certain cases the substitution is a straightforward matter; town gas, for example, already contains 50-90% hydrogen. In other cases it would seem to be a more complex operation, but in keeping with the normal course of technological development.

(HYDROGEN, ENERGY, MARKET, STUDY, INTERMEDIATE)

HYDROGEN: THE NEW FUEL
Jones, W., Saturday Evening Post, V 244:54+ Spr 72, Avail:TAC

The world is running out of gas, as well as coal, gasoline, and fuel oil.

There is another fuel. We don't use it much, but
it is as abundant as water, potentially as cheap as gasoline or natural gas, and it does not pollute our environment.

Hydrogen is the other fuel of our future. In fact, the scientific, technological, and industrial bases exist now to make hydrogen the fuel of our future rather soon.

(HYDROGEN, FUEL, FOSSIL, WATER, ENERGY, FUTURE, POLLUTION, ENVIRONMENT)

H73 10042* HYDROGEN AS AN ENERGY VECTOR: NEW FUTURE PROSPECTS FOR APPLICATIONS OF NUCLEAR ENERGY
Beghi, G., (European Atomic Energy Community, Ispra, Italy, Joint Nuclear Research Center), N73-15699 (EUR-4838), May 72 20 p refs, Avail:TAC

In view of a wider penetration of nuclear energy in the energy field and therefore of a diversification of its applications, the usefulness of an intermediary energy vector is pointed out. Therefore hydrogen is examined as to its present potential uses in the future. Among the hydrogen production processes, the method of dissociation of water with a closed cycle of chemical reactions and utilizing nuclear heat seems particularly promising.

(HYDROGEN, ENERGY, FUTURE, NUCLEAR, APPLICATION, USE, PRODUCTION, HEAT, WATER, DECOMPOSITION)

✓H73 10043* HYDROGEN SYSTEMS FOR ELECTRIC ENERGY

Synthetic fuels, particularly hydrogen, can have an important role in future electric energy systems. An attractive "Eco-Energy" system, both ecologically and economically sound, would be based on nuclear reactor heat (fission or fusion) at remote sites, which may be offshore islands or floating platforms. Water would be decomposed into hydrogen and oxygen. Pipelines would deliver the hydrogen and oxygen to small generating units dispersed throughout the electrical load area, and at distribution substations. The dispersed generation used to convert the fuel energy to a-c suitable for underground distribution would be efficient gas turbines and/
or fuel cells of advanced design.

Such a system is completely devoid of the pollutants of fossil fuel systems including nitrogen oxides, because oxygen rather than air is used. It completely eliminates overhead transmission lines, requires less land for corridors, and makes multiple right-of-way use more feasible. The low cost of underground pipeline transmission alleviates nuclear siting problems and hazards. By-product heat from fuel manufacture and electrical power generation could be disposed of in deep waters or used for beneficial purposes in this ultimate system.

In 1985 the cost of energy generated by present types of fission and fossil fuel plants with overhead EHV transmission would be roughly 14 mills/kWh for present technology and 16 to 50 mills/kWh for the alternative systems, at the point of retail sales. However, pressures to locate nuclear plants remotely, to put transmission lines underground, and to use clean fossil fuels (which are becoming much more expensive), would move the reference system upward in cost to 20 to 30 mills/kWh.

Improvements in the Eco-Energy system that can be foreseen on a no-surprise basis will both improve the efficiency of many components and reduce the unit cost of manufacture, potentially achieving costs in the year 2000 (1972 dollars) of under 15 mills/kWh.

(HYDROGEN, SYNTHETIC, FUEL, ECOLOGY, ENERGY, SYSTEM, STUDY, COST, POLLUTION, TRANSMISSION)

HYDROGEN MAY EMERGE AS THE MASTER FUEL TO POWER A CLEAN-AIR FUTURE.

Clark, W., Smithsonian, Washington, D.C., 72-1GA-00018, V 3:12-19 N5 Aug 72

Recent experimentation in the use of H_2 as a non-polluting alternative to gasoline in internal-combustion engines is reported. Four examples of H_2 conversion systems in automobiles are described; all use gaseous or liquid H_2 alone or combined with O_2 or CO_2, with a reduction of NO_x, the only emissions produced. One engine uses exhaust water vapor as an engine coolant. Methods under consideration for the circumvention of H_2-power drawbacks, particularly fuel weight and explosiveness, are discussed. Means of transporting and producing large quantities H_2, including nuclear power reactors to produce both electricity and photons, are also explored.

(HYDROGEN, FUEL, AUTOMOBILE)
LIQUID HYDROGEN AS A FUEL FOR THE FUTURE.

The use of liquid hydrogen as a long-term replacement for hydrocarbon fuel for land and air transportation seems technically feasible. It is an ideal fuel from the standpoint of a completely cyclic system, serving as a "working substance" in a closed chemical and thermodynamic cycle. The energy-per-unit-weight advantage (a factor of 3) over gasoline or any other hydrocarbon fuel makes liquid hydrogen particularly advantageous for aircraft and long-range land transport. As a pollution-free fuel, it must be seriously considered as the logical replacement for hydrocarbons in the 21st century.

(HYDROGEN, LIQUID, HYDROCARBON, FUEL, TRANSPORTATION, POLLUTION, ENVIRONMENT)

HYDROGEN: ITS FUTURE ROLE IN THE NATION'S ENERGY ECONOMY

Hydrogen fuel derived from water could extend nuclear power and reduce dependence on imported oil. In the near future, large scale economical sources of energy derived from nuclear fission or from other domestically available primary sources such as solar or geothermal energy will be needed. Because of its complex nature, and for reasons of safety, nuclear energy clearly cannot be utilized directly in small scale transportation systems such as the automobile. Thus the original promise that nuclear power will eventually supply all the nation's energy needs can only be effectively fulfilled by supplying the energy in the form of electricity or some storable, portable fuel.

Hydrogen has the necessary properties and can fulfill the role of a secondary source of energy that can be derived from the primary source by the decomposition of water. It can be substituted for petroleum and coal in almost all industrial processes which require a reducing agent, such as in steel manufacturing and other metallurgical operations. Further, hydrogen can easily be converted to a variety of fuel forms such as methanol, ammonia, and hydrazine. Thus, it is essential that the analysis and technological feasibility of a hydrogen
energy system be considered now. It is of vital importance to the nation to develop some general-purpose fuel that can be produced from a variety of domestic energy sources and reduce our dependence on imported oil. (HYDROGEN, FUEL, WATER, STUDY, ENERGY, ANALYSIS, ALTERNATIVE, NUCLEAR, SAFETY, TRANSPORTATION)

H73 10047* HYDROGEN PRODUCTION FOR ECO-ENERGY

This report is one of a series related to a study done on the "Eco-Energy Project." The preferred system uses hydrogen as the major means of transport of energy from remote sites.

The objective of the project was to identify and analyze the critical aspects of Eco-Energy. In this regard a major problem area was the evaluation of the cost of hydrogen production using nuclear power sources.

The objective of this report is to determine the economics of hydrogen production. (HYDROGEN, COST, NUCLEAR, ECONOMICS, TRANSPORTATION)

H73 10048 ECO-ENERGY STUDIES AT TEMPO
Hausz, W. and others, Nuclear Engineering, V 17:942-945 Nov 72, Avail: TAC

At the present state of the art, Eco-Energy is far more costly than the present-day electric utility system using fossil-steam plants, overhead transmission lines, and some fraction of total capacity as peaking combustion turbines or pumped storage. The Eco-Energy system may be viewed as an ultimate, permanent goal to be approached as it becomes viable. Estimating the performance and costs of technological alternatives that are foreseeable by the end of the century, as well as the transition problems of meshing with present electric energy system requirements and load growth requirements, has been the subject of study at TEMPO for about two years. These studies have been partially supported by the Southern California Edison Company and the Oak Ridge/AEC. (HYDROGEN, STUDY, ENERGY, ECOLOGY, FOSSIL, STORAGE, ALTERNATIVE, ELECTRICITY)
NUCLEAR POWER PLANTS FOR HYDROGEN PRODUCTION

Leeth, G.G., (TEMPO - General Electric Company - Center for Advanced Studies, Santa Barbara, Calif.), Report
GE72TMP-52 Nov 1 '72

Several previous TEMPO documents have assumed the use of nuclear power plants as the primary energy sources. In these cases no determination was made as to the types of power plants best suited for such applications. This document is a comparison of various kinds of nuclear reactors and an evaluation of their suitability for hydrogen production by water splitting.

HYDROGEN, ENERGY, NUCLEAR, WATER, DECOMPOSITION

ECO-ENERGY

To study our future national electrical energy needs and means of supplying them, a system analysis must give balanced attention to ecological, economic and societal factors. A parametric analysis of post-1990 systems and transitional modes identified a promising candidate system: the use of efficient gas turbines or fuel cells, at distribution level, which burn pipeline-delivered hydrogen generated at large, remotely-located energy centers.

HYDROGEN, ENERGY, ECOLOGY, ELECTRICITY, ANALYSIS, FUTURE, SYSTEM, ALTERNATIVE

FEDERAL PANEL REPORTS ON HYDROGEN

Anon, Chemical and Engineering News, Sept 10 '73, Avail:TAC

The panel's main conclusion was that synthetic fuels, particularly hydrogen, can have a significant and beneficial effect over the long term. The main obstacles to use of hydrogen as a universal fuel are high cost relative to present fuels and unresolved problems of handling a low-density or cryogenic fluid. The panel believes that safety considerations will present no serious obstacle to use of hydrogen.

HYDROGEN, SYNTHETIC, FUEL, CRYOGENIC, SAFETY
THE INFLUENCE IN AN ENERGY MARKETPLACE

Where does hydrogen fit in the energy scenario for the rest of this century? This depends on how it compares to its competition -- in price, cleanliness, convenience and other advantages or disadvantages either hydrogen or the alternatives may have.

Hydrogen competes at several levels. As a chemical used to add hydrogen to other molecules it is unique. This market was $0.6 \cdot 10^{15}$ Btu in 1968, mostly for making ammonia and petrochemicals. About 8 percent growth rate to the year 2000 is forecast. Next, as a reducing agent, it will compete with coke and carbon monoxide as the means of reducing metallic ores, and in many organic and inorganic reactions. Hydrogen is an ideal gaseous fuel, for residential and commercial distribution; here, its competitor is natural gas and synthetic methane. More broadly, it can compete with industrial fuels, gaseous or otherwise, as a clean fuel. Perhaps the toughest market to penetrate is that in which storability, transportability and portability are important requirements: the transportation market and to a lesser extent the market for dispersed electric generation (where electric transmission is the competitor).

HYDROGEN, ENERGY, MARKET, FUEL, COST, STORAGE, TRANSMISSION, ELECTRICITY

HYDROGEN AND THE ELECTRIC ECONOMY
Deen, J.L., and R.J. Schoeppel, (Mechanical and Aerospace Engineering, Oklahoma State University), Frontiers of Power Technology Conference Proceedings, p 10-11 '71

Electricity, a secondary form of energy, has played a dominant role in the evolution of an advanced civilization. Its rate of growth currently exceeds that in the competitive industrial, residential and transportation sectors. This increasing trend is expected to continue until a near-total electric economy is achieved.

The transition to the electric economy is expected to involve the "electric auto" in a number of ways: 1) electrically generated hydrogen for use in internal combustion engines; 2) stored electricity in the form of batteries for use in providing vehicle propulsion; 3) elec-
lectrically generated hydrogen for use in fuel cell engines. The expected role for each of these means of energy conversion, and the transition to the electric economy, is predicted to occur in this order. Various ramifications of such evolutionary changes, including the influences of the energy crisis and environmental degradation, are presented.

(ELECTRICITY, ENVIRONMENT, ENERGY)

H73 10054 HYDROGEN ENERGY SYSTEMS AND VEHICULAR PROPULSION
Stuart, A.K., (The Electrolyser Corporation Ltd., 122 The West Mall, Etobicoke, Toronto, Canada), The International Conference on Automobile Pollution, The Association of Professional Engineers of the Province of Ontario, Toronto, Je 27 '72, Avail:TAC

Hydrogen is suggested as the ultimate recyclable fuel with many advantages as an engine fuel. Nuclear energy systems are discussed with off-peak electric power providing a low cost source of hydrogen. Attention is given to the storage, handling and safety aspects of hydrogen. Gradual conversion to a hydrogen energy system is proposed.

(FUEL, ENGINE, POLLUTION, OXYGEN, NUCLEAR, STORAGE, SAFETY)

H73 10055 THE ENERGY LABYRINTH
Anon, Union Carbide Corp., Linde Division, 270 Park Ave., New York, N.Y., 10017, Avail:TAC

Hydrogen, the fuel of the future from the standpoint of ecology, the national economy, engineering feasibility.

(HYDROGEN, FUEL, ECONOMY, ENERGY, ECOLOGY, SAFETY, NUCLEAR, COAL)

H73 10056 THE HYDROGEN ECONOMY
Gregory, D.P., (Institute of Gas Technology, Chicago, Ill.), A.G.A. Monthly, p 4-9, Je 72, Avail:TAC

Energy from the ocean by the year 2000 hydrogen produced from water may prove to be an answer to the nation's shortage of clean energy.

(HYDROGEN, ECONOMY, ENERGY)
H73 10057 HYDROGEN AS A FUEL
Anon, Petroleum Press Service, Jl 72, Avail:TAC

The Commission of the European Communities has proposed that research into using nuclear energy to extract hydrogen from water should be continued by the Ispra establishment of the EEC's Joint Research Centre. The aim of Ispra is to perfect its Mark I process invention for the production of hydrogen, so that it can be applied on an industrial scale and quickly become an important source of energy in Western Europe.
(ENERGY, NUCLEAR, OXYGEN, REACTOR, DECOMPOSITION, HEAT, GASIFICATION, COAL, POLLUTION, USE)

H73 10058* HEAT-STORAGE WELLS FOR CONSERVING ENERGY AND REDUCING THERMAL POLLUTION

The motivation for investigating heat storage arose from TEMPO's investigations of Eco-Energy and the hydrogen economy.

One advantage of hydrogen as a fuel is the high efficiency that can be obtained in hydrogen-oxygen combustion turbines, used to drive electric generators. The exhaust from hydrogen-oxygen turbines is pure steam. The steam and the energy it contains can be used in various ways. An attractive alternative is to design the system to produce steam and hot water at temperatures of 180 to 340 F, for district heating: i.e., space heating, absorption-cycle air conditioning, water heating, and process heat. Exhaust heat is thus exported and utilized, and no cooling facilities are required.

Storing large amounts of useful heat in groundwater appears feasible. Preliminary analysis shows that more than three-fourths of the stored heat can be recovered after 90 days; heat-storage wells cost less than the cooling facilities they replace; and the necessary underground formations are widely available.
(COMBUSTION, HYDROGEN, OXYGEN, STEAM, FUEL, ECONOMY)
CONSERVING ENERGY WITH HEAT STORAGE WELLS

Electric and gas utilities have embarked upon major campaigns to promote conservation of energy because of public pressure and the short supply of clean fuels.

Recent studies at General Electric's Center for Advanced Studies (TEMPO) show that thermal pollution could be greatly reduced and substantial energy conservation could result from large-scale application of a total-energy approach under which utilities would produce and market both electricity and useful heat.

A more advanced system would employ hydrogen-oxygen turbines. That a "hydrogen economy" will evolve within the next one or two decades, due to the shortage of fossil fuels and other considerations, has been postulated by a number of investigators. Hydrogen and oxygen would be manufactured by splitting water.

The exhaust from a hydrogen-oxygen turbine would be pure steam. The turbine can be designed to exhaust at whatever temperature is dictated by heat-energy requirements. Since full thermodynamic credit can be taken for the heat in the exhaust, the effective efficiency of the hydrogen-oxygen turbine is very high. For energy conservation this approach is extremely attractive.

(ELECTRIC, EFFICIENCY, POLLUTION, TURBINE, HYDROGEN, OXYGEN, CONSERVATION)

HYDROGEN: IT'S CLEAN, BUT IS IT A PRACTICAL FUEL?

Anon, Cornell Chronicle, Sept 6 '73, Avail:TAC

It's the most abundant element in the universe, it will be plentiful on earth long after this planet's supplies of fossil fuels are exhausted, and it makes a clean fuel which burns to give off harmless water vapor, but some 80 internationally known scientists and engineers meeting at Cornell Aug 20-22 are still questioning whether hydrogen will be the fuel of the future.

Cornell's International Symposium and Workshop on the Hydrogen Economy was a gathering of specialists who spoke in technical terms about the way the utilization of hydrogen, the simplest of the elements, could affect economics and energy stores on a worldwide basis.
Organized and chaired by Simpson Linke, professor of electrical engineering at Cornell, the conference brought a number of distinguished visitors to the campus. (HYDROGEN, ECONOMY, MEETING)

H73 10061* PROSPECTS FOR HYDROGEN AS A FUEL FOR TRANSPORTATION SYSTEMS AND FOR ELECTRICAL POWER GENERATION
Escher, W.J.D., (Escher Technology Associates), Report No. ORNL-UM-4305, Oak Ridge National Laboratory, Oak Ridge, Tenn., Sept 72, Avail:TAC

The potential application of hydrogen, produced from non-fossil domestic sources, is examined for applicability to the transportation and electrical generation sectors. The characteristics of hydrogen as a gas and as a cryogenic liquid are noted; cost trends are presented.

Ground, water, and air transportation modes and systems are individually examined with respect to a potential conversion to hydrogen fuel. Electrical generation systems, both conventional and unconventional, are assessed similarly. Hydrogen's potential for transmission and storage of electrical energy is cited.

From these findings, a detailed list of recommended study, research and development, and demonstration system topics is given toward implementing an eventual conversion of transportation and the electrical utilities to hydrogen fuel.
(HYDROGEN, FUEL, TRANSPORTATION, POWER, GENERATION)

H73 10062 C&EN TALKS WITH........
Gregory, D.P., (Institute of Gas Technology, Chicago, Ill.), Chemical and Engineering News, Oct 1 '73

A coal-fired airplane? Not literally -- but chemically speaking it may not be far away. Dr. Derek P. Gregory, assistant director for engineering research at the Institute of Gas Technology, is a firm believer in the future of hydrogen fuels.

Dr. Gregory's interest in hydrogen isn't a narrow preoccupation. It is one aspect of a much broader concern with organizing national resources to meet future energy needs. There is little doubt in his mind that the principal elements in the energy business of the future will be nuclear reactors, coal, and water.

The chief reason for the current energy bind, says Dr. Gregory, is the lack of a national energy policy.

Two essentials of a valid national energy policy, Dr. Gregory says, are a firm conservation program and a consistent method of allocating resources. Neither is popular but both are required.
(HYDROGEN, FUEL, ENERGY, POLICY)
It may take 50 years, 100 years, or longer, but the time is approaching when gas, oil, and coal will no longer be available for use as fuels. Possibly, reserves of these fuels will be depleted by then. Probably, production will not be able to keep pace with demand. But most likely, the remaining reserves will become far too valuable as feedstocks for chemical production to be burned simply for their energy content. It is likely both that electricity will play a larger role in supplying future energy demands and that heat from nuclear reactors will be utilized in large nuclear/industrial complexes, or nuplexes. Nonetheless, there will remain a strong demand for portable, fluid fuels, particularly for applications in transportation, and the most likely response to this demand will be a vastly increased production of hydrogen.

Hydrogen, of course, is not an alternative primary energy source, because large amounts of energy are required to produce it. Rather, it holds promise of being a highly efficient energy carrier that can be used in situations where transfer of energy as electricity is inefficient, impractical, or impossible. It is the potential that has generated such widespread interest in the possibility of a "hydrogen economy."

In many ways, hydrogen is an ideal fuel. When it is burned in air, the only possible pollutants are nitrogen oxides derived from the air itself, and concentrations of these are generally lower than concentrations produced by other fuels. When it is burned in pure oxygen, the only product is water and there are no pollutants at all.
and solar energy, however, are abundant. We suggest that "clean" fuels could be synthesized from these resources by using these abundant materials. This paper examines the possibilities of making methanol, ethanol, hydrogen, and ammonia for use as vehicle fuels. In the short term, methanol and methanol-gasoline blends appear attractive. In the long term, hydrogen is ideal if its handling problems can be solved.

(HYDROGEN, FUEL, SYNTHETIC, TRANSPORTATION)

H73 10065* CLEAN ENERGY VIA CRYOGENIC TECHNOLOGY

Consideration of the total problem of air pollution leads to the conclusion that, for a permanent solution, the open-loop combustion of fossil fuel must eventually be stopped. Only nuclear power sources, particularly those using fusion, have the potential of producing the power required by the economy with a minimum of air pollution. For mobile (portable) requirements, a fuel combusted with air remains unexcelled as a power source. Examination of the chemical fuels that could be used for mobile power without producing air pollution lead to hydrogen as the only possible zero-pollution fuel. Hydrogen provides more energy per unit weight than any other fuel. It and its combustion products, hydrogen and water, are totally nontoxic.

In the technology of converting the economy to the use of zero-pollution hydrogen, two broad problems are of significance:
1. Can sufficient low-cost hydrogen be produced?
2. Can the hydrogen be handles and distributed in an economic and safe manner?

The first question can be answered by the use of electrolysis of sea water with nuclear-produced electricity. In this process an electric current is passed through water decomposing it into its constituents - hydrogen and oxygen. Water is the starting material for this process and the hydrogen burns to water when it is used as fuel, thus closing the material transport loop used in the energy system. The answer to the second question is also clearly yes. For safety, cooling, and availability of water, the very large generating plants could be located very near or, possibly better, on the oceans. The hydro-
gen and oxygen produced could be transmitted by existing and new pipelines to all parts of the country. At various regional locations large liquefaction facilities could convert the hydrogen to liquid for storage and supply to the various local mobile transport supply facilities would provide service and fuel in a manner indistinguishable from that used in today's filling station.

(ENERGY, HYDROGEN, LIQUID, CRYOGENIC)

H73 10066 POLLUTION-FREE CAR ENGINES THAT BURN A GASOLINE-HYDROGEN MIXTURE
Anon, Chemementator, Chemical Engineering, V 80:17 N22 Oct 1 '73

Pollution-free car engines that burn a gasoline-hydrogen mixture are under study at the U.S. National Aeronautics and Space Administration's laboratories in Pasadena, Calif. Project researchers are looking toward a car that would not only meet future auto-emission limits (without catalytic or other add-on devices) but also offer fuel economy and the ability to operate on relatively low-grade hydrocarbons.

In the scheme, hydrogen is generated from gasoline and water in a thermal reactor, then fed to an "atomizer" that the engine employs in place of a carburetor. The atomizer blends the hydrogen with gasoline, and the mixture goes to a standard internal-combustion engine.

The researchers have operated an experimental car in which the hydrogen was supplied by a gas cylinder; they hope to have ready within two months an automobile equipped with the hydrogen generator. They claim that cars using the new approach, once it is fully developed, will produce zero or near-zero emissions of hydrocarbons, carbon monoxide, and nitrogen oxides.

(HYDROGEN, GASOLINE, POLLUTION-FREE, AUTOMOBILE)

H73 10067* A HYDROGEN BASED ENERGY ECONOMY
Fein, E., (The Futures Group, Glastonbury, Conn.), Report No. 69-08-10, Oct 72, Avail.:TAC

This report explores the area of production, transportation and storage, and the potential market for hydrogen. These provide the background for a discussion of growth and future projections.

Two utility systems, which represent possible stages of evolvement toward an ultimate system, are analyzed. While projected costs are meant to be as realistic as pos-
sible, the competitiveness of hydrogen as a fuel will de-
pend very much on the assigned costs of pollution con-
straints for fossil fuels and on the geopolitics of
supply. The pattern of possible system evolution leads
to the identification of promising research and devel-
opment areas.

(PRODUCTION, TRANSPORTATION, STORAGE, MARKET, CHEMICAL,
REFINING, UTILITY, ELECTRIC, RESEARCH, FOSSIL, FUEL)

H73 10068* A HYDROGEN ENERGY CARRIER
NASA-ASEE Systems Design Institute, University of Houston,
Rice University, NASA-Johnson Space Center, Houston, Tex.,
V I: Summary, NASA Grant NGL 44-005-114

Hydrogen as an energy carrier is almost ideal from
an environmental viewpoint. It is made from water and its
product of combustion is water. Hydrogen can be used as
a fuel in all conventional areas of energy use, including
industrial chemical, industrial fuel, electric power gen-
eration, residential and commercial, and transportation.
A primary source of energy such as fossil fuel, nuclear
energy or solar energy must be used to produce hydrogen.
The cost of hydrogen will depend on the cost of the
primary source of energy and the efficiency of the pro-
cess used to produce the hydrogen. Projected costs of
gaseous hydrogen at the producing plant range from $1.00
to $3.00 per million Btu. Pipeline transmission of gas-
eous hydrogen will add only a few cents per million Btu
to the cost of hydrogen fuel delivered to the customer.

Initial large scale methods of production of hydrogen
will be from the gasification of coal. Nuclear energy will
also be used to produce hydrogen. The established pro-
cess is by electrolysis of water but the overall efficiency
is low. Depending on the cost of electric power, the cost
of hydrogen gas produced by electrolysis will range from
$100 to $5.00 per million Btu. There is very little
cheap power available, even at off-peak periods and the
cost of most of the hydrogen produced by electrolysis
will be from $3.00 to $5.00 per million Btu.

If needed technology is developed, direct thermal
decomposition of water or thermo-chemical decomposition
of water to produce hydrogen, using nuclear heat rather
than electricity, will produce hydrogen at a cost of $1.00
to $1.50 per million Btu. These processes are not expected
to be operational before 1985. For the period after the year 2000, solar energy may replace nuclear energy for the production of hydrogen from water, but the cost is forecast to be in the range of $2.00 to $3.00 per million Btu.

Hydrogen can be transported most economically by pipeline. Special attention must be directed to designing the pipeline to avoid conditions which may cause hydrogen environment embrittlement.

There are no non-technical aspects of the hydrogen economy which cannot be met. Safety problems with hydrogen are similar to and probably no worse than safety problems with other hazardous fuels. Environmental, social, legal, economic and political factors have been examined. No insurmountable problems are anticipated in converting to a hydrogen economy.

(HYDROGEN, ENERGY, ENVIRONMENT, SOCIETY, LEGAL)

A HYDROGEN ENERGY CARRIER

A systems analysis of hydrogen as an energy carrier in the United States indicated that it is feasible to use hydrogen in all energy use areas except some types of transportation. These use areas are industrial, residential, and commercial, and electric power generation. Saturation concept and conservation concept forecasts of future total energy demands were made. Projected costs of producing hydrogen from coal or from nuclear heat combined with thermochemical decomposition of water are in the range $1.00 to $1.50 per million Btu of hydrogen produced. Other methods are estimated to be more costly. The use of hydrogen as a fuel will require the development of large-scale transmission and storage systems. A pipeline system similar to the existing natural gas pipeline system appears practical, if design factors are included to avoid hydrogen environment embrittlement of pipeline metals. Conclusions from the examination of the safety, legal, environmental, economic, political and societal aspects of hydrogen fuel are that a hydrogen energy carrier system would be compatible with American values and the existing energy system.

(HYDROGEN, SYSTEMS, STUDY, ENERGY, COSTS, ECONOMICS)
Our Solar Energy Options: Physical and Biological
Tamplin, A.R., (Lawrence Livermore Lab., Livermore, Calif.), Report No. UCRL-51315, Ja 2 '73

This report discusses various schemes that have been proposed for the utilization of solar energy. These schemes would have to include an energy storage system. One storage system would involve the electrolysis of water and storage of hydrogen. The first section will discuss physical systems and the second section will treat biological systems. The major focus of the report will be to present a means of comparison; consequently the technical description will be somewhat brief. More detailed technical discussions can be found in the cited references.

(Terrestrial, Space, Marine, Heat, Algae, Efficiency, Waste, Fuel, Pyrolysis, Cost)

Influence of Hydrogen in an Energy Marketplace
Jones, L.W., (University of Michigan, Ann Arbor, Mich.), Cornell International Symposium and Workshop on the Hydrogen Economy, Cornell University, Ithaca, N.Y., Aug 73

We must explore every reasonable option and solution to the energy problem and explore them soon and intensively. Towards the end of finding the best solutions, the author includes hydrogen as an essential element. Further, a balanced program containing the three elements: pursuit of research, high stakes in investment and long technological lead-time for implementation of new, large-scale energy systems are required.

(Use, Economy, Carrier, Conservation)

Large-Scale Concentration and Conversion of Solar Energy
Hildebrandt, A.F., G.M. Haas, W.R. Jenkins, and J.P. Colaco, (University of Houston, Houston, Tex.), EOS Trans. AGU, V 53:684-692 N7 J1 72

There is a source of energy which is totally pollution-free and easily available but which has been considered too intermittent and expensive to be of value - solar energy. Proposals have been made to collect solar energy with solar cells spread over large areas, but solar cells have a low (3% - 10%) conversion efficiency and are not economically attractive. We find that a much higher conversion efficiency
is possible by first concentrating the solar energy and then using a thermodynamic conversion cycle. We propose a concentrator consisting of a large number of individual movable mirrors that reflect the solar energy onto a single collector atop a large tower. The concentrated energy can then be converted to electrical power either by means of a steam cycle, using liquid metals for heat transfer down the tower, or by a closed cycle magneto-hydrodynamic generator. The intermittent nature of the solar energy can be overcome by electrolyzing water into hydrogen and oxygen gas and storing the energy either in the form of compressed hydrogen and oxygen gas or as cryogenic liquids. Energy storage in the form of hydrogen is especially attractive since it offers the possibility of a pollution-free fuel for the internal combustion engine.

(HYDROGEN, ELECTROLYSIS, OXYGEN, STORAGE, INTERNAL COMBUSTION, MAGNETOHYDRODYNAMIC, COST, SOLAR, ENERGY, CONVERSION)

H73 10073* A HYDROGEN ECONOMY?
Anon, Mechanical Engineering, Oct 73, p 50

As the United States' supply of nonpolluting fossil fuels begins to dwindle, the gas industry has begun a search for alternative sources of clean-burning energy.

For the past 10 years, IGT, says Derek Gregory, assistant director, engineering research, has been studying a synthetic chemical fuel that can easily be produced from nuclear or solar energy sources: hydrogen.

Hydrogen can be produced from water by the addition of energy and can be oxidized back to water to give up this energy as heat or electric power directly. So, while hydrogen is not a naturally occurring fuel or a primary source of energy, it is an attractive medium for storage and transmission of an energy source. It is a means of making such energy sources as nuclear, solar, and low-grade fossil fuels available to the consumer in a clean, convenient, and flexible way.

According to Gregory, if we chose to make hydrogen rather than electricity from our supplemental energy sources, it can, unlike electricity, be stored near the load center and its lower transmission cost would allow greater freedom in siting generating stations. Gaseous fuels are relatively cheap to transmit in underground pipelines; hydrogen is no exception. Existing natural gas lines
could carry the same energy content as natural gas for only a small penalty in pumping costs.

The use of hydrogen as a fuel presents both some problems and some distinct advantages. There seems to be no reason why pure hydrogen could not be used for all purposes served by natural gas today: it burns smoothly and easily when mixed with air, and it can be burned in domestic and industrial appliances similar to those used for natural gas. In addition, because hydrogen burns without noxious exhaust products, it can be used in an unvented appliance without hazard: thus, a home heating furnace could conceivably operate without a flue, thereby saving the cost of a chimney and adding as much as 30 percent to the efficiency of a gas-fired home-heating system.

H73 10074 HYDROGEN - THE KEY TO ABUNDANT CLEAN ENERGY

Hydrogen is an ideal fuel for the internal combustion engine. Automobiles being tested at Energy Research and at other facilities perform well and are virtually pollution-free, the only significant by-product being water vapor. More important, however, is the fact that hydrogen-powered engines show significantly higher operating efficiencies than engines powered by the other fuels synthesizable from coal. This means that less of our coal reserve is consumed for each vehicle mile driven on hydrogen.

Since hydrogen combustion generates 1000 times less particulates than hydrocarbon fuels, there is less abrasive action on engine parts resulting in longer engine life, fewer repairs, and less frequent oil changes. The difference in power between the hydrogen and gasoline is negligible, and the pollution from the exhaust of a well designed hydrogen engine is so low that under some conditions it is cleaner than the air the engine is breathing in.

(FUEL, INTERNAL-COMBUSTION, ENGINE, POLLUTION, HYDROCARBON)

H73 10075* ECONOMIC COMPARISON OF TWO SOLAR/HYDROGEN CONCEPTS

This report describes two concepts for producing hydrogen from solar energy. The two systems are then compared
on the basis of performance and costs.
(ECONOMICS, SOLAR, ENERGY, ELECTROLYSIS, THERMOCHEMICAL, WATER, DECOMPOSITION)

H73 10076 PLAN FOR THE ELIMINATION OF POLLUTION
Williams, L.O., (Martin Marietta Corp., Denver, Colo.), Environmental Awareness, Institute of Environmental Sciences, Malcolm and Martin, Cassandra (Eds.), Los Angeles, Calif., Apr 26-30 '71

Products of open-loop combustion of fossil fuel cause most atmospheric pollution and must be stopped. A chemical fuel reacted with the ambient atmosphere is the most efficient means of handling energy. Only one portable fuel, hydrogen, produces no pollution. Tests indicate virtually all fuel-consuming devices, including automobiles, can operate on hydrogen. Hydrogen can be produced from fossil fuels but for a true long-term solution a closed-loop system based on electrolysis of sea water to hydrogen, followed by combustion of hydrogen back to water, can be visualized. Hydrogen and byproduct oxygen could be produced by extremely large (thus economical) nuclear fusion or fission reactors floated at sea by electrolysis of local sea water. The oxygen can be used to reduce non-fuel pollution and repair some existent environmental damage. A cursory analysis indicated that 10 to 15 years would be required to apply this solution to the nation.
(POLLUTION, CONTROL, HYDROGEN, FUEL, NUCLEAR, ELECTROLYSIS)

H73 10077* HYDROGEN FUTURE FUEL, (A LITERATURE SURVEY ISSUED QUARTERLY)
Anon, (Cryogenic Data Center, National Bureau of Standards, Boulder, Colo.), Aug 73, Issue No. 1, Avail:TAC

This first issue concentrates on providing a bibliography on hydrogen as a cryogen. Future issues will look at the possibilities of hydrogen, particularly liquid hydrogen, as a primary synthetic fuel.
(HYDROGEN, FUEL, CRYOGENIC, PROPERTY, SAFETY, TRANSPORTATION, STANDARDS, APPLICATIONS)
"NSF-RANN Energy Abstracts" is sponsored by the National Science Foundation--Research Applied to National Needs Program and is published monthly by the ORNL-NSF Environmental Program and the Environmental Information System of Oak Ridge National Laboratory. Computer-generated indexes will be prepared twice a year.

The purpose of this bibliography is to disseminate as rapidly as possible the published results of work performed under the Energy Research and Analysis category of RANN. Other energy research results will also be covered as far as possible. This bibliography, in general, will cover research on energy sources, electric power (generation, supply and demand, transmission, environmental effects, and use), and energy (production, consumption, supply and demand, and policy). The research publications cited are technical journal articles, popular or semi-technical magazine articles, topical reports, progress reports, symposium papers and proceedings, monographs, and books published within the past two years.

(ENERGY, SOURCE, ELECTRICITY, USE, GENERATION, SUPPLY, DEMAND, TRANSMISSION, ENVIRONMENT, PRODUCTION, CONSUMPTION, POLICY)

The "hydrogen economy" is already operating in macro-cosm. All the technology that is required to transmit energy via hydrogen has been developed in the course of placing man on the moon. What is yet to be determined is the scale of operation that will be required to economically produce and distribute the hydrogen energy this country will eventually require. The major challenges to implementing hydrogen energy transmission systems are clear. The demonstration of the improved efficiency of hydrogen fueled energy conversion devices are essential in developing a credible argument for overcoming the "why change syndrome" and technology for improving storage capabilities is essential to permit early application of hydrogen energy transmission systems.

(ENERGY, TRANSMISSION, STORAGE, LIQUID, ECONOMICS, CRYOGENIC, SAFETY)
Hydrogen fuel from water by a nuclear route is being sought at Gulf General Atomic Co. The research is sponsored by Southern California Edison and Northeast Utilities. Gulf General's high-temperature gas-cooled reactor technology may provide an alternative to costly electrolytic technology for obtaining ecologically clean hydrogen fuel from water.

The methanol economy - a practical version of the hydrogen economy

We believe that methanol is the most versatile synthetic fuel available to stretch, or eventually substitute for, disapparing reserves of low-cost petroleum resources. Starting now, methanol can be used to market economically natural gas that is otherwise going to waste in remote locations. Starting now, methanol can be used as a beneficial additive at the 5 percent to 15 percent level in internal combustion-engine fuel. The result appears to be lower polluting emissions and less need for lead in the fuel, both without adverse effect on performance.

With increasing production of fuel-grade methanol from coal and other sources, we foresee the increasing use of methanol for electrical power plants, for heating, and for other fuel applications. We hope that a practical methanol fuel cell may become a reality by the time that methanol becomes plentiful for fuel purposes.

Finally, methanol offers a particularly attractive form of solar-energy conservation, since agricultural and forest waste products can be used as the starting material. Indeed, at 1 percent conversion efficiency the forest lands could supply the entire present U.S. energy requirement.

The fuel of the future, many scientists now think, is hydrogen.

Recently, scientists at the Jet Propulsion Laboratory in Pasadena, California, unveiled an automobile engine that runs...
on a mixture of hydrogen and gasoline - and whose operation is so clean that it meets almost all of the strict Federal emission standards set for 1977-model cars. At the Atomic Energy Commission's Brookhaven Laboratory on Long Island, engineers are testing the German Wankel engine as the major component of another hydrogen-powered automobile; and as long ago as last year, hydrogen-powered cars took first and second places in the intercollegiate urban-vehicle design competition, which stressed both speed and pollution-free operation.

To hydrogen enthusiasts, who think hydrogen-powered cars could be mass-produced in ten years or less, the automobile is just one beneficiary of the future hydrogen economy. In time, they believe, hydrogen will be used to heat homes, drive turbines for production of electricity and store power produced in off-peak periods for later use.

(AUTOMOBILE, FUEL, FUTURE, GASOLINE, POLLUTION)

H73 10083 SOLAR POWER

We would like to propose a possible method of producing energy from solar radiation at a reasonable cost..... By using plastics presently available it may be possible to solve the economic problems of collection....and the energy may be converted via thermal dissociation of water into hydrogen, an efficient, nonpolluting fuel.

(HYDROGEN, WATER, THERMAL, PRODUCTION, ENERGY, PLASTICS)

H73 10084 ENERGY SOURCES ON A POST-INDUSTRIAL SOCIETY
Bockris, J. O'M., (Flinders University of South Australia), Australian Quarterly, Sept 73, p 32-41, Avail:TAC

Fossil fuels will be expensive to use by the mid-80s and dangerous not long after 2000. Breeder reactors appear too pollutively dangerous to develop upon a large scale. We are left with the prospect of developing solar energy, with the further speculative possibility of being able to control atomic fusion. The transmission of energy via hydrogen over very long distances improves the possibilities of utilizing the solar energy which is available abundantly in certain parts of the world. Countries having such solar energy would in the future be permanently rich in a way analogous to the temporary richness of, for example, the Arab States.

(FOSSIL, FUEL, BREEDER, REACTOR, SOLAR, ENERGY, HYDROGEN, TRANSMISSION)
H73 10085

THE HYDROGEN ECONOMY - AN ULTIMATE ECONOMY?

Bockris, J. O'M., and A.J. Appleby, The Environment - This Month, V 1:29, Ja 72, Avail:TAC

After surveying the present world situation, the authors conclude that our present technology will make affluent life increasingly difficult to maintain from about 2000 AD. A totally new energy medium is required. In this expertly reasoned article the authors convincingly present the case for using hydrogen as the medium of energy between remote energy producing sites and population centres - the hydrogen then being used to generate electricity on site of use or alternatively being used directly as a fuel. The effects of a hydrogen economy on all aspects of our life requirements are discussed in detail. A hydrogen economy would be entirely non-polluting and would make high energy-densities possible for all regions of the world, thus hastening the spread of uniform high living standards. J. O'M. Bockris is a Professor in Flinders University, South Australia, and A.J. Appleby is from the Laboratoire d'Electrolyse (CNRS), France.

(HYDROGEN, ECONOMY, ENERGY, SOURCE, PRODUCTION, TECHNOLOGY, WATER, USE)

H73 10086

THE COMING ENERGY CRISIS, AND SOLAR ENERGY

Bockris, J. O'M., (Flinders University of South Australia), Unpublished paper, Nov 73, Avail:TAC

The nature of the present (pseudo) and the coming (real) energy crises are discussed. Post 1971 evidence suggests that pollutive dangers from fission plants are larger than had been guessed. The resuscitation upon a large scale of coal as an energy source would give pollutive dangers, including climatic changes due to excess carbon dioxide. Solar energy systems, earlier impossibly expensive, are now predicted to have the same capital cost range as have atomic reactors. Cheap high purity silicon; coatings which adsorb at less than 1μ, but do not emit at more than 1μ; thin film photovoltaics; thermoelectrics; and photosynthesis are areas of immediate solar energy research interest. Roof-top energy collection may be a permanent part of the future, but will not avoid the necessity of large solar farms to collect energy for industry and transportation. Storage will be in hydrogen; there are advantages of developing cheap hydrogen as a general clean fuel, e.g., for transportation. Australia's position in respect to the yearly average receipt of solar energy, and the
possession of suitable collecting areas, is unrivalled. The massive export of hydrogen fuel could be made. Relatively small areas of Central Australia could supply energy needed for the entire, e.g., Japanese, economy. A brief review of attitudes observed to a massive Australian solar energy development program is given.

(ENERGY, CRISIS, SOLAR, COAL, FISSION, HYDROGEN, STORAGE, TRANSMISSION, EXPORT, REVIEW)

/ H73 10087 POWER WITHOUT POLLUTION
Bockris, J. O'M., (Flinders University of South Australia), Hemisphere, Sept 73, p 21-5, Avail:TAC

The article examines the implications of cheap solar power for Australia and Asia.

The concept described involves converting solar energy into electricity for the electrolysis of brackish water to produce hydrogen. Hydrogen is reconverted to electricity at the point where the energy is needed by a fuel cell.

(POLLUTION, POWER, FUEL CELL, ELECTROLYSIS, SOLAR, ENERGY)

H73 10088 ENERGY ALTERNATIVES: SUN, WIND, EARTH, WATER
Anon, Colorado Business, Nov 1 '73, p 36-7, Avail:TAC

Western scientists have stepped up their search for alternative sources of energy as a way of making the nation self-sufficient.

Coal development appeared to be the most promising in the immediate future, but great interest centered on new and untapped sources - solar energy from the heavens; geothermal energy from the hot, fiery core of the earth; hydrogen from its waters, and winds from the skies.

The use of hydrogen as an energy carrier is under study. Dr. Kenneth Cox, worked on the project last summer at the Johnson Space Center in Houston. He called for development of a hydrogen energy program and noted there are many advantages to such a system:

"First," he said, "it comes from water, and when burned, its main product is water, so environmentally speaking that is a real plus. We can transmit hydrogen over long distances with existing natural gas lines. Or we could liquefy it and transport it in tankers." He added hydrogen could be compressed and stored in gaseous state in depleted natural gas fields. Cox said hydrogen costs two to three times more than natural gas, but is no more expensive than Middle East natural gas
Solar energy can be usefully concentrated onto a central receiver by a large array of independently steered flat mirrors. In order that the reflected radiation all be intercepted, the central receiver must be elevated well above the mirror field. A receiver atop a 450-meter tower can effectively collect the radiation reflected from a 2.6 km square field of mirrors. By judiciously spacing mirrors over 45 percent of the area, such a system at 35 deg N latitude could collect 2700 Mw-Hr-Thermal/day in midwinter and about twice this energy in midsummer. We propose that this heat be used to replace part of the fossil fuel burned in a conventional electrical plant during sunlit hours. Eventually, overnight storage of heat, e.g., in an eutectic salt, could reduce fuel usage to a standby basis. An alternative approach is to use solar energy to generate hydrogen through decomposition of water. The influence of factors to produce the most economical energy from this capital intensive system, including thermodynamic efficiency, receiver temperature, and heliostat steering accuracy, are considered.

(ENERGY, SOLAR, WATER, DECOMPOSITION, RADIATION, EFFICIENCY, TEMPERATURE, SYSTEM)
II. PRODUCTION
H73 20000 EXTRATERRESTRIAL PROPELLANT RESUPPLY FOR
ADvanced MANNed MISSIONS
Heppenheimer, T. A., bibillog il diags Astronautics
& Aeronautics V 10:60-7 Nov 72, Avail:TAC

Converting water to hydrogen propellant at the
landing site offers a potential means to keep down the
size of interplanetary spacecraft and to permit mission
operations out to Jupiter's system.
(HYDROGEN, WATER, SPACECRAFT, PROPELLANT)

H73 20001 PERFORMANCE STUDIES ON AN ELECTROLYSER FOR
THE PRODUCTION OF HYDROGEN
Seshadri, N., (Meteorological Instruments Workshop,
New Delhi, India), Indian J Technol, V 8:65-70 N2
Fe 70

One of the most common means of producing hydrogen
gas used in meteorological work for inflating rubber
balloons for carrying aloft radiosonde Rawin transmitters,
the radar targets used in the upper air soundings for
temperature and upper wind measurements, is by electrol-
ysis. The performance of a modified electrolyzer
for hydrogen generation has been studied under different
operating conditions.
(HYDROGEN, ELECTROLYSIS, PRODUCTION, PERFORMANCE)

H73 20002 ELECTROLYTIC PRODUCTION OF HYDROGEN AND
OXYGEN
Rhodes, William A., (Henes Manufg. Co.), 56552y U. S.
3,394,062 (Cl. 204-129), 2p Jl 23 '68, Appl Mar 14
'63-Je 30 '64

H and O are produced from an aq. electrolyte
contg. electrolyte in concn. greater than that required
for max. ionization. The soln. is electrolytically
decompd. at a temp. below the b.p. of water.
(ELECTROLYSIS, OXYGEN)

H73 20003 ELECTROLYSIS APPARATUS FOR PRODUCTION OF
PURE GASES
Moritz, Jean, 76820d Fr. 1,536,290 (Cl. C 01b), 4 p
Aug 16 '68, Appl. Je 21 '67

Electrolytic cells for producing gases, such as
H2 and O2, employ electrodes with wavy surfaces or
surfaces with zig-zag or trapezoidal conformations. These configurations reduce the min. p.d. required.

(ELECTROLYSIS, APPARATUS, GAS)

H73 20004 AUTOMATIC LABORATORY APPARATUS FOR OBTAINING HYDROGEN AND OXYGEN
To increase the purity of the gases produced and for regulating the electrolyte level in the anode and cathode spaces, the cylindrical, nonconducting holder for one of the electrodes is placed on the insulated bottom of the electrolyzer and perforated around the circumference in its lower half.

(ELECTROLYSIS, APPARATUS)

H73 20005 OPERATION OF ELECTROLYTIC INSTALLATIONS FOR THE PRODUCTION OF HYDROGEN AND OXYGEN
The electrolysis of water is a process that involves the risk of explosion, since the basic product, hydrogen, forms explosive mixtures with oxygen or air. Therefore it is particularly important that the personnel operating the electrolyzer observe the safety rules described in the last section of this brochure.

(WATER, ELECTROLYSIS, HYDROGEN, OXYGEN, MANUFACTURING METHODS, OPERATION, COSTS, SAFETY)

H73 20006* PRODUCTION OF HYDROGEN BY ELECTROLYSIS
Under right circumstances, electrolysis can be favorable source of very pure hydrogen; due to high cost of electricity, use of electrolytic methods is
limited in England to few specialized applications, but availability of off-peak power may alter this situation in future; increasing world demand for ammonia may be partially met in some underdeveloped countries by using hydroelectric power for hydrogen production; design and construction of electrolyzers for industrial production of hydrogen and oxygen are reviewed.

(PRODUCTION, HYDROGEN, ELECTROLYSIS, OFF-PEAK POWER, AMMONIA, OXYGEN)

H73 20007* ELECTROLYTIC HYDROGEN--ITS MANUFACTURE AND APPLICATIONS
Silman, H., Chem Age V 93:126-7 N2375 Ja 16 '65, Avail: TAC

Electrolytic hydrogen generating plant producing 100 cu ft/hr of hydrogen manufactured by Efco-Stuart Electrolyser Co, Ltd; it is used where pure hydrogen is required in moderate quantities; simple and automatic in operation, it is available as packaged installation; voltage and current required are 2 v and 100 amp/sq ft; this type of installation can reduce cost of transport and equipment for hydrogen.

(PRODUCTION, HYDROGEN, ELECTROLYSIS, TRANSPORT, EQUIPMENT)

H73 20008 ELECTROLYSIS CELL FOR GENERATING HYDROGEN AND OXYGEN
Proskuryakov, L. M.; Zizin, V. G., (Bashkir Scientific-Research Institute of Petroleum Refining) 32528u Ger. 1,268,602 (Cl. C 01b), May 22 '68, Appl Fe 8 '66, 4 p

An app. for continuous generation of H or O by decompn. of H2O under pressure consists of an electrolyte vessel (electrode) and a H2O tank placed on top of it, both being surrounded by cooling coils.

(ELECTROLYSIS, OXYGEN)

H73 20009 ELECTROLYSIS APPARATUS
Haas, Georg., 27549a Ger. Offen. 1,909,852 (Cl. B 01k, C 01b), Sept 17 '70, Appl. Fe 27 '69, 99 p

In an electrolysis app. for production of H2 and O2 from water, the lower part of the separator between the anode chamber and the cathode chamber, which normally is open, is closed by a porous, ion-permeable curtain.
Thus, a curtain, e.g. of glass fiber netting with mesh size which allows passage of H ions and O ions but hinders the passage of H₂ bubbles evolved into the anode chamber and O₂ bubbles into the cathode chamber, is used in this way to avoid the formation of explosive mixts.

(ELECTROLYSIS, APPARATUS)

H73 20010 HYDROGEN-OXYGEN CELL PRODUCING ELECTRICITY DURING ELECTROLYSIS
Bruneau, Jean L. G. 83678w Fr. 1,511,568 (Cl. H 01m), Fe 2 '68, Appl. Jl 18 '66, 3 p

H₂ and O₂, electrolytically generated at Pb electrodes in one cell by an external storage battery, are bubbled through holes in a pair of "special" Pb electrodes in another cell, producing elec. power to light an elec. bulb. The electrolyte is ag. H₂SO₄. Designs of an exptl. and a practical system are given.

(ELECTROLYSIS, ELECTRICITY)

H73 20011 ELECTROLYTIC HYDROGEN PLANT
Anon, Engineer, V 222:721, Nov 11 '66, Avail:TAC

A plant producing electrolytic hydrogen from Stuart cells has recently been installed in works of Fine Tubes Ltd., Plymouth, by Efco-Stuart Electrolyser Ltd., Sheerwater, Woking, Surrey. The hydrogen so produced is used as a protective atmosphere to maintain a specular finish on stainless steel tubes during heat treatment. With the present installation of six Stuart cells the plant can produce up to 500 ft³ of hydrogen per hour but the capacity is to be increased to 750 ft³/hour by adding three extra cells.

(HYDROGEN, ELECTROLYSIS, STUART CELL)

H73 20012 PRESSURE-RESPONSIVE CONTROL CIRCUIT FOR AN ELECTROLYSIS-TYPE HYDROGEN GENERATOR
Anon, (National Distillers and Chemical Corp.), British 1,165,512 (Cl. G 05d), Oct 1 '69, U.S. Application May 10 '67

An electronic circuit is designed for controlling current supply to the electrodes of an electrolysis-type H generator in response to the generated gas pressure.

(ELECTROLYSIS, CONTROL)
H73 20013* CHEAP HYDROGEN FOR BASIC CHEMICALS
Ap 67 Avail:TAC
To improve the economics of the electrolytic generation of hydrogen, it is suggested that sulfur dioxide be used to depolarize the oxygen electrode. This substantially reduces the electrolysis voltage and produces commercially valuable sulfuric acid. Two fertilizer schemes based on this procedure using low-cost nuclear power are examined.
(PRODUCTION, HYDROGEN, OXYGEN, SULFURIC ACID, WATER, AMMONIA, ELECTROLYSIS, NUCLEAR, CURRENT DENSITY)

H73 20014* MODERN ELECTROLYSER TECHNOLOGY
Electrolysis of water is familiar to high school students of chemistry throughout the world; but the extent of its application in industry today may come as a surprise to many. One reads statements in the technical literature such as "the electrolytic process for producing hydrogen is now generally considered too costly for practical purposes." Such statements apply to large plants, except in low-cost power areas, but do not adequately reflect what has in fact been happening in the field. Total figures are not available but there are many hundreds of electrolytic plants in operation today throughout the world and a considerable number are being built every year.

The capacities in industrial use range from as little as 500 cubic feet per day, absorbing perhaps 3 kw, to over 40 million cubic feet per day, absorbing 240 thousand kw. The sizes most common in metallurgical and chemical processing are between 10 thousand and 500 thousand cubic feet per day. The very large installations exist at low-cost hydro-electric sites where hydrogen is used for the manufacture of synthetic ammonia for nitrogen fertilizer. Examples of such plants are in Norway, India, Egypt, Japan, Peru, Korea, Canada and Australia.
(HYDROGEN, ELECTROLYSIS, SYNTHETIC, AMMONIA, NITROGEN, FERTILIZER)
MAKING HYDROGEN AND OXYGEN
Anon, Compressed Air Magazine, V 11:10, Ja 73, Avail: TAC
Hydrogen is becoming more important throughout industry. Of the various known processes for producing high-purity hydrogen and oxygen, the most popular is the electrolytic breakdown of water. The article describes Brown, Boveri electrolyzers.
(OXYGEN, ELECTROLYSIS, HYDROGENATION, FERTILIZERS, METAL, SEMICONDUCTOR)

STATUS OF THE LIFE SYSTEMS' STATIC FEED WATER ELECTROLYSIS SYSTEM
The Static Feed Water Electrolysis System (SFWES) is reviewed as developed for an Aircrew O System including cell components, module, and hardware. The control used to match O generation rate with use rate is discussed. The 1967-1969 SFWES's performance status is reviewed including the effect of current density (0 to 350 ASF), operating time (0 to 10,000 hr), and temperature (75 to 180 F) on voltage for various electrochemical cell sizes. The ability to operate without degassing is reviewed; 50 hr in 1967, 100 hr in 1968, and 300 hr in 1969. The anode contributes 89 percent to the increase in cell voltage above the theoretical value initially. All materials of construction demonstrated satisfactory operation for more than 400 days but improvements can be made at the anode.
(ELECTROLYSIS, WATER, STATIC)

LONG-TERM OPERATION OF A WATER ELECTROLYSIS MODULE
Schubert, F.H., (TRW, Inc.), SAE Paper No. 690643
TRW, under NASA sponsorship, has developed a water electrolysis module (WEM) designed to provide 3.6 lb/day of oxygen at a current density of 100 amps/sq ft and at a pressure level of 80 psia. Although designed for aircraft application, the concepts employed in the design of the module make its use in other life support systems possible.
One of the ten-cell water electrolysis modules fabricated, and designed as WEM No. 1, has been successfully
operated for 7525 hr. The endurance test program is being conducted at a current density of 80 amps/sq ft, a temperature of 175 °F, and a pressure level of 30 psia.

This paper describes the cell and module configurations and the materials of construction selected. Results of the parametric and cyclic test programs are presented and cell performance and servicing and maintenance requirements are discussed.

(ELECTROLYSIS, WATER, MODULE)

H73 20018 REGENERATIVE FUEL CELL STUDY

The objectives of the study were to evaluate the MSS energy storage requirement and the application of the Regenerative Fuel Cell Subsystem (RFCS) to it. This involved identifying the pacing technologies which turn out to be the Water Electrolysis Subsystem (WES) and the hydrogen (H₂)-Oxygen (O₂) Fuel Cell Subsystem (FCS). The expression "fuel cell" as used in this report always refers to the H₂-O₂ fuel cell.

(FUEL CELL, REGENERATIVE)

H73 20019 SIX-MONTH TEST PROGRAM OF TWO WATER ELECTROLYSIS SYSTEMS FOR SPACECRAFT CABIN OXYGEN GENERATION

The water electrolysis systems used in the space-station simulation 99-day manned test of a regenerative life support system at the McDonnell Douglas Astronautics Company were refurbished as required and subjected to a six-month test program. The test objectives and management of the test are described. The test configurations and preliminary findings are summarized and discussed. Problems encountered during testing and the remedial actions taken are defined.

(ELECTROLYSIS, SPACECRAFT, OXYGEN)
H73 20020 SELECTION OF ELECTROLYTES FOR ELECTROLYSIS
CELLS: ALKALINE OR ACID
Schubert, F.H., (Life Systems, Inc., Cleveland, O.), Space
Technology and Heat Transfer Conference, Los Angeles, Calif.,
Je 21-24 '70

The paper quantitatively illustrates the effect of
the electrolyte nature on a Water Electrolysis System
(WES) design. The objective was to select either an acid
or a base electrolyte for use in the WES for a space
station life-support system. Selection of an alkaline
electrolyte was based on a comparison of system equivalent
weights. The system, using the Alkaline electrolyte at
190 F, presents a 15- to 21-percent savings in equivalent
weight when compared to a 190 F acid system. A 34-
to 46-percent savings results when compared to an 80 F
acid system. The major (50 to 85 percent) contributor
to the system equivalent weight results from the power
penalty.

(ELECTROLYTE, CELL, ACID, ALKALINE)
Electrochemical process produces hydrogen by dissociating steam with solid zirconium oxide electrolyte cells.

HYDROGEN, ELECTROCHEMICAL, STEAM, PRODUCTION, ZIRCONIUM OXIDE

A number of advanced technical concepts for electrolyzer design and construction, which have not yet reached commercial application, but which promise to reduce the likely cost of hydrogen have caused an increase of interest in electrolyzer technology within the last decade in the United States.

The primary military application was the "energy depot program." Because of logistics, the cost of energy on the battlefield is high. In this concept, a nuclear power plant, an electrolytic hydrogen plant, an air liquefaction plant, and an ammonia plant would be flown in and assembled behind the lines to chemically manufacture ammonia to be used as a fuel for internal combustion engines, fuel cells, and heaters. As electrolytic hydrogen manufacture was an integral part of this program, and improved electrolyzers should be possible as a spin-off from advanced fuel cell technology, a significant effort was expended in advancing electrolyzer technology.

ELECTROLYZER, DESIGN, HYDROGEN, COST, AMMONIA

An aqueous solution of NH₄Cl or NH₄NO₃ is electrolyzed in which solution a powder semiconductor is suspended, having a band width of the forbidden band ≤ 0.5 ev., such as Bi₂Te₃ , Te, InAs, CdSb, Ge, Si, CdTe, or ZnS.

ELECTROLYSIS, PRODUCTION
ELECTROLYSIS AS A SOURCE OF HYDROGEN AND OXYGEN

By the application of fuel cell technology, high-efficiency electrolytic cells have been built and extensively tested. An economic study using low-cost nuclear power shows water electrolysis to be competitive for ammonia plants in areas where natural gas is not available and for hydrogen and oxygen supply to other segments of the chemical industry.

(PRODUCTION, HYDROGEN, OXYGEN, WATER, AMMONIA, ELECTROLYSIS)

ELECTROLYTIC HYDROGEN FUEL PRODUCTION WITH SOLID POLYMER

The General Electric Company water electrolysis technology, which is based on a solid polymer electrolyte (SPE) concept, is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data is presented. Demonstrated cell life data is included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

(ENERGY, PRODUCTION, STORAGE, TRANSMISSION, PERFORMANCE, COST)

WATER ELECTROLYSIS - PROSPECT FOR THE FUTURE.

A survey of oxygen generators for spacecraft based
on water electrolysis is presented. The water electrolysis cells surveyed are predominantly prototype units including both liquid and vapor feed cells. Cell design, operational performance, gas purity, and problems encountered during testing are discussed. Suggestions are given as to where future research might be concentrated in order to solve some of the more general problems associated with water electrolysis.

(OXYGEN, PRODUCTION, ELECTROLYSIS, SPACECRAFT, DESIGN)

H73 20506* "DESIGN STUDY OF HYDROGEN PRODUCTION BY ELECTROLYSIS"

The present program, a design study of hydrogen production by electrolysis, was centered around low capital investment as the primary goal, with other factors, such as high efficiency, long life, simple, trouble-free operation, maintenance and down time also influencing the conceptional system. Only uncatalyzed porous nickel electrodes were considered.

(HYDROGEN, PRODUCTION, ELECTROLYSIS, DESIGN, COST)

H73 20507* "THE ECONOMICS OF HYDROGEN AND OXYGEN PRODUCTION BY WATER ELECTROLYSIS AND COMPETITIVE PROCESSES"

The manufacturing costs of hydrogen and oxygen are estimated for water-electrolysis plants using two types of advanced electrolytic cells: porous-electrode cells and high-temperature vapor-phase cells. Electrolytic plants producing 40 million standard cubic feet of hydrogen and 860 tons of oxygen per day are compared with fossil-fuel plants that use steam reforming and partial-oxidation processes at the same hydrogen-production rates. The cost of electricity required for the electrolytic process using a porous-electrode cell to break even with the fossil-fuel processes ranged from 0.8 to 2.3 mills/kWh. If an oxygen credit of $4/ton was assumed, this break-even power cost range increased to 1.5 to 3 mills/kWh. The use of electrolytic hydrogen plants as load-leveling devices for power is discussed briefly.
(HYDROGEN, OXYGEN, PRODUCTION, ELECTROLYSIS, COST, STEAM REFORMING, PARTIAL OXIDATION)

H73 20508 OXYGENHYDROGEN GENERATOR
An O-H generator consists of a porous electrolyte matrix, such as polypropylene or asbestos fibers, between 2 porous sintered Ni electrodes. Between the matrix and the electrodes are interposed noble metal, preferably Pt or Pd, screens. The screens may be 0.25-mm. thick with 0.3-mm. openings.

(ELECTROLYTE, NICKEL, MATRIX)

H73 20509 SOLID ELECTROLYTES OFFER ROUTE TO HYDROGEN
Anon, Chemical and Engineering News, Aug 27 '73, Avail:TAC
Electrolysis systems to generate hydrogen may result from solid polymer electrolytes originally designed for fuel cells.

(HYDROGEN, PRODUCTION, ELECTROLYSIS, POLYMER)

H73 20510* HYDROGEN GENERATION BY SOLID POLYMER ELECTROLYTE WATER ELECTROLYSIS
The most common water electrolysis units in the past used a liquid caustic (potassium hydroxide) electrolyte and were relatively inefficient and required frequent maintenance. During the past five years, however, the General Electric Company has developed a unique solid polymer electrolyte (SPE) water electrolysis technology. The SPE system combines high efficiency with exceptionally long, maintenance free life (over three years of continuous operation have been accumulated to date on one of the early single-cell units). While this development was prompted primarily by requirements for oxygen generation in aerospace and submarine life support systems, the design can readily be adapted and scaled to large-size hydrogen generation plants.
It is the purpose of this paper to summarize the present and projected capabilities of the SPE water
electrolysis technology, and to consider the applicability of the SPE technology as a generator of hydrogen for use as a fuel, for energy transmission, and for energy storage.

(HYDROGEN, PRODUCTION, ELECTROLYSIS, POLYMER, FUEL, ENERGY, TRANSMISSION, ENERGY STORAGE)

H73 20511* "NUCLEAR ENERGY CENTERS, INDUSTRIAL AND AGRO-INDUSTRIAL COMPLEXES"

The cost of hydrogen production by electrolysis is markedly dependent on the cost of electric power. Oak Ridge National Laboratory carried out a design study for large-scale electrolyzers in 1966, and derived a cost for a 44,000 lb/hr plant (about 1000 MW input) of about $40 million. This is about 10% of the cost of the nuclear power stations required to supply it. Their hydrogen production cost was based upon some rather unorthodox financing assumptions and a very low cost of electric power (2.5 mills/kWhr, compared to an average cost of over 9.0 mills prevailing in 1970). This gives a hydrogen production cost of $1.03/million Btu.

(HYDROGEN, PRODUCTION, COST, ELECTROLYSIS, ELECTRICITY, NUCLEAR POWER)

H73 20512* "SYSTEM STUDY OF HYDROGEN GENERATION BY THERMAL ENERGY"

The results presented in this report show that the ideal efficiency of a constant temperature and pressure chemical process which produces hydrogen from water is exactly the same as the ideal efficiency of an electrolysis process operated at the same temperature and pressure. It is further shown that there are inefficiencies in a chemical process which cannot be avoided. The fact is established that the reactions in a chemical process cannot be run at a single temperature if the process is to be more efficient than electrolysis.

Specifications for compounds which would yield
efficient two-reaction chemical processes have been developed. They appear in the form of free energy of formation and absolute entropy difference between the hydride or oxide of the compound and the compound itself. The absolute entropy change that occurs when either an oxygen atom or two atoms of hydrogen are added to a molecule can be determined semiempirically. These semiempirical correlations indicate that only certain gaseous compounds can meet the entropy specification. Whether these gaseous compounds meet the free energy specification, or whether they exist, has not been determined. Such determination, along with further study of the developed specifications and an extension of the specifications to include phase changes, are recommended for future work.

(HYDROGEN, PRODUCTION, ELECTROLYSIS, FREE ENERGY, ENTROPY, THERMAL EFFICIENCY)

H73 20513 ELECTROLYTE HYDROGEN BY PRESSURE ELECTROLYSIS IN THE ZDANSKY-LONZA ELECTROLYTOR
Anon, Lurgi Gesellschaft fur Warmetechnik, MBH, Frankfurt, Main, 72, Avai:TAC

The pressure electrolysis process has been technically applied in the Zdansky-Lonza Electrolytor, this being the first unit in the history of water electrolysis making hydrogen and oxygen at 30 atmospheres gauge pressure on an industrial scale, giving an output range of between 100 and 700 std. cu. m. of hydrogen per hour per unit.

(ELECTROLYSIS, OXYGEN, POWER, PRESSURE, CELL, VOLTAGE)
H73 21000 THERMODYNAMICS OF MULTI-STEP WATER DECOMPOSITION PROCESSES
Funk, J.E., (University of Kentucky, Lexington), American Chemical Society, Division Fuel Chemistry, V 16: 79-87 N 4
Apr 10-14 '72, (Paper for Meeting), Avail: TAC

Brief description of the process in which hydrogen is produced from water by thermal treatment in three or four steps in presence of such catalysts as tantalum-, bismuth-, mercury-, or vanadium-chloride is followed by thermodynamic calculations. The following topics are discussed in detail -- second law limitations; multi-step processes; work of separation; and the vanadium chloride process. Technological data are included.
(HYDROGEN, PRODUCTION, CATALYST, THERMAL)

H73 21001 OBTAINING HYDROGEN BY MEANS OF REACTOR HEAT
Dorner, S., (Kernforschungszentrum, Karlsruhe, West Germany; Institut fuer Neutronenphysik und Reaktortechnik), NSA 33122 (NP-19322), 66 p. Oct 71 (In German), Dep. NTIS

Known methods used in the decomposition of water by means of reactor heat are discussed. Theoretical considerations on the development of new methods show that closed-circuit processes with gas components require relatively high temperatures and, therefore, seem to be not very promising. The production of hydrogen by dissolution of the metal and the subsequent conversion into oxide call for a low decomposition temperature of the oxide. Experiments were made with reactions in the molten state in order to convert into oxides the halogenides formed in the closed-circuit process. With a view to complete the closed-circuit processes, exchange reactions and separations through evaporation of some alkaline and alkaline earth halogenides, respectively, and the metals in the Vb-group of the periodic system were checked experimentally. Some considerations were made with respect to economy.
(DECOMPOSITION, WATER, CLOSED, REACTION, OXIDE, HALOGEN)

H73 21002* THERMOCHEMICAL HYDROGEN GENERATION
Wentorf, R.H., Jr. and R.E. Hanneman. (Corporate Research and Development, Schenectady, N.Y.), Report No.-73CRD222, J1 73, Avail: TAC

The basic concepts for thermochemical hydrogen generation are described along with useful criteria for the
selection of potentially viable, multistep, closed-cycle processes. Three partially tested, new closed-cycle thermochemical hydrogen production processes, based on nuclear heat and water input, are presented with overall, potential thermal efficiencies ranging from 40% to 60%. Closed-cycle hydrogen processes are compared briefly to electrolytic and open-cycle (carbon fed) thermochemical methods for hydrogen generation.

(NUCLEAR, WATER, CYCLE, THERMAL, EFFICIENCY)

H73 21003* "ENERGY REQUIREMENTS IN THE PRODUCTION OF HYDROGEN FROM WATER"

The energy requirements for the production of hydrogen from water are discussed from a theoretical point of view. A Carnot, or temperature, limitation on the efficiency of producing hydrogen from water using thermal energy is developed. The theoretical energy requirements, as both useful work and heat, for various processes which decompose water are determined -- electrolysis, direct decomposition, and multi-reaction chemical processes -- to find processes and conditions for which the useful work requirement is minimized. Lowering the useful work requirement increases the hydrogen yield per unit of thermal energy -- i.e., increases the process efficiency. Specifications for compounds to be operated in efficient two-reaction chemical processes are developed and their use is discussed. While a water decomposition process more efficient (on a thermal energy basis) than electrolysis is highly desirable, none is available at present.

(EFFECTOLYSIS, DECOMPOSITION, CHEMICAL, ENERGY, USE, THERMAL)

H73 21004 HYDROGEN PRODUCTION CYCLIC PROCESS
DeBeni, G., (Europaeische Atomgemeinschaf (EURATOM) Europazentrum Kirchberg) Ger. Offen. 2,005,015 (Cl. C O1b), Sep 10 '70, Appl. Fe 19 '69; 7 p

A cyclic process for the production of H from Hg and H2O is described. Thus, 0.15 ml Hg and 2.4 ml 48% HBr were heated in a 40 ml reaction vessel within 2 hr up to 200° to give after cooling H at a pressure of 2 atom and 20% of the stoichiometric amt. HgBr2.

(HYDROGEN, CYCLE, WATER, PRODUCTION)
"HYDROGEN PRODUCTION FROM WATER USING NUCLEAR HEAT"
Marchetti, C., Ispra, Italy: Euratom, Joint Nuclear Research Center, Progress Report No. 1, Dec 70, Avail:TAC

Multistep chemical processes for the decomposition of water, using nuclear heat, are studied in view of producing hydrogen as intermediate energy vector.

The results of the work performed at the Centre of Ispra up to December 1970 are reported: the main object of the research is the Mark-I cycle, the first patented of these chemical cycles.

The studies are principally related to the chemistry (equilibria and kinetics studies and physico-chemical properties), to the corrosion of construction materials, to the preliminary flow-sheet determination for the coupling with a nuclear reactor.

A general hydrogen market evaluation is also included.

(Chemical, Corrosion, Energy, Cycle, Cost, Thermal, Decomposition)

"A LOW TEMPERATURE THERMAL PROCESS FOR THE DECOMPOSITION OF WATER"
Abraham, B.M., and F. Schreiner, Science, V 180:959 73, Avail:TAC

The following three reactions, each of which has been shown to proceed at the temperature indicated, are suggested as a cycle for the thermal decomposition of water:

\[
\text{LiNO}_2 + I_2 + H_2O \rightarrow \text{LiNO}_3 + 2HI, \quad 300^\circ K
\]

\[
2HI \rightarrow I_2 + H_2, \quad 700^\circ K
\]

\[
\text{LiNO}_3 \rightarrow \text{LiNO}_2 + \frac{1}{2}O_2, \quad 750^\circ K
\]

(Hydrogen, Oxygen, Production, Cycle, Reaction)

"HYDROGEN SOUGHT VIA THERMOCHEMICAL MEANS"
Anon, Chemical and Engineering News, Sept 3 '73

Especially promising are several reaction schemes that can produce hydrogen by thermal cracking of water in closed system. The article reviews several closed-cycle processes that have been devised at General Electric.

(Thermal, Water, Closed, System, Reaction, Production)
H73 21008 THERMOCHEMICAL CRACKING OF WATER

Major objectives in developing thermochemical cycles to split water into hydrogen and oxygen are a cyclical set of chemical reactions and products that are easily and efficiently separated. Few thermochemical cycles proposed to date would exceed an energy efficiency of 50% when operating as a process. A final conclusion is that economics will govern final choices of cycles, and efficiency only partly determines the economics.

(HYDROGEN, OXYGEN, DECOMPOSITION, CYCLE, CHEMICAL, REACTION, EFFICIENCY, ECONOMICS)

H73 21009 CHEMICAL PROCESS TO DECOMPOSE WATER USING NUCLEAR HEAT
De Beni, G., (C.C.R.), Euratom-Ispra-Varese, Italy; C. Marchetti, American Chemical Society, Division Fuel Chemistry, Preparation, V 1:110-133 N4, Paper for Meeting Apr 10-14 '72, Avail:TAC

This is a description of a process of water conversion into hydrogen and oxygen by using the nuclear heat for operating some endothermal chemical reactions in a closed cycle, i.e. with nominal consumption of chemicals. In this method a four-step chemical cycle, christened Mark I, is employed with catalysts containing reaction studies involved in the Mark-I are presented, optimal structure of catalyst is elucidated, and economic considerations are included.

(PRODUCTION, HYDROGEN, OXYGEN, CYCLE, MARK I, CATALYST, ECONOMY)

H73 21010 MOLLIER DIAGRAMS FOR THE EVALUATION OF NUCLEAR HEAT PROCESSES FOR WATER DECOMPOSITION
Glaser, H., VDI-Forschungsh, V 38:17-24 N549, 72

Some non-electrolytic water decomposition processes for the production of hydrogen gas fuel by using nuclear heat are discussed, including the two-stage process involving reactions of metals with metal oxides, the multiple-stage process by G. de Beni based on reactions between CaBr₂ and Hg, and the multiple-stage Fe-Cl process. Mollier's enthalpy vs entropy diagrams are presented for
the appraisal of these processes.

(HYDROGEN, PRODUCTION, FUEL, NUCLEAR)

H73 21011 PROCEEDINGS ROUND TABLE ON DIRECT PRODUCTION OF HYDROGEN WITH NUCLEAR HEAT

Anon, C.C.R. Euratom, Ispra, Italy, Dec 12 '69, EUR/C-IS/1026/1/69e, Avail:TAC

A conference on the idea of using nuclear energy to make hydrogen from water without recourse to other raw materials.

(WATER, DECOMPOSITION, CYCLE, ENERGY, PROCESS, FUEL)

H73 21012* HYDROGEN PRODUCTION FROM WATER USING NUCLEAR HEAT

Marchetti, C., Euratom, Joint Nuclear Research Center, Ispra, Italy, Progress Report No. 3, Dec 72, Avail:TAC

Research on methods of hydrogen production by chemical decomposition of water is based on the interest in extending the utilization of nuclear energy by using a flexible and clean "energy vector."

Even more than during 1971, in 1972 the scientific and industrial worlds have turned their attention to hydrogen as a possible basis for a future "energy system."

Work performed at the J.R.C., Ispra has been oriented to:

- exploring the possibilities of chemical cycles which could bring about the decomposition of water (within the above mentioned temperature limits).
- obtaining sufficient information on these possible chemical cycles to make comparisons, and to make a technico-economic evaluation of the relative industrial processes.

The research now being performed is still in its earliest stage, the object of which is to obtain sufficient elements to design a pilot plant.

At the end of this first stage (three - five years long, according to the effort available to devote to it), the evaluations will have to be sufficient to decide:

(a) whether it is possible to develop an industrial process,
(b) whether it is worthwhile to construct a pilot plant for the most promising looking cycle.

Parallel to the laboratory research work, and in support of the decisions to be taken, studies will be carried out in close collaboration with industry on the develop-
ment of the hydrogen market, its role and impact on the energy system, and on all the relative technical and economical assessments.

In conclusion it can be said that the research is at the beginning of an important phase, in which the number of cycles is increasing significantly and showing interesting diversification. Knowledge of several of these cycles will be, in the next future sufficiently advanced to make some preliminary evaluations and comparisons.

(ENERGY, CYCLE, DECOMPOSITION, CHEMICAL, STUDY, ECONOMICS, KINETICS, THERMODYNAMICS, DESIGN, PLANT)

H73 21013* THERMAL DECOMPOSITION OF WATER THROUGH CHEMICAL CYCLES USING A Fe-Cl₂ FAMILY
Herdy-Grena, C., (Commission of the European Communities, Joint Nuclear Research Centre - Ispra Establishment, Materials Department, Italy), Je 73

The thermal decomposition of water through chemical cycles is considered under a theoretical point of view. From the specified thermochemical conditions (upper limit of the temperatures, limitation of the reaction free energy changes, etc.), it is ascertained that only chlorine is suitable, as an element, to decompose water, in the first reaction of a multistep process.

Therefrom a Fe-Cl₂ family was worked out. This family uses iron and chlorine compounds and offers the advantage to involve common elements and to bring on few corrosion and pollution problems.

(IRON CHLORIDES, THERMODYNAMICS, CHEMICAL, REACTION, KINETICS)

H73 21014* FUNDAMENTALS OF THERMOCHEMICAL CYCLIC PROCESSES
Barnert, H., (Nuclear Research Center, Juelich, Germany), Report No. JUL-967-RG, Institute for Reactor Development, KFA Juelich, Germany, Je 73, Avail:TAC

Relations between heat and work and thermodynamic data of chemical reactions are given. They are derived with the theory of the thermodynamic of irreversible processes using a number of homogeneous regions. There are considered several sorts of entropy production and their effects on the efficiency. Hereby statements are possible on thermochemical cyclic processes, especially on the thermochemical cyclic process for

64
The production of hydrogen and oxygen from water.

(THERMODYNAMICS, CYCLE, PROCESS, NUCLEAR, HEAT, WATER, SPLITTING, THERMOCHEMICAL, EFFICIENCY)

H73 21015* NUCLEAR WATERSPLITTING
Barnert, H., (Nuclear Research Center, Juelich, Germany), Atomwirtschaft, Aug-Sept 73, p 408-410, (In German), Avail:TAC
The energy system "Nuclear energy as primary energy source and hydrogen as carrier for energy, produced from water in a thermochemical cyclic process" opens up new aspects of future energy supply. Particularly for this application, the High Temperature Reactor (HTR) with Pebble Bed Core (PBC) and Once Through Than Out (OTTO) fueling fits excellently as the nuclear heat source.

(ENERGY, REACTOR, HEAT, WATER, SPLITTING, CYCLE, PROCESS, THERMOCHEMICAL)

H73 21016 THERMOCHEMICAL AND NUCLEAR TECHNOLOGY FOR NUCLEAR WATER SPLITTING
Barnert, H., (Nuclear Research Center, Juelich, Germany), Cornell International Symposium and Workshop on "The Hydrogen Economy", Cornell University, Ithaca, N.Y., Aug 73, Avail:TAC
With regard to nuclear power used for thermochemical water splitting, the author makes the following three points:

1) The production of hydrogen should be done on a large scale with large size units.

2) It seems to be economical to make use of the potentially high efficiency of the "thermochemical cyclic process."

3) Chemical engineering experience (expressed as "space-time") should be used to a wide extent.

(NUCLEAR, THERMOCHEMICAL, WATER, SPLITTING, TECHNOLOGY, EFFICIENCY, HEAT, PROCESS)
The characteristics of electrofluid reactor are reviewed, and a reaction model which appears to fit experimental results is proposed. Product gas compositions and energy requirements predicted by the model for the gasification process are presented for various possible operating conditions. The present state of development of the reaction system and foreseeable problems which must be worked out are reviewed. In addition, the adaptation of the process to the production of various products such as hydrogen, methane, and methanol is discussed.

(REACTION, GASIFICATION, METHANE, METHANOL, SYNTHESIS GAS, ENERGY)
summary of the experimental data collected on the
gasification of coal char using steam and the results
of a study on the contact resistance between a fluidized
bed and an electrode placed in it. A preliminary
economic evaluation of a process for producing hydrogen
is also included as are preliminary economic evaluations
of processes for producing carbon disulfide and hydrogen
cyanide.

(FLUIDIZED BED, COAL, HYDROGEN, INDUSTRIAL, GAS, CHARCOAL,
STEAM, DECOMPOSITION, ECONOMICS, STUDY)

H73 22003 PRODUCTION OF A MIXTURE OF HYDROGEN AND
STEAM
Benson, Homer E., (Con-Gas Service Corp.), 89189j, U. S.
3,421,869 (Cl. 48-197), Ja 14 '69, Appl Je 1 '64, 4 p

In the steam-Fe process for prepg. a mixt. of H2 and
steam, steam and air are caused to react with carbon-
aceous material to prepr. a gas mixt. contg. 22% CO,
6% CO2, and 20% H2 (producer gas) which is then used
to reduce Fe3O4 to FeO and Fe. The reduced Fe is then
oxidized with steam to prepr. H and the cycle is repeated.

(STEAM, IRON, CYCLE, HYDROGEN)

H73 22004 UNIFORM FLOW OF FLUIDIZED COKE TO
THE
REHEATING ZONE DURING HYDROGEN GENERATION BY COKING
Oldweiler, Morcy E. (Esso Research and Engineering
Co.) 62842a, Fr. 1,533,265 (Cl. C 10b) J1 19 '68,
U. S. Appl. Je 30 '66, 7 p

During the prepn. of H from hydrocarbons by coking,
bubbling and large variations in pressure are prevented
in the conduit in which powd. coke is transported
upward to the reheater as a fluidized solid in a gas.
The pressure variations are prevented by injecting the
fluidizing gas through several inlets located along an
initial section of the conduit.

(FLUIDIZED, COKE, HYDROGEN, GENERATION)

H73 22005 CHAR OIL ENERGY DEVELOPMENT
Jones, John F., Michael R. Schmid, Martin E. Sacks,
Yung-Chuan Chen, and Charles A. Gray (FMC Corp.,
Princeton, New Jersey), U. S., Clearinghouse Federal
Science and Technical Information, PB 173916, 83733y,
239 p (1967) (Eng.), Avail:CFSTI

The multistage fluidized-bed pyrolysis of high-
volatile bituminous coals to product oil, gas, and char was studied. Catalytic hydrotreating of the oil yields a synthetic crude oil suitable as a petroleum-refinery feedstock. The product gas can be reformed to produce a high-Btu pipeline gas or H. The char product is used as boiler fuel for power generation.

(FLUIDIZED, COAL, CATALYST, CHAR, POWER)

H73 22006 HYGAS PROGRAMS
Papamarcos, John, Power Engineering, Fe 73, p 33-38, Avail: TAC

This article presents the incentive to develop the most economical gasification process.

HYGAS Programs Among the new gasification processes being developed, the HYGAS programs are furthest advanced. The Institute of Gas Technology started work on coal gasification in 1944 and over a period of years developed two processes, both of which were incorporated into the HYGAS process. One process gasified powdered coal in suspension with oxygen and steam to produce a mixture of carbon monoxide and hydrogen. This mixture was then upgraded by passage over a nickel catalyst. The second process was direct hydrogenation of pretreated coal. In this process the coal was pretreated at elevated temperatures with an oxygen-bearing gas to destroy its caking tendency. The coal was then fed into a reactor maintained at a temperature of about 1300 to 1500 F and a pressure between 1000 and 1500 psi. Hydrogen was injected into this reactor to maintain the powdered coal in a fluid-like condition and to react with it to produce methane.

Synthane Process Basic process steps are (1) coal pretreatment to destroy caking properties; (2) carbonization plus steam-oxygen gasification of the pretreated coal in a fluidized bed; (3) shift conversion of synthesis gas to ratio of 3:1 for hydrogen and carbon monoxide; (4) purification of shifted product gas; and (5) catalytic methanation of the hydrogen plus carbon monoxide.

(COAL, GASIFICATION, HYDROGEN, PRODUCTION, METHANE)

H73 22007 HOW PRESSURE AND OXYGEN/METHANE RATIO AFFECT PARTIAL OXIDATION
Wellman, P. and S. Katell, Hydrocarbon Processing
At the Morgantown Coal Research Center of the Bureau of Mines, economic evaluations of well-known processes for hydrogen production have been made to compare with cost evaluations of systems using coal as a basic raw material. Included in these comparative studies are evaluations of the steam-methane reforming and partial oxidation of methane systems to produce the synthesis gas with subsequent upgrading to produce hydrogen.

The partial oxidation of methane to produce hydrogen for ammonia synthesis is particularly attractive, since part of the nitrogen (a byproduct of the oxygen plant) may be used to synthesize the product.

(HYDROGEN, PRODUCTION, COST, COAL, SYNTHESIS GAS, AMMONIA, NITROGEN)

H73 22008 DISTRIBUTION OF GASEOUS PRODUCTS FROM LASER PYROLYSIS OF COALS OF VARIOUS RANKS
Karn, F. S., R. A. Friedel, and A. G. Sharkey, Jr.
(Pittsburgh Coal Research Center, Pittsburgh, Pa.)
97315e, Carbon (Oxford) 5(1), 25-32 (1967) (Eng.)

Irradiation of coal by laser energy pyrolyzes coal rapidly at high temps. Gaseous products from coals of various ranks were analyzed by mass spectrometry. The total gas yield varied inversely with coal rank, showing a 4-fold increase between anthracite and lignite. The at. C-H ratio for the gases was lower than for the corresponding coal. Yields of \(\text{C}_2\text{H}_2, \text{H}_2, \text{CO}, \) and \(\text{CO}_2 \) generally increased between anthracite and lignite.

(LASER, PYROLYSIS, COAL)

H73 22009* GASIFICATION; A REDISCOVERED SOURCE OF CLEAN FUEL
(0/1/S28), Avail:TAC

The basic chemistry of gasification is simple. Carbon from coal or naphtha— the petroleum fraction with a boiling point between 175° and 240°C—is combined with water to form "synthesis gas"—a mixture of methane, hydrogen, and carbon monoxide—and carbon dioxide. This gas is then combined to form methane, the principal constituent of natural gas. The overall reaction requires several steps, however, and is much

69
more complex.

Naphtha gasification is considerably simpler than coal gasification and is in a much more advanced state of development. Three different naphtha processes have been commercialized: the catalytic rich gas (CRG) process developed by the British Gas Council, the methane rich gas (MRG) process developed by Japan Gas Company, and the Gasynthar process developed by West Germany's Lurgi Mineraloeltechnik GmbH and Badische Anilin-und Soda-Fabrik AG. These processes are very similar in concept. The main difference is in the catalysts used.

(COAL, HYDROGEN, PRODUCTION, CATALYST, SYNTHESIS GAS, METHANE)

H73 22010 IGT GETS $18-MILLION OCR CONTRACT TO MAKE HYDROGEB GAS FROM COAL CHAR WASTE
Anon, Energy Resources Report, J1 13 '73

An $18,160,000 contract to develop process for producing hydrogen gas from coal char waste--an intermediate step in production of pipeline quality gas from coal--was awarded July 6 to Institute of Gas Technology, Chicago, Ill., by Interior Department's Office of Coal Research.

(GASIFICATION, COAL, CHAR)

H73 22011 GASIFICATION OF SOLID FOSSIL FUELS IN A MICROWAVE DISCHARGE
Fu, Y.C., B.D. Blaustein, and I. Wender, (Pittsburgh Energy Research Center, (Bureau of Mines, Pittsburgh, Pa.), Chemical Engineering Progress, Symposium Series, V 67:47-54 N112 71

Gasification of solid fuels (lignite, high-volatile A bituminous coal, oil shale, kerogen, gilsonite, tar sands) in a microwave discharge in argon gave H, CO, and gaseous hydrocarbons. The extent of gasification depended on the C content of the solid. High initial rates of production of various components of gases decreased rapidly in the early stages of reaction. In a CO2 discharge, the product species were oxidized to CO2; in a H discharge, the formation of hydrocarbons was enhanced.

(GASIFICATION, FOSSIL, FUEL, MICROWAVE)
H73 22012 GASES FROM LASER PYROLYSIS OF ORGANIC MATERIALS
Laser irradiation of coal, petroleum, and rubber in a He atmosphere produced simple gas mixture containing mainly H and C$_2$H$_2$. With coal, CO and CO$_2$ were also major products. Use of the method in refuse disposal was suggested, since usable C$_2$H$_2$ would be produced.
(LASER, PYROLYSIS)

H73 22013 WHAT HYDROGEN FROM COAL COSTS
These economics indicate that hydrogen can be produced from coal for about $0.38 per 1,000 cubic feet using coal gasification, steam-iron process or nuclear heat gasification.
(COST, ECONOMICS, HYDROGEN, COAL)
EMPHASIS ON H₂ STRENGTHENED
Anon, Oil and Gas Journal, V 70:87-8 Fe 14 '72, Avail:TAC

Hydrogen is on the way to becoming as fundamental for the modern U.S. refinery as crude oil, equipment, and catalysts.

The primary routes to hydrogen are steam reforming and partial oxidation.

Both processes entail some form of feed preparation followed by the generation of raw gases and their purification to yield the desired hydrogen product. Substitute natural gas from liquid hydrocarbons or coal will also be a product of this technology.

(STEAM REFORMING, PARTIAL OXIDATION, HYDROCARBONS, COAL, ENERGY)

APPARATUS FOR PRODUCING AND COOLING GASEOUS MIXTURES OF HYDROGEN AND CARBON MONOXIDE
Ter Haar, L.W., (Shell Internationale Research Maatschappij N.V.), 131435s, Ger. Offen. 2,102,370 (Cl. C 01b), J1 29 '71, Neth. Appl. Ja 21 '70, 14 p

To prevent excessive C formation and settling of C on cooling surfaces in a CO-H reactor by partial oxidation of hydrocarbons with O or O-enriched air and steam at 5-150 atmosphere, a cooling medium such as H₂O is introduced through a jet nozzle, into a series of spiral shaped tubes, which surround the center of the reactor, and where the cooling medium is recirculated to control the pressure and temperature in the reaction.

(HYDROGEN, CARBON MONOXIDE, PROCESS)

HYDROGEN, STEAM REFORMING: FOSTER WHEELER CORPORATION
Anon, Hydrocarbon Process, V 51:222 Sept 72

The basic steps for the steam-hydrocarbon reforming process are desulfurization, reforming, CO conversion, CO₂ removal and methanation.

The desulfurization of the hydrocarbon feed is necessary in order to prevent catalyst deactivation or poisoning. Depending on the type of feedstock and the nature of the sulfur contaminants, desulfurization methods can vary from ambient temperature adsorption on activated carbon, to high temperature reaction with zinc oxide (as illustrated), to catalytic hydrogenation followed by zinc oxide.
(DESULFURIZATION, REFORMING, CONVERSION, METHANATION, CATALYSIS, POISONING)

H73 22103 INTEGRATED REFORMER UNIT
Sederquist, R.A., (United Aircraft Corp.), U.S. 3,531,263 (Cl. 48-61; C Olb, B 01j), Sept 29 '70, Appl. Aug 5 '68, 5 p

A fuel processing unit for use in fuel cells consists of a cylindrical structure which houses the reaction components for converting hydrocarbon feedstock. The feed passes through a reactor cavity where the hydrocarbon fuel stream reacts to produce a H-rich stream. The converted stream is air-cooled, then passes into a shift-conversion cavity where CO is converted to CO$_2$ + H$_2$. The H$_2$-rich effluent is directed to the fuel cell or other process equipment.

(FUEL CELL, REFORMER, CARBON MONOXIDE)

H73 22104 MANUFACTURE OF HYDROGEN BY REFORMING OF NAPHTHA

Preparation of H gas from S-free naphtha, reaction of naphtha with water vapor, and elimination of CO and CO$_2$ by-products by methanation were reviewed.

(REFORMING, NAPHTHA)

H73 22105 HIGH PURITY HYDROGEN FROM HYDROCARBON-CONTAINING CHARGED MATERIAL BY USE OF AN ELECTROCHEMICAL PROCESS

Pure H$_2$ is obtained from hydrocarbons with 100% coulombic yield at 150-200 mA/cm2 in a cell at 0.2-0.3 V having a hollow Pd anode containing a steam-reforming catalyst in 90% NaOH-10% KOH electrolyte at 475$^\circ$.

(FUEL CELL, HYDROCARBON, PROCESS)

H73 22106 HYDROGEN FROM EXCESS REFINERY STREAMS RANGING FROM C$_6$ TO HEAVY OILS
Hepp, H.J., (Phillips Petroleum Co.), U.S. 3,552,924 (Cl. 23-212; C Olb), Jan 5 '71, Appl. Aug 15 '66, 4 p

Refinery streams are subjected to hydrocracking, steam reforming of the C$_6$ fraction formed, and reaction of the CO-CO$_2$-H mixture with H$_2$O.

(HYDROCRACK, REFORMING, STEAM)
H73 22107 CATALYTIC PROCESSES FOR HYDROGEN MANUFACTURING
Comley, E.A., and R.M. Reed, World Petroleum Congress, 6th-Processing and Refining of Oil and Gas-Proc Sec 3, 63, p 147-58

Two catalytic processes used commercially for producing hydrogen from hydrocarbons are steam reforming of hydrocarbons and autothermal catalytic process; major emphasis is on steam reforming process including chemical reactions, commercial development and present status and design procedures; pilot plant data on steam reforming at high pressures. (PRODUCTION, STEAM, REFORMING, HYDROCARBON, CHEMICAL DESIGN)

H73 22108 STEAM REFORMING PARAFFINIC HYDROCARBONS

Paraffinic hydrocarbons are steam reformed to H-rich gases by contact of 5 moles of hydrocarbons and 2 moles of steam with a catalyst containing 3-35% NiO on MgO and 3MgO.4SiO2·H2O (I). (STEAM, REFORMING, HYDROCARBON)

H73 22109 DESTRUCTIVE DEHYDROGENATION OF THE AROMATIC RING

Results of an experimental program evaluating the possibility of obtaining hydrogen from aromatic hydrocarbons with the ultimate objective of applying this method to low cost hydrocarbons or bituminous materials such as residua, pitches and coal fractions. (HYDROGEN, PRODUCTION, HYDROCARBONS, COAL, RESIDUE)

H73 22110 HYDROGEN FROM LIQUID HYDROCARBONS FOR FUEL CELLS
Aspects of high-temperature steam reforming, partial
oxidation, and low-temperature steam reforming processes are discussed for hydrogen generation from liquid hydrocarbons; for each process, examples of possible hydrogen-generation-fuel cell systems are selected and theoretical overall efficiency calculations made; calculations are based on n-hexane; results indicate that overall efficiencies higher than 40% are unlikely; method for hydrogen generation employed at Institute of Gas Technology, Chicago, Ill.; typical overall system efficiencies expected from approach lie between 25 and 35%.

(Steam Reforming, Partial Oxidation, Hydrocarbons)

H73 22111 LOW-TEMPERATURE REFORMING FOR HYDROGEN
Anon, Oil and Gas Journal, V 62:88-9 N51 Dec 21 '64
Avail:TAC
Low-temperature reforming of liquid-hydrocarbon feedstocks appears to offer attractive route to hydrogen to be used in low-temperature acid-fuel cells; method, followed by CO shift and CO methanation process steps, has been operated experimentally for more than 3000 hr; gas produced, essentially stoichiometric hydrogen and CO$_2$ and 10 to 20 ppm CO, has been used to energize fuel cells for more than six months without noticeable poisoning effects; overall efficiency of synthesis method is not expected to exceed 40%.

(Hydrocarbon, Fuel Cell, Process, Methanation, Poisoning)

H73 22112 DESIGN VARIABLES AND PRODUCTION COSTS IN LARGE-SCALE MANUFACTURE OF HYDROGEN
Twist, D.R., K.J. Sagar, Chemical Engineering, N192 Oct 65, p CE252-9, Avail:TAC
Recent developments in large-scale hydrogen manufacture are reviewed, together with possible methods of producing 95+% hydrogen, and it is concluded that steam reforming of hydrocarbons is economic method in most cases; typical process employing steam reforming is described, and mechanical and process variables for reforming stage are listed and discussed, with graphs illustrating interrelationships.

(Steam Reforming, Hydrocarbons, Chemical, Process, Design)
H73 22113 EIN NEUES VERFAHREN ZUR REINSTWASSERSTOFFERZEUGUNG DURCH DAMPFREFORMIEREN VON KOHLENWASSERSTOFFEN
Anon, Brennstoff-Chemi V 49:T60 N7 J1 68

New method of high-purity hydrogen manufacture by steam cracking of hydrocarbons; sulfur-free liquid or gaseous hydrocarbons are catalytically cracked at 25 to 30 atmosphere; hydrogen was then extracted from gas obtained in cracking in diffusion cells; hydrogen obtained by this method is absolutely dry and impurities are below 99.9999 vol %. (In German).
(HYDROCARBON, CATALYSIS, PRESSURE, CRACKING)

H73 22114 JET FUEL AS FEEDSTOCK

Presented is production of hydrogen by steam reforming from such commercially available fuels as gasoline and JP-4; operating conditions, reactor design, gas conversions, and fuel cell performance are discussed.
(HYDROGEN, STEAM REFORMING, PRODUCTION, DESIGN, CONVERSION)

H73 22115 HYDROGEN SUPPLY FOR FUEL CELLS
Anon, (Texas Instruments Inc.), British 1,182,499 (Cl. C 10g), Fe 25 '70, U. S. Appl. Dec 15 '66, 9 p

A hydrocarbon fuel, e.g., kerosine or \text{C}_{3}\text{H}_{8}, is partially steam reformed to produce a feed containing H and at least 10 mole % unreacted hydrocarbon. This is fed to the electrodes where more H is produced by further reformation reaction between the unreacted hydrocarbon and water produced by the cell reaction. Reformation in the cell is catalyzed by the molten salt electrolyte (Na, Li, K/\text{CO}_{3} at 350-850\degree).
(FUEL CELL, STEAM, REFORMING)

H73 22116 EXPERIENCE WITH LIQUID HYDROCARBON FUELS

Feasibility of utilizing existing liquid hydrocarbon fuel types (JP-4, unleaded gasoline, diesel fuel) in fuel cell power plants, particularly of indirect type; conversion of liquid hydrocarbons to hydrogen in
external reformer, partial and direct oxidation of liquid fuels, and protection of reformer and electrode catalysts from harmful effects of sulfur in fuels are discussed.

(FUEL CELL, CONVERSION, REFORMER, OXIDATION, CATALYST)

H73 22117 HYDROGEN IN PETROLEUM AND CHEMICAL INDUSTRIES APPLICATION AND MANUFACTURE. (WATERSTOF IN DE PETROLEUM EN CHEMISCHE INDUSTRIE. TOEPASSING EN FABRICATION)

L. W. ter Haar, Ingenieur, V 81:10 N17 Apr 25 '69

Survey of methods and raw materials for manufacture of synthesis gas; increasing demand of hydrogen for refining of petroleum products is discussed; influence of process pressure, of plant size and of other factors on economics of hydrogen making; it is shown that for partial oxidation process optimal process pressure is 55 bar and for steam-reforming about 20-bar; it is concluded that partial oxidation of oil residue is competitive with steam-reforming of naphtha at price differential of about 9 dollars per ton feedstock. (In Dutch).

(PETROLEUM, PARTIAL OXIDATION)

H73 22118 HYDROGEN, PARTIAL OXIDATION

Anon, Hydrocarbon Process, V 51:220 Sept 72, Avail:TAC

For the manufacture of hydrogen needed for refining operations such as hydodesulfurization, hydrocracking or petrochemicals.

(HYDROCRACK, PARTIAL OXIDATION)

H73 22119 PRODUCTION OF HYDROGEN FROM LIQUID HYDROCARBONS AT ELEVATED PRESSURES

Anon, (Texaco Development Corp.), French 1,572,582 (Cl. C 01b), Je 27 '69, Appl. May 31 '68, 10 p

H is produced economically by the direct partial oxidation of liquid hydrocarbons at >70 kg.cm² in the presence of O and steam.

(PARTIAL OXIDATION, HYDROCARBON)

H73 22120 PREPARATION OF HYDROGEN FROM HYDROCARBONS

Hockstra, J. and V. Haensel, (to Universal Oil Products Co.), 92417a, U. S. 3,340,010 (Cl. 23-212), Sept 5 '67, Appl. Dec 16 '63, 4 p

H is prepared by passing a hydrocarbon vapor at
≥1300°F over a catalyst supported on anhydrous Al₂O₃ and containing >2% by weight of a salt of an alkaline earth metal to improve the hardness and attrition resistance and >5% of a Ni salt to provide the catalytic activity.

(HYDROCARBON, CATALYST)

H73 22121 HYDROGEN FROM HIGH-BOILING HYDROCARBON FUELS
Becker, P. D., (Metallgesellschaft A.-G.), German Offen. 1,811,381 (Cl. C 01b, B 01j), Jul 2 '70, Appl. Nov 28 '68, 13 p

H was manufactured from high-boiling kerosine fractions by decomposing the hydrocarbons in exothermic reactions to CH₄, which was steam-reformed to CO and H. The catalytic multistage processes were heated by He from a He-cooled atomic reactor.

(HYDROCARBON, NUCLEAR, CATALYST)

H73 22122 LOW-TEMPERATURE REFORMING; A GOOD ROUTE TO FUEL-CELL HYDROGEN
Anon, Oil and Gas Journal, V 62:88-9 Dec 21 '64

Low-temperature reforming of liquid-hydrocarbon feedstocks appears to offer an attractive route to hydrogen to be used in low-temperature acid-fuel cells, Institute of Gas Technology studies show.

The method followed by carbon monoxide shift and carbon monoxide methanation process steps, has been operated experimentally for more than 3,000 hours. The gas produced, essentially stoichiometric hydrogen and carbon dioxide and 10-20-ppm carbon monoxide, has been used to energize fuel cells for more than 6 months without noticeable poisoning effects.

(REFORMING, FUEL CELL)

H73 22123 SYNTHETIC GAS FROM HEAVY FUELS

As air pollution restrictions become more severe and natural gas prices increase, take a look at partial oxidation of high-sulfur fuels for your hydrogen and synthesis gas needs.

(POLLUTION, GAS, SYNTHESIS)
HYDROGEN PLANTS TAKING NEW STATURE IN REFINING OPERATIONS
Anon, Oil and Gas Journal, V 63:82-3 Mar 22 '65
Refiners in increasing numbers are finding it worthwhile to include a hydrocracking unit in their processing schemes, either for upgrading residual fractions or for converting surplus distillate fuels into motor gasoline.

Virtually all require a companion hydrogen-manufacturing plant. In some instances the units will be required to furnish as much as 60% of the total hydrogen needed. Capital cost of the unit could represent a third of the entire project.

(HYDROCRACK, COST, FUEL)

INNOVATIONS IN HYDROGEN PRODUCTION
Ring, T. A. and others, Chemical Engineering Progress, V 66:59-64 Dec 70
Recent innovations in hydrogen plant design enables the refiner to accommodate his economic philosophy, as well as his preference in gas compression schemes.

(GAS, REFINING)

IMPROVING RELIABILITY OF STEAM REFORMERS
Anon, Chemical and Process Engineering, V 52:3+ Oct 71
The worldwide acceptance of hydrocracking as a means of increasing refinery flexibility has created a demand for hydrogen "utility" plants capable of producing up to 100 million scfd (2.8 million m³/day) hydrogen at purities from 95-98%, and with maximum reliability and supply. Most hydrogen production is by the steam reforming of hydrocarbons ranging from naphtha to hydrogen-rich offgas. Shutdown of the hydrogen plant means that the hydrocracker, carrying an investment of three or four times that of the hydrogen plant, is also shut down. An on-stream factor of at least 90-95% is therefore aimed at, and this level of reliability is now feasible if the design, construction and operation of the hydrogen plant is of the highest quality.

(STEAM, REFORMING, HYDROCARBON)

HYDROGEN, STEAM REFORMING
Anon., (C&I/Girdler, Inc.), Hydrocarbon Process, V 49:270 Sept 70
For producing high purity hydrogen such as needed for
hydrogenation and hydrodesulfurization.
(PRODUCTION, HYDROGENATION, HYDRODESULFURIZATION, PURITY)

H73 22128 HYDROGEN, PARTIAL OXIDATION
Anon, Hydrocarbon Process, V 49:269 Sept 70
For the manufacture of hydrogen needed for refining operations such as hydrodesulfurization, hydrocracking or petrochemicals.
(HYDRODESULFURIZATION, HYDROCRACKING, PETROCHEMICALS, REFINING)

H73 22129 REFINING PROCESS DEVELOPMENTS; IMPROVEMENTS IN MAKING HYDROGEN
New developments in hydrogen manufacture result in higher hydrogen purity, lower hydrogen costs and higher reformer pressures.
(MANUFACTURE, PURITY, COST, PRESSURE, REFORMER)

H73 22130 PRODUCTION OF HYDROGEN AND SYNTHESIS GAS
Solbakken, A., (Inst. Ind. Kjemi, Nor. Tek. Heogsk., Trondheim, Norway), Kjemi, V 31:18-21 N2 71, 23452m, (Norweg)
A review.
(HYDROGEN, SYNTHESIS, GAS)

H73 22131 JET FUEL AS A FEEDSTOCK
Natural gasoline, C₆H₁₄, and JP-4 jet fuel were successfully steam reformed at 437-522° with H yields of up to 65%. The products were suitable for use with low-temperature acid fuel cells, giving overall efficiencies estimated at 30-40% with low current drains.
(STEAM, REFORMING, FUEL CELL)
H73 22132 HYDROCARBON STEAM REFORMING, IN TUBES, FOR PRODUCTION OF SYNTHESIS GAS OR HYDROGEN
Steam reforming in tubes is reviewed as an alternative to cracking with O. The production of synthesis gas from natural gas and from light oil, and of H from light oil, are briefly described.
(STEAM, REFORMING, GAS)

H73 22133 INTEGRATE HYDROGEN PRODUCTION WITH REFINERY OPERATIONS
Important planning and design variables are discussed and evaluated for the integration of hydrogen supply with petroleum refining operations. Results of an optimization study are given for a typical hydrogen plant/hydrocracker installation.
(DESIGN, OPERATION, REFORMER, REACTOR, COST)

H73 22134 HYDROGEN FROM LIQUID HYDROCARBONS FOR FUEL CELLS
Description of high-temperature steam reforming, partial oxidation, and low-temperature steam reforming processes for hydrogen generation from liquid hydrocarbons. For each process, examples of possible hydrogen-generation fuel-cell systems are selected and theoretical overall efficiency calculations are made. For convenience, the calculations are based on n-hexane. Results indicate that overall efficiencies higher than 40% are unlikely. A system is described that can provide an efficiency between 25 and 35%.
(HYDROCARBON, STEAM, REFORMING)
PREPARATION OF HYDROGEN BY CATALYTIC REFORMING OF HYDROCARBONS

Anon, United Aircraft Corp., 92418b, Netherlands Appl. 6,610,510 (Cl. C 01b), Fe 6 '67m U.S. Appl. Aug 3 '65, 13 p, cf., CA 67:55690 p

Before the gas stream is led into the H purifier, the unreacted hydrocarbons and the H2O vapor are separated in a condenser, thus improving the efficiency of the process and the capacity of the purifier, the H having a higher partial pressure in the impure gas. (CATALYST, HYDROCARBON)

EXPLORATORY DEVELOPMENT MODEL MINIATURE HYDROGEN GENERATOR

Rothfleisch, J.E., Report No. 2 (Final), Nov 1 '66-Oct 31 '67, (Union Carbide Corp., Parma, O.), ECOM-0114-F Contract DAAB07-67-C-0014, AD-665, HC $3.00/MF $0.65

Two exploratory development model miniature hydrogen generators were designed, fabricated, tested, and delivered to the United States Army Electronics Command. The two units are fully operative generator systems designed to produce sufficient hydrogen by thermal cracking JP-4 jet fuel to supply 200-watt hydrogen/air fuel cell systems for intermittent twelve-hour operating periods. Qualification tests of the completed systems demonstrated the technical feasibility of man-portable generators based on the thermal cracking principle, and indicated that fully qualified, reliable field units can be developed without any major technological advances. (SYSTEM, FUEL CELLS, GAS, FUEL)

PREPARATION OF HYDROGEN OR HYDROGEN-CONTAINING GAS MIXTURES

Anon, (Shell Internationale Research Maatschappij N.v.), 51755m, Netherlands Appl. 6,603,481 (Cl. 10g), Sept 18 '67, Appl. Mar 17 '66, 17 p

Hydrocarbons were converted with vapor in the presence of a Re catalyst on a carrier containing ≥1 metals from the right column of Group I and (or) metals from Group VIII and ≤2% of ≥1 alkali metals. Thus, the influence of the alkali metal content on the stability of the catalyst was shown. (HYDROCARBON, CATALYST)
H73 22138 CRACKING OF HYDROCARBONS TO ACETYLENE, ETHYLENE, METHANE, AND HYDROGEN WITH HYDROGEN HEATED IN AN ELECTRIC ARC
Sennewald, K., K. Gehrmann, L. Strie, L. Bender, E. Schallus, and H.W. Stephan, (Knapsack A.-G.), 4766p, German 1,468,159 (Cl. C 07c, C 01b), Je 11 '70, Appl. Aug 5 '64, 9 p.

H (1350 m hourly) is heated in a H2O cooled arc chamber with 3 graphite electrodes of 5280 kW consumption. The H is divided into several streams of which part is conducted along the electrodes and the rest into the arc chamber.

(ELECTRIC, CRACKING)

H73 22139 MANUFACTURE OF HYDROGEN IN IMPURE STATE
Anon, Shell Internationale Research Maatschappij N.V., 55686s, Netherlandish Appl. 6,511,884 (Cl. C 01b), Mar 14 '67, Appl. Sept 13 '65, 15 p.

A hydrocarbon source is combusted under pressure with O and (or) air to form a H + CO mixture, in which, by further catalyzed reaction with steam, the H is augmented producing a CO2 admixture. The process is made economically sound by recovery of useful heat of combustion as high pressure steam, and adiabatic cooling using the pressure reduction to operate a turbine, which in turn is used to operate the final gas compression.

(HYDROCARBON, STEAM, PRESSURE)

H73 22140 MANUFACTURE OF HYDROGEN FROM PETROLEUM AND NATURAL GAS
Svaton, J., 80094a, Ropa Uhlie, V 9:303-7 N11 67, (Slo)

A review summarizing essential information on the development of H manufacture by reforming hydrocarbons with steam (e.g., the endothermic reaction CH4 + H2O → CO + 3 H2, with simultaneous and (or) subsequent exothermic conversion CO + H2O→CO2 + H2) and by partial oxidation of hydrocarbons, e.g., CH4 + ½ O2→CO + 2 H2, either catalytic or uncatalyzed, which is thermally more balanced. The methods for removal of carbon oxides and final purification of the H gas obtained are briefly indicated.

(REFORMING, STEAM, HYDROCARBON)
H73 22141 HYDROGEN FROM THE PARTIAL OXIDATION OF HYDROCARBONS
West, B.R., F.L. Gray, (Texas Instruments, Inc.), 92652k, French 1,517,644 (Cl. C 01b, H 01m), Mar 15 '68, U.S.
Appl. Apr 6 '66, 6 p
H-rich gas for a fuel cell is generated in an apparatus where an ejector uses the flow of the fuel and of the reactants to pump primary air and to recycle used fuel from the fuel cell into the apparatus. (PARTIAL OXIDATION, FUEL CELL)

H73 22142 PROCESS FOR PRODUCTION OF HYDROGEN
Fifty to 85% of the hydrocarbons were converted to H, CO, CO₂ by steam reforming at a steam to carbon ratio of 4.0, a pressure of 500 psia., and a temperature sufficient to give such conversion, followed by a catalytic shift conversion with steam of the product from the catalytic reforming to convert most of the CO to CO₂ and additional H. The product from the shift conversion was cooled to condense the steam and remove the CO₂. (STEAM, REFORMING, HYDROCARBON)

H73 22143 HYDROGEN FROM LIGHT DISTILLATES FOR FUEL CELLS
Khan, A.R., J. Meek, and B.S. Baker, Chemical Engineering Progress Symposium, Serial No. 75, 63, 31 p (67), Avail:TAC
This paper deals with the production of hydrogen by steam reforming from such commercially available fuels as gasoline and JP-4. Operating conditions, reactor design, gas conversions, and fuel cell performance are discussed.
(PRODUCTION, GENERATION, SUPPLY, REFORMING, VOLTAGE, TEMPERATURE, EFFICIENCY, YIELD)

H73 22144 THE I.C.I. STEAM NAPHTHA REFORMING PROCESS AND OTHER TECHNIQUES
Gard, N.R., 51606p, Kem. Teollisuus, V 24:786-92 N10 67, (English)
The I.C.I. steam naphtha reforming process produces H for NH₃ synthesis by causing naphtha to react with steam over a Ni catalyst at high temperature. In addition to permitting the use of high-molecular-weight hydrocarbon feedstocks, the process was designed to operate
with small quantities of steam and at high pressures. In spite of these adverse factors, C laydown on the catalyst is completely inhibited. Adequate feedstock desulfurization is of great importance for continuing maximum activity of the S-sensitive Ni reforming catalyst.

(STEAM, REFORMING, CATALYST)

H73 22145 MINIATURE HYDROGEN GENERATORS

Supplying H\textsubscript{2} for fuel cells in the power range of 10-200 watts from field-available hydrocarbon fuel calls for a miniature generator. A small thermal cracking unit in which gasoline or jet propulsion fuel is decomposed at 900-1100\degree C to give a gas product containing 80-90\% H\textsubscript{2} is described. The product composition was not affected by fuel used.

(HYDROGEN, GENERATOR, FUEL CELL)

H73 22146 HYDROGEN FOR HYDROCRACKING
Stormont, D.H., Oil and Gas Journal, V 65:92-4 N10 67, (English), 97163d, Avail: TAC

The 1st complete plant is under construction for producing high-purity H for hydrocracking operations by partial oxidation of vacuum-tower bottoms. The refinery will use the Texaco partial oxidation process and the Rectisol process (MeOH wash) to give a H purity of 98\%. Improvements in the partial oxidation process, which has been in use for 14 years, permit H or synthesis gas to be produced without a compression stage at \geq 1500 psi.

(HYDROCRACK, PARTIAL OXIDATION)

H73 22147 CATALYTIC STEAM REFORMING OF LIQUID HYDROCARBONS

Fuel savings are achieved in catalytic reformation plant by compressing the synthesis gas in a compressor driven by steam turbine. The steam from the turbine is reheated by indirect heat-exchange with the waste
gases in the convection zone of the reformer and is used to drive other steam turbines that provide the power for the reformation plant.

(STEAM, REFORMING, CATALYST)

H73 22148 HYDROGEN AND CARBON MONOXIDE CONTAINING GASES FROM FUEL GASIFICATION COLUMNS

H.OWORKA, S., A. KOENER, AND L. TRETNER, 87203c, German Offen. (East) 51,383 (Cl. C 10j), Sept 5 '66, Appl. 11 26 '65, 4 p

H₂ and CO are obtained from fuel gasifying columns by reaction, in a turbulent stream with O₂ and steam. The gas stream is injected tangentially to the reaction medium.

(GASIFICATION, FUEL, STEAM)

H73 22149 HYDROGEN GENERATOR ASSEMBLIES

ENGDAHL, R. AND E.S. TILLMAN, JR., (Energy Research Corp., Bethel, Conn.), Final Report, Mar 70-Mar 71, Sept 71, 65 p, ECOM-0153-F, Contract DAAB07-70-C-0153, AD-733 931, PC $3.00/MP $0.95

The objective of the work was to evaluate design criteria for a simplified hydrogen generator for a 500 watt fuel cell. The hydrogen is produced by the catalytic steam reforming of vaporized JP-4 fuel with subsequent purification through a palladium-silver separator. The experimental studies were performed on a breadboard type system. This system contained all of the major subcomponents required in an actual portable unit for field use.

(SYSTEM, FUEL CELLS, GAS, HYDROCARBONS, DESIGN, PURIFICATION, CATALYST)

H73 22150 HYDROGEN MANUFACTURE

SMITH, C.S. AND W.J. MCLEOD, (El Cerrito, Calif., assignors to Chevron Research Co., San Francisco, Calif.), 3,577,221, Dec 31 '68, Serial No. 788,300, Int. (Cl. Co1b), 1/02, 1/18, U.S. (Cl. 23-213), 7 Claims

According to the present invention a process is provided for producing high pressure hydrogen which comprises:

(a) generating a hydrogen-rich gas stream containing CO and CO₂;
(b) removing CO₂ from the hydrogen-rich gas stream to obtain a CO₂ lean, hydrogen-rich gas stream;
(c) centrifugally compressing the CO₂-lean, hydrogen-rich gas stream to a pressure of above about 400 p.s.i.g.; and
(d) reacting CO contained in the CO₂-lean, hydrogen-rich gas stream with H₂O at a pressure of above about 400 p.s.i.g.

Preferably CO₂ is removed from the hydrogen obtained after step (d) and the purified compressed hydrogen is used in a hydroconversion process.

(PRESSURE, PURITY, HYDROCONVERSION, CHEMICAL, PROCESS)

H73 22151 HYDROGEN STEAM REFORMING: C & I/GIRDLER INC.
The steam-hydrocarbon reforming process includes the basic steps of desulfurization, reforming, conversion, CO₂ removal and methanation.
(PROCESS, PRODUCTION, REFORMING, CONVERSION, DESULFURIZATION, METHANATION)

H73 22152 SYNTHESIS GAS, CITY GAS, AND REDUCING GAS
Topsoe, H.F.A., 114946j, France 1,551,065 (Cl. C 01b), Dec 27 '68, Danish Application Sept 27 '66, 7 p
The title gases can be prepared from hydrocarbons with molecular weights greater than that of CH₄, or gaseous hydrocarbon mixtures containing H₂O vapor (and (or) other O-containing gas) at 550-1000° and 1-250 kg./cm.² in the presence of a metallic catalyst and an activator.
(HYDROCARBON, GAS, METHANE, WATER, CATALYST, ACTIVATOR)

H73 22153 EXAMPLES OF PRACTICAL APPLICATIONS OF THE PURIFICATION AND SEPARATION OF GASES
Reichel, H., (Linde A.-G., Hoellriegelskreuth, Germany), 113808r, Tech. Mitt., V 63:267-72 N6, 1970 (German)
A review is presented of the various manufacturing steps involved in the production of olefins from petroleum hydrocarbons, NH₃ from synthesis gas, and CO and H₂ from petroleum hydrocarbons. Various separation and purification techniques are discussed.
(PRODUCTION, HYDROCARBON, OLEFIN, PETROCHEMICAL, HYDROGEN, PURIFICATION)
H73 22154 PRESSURE CONTROL IN THE MANUFACTURE OF A GAS MIXTURE CONTAINING HYDROGEN AND CARBON MONOXIDE
Vogel, J.E., (Shell Internationale Research Maatschappij N.V.), 131204r, German Offen. 2,107,904 (Cl. C 01b), Sept 2 '71, Netherlandish Appl. Fe 20 '70, 12 p

The manufacture of the title mixture in a reactor by combustion of hydrocarbons with O or O-enriched air at 5-80 atmosphere and the subsequent water cooling from 1300-500° to 260-340° in a flue gas boiler is controlled by measuring the differential pressure between the steam (50-150 atmosphere) in the cooling system and the gas mixture before and after cooling response.

(CONTROL, PRESSURE, COMBUSTION)

H73 22155 CATALYTIC REFORMING
Anon, (Toyo Engineering Corp.), French 1,571,927 (Cl. C 10g), Je 20 '69, Japanese Appl. J1 10 '67, 12 p

A two stage catalytic hydrocarbon reforming process to obtain a gas essentially composed of hydrogen is described. In the first stage, a mixture of hydrocarbons and steam is reformed catalytically using external heat. In the second stage, the first stage product is reformed catalytically by combustion with the O of preheated compressed air introduced into the reactor.

(CATALYST, HYDROCARBON, REFORMING)

H73 22156 APPARATUS FOR PRODUCING HYDROGEN-CARBON MONOXIDE GAS MIXTURES
Ter Haar, L.W., (Shell Internationale Research Maatschappij N.V.), 99422x, German Offen. 2,102,368 (Cl. C 01b), Aug 5 '71, Netherlandish Appl. Ja 21 '70, 14 p

An apparatus is described for the manufacture of H-CO mixtures by partial combustion of hydrocarbons with O or air-containing O.

(PARTIAL, COMBUSTION, HYDROCARBON)

H73 22157 CATALYTIC STEAM REFORMING OF NAPHTHA
Mayland, B.J., C.R. Trimarke, R.L. Harvin, and C.S. Brandon, (Girdler Corp.), 23224b, U.S. 3,477,832 (Cl. 48-213; C 10k), Nov 11 '69, Appl. Je 5 '64, 7 p

H and crude synthesis gas are prepared by steam reforming naphtha. Unsaturated hydrocarbons (I) and S-containing compounds are vaporized and mixed with H in the presence of a Co-Mo supported hydridesulfurization catalyst.

(STEAM, REFORMING, CATALYST)
The performance of fuel cell anodes in fused salt electrolytes decreases along the flowline when the units receive the H fuel in a series arrangement. This is due to a reduction in H concentration caused by reaction and dilution with reaction products. The difficulty can be overcome by using as fuel a mixture of steam and hydrocarbon which is converted to a mixture of H and unreacted hydrocarbon in an internal reformer.

(PURIFICATION, CATALYST)

A naphtha (b. 36-141°) was cracked over an SiO₂-Al₂O₃-NiO catalyst at 850°, 146 cm³/cm³-hr, and 1 kg/cm² gage in the presence of steam.

(HYDROCARBON, FUEL CELL)
H73 22162 STEAM REFORMING OF HEXANE WITH CRYSTALLINE ALUMINOSILICATE CATALYSTS
Leaman, W.K., C.J. Plank, and E.J. Rosinski, (Mobil Oil Corp.), 7920e, U.S. 3,523,772 (Cl. 48-214; C 01b, B 01j), Aug 11 '70, Appl. Dec 20 '66, 4 p
Hexane is steam-reformed to town gas or hydrogen at low steam-hydrocarbon ratios over crystal aluminosilicates (particles <0.5-1 μ) impregnated with Ni or rare earths.
(STEAM, REFORMING, CATALYST)

H73 22163 SIMULTANEOUS PRODUCTION OF OXO SYNTHESIS GAS AND HYDROGEN
Staege, H., (H. Koppers, G.m.b.H.), 89479m, German Offen. 1,917,568 (Cl. C 07c, C 01b), Nov 5 '70, Appl. Apr 5 '69, 27 p
A portion of a hydrocarbon is steam-reformed and passed through a CO converter, a CO2 scrubber, and a demethanizer to give a stream containing >95% H.
(GAS, SYNTHESIS)

H73 22164 HYDROGEN-RICH GASES
Anon, (Esso Research and Engineering Co.), 36334n, French 1,565,873 (Cl. C 01b), May 2 '69, Appl. May 15 '68, 8 p
A gas with elevated H/CH4 ratio was prepared by treating naphtha with steam in the presence of a Ni-Al2O3 catalyst and Ba(NO3)2 as promoter.
(CATALYST, STEAM)

H73 22165 PRODUCING HYDROGEN OR AMMONIA SYNTHESIS GAS AT MEDIUM PRESSURE
Kapp, E., P. Becker, (Metallgesellschaft A.-G.), 78676t, German Offen. 1,958,033 (Cl. C 01b, B 01j), Je 3 '71, Appl. Nov 19 '69, 20 p
H or a N-H mixture is prepared by treating a liquid or solid S-containing fuel with O and H2O, removing S compounds by washing with a solution of an organic base or of an alkali-metal salt of a weak acid, converting CO to CO2 by reaction with H2O in the presence of a Fe2O3-Cr2O3 catalyst at 350-450°.
(AMMONIA, SYNTHESIS, GAS)

H73 22166 FUEL-CELL HYDROGEN FROM HYDROCARBONS
Baker, B.S., J. Meek, A.R. Khan, and H.R. Linden, (Institute of Gas Technology), 74073j, U.S. 3,488,171 (Cl. 48-197; C 10k), Ja 6 '70, Appl. Ja 4 '65, 6 p
Hydrocarbons (maximum boiling point 500°F) (I) are...

90
steam-reformed on a catalyst containing Ni 25-80, Al₂O₃ 10-60 wt. % and Al the remainder at 1-5 atmosphere and 700-1100°F and then methanated at 300-400°F and one atmosphere on a Ru or Rh on Al₂O₃ catalyst.

(FUEL CELL, HYDROCARBON)

H73 22167 PRODUCTION OF HYDROGEN
Anon, (Esso Research and Engineering Co.), by W.F. Taylor, 57418j, France 1,452,728 (Cl. C olb), Sept 16 '66, U.S. Appl. J1 29 '64, 8 p

H was obtained from a gaseous or liquid mixture of a hydrocarbon and water in the presence of a catalyst containing 10-75% Ni and 0.5-12% of a promoter such as La, Ba, Sr, Ce, Cs, K, Y, Fe, or Cu.

(CATALYST, WATER, HYDROCARBON)

H73 22168 VAPOR CONVERSION OF A GASOLINE RAFFINATE UNDER PRESSURE

During steam conversion of a dearomatized platformate gasoline, b. 43-136°, introduced as a 1:5 gasoline-steam mixture at a volumetric rate of 1 hr⁻¹ onto a 1:1 Ni-Cr catalyst at 320°, an increase in pressure from 1 to 31 atmosphere reduced H content in the product from 62.0 to 31.5% and raised CH₄ content from 15.2 to 43.1% without substantially changing CO₂ content.

(STEAM, GASOLINE)

H73 22169 APPARATUS FOR REFORMING CARBONACEOUS MATERIAL INTO HYDROGEN
Anon, (United Aircraft Corp.), 55690p, Netherlandish Appl. 6,610,509 (Cl. C olb), Fe 6 '67, U.S. Appl. Aug 3 '65, 27 p

The material, such as saturated hydrocarbons with 6-10 C atoms (or mixture thereof), are mixed with H₂O, preheated to 205-510°, brought into contact with a hydrogenating catalyst (Ni, Co, or Pt), where it is converted into a CH₄-rich gas stream at 370-650°. This gas stream is heated to 700-990°, at which temperature the CH₄ is converted into H, CO, CO₂ by a second dehydrogenating catalyst.

(REFORMING, HYDROCARBON)
HIGH-PRESSURE REFORMING OF HYDROCARBONS
Gignier, J., P. Lhonore, J. Quibel, and M. Senes, (Societe Chimique de la Grande Paroisse, Azote et Produits Chimiques), 4189r, France 1,492,926 (Cl. C 10j), Aug 25 '67, Appl. May 11 '66, 8 p
Reforming and, if needed for NH3 synthesis gas, secondary reforming is carried out at pressures of ~100 bars to give an energy advantage over similar processes carried out at 1 bar.
(PRESSURE, REFORMING, HYDROCARBON)

HYDROGEN-RICH GAS MIXTURE
Quartulli, O.J., (Pullman Inc.), 41065j, German 1,293,133 (Cl. C 01b), Apr 24 '69, U.S. Appl. Sept 14 '61, 9 p
The title product is prepared by contacting hydrocarbons with steam in a 1st reforming zone at 14-49 atmosphere with an outlet temperature 705-870° and a residence time of 0.5 to 10 seconds. Sufficient steam is supplied to this zone to give a concentration of residual CH4 in the effluent of 5-16 mole % (dry) and to provide a steam-C ratio of 2.5-7.5.
(REFORMING, STEAM)

MACROKINETICS OF THE PYROLYSIS OF SHALE OIL IN A FLUIDIZED BED
The pyrolysis of 2 naphtha fractions from shale oil, b. up to 150 and 200°, response, was studied in a fluidized bed filled with quartz sand in 3 series of exports with varying temperatures, steam/oil ratios, and contact times. An increase in temperature decreases the yield of olefins and increases the proportion of H and CO. The yield of H and CO sharply increases above 750°.
(PYROLYSIS, KINETICS, FLUIDIZED)

NEW CONCEPTS AND TECHNIQUES FOR PREPARING PURE HYDROGEN STARTING FROM HYDROCARBONS
Production of H or of H-containing gases by steam oxygenolysis of naphtha is possible at low molar steam to C ratios over a wide range of temperatures, pressures,
and process conditions. Catalysts are Ni or Co on supports or precious metals alone or in combination with Ni or Co. Use of the latter catalysts appears indicated for feeds containing substantial concentrations of unsaturates or aromatics.

(STEAM, NAPHTHA, CATALYST)

H73 22174 HYDROGEN-RICH SYNTHESIS GASES
Strelzoff, S., H.C. Morgenstern, and J.M. Connor, (Chemical Construction Corp.), German 1,808,911 (Cl. C 01b)
J1 17 '69, U.S. Nov 14 '67, 21 p

An application is described in which the hydrocarbon, especially CH₄, naptha, fuel oil, or residual oil, flows in the presence of steam through succeeding beds consisting of particulate SiO₂, MgO, Al₂O₃, or kaolin as carriers for catalysts such as reduced Ni or Co salts, NiO, metallic Ni or Co, ZrO₂, Cr₂O₃, or MoO₃.

(HYDROCARBON, STEAM CATALYST)

H73 22175 GENERATION OF HYDROGEN FROM HYDROCARBONS AND USE IN MOLTEN CARBONATE FUEL CELLS
Baker, B.S., and A.R. Kahn, (Institute of Gas Technology), U.S. 3,488,226 (Cl. 136-86; H 01m), Ja 6 '70, Appl. Nov 8 '65, 6 p

A process for the continuous production of H-rich gases for direct use in high temperature molten carbonate fuel cells is described.

(HYDROCARBON, FUEL CELL, CARBONATE)

H73 22176 WATER GAS SHIFT CONVERTER AND FUEL CELL SYSTEM
Hooper, T.N., (Texas Instruments, Inc.), U.S. 3,499,797 (Cl. 136-86; H 01m, CO1b), Mar 10 '70, Appl. Apr 28 '66

Equipment is described comprising a partial oxidizer and a shift converter to convert a hydrocarbon fuel to H gas for use in operating an attached fuel cell. An inexpensive converter made with catalytic Cr-steel tubes is described which operates with a lower pressure drop, which can be used to preheat air fed to the partial oxidizer, and which required less steam for the shift reaction.

(HYDROCARBON, FUEL CELL, STORAGE)

H73 22177 HYDROGEN MANUFACTURE USING GAS TURBINE-DRIVEN CENTRIFUGAL COMPRESSORS
Smith, C.S., and W.J. McLeod, (Chevron Research Co.), U.S. 3,576,603 (Cl. 23-212; C 01b), Apr 27 '71, Appl. May 17 '68 - Apr 1 '69

Because of the low molecular weight of pure H,
centrifugal compressors are impractical for raising the pressure to desirable operating ranges. In the method described, a hydrocarbon is treated with steam in a reformer followed by shift conversion to produce H and CO₂. At least a portion (preferably all) of the H-CO₂ mixture is compressed to ≥900 psig in a centrifugal compressor prior to separating the CO₂ from the H. (HYDROCARBON, STEAM, PRESSURE)

H73 22178 HYDROGEN GENERATION BY STEAM REFORMATION OF N-HEXANE OVER ZEOLITE CATALYSTS
Brooks, C.S., (United Aircraft Research Laboratory, East Hartford, Conn.), Advanced Chemistry Series, V 102:426-33, 71, (Molecular Sieve Zeolites-II), (English)
High-activity Ni and Co catalysts for H generation by the steam-hydrocarbon reforming reaction were prepared by ion exchange from synthetic zeolites. (HYDROGEN, REFORMING, CATALYST)

H73 22179 CONTACT CATALYST FOR HYDROGEN-RICH GAS FROM HYDROCARBONS
McMahon, J.F., (Pullman Inc.), U.S. 3,417,029 (Cl. 252-455), Dec 17 '68, Appl. Mar 1 '60 - Apr 5 '63, 14 p,
Division of U.S. 3,119,667 (CA 60: 11647b)
The disclosure is the same but the claims are different.
(CATALYST, HYDROCARBON)

H73 22180 HYDROGEN PRODUCTION BY STEAM REFORMING
Johnson, J.E., T.L. Singman, and N.P. Vahldieck (to Union Carbide Corp.), 51893s, U.S. 3,361,534 (Cl. 23-210), Ja 2 '68, Appl. Mar 31 '65, 10 p
A process for producing and purifying H by using steam reforming of hydrocarbon feed streams is described. Process improvement is effected by: (a) providing 1.5-4 moles of steam/atom of C in feedstock, and reforming only 60-70 mole % of feed hydrocarbons, (b) cooling crude H to below the dewpoint of CH₄, (c) isenthalpically expanding CH₄ condensate to a lower pressure, (d) using heat exchange between CH₄ condensate and crude H for refrigeration, and (e) recycling vaporized CH₄ to the catalytic reaction step.
(STEAM, PURIFICATION, REFORMING)
H73 22181 METHOD OF PRODUCING HYDROGEN FROM A CARBON MONOXIDE-CONTAINING GAS STREAM AND HEAT RECOVERY
James, G.R., (to Chemical Construction Corp.), 47707p, U.S. 3,292,998 (Cl. 23-213), Dec 20 '66, Appl. Mar 22 '63, 5 p

 For example, the residual gas stream from C2H2 synthesis which is rich in CO is recovered as a cool dry gas at 90°F. and 100 psig. This gas stream is heated to 280°F., saturated with H2O vapor, and passed through a gas-to-gas preheater prior to catalytic H synthesis.
(CATALYST, HEAT)

H73 22182 PROTECTION OF A METHANATION CATALYST IN HYDROCARBON REFORMING

 A desulfurized hydrocarbon vapor is reformed with steam at >1200°F. and with a catalyst to produce H and CO, then passed through a shift converter to change the CO to CO2.
(METHANATION, HYDROCARBON, CATALYST)

H73 22183 SYNTHESIS-GAS MIXTURES FOR AMMONIA AND METHANOL
Pagani, G., (Montecatini Edison S.p.A.), 88859z, France 1,489,535 (Cl. C 01b), Jl 21 '67, Italian Appl. Aug 18 '65, 6 p

 A high-pressure method for the steam reforming of liquid and gaseous hydrocarbons into H and CO is described.
(STEAM, REFORMING, CATALYST)

H73 22184 CATALYTIC CRACKING OF HYDROCARBONS
Anon, Badische Anilin - und Soda-Fabrik A.-G., 126962z, France 1,544,524 (Cl. C 01b), Oct 31 '68, Ger. Applic. Nov 16 '66, 3 p, Correction of CA 71:83384v

 Hydrocarbons containing 2-30 C atoms are cracked, in 1 step, at >550°F. in the presence of a catalyst, containing little or no alkali metals, and comprising 35-55% Ni on a MgO support and 10-30% binder such as MgAl2O4.
(CATALYST, HYDROCARBON)
In producing H from hydrocarbons by steam reforming, hydodesulfurization of the feedstock is integrated in the process. A portion of the product H is recycled and mixed with the feedstock. The mixture is then passed through a boiler that produces a mixture of superheated vaporized hydrocarbons and H.

(STEAM, REFORMING, HYDROCARBON)

A review is given of licensed processes for production of H and \(\text{NH}_3 \), \(\text{C}_2\text{H}_2 \), and \(\text{C}_2\text{H}_4 \), recovery and purification of monoolefins, manufacture of butadiene from \(\text{C}_4 \) fractions, and manufacture of intermediates.

(REVIEW, PROCESS)

H sources in a petroleum refinery are reviewed. Catalytic reforming, cracking, and dehydrogenation, steam cracking, and hydrocracking are discussed.

(REFINING, STEAM, HYDROCRACK)
H73 22189 COMPACT REACTOR-BOILER COMBINATION FOR CONVERTING A MIXTURE OF A REFORMABLE FUEL AND STEAM TO A HYDROGEN-CONTAINING REFORMATE FEED STOCK SUITABLE FOR CONSUMPTION BY A FUEL CELL UNIT
Dantowitz, P., (General Electric Co.), 24087n, U.S. 3,541,729 (Cl. 48-94: C 01b, B 01j), Nov 24 '70, Appl. May 9 '68, 7 p

A fuel and steam were contacted in a reforming catalyst bed to produce a H-containing reformate, which could be used as a fuel for a fuel cell.
(REFORMING, FUEL CELL)

H73 22190 CATALYTIC COMPOSITIONS USED FOR THE STEAM REFORMING OF HYDROCARBONS TO GASES RICH IN HYDROGEN
van Hook, J.P. and T.H. Milliken, (Pullman, Inc.), 66338f, France 1,466,635 (Cl. B 01j, C 01b), Ja 20 '67, U.S. Appl. Dec 29 '64, 14 p

The catalyst comprises Co or CoO, or a mixture of the two, deposited on a support such as zirconia.
(CATALYST, STEAM, REFORMING)

H73 22191 USE OF HYDROGEN IN TOWN GAS PRODUCTION
Yaita, G., (Mitsubushi Co., Tokyo), 70848k, Kagaku Kojo V 11:53-7 N12 67 (Japan)

The reasons that town gas contains H, and the processes for producing H-rich town gas are reviewed. A H generator using naphtha as the raw material produces the cheapest H. Various H generators and processes are described.
(USE, GAS, PRODUCTION)

H73 22192 REDUCING GAS
Anon, Texaco Development Corp., 81227r, Britain 1,178,515 (Cl. C 10g), Ja 21 '70, U.S. Appl. Sept 19 '67, 8 p

A fuel oil and 95% O react in the absence of supplemental steam. Atomic O (oxidant)-C (fuel) ratio is 1:1.2:1. The main effluent gas is CO-H. Suitable feeds include light distillates, naphthas, heavy residuals, crudes, and heavy fuel oils. The smelting of iron ore in a blast furnace using this process is described.
(GAS, FEED, PROCESS)
A synthesis gas containing CO and H was produced under high pressures by the catalytic primary steam reforming of a fluid hydrocarbon.

(PRESSURE, CATALYST, REFORMING)

The title process was carried out in sintered bricks containing ~65% open pores by volume. CO thus formed reacted with H2O vapor at 150-500°C in the presence of Cu-Zn catalysts.

(CATALYST, COMBUSTION, HYDROCARBON)

H production equipment in petroleum refineries, design problems (gasification and desulfurizing of naphtha, steam reforming, CO conversion, and CO2 separation), and structures and features of the H- and G-type H production equipment are given.

(DESIGN, PRODUCTION, PETROLEUM)

Steam conversion of liquefied gas and its mixtures with H were studied in an open system. Dependence of total conversion intensity of initial hydrocarbons and composition of converted gas on conditional contact time was established. Presence of H did not decrease the reaction rate, but increased the CH4 and CO content in converted gas.

(STEAM, CONVERSION, GAS)
APPARATUS FOR CRACKING HYDROCARBONS TO PRODUCE HYDROGEN

Winters, C.E., (Union Carbide Corp.), 72665j, France 1,524,503 (Cl. C 01b, H 01m), May 10 '68, U.S. Appl. May 24 '66, 5 p

A compact, efficient apparatus is described which comprises a cracking chamber (25 mm. diameter, 12.5 mm. long) and a burner. The same hydrocarbon is fed to the cracking chamber and to the burner as fuel. The apparatus is useful for preparing H for reaction in a fuel cell to generate electric current.

HYDROGEN FROM HYDROCARBON REFORMING

Khan, A.R., (Institute of Gas Technology), 49215h, U.S. 3,416,904 (Cl. 48-214), Dec 17 '68, Appl. Nov 22 '65, 4 p

A H-rich stream is produced by reforming feedstocks below 500°F., and containing relatively high proportions of olefins and aromatics, at 1-5 atmosphere and 700-1100°F. in the presence of an Al-Al₂O₃-Ni catalyst.

BURNER FOR THE PARTIAL OXIDATION OF HYDROCARBONS FOR SYNTHESIS GAS

Auer, W., K. Buschmann, and H. Heinz, (Badische Anilin- und Soda-Fabrik A.-G.), 89678e, German Offen. 1,905,604 (Cl. C 01b), Aug 20 '70, Appl. Fe 5 '69, 7 p

Synthesis gas (CO + H) was prepared in a burner consisting of 2 concentric tubes leading into a burning chamber by passing a mixture containing hydrocarbon with steam and (or) CO₂ through the outer tube and O containing 1.0-3.0% steam through the inner tube.

SYNTHESIS GAS AND HYDROGEN FROM LIQUID HYDROCARBONS

Schlinger, W.G., W.L. Slater, and R.M. Dille, (Texaco Inc.), 44113w, U.S. 3,545,926 (Cl. 23-213; C 01b), Dec 8 '70, Appl. Nov 26 '65 - May 29 '68, 5 p

Synthesis gas was produced by partial oxidation of a fuel oil (9.70° API) with O and steam at 2400 psig and 2377°F for a residence time of 3.32 sec followed by the water gas-shift reaction.
CATALYTIC CONVERSION OF HYDROCARBONS TO HYDROGEN AT LOW TEMPERATURE AND HIGH PRESSURE

Taylor, W.F., F.S. Pramuk, and B.N. Heimlich, (Esso Research and Engineering Co.), 30770f, France 1, 443,096 (Cl. C 01b), Je 24 '66, U.S. Appl. Ja 20 '64, 5 p

A feedstock containing mainly paraffinic C_5-C_{10} compounds is premixed with a 1.5-3:1 excess by weight of steam, pressurized to 5-100 atmosphere, and passed at high space velocity through a catalyst (I) at 288-482°F (preferably 427°F). The product, predominantly H, also contains CH_4, CO_2, and CO.

HIGH PRESSURE HYDROGEN PRODUCTION

Baillie, R.A., (Sun Oil Co.), 27315a, U.S. 3,514,260 (Cl. 23-213; C 01b), May 26 '70, Appl. Oct 20 '67, 3 p

H is produced by high-pressure steam-hydrocarbon reforming over a catalyst to give CO and H, followed by a shift reaction on the CO over an appropriate catalyst at high pressure.

STEAM PHASE CRACKING OF HYDROCARBONS WITH STEAM TO OBTAIN HYDROGEN-CONTAINING GASES

Kanzler, K.H. and P. Guenther, (Girdler-Suedchemie Katalysator G.m.b.H.), 48061k, German 1,230,963 (Cl. C 10j), Dec 22 '66, Appl. Fe 15 '65; 2 p, Addition to German 1,220,466 (CA 63, 17766d)

Previous work is extended from hydrocarbons in the b. range of gasoline to hydrocarbons with C_1=5 atoms, such as CH_4 to propane, ethylene to pentylene, butadiene, pentadiene, and acetylene.

HYDROGEN-RICH GAS BY PARTIAL OXIDATION OF LIQUID HYDROCARBONS AT HIGH PRESSURES

Schlinger, W.G., W.L. Slater, and R.M. Dille, (Texaco Development Corp.), 27361n, S. African 68,05,802, Dec 10 '69, Appl. Sept 9 '68, 19 p

Liquid hydrocarbons, steam, and O react at 1800-3000°F and 1000-3000 psig, in a gas generation zone, the effluent gas is contacted directly with preheated H_2O and passed into a water gas shift zone containing a catalyst to yield a H-rich stream at 1000-3000 psig.

100
H73 22205 SELECTIVE CONVERSION OF NAPHTHA HYDROCARBONS TO HYDROGEN
Taylor, W.F., and J.H. Sinfelt, (Esso Research and Engineering Co.), 62844c, British 1,156,766 (Cl. C 10g), J1 2 '69, Appl. May 15 '68, 4 p
The title process is conducted over a Ba-promoted, low Ni, Ni-Al₂O₃ catalyst.
(NAPHTHA, CATALYST)

H73 22206 HYDROGEN BY STEAM REFORMING
A review with 3 references on the steam-hydrocarbon reforming process for production of H for use in refineries. Improvements in technology, engineering and construction materials are discussed.
(HYDROCARBON, REFORMING)

H73 22207 PRODUCTION OF HYDROGEN
Spielmata, M., G.P. Baumann, and B. Hering, (Esso Research and Engineering Co.), 69653c, British 1,138,257 (Cl. C 10g), Dec 27 '68, Appl. Je 19 '67, 9 p
H gas is produced by a catalytic steam reforming process of hydrocarbons. The reforming is carried out at 1000-1700 °F. and 400-600 psig. in 2 stages, the first with steam and the 2nd with air and steam, so that the final effluent gas contains 3 moles H/mole N.
(CATALYST, REFORMING)

H73 22208 REFORMING OF LIQUID HYDROCARBONS TO GASEOUS FUEL
Mayland, B.J., and C.S. Brandon, (Girdler Corp.), 14826b, U.S. 3,442,632 (Cl. 48-215; C 10kg), May 6 '69, Appl. Oct 26 '64, 5 p
Naphtha and related liquid hydrocarbons are converted to gaseous fuel (H₂, CO₂, CO, and CH₄) suitable for industrial use by passing them in a reformer furnace first through a catalyst bed of high activity, for a time insufficient to produce complete reformation, and then through a catalyst bed of lesser activity for a longer time, to form chiefly methane, condensed naphthas, and aromatic compositions.
(REFORMING, HYDROCARBON)
H73 22209 RANEY NICKEL CATALYSTS FOR HYDROGEN PREPARATION BY REFORMING HYDROCARBONS
Anon, Siemens-Schuckertwerke A.-G., Netherlandish Appl. 6,601,850 (Cl. C 01b), Sept 14 '66, German Appl. Mar 13 '65, 6 p
Chips of an alloy of Al and 45-55% Ni (particle size 1-5 mm.) are treated during a short time with an aqueous or alc. 2-6N KOH solution to form on each particle a thin activated layer of Ni, the core composed of the Al-Ni alloy acting as a support. The catalyst is suitable for reforming C2-10 hydrocarbons at 600-800° or alc. 300-400° and is useful in mobile equipments used to supply H to fuel cells.
(CATALYST, REFORMING)

H73 22210 HYDROGEN MAY BECOME UTILITY AND BEPIPED TO CONSUMERS THROUGH GRID SAY BIPM SPOKESMAN
Anon, Chemical Age, Sept 25 '70
The main driving forces that have enabled hydrogen to become a bulk commodity should maintain their impetus and may eventually lead to hydrogen becoming a utility centrally produced in industrial areas and distributed through a pipeline as now happens with electricity, water, steam, and oxygen.
(HYDROGEN, UTILITY, DISTRIBUTION)

H73 22211 THERMO-CATALYTIC HYDROGEN GENERATION FROM HYDROCARBON FUELS
The catalyzed pyrolysis of liquid hydrocarbon fuels is shown to be a feasible method of generating high-purity hydrogen. The advantages of this method over other hydrogen production systems, such as steam reforming, are notably its simplicity, its tolerance to fuel additives, and the purity of the product. The cracking reaction can be made to be close to 100% efficient in hydrogen yield, with a stream purity of greater than 95% hydrogen. The problems associated with this method of hydrogen generation are the high temperatures needed and undesired side reactions.
(CATALYST, HYDROCARBON)
COMMERCIAL EXPERIENCE WITH HYDROGEN MANUFACTURING CATALYST
Cromeans, J.S., (Catalyst Consulting Services, Inc., Louisville, Ky.), H.W. Fleming, American Chemistry Society, Division of Petroleum Chemistry, Preparation V 16:C38-C44 N2, Meeting Los Angeles, Calif., Mar 28-Apr 2 '71
Review of catalysis used in the production of hydrogen by the steam-hydrocarbon reforming process and by the partial-oxidation process.
(HYDROGEN, PRODUCTION, HYDROCARBON, STEAM REFORMING, PARTIAL OXIDATION)

THERMODYNAMIC STUDY OF THE INCOMPLETE COMBUSTION (GASIFICATION) OF LIQUID FUELS AT HIGH PRESSURE
The thermodynamics of steam reforming is studied for the model crude fraction CnHmOxNySp under conditions preventing the formation of C deposits. The effects of air excess, C-H ratio, steam volume, and pressure are discussed.
(THERMODYNAMICS, COMBUSTION)

HYDROGEN FROM HEAVY TAILINGS (WASSERSTOFF AUS SCHWEREN RUECKSTAENDEN)
Reinmuth, E., (Bataaise Int Petroleum Mij, N.V., Hague, Holland), Erdoel u Kohle-Erdgas-Petrochemie, V 22:378-84 N7 J1 69
Various techniques for manufacture of hydrogen from heavy petroleum refineries tailings are analyzed and their economics compared.
(PETROLEUM, ECONOMICS)

PLANTS FOR HYDROGEN MANUFACTURE INCREASE LITTLE IN COST
Nelson, W.L., (Technical Editor and Petroleum Consultant), The Oil and Gas Journal, Je 5 '72
Enough information has become available to permit computation of the productivity attained in the design and construction of hydrogen-generating plants. Little or no change in investment costs occurred between 1962 (the basis) and 1966-1968, but inflation then resulted in increased costs during 1969-1971.
(DESIGN, COST)
H73 22216 MINIATURE HYDROGEN GENERATORS

Simple thermal cracking system operating at atmospheric pressure for generation of hydrogen directly usable in alkaline fuel cells without further purification; chemistry based on equation in which heat applied to hydrocarbon results in molecular degradation into component H₂ and C; electric tube furnace, feed metering apparatus, and reactor temperature control equipment using thermocouples comprised experimental arrangement; reaction temperature over 1100 °C required for 85% or better H₂ yield; cumulatively higher H₂ percentage with increasing duration of run was observed; portable field furnace cracking unit described.
(HYDROCRACK, FUEL CELL)

H73 22217 HYDROGEN - KEY FACTOR IN REFINING'S FUTURE
Bery, R.N., (Foster Wheeler Corp.), Heat Engineering, 49-57, J1 71

The use of hydrogen in hydrocracking and other refining processes is increasing the demand for hydrogen. A block flow diagram shows the various processes involved in converting hydrocarbons to hydrogen. The steam reforming and partial oxidation processes are described. Purification of the raw hydrogen and design criteria for hydrogen plants are also discussed.
(HYDROCRACKING, HYDROCARBON, PURIFICATION, REFORMING, OXIDATION)

H73 22218 HYDROGEN FROM HEAVY RESIDUES
Berg, G.J. van den, and others, Chemical & Engineering Process, V 52:49-55, Oct 71

The economics of hydrogen production by partial oxidation of heavy residues at 55 and 90 atma (Shell gasification process) have been studied and compared with the catalytic steam reforming of light naphtha (Recatro process). It is found that when the price of naphtha exceeds the price of hydrogen plant and ($10.00/t for a 100t/day plant, it is more economic to use the partial oxidation route. It was also seen that for an oil gasification process including a waste heat boiler, there is no incentive to increase the partial oxidation pressure above 55 atma because both the capital and operating costs increase.
(PARTIAL OXIDATION, RESIDUE, STEAM, REFORMING, PRODUCTION, PROCESS)
PARTIAL OXIDATION. A MINIMUM POLLUTION ROUTE FOR HYDROGEN MANUFACTURE
Schlinger, W.G., (Texaco, Inc., Montebello, Calif.), W.L. Slater, American Chemical Society, Division of Petroleum Chemistry, Los Angeles, Calif, Mar 28-Apr 2 '71, p C45-50

Description of hydrogen manufacturing process which develops the major portion of the energy required for hydrogen generation by internal partial combustion of atmospheric contaminants from the combustion products, thereby minimizing the discharge of pollutants into the atmosphere.
(PARTIAL OXIDATION, POLLUTION, PROCESS)
H73 22600 INNOVATIONS IN HYDROGEN PRODUCTION

Recent innovations in hydrogen plant design enables the refiner to accommodate his economic philosophy, as well as his preference in gas compression schemes.
(COST, DESIGN, REFINING, GAS)

H73 22601 METHANATION CATALYSTS
Vahala, J., (Research for Inorganic Chemistry, Usti nad Labem, Czechoslovakia), International Chemical Engineering, V 12:60-8 N1, Ja 71, Avail:TAC

The preparation of catalysts used in the purification of hydrogen by methanation was studied by saturation of the carriers (silica or alumina), by precipitation of active substances on their surfaces, and by the coprecipitation of nickel salts and silicon and aluminum compounds.
(HYDROGEN, PURIFICATION, CHEMICAL, PROCESS)

H73 22602 LOW TEMPERATURE FORMATION OF HYDROGEN FROM CO + H₂O
Allen, D.W., SAE-Paper 935D for Meeting Oct 19-23 '64, 3 p

Advantages of low-temperature CO conversion catalysts over conventional iron-chrome, high-temperature CO conversion catalysts when used to produce hydrogen for fuel cell use; production of hydrogen from methane and from propane is considered and reforming conditions indicated.
(CONVERSION, CATALYST, PRODUCTION, FUEL CELL, GAS, REFORMER)

H73 22603 PRODUCTION AND DISTRIBUTION OF LIQUID HYDROGEN

Chemical nature and properties of liquid hydrogen; hydrogen is produced from water and hydrocarbons, especially by steam reforming process; temperature, operating conditions, gas stream compositions of hydrogen; hydrogen purification with emphasis on cryogenic absorption process; liquefaction of hydrogen by refrigeration tech-
niques; calculation of ortho and para hydrogen proportion, stage conversion, and production of slush hydrogen; storage and distribution.

(HYDROCARBONS, STEAM REFORMING, PURIFICATION, CRYOGENIC, LIQUEFACTION, STORAGE, DISTRIBUTION)

H73 22604 PRODUCTION OF HIGH-PURITY HYDROGEN FROM BUTANE WITH SPECIAL REFERENCE TO MATERIALS OF CONSTRUCTION AND OPERATING PROBLEMS

Problems met within 6 yr operation of low-pressure plant for continuous production of high-purity hydrogen (99.6% H₂), based on steam reforming of butane; reference is made to reformer-tube failures, corrosion of heat exchangers, and general operating performance.

(PRESSURE, STEAM REFORMING, REFORMER, CORROSION, PERFORMANCE)

H73 22605 CHEAP HYDROGEN BY REGENERATIVE COKE-OVEN GAS SEPARATION
Karwat, E., Chemical Engineering, N193 p CE294-301, CE304 Nov 65, Avail:TAC

Process for regenerative separation of hydrogen from hydrogen-containing gas mixtures like coke-oven gas, for production either of ammonia-synthesis gas or of practically carbon-monoxide-free pure hydrogen; manufacturing costs of hydrogen and ammonia are given and compared with those for natural gas or naphtha as raw materials.

(AMMONIA, PRODUCTION, SEPARATION, COST, NATURAL GAS, NAPHTHA)

H73 22606 PARTIAL-OXIDATION PROCESS
Anon, (Texas Development Corp.), Oil and Gas Journal, V 63:108 Apr 5 '65, Avail:TAC

The Texaco partial-oxidation process is a highly versatile method for producing hydrogen and synthesis gas from hydrocarbon fuels ranging from natural gas to unmerchantable fuel oil.

(HYDROGEN, PRODUCTION, SYNTHESIS GAS, HYDROCARBON, FUEL, OIL)
Anon, (Foster Wheeler Corp.), Oil and Gas Journal, V 63:111 Apr 5 '65, Avail:TAC

Hydrogen required for hydrocracking and hydro-desulfurization, and for the production of petrochemicals, may be obtained by the steam-methane-reforming process.

Feedstocks used in generating hydrogen for refinery use include natural gas, refinery gas, propane, and butane. In typical applications where a single shift converter is used, hydrogen at a purity in excess of 95% is produced. Carbon-oxides content is less than 10 ppm.

(HYDROGEN, PRODUCTION, HYDROCRACKING, HYDRO-DESULFURIZATION, CONVERTER)

Newton, C.L., Chemical and Process Engineering, V 48:51-8, Dec 67

Reduced cost of liquid hydrogen production has resulted through the integration of the plant into a complex of various related products, which takes advantage of the efficient use of equipment, personnel, distribution systems, land area, etc. The supply of hydrogen as recovered from refinery off-gas or from improved steam-reforming generators has also contributed to cost reductions. This article discusses process developments concerned with liquid hydrogen process including hydrogen gas production, purification, liquefaction, ortho-to-para conversion, related products, liquid hydrogen distribution, and safety.

(REFINERY, STEAM REFORMING, COST, PROCESS, PURIFICATION, CONVERSION, DISTRIBUTION, SAFETY)

Anon, Chemical and Process Engineering, V 53:5 Mar 72

A process for the production of pure hydrogen and carbon monoxide from natural gas, refinery gas, LPG, naphtha, etc. -- and which could be used for adjustment of the CO/H₂ stoichiometric ratio for oxo syngas plants -- has been developed by Linde.

(NATURAL GAS, NAPHTHA, PROCESS, PURITY)
H73 22610* ACETYLENE AND HYDROGEN FROM THE PYROLYSIS OF METHANE

Though direct synthesis of acetylene has been pursued for many years, undesirable product impurities have prevented general adoption of the synthesis. In this report, the authors show that high yields of relatively uncontaminated mixtures of acetylene and hydrogen are possible.
(SYNTHESIS, PURITY, PROCESS, YIELD)

H73 22611* OPTIMIZE HYDROGEN PRODUCTION BY MODEL

 Handling heat transfer, mass transfer and reaction kinetics, this model finds optimum operating conditions for hydrogen production by steam-methane reforming which closely agree with pilot plant and commercial data.
(STEAM REFORMING, METHANE, KINETICS)

H73 22612 CASE HISTORY: FAILURES IN A STEAM-METHANE REFORMER FURNACE

After 4½ years operation producing 64 MMcfd of hydrogen, pigtail and subheader failures presented the most problems.
(HYDROGEN, PRODUCTION, PROCESS)

H73 22613 PRODUCTION OF CONCENTRATED HYDROGEN FROM THE METHANE-HYDROGEN FRACTION OF PYROGAS

The present work is devoted to obtaining hydrogen from the methane-hydrogen fraction of pyrogas by the absorption method. The work was performed on an experimental unit with a capacity of 10 cu m. hr of the gas produced. The starting feed was the methane-hydrogen fraction from an experimental gas separation unit. The schematic of the concentrated-hydrogen production unit is shown. Technological conditions for the process are presented and methods of analysis for gases concerned
are suggested.

(Absorption, Separation, Process, Analysis)

H73 22614 TECHNICAL HYDROGEN PRODUCTION FOR FERTILIZER INDUSTRY IN INDIA

Mukherjee, N.L., Chemical Age India, V 21:166-73 Nl Ja 70

Commercial hydrogen production for the fertilizer industry is discussed with special reference to the techno-economical aspects and the future growth in India. In the present circumstances of low capital reserve, it is unreasonable to install new coke oven plants only for fertilizer production. Alternatives are to switch to the continuous oxidation process of water gas production from coal or coke, to find any other suitable process of cheap and bulk scale hydrogen production from indigenous raw material, or to materialize the steam-iron process based on the fluidized bed technique.

(Economy, Oxidation, Water, Gas, Coke, Process)

H73 22165 SYNTHESIS GAS PRODUCTION

Anon. (Texaco Development Corp.), French 2,032,726 (Cl. C 01W), Nov 27 '70, German Appl. Fe 5 '69, 7 p

This application minimizes oxidative erosion of the burner and superheating of the gas mixture at the nozzle. The burner consists of a number of concentric tubes. An O-containing gas is introduced through the central tube and a combustible hydrocarbon through the annular space between the outer concentric tubes. Partial oxidation of the hydrocarbon occurs in the space between the 2 outlets to give a mixture of CO and H. In an example, the oxidation is conducted at 1350° and 85 atmosphere.

(Oxidation, Synthesis)

H73 22616 HYDROGEN AND CARBON MONOXIDE

A process for the production of pure hydrogen and pure carbon monoxide from natural gas, refinery gas, liquid gas, naphtha, and other hydrocarbons.

(Purity, Natural Gas, Naphtha, Hydrocarbons)
Production of hydrogen by catalytic conversion of butane under pressure; laboratory investigations under pressure ranging from 2 to 21 atmosphere; effects of mixture of water vapor and oxygen are also considered in this process; emphasis is on factors affecting carbon black formation during conversion; these factors are prevention--of butane decomposition before it contacts catalyst and rapid heating of mixture over 750 C, as soon as mixture is in contact with catalyst.
(CATALYST, PRESSURE, BUTANE)

First application of a new design--direct production of high-pressure, high-purity hydrogen using centrifugal compressors coupled with CO₂ removal by physical absorption--is currently under construction at Standard Oil Co. of California's El Segundo, Calif., refinery. Called Chevron high-pressure hydrogen production (CHPHP), the process was incorporated into that refinery's new hydrogen plant based on specifications prepared by Chevron Research Co.

The technique is applied to the synthesis gases produced by the partial-oxidation process and to the twin steam-methane reforming unit.
(PRESSURE, OXIDATION, REFORMING)

A process for the manufacture of high-purity hydrogen from natural gas, refinery gas, propane, butane, naphtha, and similar hydrocarbons.
(PRODUCTION, PURITY, NATURAL GAS, NAPTHA, HYDROCARBON)
H73 22620 MATHEMATICAL DESCRIPTION OF THE THERMAL CONTACT PROCESS FOR THE PRODUCTION OF HYDROGEN

The aim of the present article is the development of a mathematical model of a new process in which hydrocarbon vapors (methane, ethane, ethylene, and acetylene), rising upwards in the reactor, encounter a descending flow of grains of a heat-transfer agent (aluminum oxide) having a temperature of 1400 to 1000°C. With high-temperature decomposition, hydrogen is formed and coke is deposited on the heat-transfer medium.

(HYDROCARBON, DECOMPOSITION, COKE, MODEL)

H73 22621 HYPRO; UNIVERSAL OIL PRODUCTS CO.

Anon, Hydrocarbon Process and Petroleum Refiner, V 44:227 Nov 65

For production of hydrogen from refinery and/or natural gas streams.

(REFINING, GAS)

H73 22622 HYPRO PROCESS: UNIVERSAL OIL PRODUCTS CO.

Anon, Oil and Gas Journal, V 63:110 Apr 5 '65, Avail:TAC

The Hypro Process offers a catalytic method for converting refinery or natural-gas streams into hydrogen assaying a minimum purity of 93 vol %.

Hypro increases the hydrogen-to-carbon ratio of the remaining petroleum fractions in a refinery when refinery gas, the product most often consumed as a plant fuel, is charged to it. This conserves the remaining petroleum fractions for conversion into other, more valuable products or for direct sale. Hypro burns carbon, the least valuable fuel in the refinery.

(PRODUCTION, HYDROGEN, CATALYST, NATURAL GAS, REFINERY)

H73 22623 HYDROGEN PRODUCING SYSTEM

A continuous catalytic H producing system by the decomposition or cracking of CH₄ is described.
(CATALYST, DECOMPOSITION, CRACKING, METHANE)

H73 22624 AIR AND GAS SEPARATION PLANTS
Griesheim, M., (GmbH, Cryogenics Div., Frankfurt am Main, 300 Hanauer Landstrasse, West Germany).

Air and gas separation plants for manufacture of pure gases in both the liquid and gaseous state are described in a 71-page book. Numerous photographs and drawings show many schemes for processing crude gases such as air, refinery gases, crack gas, natural gas, water gas, and residual gas into pure helium, hydrogen, nitrogen, methane, acetylene, ethylene, ethane, etc. In addition to the process descriptions, technical data related to pure gases is presented. Key physical data is tabulated, vapor pressure curves are shown and temperature enthalpy data are diagrammed for the principal gases.
(SEPARATION, PROCESS)

H73 22625 MATHEMATICAL DESCRIPTION OF THE THERMAL-CONTACT PREPARATION OF HYDROGEN

The process of decomposition of a CH₄-C₂H₆-C₂H₄-C₂H₂ mixture in contact with Al₂O₃ heat carriers was described by 11 equations including material and thermal balances. The equations were resolved by the Runge-Kutta method at various temperatures of the heat carrier in the lower part of the reactor as a function of the reactor temperature.
(DECOMPOSITION, HYDROCARBON, HEAT, REACTOR, EQUILIBRIUM, METHANE, TEMPERATURE)

H73 22626 AUTOMATIC CONTROL OF COMBINED METHANE AND CARBON MONOXIDE CONVERSION SECTION AT THE RUSTAVI CHEMICAL PLANT

Consumption, d., pressure, and flow temperatures of vapor, gas, O, H₂O, and air and their mixtures in var-
ious phases are the physical parameters characterizing the oxidative production of H or H-N from natural gas. (CONTROL, CONVERSION)

H73 22627 PRODUCTION OF ACETYLENE, ITS HOMOLOGS, AND TECHNICAL HYDROGEN FROM NATURAL GAS BY PLASMA JET SYNTHESIS

A mixture of natural gas (90% CH₄ and 5.4% C₂H₆) and Ar was passed through an electric arc and cooled with an Ar stream to give a gas mixture containing H 42-70, CH₄ 4-42. Operating conditions leading to formation of C₂H₂ simple homologs were studied. (GAS, PLASMA, SYNTHESIS)

H73 22628 PRODUCTION OF REDUCING GAS
Milner, G., (Power-Gas Corp., Ltd.), British 1,149,114 (Cl. C 10g), Apr 16 '69, Appl. Fe 24 '67, 8 p

A gas mixture containing H, CO, and ≤12% volume CO₂ and H₂O vapor is prepared by catalytic steam reforming of natural gas in a cyclic process. (GAS, PROCESS, REFORMING)

H73 22629 STEAM REFORMING OF HYDROCARBON FEEDSTOCKS
Talbert, S., (Lummus Co.), German Offen. 2,022,076 (Cl. C 10g), Nov 19 '70, U.S. Appl. May 8 '69, 14 p

Gas containing 82-94% H + CO at a 3:1 to 4:1 H-CO molar ratio is obtained and the formation of C minimized by stagewise reforming of natural gas at a steam-feedstock C ratio of less than 2:1 at the first stage and below this proportion in the overall balance. The preferable ratios are 2.2-2.6:1 and 1.2-1.5:1, respectively. (STEAM, REFORMING, HYDROCARBON)

H73 22630 SYSTEM EMPLOYING COAL AS FUEL IN A STEAM REFORMER
Stotler, H.H., (Hydrocarbon Research, Inc. and United States Dept. of the Interior), U.S. 3,551,123 (Cl. 48-94; B 01j, C 01b, F 231), Dec 29 '70, Appl. Oct 18 '68, 4 p

Coal-derived hot flue gas is used as the heating gas in a H-producing steam reformer. (COAL, FUEL, REFORMING)
The mechanism of high temperature (1250-70°) oxidation of CH₄ with O is discussed on the basis of calculations from existing data. The effect of pressure and conditions for the nondeposition of C during the reaction were determined and are considered with reference to the performance of internal-combustion engines and gas turbines.

(CALCULATION, TEMPERATURE, COMBUSTION)

H73 22632 CATALYTIC PREPARATION OF HYDROGEN AND CARBON BLACK FROM NATURAL GAS IN A BALL MILL

H and carbon black were prepared from natural gas in a 1.5-l. cylindrical steel ball mill heated by an electric muffle furnace and rotated by the electric motor.

(CATALYST, GAS)

H73 22633 SIMULTANEOUS MANUFACTURE OF HYDROGEN AND OF A HYDROGEN-CARBON MONOXIDE MIXTURE

Anon, (Selas of America, Nederland) N.V. French 1,559,142 (Cl. C 01b), Mar 7 '69, Netherlandish Appl. Ja 12 '68, 7 p

A mixture of steam, CO₂, and hydrocarbons is subjected to catalytic reforming and the gas mixture obtained is divided into 2 streams. The 1st stream is partially liquefied to give a gas phase of H₂ and a liquid phase of CO, thus producing technically pure H₂. The CO fraction is mixed with the 2nd stream to give technically pure CO-H₂.

(STEAM, CATALYST, REFORMING)

H73 22634 HYDROGEN

Anon, (United Aircraft Corp.), Netherlandish Appl. 6,609,376 (Cl. C 01b), Fe 6 '67, U.S. Appl. Aug 3 '65, 14 p

Nearly pure H is made catalytically from hydrocarbons and H₂O vapor. Ni, Co, or Pt are used as catalysts. A mixture of the hydrocarbons and H₂O vapor contacted with the catalyst, thus producing CO₂, CO, and H₂.

(PURITY, CATALYSIS, HYDROCARBON, WATER, MEMBRANE, TEMPERATURE)
SYNTHESIS GAS MANUFACTURE
Nov 67, (in English)

The economically feasible methods for the preparation of synthesis gas for the production of NH₃ are evaluated. The N is obtained from air separation or introduced as air in the preparation of H. The methods of H production include the reforming of desulfurized gaseous hydrocarbon feedstocks in the C₃-4 range, the CO conversion of any C-containing feedstock, and the partial oxidation of feedstocks ranging from natural gas to fuel or crude oil. Reforming is more economical than partial oxidation for the same feedstock, but the advantages of the price differential from the use of heavier feedstocks may give the partial oxidation an economic advantage.

(AMMONIA, STEAM REFORMING, HYDROCARBON, CONVERSION, PARTIAL OXIDATION, ECONOMY)

HYDROGEN BY STEAM-METHANE REFORMING
Habermehl, R.H., and K.A. Atwood, (Catalysts and Chemicals Inc.), U.S. 3,382,045 (Cl. 23-213), May 7 '68, Appl May 10 '65, 6 p

In the title process, 2 stages of shift conversion are used without intervening CO₂ removal.

(STEAM, REFORMING, CONVERSION)

PRODUCTION OF HYDROGEN-RICH GASES
Hebden, D., and K.J. Humphries, (Gas Council), British 1,063,464 (Cl. C 10g), Mar 30 '67, Appl. Mar 13 '64, 4 p

Addition to British 895,038 (CA 57, 2520d)

H-rich gases are prepared by treatment of a C₃ hydrocarbon vaporizable at atmospheric pressure and 250°C with steam.

(HYDROCARBON, STEAM)

REACTIONS OF N-BUTANE, ETHYLENE, AND 1-BUTENE WITH STEAM OVER A SILICA-SUPPORTED NICKEL CATALYST IN THE TEMPERATURE RANGE 370-450

Steam reforming of 8.4:1 H₂O-C₄H₁₀ mixture at 370°C over a Ni/silica gel catalyst gave CH₄, H₂, and CO₂ in essentially theoretical distribution.

(REACTION, STEAM, REFORMING)
HYDROGEN GENERATION FROM NATURAL GAS WITH HEAT FROM NUCLEAR REACTOR

Kugeler, K., Berlin Kernforschungsanlage Juelich 68, JUELI-557-RG, 27 p, (German), Avail: Germany

Using the heat from a nuclear reactor, a method for production of H by the reaction of CH₄ with steam is described. The reactants were fed into the reactor at 70 atmosphere and 750-950°C. The overall pressure in the chamber dropped to 30 atmosphere and the temperature to 400-750°C. Thermodynamic considerations of the energy balance of the system are given. The CH₄ diffusion rate was 2.45 x 10⁵ m³/hr., the CH₄ use rate was 1.60 x 10⁵ m³/hr., and the H production rate was 7.12 x 10⁵ m³/hr. (yield: 69.5%). Statistical data from the viewpoint of the production cost are discussed.

(HYDROGEN, NUCLEAR, HEAT, REFORMING)

HIGH-TEMPERATURE HYDROCARBON REFORMING FURNACE

Von Wiesenthal, P., (Alcorn Combustion Co.), French 1,538,588 (Cl. C 01b), Sept 6 '68, Appl. Jul 21 '67, 4 p

In the reforming of hydrocarbon mixtures with H₂O and (or) CO₂ to produce H and CO, combustion air is preheated by indirect exchange with a com. heat transfer fluid which has been circulated through tubes in the convection section of the furnace.

(TEMPERATURE, REFORMING)

HYDROGEN FROM METHANE

Hayes, J.C., (to Universal Oil Products Co.), U.S. 3,379,504 (Cl. 23-212), Apr 23 '68, Appl. Mar 26 '65, 5 p

In the production of H by catalytic decomposition of CH₄ with a fluidized bed of Ni-Al₂O₃ as catalyst, clinker formation during start-up is inhibited by preheating and drying the catalyst, and initially subjecting the dry catalyst to reduction with a gas mixture containing less than or equal to 25% free H, e.g. CH₄ + N.

(METHANE, CATALYST)

GENERATION OF HYDROGEN FROM HYDROCARBON GASES BY STEAM-OXYGEN CONVERSION IN A FLUIDIZED BED UNDER PRESSURE

Laboratory study of 2-stage generation of H from CH₄ (natural gas) was carried out in 2 fluidized bed reactors.

(STEAM, OXYGEN)
PREPARATION OF HYDROGEN

Morida, Y., (Wasenda Univ., Tokyo), Kagaku Kojo, V 11:11-17 NL2 67, (Japan)

Preparation of H₂ by partial oxidation of hydrocarbons is discussed. In the contact process, natural gas and naphthas are used as feeds in the presence of a catalyst (e.g., Ni) at 750-900°. In the thermal process, heavy oils and crude oils are used as feeds without catalysis at 1300-1500°. The I.C.I. process and the Texaco process are described with flow diagrams to illustrate contact and thermal processes, respectively.

(PARTIAL OXIDATION, HYDROCARBON, NATURAL GAS, NAPHTHA, CATALYST, HEAT)

THE MANUFACTURE OF HYDROGEN BY REFORMING REFINERY GASES

Radancevic, M., (Petroleum Refinery Bosanski Brod, Bosanski Brod, Yugoslavia), Nafta, Zagreb, V 18:529-32 NL1 67 (Croatian)

The production of pure H is achieved by the catalytic steam reforming of a mixture of H₂ 41.09, CH₄ 25.82, C₂H₆ 27.54, C₃H₈ 5.31, and C₄H₁₀ 0.24 vol. %.

(CATALYST, REFORMING)

AMMONIA SYNTHESIS GAS

Green, R.V., (du Pont de Nemours, E.I., and Co.), U.S. 3,584,998 (Cl. 23-199; C 01cb, B 01j), Je 15 '71, Appl. J1 3 '68, 4 p

The usual primary reformer used in preparing NH₃-synthesis gas is eliminated by preheating the air, steam, and natural gas to 1500-2000°F and causing them to react in a secondary type reformer containing a conventional Ni-base catalyst. The reformer is operated at 1500 psig; usually 300-500 psig.

(AMMONIA, REFORMING)

CATALYTIC DECOMPOSITION OF METHANE FOR THE PRODUCTION OF HYDROGEN

A series of catalysts suitable for the decomposition of CH₄ to H was evaluated in tests using a natural gas containing CH₄ 93-5, N 3.5-4.5, and C₂H₆ 1.5-2.5%.

(CATALYST, METHANE, DECOMPOSITION)
H73 22647 HYDROGEN FROM METHANE AND WATER
Guerrieri, S.A., (Lummus Co.), French 1,503,018 (Cl. C 01b, H 01m), Nov 24 '67, U.S. Appl. Nov 12 '65, 6 p

A portable H generator for use in connection with fuel cells is described. The H is prepared by steam-reforming of practically S-free hydrocarbons, which are mixed with H₂O and heated 760-870°. The reaction products are utilized to reheat the mixture and pure H is separated in a diffusion cell based on Pd alloys. Suitable hydrocarbons are CH₄, natural gas, liquid petroleum gases, etc.

(WATER, GENERATOR, HYDROCARBON)

H73 22648 CATALYTIC DISSOCIATION OF HYDROCARBONS
Anon, (Badische Anilin- und Soda Fabrik A.-G.), French 1,548,421 (Cl. C 01b), Dec 6 '68, German Appl. Sept 5 '66, 5 p

CO and H are produced from gaseous or vaporizable hydrocarbons by a flameless catalytic process without formation of carbon black and without abnormal increase of temperature of the catalyst, by using a two-step process, with a catalyst comprising a mech. Pt-Ni mixture.

(CATALYST, GAS)

H73 22649 KINETICS OF PROPANE CRACKING IN FLUIDIZED BED REACTORS

The pyrolysis of pure propane was determined in a vacuum apparatus (diagram given) with a uniform quartz sand reactor. Curves are given for the decrease in C₃H₈ concentration and increase in C₂H₄, CH₄, H, and C₃H₆.

(KINETICS, PYROLYSIS)

H73 22650 PRODUCTION OF HYDROGEN-CONTAINING GASES FROM HYDROCARBONS
Vorum, D.A., (to Pullman Inc.), U.S. 3,278,452 (Cl. 252-376), Oct 11 '66, Appl. Dec 24 '59, 8 p

Previous processes used to produce H from CH₄ and higher hydrocarbons generally involve partial oxidation (as shown in reactions 1, 2, and 3), steam-reforming process (4 and 5), or a combination method. Combined partial-oxidation and steam-reforming processes have advantages over either process alone by virtue of using
heat evolved in partial-oxidation to supply at least part of the heat required for steam-reforming, thereby cutting fuel costs and permitting operation with feeds containing relatively large amounts of hydrocarbons. (HYDROCARBON, REFORMING)

ECONOMICS OF PRODUCING HYDROGEN FROM GASEOUS FEEDSTOCK
Chernyi, Yu.I., Chemical Technology Fuels & Oils, V 7:673-677 N9-10, Sept-Oct 71
Existing methods of producing hydrogen are analyzed from economic point of view. The most economical process of hydrogen production from gaseous feed at a refinery has been shown to be the thermal decomposition on fixed packing. However, this process cannot be recommended at present for wide use, since it has not been sufficiently developed industrially, the most effective is conversion with steam, which is more advantageous in terms of energy consumption, investment, and production cost than conversion with oxygen. In terms of the current consumption characteristics and investment, the process of metal-steam conversion in a moving contact bed is most advantageous. (ECONOMICS, HYDROGEN, GAS, THERMAL, DECOMPOSITION)
PROCESS FOR PRODUCING HYDROGEN FROM WATER USING AN ALKALI METAL
Miller, A.R., H. Jaffe, U.S. Pat. 3,490,871 Ja 20 '70, Avail:TAC

A process for producing hydrogen gas from water involving the reaction of an alkali metal, preferably cesium and coater to produce hydrogen gas and an alkali metal-oxygen compound and thereafter the alkali metal-oxygen compound is regenerated and recycled for reduction of a further quantity of water.
(REDUCTION, REGENERATION, RECYCLE)

PROCESS OF SUPPLYING HYDROGEN TO A FUEL CELL WITH BOROHYDRIDE ADDUCT
Hogsett, J.N., (to Union Carbide Corp.), U.S. 3,374,121 (Cl. 136-86), Mar 19 '68, Appl. Nov 27 '64, 14 p

H is generated for fuel cells by contacting adducts of metal borohydride and organic N compounds (diaminoalkanes, polyalkylenes, polyamines, triazines, tetrazenes, heterocyclics).
(PROCESS, HYDRIDE)

METHOD OF AND PLANT FOR THE UTILIZATION OF NUCLEAR ENERGY
Anon, (to Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung), British Patent 1,225,014, Mar 17 '71, Priority date Fe 17 '67, Germany

Hydrogen production by process heat reactor, method for design with means for production of hydrogen by reaction of metal oxide, steam and carbon monoxide.
(HYDROGEN, PRODUCTION, DESIGN, STEAM, REACTOR, PROCESS, HEAT)

HYDROGEN GENERATION FOR FUEL CELLS
Lafyatis, P.G., and J.E. Rothfleisch, (Union Carbide Corp.), U.S. 3,458,288 (Cl. 23-282; B 01j), J1 29 '69, Appl. Dec 28 '65, 5 p

A portable, self-contained apparatus for H₂ generation for fuel cells by the hydrolysis of a metal borohydride by an inorganic acid is described.
(FUEL CELL, HYDRIDE)
H73 23004 EVALUATION OF STORABLE PROPELLANT REFORMING FOR USE IN EMERGENCY LIFE SUPPORT SYSTEM DESIGN

The storable propellants Aerozine-50 and nitrogen tetroxide (N2O4) are evaluated as sources of hydrogen, oxygen, potable water, and heat for use in an emergency life support system. Results of these laboratory studies indicate the feasibility of steam reforming Aerozine-50 to obtain hydrogen rich gas.
(HYDROGEN, PRODUCTION, STEAM-REFORMING, PURITY, CRYOGENIC, OXYGEN)

H73 23005 HYDROCYANIC ACID AND HYDROGEN FROM ACETONITRILE AND AMMONIA
Anon, (Deutsche Gold- und Silber-Scheideanstalt vorm. Roessler), French Demande 2,014,523, Apr 17 '70, German Appl. J1 6 '68

MeCN and NH3 are passed over a catalyst containing 50-80 atmospheric % Al or Mg and Pt deposited on Al2O3 at 1100-1300 in a sintered Al2O3 tubular reactor. The mixture is rapidly heated and rapidly cooled to give a mixture containing HCN and H. The yield of HCN is about 150 weight % based on MeCN.
(AMMONIA, REACTION)

H73 23006 SELF-REGULATING HYDROGEN GENERATOR
Harm, R.L., (General Electric Co.), U.S. 3,453,086, J1 1 '69, Appl. Oct 12 '65

This application uses the contacting of a liquid reactant with a solid one.
(LIQUID, GENERATOR)

H73 23007 PROCESS FOR SUPPLYING HYDROGEN AND OXYGEN TO FUEL CELLS

Exhaust H from the anode is burned to provide part or all of the heat required to operate an NH3 cracking unit or a hydrocarbon reformer to make crude H.
(ELECTROLYSIS, HEAT, AMMONIA, CRACKING, HYDROCARBON, REFORMER, OXYGEN)
PORTABLE HYDROGEN GENERATOR

Knorre, H., and K. Stephan, (Deutsche Gold- und Silber-Scheideanstalt vorm. Roessler), German 1,251,723, Oct 12 '67, Appl. Dec 2 '64

The generator is composed of a cylindrical capsule containing hydride in the lower half and a drying agent in the upper.

(GENERATOR, HYDRIDE)

HYDROGEN PRODUCTION FOR FUEL CELLS

A process for preparing H suitable for use in fuel cells comprises catalytic reforming of MeOH at 700-800°F under nonadiabatic conditions.

(CATALYSIS, METHANOL, DIFFUSION, PALLADIUM, REFORMER, HEAT)

PORTABLE HYDROGEN GENERATOR

Compact, portable unit generates high purity hydrogen from liquid ammonia; unit is based on off-the-shelf hardware; generator has volume of 3.5 cu ft. and weighs 130 lb; it produces 140 scfh of 99.99% pure hydrogen at 3 psig; generator has change in rate response time of less than 30 sec; thermal efficiency is 72% at rated output; generator system consists of ammonia dissociator, hydrogen purifier and liquid ammonia of storage, transfer and control subsystem.

(AMMONIA, GENERATOR)

HYDROGEN PRODUCTION

Normand, A., (Societe Chimique de la Grande Paroisse, Azote et Produits Chimiques), French Addition 95,172, J1 31 '70, Appl. May 30 '68, Addition to French 1,564,814

Pure H was prepared by catalytic oxidation of NH₃ in a reactor consisting of 2 compartments.

(PURITY, CATALYSIS, OXIDATION, AMMONIA, REACTOR, DECOMPOSITION, NITROGEN)
H73 23012 METHOD OF OBTAINING PURE HYDROGEN FOR FUEL CELL FEEDING OUT OF METHANOL
Bloch, O., (Institut Francais du Petrole, Rueil-Malmaison, France), C. Dezael, and M. Prigent, Third International Symposium on Fuel Cells, Proceedings, Je 16-20 '69, Brussels, Belgium, by SERAI and COMASCI

Characteristics of a complete converter-separator device for feeding alkali electrolyte hydrogen fuel cell are presented. The device is based on the principle of absorption-desorption, an analog to devices which are currently used in the industries for gas treatment.
(FUEL CELL, METHANOL)

H73 23013 HYDROGEN FROM METHANOL FOR FUEL CELLS

Bench scale studies of the production of hydrogen from an equimolar methanol-water mixture in a single bed of a precious-metal catalyst or a base-metal catalyst. In either case, the catalyst proved effective both in dissociating the methanol and in promoting the water gas shift reaction to a significant degree. With a base-metal catalyst, yields in excess of 90% of theoretical were obtained at 100 psig and 700°F, based on the total hydrogen content of the feed. It was further demonstrated that, by lining the reaction chamber with a supported silver-palladium alloy membrane, ultrapure hydrogen suitable for direct use in fuel cells could be produced in a compact integral reactor-purification system.
(FUEL CELL, METHANOL)

H73 23014 GENERATING HYDROGEN
Gluckstein, M.E., (to Ethyl Corp.), U.S. 3,313,598, Apr 11 '67, Appl. Mar 13 '62 and Je 7 '65

A portable source of small amounts of H₂, e.g. for use in fuel cells, consists of reacting NaAlH₄ with H₂O. The rate of evolution of the H₂ can be decreased by using aqueous solutions of lower alcohols or inorganic acids or salts.
(FUEL CELL, GENERATOR)
H73 23015* METHOD FOR UTILIZING NUCLEAR ENERGY IN THE PRODUCTION OF HYDROGEN
Nuclear energy is utilized in the production of H₂ by heating CaCO₃ or MgCO₃ so as to form the respective metal oxide and CO₂, using a portion of the thus obtained CO₂ for conversion thereof in contact with C to CO, heating the thus obtained metal oxide and CO in the presence of steam so as to form H₂ gas and metal carbonate, the latter being reused for producing metal oxide and CO₂ and the H₂ gas being recovered, and supplying the heat required for these reactions and for the production of the needed steam by indirect heat exchange with a heat exchange medium such as He which passes in a closed cycle between a high temperature nuclear reactor in which the heat exchange medium is heated and the above described reaction mixtures which are heated by the heat exchange medium under simultaneous cooling of the latter.
(NUCLEAR, ENERGY, CARBONATE)

H73 23016 REACTION OF ALUMINUM WITH SODIUM HYDROXIDE SOLUTION AS A SOURCE OF HYDROGEN
Generation of hydrogen for fuel cells by reaction of hydrides with water or aqueous solutions reduces storage weight or volume over high pressure or cryogenic storage but is expensive. Reaction of aluminum in aqueous solutions provides an inexpensive, compact source of hydrogen. While 100°-500°F is required for useful rates with mercuric chloride solution, room temperature is satisfactory with sodium hydroxide solution.
Hydrogen generation rates from massive aluminum in sodium hydroxide solutions are inconveniently slow for fuel cell use, even in 10M NaOH. Compacts of atomized aluminum powder in sodium hydroxide solutions yield hydrogen at suitable rates without external heating and with a start-up time in the range of 1 minute.
(ALUMINUM, GENERATOR)
HYDROGEN GENERATION BY MEANS OF THE ALUMINUM/WATER REACTION

An aluminum amalgam will react with water at ordinary temperatures with the formation of aluminum hydroxide and the liberation of free hydrogen. In the case of a block or sheet of the metal having an amalgamated surface, this reaction will continue until all the aluminum has been consumed. The reaction rate is observed to be temperature dependent, and this affords a simple means of regulating the output of hydrogen. If the supply of water and disposal of waste is discounted the reaction is shown to be superior, on a volumetric basis, to all other common means of producing hydrogen, and furthermore is competitive on a weight and cost basis with other chemical production methods. The inherent simplicity of such a scheme for hydrogen generation offers attractive advantages in terms of reliability.

PROCESS AND EQUIPMENT FOR THE WORKING OF NUCLEAR ENERGY

A procedure for utilizing energy produced by a nuclear reactor is described. A refrigerant circulating through pipes transfers the heat produced by the reactor to vessels containing substances destined to participate in a particular chemical reaction. In the production of hydrogen, water vapor is passed over a metal oxide in a CO atmosphere. The metal carbonate formed is dissociated with regeneration of the oxide and evolution of CO$_2$, some of which is passed over finely divided carbon, producing CO, which is returned to the reaction vessel. Products of the reaction are hydrogen gas and CO$_2$.

STUDY OF MULTIPLE RESERVE ELECTROCHEMICAL POWER SOURCE

Neat hydrazine and 98 wt. % H$_2$O$_2$ are used as storable
reactants. Appropriate high temperature reactors, containing propellant decomposition catalysts, are used to generate H and O feed gases for the fuel cell. Allis-Chalmers fuel cell modules were selected for the centerline design on the basis of low specific weight and demonstrated bootstrap start-up capability.

(HYDROGEN, HYDRAZINE, OXYGEN, FUEL CELL, CATALYST)

H73 23020 LOW TEMPERATURE FORMATION OF HYDROGEN FROM CO + H₂O

Discussion of several applications illustrating the advantages of "low-temperature" CO conversion catalysts over conventional iron-chrome "high-temperature" conversion catalysts are indicated: operation at a lower temperature level results in a higher purity product for a one-stage system, and a greater yield of hydrogen per unit of hydrocarbon feed; operation at a lower temperature level gives greater freedom in efficient recovery of heat.

(CONVERSION, CATALYST, PURITY, HYDROCARBON, EFFICIENCY, REACTOR)

H73 23021 MODIFICATION OF A HYDROGEN GENERATOR ML-539/TM TO PRODUCE PURE HYDROGEN

A hydrogen generator ML-539/TM which was originally designed to produce 400 scfh of dissociated ammonia (75% hydrogen and 25% nitrogen), was modified to produce 400 to 450 scfh of pure (99%) hydrogen. The major changes in the generator were the adding of two palladium alloy diffusion chambers for purification of the dissociated ammonia.

(DISSOCIATION, AMMONIA, PURIFICATION, TEMPERATURE, PRESSURE, DESIGN, CATALYST, PERFORMANCE)

/27
H73 23022 PRODUCTION OF HYDROGEN FOR DEUTERIUM EXTRACTION
Dirian, G., D. Leger, and J. Pauly, (to Commissariat a l'Energie Atomique), French Patent 2,098,623, Mar 10 '72

Water vapor is passed over a metal in the bulk state (Fe, Ni, or Cr), which reduces the water to hydrogen. The hydrogen formed is sent to a plant that extracts the deuterium. The metal is then regenerated by the deuterium-depleted hydrogen. Reduction of the water vapor and the regeneration of the metal are effected in two adjacent tubes. Heat exchange occurs between these tubes, a sensibly constant temperature being established in these tubes. The metal is brought to a temperature between 600 and 900°C.

(WATER, REDUCTION, REGENERATION, TEMPERATURE, HEAT)

H73 23023 COMPACT HIGH PURITY HYDROGEN GENERATORS
Kurpit, S.S., (Engelhard Industries) - Technology Bulletin, V 6:5-9 N1 Je 65

High purity hydrogen for industrial and military applications can be obtained by use of Englehard hydrogen generators, which are more economical and compact than merchant cylinders; generators can operate on a variety of feedstocks such as relatively sulfur-free liquid or gaseous hydrocarbon fuels in combination with demineralized water, ammonia, aqueous methanol solutions, or other special compounds; in most cases, some auxiliary electric power is required.

(HYDROCARBON, FUEL, WATER, AMMONIA, METHANOL, POWER)

H73 23024 DISPOSABLE HYDROGEN GENERATOR
Brewer, J.N., and D.L. Allgeier, Science, V 147:1033-4 N3661 Fe 26 '65

Hydrogen gas is produced by chemical action of magnesium metal, zinc chloride, sodium chloride, and water within unique plastic and aluminum foil envelope contained in anaerobe jars in quantity of about 2 liters; absence of excessive buildup of hydrogen reduces hazard of explosion; gas-producing units are simple to activate and may be discarded after use.

(GENERATOR, HYDROGEN)
H73 23025 PRODUCTION OF HYDROGEN TO SATISFY SMALL INDUSTRIAL DEMANDS
Charlesworth, P.L., and G. Schmidt, Chemical Engineering
N192:CE259-65 Oct 65, Avail: TRAC

Production of hydrogen to satisfy industrial demands up to 500 normal cu m/hr is discussed; types of processes available are described, with particular reference being made to cracking of ammonia and methanol, and to steam reforming of hydrocarbons; details of available purification techniques are given to illustrate how different hydrogen purities might be achieved; operating-cost data are presented for three processes.

(CRACKING, AMMONIA, METHANOL, STEAM REFORMING, HYDROCARBON, PURIFICATION, COST)

H73 23026 COMPACT H₂ GENERATORS FOR FUEL CELLS

A portable 107-liter-per-hour hydrogen generator to supply a 200-watt hydrogen-oxygen fuel cell power package is described. This miniaturized device catalytically dissociates ammonia to yield nitrogen and hydrogen. The hydrogen gas is separated by diffusion elements of palladium-silver alloy, and the residual gas is used as fuel to supply the total energy requirements, including heat losses of the process.

(DISSOCIATION, CATALYSIS, NITROGEN, DIFFUSION, METHANOL, HYDROCARBON)

H73 23027 FREE HYDROGEN IN GENESIS OF PETROLEUM

A model is proposed that postulates (1) a free-hydrogen source in the deep-seated environment, resulting from dissociation of water in the presence of minerals containing ferrous iron; (2) a continuous upward percolation of elemental hydrogen into the surface environment as a consequence of its high rate of diffusion relative to other constituents; and (3) a hydrogen sink near the surface formed by biologically catalyzed chemical reactions of free hydrogen with organic matter, ferric iron, sulfates, and atmospheric oxygen. It is suggested that the
hydrogenation of biogenic organic matter in sedimentary rocks by free hydrogen of deep-seated origin should be investigated as a factor in the genesis of petroleum.

(DISSOCIATION, WATER, DIFFUSION, CATALYSIS, CHEMICAL, OXYGEN)

H73 23028 FUEL CELL SYSTEM USING LITHIUM AND LITHIUM HYPOCHLORITE TO PRODUCE HYDROGEN AND OXYGEN
Honeycutt, S.C., (Lithium Corp. of America, Inc.), U.S. 3,578,501, May 11 '71, Appl. Nov 13 '68

A regenerative fuel cell system operating on H₂ and O₂ is described. The H₂ is obtained by the reaction of Li with H₂O and the O₂ by heating an aqueous solution of LiOCl.

The system requires a minimum of vessels to carry out the reactions. No by-products are formed, since all products are again used in the operations.

(FUEL CELL, REGENERATIVE)

H73 23029 MOBILE HYDROGEN GENERATORS AND MEAN TEMPERATURE FUEL CELLS
Laroche, J., F. Lalanne, and R. Combelles, Entropie N14:46-51 67

Discussed are com. H₂ generators developed in the U.S. using hydrocarbons or NH₃ as starting material. Autothermal cracking of hydrocarbons and reforming of hydrocarbons with steam were investigated as processes for H₂ generators.

(HYDROCARBONS, AMMONIA, CRACKING, STEAM REFORMING, CATALYST, HEAT)
Energy Generation and Utilization in Hydrogen Bacteria

Bongers, L., NASA Report 1596, Ja 69, Avail: TAC

This progress report on Contract NASW-1596 covers the reporting period from 23 September 1968 through 22 January 1969. In this report the efficiency of growth by hydrogen bacteria and the definition of growth-rate limiting factors on efficiency of energy conversion are considered.

Some previously reported observations and data from the open literature are included to provide a balanced and interpretive discussion. The present report deals with the effect of the growth environment on gas consumption characteristics of autotrophically growing H. eutropha. The data presented here suggest that the variation in efficiency of energy conversion is due to a lack of an obligatory coupling between energy-donating and energy-utilizing processes in hydrogen bacteria.

(Brightness, Growth, Conversion, Eutropha)

Bioregeneration im geschlossenen System mit Hilfe von electrolysegas und bakterien

Schlegel, H.G., (Institut für Mikrobiologie der Universität Göttingen), N86-35667, Je 68, Avail: TAC

The growth parameters for Hydrogenomonas strain H 16 were determined under conditions of continuous culture with formation of H₂O₂ mixture by direct electrolysis of the culture medium. Using this method, a cell concentration of 3 g dryweight/l was achieved, whereas with an external gas supply the cell concentration reached 28 g dryweight of bacteria/l. Further topics to be reported on are: the development of new culture vessels, the isolation and characterization of new species and strains of hydrogen-oxidizing bacteria, the determination of polysaccharide content, the production of bacterial mutants and metabolic regulation. The future development of an electrolysis-bacterial system for bio-regeneration accompanied by oxygen and protein production is favourably viewed.

(Hydrogen, Production, Growth, Culture, Electrolysis, Bacteria)
H73 23202 VARIABLE PHOTOSYNTHETIC UNITS, ENERGY TRANSFER AND LIGHT-INDUCED EVOLUTION OF HYDROGEN IN ALGAE AND BACTERIA

Gaffron, H., (Florida State University, Tallahassee, Fla.), European Biophysics Congress, 1st, Baden, Austria, Sept 14-17 '71, Proceedings, Vienna, Wiener Medizinische Akademie, 71, p 19-22

The present state of knowledge regarding the truly photo-chemical reactions in photosynthesis, is considered. Nine tenths of the available knowledge is of a biochemical nature. Questions regarding the activities of the chlorophyll system are examined. The simplest photo-chemical response observed in living hydrogen-adapted algal cells is the release of molecular hydrogen, which continues even after all other known natural reactions have been eliminated either by heating or the action of poisons. (PHOTO-CHEMICAL, REACTION, BIOCHEMICAL, CHLOROPHYLL)

H73 23203 HYDROGEN FORMATION BY ANAEROBIC DECOMPOSITION

Deutsch, I., Gas, V 42:66-8 N2 Fe 66

Procedure used to generate hydrogen-carbon dioxide gas mixture experimentally in more than trace quantities of anaerobic metabolism; hydrogen concentration of 40% was shown by chromatographic ratio of peak heights; mechanism of hydrogen formation; formation of this hydrogen takes place in sugar and confectionery wastes and certain soils. (CARBON DIOXIDE, METABOLISM, MECHANISM, SUGAR)

H73 23204 BACTERIAL METHANE FUEL CELL

van Hees, W., Journal of the Electrochemical Society, V 112:258-62 N3 Mar 65

Study of methane bio-anode using strain of Pseudomonas methanica (Soehngen); physical contact between bacteria and anode is necessary for removal of electrons into external circuit; if methane is replaced by nitrogen, anode potential is not changed at first; however, bacteria begin to die out; actual fuel species is hydrogen removed from flavoprotein; hydroxyl ions are immediate source of oxygen at anode; prolonged periods of open-circuit condition and also very high current drain should be avoided; both are detrimental to bacteria. (BACTERIA, ANODE, NITROGEN, OXYGEN, HYDROGEN, CURRENT)
H73 23205 BIOCHEMICAL HYDROGEN GENERATORS
Generation of hydrogen using micro-organisms for fuel cell batteries is discussed; hydrogen generation rates of various micro-organisms are given; hydrogen production of growing and resting cells are compared using 10-liter fermenter system.
(MICRO-ORGANISM, FUEL CELL, BATTERY)

H73 23206 BIOCHEMICAL FUEL CELLS
Perry, H., Jr., and J. Christopulos, 19th Annual Power Sources Conference - Proc, (U.S. Army Electronics Laboratories, Fort Monmouth, N.J.), May 18-20 '65, p 19-23
Direct and indirect biochemical fuel cell systems utilizing plant vegetation and human waste as fuels with aid of micro-organisms for military applications; hydrogen, ethanol, formic acid, ammonia, and methane are produced from fuels by fermentation; operation of indirect fuel cell system which delivers 60-w at 28-v.
(HYDROGEN, GENERATOR, MICRO-ORGANISM, METHANE, AMMONIA)

H73 23207* BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN
A "hydrogen valve" facilitates regulation of anaerobic energy metabolism in many microorganisms.
(ANAEROBIC, ENERGY, METABOLISM, MICRO-ORGANISM)

H73 23208 THE MECHANISM OF HYDROGEN PHOTOPRODUCTION BY SEVERAL ALGAE II. THE EFFECT OF INHIBITORS OF PHOTOPHOSPHORYLATION.
Stuart, T.S. and H. Gaffron, Planta, V 106:91-100, 72, Avail:TAC
In order to come to a more firmly based conclusion on the mechanism of hydrogen photoproduction in green algae, we have compared two additional genera of green algae, i.e., Ankistrodesmus and Chlorella, with the previously tested Chlamydomonas and Scenedesmus. None of the algae tested required photo-system II for H₂ photoproduction, since this reaction still occurred in the pre-
ence of 10^{-5} M DCMU. Photophosphorylation was also not required since two potent inhibitors of this process, Cl-CCP and SAL, almost always stimulated H_2 photoproduction.

Cl-CCP gave very little if any stimulation of this reaction in autotrophically grown cells of this alga, but stimulated H_2 photoproduction by photoheterotrophically grown cells approximately 450%. Chlamydomonas cells were found to be about ten times as sensitive as the other cells to both poisons. We conclude that all of the algae tested are able to photoproduce H_2 via non-cyclic electron flow through photosystem I to hydrogen.

(HYDROGEN, MECHANISM, PHOTOPRODUCTION)

The contribution of PS II to H_2 photoproduction by several unicellular green algae was measured both when O_2 evolution and photophosphorylation were unimpaired and also when these processes had been eliminated by Cl-CCP. As judged by the effects of DCMU, a PS II contribution was found under both sets of experimental conditions for several strains of Chlorella, Ankistrodesmus and Scenedesmus. However, H_2 photoproduction by Chlamydomonas moewusii was insensitive to DCMU and thus was entirely due to PSI.

(HYDROGEN, PHOTOPRODUCTION)
NEW DEVELOPMENTS IN HYDROGEN GAS GENERATION

MOLECULAR SIEVES

The use of molecular sieves as a means of purifying steam-reformed hydrocarbon fuel in the production of low cost hydrogen has been developed into a practical gas generator design. Conventional processes for producing hydrogen are reviewed, with a history of molecular sieves and how this dry desiccant material was applied to commercial equipment as an adsorbent for removal of CO₂ and water vapor. The molecular sieve type hydrogen gas generator is discussed with an outline of typical operating cost and gas purity capabilities.

(PURIFICATION, HYDROCARBON, FUEL, COST, PRODUCTION)

CRYOGENIC HYDROGEN UPGRADING
Anon, (Union Carbide Corp., Linde Division), Hydrocarbon Process, V 47:232 Sep 68, Avail:TAC

To recover and upgrade the hydrogen in refinery or petrochemical off-gas streams. Methane is rejected to fuel, while hydrocarbons having chemical value are recovered as partially refined byproducts.

(RECOVERY, REFINERY, PETROCHEMICAL, HYDROCARBON, FUEL)

UPGRADING HYDROGEN VIA HEATLESS ADSORPTION
Alexis, R.W., Chemical Engineering Progress Symposium Ser, V 63:50-2 N74 67, Avail:TAC

Rapid adiabatic cycle, with desorption by pressure change only, is employed to separate hydrocarbons from hydrogen; tables list qualitative comparison of hydrogen upgrading processes, typical process economics for hydrogen upgrading by heatless adsorption, and operating cost comparison.

(SEPARATION, HYDROCARBON, PRESSURE, COST, ECONOMY)

RECOVERY OF HYDROGEN FROM INDUSTRIAL GAS MIXTURES
Charlesworth, P.L., Chemical Engineering, N187:CE87-90 Apr 65, Avail:TAC

Recovery of hydrogen from byproduct streams of chemical and petroleum industries, in form suitable for re-

135
turning to original process or for use in other processes, can be accomplished cheaply by low-temperature separation techniques; applicable to fields of ammonia synthesis and purification and upgrading of petroleum distillates to high-octane gasolines; typical operating costs for hydrogen.

(CHEMICAL, PETROLEUM, CRYOGENIC, SEPARATION, AMMONIA, PURIFICATION, COST)

H73 23404 ERZEUGUNG VON REINST-WASSERSTOFF IN DIFFUSIONSANLAGEN
Bosse, K.O., and F. Kohlmeyer, Institut Zeit fuer Gaswaerme, V 14:156-61 N4 Apr 65
Production of high-purity hydrogen in diffusion units; it is shown how high-purity hydrogen containing no more than 1 ppm of impurities can be produced with aid of diffusion units, core of which is formed by palladium-silver diffusion cells.
(PURIFICATION, DIFFUSION)

H73 23405 CO₂ REMOVAL BY HEATLESS PROCESS
Beavon, D.K. and others, Chemical and Process Engineering, V 53:32-3 Ja 72
The capital and operating costs of large-scale hydrogen and ammonia syngas plants can be considerably reduced by incorporating the Purisol "heatless" CO₂ removal process. This, combined with centrifugal instead of reciprocating compressors, also gives greatly increased reliability.
(COST, HYDROGEN, AMMONIA, CENTRIFUGAL, COMPRESSOR)

H73 23406 HYDROGEN, CRYOGENIC UPGRADING
Anon, Hydrocarbon Process, V 49:268 N9 Sept 70
Application: To recover and upgrade the hydrogen in refinery or petrochemical off-gas streams. Methane is rejected to fuel, while hydrocarbons having chemical value are recovered as partially refined byproducts.
(RECOVERY, REFINERY, PETROCHEMICAL, HYDROCARBON, FUEL)

H73 23407
Anon, Chemical Week, Mar 25 '70
A new way to separate hydrogen and to concentrate synthesis gas is being introduced by Du Pont. It's based
on a new line of Permasep permeators the company is making in a new unit at Glasgow, Bel. Du Pont sees a potential for the technique in two big areas. It can be used to concentrate carbon monoxide in synthesis gas by removing as much as 95% of the hydrogen. Or, it can be used to recover hydrogen from high-pressure hydro-desulfurization units in oil refineries. The process has been put to work in a commercial plant and has been operating since Oct 68. It boosts carbon monoxide concentration from about 30% to more than 80%, turns out hydrogen in 90%-plus concentration.

(SEPARATION, GAS)

H73 23408 SEPARATION OF BINARY MIXTURES OF CO AND H₂ BY PERMEATION THROUGH POLYMERIC FILMS

The pure gas permeability coefficients of various polymeric materials to carbon monoxide and hydrogen were determined, and the most promising of these were tested as separation membranes using binary mixtures of the gases.

(SEPARATION, MEMBRANE)

H73 23409 ULTRA-PURE HYDROGEN OBTAINED BY STEAM REFORMING AND MOLECULAR SIEVE ADSORPTION
Anon, Process Engineering, Nov 72, p 11

The process is conventional, with desulphurization followed by reforming in a cylindrical furnace, quenching and shift conversion. After cooling, the impurities (CO, CO₂, CH₄, and N₂) are removed by passing the gas over a fixed bed containing a combination of adsorbents - mainly of the molecular sieve type.

(DESULPHURIZATION, REFORMING, CONVERSION)

H73 23410 HYDROGEN RECOVERY PROCESS
Anon, (Petrocarbon Developments Ltd.), Hydrocarbon Process & Petroleum Refiner, V 44:226 Nov 65

Process for recovering hydrogen contained in off-gas streams such as those occurring in the ammonia synthesis, petroleum refining and petrochemical industries.

The process may also be adapted to alloy the recovery of very high purity argon from ammonia synthesis purge gas.

(AMMONIA, REFINERY, PETROCHEMICAL, PURITY)
H73 23411 NEW HYDROGEN RECOVERY ROUTE

Large-scale hydrogen recovery units, based on diffusion through palladium barriers, are in operation; detailed description of several of these units and of their costs, as well as research, development and engineering activities in this field are given.
(DIFFUSION, PALLADIUM, COST)

H73 23412* HYDROGEN PURIFICATION USING A MODIFIED FUEL CELL PROCESS

A new technique for purifying H\textsubscript{2} streams to obtain high purity H\textsubscript{2}, an outgrowth of fuel cell research, is based on the use of electrochemical cells using highly efficient catalytic electrodes. Impure hydrogen is consumed at the anode of the cell and purified hydrogen generated at the cathode. By the application of a small potential across the electrodes of this cell, it is possible to ionize H\textsubscript{2}, and only H\textsubscript{2}, at the anode and simultaneously to produce an equivalent amount of H\textsubscript{2} at the cathode. The impurity gases pass over the anode unreacted and are discharged from the system. Data show the polarization characteristics of the electrodes in the presence of pure hydrogen, as well as the effect of gaseous diluents from which the "efficiency" of H\textsubscript{2} removal from the charge stream can be calculated. H\textsubscript{2}S and CO are electrode poisons, although the effect of CO is transient.
(ELECTROCHEMICAL, CATALYST, ANODE, POLARIZATION, EFFICIENCY)

H73 23413 HYDROGEN PURIFICATION
Anon, (Linde Division of Union Carbide), Hydrocarbon Process, V 48:188 N11 Nov 69

A pressure swing adsorption process for applications requiring an ultrahigh purity hydrogen product (99.999+%), from any hydrogen bearing stream containing any or all of the following impurities: NH\textsubscript{3}, A, H\textsubscript{2}O, CH\textsubscript{4}, CO, CO\textsubscript{2}, H\textsubscript{2}S, N\textsubscript{2}, C\textsubscript{2}S, C\textsubscript{3}S, C\textsubscript{4}S and C\textsubscript{5}S. A minimum feed pressure of 150 psig is required for operation. Pressures above
600 psig become uneconomical. Feed temperatures are in the range of 40°F to 100°F.

(ADSORPTION, AMMONIA, HYDROCARBON, PRESSURE, TEMPERATURE)

H73 23414 HYDROGEN PURIFICATION PLANT FOR BENZENE MANUFACTURE
Kimura, S., and A. Numata, Hitachi Review, V 19:415-20 N11 70

The hydrogen purification plant supplied to the Mizushima Works of Kawatetsu Chemical Industry Company is designed to recover hydrogen by low-temperature separation using off-gas from a benzene manufacturing plant.

(DESIGN, RECOVERY, CRYOGENIC, SEPARATION)

H73 23415 FULLY INTEGRATED HYDROGEN DIFFUSION SYSTEM
Matlack, G.L., Platinum Metals Review, V 13:26-7 N1 Ja 69

Principle of hydrogen diffusion through silver-palladium alloy membrane, developed by Matthey Bishop Inc., over past few years, is now being applied to complete systems for processing steam-reformed hydrocarbons and hydrogen-rich gas mixtures as well as commercial purity hydrogen: unit consists of ammonia dissociator, dissociated ammonia compressor and diffusion system with controls, with anhydrous ammonia bulk storage system provided by ammonia supplier.

(PALLADIUM, MEMBRANE, STEAM REFORMING, HYDROCARBON, AMMONIA, DISSOCIATION, STORAGE)

H73 23416 LOW PURITY HYDROGEN UPGRADER
Anon, (Linde division of Union Carbide), Hydrocarbon Process & Petroleum Refiner, V 44:236 Nov 65

A process to recover and upgrade the hydrogen in refinery or petrochemical off-gas streams. Hydrogen product purities can range from 90 to 98 percent.

(RECOVERY, REFINERY, HYDROCARBON, PETROCHEMICAL)

H73 23417 HYDROGEN PRODUCTION AND PURIFICATION BY DIFFUSION PROCESS
Serfass, E.J., and H. Silman, Chemical Engineering, N192:CE266-71 Oct 65, Avail:TAC

Ultrapure hydrogen can be separated from gases containing hydrogen by diffusion through palladium silver
alloy tubes at temperatures of 350 to 400 C and differential pressures of about 180 psi; alloy used contains about 25% silver, which has effect of preventing phase transformation leading to breakdown of pure palladium membranes in presence of hydrogen; combined electrolysis-diffusion cells can also be used for separation of hydrogen in ultra-pure form by diffusion through palladium membrane which acts as electrode during electrolysis.

(SEPARATION, PALLADIUM, PRESSURE, TEMPERATURE, MEMBRANE, ELECTROLYSIS)

H73 23418 TRENnung und reinigung von Wasserstoff durch permeation an Membranen aus palladium-Legierungen
Darling, A.S., Chemie-Ingenieur-Technik, V 37:18-27 N1 Ja 65
Separation and purification of hydrogen by permeation through membranes made of palladium alloys; pure hydrogen can be separated from mixtures of gases by diffusion through membranes made of palladium or palladium/silver alloys; construction, efficiency, and output of diffusion cells intended for commercial use, and of electrolytic diffusion cells used for production of fairly small quantities of hydrogen are discussed; process is also suitable for separating hydrogen/deuterium mixtures.
(DIFFUSION, ELECTROLYTIC, EFFICIENCY, PRODUCTION, DEUTERIUM)

H73 23419 Fractionation of air or hydrogen-containing gas mixtures
Kessler, G. and W. Scholz, (Linde A.-G.), British 1,073, 570, Je 28 '67, German Appl. May 19 '65
In the fractionation of air with the associated fraction of a H-containing gas mixture, a portion of the gaseous N withdrawn from a rectification column used for the fractionation of air was compressed to a high pressure at room temperature. Upon cooling to room temperature, it was used to wash the H-containing gas mixture (the constituents which are not easily condensed), and a portion of this was also compressed to a high pressure at room temperature and then cooled down and made to expand into a rectification column.
(NITROGEN, PRESSURE, SEPARATION, FRACTIONATION)
RESEARCH STUDIES ON SOLID HYDROGEN PURIFICATION MEMBRANES

The permeation rate of hydrogen through tantalum coated with a thin film of palladium was measured over the temperature range 400-600°C and at pressures up to 175 psia. The permeation rate is substantially greater than that through pure palladium membranes of the same thickness under the same conditions.

(PURIFICATION, MEMBRANE, METAL FILM, CATALYSIS, ADSORPTION, DIFFUSION, PERMEABILITY)

HYDROGEN PURIFICATION AT LOW TEMPERATURES
Foerg, W., (Linde AG, Werksgruppe, Munich, West Germany), Chemical Process Engineering, V 52:57-9, 61, 63, 68.

The extraction and purification of hydrogen from process gas streams containing hydrogen - e.g., dealkylation recycle gas, synthesis gas, hydrogen/helium mixtures - are most efficiently carried out at low temperatures. Process techniques employed include partial condensation, absorption, and scrubbing with nitrogen or liquid methane.

(EXTRACTION, SYNTHESIS GAS, HELIUM, TEMPERATURE, CONденSATION, ABSORPTION, NITROGEN)

PALLADIUM DIFFUSION YIELDS HIGH-VOLUME HYDROGEN
Anon, Chemical Engineering, V 72:36+ Mar 1 '65, Avail:TAC

Breakthrough in diffuser design puts palladium separation into large-scale, high-purity hydrogen recovery for the first time.

(SEPARATION, DIFFUSION)

CRYOGENIC RECOVERY OF HYDROGEN FROM AMMONIA SYNTHESIS GAS

The recovery of ammonia and hydrogen-enriched gas from ammonia synthesis purge gas at high pressure may be achieved without the use of external refrigeration. The purge gas is cooled to nearly the freezing point of
ammonia to condense and thus separate ammonia from the
purge gas. The refrigeration for condensing ammonia
is produced by work-expanding the purge gas after am-
monia condensate has been removed therefrom. Thereafter,
the purge gas is further cooled so that gaseous impurities
such as methane and argon are condensed and separated to
leave a hydrogen-enriched gas suitable for recycling to
the ammonia synthesis. The refrigeration for condensing
the gaseous impurities is produced by work-expanding the
product hydrogen-enriched gas.
(REFRIGERATION, SEPARATION, CONDENSATION, METHANE, RECYCLE)

H73 23424 HYDROGEN PURIFICATION
Meisler, J., (Teaneck, N.J.), G.C. Banikiotes, (Seaford, N.Y.),
and E.H. Van Baush, (Pearl River, N.Y.), (Assignors to
No. 3,691,779
A high purity, 97 to 99.9 percent hydrogen product
is obtained by using a separation process consisting of
a low temperature refrigeration system operating below
120°R, and an adsorption system operating on an adiabatic
pressure-swing principle within the temperature range of
200° to 140°R.
(ADSORPTION, SEPARATION, HYDROCARBON, CONDENSATION,
REGENERATION)

H73 23425 PURIFICATION OF HYDROGEN BY MEANS OF LOW
TEMPERATURES
Foerg, W., (Linde Representative), Science Technology,
V 15:18-26 70
Low-temperature techniques are eminently suitable for
recovering hydrogen of high purity from gas mixtures con-
taining hydrogen. Three processes are available; conden-
sation, absorption and freezing-out.
(CHEMICAL, CONDENSATION, ABSORPTION, ADSORPTION, REGENER-
ATION, REFRIGERATION)

H73 23426 BLEED BURNING HYDROGEN PURIFIERS
Rubin, L.R., Engelhard Industries - Technology Bulletin,
V 9:10-13 Nl Je 68
Needs for laboratory hydrogen purifiers in 1 to 2
cu ft/hr range are presently being met by using scaled
down versions of larger commercial permeation units; units described are distinguished from other commercially available small purifiers in their fast start-up and independence from electrical power.
(PURIFICATION, PERMEATION)

H73 23427 HYDROGEN RECOVERY TAKES ON NEW LUSTER IN SOME PLANTS
Waste gases may be the most economical source when extra hydrogen is required.
(RECOVERY, WASTE, GAS)

H73 23428 PRESSURE-SWING ADSORPTION
Details of a newly-developed "pressure-swing" process which can process hydrogen-bearing streams to provide a high-purity hydrogen product containing 1 to 2 ppm total impurities.
(PURIFICATION, HYDROGEN, AMMONIA, WATER, METHANE, DIFFUSION, PALLADIUM)

H73 23429 NEW ADSORPTION PROCESS PRODUCES HIGHER-PURITY HYDROGEN
Anon, Iron & Steel Engineering, V 45:127 Fe 68
Pressure-swing adsorption produces 2,500,000 cu ft/day of hydrogen.
(ADSORPTION, PROCESS)

H73 23430 SEPARATION PLANT FOR PURE HYDROGEN
Anon, Engineering, V 198:646 Nov 20 '64
Heated palladium-silver alloy membranes produce 3000 cu ft/hr of hydrogen.
(SEPARATION, PALLADIUM)

H73 23431 PERMEATION METHOD RECOVERS HYDROGEN
Anon, The Oil and Gas Journal, Mar 23 '70
A possible commercial breakthrough in synthesis-gas processing and hydrogen recovery has been announced by Du Pont.
The process basically filters gases through bundles of polyester fibers to recover hydrogen and/or carbon monoxide.
The process, called Permasep, will separate hydrogen from carbon monoxide, nitrogen, methane, and heavier hydrocarbons.

(SEPARATION, PERMEATION)

H73 23432 HYDROGEN PURIFICATION
Anon, (Union Carbide Corp., Linde division), Hydrocarbon Process, V 51:221 Sept 72

For commercial production of hydrogen product of any purity level from a hydrogen bearing stream. It may be used to remove impurities of: \(\text{NH}_3, \text{A}, \text{H}_2\text{O}, \text{CH}_4, \text{CO}, \text{CO}_2, \text{H}_2\text{S}, \text{N}_2, \text{C}_2-\text{C}_5 \).

(PURIFICATION)

H73 23433 HYDROGEN RECOVERY FROM REFINERY WASTE GASES

Rather pure \(\text{H} \) is recovered from mixtures containing chiefly \(\text{H} \) and \(\text{CH}_4 \) together with significant amounts of \(\text{C}_2-\text{3} \) hydrocarbons and small amounts of higher hydrocarbons. The process involves stepwise condensation of the hydrocarbons.

(PURITY, HYDROCARBON, CONDENSATION, CRYOGENIC)

H73 23434 SEPARATION OF CONCENTRATED HYDROGEN FROM A METHANE-HYDROGEN FRACTION OF PYROLYSIS GAS

\(\text{H} \) was separated at -80\(^\circ\) and 30 atmosphere from gas containing \(\text{H} \, 23, \text{CH}_4 \, 73.9, \) and \(\text{C}_2\text{H}_4 \, 2.3 \) mole \%, using liquid \(\text{C}_2\text{H}_6 \) as absorbent.

(SEPARATION, PYROLYSIS)

H73 23435 PROCESS FOR SEPARATING GASEOUS COMPONENTS FROM GASEOUS MIXTURES
Anon, (Esso Research and Engineering Co.), Netherlandish Appl. 6,602,141, Aug 22 '66, U.S. Appl. Fe 19 '65

A cyclic process is described for separating and purifying \(\text{H} \) and (or) \(\text{N} \) gas, used in \(\text{NH}_3 \) synthesis, from components more soluble in water such as \(\text{NH}_3, \text{H}_2\text{O}, \text{CO}_2, \) and \(\text{CH}_4 \).

(PURIFICATION, NITROGEN, AMMONIA, WATER, METHANE)
PROCESS AND APPARATUS FOR PURIFYING LOW-BOILING GASES IN GAS MIXTURES
Baldus, W., (Linde A.-G.), British 1,105,925, Mar 13 '68, German Appl. Je 5 '64

Purification of gases such as H, He, or Ne from impurities such as N, CO, and CH₄ is accomplished by a series of adsorbing chambers containing silica gel. In addition, the gas is cooled in various stages in the process.

(PROFIRIFICATION, ADSORPTION)

PROCESS AND APPARATUS FOR REMOVING IMPURITIES FROM HYDROGEN-CONTAINING GASES

A low-temperature process for the fractionation of H-containing gases containing substantial quantities of H, CH₄, and high-boiling gases having m. ps. higher than the boiling point of CH₄ has been developed.

(TEMPERATURE, PURIFICATION)

CONCENTRATION OF HYDROGEN BY CRYOGENIC PROCESSES
Streich, M., (Messer Griesheim G.m.b.H., Frankfurt/M., Germany), DECHEMA Monograph, V 58:195-204 N1027-1044, 68

The preparation of H of varying purity from H-bearing gases from refineries and petrochemical plants is described. Cost figures for the production of H at 95 mole % purity are given.

(PRODUCTION, PURITY, REFINERY, PETROCHEMICAL, COST)

SEPARATION OF HYDROGEN FROM OTHER GASES
Hope, J., (International Nickel Ltd.), British 1,152,283, May 14 '69, Appl. May 17 '67, Addition to British 1,090,479

A high-pressure absorption/low-pressure desorption cycling technique is described for the separation of H₂ from a gaseous mixture containing at least 50% H₂, e.g. a 75% H₂ + 25% N₂ mixture.

(PRESSURE, ABSORPTION, DESORPTION, AMMONIA, PALLADIUM)

LOW-TEMPERATURE REGENERATION OF HYDROGEN FROM INDUSTRIAL GASES

The exit gases from NH₃ synthesis and catalytic reforming of petroleum fractions contain up to 50% volume
H. To recover the H either as a fuel or for the recycle gas, a low-cost separation process is essential. (AMMONIA, CATALYST, REFORMING, RECYCLE, COST, FUEL, SEPARATION)
FORMATION OF HOT HYDROGEN OR DEUTERIUM ATOMS
BY PHOTOLYSIS OF ORDINARY OR DEUTERATED WATER VAPOR

A study was made of photodecomposition of water vapor with radiation of 1850, 1470, and 1236 A. The effects of the additions of H or O were determined. Mixtures of H2O + D2 and D2O + H2 were irradiated. The ratios H2/HD or D2/HD are a linear function of 1/D2 or 1/H2, respectively. The slopes of these functions are dependent on time for the isotopic system considered and on the phonon energy. The variations observed are attributed to changes in the rate constants. Therefore, it is concluded that the atoms formed have significant kinetic energies which are a function of the wavelength of the radiation. Only radiation at 1236 A. is energetically capable of causing the reaction H2O (or D2O) + hv = H2 (or D2) + O. Higher O pressures are needed at 1236° A. to reduce the H2 pressure formed directly upon decomposition.

(PHOTODECOMPOSITION, ENERGY, RADIATION, PRESSURE)

PRIMARY PRODUCTS OF LIQUID WATER PHOTOLYSIS
AT 1236, 1470, AND 1849 A.

Liquid H2O at 25-8° was irradiated in the vacuum uv at different wavelengths. A Kr resonance lamp (1 mm. pressure), whose gas discharge was produced by a microwave generator was equipped with a CaF2 window and a liquid N2 trap to give radiation at 1236 A. For 1470 A., a Xe resonance lamp, similar to the above lamp, was used with a liquid O2 trap and a sapphire window. A low-pressure Hg lamp was used for 1849 A. emission. At 1236 and 1470 A., eaq was probably formed in addition to H and OH radicals. H* and OH* were scavenged by formate and eaq and H2O* by CO2. Quantum yields are given and reaction mechanisms are discussed.

(HYDROGEN, PRODUCTION, RADIATION, MECHANISM)
INVESTIGATION FOR THE PURPOSE OF IMPROVING THE EFFICIENCY OF UTILIZATION OF SOLAR ENERGY BY THE DECOMPOSITION OF WATER INTO HYDROGEN AND OXYGEN

The sensitized photo-decomposition of water has been studied, with the purpose of improving its efficiency as a means of solar energy conversion. A number of metallic cations and other materials were tested for sensitizer activity and of these only ceric, thallic, ferrous, iodide, and chromous ions do sensitize the reaction; the former two to yield oxygen, the latter three, hydrogen. In no case was the simultaneous production of hydrogen and oxygen observed. Quantum yields were determined, with substantial conversion of the sensitizer, and found to be the order of 10^{-2} to 10^{-4}. Initial yields were much higher. With the known sensitizers, this reaction does not utilize a sufficient fraction of the solar spectrum to be practical as a means of solar energy conversion.

Several mixtures of ions and also various solid materials as additives to sensitizer solutions were tested for their influence on sensitizer activity. In every case, it was found that the quantum yield was the same as or lower than with the sensitizer alone.

Ceric ions oxidize water to yield oxygen in the dark at elevated temperatures. The thermal reaction is catalyzed by platinized platinum whereas the photochemical reaction is not. Apparently the ceric-water reaction proceeds thermally and photochemically by different mechanisms.

An experimental study of the ultraviolet and visible absorption spectrum of ceric ions was undertaken to determine the nature of the species in solution and which species participate in the photochemical reaction. While no conclusions can be reached, the ceric spectrum was found to be very dependent upon ceric and acid concentrations, indicating that hydrolysis and other reactions occur.

The development of a theory to predict the energies and probabilities of ion-ligand electron transitions in aqueous solutions was begun. The theory has been successfully applied to the hydrogen and water molecules but was not sufficiently developed to apply it to solutions.

It is recommended that further studies should continue on the basic aspects, chemical species and mechanism, of the reaction.

(SENSITIZER, CONVERSION, OXIDATION, TEMPERATURE, CATALYST, PHOTOCHEMICAL, MECHANISM)
ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE
Honda, K., Nature, V 238, Jl 7 '72

Although the possibility of water photolysis has been investigated by many workers, a useful method has only now been developed. Because water is transparent to visible light it cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.

For electrochemical decomposition of water, a potential difference of more than 1.23 V is necessary between one electrode, at which the anodic processes occur, and the other, where cathodic reactions take place. This potential difference is equivalent to the energy of radiation with a wavelength of approximately 1,000 nm. Therefore, if the energy of light is used effectively in an electrochemical system, it should be possible to decompose water with visible light. Here we describe a novel type of photoelectrochemical cell which decomposes water in this way.

(DECOMPOSITION, RADIATION, ENERGY, VOLTAGE, ANODE)

CONVERSION OF SUNLIGHT INTO CHEMICAL ENERGY AVAILABLE IN STORAGE FOR MAN'S USE
Heidt, L.J., and A.F. McMillan, (Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass.), Science, V 117, Ja 53

It has been established that the key reactions in the simple photochemical process can take place concurrently in a water solution of cerous and ceric ions - namely, the production of hydrogen gas by that part of the light absorbed by the cerous ions thereby oxidized to ceric ions, and oxygen gas by that part of the light absorbed by the ceric ions thereby reduced to cerous ions.

No attempt was made in the experiments reported there to determine the main reaction or the details of the mechanisms of the reactions in the system or the efficiency of the process, or to collect all the gas produced or to carry out the process under the most favorable conditions. Work on these problems, especially the last one, in sunlight is under way.

(HYDROGEN, PRODUCTION, OXYGEN, OXIDATION, ENERGY)

"PHOTOCHEMISTRY"

A general treatment of photochemistry in which terms
such as quantum yield, photochemical reactions, light absorptions are defined.

(QUANTUM, YIELD, PHOTOCHEMISTRY, LIGHT)

H73 23606 GROSS AND NET QUANTUM YIELDS AT 2537 A. FOR FERROUS TO FERRIC IN AQUEOUS SULFURIC ACID AND THE ACCOMPANYING REDUCTION OF WATER TO GASEOUS HYDROGEN

Gross, ϕ_g, and net, ϕ_n, quantum yield measurements have been made for the photochemical conversion by light of 2537 A. of up to 1.4% of the ferrous to ferric sulfate and of the accompanying production of gaseous hydrogen in aqueous sulfuric acid at 25. In each solution ϕ_g decreased as the reaction progressed but ϕ_n remained constant. In the different solutions ϕ_n remained at 0.4 between 0.1 and 0.8 M ferrous sulfate in 2 M H_2SO_4 but increased from 0.16 to 0.74 between 0.15 and 6.0 M sulfuric acid. The data support the hypothesis that in 2 M and more dilute sulfuric acid ferrous sulfate exists mostly as ion pairs which in 6.0 M sulfuric acid are partly replaced by contact ferrous sulfate complexes.

(QUANTUM, YIELD, REDUCTION, WATER)

H73 23607 PHOTOCHEMISTRY OF CERIUM PERCHLORATES IN DILUTE AQUEOUS PERCHLORIC ACID

The photochemistry of cerium perchlorates in dilute aqueous perchloric acid is of interest in connection with the problem of the utilization of solar energy because it has led to the discovery of a way to decompose water photochemically into hydrogen and oxygen, thereby converting light into chemical energy available in storage. The purpose of this article is to record the steps which led to the discovery of this process and to present the over-all reactions, the nature of the photochemical and thermal reduction of ceric to cerous ions in these solutions whereby water is oxidized to oxygen gas, and the nature of the photochemical oxidation of cerous to ceric ions whereby water is reduced to hydrogen gas.

(PHOTOCHEMISTRY, OXIDATION, SOLAR, REDUCTION, WATER)
III. UTILIZATION
RECENT NASA EXPERIENCE WITH HYDROGEN ENGINES

Review of experience obtained to date in the development program of the liquid hydrogen J-2 and RL10 rocket engines. The configuration, performance, and operation of each engine are discussed. Progress in areas unique to hydrogen-burning engines, and to cryogenic engines in general, which must operate in a space environment, is described.

(LIQUID, ENGINE, SPACE)

3-KILOWATT CONCENTRIC TUBULAR RESISTOJET PERFORMANCE

The design and fabrication are described for a resistojet, the performance of which, during a 25-hr. test with H as a propellant, was a vacuum sp. impulse of 840 seconds and a thrust of 66.5 g force for 3.0-kw. electrical power input.

(JET, PERFORMANCE)

EXPERIMENTAL INVESTIGATION OF ACOUSTIC LINERS TO SUPPRESS SCREECH IN HYDROGEN-OXYGEN ROCKETS

An investigation of suppression of high frequency combustion instability using Helmholtz type acoustic damping devices was conducted in a hydrogen-oxygen rocket of nominally 20,000-pound thrust size.

(ROCKET, COMBUSTION)

COMPARISON OF SMALL WATER-GRAPHITE NUCLEAR ROCKET STAGES WITH CHEMICAL UPPER STAGES FOR UNMANNED MISSIONS

Payload performance and the radiation environment
characteristics of this small reactor type (200-600 Mw.) in a nuclear upper stage are considered. Payload dose criteria indicate that any shielding requirement would be based on propellant heating considerations. Several approaches to propellant heating, including subcooled or slush H propellant and shielding, are compared.

(NUCLEAR, ROCKET)

H73 30004 GAS CORE NUCLEAR REACTOR
Rom, F.E., (United States National Aeronautics and Space Administration), U.S. 3,574,057, Apr 6 '71, Avail: TAC

This reactor design provides improved and simplified means for injecting coolant into the core while cooling the moderator. The energy generated by the fissioning process is thermally-radiated to H which flows around this U mass. The H is introduced through pervious walls with seed material entrained so as to render the H opaque to the thermal radiation emanating from the fissioning gas. The heated H passes through a nozzle to produce thrust.

(GAS, NUCLEAR, REACTOR)

H73 30005 INVESTIGATION OF GASEOUS NUCLEAR ROCKET TECHNOLOGY

A feasibility study was made of a gaseous nuclear rocket engine concept: the closed-cycle nuclear light bulb engine. This engine is based on the transfer of energy by thermal radiation from gaseous nuclear fuel suspended in a neon vortex through an internally cooled transparent wall to seeded hydrogen propellant.

(GAS, NUCLEAR, ROCKET)

H73 30006 POODLE RADIOISOTOPE PROPULSION TECHNOLOGY

The operating characteristics and applications of Poodle, a low thrust propulsion device which utilizes an alpha- or beta-emitting radioisotope to heat H to high temperatures and exhaust velocities, are discussed.

(ROCKET, TEMPERATURE)
H73 30007 ANALYSIS OF TOPPING AND BLEED TURBOPUMP UNITS FOR HYDROGEN-PROPELLED NUCLEAR ROCKETS
Evans, D.G., and J.E. Crouse, (National Aeronautics and Space Administration, Lewis Research Center, Cleveland, O.), N66-39615, NASA-TM-X-384, Washington, Je 60, CFSTI: HC $2.00/MF $0.50, Avail:TAC

The turbopump units analyzed were a bleed, a hot-topping (full-flow turbine), and a cold-topping unit. The types of configuration required and their effect on rocket gross weight were investigated. The scope of the analysis did not include the effects of the turbopump configurations on the weights of associate components, such as the reactor.
(NUCLEAR, ROCKET)

H73 30008 INVESTIGATION OF THE EIGHT-STAGE BLEED-TYPE TURBINE FOR HYDROGEN-PROPELLED NUCLEAR ROCKET APPLICATIONS. 1: DESIGN OF TURBINE AND EXPERIMENTAL PERFORMANCE OF FIRST TWO STAGES
Rohlik, H.E., (National Aeronautics and Space Administration, Lewis Research Center, Cleveland, O.), N66-39613, NASA-TM-X-475, Washington, May 61, CFSTI: HC $2.00/MF $0.50, Avail:TAC

Design information includes work division among stages, aerodynamic design, and blade geometry. Turbine performance is presented in terms of specific work, speed, weight flow, and efficiency with the effect of the second stage on first-stage performance at design operation included.
(TURBINE, NUCLEAR, ROCKET)

H73 30009 INVESTIGATION OF EIGHT-STAGE BLEED-TYPE TURBINE FOR HYDROGEN-PROPELLED NUCLEAR ROCKET APPLICATIONS. 11: EXPERIMENTAL OVERALL AND STAGE GROUP PERFORMANCE DETERMINED IN COLD NITROGEN
Rohlick, H.E., (National Aeronautics and Space Administration, Lewis Research Center, Cleveland, O.), N66-39612, NASA-TM-X-481, Washington, Mar 62, CFSTI: HC $2.00/MF $0.50, Avail:TAC

Over-all performance of four- and six-stage assemblies as well as the complete eight-stage turbine is presented in terms of efficiency, specific work, torque, and weight flow. Performance of the four two-stage groups within the eight-stage assembly is shown for design over-all conditions. Also included is a description of design modifications that could be made to improve performance.
over that obtained.

(TURBINE, NUCLEAR, ROCKET)

H73 30010 HYDROGEN-OXYGEN FIRED THERMIONIC GENERATORS AND THERMIONIC DIODES

The hardware described in this paper served to evaluate the state-of-the-art of thermionic flame-heated devices for use in a short (a few hours to a few days) space mission. The reactants available as fuel and oxidant in the mission were expected to be hydrogen and oxygen, and these same reactants were employed in this work. Two hydrogen-oxygen 50 watt generators and two spare thermionic diodes were built. Although the generators were successfully operated their efficiency was far below that initially expected.

(GENERATOR, THERMIONIC)

H73 30011 HYDROGEN-OXYGEN SPACE POWER INTERNAL-COMBUSTION ENGINE

Discussion of the effects of fuel characteristics, oxidizer characteristics, and storage conditions on the operating cycle and power-plant configuration of a hydrogen-oxygen internal-combustion piston engine under development for space power applications. The development program and problems are reviewed, including descriptions of experimental engines, design philosophy, and test methods, equipment, and results.

(SPACE, ENGINE)

H73 30012 EXPERIMENTAL RESEARCH ON ELECTRIC PROPULSION. NOTE VII: ANALYSIS OF THE PERFORMANCE OF AN ARCJET DRIVEN BY HYDROGEN AND NITROGEN

Description of experiments performed on a new type of arcjet, characterized by composite electromagnetic and vortex stabilization and propelled by hydrogen and nitrogen in turn. Particular attention was devoted to the electrical characteristics of the arc and to the loss of
heat through electrodes.
(ELECTRIC, ARCJET)

H73 30013 STABILIZING EFFECTS OF SEVERAL INJECTOR FACE BAFPLE CONFIGURATIONS ON SCREECH IN A 20,000 POUND-THRUST HYDROGEN-OXYGEN ROCKET

Experimental tests were conducted to assess the worth of injector face baffles as screech suppression devices. Hydrogen injection temperature was used to rate the stability of the various baffles.
(ROCKET, INJECTION)

H73 30014 SPACE SHUTTLE ENGINE

The rocket engines for both the booster and orbiter elements of the space shuttle will be throttleable high performance hydrogen/oxygen engines. Depending on the design, the orbiter may use two or three engines while the booster may require ten or more. As is the case with most space vehicle launch systems, the pacing item is the engine. The space shuttle main engine requirements and concepts, and the approach to development as presently envisioned are described.
(SHUTTLE, SPACE, ENGINE)

H73 30015 HYDROGEN-OXYGEN SPACE SHUTTLE ACPS THRUSTER TECHNOLOGY REVIEW

The generation of technology for injectors, cooled thrust chambers, valves, and ignition systems is discussed. The thrusters are designed to meet a unique and stringent set of requirements, including: long life for 100 mission reuses, high performance, light weight, ability to pro-
vide long duration firings as well as small impulse bits, ability to operate over wide ranges of propellant inlet conditions and to withstand reentry heating. The program has included evaluation of thrusters designed for ambient temperature and cold gaseous propellants at the vehicle interface.

(SPACE, SHUTTLE, ENGINE)

H73 30016 HYDROGEN-OXYGEN AUXILIARY PROPULSION FOR THE SPACE SHUTTLE. VOLUME 2: LOW PRESSURE THRUSTERS

An abbreviated program was conducted to investigate igniter, injector, and thrust chamber technology for a 10.3 N/cm² (15 psia) chamber pressure, 6660 N (1500 lbf) gaseous H₂/O₂ APS thruster for the Space Shuttle Vehicle. Successful catalytic igniter tests were conducted with ambient and cold propellants. Injector testing with a heat sink chamber (MR = 2.5, area ratio = 5.0) gave a measured specific impulse of 386 sec with 11% of the fuel used as film coolant. This coolant flow rate was demonstrated to be more than adequate to cool a spun adiabatic wall, flightweight thrust chamber.

(SPACE, SHUTTLE, ROCKET)

H73 30017 SPACE SHUTTLE HIGH PRESSURE AUXILIARY PROPULSION SUBSYSTEM DEFINITION STUDY

Effort in support of the high pressure H₂/O₂ auxiliary propulsion subsystem, the preliminary design, and the study approach and results are summarized.

(SPACE, SHUTTLE, PROPULSION)

H73 30018 SPACE SHUTTLE AUXILIARY POWER UNIT (APU)
Beremand, D.G., and H.M. Cameron, (National Aeronautics and Space Administration, Lewis Research Center, Cleveland, O.), Space Transportation System Technology Symposium, V 6:361-371, J1 70, Avail:NTIS, N70-40975, Avail:TAC

A program to develop the technology of a hydrogen-oxygen fueled auxiliary power unit (APU) for the space shuttle vehicle is discussed.

(SPACE, SHUTTLE, POWER)
Numerous candidate APU concepts are considered, each meeting the space shuttle APU problem statement. Evaluation of these concepts indicates that the optimum concept is a hydrogen-oxygen APU incorporating a recuperator to utilize the exhaust energy and using the cycle hydrogen flow as a means of cooling the component heat loads.

Auxiliary power units operating on hydrogen and oxygen have the potential for significantly improved performance and payload for the Space Shuttle vehicles.

Two- and three-stage (second stage expendable) shuttle vehicles, both having a hydrogen-fueled, turboramjet-powered first stage, are compared with a two-stage, VTOHL, all-rocket shuttle in terms of payload fraction, inert weight, development, cost, operating cost, and total cost.

Complete thermodynamic calculations for theoretically preselected fuels (kerosine, pentaborane, \(\text{N}_2\text{H}_4 \), symdimethyl-hydrazine, liquid H, Al, Mg, B, Be, Li, and LiH) permitted performance prediction.
H73 30023 ELDO FUTURE PROGRAM STUDY 3.2 ON AN ELDO B LAUNCHING SYSTEM WITH A STANDARD ENGINE OF 6-8 TONS OF THRUST
Anon, (Entwicklungspring Nord, Bremen, West Germany), N67-14266, Aug 31 '64, Avail:TAC

An investigation was conducted on the influence which the selections of a standard engine with 6 to 8 tons of thrust exerts on the performance of an ELDO B launch vehicle with two H₂/O₂ upper stages totalling 23 tons upper stage weight, including propellants and payload.

(ENGINE, THRUST)

H73 30024 ELDO FUTURE PROGRAMS, PRELIMINARY PROJECT LAUNCHERS B1 AND B2. STUDY NO. 3.5: A DETAILED DESCRIPTION OF THE CRYOGENIC STAGES
Anon, (Societe Pour l'Etude et la Realisation d'Engins Ballistiques, Courbevoie, France), N68-28533, Dec 22 '65, Avail:TAC

This report describes a project of liquid hydrogen/liquid oxygen stages for ELDO B1 and B2 launchers.

(ENGINE, THRUST)

H73 30025 HIGH ENERGY UPPER STAGES FOR ELDO VEHICLES

Describes the design characteristics and performance of high energy liquid hydrogen/liquid oxygen engines and considers their application as upper stages to possible future ELDO launch vehicles. Reviews work already done and outlines a development program.

(DESIGN, ENGINE)

H73 30026 THEORETICAL PERFORMANCES OF THE TRIERGOLIC ROCKET FUEL SYSTEM FLUORINE-LITHIUM HYDRIDE-HYDROGEN

Theoretical performances in the system F₂-LiH-H₂ were calculated.

(ROCKET, FUEL)
Results of a program encompassing an analytical, design, and experimental effort to establish the fundamental feasibility of the fluorine/lithium/hydrogen tri-propellant combination are reported.

Characteristic velocity efficiencies as high as 99 percent were obtained with gaseous hydrogen and liquid fluorine in short combustion chambers.

Two injectors were designed for use with an uncooled, segmented, calorimetric thrust chamber designed for 2500-pound thrust at the midpoint of the experimental matrix. One was a triplet pattern in which LF₂ doublets impinged upon a central showerhead GH₂ jet; and the other employed self-impinging LF₂ doublets, with showerhead GH₂ jets on each side of the spray fan. Particular attention was given to the procedures used to obtain the experimental data, and analyses were presented covering their reliability and precision.
EXPERIMENTAL PERFORMANCE OF A HYDROGEN-FLUORINE ROCKET ENGINE AT SEVERAL CHAMBER PRESSURES AND EXHAUST NOZZLE EXPANSION AREA RATIOS

The performance of a nominal-5000-pound-thrust hydrogen-fluorine rocket engine was evaluated over a range of mixtures from 6 to 20 percent fuel at chamber pressures from 60 to 725 pounds per square inch absolute with exhaust-nozzle area ratios of 3.7, 25, and 100. Performance near the theoretical maximum (97 percent) and stable combustion were obtained down to a chamber pressure of 60 pounds per square inch absolute at mixtures between 10 and 20 percent fuel.

(ROCKET, ENGINE, FUEL)

EXPERIMENTAL HYDROGEN-FLUORINE ROCKET PERFORMANCE AT LOW PRESSURES AND HIGH RATIOS

The performance of hydrogen and fluorine was evaluated in an altitude test facility at low chamber pressures in rocket engines having area-ratio-100 exhaust nozzles of three lengths.

(ROCKET, EXHAUST)

RESONANCE TUBE IGNITION OF HYDROGEN-OXYGEN MIXTURES

A method was found to render the rocket engine igniter system independent of ambient pressures by enclosing the nozzle gap in a can.

(IGNITION, MIXTURE)

EVALUATION OF SPEECH SUPPRESSION CONCEPTS IN A 20,000-POUND-THRUST HYDROGEN-OXYGEN ROCKET

An experimental investigation was conducted to determine the effects of (1) propellant injection radial dis-
tribution, (2) fluorine additive to the liquid oxygen, (3) extended oxidizer tubes, (4) porous injector faceplate, (5) nozzle area radial distribution, and (6) chamber wall film cooling on acoustical mode stability characteristics. Hydrogen injection temperature was used to rate the stability of the various designs. The combustor with the lowest self-triggering temperature was considered to be the most stable design.

(ROCKET, NOZZLE)

H73 30034 LONGITUDINAL INSTABILITY LIMITS WITH A VARIABLE LENGTH HYDROGEN OXYGEN COMBUSTOR

An experimental investigation determined the longitudinal-mode instability characteristics of a 10,000 pound thrust, 300 psi chamber pressure, hydrogen-oxygen engine that could be continuously stroked in length from 19 to 65 inches during operation. A baffle was used to inhibit the transverse modes. Increasing baffle length stabilized the longitudinal mode of instability. Decreasing the hydrogen-injection temperature was destabilizing.

(THRUST, INSTABILITY)

H73 30035 PERFORMANCE OF COAXIAL INJECTORS IN LIQUID OXYGEN-GASEOUS HYDROGEN
Sternfeld, H.J., (Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Lampoldshausen, West Germany, Institut fuer Chemische Raketenantriebe), N73-16779, Je 71, Avail:NTIS, Avail:TAC

Results of an experimental program for investigating combustion performance of variable thrust liquid oxygen/gaseous hydrogen rocket engines with coaxial injectors are presented.

(PERFORMANCE, ROCKET)

H73 30036 EFFECT OF THRUST PER ELEMENT ON COMBUSTION STABILITY CHARACTERISTICS OF HYDROGEN OXYGEN ROCKET ENGINES

The results obtained with a series of coaxial injectors on a oxygen-hydrogen rocket engine operated at a chamber pressure of 300 psia were analyzed to deter-
mine the effects of injector thrust per element on the combustion stability. The thrust per element ranged from about 20 to 2500 pounds. Based on the minimum hydrogen temperature for stable combustion, the combustion stability increased with increasing thrust.

H73 30037 EFFECT OF COMBUSTOR PARAMETERS ON THE STABILITY OF GASEOUS HYDROGEN-LIQUID OXYGEN ENGINE

Stability limits from the response factor model have been obtained for variations in chamber pressure, flow rate, throat area, and oscillation frequency for a fixed injector element geometry, and are compared with experimental data.

(COMBUSTION, STABILITY)

H73 30038 EFFECT OF CHAMBER PRESSURE, FLOW PER ELEMENT, AND CONTRACTION RATIO ON ACOUSTIC-MODE INSTABILITY IN HYDROGEN-OXYGEN ROCKETS

An experimental investigation of a 20,000-lb. thrust engine with a single coaxial-type injector was conducted to determine the effect of variations in chamber pressure, weight flow per element, and contraction ratio, by changing nozzle throat diameter on tangential-acoustic-mode stability characteristics of hydrogen-oxygen rocket engines.

(PRESSURE, FLOW, ROCKET)

H73 30039 AIR PRECOOLING BEFORE COMPRESSION EFFECT ON THE AIR BREATHING ENGINES OF A SPACE-CRAFT LAUNCH VEHICLE
Kuenkler, H., (Technische Hochschule, Aachen, West Germany), N73-13785, DGLR-Paper_72-60, 5th Annual DGLR Meeting, Berlin, Oct 4-6 '72, Avail:NTIS, HC $3.75

The effect of air precooling before compression on the propulsive efficiency of liquid hydrogen turbojet engines with afterburning was investigated for space shuttle applications. Precooling was reached by heat exchange with the liquid hydrogen fuel flow. The efficiency of this
type of engine was determined for the accelerated flight of an aerodynamic space shuttle with regard to the limiting Mach number, the thrust behavior, the thrust/engine weight ratio and the specific fuel consumption.

(COMPRESSION, SPACECRAFT)

H73 30040 AN EVALUATION OF LOX/HYDROGEN ENGINE TECHNOLOGY FOR ADVANCED MISSIONS
Anon, (California Univ., Riverside, Calif.), N71-36111, NASA-CR-121864, Je l '71, Avail:NTIS, Avail:TAC

The importance of engine and stage design criteria on the sizing requirements of the complete stage are quantitatively defined. They include engine parameter (i.e. chamber pressure, area ratio, and mixture ratio) optimization analyses for two engine cycles as a function of stage size and mission profile.

(ENGINE, DESIGN)

H73 30041 PERFORMANCE AND COMBUSTION CHARACTERISTICS OF CONTROLLABLE HIGH-ENERGY ROCKET PROPULSION SYSTEMS
Sternfeld, H.J., and J. Reinkenhof, Astronautik, V 9:5-11, Ja - Mar 72

Results of an experimental investigation program describing combustion performance of variable thrust rocket engines with emphasis on the liquid oxygen/gaseous hydrogen propellant combination and coaxial injector are presented. The performance parameters investigated are mixture ratio, combustion pressure, characteristic chamber length, number of injection elements, injection area ratio, and injection velocity ratio.

(COAXIAL, INJECTOR, VARIABLE THRUST)

H73 30042 OXYGEN/HYDROGEN COMPONENT TECHNOLOGY STATUS

The advanced technology applicable to oxygen/hydrogen systems for auxiliary propulsion systems and other high energy upper stage applications is being developed.

(OXYGEN, ENERGY)
H73 30043 ORBITAL INVESTIGATION OF PROPELLANT DYNAMICS IN A LARGE ROCKET BOOSTER
Experimental data on the dynamics of liquid hydrogen in the 6.6 m diameter tank of an S-IVB stage during boost, at S-IVB stage cutoff, and in orbit are presented. (TANK, SLOSHING, OSCILLATION)

H73 30044 DEVELOPMENT OF PULSABLE ATTITUDE CONTROL ENGINES FOR HYDROGEN AND OXYGEN
Pulkert, G., (Messerschmitt-Boelkow-Blohm G.m.b.H. Ottobrunn, West Germany), Presented at the 5th DGLR Annual Meeting, Berlin, Oct 4-6 '72, 19 p, Avail: NTIS HC $3.00, Avail:TAC
Two hydrogen-oxygen engines have been developed for space shuttle attitude control, and stationary or pulsed operation. The main characteristics of combustion chamber, injector head, spark igniter, and pulse valve, are described. (ENGINE, OXYGEN, COMBUSTION)

H73 30045 DYNAMIC PERFORMANCE OF LOW-THRUST, COLD-GAS REACTION JETS IN A VACUUM
Greer, H., and D.J. Griep, (Aerospace Corp., El Segundo, Calif.), Journal of Spacecraft Rockets, V 4:983-90 N8, 67,
The pulsed propulsive performance of low-thrust reaction jets, typical of those used for attitude control of small spacecraft, is analyzed and compared with the results of laboratory experiments on H, N, NH3, Freon-12, and Freon-14 by using a 48:1 expansion-ratio nozzle. The transient processes that dominate the short-pulse or limit-cycle mode of thruster operation are formulated. These relations show good correlation with the data. (PERFORMANCE, JET, SPACECRAFT)

H73 30046 PRATT & WHITNEY PICKED TO BUILD CRYOGENIC ROCKET ENGINE FOR LATE '70S USE
Taylor, H., Aerospace Technology, V 21:15 Ja 15 '68
The Air Force has initiated development of a high-pressure, high-energy reusable liquid hydrogen engine for flights in the 1975-'80 time period.
The engine will power both first and second stages, according to Air Force spokesmen. In its first stage configuration, it will be used in conjunction with large solid motor strap-ons to increase payload capability.

(ROCKET, ENGINE, CRYOGENIC)

H73 30047 THE SEPR ROCKET ENGINE - HM4 WITH LIQUID OXYGEN AND HYDROGEN - DESIGN AND OPERATION
de Claviere, G., (Association Francaise des Ingenieurs et Techniciens de l'Aeronautique et de l'Espace), Congres International Aeronautique, 9th, Paris, France, Je 2-4 '69

Description of a 40-kN cryogenic-propellant engine developed for the Diogenes rocket. The engine consists of four propulsion chambers fed by a single turbopump. The results of tests of the different parts (pump, propulsion chambers, and entire engine) are summarized. Problems arising from the nature of the fuel, the low temperature, and heat exchange are discussed. It is concluded that the results obtained allow the development of engines of any thrust for the European space program.

(DESIGN, ROCKET, ENGINE)

H73 30048 THEORETICAL PERFORMANCE OF ROCKET ENGINES USING GASEOUS HYDROGEN IN THE IDEAL STATE AT STAGNATION TEMPERATURES UP TO 200,000°C
Roback, R., (United Aircraft Corp., East Hartford, Conn.), AEC Accession No. 2868, Report No. NP-16339, 215 p, 66

Theoretical performance parameters for rocket engines utilizing normal gaseous H in the ideal state were calculated using 2 different assumptions: first, that the chemical compound remained in equilibrium during the isentropic expansion through the engine exhaust nozzle; and 2nd, that the chemical compound remained fixed (frozen) during the expansion.

(ROCKET, ENGINE, PERFORMANCE)

H73 30049 THE DEVELOPMENT OF THE S.E.P.R. HM4 ENGINE: A 40 KN THRUST LIQUID OXYGEN AND HYDROGEN ENGINE
Dardare, J., N68-15939, Presented at the ELDO Symposium on Propulsion, Paris, Oct 10-12 '67, CFSTI: HC $3.00/MF $0.65, Avail:TAC

Describes a liquid hydrogen/liquid oxygen rocket motor of 40 kN thrust with a tubular chamber is being
developed to increase the performance of the French Dio-
gene launch vehicle. Principal stages in its development
and the testing facilities employed are discussed.

(THRUST, ROCKET)

H73 30050 LARGE HYDROGEN-OXYGEN ABLATIVE CHAMBER TEST
PROGRAM
Kovach, R.J., J.A. Mellish, and R.W. Michel, (Aerojet-
General Corp., Sacramento, Calif.), Final Report N69-20193,
NASA-CR-72512, Mar 14 '69, Avail: CFSTI, Avail:TAC

A large-scale silica phenolic, ablative-lined com-
bustion chamber with a coaxial element injector having
baffles, was tested to ascertain duration capability
using the propellant combination of liquid hydrogen/
liquid oxygen.

(ABLATION, TEST)

H73 30051 ACOUSTIC SCALE-MODEL TESTS OF HIGH-SPEED
FLOWS
Smith, E.B., (Martin Co., Denver, Colo.), Final Report
N66-24587, NASA-CR-74596, Mar 66, 104 p, CFSTI: HC $4.00/
MF $0.75

The purpose of this contract was to conduct a scale
model test program to determine the acoustical field
generated by high-chamber-pressure, hydrogen-fueled
engines in various cluster configurations.

(TEST, FLOW, ENGINE)

H73 30052 ADVANCED PRESSURIZATION SYSTEMS FOR CRYOGENIC
PROPELLANTS
Anderson, J.E., O.L. Scott, and H.F. Brady, (Martin Co.,
Denver, Colo.), Final Report Nov 20 '63 - Je 25 '65, N67-
$3.00/MF $0.65, Avail:TAC

The purpose of this program was to select an opti-
mized pressurization system for a vehicle using cryogenic
propellants. Improvements in the method of analysis were
also developed and incorporated in the program. The
vehicle for study was an Apollo-type service module using
liquid hydrogen and liquid oxygen as propellants. Systems
of both pump-fed and pressure-fed engines were consid-
ered during the study with a final selection completed for
the pump-fed engine system.

(CRYOGENIC, PROPELLANT)
H73 30053 ANALYSIS OF A SUPERSONIC-COMBUSTION ROCKET CONCEPT
A preliminary analysis has been made of a super-
sonic combustion rocket engine concept using hydrogen and oxygen propellants. The ejector action of a separate small rocket motor is employed to pump the propellants to high stagnation pressures and supersonic velocities. (EJECTOR, SPECIFIC IMPULSE, TURBOPUMP)

H73 30054 FEASIBILITY STUDIES OF ROTATING DETONATION WAVE ROCKET MOTOR
Paper considers, analytically and experimentally, feasibility of rocket motor using detonation wave rotating in annular combustion chamber wherein propellants are introduced continuously through injectors and expelled through annular nozzle; experiments utilizing gaseous hydrogen and oxygen and gaseous methane and oxygen were conducted in annular rocket motor. (STUDY, ROCKET, MOTOR)

H73 30055 DESIGN AND FABRICATION OF SMALL H₂/O₂ ENGINES
Domokos, S.J., and G.L. Falkenstein, SAE Paper 700803 for meeting Oct 5-9 '70, 15 p
Candidate thrust chamber designs include channel wall, tubular or film-cooled single wall, with copper alloy for the chamber walls and nickel alloy or stainless steel for nozzle extensions. Injector designs that maximize thrust chamber performance while providing compatible heat transfer characteristics are necessary. (DESIGN, ENGINE)

H73 30056 DESIGN AND MANUFACTURE OF LIQUID HYDROGEN THRUST CHAMBER
Steer, T.E., Spaceflight, V 10 135-42 N4 Apr 68
Efforts made by Rolls-Royce Ltd in development and manufacture of two experimental liquid hydrogen thrust chambers, based on designs submitted under study contract in course of which engine thrust was uprated to 70 kN; general description and overall performance of complete thrust chamber unit comprising combustion chamber and nozzle assembly, injector and ignition source; major feature
of chamber unit requiring most design effort has been tubular cooling jacket, which extends from injector plane to below throat; other components and problems encountered. (DESIGN, THRUST)

H73 30057 PROPULSION BY LIQUID OXYGEN AND LIQUID HYDROGEN
Dardare, J., (Societe Etude Propulsion Reaction, Villejuif, France), Pure Application Cryogenic, V 5:135-57 66

A brief review of the properties of liquid H-0 propellant mixtures, applied to a discussion of the design of rocket engines in the U.S. and in France. (REVIEW, ROCKET, ENGINE)

H73 30058 EXPERIMENTS WITH HYDROGEN AND OXYGEN IN REGENERATIVE ENGINES AT CHAMBER PressURES FROM 100 TO 300 POUNDS PER SQUARE INCH ABSOLUTE

Tests were made with hydrogen and oxygen in regenerative thrust chambers of lightweight construction designed to give 20,000-pound thrust at a chamber pressure of 300 lb/sq in absolute. (THRUST, ROCKET, ENGINE)

H73 30059 DEVELOPMENT OF A HYDROGEN-OXYGEN SPACE POWER SUPPLY SYSTEM

Prototype component development and engine endurance tests are reported. The design, fabrication, and assembly of the engine are mentioned, and design diagrams of components are included. The endurance tests are reported, and tables of component and engine failures are presented. (SPACE, POWER, DESIGN)
DEVELOPMENT OF A 1,500,000-LB-THRUST (NOMINAL VACUUM) LIQUID HYDROGEN/LIQUID OXYGEN ENGINE
Apr 30 '62 - Aug 4 '66, CFSTI: HC $3.00/MF $0.65, Aug 30 '67

The M-1 engine configuration is one of opposed oxidizer and fuel turbopumps fed by two 19-in. suction lines located 180 degrees apart. The turbopumps are supported by tubular members with primary attachment points on thrust chamber injector flange and fuel distribution torus. Use of these support locations reduces engine weight but compromises thrust chamber design due to imposition of high unit loads. A major factor in the M-1 engine design was dynamic load predictions.

DEVELOPMENT OF LIQUID OXYGEN/LIQUID HYDROGEN PROPULSIVE UNIT WITH 300 N VACUUM THRUST
Seidel, A., (Boelkow G.m.b.H., Ottobrunn/Munich, Germany), Raumfahrtforschung, V 11:177-82.N4, 67

The development of a high-energy propulsive unit using liquid oxygen and liquid hydrogen is described. Theoretical calculations concerning propellants, burning efficiency of H-O and H-F combinations and the cooling effects were carried out electronically. Details of the expnl. set up and the development of the prototype from 1962 to 1966 are given.

PROTECTIVE COATING SYSTEM FOR A REGENERATIVELY COOLED THRUST CHAMBER

A ceramic coating system is desired for thermal protection of the thrust chamber wall in a high performance, liquid hydrogen/liquid oxygen fueled rocket engine. This heat barrier coating is intended to reduce the heat flux through the chamber wall, reduce the metal wall temperature to less than 1600°F, operate with a 4000°F surface temperature, and survive multiple engine starts.

COATING, PROTECTION, THRUST
H73 30063 DEVELOPMENT OF LO_2/LH_2 GAS GENERATORS FOR THE M-1 ENGINE
The current technology for a 120,000 horsepower liquid oxygen/liquid hydrogen gas generator that was successfully designed and tested for the M-1 engine program is summarized.
(GENERATOR, ENGINE)

H73 30064 EVALUATION AND DEMONSTRATION OF THE USE OF CRYOGENIC PROPELLANTS (OXYGEN/HYDROGEN) FOR REACTION CONTROL SYSTEMS. VOLUME 2: EXPERIMENTAL EVALUATIONS AND DEMONSTRATION
The feasibility of a catalytically ignited space-craft reaction control system using cryogenic (hydrogen-oxygen) propellants was experimentally demonstrated. The system studied utilized propellant conditioners to prepare the incoming propellants to a temperature and pressure acceptable to the thrustor.
(PROPELLANT, THRUST)

H73 30065 INVESTIGATION OF THRUSTERS FOR CRYOGENIC REACTION CONTROL SYSTEMS, VOLUME 1
An experimental and analytical program was conducted to evaluate the ignition characteristics and delivered performance of gaseous hydrogen oxygen reaction control thrusters. Specific goals were to establish design criteria for a pilot bed catalytic igniter and to define an operating map for reliable thruster ignition at two chamber pressure levels.
(THRUST, CRYOGENIC)

H73 30066 EXPERIMENTAL INVESTIGATION OF COMBUSTOR EFFECTS ON ROCKET THRUST CHAMBER PERFORMANCE
Anon, (Rocketdyne, Canoga Park, Calif.), N72-33738, NASA-CR-128318, Interim Report, Je 72, Avail: NTIS HC $8.00, Avail:TAC
A design and experimental program to develop special
instrumentation systems, design engine hardware, and conduct tests using LOX/GH2 propellants in which the propellant flow stratification was controlled is described.

(ROCKET, THRUST)

H73 30067 DESIGN OF LIQUID PROPELLANT ROCKET ENGINES

This book intends to build a bridge for the student and the young engineer: to link the rocket propulsion fundamentals and elements (which are well covered in the literature) with the actual rocket engine design and development work as it is carried out in industry. The book attempts to further the understanding of the realistic application of liquid rocket propulsion theories, and to help avoid or at least reduce time and money consuming errors and disappointments. It also attempts to digest and consolidate numerous closely related subjects.

(DESIGN, ROCKET, ENGINE)

H73 30068 NUCLEAR HEATING AND PROPELLANT STRATIFICATION

In order to obtain maximum vehicle performance for a nuclear system employing liquid hydrogen (H21), the vehicle must be designed to obtain optimized propellant utilization while minimizing system weight. A major problem encountered in this endeavor is caused by propellant heating.

(PERFORMANCE, OPTIMIZATION, WEIGHT)

H73 30069 EVALUATION AND DEMONSTRATION OF THE USE OF CRYOGENIC PROPELLANTS (OXYGEN/HYDROGEN) FOR REACTION CONTROL SYSTEMS. II. EXPERIMENTAL EVALUATIONS AND DEMONSTRATION

The feasibility of a catalytically ignited spacecraft reaction-control system using cryogenic (H-O) propellants was demonstrated exptl. The system studied utilized propellant conditioners to prepare the incoming propellants for a temperature and pressure acceptable to
the thruster. A portion of the propellants at a mixture ratio of 1.0 was passed through a catalyst bed. Additional 0 was injected into the hot fuel-rich gas. Exptl. results for the thruster and conditioner subsystems and a system demonstration are presented. Design criteria for the ultimate development of an operational system are also presented.

(CATALYSIS, THRUST, DESIGN)

H73 30070 CATALYSIS OF HYDROGEN-ATOM RECOMBINATION IN ROCKET NOZZLES

Use of gas-phase catalysis was suggested as means of enhancing hydrogen-atom recombination and hence performance of nuclear or electrically powered rocket engines; in present study use of oxygen and oxygen-nitrogen mixture as catalysts has been examined; results of calculations indicate that gas-phase catalysis leads to marginal increase in specific impulse; results of present studies and those of hydrogen-carbon system are used to establish minimum requirements which additive must satisfy to yield gain in specific impulse.

(RECOMBINATION, PERFORMANCE, SPECIFIC IMPULSE)

H73 30071 COMBUSTION AND HEAT TRANSFER IN A SMALL ROCKET CHAMBER BURNING LIQUID AND GASEOUS HYDROGEN

Results from a test program to study the practicability of gaseous hydrogen as a rocket fuel. Liquid oxygen and gaseous hydrogen were burnt in a chamber giving a nominal thrust of 450 lb. The construction of the motor and the analytical methods used are described. The test results are plotted and discussed.

(COMBUSTION, ROCKET)

H73 30072 DEVELOPMENT OF HYDROGEN-OXYGEN FUELED 3-KILOWATT INTERNAL-COMBUSTION ENGINE

The objective of this program was to convert the high
energy released by the combination of hydrogen and oxygen to useful power in a powerplant that had been well developed in conjunction with hydrocarbon fuels. The power package includes a single-cylinder engine, generator, gas compressor, and recuperator for transferring heat from the exhaust gases to the gaseous cryogenic propellants. The approach has been to design the test engine and other test components based on available engine technology and to proceed with experimental development based on the analysis of test results. Current development work on the engine is concerned with improving fuel consumption rates. Power levels from 1 to 5 hp have been achieved. (COMPRESSOR, RECUPERATOR, POWER)

H73 30073 DEVELOPMENT OF A HYDROGEN-OXYGEN INTERNAL COMBUSTION ENGINE SPACE POWER SYSTEM

The prototype engine development effort consisting of design studies, hardware, modifications, performance and endurance test evaluation, and the fabrication and procurement of new test equipment and instrumentation is discussed. Major design effort was concentrated on the oxygen injector, the hydrogen valve, the piston and cylinder, and the combustion chamber. Engine performance development resulted in a marked reduction in specific propellant consumption compared with past experience. (ENGINE, SPACE, POWER)

H73 30074 HIGH ENERGY ROCKET PROPELLANT RESEARCH AT THE NACA/NASA LEWIS RESEARCH CENTER, 1945-1960

History of rocket propellant research describing the use of hydrogen peroxide, oxygen, fluorine, diborane, hydrazine as rocket propellants. The final work used liquid hydrogen as a fuel with fluorine and oxygen as oxidizers. (HISTORY, ROCKET, LIQUID, HYDROGEN, OXYGEN, FLUORINE, PROPELLANT, FUEL)
ROCKETRY IN THE 1950'S

The report is a transcript of an AIAA Panel Discussion by leading men in the field of rocketry describing their experiences in the 1950's. A 196 reference bibliography by John L. Sloop is included.

(ROCKET, LIQUID, HYDROGEN, ENGINE)
H73 31000* AERONERGY: A NEW FRONTIER

The current status of the technology of utilizing liquid H in manned aircraft systems was surveyed. The progress in the development of hardware for liquid H propulsion systems, achieved in the past decade is outlined, as are the advantages which accrue from the use of liquid-hydrogen fuel. The economic and military considerations involved are examined.
(AIRCRAFT, PROPULSION, COST)

H73 31001* CRYOGENIC FUELS FOR AIRCRAFT
Esgar, J.B., (Lewis Research Center, Cleveland, O.), N71-19463, Avail:TAC

Exploratory research on the use of cryogenic fuels for airbreathing gas turbine engines is presented. The possible applications of liquid methane to a supersonic transport type aircraft and the application of liquid hydrogen to the airbreathing engines for recoverable boosters and orbiters for the space shuttle are discussed.
(SUPERSONIC, GAS TURBINE, SPACE, SHUTTLE)

H73 31002* HYDROGEN FUELED COMMERCIAL AIRCRAFT
Escher, W.J.D., (Escher Technology Associates), Astrotechnics & Aeronautics, Dec 72

Emerging as possibly the first transportation candidate to "get off the fossil-fuel standard" and use hydrogen is commercial aviation, if pilot studies NASA and airframe manufacturers have underway prove valid. For it now appears that liquid hydrogen fuel, with 2.75 times the gravimetric heating value of standard hydrocarbon fuels, will remarkably improve airplane performance, both subsonic and supersonic.
(STUDY, SUBSONIC, SUPERSONIC)

H73 31003 A CARBON DIOXIDE PURGE AND THERMAL PROTECTION SYSTEM FOR LIQUID HYDROGEN TANKS OF HYPERSONIC AIRPLANES
Jackson, L.R., and M.S. Anderson, (NASA Langley Research Center, Hampton, Va.), Advances in Cryogenic Engineering, V 12 66

Various thermal protection systems can be designed to give acceptable fuel heat load and prevent cryopumping.
of air. However, the weight and reliability of these systems vary greatly. Two possible approaches are being considered—gas-purging the system and sealing the system to exclude air from the tank walls.

It would appear desirable to have a thermal protection system that prevents large fuel loads and cryogenic pumping of air, but has neither the high weight of the helium-purged system nor the leak-free requirement of the evacuated systems. A study of structural concepts for hydrogen-fueled hypersonic vehicles at the Langley Research Center has provided a carbon dioxide concept that may offer such a thermal protection system.

(HYPERSONIC, AIRPLANE, PURGE)

H73 31004 AN EXPERIMENTAL AND ANALYTICAL EVALUATION OF THE THERMAL BEHAVIOR OF LIQUID HYDROGEN IN A TANK DESIGNED AND INSULATED FOR USE IN A HYPERSONIC VEHICLE

Yates, G.B., (General Dynamics/Convair, San Diego, Calif.), Advances in Cryogenic Engineering, V 12, 66

Attention has been focused in recent years on hypersonic flight. Numerous synthesis and systems studies have been conducted to define and optimize various airframe and propulsion concepts. Liquid hydrogen almost always evolves as the most desirable fuel because of its two inherent advantages, i.e., high heat capacity which provides needed coolant and high energy content per unit mass.

The overall program, from which the data presented are taken, is the development of a procedure for selecting an optimum tank installation in a hypersonic vehicle, and the design, fabrication and testing of an insulated flightweight liquid-hydrogen tank. The final test article will be a 6000-gal LH₂ tank of "double-bubble" intersecting cylinder construction. The basic tank structural material is 0.016-in. Inconel 718 alloy. The insulation is Microquartz, a high-silica fiber. It is used in a helium environment to prevent cryopumping. Insulation for the 6000-gal tank was optimized and resulted in a variable thickness around the circumference. The optimum operating pressure is 30 psia.

Tests are complete on a small scale, 2-ft-diameter 130-gal tank using the optimum insulation and operating pressure for the large tank. These test results are presented and compared with an analytical analysis developed
to support the tank optimization.
(SUPersonic, optimum, study, energy)

H73 31005 LIQUID HYDROGEN AS A SUPersonic transport FUEL
DuPont, A.A., (Garrett Corp., Los Angeles, Calif.), Advanced Cryogenic Engineering, V 12:1-10 67
The title subject was discussed with consideration of the effect of H properties on aircraft performance, high Mach number capability, the effect of fuel costs on operating economics, the effect of H on engine design and performance, H storage in aircraft tankage, design features of a H-fueled aircraft to achieve safety during normal operation, and the relative hazard of H fuel in a crash landing. H showed high potential as a fuel.
(PERFORMANCE, cost, storage, safety)

H73 31006 DETERMINATION OF THE CRUISE RANGE OF A HYDROGEN-FUELED, AIR-Breathing HYPERSONIC AIRCRAFT
The cruise range of a typical hydrogen-fueled, air-breathing, hypersonic aircraft is obtained for both a simple and a modified Breguet flight path. The analysis indicates that the modified Breguet flight path, in which the restriction of constant specific fuel consumption is relaxed (realistic variation with Mach number and altitude is permitted), results in a cruise range that is approximately three percent greater than that predicted by the simplified Breguet range equation. In either case, virtually semi-global range is obtained when the cruise range is superimposed upon the additional distance covered during climb and descent.
(SUPersonic, fuel, analysis, consumption)

H73 31007* PRELIMINARY APPRAISAL OF HYDROGEN AND METHANE FUEL IN A MACH 2.7 SUPersonic TRANSPORT
The higher heating value of hydrogen relative to JP fuel is estimated to reduce fuel weight by three fold and gross weight by 40 percent for comparable designed air-
planes of equal payload and range. Engine design parameters were varied to determine the influence of lower noise goals on gross weight and direct operating cost. At current fuel prices, the DOC of a hydrogen airplane would be much higher than that of a JP airplane. A methane airplane could offer an 8.5-percent lower KOC than JP. But future shortages may escalate the prices of both JP and methane, whereas the price of hydrogen manufactured hydrolytically could be reduced from present levels. If in the future all three fuels are postulated to have equal costs per unit of energy, the DOC for hydrogen could be as much as 20 percent below that for JP on the reference 4000-nautical-mile mission. Longer ranges or lower noise requirements would improve the advantage of hydrogen.

(PAYLOAD, RANGE, COST, NOISE)

The feasibility of cooling the first-stage turbine stator directly with cryogenic fuels was investigated based on a numerical heat transfer analysis of methane and hydrogen-cooled vanes. An insulation barrier between the fuel cooling passages and the external vane surface was required to prevent adverse cooling conditions. The cooling configuration analyzed was that of tubular cooling passages embedded in insulation material surrounded by an outer vane shell. The results indicate that the turbine stator vanes could be adequately cooled with methane or hydrogen fuel at a 2490 F (1639 K) local-hot-spot gas temperature.

(HEAT, TRANSFER, GAS TURBINE)

This paper reviews recent progress in the key hyper-
sonic technologies, which has been good despite a relatively low priority. Successful hypersonic research engine tests have been made. Active cooling system analyses have shown potential for weight savings, alleviation of structural design problems, and long airframe life. Maturing computerized flow field theories permit optimizing engine-airframe performance. Adequate progress in the future requires an expanded technology program emphasizing hydrogen usage. A hydrogen fueled hypersonic research airplane is essential, providing critical flight data and operational experience.

(H73 31010 EFFECT OF COMBUSTION GAS PROPERTIES ON TURBOJET-ENGINE PERFORMANCE WITH HYDROGEN AS FUEL

Simple adjustment of turbojet engine cycle calculations based on JP-4 fuel for the increase in heating value when hydrogen is substituted for JP-4 resulted in the following errors: Fuel specific impulse was as much as 3 percent high; thrust per unit airflow was as much as 5 percent low; and airflow per unit of turbine frontal area was as much as 1 percent low.

(SPECIFIC IMPULSE, THRUST, AIRFLOW)

H73 31011 DOD, AIRLINES FACE ENERGY CRISIS
Yaffee, M.L., Aviation Week & Space Technology, Nov 20 '72, Avail:TAC

Defense Dept. and U.S. airlines face a grim and growing fuel shortage for which there are no short-term solutions other than paying higher prices or importing more. U.S. government agencies and industry belatedly are marshaling their forces to find suitable solutions for the long term.

Most fuel people think the energy crisis will worsen. However, there are sources of energy other than oil and gas. All indigenous energy resources that can be developed should be developed and will be needed.

Liquid hydrogen appears to be the most promising aircraft fuel for 1990 and beyond, from energy, availability
and environmental viewpoints. Electricity produced by future nuclear reactors will be used to generate the hydrogen by electrolysis of water or some other process.

Large cargo aircraft with gross weights above 1 million lb. should be used to introduce the use of liquid hydrogen as an aircraft fuel.

Use of liquid hydrogen will not require any significant changes in powerplants that are expected to be high bypass ratio turbofans. Biggest changes will be in the aircraft fuel system design and in storage procedures.

(COST, AIRCRAFT, ECONOMIC, FUEL)

H73 31012* POTENTIALS AND PROBLEMS OF HYDROGEN FUELED SUPersonic AND HYPERSONIC AIRCRAFT

Current and projected air passenger travel trends, the growing concern over environmental protection, and the potential depletion of our fossil fuel reserves, when combined with the results of recent aeronautical research programs, leads to the consideration of liquid hydrogen fuel for transport aircraft. The use of liquid hydrogen fuel is shown to give superior range and/or payload capability as compared to JP fueled aircraft, at speeds from Mach 3 to 8. Supersonic combustion ramjet engines, having low cooling requirements, make available a large portion of the heat-sink capacity of liquid hydrogen fuel for active cooling of the entire airframe, opening the door to the use of conventional aircraft materials and construction experience to speeds as high as Mach 8 or 10. This paper discusses the characteristics of hydrogen fueled aircraft engines from supersonic to hypersonic speeds. Structural aspects of both "hot" and actively cooled aircraft are discussed, including the problem of insulating the hydrogen fuel. The effects on aircraft performance of the strong interaction between the propulsive, structural, and aerodynamic aspects of hypersonic aircraft are considered. The implications of the possible use of slush hydrogen are also covered. Environmental and economic aspects are considered and operational aspects needing further attention are also discussed.

(RANGE, PAYLOAD, COOLING, SLUSH, ECONOMIC)
H73 31013* THE ECONOMICS OF LIQUID HYDROGEN SUPPLY FOR AIR TRANSPORTATION
Johnson, J.E., (Union Carbide Corp., New York, N.Y.), Paper Q-1, Cryogenic Engineering Conference, Atlanta, Ga., Aug 73

The prospects for utilizing liquid hydrogen to provide future fuel requirements for air transportation industry segments is examined. An economic analysis for supply of 2,500 T/D of liquid hydrogen is developed based on producing the fuel from our extensive domestic coal and nuclear fuel reserves. Depending on the degree of aircraft operating cost savings achievable by removal of the environmental constraints and fuel weight limitations imposed by hydrocarbon jet fuels, the projected liquid hydrogen costs of $2.50 per million BTU could already be attractive to power the next generation of aircraft to be developed. As the best alternative to continued over-dependence on increasingly costly imported hydrocarbon liquid fractions, a liquid hydrogen alternative fuel strategy for air transportation offers a significant opportunity to economically contribute toward easing our energy crisis through utilization of our lowest cost domestic energy resources in an environmentally acceptable manner. The Apollo program has provided a significant technological base to develop the capability required to meet the high standards of safety and performance required by the air transport industry. The immediate requirement to prove the viability of liquid hydrogen fueled air transportation is the demonstration of the projected aircraft performance improvements possible that are attributable to hydrogen fuel.

(COST, AIRCRAFT, PRODUCTION)

H73 31014* THE CASE FOR A HYDROGEN-FUELED SUPersonic TRANSPORT
Brewer, G.D., (Lockheed-California Co., A Division of Lockheed Aircraft Corp.), Report No. LR 25511, Oct 23 '72

The report was written to review the conceptual arguments, pro and con, concerning the practicability of using liquid hydrogen as the fuel for a supersonic transport. The foreseeable shortage and attendant increasing cost of kerosene in the time period when an SST fleet can become operational makes the subject of prime interest. Since the capability to manufacture liquid hydrogen
in the quantities necessary to satisfy anticipated de-
mands hinges on availability of large amounts of electric
power, a brief review is presented of the outlook for
energy need in the United States in the 1990 - 2000 decade,
along with a forecast of the most likely ways in which
these needs will be met.

(MANUFACTURE, ENERGY, AIRCRAFT)

H73 31015 WORKING SYMPOSIUM ON LIQUID HYDROGEN-FUELED
AIRCRAFT
Anon, NASA, Langley Research Center, Hampton, Va., May 15-16 '73
A compendium of written and visual material that is
not a formal NASA document.

(AIRCRAFT, LIQUID, CRYOGENIC, FUEL, HYPERSONIC)

H73 31016* HYPersonic TRANSPORTS
Becker, J.V., F.S. Kirkham, (NASA, Langley Research Center,
Hampton, Va.), NASA SP-292, Nov 2 '71
The paper projects current technology into the devel-
opment and operation of hypersonic transports using hydrogen
as a fuel. Considered in the projection are costs, struc-
tural problems, heating, and the use of shuttle derived
technology.

(AIRCRAFT, HYPERSONIC, CRYOGENIC, COST)

H73 31017* THE CASE FOR HYDROGEN FUELED TRANSPORT AIRCRAFT
Brewer, G.D., (Lockheed-California Company, Burbank, Calif.),
AIAA Paper No. 73-1323, AIAA/SAE 9th Propulsion Conference,
Las Vegas, Nev., Nov 73, Avail:TAC
The case for using liquid hydrogen as the fuel for
commercial aircraft of the future rests on the following
arguments:

1) Petroleum is fast becoming a critically short
commodity in the United States. World-wide, it
will reach a peak of availability in less than 20
years, declining rapidly thereafter.

2) In the United States, the need to import the tre-
mendous quantities of oil which are forecast for
the future will lead to unacceptable dependence on
a small number of foreign nations. This will cost
the U.S. heavily in terms of deficit balance of
payments; economic, commercial, and diplomatic in-
dependence; and national security.
3) Commercial aviation is at present a comparatively small but rapidly growing consumer of petroleum in the U.S. Development of an alternate fuel for commercial transport aircraft will eliminate a significant fraction of the future petroleum needs of the nation.

4) Hydrogen, as a candidate alternate fuel, offers significant potential advantages when used in aircraft, viz., performance, pollution, noise and cost. Accordingly, it is recommended for initial and early use in aircraft, with its use in other economic sectors growing as its availability increases.

Each of these arguments is developed to explore its merit. Examples of commercial aircraft, both subsonic and supersonic, are examined to determine the potential, and some of the problems, of using liquid hydrogen as a fuel.

(FUEL, TRANSPORT, AIRCRAFT, LIQUID, FUTURE, PETROLEUM, PERFORMANCE, POLLUTION)
THE HYDROGEN-AIR FUELED AUTOMOBILE

The paper describes the research and development effort required to convert a 1970 Toyota 1600 station-wagon to run on a hydrogen-air fuel mixture. The unique engine design modifications involve only minor changes to the Otto cycle engine and will not require extensive manufacturer's retooling. In addition a high pressure source of hydrogen is not needed. Total engine cost is expected to be less than that of a similar gasoline fueled low emission engine. An approximately 50% increase in efficiency over that of the gasoline fueled engine is realized. Nitric oxide emissions, the only exhaust gas constituents of concern, are expected to meet the 1975 emission standards. The 1976 and later standards are expected to be met with minor modifications.

THE HYDROGEN - AIR FUELED AUTOMOBILE ENGINE
(PART I)

This paper describes the progress made on the development of the hydrogen-air fueled automobile engine described at last year's IECEC. Since that time a 4 cylinder, 195 cu in Pontiac engine has been redesigned, incorporating an improved version of the Hydrogen Induction Technique, to run on hydrogen and vaporized gasoline. Performance curves and emission data for the engine fueled by hydrogen are given.

ON THE UCLA HYDROGEN CAR

The features of the UCLA hydrogen car are reviewed and conclusions drawn from its development. Hydrogen has yielded higher brake thermal efficiency than gasoline,
and a fuel economy of 10 miles per pound of hydrogen has been obtained consistently. Exhaust emission pollutants are well below the 1976 Federal standards. Safety aspects seem no more stringent than with gasoline, methane, or propane.

The major problems remaining have to do with storage of hydrogen, and the control system for feeding it to the engine. A hydride bed is suggested, and major design variables indicated. Attention is called to the problems of large scale distribution of hydrogen potentially required in a "hydrogen economy."

(EFFICIENCY, SAFETY, STORAGE, HYDRIDE, EMISSION, POLLUTION, ENVIRONMENT)

H73 32003 PERRIS SMOGLESS AUTOMOBILE ASSOCIATION
Anon, Industrial Resources, Sept 72

The Perris Smogless Automobile Association, is a group of individuals - Paul B. Dieges, Dwight B. Minnich, Fredric F. Nardecchia, and Patrick L. Underwood - in Perris, Calif., who, using a cryogenic hydrogen/oxygen fueling system, have arrived at a solution to the problem of automobile air pollution. The article tells how they conceived, built, and ran a pollution-free internal combustion vehicle. (CRYOGENIC, OXYGEN, INTERNAL COMBUSTION, POLLUTION)

H73 32004* THE HYDROGEN ENGINE IN PERSPECTIVE

This paper has two basic purposes; first, to report the latest performance and emission characteristics of the Oklahoma State University air breathing, hydrogen burning engine and second, to place this engine in perspective in the future total energy picture. Since the production of energy and creation of air pollution are interrelated aspects of the same problem a discussion of one must give consideration to the effects of the other.

Four years ago development started on the first of a series of hydrogen fueled engines at Oklahoma State Uni-
versity. Early data indicated that a hydrogen fueled engine should yield torque, power, and efficiency values comparable to an equivalent spark ignition engine. The performance outlook of this first engine was so optimistic that the Air Pollution Control Office, Environmental Protection Agency funded an effort to study further design improvements and to test its emission characteristics.

Data from recent tests has indicated that it should be possible with today's technology to fabricate a reliable engine to power an automobile or truck. It is expected that this vehicle would have adequate range, normal size, and would fall within a complexity and reliability range similar to today's gasoline counterpart. In addition, it would emit no measurable hydrocarbons, organic, or sulfur compounds. Oxides of nitrogen emission below 1976 standards would be expected.

The successful conversion of four single-cylinder gasoline engines to run on hydrogen, along with very encouraging performance and emission measurements, has led to the conceptual design of an energy management system aimed at a permanent solution to the energy/ecology dilemma. It is the purpose of this paper to place in perspective the outlook for the use of hydrogen as a motor fuel as one facet of this system. Involved is an impending energy crisis which is on a collision course with ecological standards because of a natural inter-relationship.

The probability of the global energy/ecology management system being hydrogen-centered will also be discussed.

(EMISSION, ENERGY, INTERNAL-COMBUSTION, POLLUTION)
factors, transmission and energy storage.

Any pragmatic transition rate in time and regional geography may be programmed with this engine - not excluding other promising approaches.

To make sound decisions, in time, about realistic compromises based on facts, preparations should begin now. (POLLUTION, EMISSION)

H73 32006* ON THE HIGHER ENERGY FORM OF WATER (H$_2$O*) IN AUTOMOTIVE VEHICLE ADVANCED POWER SYSTEMS

The hydrogen-oxygen (stoichiometric) bireactant combination, separately tanked and fed to an advanced-design automotive powerplant is addressed. This "higher energy form" of water is compared in terms of: on-board vehicle stored energy, volume, mass and cost with conventional systems employing gasoline- and hydrogen-fueled internal combustion engines.

The higher energy form of water, H$_2$O*, will be produced in abundance in future water-splitting hydrogen production facilities using nuclear or solar energy as being envisioned for the post fossil-fuel age "Hydrogen Economy." However, the majority of hydrogen energy conversion system studies so far have addressed hydrogen's reaction with air, not oxygen.

Relating heavily to a number of papers presented at the previous IECEC, the paper attempts to make the point that: not only H$_2$- airbreathing systems, but also H$_2$O* nonairbreathing energy conversion systems should be considered for future automotive vehicle propulsion. Particularly, if high-temperature H$_2$O* - fueled power cycles (3000-4000°F) can be developed, a savings in national energy resources of the order of 50 percent of that needed for present gasoline-fueled automobiles, and future hydrogen-fueled, but conventionally powered vehicles is technically possible.

Additionally, since the sole effluent in H$_2$O* combustion is the lower energy form of water, viz., H$_2$O, this has strikingly positive environmental ramifications. Clearly, a bold new opportunity is presented to the engineering community as it strives for energy conversion systems of the future which must adhere to the precept of benign
environmental interaction.
(OXYGEN, EFFICIENCY, POLLUTION, TEMPERATURE)

H73 32007 HYDROGEN-FUELED INTERNAL COMBUSTION ENGINE
Anon, Mechanical Engineering, V 93:40 Nov 71, Avail:TAC
University of Miami engineers are embarking on a
research program to perfect a hydrogen-fueled internal-
combustion automobile engine developed by a Hollywood,
Fla., businessman.
(ENGINE, COMBUSTION)

H73 32008 LIQUID HYDROGEN AS A MOTOR FUEL
Anon, Chemistry, V 45:26 Ja 72, Avail:TAC
At one time, liquid hydrogen was merely a laboratory
curiosity. But now, because of its use in atomic research
and the space program, production in this country has
reached an estimated 150 tons per day. Consequently,
cost of production has declined - a liter of liquid
hydrogen costs about the same as a liter of gasoline.

Some day, liquid hydrogen might be used as a fuel
for motor vehicles. Environmental pollution from in-
ternal combustion engines would be completely eliminated
because water is the sole combustion product.
(PRODUCTION, COST, POLLUTION)

H73 32009* SURVEY OF HYDROGEN'S POTENTIAL AS A VEHICULAR
FUEL
Austin, A.L., (California University, Livermore, Calif.,
Lawrence Livermore Laboratory), N73-16766, UCRL-51228,
Je 72, Avail:NTIS, Avail:TAC
The problems and potential of various hydrogen-based
mobile fuel systems and the likely economic impact of a
nationwide conversion to hydrogen are examined. The basic
technical problem is to store enough hydrogen per vehicle
in a small enough volume. The prospects of using gaseous
and liquid hydrogen with air, liquid hydrogen with liquid
oxygen, and hydrogen stored in metal hydrides in an in-
ternal combustion engine are analyzed. The practical
feasibility is found to be marginal but with enough po-
tential to justify an ongoing research program.
(STORAGE, IMPACT, ECONOMIC, HYDRIDE, ENGINE)
CLEAN AUTOMOTIVE FUEL: ENGINE EMISSIONS USING NATURAL GAS, HYDROGEN-ENRICHED NATURAL GAS, AND GAS MANUFACTURED FROM COAL (SYNTANNE)

Natural gas and mixtures of natural gas and hydrogen were used as fuels in a laboratory engine to determine the relationship of emissions to air-fuel ratio and to establish practical lean limits for air-fuel ratio. Synthetic gas manufactured from coal (Synthane) and natural gas were used as fuels in a vehicle to obtain comparative data on emissions and performance. Results showed that lean limits for air-fuel ratio when using hydrogen-enriched natural gas were extended significantly beyond that of natural gas. Synthane produced exhaust that was significantly less reactive than exhaust from natural gas. With lean air-fuel ratios, the acceleration performance of a vehicle fueled with Synthane was improved over its performance when fueled with natural gas.

(Performance, mixture, pollution)

ALTERNATIVE FUELS FOR CONTROL OF ENGINE EMISSION

Starkman, E.S., R.F. Sawyer, R. Carr, G. Johnson, and L. Muzio, (University of California, Berkeley, Calif.), Journal of Air Pollution Control Ass., V 20:87-92 N2 70

Theoretical and exploratory investigation has shown that spark ignition engine fuel compound can have a profound effect on exhaust content of potential air pollutants. CO and NO are 2 of these products of engine combustion which were studied. Considered were alcs., H, NH₃, so-called reformed hexane, and a few selected representative hydrocarbons. Energy content and C to H ratio both are influential in determining CO and NO concentrations at peak equilibrium conditions, and thus how much is exhausted to the atmosphere. Neither H nor NH₃ can produce CO (or unburned hydrocarbons) and theoretically should also give less NO, at most conditions, than do hydrocarbons. Measurement of the exhaust, while burning NH₃, shows that there is actually an increase in NO compared to hydrocarbons.

(Pollution, internal combustion, ammonia)
HYDROGEN AS A FUEL AND THE FEASIBILITY OF A HYDROGEN-OXYGEN ENGINE
Karim, G.A., (University of Calgary, Alta), and M.E. Taylor, SAE Preparation, N730089 for Meeting Ja 8-12 '73

A preliminary investigation was made into the use of hydrogen-oxygen mixtures in spark ignition engines. Following a literature survey regarding the combustion characteristics of hydrogen, a computer program based on a constant-volume combustion engine cycle was used to evaluate the overall performance of an engine. Another program, which considered chemical reaction kinetics, was used to predict the onset of autoignition in mixtures undergoing compression in an engine. The system would be supplied with a stoichiometric hydrogen-oxygen mixture while excess hydrogen would be circulated within to provide a rich mixture to the engine. Trim supplies of hydrogen and oxygen could be used to make adjustments to the equivalence ratio as required. Water would be removed from the system at the condenser and would be the only exhaust product.

(POWER, INTERNAL COMBUSTION, COMPUTER)

CONVERTED IC ENGINE RUNS ON HYDROGEN
Anon, Industrial Resources, V 14:35 Je 72

Successful and safe conversion of engines from gasoline to hydrogen fuel has been achieved by a group of scientists at Oklahoma State University.

The advance was reported by Dr. Roger J. Schoeppel, chairman of the energy resources program at Oklahoma State, who claims that it provides a means of killing two birds with one stone - the birds being the automobile pollution problem and the nation's energy crisis.

(ENGINE, CONVERSION)

EMISSION AND PERFORMANCE CHARACTERISTICS OF AN AIR-BREATHING HYDROGEN-FUELED INTERNAL COMBUSTION ENGINE

The paper reports on the performance and emission characteristics of a standard production gasoline engine which has been converted to run on an unconventional fuel: hydrogen.

Three years of development efforts at Oklahoma State
University, with support from Environmental Protection Agency during the last year, have culminated in the design of an internal combustion engine which appears to have the capability of meeting current and 1975 Federal Emission Standards. Not only is the engine capable of operating over a wider range of conditions and with lower NOX emissions than its gasoline counterpart, but it is also capable of exceeding the manufacturer's maximum power rating. Performance data and emission characteristics are presented to support these claims. Details of the engine's design are also included.

(Power, Standard, Pollution)

H73 32015* DESIGN CRITERIA FOR HYDROGEN BURNING ENGINES
Schoeppel, R.J., (Oklahoma State University, Stillwater, Okla., School of Mechanical and Aerospace Engineering), Final Report APTD-0901, Oct 71, Available: TAC

Laboratory experiments have demonstrated hydrogen not only to be an excellent substitute for conventional hydrocarbon fuels in internal combustion engines but also to have the inherent qualities necessary for a permanent solution to the air pollution problem. This conclusion was reached after extensive tests were conducted with an air-cooled single-cylinder gasoline engine converted to run on hydrogen. The engine's operational characteristics compared favorably with those of its gasoline counterpart. Furthermore, the NOX content of the exhaust was an order of magnitude lower than that expected from a gasoline engine. Trace amounts of unburned hydrocarbons and carbon oxides, also present, originated from the lubricating oil. It was concluded from these experiments that a multi-cylinder automotive engine converted to run on hydrogen should be able to meet the 1975/76 Federal Emission Standards.

(Internal Combustion, Fossil, Fuel, Pollution, Exhaust)

H73 32016 PROSPECTS FOR HYDROGEN-FUELED VEHICLES
Schoeppel, R.J., (Oklahoma State University, Stillwater, Oklahoma), Chemical Technology, V 2:476-80 N8 Aug 72, Available: TAC

The conversion of vehicles from conventional fuels to hydrogen is forecast to fulfill a more viable long-range solution to the air pollution problem than any previously proposed. The prospects for development of a

192
total energy system that produces hydrogen from an abundant natural resource, water, and replenishes this supply upon combustion in an engine whose emissions are pollution-free, appears to be a worthwhile effort to pursue.

(AUTOMOBILE, ENERGY, POLLUTION)

H73 32017* THE UCLA HYDROGEN CAR: DESIGN, CONSTRUCTION, AND PERFORMANCE

In order to offer a reasonable solution to environmental problems, a vehicle was built for entry in the 1972 Urban Vehicle Design Competition. The heart of this alternative to today's vehicles is a standard V-8 engine modified to use hydrogen as a fuel. This vehicle easily beats the 1976 federal exhaust emissions standards. Novel features of the modified 1972 Gremlin include a roll cage that lies above the roof and doubles as a luggage rack; foam between inside and outside body panels for body stiffness and impact absorption; proved 5 mph (2.2 m/s) crash bumpers utilizing popcorn as the energy-absorbing material; an engine parameter monitoring system; and improved visibility, lighting, braking, handling, and driver safety. The vehicle continues to be tested, is driven frequently, and interacts well in the urban environment with the myriad of traffic situations encountered in Los Angeles.

(ENVIRONMENT, AUTOMOBILE, EMISSION)

H73 32018 HYDROGEN-POWERED CARS MAY BEAT POLLUTION STANDARDS

A radical system aimed at meeting the legal limitation on auto engine emissions is being developed by the National Aeronautics and Space Administration.

The concept involves the use of hydrogen as an additive to gasoline in modified versions of standard internal combustion engines.

It has shown "promising" results in laboratory tests but will not help power an auto for another two months.

The development is being carried out by the space
agency's Jet Propulsion Laboratory whose Ranger and Surveyor vehicles scouted the moon as a prelude to the manned lunar landings.

(AUTOMOBILE, EMISSION)

H73 32019 LOS ALAMOS LAB MAKING HYDROGEN-POWERED TRUCK
Anon, The Albuquerque Tribune, Sept 22 '73, p A-1, Avail:TAC

Scientists at Los Alamos Scientific Laboratory (LASL) here hope to put a hydrogen-powered pickup truck on the road by November.

The Atomic Energy Commission has given permission to Dr. Fred Edeskuty of LASL and several of his colleagues to proceed with necessary modifications on a 1972 Dodge half-ton pickup truck for conversion from gasoline to hydrogen fuel.

(INternal Combustion, Research)

H73 32020* LOGISTICS, ECONOMICS, AND SAFETY OF A LIQUID HYDROGEN SYSTEM FOR AUTOMOTIVE TRANSPORTATION
Stewart, W.F., and F.J. Edeskuty, (Los Alamos Scientific Laboratory, Los Alamos, N.M.), Intersociety Conference on Transportation, Denver, Colo., Sept 23-27 '73, Avail:TAC

A hydrogen powered automobile plays a prominent role in many of the proposed solutions for the energy crisis. The development of a hydrogen powered automobile involves the development of a hydrogen fueled engine, a hydrogen storage system on board the vehicle, and a hydrogen production and distribution system. Several design aspects, cost estimates, and safety considerations are discussed for a liquid hydrogen production and distribution system. The amount of liquid hydrogen that must be produced annually to replace the gasoline consumed by automobiles is estimated. This estimate includes boiloff, cooldown, and transfer losses from the production plants, transport trailers, service stations, and automobiles.

(INternal Combustion, Pollution, Efficiency, Storage)
PARTIAL HYDROGEN INJECTION INTO INTERNAL COMBUSTION ENGINES EFFECT ON EMISSIONS AND FUEL ECONOMY

A High-Efficiency Low-Emission Engine Development Project is currently underway at the Jet Propulsion Laboratory of Caltech, sponsored by NASA as part of the Technology Applications and Aeronautics Programs. This report describes the concept and current status for the first 5 months of a 7-month feasibility demonstration initial project phase.

The system under development has the potential of meeting the EPA 1977 Standards, while improving fuel economy as compared with uncontrolled engines. It uses current fuels and engines, will have similar response characteristics to current engines, and will be low in cost considering both initial cost and fuel savings.

Basically, the concept is to use small amounts of hydrogen to allow burning of gasoline at ultra-lean conditions. The hydrogen is generated aboard the vehicle by feeding gasoline, water, and air to a hydrogen generator which produces hydrogen and carbon monoxide.

The most critical development of this system is the hydrogen generator. The design chosen is similar to that used for commercial production of hydrogen from hydrocarbons. (The process is called steam reforming.) In this process gasoline and water are heated to 1500 to 2000°F, forming hydrogen, carbon monoxide, plus various hydrocarbons and diluents. Heat is supplied by pumping air into the generator and burning a portion of the gasoline. The reaction takes place in a thermal reactor without the use of catalysts. This design allows rapid startup since the thermal inertia can be made small, allows the use of low-cost materials since the container need not operate at reaction temperatures, and avoids potential catalyst poisoning problems. The maximum theoretical hydrogen yield for this type of generator is 29% as compared with current generators which yield 15-20% hydrogen output. An operating condition has been found where soot is not produced. Future development will be directed toward completely eliminating the need for water. When the current generator is operated without water, large quantities

195
of soot are produced. The current generator has a conversion efficiency of about 67%.

The overall status of the JPL system is:
1) V-8 engine tests show high efficiency, low NOx and CO emissions.
2) Hydrogen generation by partial oxidation has been demonstrated.
3) V-8 engine operation on hydrogen generator products has been demonstrated.

Future plans include:
1) Completing the bottled hydrogen car buildup and testing.
2) Hydrogen generator car buildup and testing.
3) Reduction of hydrocarbon emissions.
4) Reduction in hydrogen generator size and complexity.

Current plans call for completion of the feasibility phase by December 15, 1973 and final Project completion in December 1975.

Other areas of application for hydrogen injection include gas turbines, atmospheric pressure continuous combustors, and increasing the flammability of fuels for a wide range of engines.

(HYDROGEN, INJECTION, INTERNAL COMBUSTION, ENGINE, EMISSION, FUEL)

H73 32022* HISTORY OF HYDROGEN-FUELED INTERNAL COMBUSTION ENGINES

A survey of historical and current work with hydrogen fuel in internal combustion engines points the way to avoidance of the operating difficulties often encountered with this fuel. Hydrogen engines with proper carburetion and ignition systems are capable of remarkable efficiencies and negligible emissions without the use of complex auxiliary equipment but require more displacement than gasoline engines for equal power. Conventional engines may be converted to hydrogen fuel without significant loss of power through the use of water induction and near-stoichiometric mixtures for full throttle operation.

(HISTORY, ENGINE)
PERFORMANCE AND NITRIC OXIDE CONTROL PARAMETERS OF THE HYDROGEN ENGINE

The performance and nitric oxide emission characteristics of a 4-cycle engine at varying equivalence ratio are shown for hydrogen and for iso-octane under identical test conditions except for spark advance. Important results of earlier studies of hydrogen engines are discussed and the independent effects of exhaust recirculation, water induction and ignition timing on nitric oxide emission are reported for hydrogen operation at a fixed equivalence ratio.

(A Performance, Nitric Oxide, Engine)

NASA TESTING HYDROGEN INJECTION ENGINE CONCEPT

NASA has initiated an experimental program to demonstrate the feasibility of an internal combustion engine concept which appears to significantly reduce pollution emissions while increasing engine efficiency.

The hydrogen injection system, using a mixture of hydrogen gas, air and gasoline vapor to power internal combustion engines, could eliminate the need for treating exhausts with catalytic mufflers. The Jet Propulsion Laboratory automotive project has been funded by NASA.

(Automobile, Pollution, Injection Engine)

THE DEPARTMENT OF TRANSPORTATION HAS GRANTED $60,000 FOR HYDROGEN-FUELED-CAR RESEARCH
Anon, (Chementator), Chemical Engineering, Nov 12 '73, Avail:TAC

The Department of Transportation has granted $60,000 for hydrogen-fueled-car research, to help support a one-year study of the concept at the University of California, Los Angeles. There has already been considerable delving into hydrogen as an automotive fuel, by researchers at UCLA and elsewhere. But the federal government has up to now shown little interest in the idea, apart from some partially related work at Atomic Energy Commission laboratories. Thus, the $60,000 grant is the first in this field by DOT; and, as far as DOT knows, by any federal agency.

(Automobile, Research, Fuel)
An urban automobile powered by a hybrid system consisting of a 33-kWh fuel cell battery and a secondary battery of 25-kW peak power output is described.

This 2000-lb., four-passenger car has a driving range of 200 miles, and can be refueled in three minutes. The power system was designed to give the vehicle the acceleration of a conventional small car in stop-and-go traffic and also extend 50-mpg driving ability.

Performance data collected during actual operation of the vehicle in summer and winter weather, hill climbing, and long-distance driving will be presented.

Maintenance needs, cost of fuel cell operation, reliability, and life-expectancy questions relating to the prime power source and the secondary battery system will also be discussed.

(AUTOMOBILE, FUEL CELL, PERFORMANCE, POWER, BATTERY)
H73 33000 ANALYSIS OF THE SELF-IGNITION OF A TURBULENT GAS JET IN A STREAM OF OXIDIZING AGENT
Strokin, V.N., (USSR), Inzh.-Fiz. Zh., V 22:480-7 N3 72

An approximate method is proposed for calculating the ignition point of a free turbulent boundary layer formed by a hot-gas jet and concurrent oxidizing-agent flow. Calculated and exptl. data are compared on gasoline-air and H-air mixtures.
(JET, ANALYSIS)

H73 33001 HYDROGEN-OXYGEN CHEMICAL REACTION KINETICS IN ROCKET ENGINE COMBUSTION
Hersch, M., (NASA, Lewis Research Center, Cleveland, O.), N68-11642, NASA-TN-D-4250, Washington, Dec 67, HC $3.00/ MF $0.65, Avail:TAC

Hydrogen-oxygen reaction times and concentration histories of chemical species during reaction were calculated for rocket combustor conditions. Calculations were made for oxidant-fuel weight ratios of 1 and 10 and initial reactant temperatures of 1200°K to 2500°K at a chamber pressure of 20 atmospheres. The reaction time varied from about 0.01 second at 1200°K to a few microseconds at 2500°K. Calculations were made by using a numerical integration program and an analytical solution. The reaction mechanism used included five chain branching reactions and three recombination-type reactions.
(NUMERICAL SOLUTION)

H73 33002* ANALYTICAL CHEMICAL KINETIC STUDY OF THE EFFECT OF CARBON DIOXIDE AND WATER VAPOR ON HYDROGEN-AIR CONSTANT-PRESSURE COMBUSTION

Numerical solutions have been obtained for the finite-rate constant-pressure combustion of stoichiometric hydrogen-air mixtures in the presence of small to moderate amounts of carbon dioxide CO₂ and water vapor H₂O. Computations have been carried out for initial mixture temperatures of 1150 K, 1250 K, and 1500 K at a pressure of 1 atmosphere with additional computations for pressures of 0.5 atmosphere and 2 atmosphere at an initial mixture temperature of 1250 K. This study suggests that although all the conditions for hydroburning hypersonic ramjet engine tests in a combustion-heated wind tunnel cannot be matched to clean-air flight conditions, the chemical kinetic effects of CO₂ and H₂O are
small enough to allow useful interpretation of test results for initial temperatures of 1250 K or higher and pressures near 1 atmosphere or less.

(REACTION, TEMPERATURE, NUMERICAL SOLUTION)

H73 33003 REDUCTION OF DRAG OF A PROJECTILE IN A SUPERSONIC STREAM BY THE COMBUSTION OF HYDROGEN IN THE TURBULENT WAKE

An experimental evaluation was made of the effect of combustion of hydrogen with the wake air on the drag of a projectile. The base drag was reduced by about two-thirds, and hence total drag of a flight unit may possibly be reduced one-third, by the use of a minimum of 6.4 percent of the stoichiometric requirement of the air swept by the maximum cross-sectional area.

(DRAG, TURBULENCE)

H73 33004 SPECIFIC HEAT RATIOS AND ISENTROPIC EXPONENTS FOR CONSTANT-VOLUME COMBUSTION OF STOICHIOMETRIC MIXTURES OF HYDROGEN-OXYGEN DILUTED WITH HELIUM HYDROGEN

The report includes the calculation of the equilibrium specific heats, the equilibrium specific heat ratios, the isentropic exponents, and the corresponding values of the speeds of sound. For convenience, the final-to-initial temperature ratio and the final-to-initial pressure ratio are also included in the tables. The results are presented for helium and hydrogen dilution respectively.

(THERMODYNAMICS)

H73 33005 SOME FUNDAMENTAL PROBLEMS ON THE COMBUSTION OF LIQUID OXIDIZERS IN HYDROGEN

The object of the paper is the study of the basic process of combustion of single oxidizer droplets in a quiescent hydrogen atmosphere. This case cannot be included in a general theoretical study of droplet combustion owing to the specific properties of the hydrogen. Its low density and low molecular weight make diffusion conditions especially critical and the assumption of taking average values
for gas density and for transport coefficients regard-
less of mixture composition, which is normally admitted
in droplet combustion studies, may introduce important
errors for the case of hydrogen and it is shown in the
paper.
(DROPLET, DIFFUSION)

H73 33006* THERMAL RADIATION FROM BURNING HYDROGEN PLUME
Martin, P.E., ISA-20th Annual Conference, Oct 4-7 '65
Liquid hydrogen passes through nuclear reactor, is
ejected skyward, and ignited; its thermal radiation
pattern is to be studied so that expected heat radiations
may be calculated for locations near test pad; several
sensors, commercial and homemade, are used to determine
thermal radiation received at discrete points; from
measured radiation, range, assumed plume height, and
sensor orientation and height, average thermal emitting
power per unit distance along vertical plume is calculated.
(HEAT, TEMPERATURE, EMISSION)

H73 33007 THERMODYNAMIC AND TRANSPORT PROPERTIES OF
FUEL-OXYGEN COMBUSTION SYSTEMS
Davies, R.M., H.E. Toth, (Midland Research Station, Gas
Council, Solihull, England), Proc. Symposium Thermophysics
Prop., 4th, 68, p 350-9, edited by Moszynski, J.R., (Amer-
ican Society of Mechanical Engineers, New York, N.Y.)
Thermodynamic and transport properties for the sto-
ichiometric combustion products of H, CH₄, C₃H₈, C₂H₂ and
CO when burned with pure O at 1-atmosphere pressure are
presented in the temperature range 400-3500 K. The values
of any given temperature are in sequence from H to CO.
Thermodynamic data are in good agreement with previously
published results. The effectiveness of Lewis numbers
based solely on H-atom diffusion was compared with that
of the generalized Lewis number.
(THERMODYNAMICS, COMBUSTION)

H73 33008 UPPER SELF-IGNITION LIMIT OF HYDROGEN IN
OXGEN
Vedeneev, V.I., Yu.M. Gershenzon, and O.M. Sarkisov,
Fizika Goreniia i Vzyva, V 8:403-408, Sept 72, Avail:TAC
Theoretical considerations are given to explain the
available experimental data concerning the upper self-
ignition limit of hydrogen in oxygen. A set of 10 chemical reactions and a system of differential equations with a variable H02 function are used to develop a kinetic scheme accommodating both qualitatively and quantitatively the results of various authors.

(REACTION, THERMODYNAMICS)

H73 33009 COMPUTER PROGRAMS FOR THE MIXING AND COMBUSTION OF HYDROGEN IN AIR STREAMS

Details are presented on programs developed to aid those interested in combustion chamber design, cryogenic hydrogen venting, and exhaust plumes. Programs, discussions of specific features, and input-output formats are presented for: (1) a finite difference method solution of the free jet problem for plane two-dimensional and axisymmetric configurations, (2) a finite difference method solution for laminar axisymmetric two phase free mixing with hydrogen - air chemistry, (3) a finite difference method solution for the finite rate evaporation of cryogenic hydrogen in two-phase air, (4) a finite difference method solution for two-dimensional turbulent compressible boundary layers in the absence of pressure gradients, and (5) an approximate method of solution for the combustion of a uniform axisymmetric jet of pure gaseous hydrogen mixing with a partial, a parallel air stream.

(CHAMBER, VENT, EXHAUST, NUMERICAL SOLUTION)

H73 33010 INVESTIGATION OF THE REACTION OF INCOMPLETE OXIDATION OF METHANE CATALYZED BY A HYDROGEN FLAME
Gudkov, S.F., (Foreign Technology Division Wright-Patterson, AFB, 0.), Report No. FTD-MT-24-1823-71, Ja 25 '72, PC $3.00/MF $0.95, Avail:TAC

A method has been proposed for the initiation of the reaction of incomplete oxidation of methane by free radicals which are formed during the burning of hydrogen. A hypothetical reaction mechanism has been given for the incomplete oxidation of methane, catalyzed by the free radicals which are formed at the moment of the burning of hydrogen.

(COMBUSTION)
A method is described for computing activation energies and rate constants of bimolecular combustion reactions of atomic oxygen and molecular oxygen with hydrocarbon and inorganic fuels. The procedure is a modification of the transition-state bond-energy method previously applied in this series of investigations of rate data prediction for propellant performance and reentry nonequilibrium computer programs. Modification of the method was necessary in the investigation of combustion by O or O_2 in order to include the effect of the triplet ground states on quantum-mechanical repulsion. The modified procedure provided much better agreement with experiment than did the method that neglects the triplet nature of ground-state O or O_2. Computations of activation energies and rate constants were also made for combustion reactions of fuels with excited electronic states of oxygen that are likely to be more significant in high-temperature reactions.

(KINETICS, HYDROCARBON)
A PRELIMINARY INVESTIGATION OF OXIDIZER-RICH OXYGEN-HYDROGEN COMBUSTION CHARACTERISTICS

The operating characteristics of oxygen-hydrogen combustion were investigated over a propellant mixture ratio (O/F) band of 20 to 150. Firings were conducted in a 3600 pound thrust combustor at a chamber pressure of 1000 psia. Wedges fabricated from Inconel-X, Rene-41, and Waspalloy were placed in the exhaust of the combustor and subjected to the hot gases ranging in mixture ratio from 75 to 150. There were no significant heating problems with any of the combustor components.

CALCULATION OF IGNITION DELAYS IN THE HYDROGEN-AIR SYSTEM

Bascombe, K.N., (Explosives Research and Development Establishment, Waltham Abbey, England), Combustion and Flame, V 11:2-10 N 1 Fe 67

The calculation of ignition delays of hydrogen-air mixtures between the limits of temperature 800 and 2000K, pressure 0.01 and 10 atmosphere and stoichiometric ratio 0.2 and 2.5 is considered. The simple model chosen involved instantaneous mixing of the preheated gases, which are assumed initially in chemical equilibrium. The criterion taken for the end of the ignition delay period is that the hydroxyl concentration shall have reached 0.000001 mole/litre; this condition was used in an earlier theoretical treatment by Momtchiloff and also in an experimental study by Schott and Kinsey.

CHEMICAL TRANSFORMATIONS IN A HYDROGEN-AIR MIXING LAYER

Chemical evolution in an air-hydrogen mixing layer was investigated. The confluence of two parallel flows of air and hydrogen was examined numerically in order to determine the conditions of self-ignition in the mixing layer. The calculations showed that the reaction zone is
limited to the stoichiometric region. For the two streams at the same temperature, the ignition length can be evaluated by neglecting the effects of lateral diffusion. (COMPUTER, SELF-IGNITION)

H73 33016 COMBUSTION LIMITS OF HYDROGEN-OXYGEN-NITROGEN-STEAM MIXTURES
The combustion limits of steam-diluted hydrogen-oxygen mixtures were determined at 1150 psig in a 0.5 cu ft stainless steel test cell. (COMBUSTION, STEAM)

H73 33017 CONDITION OF THE MEDIUM BEFORE THE FLAME FRONT DURING THE INITIAL PHASE OF A COMBUSTION PROCESS
Salamandra, G.D., Thermophysical properties and gas-dynamics of high-temperature materials, Moscow, Izdatel'stvo Nauka, 72 p 122-130, Avail:TAC
High-speed photographic investigation of the combustion process in hydrogen-oxygen mixtures (with molecular ratios of 2:1 and 1:2) in a channel with circular cross section. The Topler schlieren method was used for medium motion visualization before the oncoming flame front. It was found that the gas flow rates in front of the oncoming flame were proportional to the flame surface area and that the distribution of gas flow parameters before the flame front was consistent with that of a simple wave in an ideal gas. (OXYGEN, FLOW)

H73 33018 INVESTIGATION OF GH2-GO2 COMBUSTION
Data from prototype GO2-GH2 injection elements were obtained and analyzed. The bulk of the testing was conducted with nonreacting propellants, N2 to simulate the O2 and H2. A limited number of tests were conducted in combusting environment, with the purpose of this testing being to evaluate the effects of combustion on cold flow mixture ratio and mass profiles. (INJECTION, COMBUSTION)
H73 33019 NONEQUILIBRIUM CLUSTER FORMATION IN ROCKET EXHAUSTS
Oman, R.A., and V.S. Calia, (Grumman Aerospace Corp., Bethpage, N.Y.), N73-22893, RM-571, Mar 73, HC $3.00, Avail:TAC

The formation of large polymers in the vacuum plumes of large rocket engines was investigated. Monatomic species scaling concepts are applied to the molecular parameters of the water molecule in order to estimate its clustering behavior. The calculations indicate that the products of adiabatic combustion of hydrogen and oxygen will form clusters of several thousand water molecules if allowed to expand freely to vacuum. Experiments to define the basic cluster forming rates, cluster size distribution, and scaling relationships are described.

(POLYMER, WATER)

H73 33020 PHOTOCHEMICAL INDUCTION TIMES IN FLOWING MIXTURES OF HYDROGEN, OXYGEN, AND CHLORINE
Lawrence, L.R., (Ohio State Univ. Research Foundation, Columbus, O.), Journal of Astronautics Acta, V 17:763-70, 72, Avail:TAC

The objective of the presented work is to examine the properties of photochemical initiation of combustion in subsonic flows. This is a prelude to the study of photochemical initiation of supersonic combustion in hydrogen-oxygen-chlorine mixtures. It is felt that photochemically active ingredients might eventually be added to hydrogen-air mixtures such that the use of a proper light source could initiate supersonic combustion in SCRAMJET engines. The hydrogen-oxygen-chlorine mixture was chosen for this study since this mixture has been extensively researched, statically, in the past. A study was undertaken of the mixture under flowing conditions, starting with slow subsonic flows at 1 atmosphere. The mathematical approach derived in this paper may be applied for an analysis of the necessary condition in any flow, as a function of absorbed intensity and photochemical activity of the mixture.

(SUBSONIC, COMBUSTION)
QUANTITATIVE ANALYSIS OF LIQUID OXYGEN-LIQUID HYDROGEN COMBUSTION PRODUCTS

A method was developed for the quantitative analysis of the combustion products obtained from the firing of a liquid oxygen-liquid hydrogen rocket engine. The fixed gases hydrogen, oxygen, nitrogen, and helium were determined by use of an analytical mass spectrometer.

(ANALYSIS, COMBUSTION)

EVALUATION OF HYDROGEN FUEL IN A FULL-SCALE AFTERBURNER

A performance investigation using hydrogen fuel in a full-scale afterburner was conducted with particular study of fuel-injector configurations and afterburner length. A total of seven fuel-injector configurations, grouped by type as concentric ring or radial bar, were investigated at a burner-inlet velocity of approximately 600 ft/sec over a range of burner-inlet total pressure from 330 to 950 pounds per square foot absolute.

(PERFORMANCE, INJECTOR)

PERFORMANCE OF A 28-INCH RAMJET UTILIZING GASEOUS HYDROGEN AT A MACH NUMBER OF 3.6 ANGLES OF ATTACK UP TO 12°, AND PRESSURE ALTITUDES UP TO 110,000 FEET

An investigation was conducted in the NACA Lewis 10-by 10-foot supersonic wind tunnel to evaluate the performance of a shrouded injector burner with perforated domes employed in a 28-inch ramjet using gaseous hydrogen as fuel.

(WIND TUNNEL, TRANSIENT)
H73-33024 LOW-PRESSURE PERFORMANCE OF A TUBULAR COM-
BUSTOR WITH GASEOUS HYDROGEN
Research Center, Cleveland, O.), N65-33264, NACA-RM-E54L30a,
Washington, May 9 '55, Avail:TAC

An investigation was conducted to determine the com-
bustion performance characteristics of gaseous hydrogen
fuel in a single tubular turbojet combuster.
(COMBUSTION, JET)

H73 33025 EXPERIMENTAL INVESTIGATION OF HOT-GAS SIDE
HEAT-TRANSFER RATES FOR A HYDROGEN-OXYGEN ROCKET
Schacht, R.L., R.J. Quentmeyer, and W.L. Jones, (NASA,
Cleveland, O.), N65-26412, Report No. NASA-TN-D-2832,
Avail:TAC

The hot-gas side heat-transfer rates in a rocket
nozzle were determined exptl. Transient temperature
measurements were made at 5 axial locations in a Cu
heat-sink nozzle having expansion and contraction area
ratios of 4.64 with gaseous H and liquid O as propellants.
(NOZZLE, TRANSIENT)

H73 33026 COOLANT-SIDE HEAT-TRANSFER RATES FOR A
HYDROGEN-OXYGEN ROCKET AND A NEW TECHNIQUE FOR DATA
CORRELATION
Schacht, R.L., and R.J. Quentmeyer, (NASA, Lewis Research
Center, Cleveland, O.), N73-18968, NASA-TN-D-7207, Mar 73,
HC $3.00, Avail:TAC

An experimental investigation was conducted to deter-
mine the coolant-side, heat transfer coefficients for a
liquid cooled, hydrogen-oxygen rocket thrust chamber.
Heat transfer rates were determined from measurements of
local hot gas wall temperature, local coolant temperature,
and local coolant pressure. A correlation incorporating
an integration technique for the transport properties
needed near the pseudocritical temperature of liquid hydro-
gen gives a satisfactory prediction of hot gas wall temper-
atures.
(ROCKET, HEAT, TRANSFER)
COMBUSTION OF HYDROGEN AND METHANE TO SIMULATE EXPANSION OF STORABLE PROPELLANTS
An experimental investigation of exhaust-nozzle temperature for the storable system 50% UDMH-50% hydrazine/nitrogen tetroxide was conducted using hydrogen and methane fuel burned in oxygen-enriched air to provide the same atomic constituents as the storable propellants.
(COMBUSTION, METHANE)

COMBUSTION OF FUEL-LEAN MIXTURES IN ADIABATIC, WELL-STIRRED REACTORS
Kydd, P.H., and W.I. Foss, (General Electric Co., Research Laboratory, Schenectady, N.Y.), Symposium (International) on Combustion, 10th, University of Cambridge, Cambridge, England, Aug 17-21 '64, Avail:TAC
Experimental investigation of a hitherto-unused combustion regime beyond the lean flammability limit, using a well-insulated, well-stirred reaction volume as a combustor. The combustion of H$_2$, CO, CH$_4$, C$_2$H$_4$, C$_3$H$_8$, and mixtures of these has been studied in this regime at pressures up to 2 atmospheres in three quite different reactors. A qualitative explanation of the results in terms of the currently accepted mechanism of hydrogen combustion is presented.
(COMBUSTION, REACTOR)

BRIEF STUDIES OF TURBOJET COMBUSTOR AND FUEL-SYSTEM OPERATION WITH HYDROGEN FUEL AT -400° F
A single J-33 combustor and an experimental tubular combustor incorporating a fuel vaporizer were operated with gaseous hydrogen at temperatures slightly above the boiling point of the fuel. Data were obtained to explore possible effects of the fuel temperature on combustor performance and on the control and measurement of fuel flow.
(EFFICIENCY, VAPOR)
An experimental investigation was conducted to determine the axial and circumferential variations of heat transfer coefficients in two rocket thrust chambers.

A brief introduction to heat transfer processes between the combustion gases and the surrounding cooled walls of a hydrogen/oxygen rocket engine is presented. A fairly comprehensive review is given of known compilations of thermodynamic and transport property data for the hydrogen/oxygen propellant. Effects of undeveloped flow conditions and of physico-chemical phenomena (recombination) on convective heat transfer are discussed, and some recent, yet unpublished results on radiative heat transfer, and on aerodynamic effects on convection in hydrogen/oxygen combustion chambers are presented. In view of these recent experimental observations the importance of extending heat transfer research to the mixing and reaction zone (non-equilibrium areas) of a combustion chamber is pointed out.

Induction distances, transient pressures, and wave propagation rates were determined in cylindrical tubes for detonation waves in stoichiometric hydrogen-oxygen mixtures initially at one atmosphere and temperatures ranging from 300K down to 123K.
H73 33033 STEADY-STATE ROCKET COMBUSTION OF GASEOUS HYDROGEN AND LIQUID OXYGEN. PART II: ANALYSIS FOR COAXIAL JET INJECTION
Combs, L.F., and M.D. Schuman, (Rocketdyne, Canoga Park, Calif.), N66-14456, AFOSR-65-1319, Mar 65, Avail:TAC
Simultaneous equations describing rocket propellant injection, atomization, mixing, vaporization, and combustion are formulated for a cylindrical liquid oxygen jet surrounded by an annual gaseous hydrogen stream.
(ROCKET, COMBUSTION)

H73 33034 AN EXPERIMENT ON PARTICULATE DAMPING IN A TWO-DIMENSIONAL HYDROGEN-OXYGEN COMBUSTOR
Aluminum particles (5μ mean diameter) were injected into a small circular combustor by a secondary flow process used for transverse mode stability rating. Small mass concentrations of aluminum were found to be effective in suppressing instability. A critical concentration of 2/100 percent was noted below which the effect was destabilizing.
(STABILITY, CONCENTRATION)

H73 33035 CHEMICAL KINETICS CONSIDERATIONS DURING CALCULATION OF THE NOZZLE FLOW OF PRODUCTS OF THE COMBUSTION OF HYDROGEN IN AIR
The special case of thermophysics processes, accompanied by a chemical reaction, of expansion in a nozzle of dissociated products of combustion of H₂-O₂-N₂ mixtures was analyzed theoretically.
(KINETICS, NOZZLE)

H73 33036 COMBUSTION AND HEAT TRANSFER IN SMALL ROCKET CHAMBER BURNING LIQUID OXYGEN AND GASEOUS HYDROGEN
Jeffs, A.T., C. Ramshaw, B.W.A. Ricketson, Spaceflight, V 8:172-84 N5, May 66
In 1960, program was initiated at Rocket Propulsion Establishment, Westcott, England, to provide design information for liquid oxygen-liquid hydrogen combustion chamber; report covers first phase of program, in which liquid oxygen and gaseous hydrogen were burnt in chamber giving nominal thrust of 2 kN (450 lb.).
(COMBUSTION, OXYGEN)
H73 33037 COMBUSTION INSTABILITY IN STEEL AND ABLATIVE ROCKET CHAMBERS
An investigation was conducted to compare the effects of ablative chambers and steel chambers on combustion instability in a hydrogen-oxygen rocket engine.
(COMBUSTION, ROCKET)

H73 33038 COMBUSTION OF GASEOUS HYDROGEN AT LOW PRESSURES IN A 35° SECTOR OF A 28-INCH-DIAMETER RAMJET COMBUSTOR
Gaseous-hydrogen fuel was burned in a connected-pipe combustor with a cross section equal to 35° sector of a 28-inch diameter.
(COMBUSTION, JET)

H73 33039 TESTS WITH HYDROGEN FUEL IN A SIMULATED AFTERBURNER
An investigation was conducted in a 16-inch-diameter simulated afterburner using gaseous hydrogen fuel.
(INJECTOR, EFFICIENCY)

H73 33040 THEORETICAL COMBUSTION PERFORMANCE OF RAMJET FUELS: HYDROGEN
The report is the first of a series prepared as a compilation of available data on theoretical combustion performance of various fuels. The performance parameters to be given primary consideration are flame temperature and air specific impulse; others, including fuel specific impulse, mole change and expansion ratio are also included.
(COMBUSTION, JET)

H73 33041 PERFORMANCE ANALYSIS OF COMPOSITE PROPULSION SYSTEMS
The improved understanding of gas stream turbulent mixing is contingent upon obtaining a more comprehensive
description of the resultant flow field and a more precise evaluation of the turbulent transport properties. The flow field being experimentally studied is the two dimensional mixing of fuel-rich supersonic hydrogen-oxygen combustion products and a subsonic heated airstream.

(MIXING, TRANSPORT, SUBSONIC)

H73 33042 PROBLEMS OF MIXING AND SUPERSONIC COMBUSTION OF HYDROGEN IN HYPERSONIC RAMJETS

The mixing and ignition of hydrogen jets injected normally into a supersonic two-dimensional flow are discussed. The specific application is to investigate the combustion performance of a hypersonic ramjet engine. An analysis of experimental results obtained at Mach 1.5 has shown empirical relations for the jet penetration and crosswise distribution of fuel with respect to thermal blockage. Mixing of hydrogen and air was examined in optimal penetration conditions to establish the length necessary to obtain complete mixing. A significant reduction of ignition lengths, as compared to the theoretical values corresponding to the thermal conditions of the steady upstream flow, was shown to occur.

(HYPersonic, COMBUSTION)

H73 33043 MIXING OF HYDROGEN INJECTED FROM MULTIPLE INJECTORS NORMAL TO A SUPERSONIC AIRSTREAM
Rogers, R.C., (NASA, Langley Research Center, Langley Station, Va), N71-34274, NASA-TN-D-6476, Sept 71, Avail:TAC

The mixing of hydrogen downstream from a row of sonic injectors normal to a Mach 4 airstream was investigated to determine the effect of injector spacing.

(INJECTOR, BOUNDARY LAYER, CONCENTRATION)

H73 33044 FUNDAMENTAL ASPECTS OF SUPERSONIC COMBUSTION
Swithenbank, J., and M. Jaques, (Sheffield Univ., England), Report No. APOS70-1934TR, Je 70

The application of turbulence theory to the design of supersonic combustors has been investigated both experimentally and theoretically.

(TURBULENCE, INJECTOR, VORTEX)
BURNING VELOCITIES IN HYDROGEN-BROMINE AND DEUTERIUM-BROMINE MIXTURES

Measurements were made of flame velocities in straight tubes for hydrogen-bromine and deuterium-bromine mixtures. From these the burning velocities were determined.

CALCULATIONS OF BURNING VELOCITIES FOR HYDROGEN-BROMINE MIXTURES. IV. EQUATION OF SEMENOV AND FRANK-KAMENETSKY AND MANSON EQUATIONS. V. ADDITIONAL CALCULATIONS BY MALLARD-LE CHATELIER EQUATION

Calculations of burning velocities in hydrogen-bromine mixtures were extended to include values based on the equation developed by Semenov, Frank-Kamenetsky and others and that developed by Manson. Additional exploratory calculations using the Mallard-Le Chatelier equation are also summarized.

EFFECT OF DILUENTS ON BURNING VELOCITIES IN HYDROGEN-BROMINE MIXTURES

Experiments on the effects of diluents on burning velocities in H₂-Br₂ mixtures were made using N₂, A, and He as diluents, with 10 percent and 25 percent of diluent and at 50°C and 200°C. The predominant trend is for a decrease in burning velocity with the magnitude of the effect varying in the order He less than A less than N₂. With the lesser amounts of helium, burning velocities were actually increased somewhat on occasion. The region of stable flame was shifted toward higher bromine percentages when diluents were added.

FEASIBILITY STUDY OF OXYGEN/HYDROGEN POWDERED METAL IGNITION

Theoretical and experimental studies were performed
on the subject of producing low temperature H\textsubscript{2}/O\textsubscript{2} ignitions by the use of catalytic and/or pyrophoric powdered metals. Interest centered on the use of Raney nickel powder, which is both catalytic for H\textsubscript{2}/O\textsubscript{2} ignition, and pyrophoric with oxygen. It was demonstrated that Raney nickel powder, stored under an atmosphere of hydrogen, should have indefinite shelf life in the activated state, being able to produce ignitions at any time upon contact with oxygen.

(CATALYST, PYROPHORIC)

H73 33049 EXPERIMENTAL INVESTIGATIONS ON SUPERSONIC COMBUSTION IN THE FLOW FIELDS OF BODIES OF REVOLUTION AND NEAR A FLAT PLATE IN TANGENTIAL FLOW
Maurer, F., F.J. Niezgodka, and H. Post, Bundesmin, fuer Verteidigun, N71-22129, DLR-FB-70-64, Dec 70, Avail:TAC

Supersonic combustion of hydrogen in the flow field of a flat plate in tangential flow and near bodies of revolution was studied in the Mach number range from 1.8 to 3.2. In the flat plate experiments a secondary air jet from a crosswise slot was used to stabilize the flame. Hydrogen was injected upstream of the slot. Flame stabilization on bodies of revolution was obtained due to a small annular cavity near the thickness maximum. In all cases spark ignition was used. The changes of pressure distribution near the flat plate as well as changes of drag of the bodies of revolution due to heat addition were considerable.

(STABILITY, IGNITION, DRAG)

H73 33050 STUDY OF CATALYTIC REACTORS FOR HYDROGEN-OXYGEN IGNITION

An analytical study of a catalytic ignition system to promote hydrogen-oxygen combustion was performed in order to establish procedures capable of predicting the steady-state behavior of the system. Included is the development of a computer program which is used to calculate the steady-state axial temperature and reactant concentration profiles in typical reaction chamber configurations.

(COMPUTER, CONCENTRATION)
The utility of a catalytic ignition system to promote hydrogen-oxygen combustion and the limits imposed by the transient response of the system are discussed. The transient behavior of a reactor packed with porous catalyst particles is a function of film and pore diffusion of heat and mass as well as the chemical kinetics of the catalytic reaction. A model has been developed which permits computation of concentration and temperature profiles in the bulk gas phase and within porous catalyst particles are functions of time for given reaction rate expressions.

(TRANSIENT, CATALYST, COMPUTER)

This report presents results of a program designed to develop catalysts of improved activity and thermal stability for catalytic ignition of an oxygen-hydrogen mixture at low temperatures.

(STABILITY, TEMPERATURE)

Investigation of the burning velocities in the combustion of hydrogen-fluorine mixtures at pressures around 2.4 mm Hg over a mixture composition range of 25 to 65% fluorine by volume. Determined by Gouy's method, the burning velocities are presented in tabular form and compared with theoretically predicted deflagration velocities. Possible errors in the experimental determination are discussed.

(VELOCITY, BURNING)
H73 33054 SUPERSONIC MIXING OF HYDROGEN AND AIR
The effects of fuel injection parameters on the mixing of gaseous hydrogen with a supersonic air stream confined within a cylindrical duct was quantitatively studied to provide background information necessary for the design of combustors for supersonic combustion ramjets.
(INJECTOR, COMBUSTOR, RAMJET)

H73 33055 STUDIES LEADING TO THE REALIZATION OF SUPERSONIC COMBUSTION IN PROPULSION APPLICATIONS
The report discusses theoretical and experimental studies of hydrogen mixing and combustion in a high enthalpy (6000K) Mach 3.5 airstream carried out in a combustion driven hypersonic shock tunnel operating with a tailored primary shock Mach number of 10.2 - 10.6. Results obtained using wall static pressure measurements indicated that following injection there was a steep compression zone, followed by a re-expansion zone after which the static pressure gradually increased to approach that predicted by complete combustion at test conditions.
(MIXING, CONCENTRATION, SHOCK)

H73 33056 MIXING AND COMBUSTION OF HYDROGEN IN A SUPERSONIC AIRSTREAM
Jacques, M.T., (Sheffield Univ., Dept. of Fuel Technology and Chemical Engineering, England), Report No. HIC-170 AFOSR-TR-71-2636, Fe 71
The report is concerned with the mixing and combustion of hydrogen in a high enthalpy Mach 3.5 airstream, in which the conditions are such that the combustion process is mixing limited. The high enthalpy conditions are obtained using a combustion driven hypersonic shock tunnel.
(SHOCK, INJECTOR, TURBULENCE)
INVESTIGATION OF COMBUSTION OF HYDROGEN IN A HYPERSONIC AIR-STREAM

A detailed investigation of the problem associated with the venting of combustible hydrogen from launch vehicles is summarized. Problems associated with the kinetics of the hydrogen air system, including the two phase phenomena associated with cryogenic hydrogen, as well as the fluid mechanical mixing problems and the coupling of the two were considered.
(MIXING, VENTING, KINETICS)

HEAT ADDITION IN SUPERSONIC FLOW BY MEANS OF HYDROGEN COMBUSTION ON A FLAT PLATE IN TANGENTIAL FLOW
Maurer, F., (Cologne), DGLR 71, 4th DGLR Annual Meeting, Baden-Baden, West Germany, Oct 11-13 '71, Avail:TAC

The problem of external heat addition in supersonic flow for producing aerodynamic forces is studied, supplemented by a one dimensional momentum analyses for the flow-field of a flat plate in tangential flow. Secondary air injection through a slot nozzle is used for creating upstream and downstream recirculation zones. By adding hydrogen to the upstream flow and igniting with a spark device, a stable flame is produced.
(SUPERSONIC, FLOW, COMBUSTION)

GENERATION OF HIGH STAGNATION TEMPERATURES BY PRECOMBUSTION OF HYDROGEN
Alvermann, W., DLR-FB-67-05, In German, Ja 67, Avail:TAC

For mixture of air and oxygen heated by precombustion of hydrogen and containing 21% oxygen by volume which can be used as a substitute for air in thermogasdynamic investigations with high Mach number, the temperature of the air before combustion, required for predetermined temperatures of the mixture, is calculated for several hydrogen contents. Furthermore the equilibrium compositions of the different air-oxygen-hydrogen systems are determined for various temperatures and pressures.
(GENERATION, COMBUSTION)

DIFFUSION FLAMES AND SUPERSONIC COMBUSTION
DaRiva, I., A. Linan, E. Fraga, and J. Urrutia, (Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain), N70-11935, AD-693341, Je 69, Avail:TAC

The method of matched asymptotic expansions has been
used for the analysis of the H₂-Air reaction in the
temperature and pressure range of interest to Supersonic
Combustion.
(RATE, EXPANSION, REACTION)

H73 33061 AN ANALYSIS OF INTERNAL SUPERSONIC FLOWS
WITH DIFFUSION, DISSIPATION AND HYDROGEN-AIR COMBUSTION
Dash, S., (Advanced Technology Labs, Inc., Jericho, N.Y.),
N70-42160, NASA-CR-111783, May 70, Avail:TAC

Using a modified characteristic calculation accounting
for diffusion normal to the streamlines and finite rate
chemistry along them, with pressure variations both along
and normal to the streamlines, a system of equations is
presented which is of a hyperbolic-parabolic nature.
(COMPUTER, NOZZLE)

H73 33062 TWO-DIMENSIONAL, SUPERSONIC MIXING OF
HYDROGEN AND AIR NEAR A WALL
Silver Spring, Md.), N71-20127, NASA-CR-1793, Mar 71,
Avail:TAC

Parallel injection of hydrogen at Mach 1.19 from a
rectangular wall-slot into a Mach 2.1 airstream was
experimentally investigated using instream probes. The
development of pressure, temperature, composition and
velocity profiles was measured to a downstream distance
of 30 slot heights for two values of the hydrogen-to-air
mass flux ratio: 0.088 and 0.120. From the data, there
are determined the growth rates of the turbulent species,
energy, and momentum transfer layer thicknesses, and the
decay rates of the composition, temperature and velocity
maxima.
(PRESSURE, TURBULENCE, TEMPERATURE)

H73 33063 STUDIES OF HYDROGEN-AIR SUPERSONIC COMBUSTION
AT LOW DENSITIES
Drewry, J.E., and R.G. Dunn, (USAF, Aerospace Research Labs.,
Wright-Patterson AFB, Ohio), R. Edelman, and O. Fortune
(General Applied Science Labs., Inc., Westbury, N.Y.),
Combustion Institute, Fall Meeting, Menlo Park, Calif.,
Oct. 28-29 '68, Paper 68-29, Avail:TAC

An investigation of supersonic combustion as related
to propulsive systems for high Mach number, high-altitude
flight is described. A method of laboratory simulation is employed which is considered to be suitable for fundamental studies of diffusional-controlled supersonic combustion under conditions approaching those of actual flight.

(SIMULATION, COMPUTER, IGNITION, NUMERICAL SOLUTION)

H73 33064 COMPUTATIONAL STUDY OF THE KINETICS OF THE HYDROGEN-OXYGEN REACTION BEHIND STEADY STATE SHOCK WAVES, APPLICATION TO THE COMPOSITION LIMITS AND TRANSVERSE STABILITY OF GASEOUS DETONATIONS

The rate equations for the H_2-O_2 reaction have been integrated numerically under the conditions of steady flow in a Zeldovich-Doring-von Neumann detonation. The reaction kinetic behavior of the H_2-O_2 system under conditions close to the isothermal branched-chain explosion limits is considered. The application to detonability limit calculations is discussed.

(RATE, DETONATION, INDUCTION)

H73 33065 INITIATION OF DETONATION BY INCIDENT SHOCK WAVES IN HYDROGEN-OXYGEN-ARGON MIXTURES

A series of experiments was carried out to demonstrate in detail the steps by which a chemical reaction initiated by a shock wave couples to the wave. Shock speed, pressure, and heat transfer measurements gave complementary information on the process. The hydrogen-oxygen reaction that was studied is typical of many gaseous combustion reactions in having a temperature-dependent ignition induction time. Once reaction starts, energy is given to the incident shock wave so that induction times of successive elements of gas become shorter. During this period of decreasing induction time the shock wave is accelerated to a high transient value. Later the velocity falls off as the induction time reaches a short, constant interval and the reaction occurs close behind the shock wave.

(IGNITION, VELOCITY)
The ignition mechanism of the hydrogen-oxygen explosion at temperatures near 1000K and pressures greater than 1 atmosphere was investigated theoretically using the complete analytic solution to the kinetic equations of an abbreviated, linearized mechanism and numerical integration of the full conventional mechanism for these conditions. It was found that the analytic solution of the simplified mechanism is capable of only a qualitative description of the second limit effect observed in reflected shock experiments on ignition delays, and cannot be forced to yield quantitative agreement.

(IGNITION, DETONATION, COMPUTER)
Present state of development of fuel cells in United States, Europe and Great Britain, including static and portable systems; outstanding problems are discussed, which must be solved before real "breakthrough" is achieved, including properties of catalysts in electrochemical media, chemical processes of polarization and reaction mechanisms, particularly when complex organic substances are used as fuels, electrochemical factors causing "drowning" of electrodes whenever water is formed as product, production of cheap electrodes and simple engineering systems, and use of more effective catalysts to enable cheap fuels to be used.

(CATALYST, ELECTRODE, REACTION)

Discussion of fuel cells, defined as electrochemical devices that directly convert the chemical energy of a fuel oxidation reaction into electrical energy. Fuel cells are considered from the point of view of thermodynamics which sets the ultimate limitation on energy density, from the point of view of the kinetics of electrochemical reactions and transport processes which set practical limits on energy density and are subject to improvement, and from the point of view of the state of development of representative types of fuel cells. It is considered that fuel cells will always be very complex in the chemical sense, and there will be many types of possible fuel cells in keeping with the wide diversity of chemical reactions that may be involved. It is highly probable that some types of fuel cells will be successful in a practical way.

(FUEL CELL, ENERGY)

The operation of a fuel cell is briefly described,
and the chemical reactions upon which the production of electricity is based are outlined. Possible applications of fuel elements in power engineering are also discussed. (REACTION, POWER)

H73 34003 DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY - BATTERIES AND FUEL CELLS
Lespinasse, B., Sciences et Industries Spatiales, V 1:63-8, N7-8 65
Discussion of hydrogen fuel cells, the only ones at present planned for space use. Cells derived from the Bacon cell, which essentially comprises two sintered nickel electrodes, of two different porosities, with a central compartment filled with an electrolyte (KOH), and with the lateral compartments being supplied with gaseous hydrogen and oxygen, are examined in terms of the reactions at the electrodes, the electromotive force, and current density. Membrane cells are similarly investigated. Comments are made on the decomposition of the polarization curve, the efficiency, and the heat to be disposed of. The Gemini and Apollo fuel cells are briefly described. (REACTION, MEMBRANE, NICKEL)

H73 34004 ELECTROCHEMICAL FUEL CELLS
Sandstede, G. (Battele- Institut, Frankfurt/Main, Germany), Fortschr. Chem. Forsch., V 8:171-221 N2 67
Electrochemical combustion reactions, H and hydrocarbon fuel cells, and the construction of fuel cell batteries are discussed. (REACTION, CONSTRUCTION)

H73 34005 FUEL CELL AS ENERGY CONVERSION DEVICE
Gupta, C.P., (University of Roorkee, India), Journal of the Institution of Engineers, V 48:160-87 N10, Je 3 '68
The hydrogen-oxygen fuel cells are at present in the most advanced stage of development. Hydrogen-oxygen ion-exchange membrane fuel cell is in a relatively advanced stage of development. It operates at approximately atmospheric pressure, and the temperatures within the cell are 40 to 60 C. One version of a high temperature fuel cell, operating above 500 C uses molten alkali carbonates as electrolyte. The electrolyte is usually held in a
sponge-like ceramic matrix. More advanced cells may give power densities of 2 to 10 kw/cu ft at an overall efficiency of about 60%.

(MEMBRANE, ELECTROLYTE)

H73 34006 FUEL CELLS

Review of developments in various acid, alkaline, and molten salt systems, and applications; fuel cells allow reaction of two materials to occur in electrochemical process to provide electric current; it operates with no moving parts, which leads to noiseless and reliable operation; universal fuel of cell is hydrogen, and problems and methods of converting inexpensive hydrocarbon fuels to hydrogen in portable equipment are noted; modified Bacon-type fuel cell for Apollo spacecraft, internal reforming system with palladium foil anodes, electrovan with speed of 70 mph and 150-mi range, portable radio power supply, etc, are among systems discussed.

(ACID, ALKALINE, MOLTEN SALT)

H73 34007 FUEL CELLS - ELECTROCHEMICAL ENERGY CONVERTERS OF FUTURE
Doehren, H.H. von, Int Electronische Rundschau, V 19:63-7 N2 Fe 65

Principles of operation, design, economic considerations, and state-of-art report of fuel cells; thermodynamic fundamentals; review of various types of fuel; advantages of fuel cell with view to their application in future.

(COST, THERMODYNAMICS, DESIGN)

H73 34008 FUEL CELLS: MODERN PROCESSES FOR THE ELECTROCHEMICAL PRODUCTIONS OF ENERGY

An attempt is made to present a comprehensive but concise account of research and development in the field of the direct generation of electrical energy by electrochemical processes, to the stage achieved in 1964. The results of extensive hitherto unpublished research are included. The electrochemical methods for storing electric energy are examined together with the separation of the iso-
topes of hydrogen accompanying the electrolysis of aqueous solutions. In conclusion, the whole field is briefly reviewed and possibilities of future applications of the new sources of energy are discussed. The book is intended not only for electrochemists but for all groups of research workers interested in energy conversion.

(ELECTRODE, CONSTRUCTION)

H73 34009 FUEL CELLS: THEORY AND APPLICATION

Practical and experimental fuel cells are discussed in this text. Areas covered include the thermodynamics of galvanic cells, the kinetics of fuel cell processes, the limiting problems in fuel cells, the fuel cell as a supplier of large-scale industrial power, and the application of fuel cells to mechanical power plant systems and space exploration. Sources of voltage loss when current is drawn from a cell are related quantitatively to cell design characteristics. Performance characteristics of oxygen electrodes, porous metal electrodes as a function of their structure, and hydrocarbon gas electrodes are also examined.

(THERMODYNAMIC, GALVANIC, ELECTRODE)

H73 34010 MASS EXCHANGE IN A HYDROGEN-OXYGEN FUEL CELL WITH A CAPILLARY MEMBRANE

The concentration and potential gradients across an electrolyte-containing membrane of the hydrogen-oxygen fuel cell have been calculated taking into account the following processes: diffusion of all solution components, ion migration in the electric field, permeation flux of the solution, external water vapor flows, water vapor transport in gas bubbles. A theory of the self-regulation of water removal has been developed, which takes account of the mass exchange conditions in the membrane and in the whole fuel cell, as well as capillary membrane. The self-regulation of water removal during changes of the current or during changes of parameters influencing the rate of water removal, as well as the self-regulation in the case of a non-uniform process distribution over the electrode surface have been considered.

(MIGRATION, BUFFER)
H73 34011 PHYSICAL AND TECHNICAL PROBLEMS OF DIRECT
CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL
Lidorenko, N.S., V.E. Dmitrenko, F.R. Yppets, G.F. Muchnik,
and I.A. Zaidenman, (Akademiya Nauk, USSR), Energetika i
Transport, N4:3-12 68, Avail:TAC
An analysis is made of the basic power aspects of the
problem of developing fuel cells. From a physical energy
point of view the system of electrochemical generators
(ECG) is examined on the basis of an analysis of three
components—the ECG itself and the systems of accessories
and automatic adjustment, the creation of which is com-
bined with the solving of a number of specific problems.
The most important of these problems are examined and the
necessity of their overall solution is brought out. As
an example of practical realization of these problems, data
are cited for an electrochemical generator with polymeric
hydrophobic electrodes. This generator has promise for
application in ground transport equipment. An analysis
is made of the technology of manufacture of electrodes,
design of battery, and volt-ampere characteristics.
Photographs are shown of a Soviet ECG with ion-exchange
membranes and cermet electrodes.
(Power, Electrode, Manufacture)

H73 34012 THE FUEL CELL CONCEPT, A REVIEW OF BASIC
PRINCIPLES
Henry, R.J., N71-15723, DLR-MITT-70-09, J1 70, Avail:TAC
The discussion of single cell electrochemistry in-
cudes performance characteristics of the Apollo fuel cell
using hydrogen-oxygen reactants. Modern applications of
cells using air oxidant and hydrocarbon fuels are described
and the relatively pollutant-free fuel cell exhaust is com-
pared with that from commercial powerplants.
(Fuel Cell, Review)

H73 34013 THE FUEL CELL—WHEN
Llioret, P., (Ecole Superieure d'Electricite, France),
Science Progres Decouverte, 13-19, Je 70, Avail:TAC
Review of the state of the art and of recent French
efforts in the field of fuel cells. An expensive source
of power, the fuel cell has found so far hardly any other
application than in space missions. Is it doomed to re-
maintain a lab curiosity or will it one day compete with con-
ventional sources of power. At least one French group
of researchers hope to be on a path leading to industrial
success.
(DESIGN, RESEARCH)

H73 34014 COMPLETE POWER SOURCES
Discussion of problems connected with the construction of fuel batteries. The principal materials suitable for low-temperature cells are summarized in a table. It is noted that a hydrogen generator/fuel cell system is unlikely to be a commercial competitor of the diesel electric generator, unless economics is not the sole consideration. One possible exception is the combination of a high-pressure electrolyzer and a vehicle powered by fuel cells. This is only likely to be economic in special circumstances, for example, if the electric vehicle is required for full-time (24 hr/day) operation. The fuel cell vehicle could be rapidly recharged with hydrogen and oxygen from storage fed by the electrolyzer. It is pointed out that if other considerations outweigh economics, then the hydrogen generator and fuel cell may find applications. Design studies for submarine plants suggest that military application are being seriously considered.
(COST, VEHICLE)

H73 34015 BRINGING THE FUEL CELL DOWN TO EARTH
Lessing, L., Fortune, 129-132, Sept 66
In essence, a fuel cell is a device for converting chemical energy directly into electrical energy. By bringing hydrogen and oxygen gas together in a controlled way on catalytic platinum electrodes, we could re-form water and in the course of the reaction tap off an electric current. The same principle applied to many chemical reactions. So far the fuel cell has proved to be useful only in very special circumstances, in space and military applications. Eventually, fuel cells may supply a new source of power for special vehicles, trucks, fast trains, even automobiles.
(POWER, VEHICLE)
CONCENTRATION CHANGES IN OPERATING FUEL CELLS

The high current densities at which fuel cells operate give rise to large concentration changes across the porous matrix employed in most of these cells. These changes were measured in cells especially constructed for these determinations using aqueous potassium hydroxide and phosphoric acid as electrolytes. Part of the resulting voltage losses of the fuel cells, due to pH changes and liquid junction potentials, were measured. A theoretical treatment is presented which accurately describes the experimental data.

(ELECTROCELL, CURRENT DENSITY)

ELECTROCATALYTIC REACTIONS
Makrides, A.C., 20th Annual Power Sources Conference - Proceedings, (U.S. Army Electronics Labs, Fort Monmouth, N.J.), May 24-26 '66, p 5-8, Avail:TAC

Review of relationship, constituting basic principle of fuel cell electrolysis, between atomic composition and electrode properties for hydrogen, oxygen, and hydrocarbon oxidation reactions; rates of electrode reactions examined as functions of electron-exchange reactions; electrode composition determines interaction rate between reactants and electrode surface; hydrogen, oxygen, and hydrocarbon oxidation reactions considered in relation to electrode reactivity as determined either by intrinsic chemical property of individual surface atoms, or by electronic energy states of electrode material as whole.

(FUEL CELL, ELECTRODE, REACTION)

HYDROGEN SOURCES FOR FUEL CELLS

Commercially available gas, liquid, and chemical sources of hydrogen for use with fuel-cell batteries are compared. Cryogenic storage is shown to be the most efficient on both weight and volume bases. Chemical generators are suitable for applications requiring moderate quantities of hydrogen gas at infrequent periods. Compressed-gas cylinders are convenient when small quantities of hydrogen are desired. A bibliography of selected pub-
lications of the past five years is included.
(FUEL CELL, BATTERY)

H73 34019 ENERGETICS: FUEL-CELL SYSTEMS
Cohn, E.M., Mechanical Engineering, p 22, Je 66
An idea that is well over 150 years old is finally becoming a reality - the conversion of fuel energy directly into electrical energy for use in functional power plants. This is the fuel cell, noted as the on-board power source for certain space missions. What is the fuel cell, and just where does it go from here?
(FUEL CELL, POWER)

H73 34020 FUEL CELLS FOR CENTRAL POWER GENERATION
Archer, D.H., Mechanical Engineering, p 42, Mar 68
Under research: Solid-electrolyte fuel cells which have the capability to produce electrical energy from coal at high efficiency in large-scale central station power plants.
(SOLID-ELECTROLYTE, POWER)

H73 34021 THE CONVERSION OF ENERGY
Summers, C.M., Scientific American, 149-159, Sept 71, Avail:TAC
This paper presents many energy conversion systems. One of them is the fuel cell which converts the energy in hydrogen or liquid fuels directly into electricity.
(FUEL CELL)

H73 34022 USE OF HYDROGEN IN FUEL CELLS
Discussion of the technology of fuel cells. The fuel cell is termed an energy-conversion device which needs a supply of fuel and oxidant from an external source. It is stated that the greatest interest shown in the fuel cell to date is for use in marine propulsion; however, interest has been shown in its application to vehicle propulsion. This interest will probably grow as the life and reliability of fuel cells continue to improve and as manufacturing costs will be reduced. Many applications are expected to utilize hydrocarbon fuels directly. It
is noted that the extensive use of hydrogen cells, particularly outside the space power field, will depend very much on continuing improvements in the state of the art of the production, storage, and handling techniques for the hydrogen fuel.

(FUEL CELL, TECHNOLOGY)

H73 34023 THE FUEL CELL PROBLEM

Discussion of the historical background, development, and operation of fuel cells, with special attention devoted to the materials, applications, and engineering problems of fuel cells using hydrogen and oxygen (pure or as air). These problems involve the minimization of the amounts of precious platinum and palladium catalysts, the optimization of electrodes and cell structures, and the problem of high cost per kilowatt.

(HISTORY, APPLICATION, CATALYST)

H73 34024 TECHNOLOGY OF FUEL CELLS

Review of technology and fundamental aspects; basic mechanisms, namely, oxygen concentration cells, hydrogen electrode cells, Redox cells, and others are considered to show fundamental requirements and limitations of different types of cells; structures of porous and nonporous electrodes; advantages and disadvantages for various temperature ranges.

(REACTION, ELECTRODE, TEMPERATURE)

H73 34025 MASS TRANSFER IN ELECTROCHEMICAL FUEL CELLS WITH ION EXCHANGE MEMBRANES
Ivanov, A.M., Teplofizika Vysokikh Temperatur (USSR), V 8:615-621 N3, 70, Avail:TAC

Basic questions characterizing the problem of optimum mass and heat transfer in electrochemical fuel cells are discussed. The effect of mass-transfer conditions on the output characteristics of fuel cells is examined, in hydrogen-oxygen fuel cells with ion exchange membranes.
The inherent moisture content of ion exchange membranes
and of the membrane-catalyst system are also described.
(FUEL CELL, ION EXCHANGE)

H73 34026 LOW-TEMPERATURE FUEL CELL SYSTEMS
Palmer, N.I., Chemical Engineering Progress Symposium,
Series No. 75, 63, p 17, 67, Avail:TAC
Low-temperature fuel cells are reviewed. Three
major hydrogen-oxygen systems are compared. A classifica-
tion of the different types of hydrocarbon-air fuel cells
is given. Construction and performance of representative
systems are analyzed.
(FUEL CELL, TEMPERATURE)

H73 34027 HYDROCARBON - AIR FUEL CELL SYSTEMS
Status of hydrocarbon-air fuel cell technology at
present time is presented; basic principles of two types
of hydrocarbon-air fuel cells, namely indirect-oxidation
and direct-oxidation systems, are outlined; in direct-
oxidation cells, hydrocarbon fuel is oxidized directly at
fuel electrode; in indirect-oxidation cells, now in systems
engineering development stage, hydrocarbon fuel is con-
verted into impure hydrogen, which may then be purified
to certain degree and injected into fuel cell modules;
present situation in research, development, and technology
in United States and Europe; future applications.
(OXIDATION, RESEARCH)

H73 34028 HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIAL
(HOPE) FUEL CELL PROGRAM PHASE 1a
Chapman, L.E., (General Electric Co., Philadelphia, Pa.),
N63-15187, AF-33(657)896C, Final Report, Je 62 - Oct 62,
Jan 63, Avail:TAC
The activities conducted on the HOPE (hydrogen-oxygen
primary extraterrestrial fuel system) Phase 1a program are
described. Included are: research on electrochemical reactions,
hydrogen ion diffusion through polymeric membranes, internal
mass transport of water through capillary action, and mass
transport of water vapor through an ambient of diatomic
oxygen gas at 1 atmosphere pressure. Project HOPE's
ultimate objective was the design of a 500-watt fuel-cell
power-system, including cryogenic fuel supply, for orbital
applications.
(REACTION, MEMBRANE, WATER)
Examination of the state-of-the-art and future potential of fuel cells such as hydrogen-oxygen cells, hydrazine-oxygen cells, hydrocarbon-consuming cells, and sodium amalgam-oxygen cells. An H_2-O_2 type (by GE) has been used as nonpropulsive power source for orbital missions in the Gemini project; another (by Pratt and Whitney) will be applied in the Apollo project; and a third (by Allis Chalmers) is under study for later space projects. Voltage output under operating conditions is about 0.9 V for the hydrogen-oxygen type. Problems that remain to be overcome in all types are low power densities and short operating life. Some materials problems arise from the high operating temperatures required in the case of the hydrocarbon-consuming cell. In regions with high cost of electrical power the further development of the sodium amalgam-oxygen cell might be attractive.

(HYDROGEN, HYDRAZINE, HYDROCARBON, TEMPERATURE)
as an indirect hydrocarbon-air battery for field communication systems, hydrazine-oxygen system battery for submarines, and hydrogen-oxygen units for buoys and for electric traction. Also considered are the experiments on the direct use of cheap organic fuels, such as kerosene and methanol, without a preliminary reforming process. Various systems are being investigated such as medium temperature, molten salt electrolyte (300°C to 600°C), high temperature, solid oxide electrolyte (800°C to 1200°C); and low temperature, acid electrolyte systems. Summary information is included on the research being conducted in Great Britain, France, Germany, Switzerland, Sweden, Holland, Russia, and Japan.

H73 34032 FUEL CELLS, A PROGRESS REPORT
Austin, L.G., B.C. Almaula, Chemical Engineering, V 76:85-91
N13, Je 16 '69

Many chemical engineering problems remain to be solved before the promising potential of fuel cells becomes a reality. This survey also points out the advantages and difficulties involved in the adaptation of fuel cells to electric cars, forklift trucks, and electrochemical processes.

H73 34033 FUEL CELLS
N296, Sept 65

Reviewing use of hydrazine, ammonia, cyclohexane, and compressed hydrogen with emphasis on additional difficulties which arise when attempts are made to produce complete units consuming hydrocarbon fuel and air; developments in fuel cell design, mainly hydrogen cells; use of compressed hydrogen in propulsion of short-range transport vehicles; relative merits and storage of fuel cells.

H73 34034 FUEL CELL TECHNOLOGY - A SURVEY OF ADVANCES AND PROBLEMS

Survey of recent progress in fuel cell technology.
with the object of evaluating the state of development of cells for various proposed applications. The cells considered are classified according to the range of fuel cost into (1) cells using zinc-oxygen, sodium-oxygen, hydrogen-oxygen, and hydrogen-air (expensive fuels), (2) cells using methanol-air and methanol-oxygen (medium-cost fuels), and (3) hydrogen-air fuel cells (low-cost fuels). The survey includes: hydrogen-oxygen fuel cells, cells employing carbon electrodes, high-temperature/high pressure cells, the Justi cell, solid electrolyte systems, organic and inorganic membranes, and the vehicle-held electrolyte system.

(Application, Electrode, Solid-Electrolyte, Temperature)

H73 34035 FUEL CELLS, TODAY AND TOMORROW
Pouli, D., (Allied Chemical Corp., Morristown, N.J.), Heat, Piping and Air Conditioning, V 42:102-9 N9, Sept 70

Review of the state-of-the-art of new sources of energy conversion with respect to fuel cells deals with fuel cell components, modes of electrolyte retention, product removal, classification of fuel cells, cell reactions, voltage losses, and practical fuel cell systems.

(Electrolyte, System)

H73 34036 ELECTROCHEMICAL PROCESSES IN FUEL CELLS

An analysis of the fundamental electrochemical problems is presented without taking into consideration the practical approaches. Thermodynamic considerations and definitions are presented together with basic requirements for practical fuel cells. The basic concepts of transport process are briefly outlined. A review is presented of the effect of the nature of the electrode material on the kinetics of electrode reactions on homogeneous surfaces, taking into account mainly the primary effects.

(Thermodynamics, Electrode, Catalyst, Membrane)
A steady state model is developed for the voltage output of a hydrogen-oxygen fuel cell battery as a function of battery temperature, reactant pressure, electrolyte concentration, and average cell current. The model includes the effects of activation and concentration polarization in the porous electrodes and resistance polarization in the bulk electrolyte. The results of the mathematical model are fitted to experimental voltage-current data for a hydrogen-oxygen fuel cell battery and shown to be adequate for correlation and extrapolation of these data.

Conversion of water to hydrogen by electrolysis is advocated with reconversion of hydrogen to work by fuel cells. Fuel cells, electrolyzers and electrocatalysis schemes are described.

Conversion of water to hydrogen by electrolysis is advocated with reconversion of hydrogen to work by fuel cells. Fuel cells, electrolyzers and electrocatalysis schemes are described.

Conversion of water to hydrogen by electrolysis is advocated with reconversion of hydrogen to work by fuel cells. Fuel cells, electrolyzers and electrocatalysis schemes are described.
Pfefferle, W.C., SAE Paper 935B, Oct 19-23 '64

Engelhard Hydrogen Process (EHP) provides solution to problem of building efficient, compact hydrogen generators for fuel cell use; process simplification is achieved by integrating use of hydrogen producing reaction, removal of pure product hydrogen, utilization of residue as fuel to supply energy, and requirements of process; generators provide source of ultra-pure hydrogen, suited for fuel cell use, and are capable of achieving thermal efficiency approaching 100% for conversion of hydrocarbons into hydrogen; it should be possible to build small fuel cell power packages, as small as 500W, operating at thermal efficiencies greater than those of large power plants.

(UTILIZATION, ENERGY, PROCESS, GENERATOR, EFFICIENCY, CONVERSION, HYDROCARBON)

The objective of this study is to present an approach to high-pressure high-temperature fuel-cell and electrolysis-cell electrode design which is based on the theory of conformal transformations. Electrode configurations resulting from a conformal transformation of the type considered in this study have electrostatic field characteristics similar to those associated with conventional parallel plate electrodes. Fuel cells and electrolysis cells which are operated at high pressures and temperatures can have electrical characteristics which are superior to those of cells which are operated at lower pressures and temperatures.

(PRESSURE, TEMPERATURE, FUEL CELL)

The effect of design and operating factors on the performance and life of alkaline electrolyte, hydrogen/oxygen, matrix fuel cells was investigated. Full size single cells were operated on a simulated space shuttle load profile and were refurbished by flushing with fresh electrolyte to extend their useful life. A data base for the design
of fuel cells with a one year operating life is provided. Cell life of over 6400 hours at a potential of 0.945 volts with no net voltage decay was demonstrated while operating at a temperature of 176 F and a current density of 75 atmospheres sq ft.

(DESIGN, FUEL CELL)

H73 34103 COLD HYDROGEN AND BASIC ELECTROLYTE CELLS AT THE RESEARCH CENTER OF THE CGE

Discussion of the development of fuel cells based on a study of the composite subsystems - e.g., single cell batteries, reagent chambers, and auxiliary control systems. The development of a cold hydrogen and basic electrolyte cell is described on the basis of the following parameters: (1) autonomy, weight, and reliability of the batteries, (2) low-power cells and operation in air, (3) power of the cell and regulation of the electrolyte concentration, and (4) reliability, output, and weight of the auxiliary control systems.

(WEIGHT, RELIABILITY, ELECTROLYTE)

H73 34104 FUEL CELLS, DESIGN & COMPONENTS
Anon, Engineering, N18:6-14, Sept 30 '68

History and general description of fuel cells; various types of dry cells, storage batteries and fuel cells are compared on basis of power-to-weight ratios; electrodes, electrolytes, fuel and applications are discussed.

(ELECTRODE, ELECTROLYTE)

H73 34105 HYDROGEN AND BASIC-ELECTROLYTE LOW-TEMPERATURE BATTERIES AT THE CGE RESEARCH CENTER
Edon, C., (Compagnie Generale d'Electricite de Paris, France), Sciences et Industries Spatiales, V 4:29-32 N9-10, 68

Discussion of the technical and economic requirements that influence the definition and design of a fuel cell. Fundamental design problems associated with low-temperature hydrogen cells and basic battery solutions are treated. Also treated is the regulation of the electrolyte concentration by elimination of the water formed.

(COST, DESIGN)

237
A conceptual design analysis was performed for the purpose of evaluating the feasibility and advantages of a supersaturated feed fuel cell (SFFC) based on packing reactants into electrolyte solutions under high pressure followed by circulation of the loaded electrolytes through appropriate porous electrodes. This study was confined to low temperature alkaline H₂-O₂ fuel cells. Tentatively assumed normal operating conditions of 75°C at 10 atmosphere system pressure and 200 atmosphere reactant saturation pressures, 5 M KOH, and 0.25 amp/cm² apparent electrode area, yield a predicted output voltage of at least 1.10 v/cell for the SFFC as compared with only 0.90 v/cell or less for gaseous-diffusion type or for recently considered undersaturated flooded-flow systems. The SFFC system was shown to be stable and, in part, self-regulating.

Fuel cell gas compartments are of two type - through-flow and dead-ended. Dead-ended anode and cathode compartments are used when pure reactants are available, such as hydrogen and oxygen in space vehicles. It appears that for rational design and improvement of dead-ended and nearly dead-ended fuel cells, one must have a good mathematical description of flow in the anode and cathode cavities.
FEASIBILITY STUDY OF HIGH PERFORMANCE HYDROGEN-OXYGEN FUEL CELLS

Two process concepts were examined to determine if decoupling the limiting cathodic process into its own reaction space could result in increased hydrogen-oxygen fuel cell efficiency and result in enhanced specific power. Although decoupling was successful with slurry catalyst and mediator systems, the anticipated performance improvements were not obtained.

EFFICIENCY, POWER, CATALYST

PURIFICATION OF FUEL CELL GASES

Means of effecting purification in-flight of hydrogen and oxygen gases delivered to the Apollo fuel cell were evaluated and screened for suitability. The techniques which appeared to be workable were further studied. Purifications which were judged to be feasible are removal of carbon dioxide and carbon monoxide from oxygen, and separation of hydrogen from impurities by diffusion through metallic membranes.

MEMBRANE

ADVANCED ELECTROCHEMICAL TECHNOLOGY

An advanced fuel cell of the gas diffusion type is being studied, including the development of improved mathematical representation of the predominant, performance-controlling phenomena occurring within the active pores of the electrodes of such cells. Fabrications and installation of experimental facilities for the advanced basic study of fuel cells and related electrochemical systems are under development; and preliminary studies are being made of a new flow-through concept in which continuous circulation of an emulsified electrolyte is used to overcome limitations of presently-used flow-through systems because of the low
solubilities of hydrogen and oxygen in strong aqueous electrolytes at ordinary temperatures and moderate pressures.

(FUEL CELL, ELECTROLYTE)

H73 34203 CONSTRUCTION OF A HYDROGEN-OXYGEN FUEL CELL AND ITS PERFORMANCE WITHIN THE TEMPERATURE RANGE -20°C TO +60°C
Weidinger, K., (Bad Godesberg, West Germany), Bundesmin fuer Wiss. Forsch, N68-15248, BMWF-FB-W-67-04, May 67, Avail: TAC

In order to study the temperature influence on the mechanical and electrochemical properties of a fuel-cell-battery an investigation was carried out within the temperature range -20°C to +60°C. No mechanical defects due to differences in thermal expansion of metal-electrodes and plastics (used for framing) could be observed. There is a strong temperature influence, however, on the electrochemical performance. Nevertheless an operation of the fuel-cell below 0°C is possible, as long as the power densities are low.

(FUEL CELL, TEMPERATURE, POWER)

H73 34204 EFFECT OF PRESSURE ON PERFORMANCE OF HYDROGEN FUEL CELLS

Effect of environmental pressure on performance of multiplate hydrogen/oxygen fuel cell as been studied at 30 and 60°C; at each temperature, power obtained from cell increased with increasing pressure; for example, at working voltage of 0.6 v, increased power was 90 and 150% at 60 and 30°C respectively when environmental pressure was increased from 1 to 5 atmosphere; improved performance was due to reduction in polarization of both oxygen and hydrogen electrodes.

(FUEL CELL, PRESSURE, PERFORMANCE)

H73 34205 ELECTRIC CELLS WITH ELECTROCHEMICAL HYDROGEN COMBUSTION

After a brief review of cells with carbon electrodes, with and without Pt-Ni catalyst, using H and O or air, the development of a specific cell using approximately 7N KOH and electrodes of wood charcoal, petroleum coke, or combinations of different forms of carbon, is discussed.

(ELECTRODE, CARBON)
Three hydrogen-oxygen fuel cell systems are currently under development for aerospace applications. The three are described in terms of their basic operating parameters and construction features. A fuel cell may be considered to be an isothermal steady state reactor in which the conversion of hydrogen and oxygen to water is accomplished.

Discussion of the development of, and problems concerned with, hydrogen-oxygen fuel cells. Noted is research on the development of fuel cells which will use hydrogen produced by a generator or obtained from the combustion of hydrogen-containing compounds, such as methane, in order to avoid the bulk and weight penalties associated with high-pressure hydrogen-storage cylinders.

Use of zirconium phosphate Teflon matrix for phosphoric acid cells operating at 125 to 175 °C, using as fuel both hydrogen and propane; phosphoric acid system would be useful only for hydrocarbon system or where higher operating temperature is mandatory for other reasons; these electrolyte/electrode assemblies are useful where simplicity of assembly is more important than high performance; however, better mechanical properties are necessary for lifetimes greater than about 500 hr at 150 °C.

The discharge mechanism of H-Cl fuel cell was investigated by using LiCl-KCl eutectic at 450-600 °C as the electrolytic cell.
A hydrogen-oxygen cationic ion-exchange membrane fuel cell was operated at various temperatures, pressures, and electrolyte concentrations. The open circuit and discharge characteristics of the cell were explained in terms of the oxygen polyelectrode theory. Although discharge was limited by internal resistance, pressurization greatly reduced polarization.

A mixture of H_2O/C-containing fuel in a ratio of 2 moles H_2O vapor/mole of C was passed into a reactor zone containing a catalyst to form CH_4 and H. The H passed out of the reactor zone towards an anode having a metallic membrane permeable to H, and through an electrolyte to produce current.

A fuel cell using a phosphoric acid paste electrolyte with porous carbon and metal gauze electrodes has been operated at $200^\circ C$ on dilute hydrogen and carbonaceous fuels with oxygen and air as oxidants. Dilute hydrogen, steam-reformed (at cell temperature) methanol, and shifted carbon monoxide give 70 to 90% the performance of pure hydrogen.

Considerable attention is currently being given to the development of fuel cells operating on carbonaceous fuels. The direct oxidation, although simple in over-all
concept, faces some severe development problems. In the alternative indirect approach, the carbonaceous fuel is steam reformed in a prereactor to produce H which can then be fed to a H fuel cell, the technology of which is considerably more advanced.

EFFICIENCY

H73 34214 PERFORMANCE OF COMPACT-DESIGN BUTANE-AIR FUEL CELL
Experiments were conducted on high-temperature, molten carbonate fuel cells to evaluate characteristics of hydrogen-air and butane-air systems; by use of reference electrode, it was possible to isolate anode and cathode performance; hydrogen electrode is almost independent of temperature over 500 to 750 C range.
(TEMPERATURE, ANODE, CATHODE)

H73 34215 PERFORMANCE OF REFORMED NATURAL GAS-ACID FUEL CELL SYSTEM
Development of hydrogen generator-fuel cell system in which feed from reformer is rich in hydrogen but unpurified, enrichment being achieved by conventional chemical processing techniques; this implies use of fuel cell of acid electrolyte type; it is unlikely that platinum will be replaced as catalyst, at least on oxygen side.
(FUEL CELL, CATALYST, NATURAL GAS, ACID)

H73 34216 PROBLEMS OF GASES MIXING IN H2/O2 FUEL CELLS IN WHICH GAS CIRCULATES THROUGH ELECTROLYTE
In fuel cells that are operated at low temperatures with liquid electrolyte and with oxygen and hydrogen, heteroporous electrodes may be used in which some gas is conveyed unused through electrolyte; for fuel cell to function properly, it is essential for barrier between two electrodes to allow electrolyte through, but not gases concerned; this article deals with some problems raised by mixing of gases and gives some results obtained with experimental model.
(FUEL CELL, ELECTROLYTE)
H73 34217 LOW TEMPERATURE FUEL BATTERIES
Williams, K.R., J.W. Pearson, and W.J. Gressler, International
Symposium on Batteries, 4th-Proceedings, Sept 64, p 337-47
Development of low-temperature fuel battery with output
capability of 250 w at 12 v, measuring 12x12x9 in. maximum; annular electrodes consisted of thin nonconducting
porous plastic PVC substrate with applied silver conducting
layer on one face; single electrode area estimated at .5
sq ft and number of cells for required 12 v equal to 20;
electrolyte 6N KOH solution; H₂ and O₂ are reactant gases.
(FUEL CELL, TEMPERATURE, ELECTRODE)

H73 34218 SELF-DISCHARGE OF A HYDROGEN-OXYGEN FUEL CELL
Kubokawa, M. and G. Takeshima, (Doshisha University, Kyoto,
Japan), Denki Kagaku, V 34:883-7 N11, 66, In Japanese
The self-discharge of a H-O fuel cell with a porous
carbon electrode was studied. The self-discharge was
assumed to be caused by dissolved O and its convection in
the vicinity of the H electrode, the maximum c.d. observed
being 2.4 ma./cm². The self-discharge was more pronounced
with a large quantity of Pd catalyst, by inadequate water-
proofing of the electrode, and by increase of temperature.
(CARBON, ELECTRODE)

H73 34219 ELECTROLYTIC REGENERATIVE HYDROGEN-OXYGEN FUEL-
CELL BATTERY
Findl, E., and M. Klein, (Xerox Corp., Rochester, N.Y.),
Proceedings, Annual Power Sources Conference 20, 49-52, 66
An electrolytically regenerative fuel cell developed
for use as a secondary battery includes a H₂-O₂ primary
fuel cell and a water electrolysis cell as a single unit.
During charging, H₂O contained in an asbestos matrix
separating the electrodes is electrolyzed to produce H₂
and O₂. As the gases are evolved, they are fed to storage
tanks. During discharge, the stored gases are recombined
at the electrodes to form H₂O which is absorbed by the matrix.
(ELECTROLYSIS)

H73 34220 THE USE OF HYDROGENASE-METHYLENE BLUE SYSTEM
IN A BIOCHEMICAL FUEL CELL (AN ANODE REACTION)
Mizuguchi, J., S. Suzuki, K. Kashiwaya, and M. Tokura, Kogyo
Kagaku Zasshi, V 67:410 N2, 64, In Japanese, Avail:TAC
An electron carrier system similar to one found in
living cells has been studied in vitro at the anode of a

244
biochemical fuel cell. The action of an electron carrier system, composed of methylene blue as an organic Redox compound and hydrogenase as an enzyme with hydrogen gas, has been analyzed at the anode of a biochemical fuel cell. A current of 0.16 mA/(sq. cm.) has been shown using a hydrogenase solution obtained from E. coli. It gave evidence for general application of similar systems in biochemical fuel cells. (FUEL CELL, BIOCHEMICAL)

H73 34221 PRESSURE OPERATION OF FUEL CELLS
Thermodynamic and kinetic effects of gas pressure on fuel cell performance using gas at one or both electrodes; results for two hydrogen cells and changes caused by pressure variants recorded; oxygen electrode is apparently insensitive to pressure but for hydrogen electrode polarization is pressure-dependent; cause of this dependence as yet indeterminate. (POLARIZATION)

H73 34222 A 5-kW HYDROGEN-AIR FUEL BATTERY WITH AN ALKALINE ELECTROLYTE
Jacquelin, J., J.P. Pompon, (Research and Development Non-Mechanical Electric Power Sources), Proceedings, International Symposium, 7th, 391-404, 70
Current progress in the development of H-air fuel batteries in the 5 kW range is discussed. The cells of the battery consist of a H chamber and sintered Ni electrodes containing nonprecious metal oxides as catalysts, an electrolyte chamber containing 8M KOH and an air chamber with sintered Ni electrodes. (CATALYST)

H73 34223 A 1 KW HYDROGEN FUEL BATTERY
A hydrogen fuel battery operating at normal temperature has been constructed and operated over an extended period.
The battery was assembled with 30 individual multielectrode cells. Full instrumentation was included to enable measurements to be made of each cell and electrode potential, temperatures, and the pressure and consumption of hydrogen and oxygen.

(INSTRUMENTATION)
technology is compatible with the requirements of the space shuttle contractors.

(Temperature, Shuttle)

H73 34227 FUEL-CELL DESIGN BASED ON AIR AND REFORMABLE FUEL
Anon, (General Electric Co.), British 1,174,973, Dec 17 '69

A design of fuel cell is described, having the following special features: (1) the generation of H fuel by reaction between an organic fuel and H2O in a reformer; (2) removal of CO from the reformate; (3) the use of H2O, formed in the cell by reaction, in the reformer. (Fuel Cell, Air, Fuel)

H73 34228 HYDROGEN FOR FUEL CELL
Anon, (United Aircraft Corp.), Netherlandish Application 6,609,447, Ja 9 '67

The H is produced by a dehydrogenation catalyst in contact with an H-containing feed material. The H formed are led through an adsorbing porous carrier to a cathode, which contains a catalyst for the adsorption of these ions and their subsequent reduction on passage of an electric current. (Catalyst, Separation)

H73 34229 HYDROGEN GENERATION FOR FUEL CELLS
Kordesch, K.V., (Union Carbide Corp.), British 1,146,900, Mar 26 '69

H2 is supplied to conventional fuel cell by a N2H4- or NH3-decomposition cell employing acid or basic electrolytes, Pt-metal-catalyzed C, porous-Ni, or Raney-Ni electrodes. The necessary power is supplied from the fuel cell itself, generally producing approximately 900 mv. at c.d. 100 ma./cm^2. (Ammonia, Hydrazine)

H73 34230 PROCESS FOR SUPPLYING HYDROGEN AND OXYGEN TO FUEL CELLS

A process for operating a hydrogen-oxygen fuel cell in a closed system, hydrogen being obtained by dissociation of a hydrogen-containing compound and oxygen being obtained
from a liquid oxygen supply. Oxygen is used to burn various waste products. The resulting heat is used in the dissociation of the hydrogen-containing compound and the refrigeration value of oxygen and/or the hydrogen-containing compound is used to condense combustion products and other by-product materials.

(HYDROGEN PURIFICATION USING MODIFIED FUEL CELL PROCESS)

Technique for purifying H₂ streams to obtain high purity H₂ is based on use of electrochemical cells using highly efficient catalytic electrodes; impure hydrogen is consumed at anode of cell and purified hydrogen generated at cathode; by application of small potential across electrodes of this cell, it is possible to ionize H₂, and only H₂, at anode and simultaneously to produce equivalent amount of H₂ at cathode.

(FUEL CELL, PURIFICATION, ELECTRODE)

20 WATT-HOUR PER POUND REGENERATIVE FUEL CELL

The electrolytically regenerative fuel cell is an electrochemical energy storage device, wherein the energy density per unit weight substantially exceeds present acceptable power sources. The report is concerned with a cylindrical regenerative hydrogen-oxygen fuel cell which is a basic electrochemical cell serving the dual function of a primary fuel cell and a water electrolysis cell.

(ELECTROLYSIS)

HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS

The objectives of this program were to evaluate the processes, materials, and components that limit the cycle life of regenerative hydrogen-oxygen fuel cells. A composite capillary matrix was developed, tested, and demonstrated to be superior to fuel-cell-grade asbestos and

248
other more commonly used matrix materials.
(LIFE, MATRIX)

H73 34234 ELECTROLYTICALLY REGENERATIVE HYDROGEN-OXYGEN FUEL CELL

A compact and electrolytically regenerative fuel cell with integral but separate storage for the electrolyte and each of the gases utilized is described. The fuel cell embodies bipolar plates possessing integral manifold means for conveying the fuel and oxidizing gases to and from the storage areas of the cell. It also embodies gas distribution means in the plates for effective and uniform exposure of the electrodes and reacting areas to the fuel and oxidizing gases.
(ELECTROLYSIS)

H73 34235 ELECTROLYTIC REGENERATIVE H₂-O₂ SECONDARY FUEL CELLS

The regenerative H₂-O₂ secondary fuel is rechargeable battery that uses pressurized hydrogen and oxygen gas as the reactants. It is expected that this new energy storage system will be used in communication satellites to replace conventional secondary batteries. During charge, water contained within a matrix separating the electrodes is electrolyzed to produce hydrogen at one electrode and oxygen at the other. During discharge the stored gases are reacted at the same electrodes to give electrical energy and form water, which is reabsorbed by the matrix.
(ELECTROLYSIS, MATRIX, DESIGN)

H73 34236 HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS

A research and development program to develop an elec-
trolytic regenerative hydrogen-oxygen fuel cell concentrated on the development of a capillary matrix bipolar pile fuel cell stack with integral gas storage tankage. Tasks were undertaken to select and develop electrodes and matrix materials for the regenerative fuel cell. A cell stack employing an oxygen electrode, a potassium titanate matrix, and a hydrogen electrode consisting of a platinized sintered porous nickel plaque was found to comprise the best cell construction.

(ELECTRODE, MATRIX, ELECTROLYSIS)

H73 34237 HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS, 1 JULY-AUGUST 1966

This report reviews the progress made on the development of a hydrogen-oxygen regenerative fuel cell (secondary battery).

(FUEL CELL, REGENERATION)

H73 34238 HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS

This report reviews the progress made during this period on the development of a hydrogen-oxygen regenerative fuel cell. Primary emphasis was placed on processing and testing single cells with various electrode structures in order to improve the cycle life capabilities of the oxygen electrode.

(FUEL CELL, REGENERATION)

H73 34239 HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS

Progress reported includes the following: (1) A system analysis of fuel cells was made by relating the cell-component weights to the fuel-cell electrode area, and then relating the latter to the pertinent operating parameters of the system. After this part of the analysis was completed, the weight relationships were programmed into an IBM computer, and all parameters pertinent to the problem were varied systematically.

(WEIGHT, CURRENT DENSITY)
A description is presented of the status of electro-optical systems in the development of an electrically regenerative hydrogen-oxygen fuel cell for space application. The system performs the same function as a secondary battery in spacecraft, and shows potential advantages over batteries from standpoints of energy-to-weight ratio, cycle life, and operating temperature range.

(CO2U, CELL, REGENERATION)

Critical subsystems and components representing elements of a 15-kilowatt partial-oxidation molten-carbonate hydrogen-air fuel cell power generating system were designed, fabricated and tested to establish overall feasibility of the 15-kilowatt design.

(CARBONATE)

Investigation of the single-cell and multicell performance of a molten-carbonate fuel cell at 600°C. Hydrogen, reformed propane, and an equilibrium solution of methanol and water are used as fuels, with air as oxidant.

(FUEL CELL, CARBONATE)

Power obtainable from single cells on hydrogen fuel using the 4 3/16-in. electrode diameter assembly has been increased from an average of 60 w to about 100 w/ft² at 0.7 v by improvements in the fuel electrode structure and
reduction in electrical resistance.

(OXIDATION)

H73 34244 MODIFIED PARTIAL OXIDATION OF HYDROCARBONS FOR USE IN ACID FUEL CELLS

The authors consider the problems of fuel cell systems capable both of running on logistic hydrocarbon fuels without the provision of an external water supply and of operating in the temperature range -40°C to +52°C. During this study they evolve a modification to partial oxidation and the paper describes this process and the advantages and limitations of fuel cell systems incorporating it.
(FUEL CELL, ACID, HYDROCARBON, OXIDATION)

H73 34245 EFFECT OF OXYGEN-SUPPLY IMPURITIES ON PERFORMANCE OF HYDROGEN-OXYGEN FUEL CELL
Jones, J.C., J.E. Cox, Energy Conversion, V 8:113-15 N3, Nov 68

Experimental method involved operation of single cells with three reactant oxygen supply purity levels; constant load was maintained and change in cell performance was measured as voltage degradation and change in cell performance was measured as voltage degradation with time during test run; after each test run, significant immediate voltage recovery was observed when oxygen electrode was purged.
(FUEL CELL, PERFORMANCE)

H73 34246 FACTORS AFFECTING LIFE OF FUEL CELLS

Series of experiments to determine life of individual fuel cells; oxygen electrodes contained carbon, graphite, and Teflon-bonded Pt catalyst; discharge duration of six oxygen electrodes at 60°C and 50 ma/sq cm varied from 10,898 to 14,904 hr; at 100 ma/sq cm hours varied from 3368 to 12,488; similar performance data indicated for hydrogen electrodes; life-tests on 30 hydrogen-oxygen cells with KOH electrolyte gave operating histories ranging from 0 to 8960 hr.
(ALKALINE, ELECTRODE)
H73 34247 500-WATT INDIRECT HYDROCARBON SYSTEM

Program and design of 500 w indirect hydrocarbon-air power plant consisting of converter for producing H₂ from fuel and water by steam reforming and fuel cell for generating electrical power.
(REFORMING)

H73 34248 5 KVA HYDROCARBON REFORMER - AIR FUEL CELL SYSTEM
Kirkland, T.G., M.L. Engle, and G.I. Cade, 18th Annual Power Sources Conference - Proceedings, (U.S. Army Electronics Laboratories, Fort Monmouth, N.J.), May 64, p 31-3

Construction, operation, and performance of 5-kva air fuel cell system using reformer for hydrogen generation from water and hydrocarbons; power-conversion efficiency of system is 24%; diagrams are given showing air-supply, thermal-control and moisture-control networks.
(FUEL CELL, AIR, HYDROCARBON)

H73 34249 APOLLO FUEL CELL SYSTEM
Morrill, C.C., 19th Annual Power Sources Conference - Proceedings, (U.S. Army Electronics Labs, Fort Monmouth, N.J.), May 18-20 '65, p 38-41

Status report on hydrogen-oxygen (air) fuel cell system for Apollo spacecraft; power plant requirements, development progress and status, and performance growth are discussed.
(FUEL CELL, SPACECRAFT)

H73 34250 FUEL CELLS PRESENT STATUS AND DEVELOPMENT PROBLEMS
Kirkland, T.G., D.J. Looft, SAE-Paper 660230, Apr 5-6 '66

Approaches taken at U.S. Army Engineer Research and Development Laboratories, Fort Belvoir, Va., to develop fuel-cell power plants for application which uses hydrogen derived from liquid hydrocarbons and oxygen from ambient air; four systems are investigated, namely, direct oxidation, internal reforming, external reforming and partial oxidation-molten carbonate; major problem areas common to all systems are electrode reliability and noise, weight and reliability of auxiliary components; fuel-cell power-plant power density that has to be achieved to replace internal combustion engines in vehicles is between 10 and 13 lb/kw.
(REFORMING, OXIDATION)
H73 34251 OPERATING CHARACTERISTICS OF HIGH-PRESSURE MEDIUM-TEMPERATURE HYDROGEN-OXYGEN RECHARGEABLE FUEL CELLS
Ramakumar, R., Proceedings, Frontiers of Power Technology Conference, Oct 23- '69, Oklahoma State University, Stillwater, Okla.
This paper presents and discusses the experimental results obtained to study the effect of pressure and temperature on the electrolysis and fuel cell polarization curves of rechargeable hydrogen-oxygen fuel-cells employing porous zirconia membrane and aqueous potassium hydroxide electrolyte.
(POLARIZATION, ALKALINE)

H73 34252 GENERATING POWER IN A MOLTEN ELECTROLYTE (HYDROGEN-HALOGEN) FUEL CELL
Juda, W., D.M. Moulton, and H.L. Gruber, (Protech Inc, and Atlantic Richfield Co.), U.S. 3,575,717, Apr 20 '71
Fuel cells employing an H₂ anode, a halogen cathode, and a molten electrolyte containing ions of the halogen can be operated at potentials much higher than their stated potentials if the H halide (HX) is not soluble in the electrolyte and if it is removed as formed.
(FUEL CELL, ELECTROLYTE)

H73 34253 STUDIES OF THE MOLTEN CARBONATE ELECTROLYTE FUEL CELL
Fuel cells with Na₂Li₂CO₃ electrolyte contained in a porous MgO matrix have been operated at 650°C on synthetic, "realistic" fuels containing combinations of H₂, CO, CO₂, H₂O, and N₂. A mixture of air and CO₂ was used as the state of the electrode was avoided. H₂ and CO were oxidized at oxidized electrodes with 0.6v activation polarization. Carbon deposition from the disproportionation of CO occurred even during the oxidation of H₂. The disproportionation can be prevented by addition of H₂O or CO₂.
(FUEL CELL, CARBONATE)

H73 34254 HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIAL (HOPE) FUEL CELL PROGRAM
Phase 1 of this program resulted in the development and test of a 25-watt fuel-cell module, and the design and fabrication of HOPE spacecraft compatible with the improved Blue Scout Booster.
(WATER, REMOVAL)
H73 34255 HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIAL (HOPE) FUEL CELL PROGRAM
Phase I of this program resulted in the development and test of a 35-cell 25-watt/28-volt space configuration fuel-cell module. The HOPE spacecraft, fuel supply tanks, pneumatics, and thermal systems have been designed and fabricated to provide operating capability in orbit for 7 days at 50 watts, compatible with the Blue Scout launch vehicle.
(WATER, REMOVAL, HEAT, VIBRATION)

H73 34256 FUEL CELL TECHNOLOGY PROGRAM
A program to advance the technology for a cost-effective hydrogen/oxygen fuel cell system for future manned spacecraft is discussed. The evaluation of base line design concepts and the development of product improvements in the areas of life, power, specific weight and volume, versatility of operation, field maintenance and thermal control were conducted from the material and component level through the fabrication and test of an engineering model of the fuel cell system.
(COST, SPACECRAFT)

H73 34257 A NEW HIGH-PERFORMANCE FUEL CELL EMPLOYING CONDUCTING-POREOUS-TEFLON ELECTRODES AND LIQUID ELECTROLYTES
A low-temperature, aqueous electrolyte fuel cell employing new, "conducting-porous-Teflon electrodes" is described. The new electrodes show excellent performance characteristics with a variety of fuels (including hydrocarbons) and with both oxygen and air as the oxidant. Preparation methods are discussed, and performance data obtained with ambient temperature, hydrogen-oxygen and hydrogen-air cells are presented to illustrate their properties.
(FUEL CELL, ELECTRODE)
THE OPERATION OF AN ION-MEMBRANE FUEL CELL
WITH MICROBIALLY-PRODUCED HYDROGEN
Blanchard, G.C., and R.T. Foley, (Veterans Administration Hospital, Boston, Mass.), Journal of the Electrochemical Society, V 118:1232 N7, J1 71
A consideration of various methods of converting the energy associated with biochemical or microbiological reactions to electrical energy indicates that the most practical approach is the indirect whereby products produced by enzymatic reactions are fed to an electrochemical converter. Hydrogen can be produced by the action of Clostridium perfringens on glucose and natural product substrates in technologically significant quantity and purity. The hydrogen produced by the action of Clostridium perfringens on glucose and bananas (as an example of natural products) has operated an ion-membrane H2-O2 fuel cell for periods of 24-48 hr with no evidence of detrimental reactions. Such systems operate at power densities order-of-magnitude greater than direct biochemical fuel cells wherein the enzymatic reaction takes place on the electrode. They would offer advantages for operation in remote areas. (FUEL CELL, ION, MEMBRANE, MICROBE)

PERFORMANCE STUDIES ON A RECHARGEABLE HYDROGEN-OXYGEN FUEL CELL
Hydrogen-oxygen fuel cells employing a porous membrane made of calcia stabilized zirconia and sintered nickel electrodes with no noble metal catalysts of any kind have the potential for the development of an economical energy storage system. In this paper, the effect of the porosity of the membrane on the polarization curves of electrolysis and fuel cell modes of operation are investigated experimentally and the results are presented and discussed. (ELECTRODE, POLARIZATION, POROSITY)

ECONOMIC HIGH-PRESSURE HYDROGEN-OXYGEN REGENERATIVE FUEL-CELL SYSTEMS
Experimental prototype units of high pressure (1000
to 3000 psi) moderate temperature (300 to 350 F) hydrogen-oxygen reversible fuel-cells using no noble materials of any kind have been successfully operated cyclically with encouraging results. The approach consists of using calcia stabilized porous zirconia as membrane and aqueous KOH as electrolyte with porous nickel electrodes sintered on to the membrane.

(TEMPERATURE, PRESSURE, POROSITY)

H73 34261 FUEL CELL RESEARCH AT OKLAHOMA STATE UNIVERSITY
Allison, H.J., (Oklahoma State University), Proceedings, Energy Conversion & Storage, 2nd, Oct 12-13 '64
Study for development of reversible hydrogen-oxygen fuel cells with electrodes which function at pressures as high as 3000 psi and which can be mass produced; conformal transformations of electrode configuration; construction and analysis of "magnet-hydrodynamic" hydrogen-oxygen cells using intense transverse magnetic field instead of conventional electrolyte to provide high resistance path between electrodes for ions and RF excitation to change fuel gases to nascent state.

(PRESSURE, ELECTRODE)

H73 34262 EXPERIMENTAL WORK TO DATE ON ENERGY CONVERSION AND STORAGE AT OKLAHOMA STATE UNIVERSITY
Allison, H.J., (Oklahoma State University), Proceedings, Conference on Energy Conversion and Storage, 63, p 65-80
Energy storage system under development is discussed that uses h-p electrolysis for production of hydrogen and oxygen gases, and fuel cells for subsequent recombination of gases to form water and electrical energy; most of experimental work concerns physical properties of fuel cells and pressure electrolysis units.

(ELECTROLYSIS, FUEL CELL)

H73 34263 HIGH PERFORMANCE FUEL CELL
The objective of this contract was to develop technology required for a high performance H₂/O₂ fuel cell power system for future Air Force space vehicle applications. Technical objectives for the system included: a specific energy of 1100 watt-hours per pound, a reliability of 0.998 for a
mission of 1500 hours duration, power requirements of 3 kW to 10 kW, and a system operating life goal of 3000 hours. (SPACECRAFT)

H73 34264 RELIABILITY ASSESSMENT TESTING OF 2 KW. HYDROGEN-OXYGEN FUEL CELL STACKS
The development of a 2 kw, H₂-O₂ alkaline fuel-cell power system has been undertaken. A reliability assessment testing program has been conducted to determine the capabilities and limitations of this system. Eight, 2-kw. fuel-cell stacks were constructed and tested to failure under this program. (ALKALINE)

H73 34265 SEALING OF SILVER OXIDE-ZINC STORAGE CELLS
The evaluation of the miniature fuel cells in controlling pressure in sealed silver oxide-zinc storage cells is summarized. These fuel cells are miniature electro-chemical devices composed of one solid battery electrode and one fuel cell gas consuming electrode. They are installed on or in a silver oxide-zinc storage cell and perform their pressure control function by electrochemically consuming evolved gases (H₂ and O₂) from the storage cells. (FUEL CELL, PRESSURE)

H73 34266 INCREASED HYDROX FUEL CELL PERFORMANCE
Research is being conducted to identify hydrogen-oxygen fuel cell system limitations and to investigate methods of reducing them. A method is proposed for improving cathodic efficiency. (CATHODE, EFFICIENCY)

258
H73 34267 EXPERIMENTAL EVALUATION OF THE SINGLE-CELL CONCEPT FOR A LIGHTWEIGHT, RECHARGEABLE HYDROGEN-OXYGEN FUEL CELL
Stockel, J.F., (COMSAT Labs., Clarksburg, Md.), Proceedings of the Fifth Intersociety Energy Conversion Engineering Conference, Las Vegas, Nev., Sept 21-25 '70, V 1:5-95, 5-100, Avail:TAC

These are the first lightweight, rechargeable hydrogen-oxygen fuel cells built that demonstrate an attractive usable energy density (15 watt-hour/lb) and have good potential for increasing the energy density. The cells are rated at 24 ampere-hours, are cylindrical, and were operated between 230 and 600 psig. Utilized in the single-cell concept, these cells have the potential for good reliability and easy charge control. This work represents a significant step toward developing a rechargeable fuel cell for use on communications satellites.
(FUEL CELL, LIGHTWEIGHT, RECHARGEABLE)

H73 34268 HIGH POWER DENSITY FUEL CELL

Interim results of an Air Force-sponsored experimental and analytical program conducted to investigate the feasibility of hydrogen-oxygen fuel cells for high-power short-duration applications such as missiles and satellite power systems. The concept being evaluated in this program includes a high-power-density hydrogen-oxygen fuel cell with open cycle heat and product-water removal subsystems, and reactant tankage. Results of a fuel cell test program are discussed.
(HEAT, REMOVAL, WATER, ENDURANCE)

H73 34269 ADVANCED SPACECRAFT FUEL CELL SYSTEMS
Thaller, L.H., (NASA, Lewis Research Center, Cleveland, O.), Power Sources Symposium, 25th, Atlantic City, N.J., May 23-25 '72, Avail:TAC

An evolutionary advanced technology program is described which is aimed at meeting the requirements of the next generation of fuel cell systems as well as providing technology fallout to ongoing mission oriented programs. The specific
goals of the system selected for development are for 10,000 hr of operation with refurbishment, 20 lb/kW at a sustained power of 7 kW, and 21 kW peaking capability for durations of two hours. The system is designed to operate on low pressure propulsion grade hydrogen and oxygen.

(PRESSURE)

H73 34270 SIMULATED HYDROGEN CROSS-LEAKAGE IN A LOW-TEMPERATURE, CONTAINED-ELECTROLYTE HYDROGEN-OXYGEN FUEL CELL

A fuel cell was operated at temperatures of 120, 135, and 150 F, and current levels of 10, 25, and 50 amperes. A cathode feed stream mixture containing oxygen and 0 to 20 percent hydrogen (by volume) was metered to the fuel cell. There existed a minimum feed rate of this mixture which was required to sustain cell performance at each operating point. The hydrogen portion of the mixture was completely consumed by combustion in all cases.

(FUEL CELL, TEMPERATURE)

H73 34271 FUEL CELL TECHNOLOGY PROGRAM
Bell, D., (NASA, Manned Spacecraft Center, Houston, Tex.), N70-40974, Space Transportation System Technology Symposium, V 6:349-60, J1 70, Avail:TAC

The advanced fuel cell program to support the primary electrical power requirements of space shuttle vehicles in the mid-1970's is discussed. The objective is to advance the technology of hydrogen-oxygen fuel cells through a rigorous and comprehensive program commencing at the lowest component and material level and progressing through the fabrication and test of an engineering model fuel cell and related components and assemblies.

(FUEL CELL, TECHNOLOGY, SPACECRAFT)
H73 34500 EVALUATION OF FUEL CELL WATER FOR HUMAN CONSUMPTION

Water obtained from a hydrogen-oxygen fuel cell was subjected to chemical, organoleptic, and microbiological analyses and found to be acceptable according to the U.S. Public Health Service Standards.

(FUEL CELL, WATER, HUMAN)

H73 34501 INVESTIGATION OF THE DYNAMICS OF WATER REJECTION FROM A HYDROGEN-OXYGEN FUEL CELL TO A HYDROGEN STREAM

A water rejection dynamics study of a hydrogen-oxygen fuel cell was conducted using both experimental and analytical techniques. In the type of cell studied, water resulting from the fuel cell reaction diffuses as a vapor through a porous electrode and is removed by circulating gaseous hydrogen. The experimental investigation was conducted by introducing step transients in the rate of water production and in the inlet humidity of the water removal gas stream, while holding all other cell operating parameters constant. When the various dimensions and operating conditions of the cell tested were substituted for the corresponding constants of the mathematical model, its step response was calculated and was found to compare well, with the experimental data.

(HUMIDITY, TRANSIENT, MODEL)

H73 34502 EXPERIMENTAL INVESTIGATION OF THE DYNAMICS OF WATER REJECTION FROM A MATRIX TYPE OF HYDROGEN-OXYGEN FUEL CELL

An experimental study of water-rejection dynamics was conducted on a matrix type of hydrogen-oxygen fuel cell which employs a hydrogen stream to extract the product water.

(HUMIDITY, TRANSIENT)
IMPROVED WATER- AND HEAT-REMOVAL UNIT FOR H₂/O₂ FUEL CELL SYSTEMS
Klink, R., and H.G. Plust, Energy Conversion, V 8:191-2 N4 Dec 68
It is possible to increase H₂O-removal density in H₂O-removal units of fuel cell systems, by that system parameters, causing increase of temperature of evaporator wall; values are given for influence of thickness of removal cavity of asbestos, KOH-stream and material used as support plaque for evaporator wall.
(FUEL CELL, WATER, HEAT, REMOVAL)

500-WATT HYDROGEN-AIR CELL
Problems concerning the thermal balance and the elimination of the H₂O formed are discussed. The performance of these cells and their endurance yield an elec. battery compatible with industrial use.
(HEAT, REMOVAL, WATER, ENDURANCE)

STATIC MOISTURE REMOVAL CONCEPT FOR HYDROGEN-OXYGEN CAPILLARY FUEL CELL
Platner, J.L., and P.D. Hess, Chemical Engineering Progress Symposium Series, V 61:299-305 N57 65
Static moisture removal system; desired water-vapor pressure is maintained in cell through diffusion membrane associated with each cell; water will not be evaporated from cell electrolyte until electrolyte vapor pressure exceeds desired value; above this value, evaporation rapidly increases; evaluation for space power applications.
(FUEL CELL, MOISTURE, REMOVAL)

LOW TEMPERATURE FUEL CELL
Connors, J.W., R.A. Thompson, and R.A. Sanderson, Chemical Engineering Progress, V 62:68-9 N5, May 66
Discussed are analysis of heat and water removal subsystems, synthesis into power plant of these subsystems with reactant conditioning and control subsystems, and mutual interaction of all these subsystems for low temperature hydrogen/oxygen fuel cell power plant.
(HEAT, REMOVAL, WATER)
H73 34507 THE SEPARATION OF REACTION WATER FROM FUEL CELLS BY DIFFUSION AND CONDENSATION

An evaporation method was developed for separating the reaction water from fuel cells, in which the opposing evaporation and condensation surfaces are separated only by a narrow gas-filled slit. The liquid surface is stabilized mechanically by a porous membrane. The rate of water separation is measured as a function of temperature and electrolyte concentration. The test results are discussed in conjunction with theoretical considerations. The technical application of the method is described for hydrogen-oxygen fuel cells.
(FUEL CELL, WATER, REMOVAL)

H73 34508 USE OF A FLUIDIC OSCILLATOR AS A HUMIDITY SENSOR FOR A HYDROGEN-STEAM MIXTURE

A continuous-reading humidity sensor was developed for transient studies of a hydrogen-oxygen fuel-cell system in which the water produced is removed from the cells in vapor form by a recirculating hydrogen stream. The basis of the sensor is a fluidic oscillator that has an oscillation frequency sensitive to molecular weight and, hence, humidity of the hydrogen-steam mixture.
(FUEL CELL, TRANSIENT, STEADY-STATE, ANALOG)

H73 34509 ZIRCONIUM PHOSPHATE MEMBRANES FOR INTERMEDIATE TEMPERATURE FUEL CELLS

New type of solid inorganic membrane for intermediate temperature hydrogen-oxygen fuel cell application is described; this is based on zirconium phosphate sintered with zeolite material "Zeolon-H;" zeolite material contributes to maintenance of water balance in membrane which is required especially at temperatures above 25 C.
(WATER, REMOVAL)

H73 34510 DEVELOPING ELECTRICALLY DRIVEN HYDROGEN BLOWER FOR VEHICULAR FUEL CELL POWERPLANT

Compact hydrogen blower was designed to facilitate
removal of water from hydrogen loop of fuel cell system in Electrovan; it involved two radial flow states, driven by high-speed electric motor through flexible shaft coupling. (WATER, REMOVAL)

H73 34511 WATER AND HEAT BALANCE OF HYDROGEN-OXYGEN FUEL CELLS
Sprengel, D., Energy Conversion, V 10:7-11 N1, Mar 70
The author describes the reaction products of the H₂-O₂ fuel cell namely water and heat with regards to optimum energy conversion and system balance. (FUEL CELL, WATER, HEAT, BALANCE)
USE OF THE ADSORPTION HYDROGEN ELECTRODE AND THE OXYGEN FUEL-CELL ELECTRODE IN NICKEL-CADMIUM CELLS

The characteristics of two types of auxiliary electrodes are investigated. The essentially linear response of the adsorption hydrogen's electrode voltage as a function of oxygen pressure and its stability in potassium hydroxide electrolyte makes it an ideal electrode for charge control. Although the oxygen fuel-cell electrode is a very good gas recombination electrode and better by a factor of 20 over the adsorption hydrogen electrode, it is difficult to use as a charge-control electrode because of its high sensitivity to oxygen pressure.

RESEARCH ON HYDROGEN FEED MECHANISM OF FUEL CELL ON OPEN CIRCUIT
Edon, C., International Symposium on Batteries, 4th - Proceedings, Sept 64, p 257-63

Electrochemical method applied to verification of simple theory describing feed mechanism for open-circuited fuel cell using gas and porous electrode; experiments with KOH electrolyte, 99.999% pure H₂ gas, Pt counter-electrode, and Hg/HgO as reference electrodes indicate that electrode feeding mechanisms for open-circuit configurations are dissolution and diffusion; good agreement shown between calculated and observed values.

OXIDATION OF HYDROGEN ON A PASSIVE PLATINUM ELECTRODE
Schuldiner, S., (Naval Research Lab., Washington, D.C.), Report No. NRL-6659, Fe 27 '68

Under potentiostatic, steady-state conditions and at anodic potentials above 0.7 V (NHE), the rate of oxidation of molecular hydrogen decreases at a high-activity Pt electrode in 1M H₂SO₄. It is shown that this decrease is not owing to the formation of oxygen species on the electrode surface.

265
H73 34603 LOW TEMPERATURE HYDROGEN CELLS OF C.G.E. EXISTING BATTERIES AND FUTURE PROSPECTS
Dubois, P., and C. Edon, AGARD Propulsion and Energy Panel, Je 12-16 '67, Liege, Belgium

Principal characteristics of electrodes used by French General Electric Co. for manufacture of low-temperature hydrogen cells are described; expected development is also outlined; means that may be selected for production or storage of hydrogen for different applications are reviewed, and some details are given of various types of fuel cell power generators now being studied or tested at Compagnie Generale d'Electricite Research Center. (ELECTRODE)

H73 34604 LOW COST FUEL CELL ELECTRODES

Review of recent advances in hydrocarbon-air fuel cell construction designed to minimize Pt electrocatalytic requirements expressed in grams of Pt/kw gross power; goal sought is about 20 to 25 g equivalent of Pt/kw. (CATALYST, ALKALINE)

H73 34605 LIGHT-WEIGHT FUEL CELL ELECTRODES - 1, 2

Effects of catalyst loading, matrix materials, and operating variables on performance of fuel cells using light-weight electrodes; operating variables include temperature, current density, and pressure; electrodes are prepared from commercial platinum black and consist of mixture of three parts platinum black and one part Teflon supported on nickel screen. Operating characteristics of thin, light-weight carbon electrodes with porous metal support for hydrogen-air fuel cells using hydrocarbon converters; effect of surface tension on contact angle for typical repellency agents; polarization curves for thin electrodes in H₂-O₂ and H₂-air fuel cells. (CATALYST, MATRIX, POLARIZATION)
H73 34606 CARBON FUEL CELL ELECTRODES
Clark, M.B., W.G. Darland, K.V. Kordesch, 18th Annual Power Sources Conference, Proceedings, (U.S. Army Electronics Labs., Fort Monmouth, N.J.), May 64, p 11-14, Avail; TAC
Performance of thin carbon-nickel composite electrodes for hydrogen-oxygen fuel cells is discussed; electrode construction is shown; graphs of temperature and pressure effects on electrode output, and long-time performance.
(FUEL CELL, CARBON, ELECTRODE)

H73 34607 TRANSPORT OF HYDROGEN TO CYLINDRICAL ANODES IN STIRRED ELECTROLYTES
Transport-limited electrode reaction chosen was anodic oxidation of hydrogen dissolved in aqueous electrolytes; anode was smooth platinum cylinder; electrolytes and temperatures chosen were 1N HClO₄ at 25 C, 1N Cs₂CO₃ at 24 C, and 1N Cs₂CO₃ at 80 C; limiting currents were measured for anodic oxidation of dissolved hydrogen; relevant to design and fabrication of practical military fuel cell power plants for operation on ambient air and hydrocarbon fuels.
(ELECTRODE, ACID, CARBONATE)

H73 34608 SOME PROBLEMS IN USE OF HYDROCARBONS IN FUEL CELL POWER SYSTEMS
Some of problems encountered in design of hydrocarbon-reforming system and electrodes for use on impure hydrogen are discussed.
(ELECTRODE, IMPURITY)

H73 34609 REACTION OF HYDROGEN WITH NONSTOICHIOMETRIC MANGANESE DIOXIDE
Kinetics of hydrogen oxidation at temperatures from 25 to 400 C over active nonstoichiometric manganese dioxide; oxidation rates, energy requirements, and reaction mechanisms to explain interactions at catalytic electrodes for fuel
cells and removal of oxidizable contaminants from air; oxidation rates were of first order; activation energy for depletive hydrogen and removal of oxygen from oxide lattice. (ELECTRODE, OXIDATION, CATALYST)

H73 34610 PRESENT STATE OF SCIENTIFIC STUDIES ON ELECTRODE PROCESSES IN FUEL CELLS

Several important types of electrodes used in low temperature fuel cells are discussed; porous gas-diffusion electrodes made of carbon or of suitable sintered metals are most commonly used; more recent developments are pore-free palladium membrane electrode for hydrogen as fuel. (TEMPERATURE, POROSITY, MEMBRANE)

H73 34611 PERFORMANCE OF CARBON MONOXIDE IN LOW-TEMPERATURE FUEL CELLS CONTAINING OXIDE CATALYSTS

Number of oxides have been shown to be effective in promoting electro-oxidation of carbon monoxide on platinum electrodes in acid electrolyte fuel cells; polarization curves for carbon monoxide/oxygen cells incorporating mixed catalysts approach those for hydrogen/oxygen cells; impure hydrogen that contains carbon monoxide (e.g. re-former gas) also responds to mixed catalyst system. (ELECTRODE, POLARIZATION)

H73 34612 PAPER FUEL CELL ELECTRODES

Fuel cell electrodes can be made from waterproofed and platinized acrylic paper; large-area, uniform electrode sheets are possible, whose performance in hydrogen-oxygen fuel cells is equivalent to platinum black on metal screen. (FUEL CELL, ELECTRODE, PAPER)

H73 34613 OPERATING CHARACTERISTICS OF PALLADIUM-SILVER ANODE ON IMPURE HYDROGEN STREAMS

Suitably prepared palladium-silver anode can be used
efficiently to extract hydrogen from impure streams within certain limits; limits of operation are set by temperature (fixed in these studies at 200 °C), required H₂ utilization i.e., exit hydrogen partial pressure and reversibility of chemisorption of various impurity species; H₂ utilization at fixed current density is function of hydrogen partial pressure flow rate, and extent of impurity adsorption. (FUEL CELL, ANODE, OPERATION)

Method of obtaining Raney nickel hydrogen electrodes was evaluated; electrodes were made by pressing aluminum-nickel powder mixture, followed by simultaneous sintering of Ni skeleton and alloying of surface layer of formed Ni skeleton with aluminum present in its pores; major advantages of this type of electrode lie in simplicity of its preparation as well as in its mechanical strength. (NICKEL)

Details of electrode fabrication procedure; mix contained silica, graphite, Teflon suspension, wetting agent, chloroplatinic acid, and water; slurry was applied on alternate sides of 45 mesh platinum screen; excellent performances (0.8 v IR free at 350 ma/sq cm) were obtained on hydrogen with platinum loadings of 1.0 mg/sq cm; it was, however, as air electrodes that these electrodes showed superiority. (FABRICATION)

H73 34616 RANEY-NICKEL CATALYSTS IN GALVANIC FUEL CELLS Doehren, H.H. von, and A. Kalberlah, Chemie-Ingenieur-Technik, V 40:176-80 N4, Fe 26 '68, (In German)

Nickel catalysts prepared by earlier methods were pyrophoric and could be used only under greatest care; by careful partial oxidation of hydrogen and of surface of Raney nickel with alkali salts of halogen oxoacids or air in non-aqueous environment spontaneous inflammability could be reduced without affecting electrochemical properties of elec-
trodes; by addition of promoters, susceptibility to damage on interruption of hydrogen supply could be considerably reduced.

(ELECTRODE, DAMAGE)

H73 34617 HYDROGEN-OXYGEN THIN ELECTRODE FUEL CELL MODULE
Winters, C.E., and W.L. Morgan, SAE - Paper 670182 for meeting Ja 9-13 '67, Avai:TAC

Construction and operating characteristics of Union Carbide hydrogen-oxygen thin electrode module as incorporated into General-Motors Electrovan are described; interfaces between fuel cell module and its thermal and its fuel system are considered as well as interface with electrical load under range of steady-state and transient conditions; accessible state-of-art and next generation improvements are described.

(FUEL CELL, ELECTRODE, MODULE)

H73 34618 FUEL CELLS

Catalysts consisting of palladium reduced by hydrogen, and palladium reduced by formate, supported on four types of porous skeleton disks.

(CATALYST, PALLADIUM, ELECTRODE)

H73 34619 EXPERIMENTAL STUDY OF MODE OF OPERATION OF POROUS GAS-DIFFUSION ELECTRODES WITH HYDROGEN FUEL

Current-polarization curves from zero current to limiting current have been obtained for anodic ionization of H₂ at Teflon-bonded, platinum-black, gas-diffusion electrodes in 1N H₂SO₄.

(POLARIZATION, ANODE)

H73 34620 ELECTROFORMED FUEL CELL ELECTRODE MATRICES

Use of electroformed metal matrices as catalyst support and for current collection provides possible variety of structures inherently having high specific area and low ohmic resistance; catalyst distribution is easily
attained in fabrication and maintained in operation of hydrazine-oxygen and hydrogen-oxygen fuel cells yielding promising performance.

(CATALYST, FABRICATION)

H73 34621 ELECTROCHEMICAL ENERGY CONVERSION IN PALLADIUM-HYDROGEN DIFFUSION ELECTRODE
Sufficiently high current densities can be attained on Pd/H diffusion electrodes to make their use in fuel-cell applications feasible.

(FUEL CELL, DIFFUSION, ENERGY, CONVERSION)

H73 34622 EFFECTS OF HEAVY DISCHARGE PULSING ON FUEL CELL ELECTRODES
Experimental study; under certain conditions heavy discharge pulses significantly improve sustained performance level of hydrogen/oxygen fuel cells.

(CATALYST)

H73 34623 COBALT PHTHALOCYANINE AS FUEL CELL CATHODE
It has been possible to form oxygen electrode with metal chelate, cobalt phthalocyanine, as active catalyst; sufficient electric conductivity was achieved by mechanically blending chelate with acetylene black; stable electrode structure was formed by Teflon-bonding mixture to metal screen; current densities sustained with H_2/O_2 cells were sufficiently high (60 to 120 ma/sq cm), to be considered for application in practical fuel cell systems.

(ELECTRODE, CATALYST)

H73 34624 CARBON-AIR ELECTRODES FOR LOW TEMPERATURE FUEL CELLS
Carbon-containing cathodes seem to be most desirable electrodes for high-power density, economical, air-fuel
cells; fuel source for such low temperature cells may be hydrogen from hydrocarbon reformer units, or hydrogen from alcohol or ammonia converters; at present, CO₂ removal is necessary during air operation in order to attain long life at high current densities.
(FUEL CELL, TEMPERATURE, CARBON, ELECTRODE)

H73 34625 COMPOSITE CARBON-METAL ELECTRODES FOR FUEL CELLS
Clark, M.B., W.G. Darland, K.V. Kordesch, Electrochem Technology, V 3:166-71 N5-6, May-Je 65
Thin, composite electrodes have been developed for hydrogen-oxygen (air) fuel cells; these constitute considerable weight and volume reduction, combine structural advantages of porous metal carrier with excellent performance characteristics of thin carbon layer, and are adaptable to large-scale production.
(POROSITY, FABRICATION)

H73 34626 DEVELOPMENT OF CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN/OXYGEN FUEL CELLS WITH AN ALKALINE ELECTROLYTE
A survey was carried out on the intrinsic activity of the transition metals, selected transition metal alloys and intermetallic compounds, and transition metal carbides, nitrides, borides and silicides for the electrochemical reduction of oxygen.
(ELECTRODE)

H73 34627 A STUDY OF THE DEGRADATION OF PLATINUM BLACK FUEL CELL CATHODES
The report deals with a study of the mode of cathode electrocatalyst degradation in the H₂-air phosphoric acid matrix fuel cell.
(FUEL CELL, PLATINUM, CATHODE)
FUEL CELLS WITH ELECTROCHEMICAL HYDROGEN COMBUSTION

After a general review of active carbon electrodes using oxygen or air and hydrogen electrodes with a platinum-catalyzed-nickel or carbon base, the physical and electrochemical characteristics of carbon and nickel electrodes are given, and then the experimental parts with dissolved potassium hydroxide electrolyte are described.

(ELECTRODE, CARBON, ALKALINE, WATER)

MATRICES FOR H₃PO₄ FUEL CELLS

The research was part of a program on the use of phosphoric acid fuel cells fueled by dirty hydrogen produced by thermocracking or steam reforming of a hydrocarbon.

(ACID, ANODE, ELECTRODE)

INEXPENSIVE CATHODE CATALYSTS

The report is a summation of the findings and developments aimed at the development of a low cost air cathode. The purpose was to lower the cost of air breathing fuel cells having moderate (125-135°C) temperature phosphoric acid as the electrolyte.

(AIR, ACID, COST)

HIGH-PERFORMANCE LIGHT-WEIGHT ELECTRODES FOR HYDROGEN-OXYGEN FUEL CELLS

This report covers work done with electrodes in alkaline, matrix-type fuel cells operating on hydrogen and oxygen. The principal objective was to determine and recommend preferred matrix materials and operating conditions under which these electrodes would be capable of 2000-hour performance in a total module having a weight-to-power ratio substantially lower than those presently available for space environment.

(ALKALINE, MATRIX)
H73 34632 FUEL CELL ELECTRODES (HYDROGEN-AIR)
Salathe, R.E., (Whiteley Industries Inc., Wilmington, Mass.), Report No. ECOM-0127-F, May 72
The report describes the design and evaluation of a hydrogen-air fuel cell module for use in a portable hybrid fuel cell-battery system.
(ALKALINE, PORTABLE)

H73 34633 THIN FUEL CELL ELECTRODES
Clark, M.B., and K.V. Kordesch, (Union Carbide Corp., Parma, O.), N66-33621, ECOM-01344-F, 66, Avail: TAC
Fifteen, 100-watt (nominal), hydrogen-air batteries were built and subjected to various load and environmental conditions. The results now allow us to predict the performance and life expectancy of such batteries. Current densities as high as 100-ASF continuous loading could be supported without electrode damage. Of particular interest was the study of the interdependence of air humidity, gas flow rates, temperature, electrolyte concentration, and current density.
(FUEL CELL, ELECTRODE)

H73 34634 DEVELOPMENT OF FUEL CELL ELECTRODES; ELECTRODE IMPROVEMENT AND LIFE TESTING
High-performance electrodes were developed for circulating-electrolyte type H$_2$-O$_2$ fuel cell systems for aerospace applications. The goals were an operating lifetime of 3000 hours, with an initial voltage above 0.9 volt and a voltage degradation less than 40 millivolts per 1000 hours, at a current density of 200 ASF. Major problem areas were elimination of cathodes and condensation of electrolyte in the oxygen gas passages.
(AEROSPACE, TEMPERATURE, CATHODE)

H73 34635 FUEL CELL WITH STABILIZED ZIRCONIA ELECTROLYTE AND NICKEL-SILVER ALLOY ANODE
Tragert, W.E., (to General Electric Co.), U.S. 3,296,030 (Cl. 136-86), Ja 3 '67
A high temperature fuel cell was constructed with a solid stable ZrO$_2$ electrolyte containing 15 mole % CaO. The cell was operated with H as fuel and O as the oxidant for 400 hours at 1040°, and c.d. of 20 ma./cm.2 was obtained at 0.6v.
(FUEL CELL, ELECTRODE, ZIRCONIA)
THE PERFORMANCE OF FLOODED POROUS FUEL CELL ELECTRODES

The thin-meniscus model that is often applied to porous gas diffusion fuel cell electrodes has been found unsatisfactory for hydrogen reacting at nickel sinters in highly concentrated KOH electrolyte. The relative insensitivity of the performance to the gas-electrolyte pressure difference, which should have a strong influence on the active thin-meniscus area, requires the assumption that the flooded volume of the electrode is active. A model for a flooded pore is treated and the results of an approximate analytical solution compared with data.
(POROSITY, ALKALINE)

AN EXPERIMENTAL STUDY OF THE MODE OF OPERATION OF POROUS GAS-DIFFUSION ELECTRODES WITH HYDROGEN FUEL

Current-polarization curves from zero current to limiting current have been obtained for anodic ionization of H₂ at Teflon-bonded, platinum-black, gas-diffusion electrodes in 1N H₂SO₄. Limiting currents were almost linearly proportional to hydrogen pressure and varied with pressure and temperature in approximately the same way as DC, the product of solubility and diffusivity of dissolved H₂. For an electrode containing 55 mg Pt-black/cm², the limiting current was 2.9 amp/cm² at 1 atmosphere H₂ and 25°C; polarization at 1 amp/cm² was 30 mv.
(POLARIZATION, ANODE, ACID)

POTENTIAL OF A PLATINUM ELECTRODE AT LOW PARTIAL PRESSURES OF HYDROGEN OR OXYGEN

The open-circuit potential on bright platinum in 1M H₂SO₄ was measured as a function of oxygen or hydrogen partial pressure from 10⁻² to 10⁻⁷ atmosphere. The very low rates of H₂ or O₂ flow which were required were produced by a special gas generator. Based on the assumption that the resultant dissolved O₂ decreases the dissolved H₂ concentration in the solution at the electrode surface, an equation was developed for obtaining the effective H₂ partial pressure.
(FUEL CELL, PLATINUM, ELECTRODE)
FUEL CELL OXIDATION OF HYDROGEN ON MOVABLE, PARTIALLY SUBMERGED PLATINUM ANODES
Davitt, H.J., and L.F. Albright, (Purdue University, Lafayette, Ind.), Journal of the Electrochemical Society, V 114:531 N6, Je 67

The electrochemical oxidation of hydrogen was investigated potentiostatically at 30°C and atmospheric pressure using two movable flat-plate platinum anodes which were partially immersed in 1.0N H2SO4. The importance of meniscus formation, electrolyte film formed on the exposed portion of the anode, surface roughness, and hydrogen adsorption on the exposed portion of the anode is demonstrated by transient currents resulting from vertical movements of the anodes.

(ELECTROCHEMISTRY, PLATINUM ANODE)

THE EFFECT OF PREEOXIDATION AND MENISCUS SHAPE ON THE HYDROGEN-PLATINUM ANODE OF A MOLTEN-CARBONATE FUEL CELL
Cobb, J.T., Jr., and L.F. Albright, (Purdue University, Lafayette, Ind.), Journal of the Electrochemical Society, V 115:2 N1, Ja 68

Electrochemical phenomena in a hydrogen-oxygen fuel cell were studied at 723°C for the three-phase region on smooth platinum anode sheets, partially immersed in a eutectic mixture of lithium, sodium, and potassium carbonates. Temporary increases in current were observed as the contact angle suddenly increased as the electrolyte film drained from the anode. The molten-carbonate film, obtained during raising the anode, was apparently relatively impermeable to hydrogen.

(FUEL CELL, PLATINUM, ANODE)

THE PLATINUM-ON-CARBON CATALYST SYSTEM FOR HYDROGEN ANODES. 1. CHARACTERIZATION OF THE CATALYST AND SUPPORT
Hillenbrand, L.J., and J.W. Lacksonen, (Battelle Memorial Institute, Columbus, O.), Journal of the Electrochemical Society, V 112:245 N3, Mar 65

A high degree of hydrogen electrode activity in alkaline media can be achieved with less than 1 mg Pt/cm² of electrode, if a properly chosen carbon support is used. For a complete description of the platinum-on-carbon catalyst systems, the physical and chemical states of both platinum...
and carbon must be considered. In this paper the measurements of total electrode area, metal area and dispersion, pore size distribution, and the location of the Pt within the carbon structure are considered, and the importance of the choice of carbon is illustrated. The control of the chemical interactions between the platinum and the carbon is essential if high activity per unit weight of platinum is to be obtained.

(ELECTRODE, ALKALINE)

H73 34642 THE PLATINUM-ON-CARBON CATALYST SYSTEM FOR HYDROGEN ANODES. II. CHEMICAL REQUIREMENTS OF THE CARBON SURFACE

The large differences in the activity of platinum-on-carbon anodes that could be produced by the choice of carbon indicated that an important chemical interaction existed between the platinum and the carbon surface.

(FUEL CELL, CATALYST, ANODE)

H73 34643 THE NICKEL SKELETAL CATALYST BASED HYDROGEN ELECTRODE AND HOW IT WORKS

The manner in which a porous gas electrode, activated by a skeletal catalyst, works is reviewed. The electrochemical activity in accordance with the composition of the active mixture and the thickness of active and barrier layers is studied.

(POROUS)

H73 34644 STUDIES ON ANODIC REACTION OF HIGH TEMPERATURE FUEL CELL

Reaction mechanism of molten alkali carbonate type fuel cell was studied; cathode used in all these experiments was made of silver gauze, and its conditions were kept constant throughout experiments; gauzes of different metals were used for anode, and several kinds of fuels were fed to these electrodes in temperature range of 400
to 500 C; when hydrogen is used, nickel electrode gives open circuit voltage of 1250 mv at 500 C.

(ALKALINE, ELECTRODE)

H73 34645 STUDY OF ELECTRODE - ELECTROLYTE INTERFACE FOR CASE OF OXYGEN-HYDROGEN CELL
Bihan, R. Le, Annales de Radioscience, V 23:82-6 N91, Ja 68, (In French)
Study is accomplished by means of energy diagram; variations of external potential due to absorption of oxygen, hydrogen, and potash on metal surfaces are measured by vibrating condenser method; results permit postulation of energy diagram for oxygen-hydrogen fuel cell using potash as electrolyte.
(FUEL CELL, ELECTROLYTE, INTERFACE)

H73 34646 PREPARATION AND BEHAVIOR IN CONTINUOUS SERVICE OF RANEY-CATALYSTS IN H2- AND O2-ELECTRODES
Possibilities for improving I-V characteristics, behavior in continuous service, ease of operation, current density as well as reducing catalyst quantity for alkali H2/O2 fuel cells have been investigated to lower costs by increasing catalyst activity and also by suitable proportioning of electrode structure.
(CURRENT DENSITY, ALKALINE, COST)

H73 34647 EXTENDING THE DIMENSIONS OF AIR-HYDROGEN THIN ELECTRODES
Theoretical and practical parameters to improve the design and performance of thin electrodes for air-H fuel cells were investigated. Permeability of the hydrophobic layer, the specific surface of catalyst, the support porosity, and the limiting diffusion current are optimized from polarization curves. A typical cell is described.
(PERMEABILITY, POROSITY, POLARIZATION)
ELECTROCHEMICAL STUDIES ON HIGHLY POROUS CARBON ELECTRODES
Bertsch, P., (Technische Hochschule, Munchen, West Germany), N70-15538, Ph.D. Thesis, J1 2 '69, (In German), Avail:TAC
The electrochemical behavior of carbon electrodes with regulated pore distribution was studied and compared with other porous electrode materials for their application in hydrogen-oxygen fuel cells. Various electrochemical studies were performed to determine electrode kinetics and to calculate the potential time curve of the galvanostatic switch-on process.
(FUEL CELL, CARBON, ELECTRODE)

A LOW COST AIR ELECTRODE
Scarr, R.F., and K.V. Kordesch, (Union Carbide Corp., Cleveland, O.), 25th Annual Proceedings, Power Sources Conference, May 72, Avail:TAC
The overall simplicity of acid electrolyte fuel cells with respect to electrolyte containment, heat and water balances, and tolerance of impure reactants makes this fuel cell very attractive. Electrodes and operating characteristics are described.
(FUEL CELL, ELECTRODE, PLATINUM, ACID, PERFORMANCE, EFFICIENCY)
H73 34800 THE HYDROGEN-CHLORINE FUEL CELL
Bianchi, C., (Univ. Milan, Italy), Review Energie Primaire, V 1:60-3 N3, 65
A H-Cl fuel cell with a HCl electrolyte (10-30%), is described.
(FUEL CELL, CHLORINE)

H73 34801 USE OF HYDROGEN IN FUEL CELLS
Nuttall, L.J., SAE-Paper 994A, Ja 11-15 '65
Principle of operation of fuel cell; types of fuels employed ranging from hydrogen to liquid hydrocarbon fuels; hydrogen fuel cell is only one approaching practical use at present; status of types of fuel cells under development is indicated; examples of applications are described such as Gemini fuel cell, produced by General Electric Co., using acidic electrolyte in form of plastic ion-exchange membrane.
(ELECTROLYTE, ION-EXCHANGE, PLASTIC)

H73 34802 VEHICLE FUEL CELL SYSTEM
Fuel cell system was developed which can deliver peak power of 160 kw; it consists of 32 Union Carbide fuel cell modules together with electrical and fluid system auxiliary components needed to operate and control them in vehicle; reactants are hydrogen and oxygen and modules use circulating electrolyte, potassium hydroxide.
(FUEL CELL, VEHICLE)

H73 34803 THE BIOSATELLITE FUEL CELL/BATTERY POWER SYSTEM
A power system was developed for the Biosatellite spacecraft which utilizes a hydrogen-oxygen fuel cell/silver-zinc battery combination to supply the mission electrical power. This system provides emergency modes of operation and insures uninterrupted power to the payload. A novel power controller was developed incorporating the capability of providing both peak load sharing and emergency power transfer in the event of a power source failure.
(BATTERY)

280
30-WATT METAL HYDRIDE/AIR FUEL CELLS SYSTEM

The use of ion exchange membrane fuel cell membrane fuel cell as developed for Army applications in a manpack hybrid 30-watt system is quantitatively investigated. The advantages of a unique solid fuel and Kipp generator type fuel system are shown in fuel economy and portability. (ION EXCHANGE, HYBRID, HYDRIDE)

STUDY OF MULTIPLE RESERVE ELECTROCHEMICAL POWER SOURCE

Neat hydrazine and 98 wt. % hydrogen peroxide are used as storable reactants. Appropriate high temperature reactors, containing propellant decomposition catalysts, are used to generate hydrogen and oxygen feed gases for the fuel cell. Allis-Chalmers fuel cell modules were selected for the centerline design on the basis of low specific weight and demonstrated bootstrap start-up capability. (HYDRAZINE, HYDROGEN, PEROXIDE, FUEL CELL)

STORAGE OF SOLAR ELECTRICAL ENERGY BY ELECTROLYSIS OF WATER, SEPARATE STORAGE OF COMPRESSED HYDROGEN AND OXYGEN, AND SUBSEQUENT RECOMBINATION OF THESE GASES BY FUEL CELLS.

Discussion of the collection of solar energy by means of hydrogen fuel cells operating at ambient temperature and pressure, with high efficiency and power density, with water as the harmless final reaction product. Only such common metals as nickel and silver are used as catalysts, and methods have been found to increase their catalytic activity according to Raney's methods. The electrodes described have a double skeleton. A new three-electrode storage cell and an experimental demonstration model are described. The energy and efficiency of storing is considered. (EFFICIENCY, NICKEL, SILVER, CATALYST)
SOME ENGINEERING ASPECTS OF HYDROGEN-OXYGEN FUEL CELL
Bacon, F.T., American Chemical Society - Division of Fuel Chemistry, V 9:1-6 N3, Sept 12-17 '65
Applications for fuel cells include possibility of storing electric energy; it is likely that, in foreseeable future, very cheap off-peak power will become available in United Kingdom; if practical power plants for short range road transport can be achieved.
(STORAGE, POWER, OFF-PEAK)

PRIMARY HYDROGEN-OXYGEN FUEL CELLS FOR SPACE
By 1975, Grove-type fuel cells may reach 70% gross thermal efficiency. Cell-degradation rates should be 4 microvolts/hr or less, and system specific weight 60-80 lbs/kw of average load, with maintenance-free life up to 1 year. A better cathodic catalyst, optimized electrode structure, and inert matrices (if used at all) will be needed. Better solutions to chemical engineering problems are even more urgent. The best approach appears to be abandonment of the Grove cell and use of modern electrochemical knowledge in developing novel systems concepts.
(CATHODE, CATALYST, ELECTRODE)

STORAGE AND APPLICATIONS OF GALVANIC CELLS
Explanation of why electrochemists, since 1890, try to use coal or methane as reductant and air as oxidant in galvanic cells, thus aiming at development of fuel cells; successful use of most expensive type of fuel cells based on hydrogen and oxygen in space flight is mentioned and cautious prognosis of future development of fuel cells cited; suggestion is made how to ban air pollution and noise from traffic in large cities by use of fuel cell batteries.
(FUEL CELL, POLLUTION, BATTERY)

STABILIZING THE NOMINAL POWER OF OXYGEN-HYDROGEN FUEL CELLS INTENDED FOR EMERGENCY POWER SUPPLY
Varta, A.G., French 1,536,877, Aug 16 '68
The O and H losses of the title cells during standby
are made up by electrolyzing water under pressure; the apparatus is described.

(ELECTROLYSIS, PRESSURE)

H73 34811 STORAGE BATTERY-FUEL CELL FOR CONVERTING ELECTRICITY TO HYDROGEN AND OXYGEN AND VICE VERSA
Siemens, A.G., and A.G. Varta, French 1,548,347, Dec 6 '68, Jl 66

A combination battery-fuel cell was developed consisting of a Raney-Ni valve electrode for H and 2 electrodes for O, a Ni gauze electrode for electrolytic release of O, and a Raney-Ni, Ag, or Cu valve electrode for dissolution of O gas. The use of an intermediate gauze electrode reduced corrosion of the O valve electrode owing to cycling of the cell.

(NICKEL, ELECTRODE, CORROSION)

H73 34812 MEGAWATT FUEL CELLS FOR AEROSPACE APPLICATIONS

Description of a high power density fuel cell stack concept with an aqueous potassium hydroxide electrolyte contained in a capillary matrix of asbestos and potassium titanate. A porous sintered plate in partial contact with a hydrogen electrode forms a hydrogen flow field and serves as an additional container for the electrolyte. The high power density of the cells largely due to the low ohmic polarization capability of the thin matrix.

(POWER, ELECTROLYTE)

H73 34813 H2-AIR FUEL CELLS AS ELECTRIC SUPPLY ON STRATOSPHERIC AIRSHIP
Balaskovic, P., and A. Rouscilles, (CRNS, Essonne, France), 4th International Symposium on Fuel Cells, Antwerp, Belgium, Oct 2-3 '72, Proceedings, V 1, Avail:TAC

The fuel cells considered can provide a stratospheric airship with propulsive energy. The airship is generally moving at an altitude of 22 km. It serves mainly as a relay for EM beams. The power system selected for the airship consists of the electric engine and fuel cells based on air and cryogenic hydrogen. It is pointed out that this system is the only power system of the systems

283
considered which meets the stringent requirements regarding
a low weight for the airship power system.

(HYDROGEN, OXYGEN, FUEL CELLS)

H73 34814 HYDROGEN-OXYGEN FUEL CELLS: VARTA FUEL CELL SYSTEMS
The working principles, construction, and performance data of VARTA H-O fuel cells as well as electrolyzers, and gas generators for H and O are discussed. Electrodes were constructed of Raney-Ni or Ag on a skeleton of sintered carbonyl Ni. A 60-w. MeOH and a 50-w. H-O fuel cell are described.

(ELECTROLYZER, NICKEL)

H73 34815 OPEN CYCLE FUEL CELL SYSTEM FOR SPACE APPLICATIONS
Discussion of an open-cycle fuel-cell concept in which the heat capacity of cryogenically stored hydrogen is used to absorb waste heat and water and reject them into space. Methods for analyzing and optimizing open-cycle systems incorporating modified Bacon cells are considered, and a parametric comparison is made between open closed-cycle systems for typical space requirements. It is suggested that open-cycle systems should be considered for missions which are less than one month in duration.

(CRYOGENIC, WASTE, HEAT, WATER)

H73 34816 PC8B-4-X562 FUEL CELL ELECTRICAL POWER SUPPLY.
OPERATIONS MANUL
Anon, (Pratt and Whitney Aircraft, East Hartford, Conn.), N72-15023, NASA-CR-115304, J1 2 '70, Avail:TAC
The PC8B-4 fuel cell electrical power supply is an electrical powerplant designed to convert the chemical reaction of hydrogen and oxygen into electrical energy. It utilizes catalyzed electrodes with a potassium hydroxide electrolyte. The powerplant and test stand control unit
are described together with a specifications summary.

(REACTION, ENERGY, ELECTROLYTE)

H73 34817 HYDROCARBON-AIR FUEL CELL SYSTEM FOR MILITARY APPLICATION
Engle, M.L., Chemical Engineering Progress Symposium Series, V 63:41-4 N75, 67
Basic system consists of hydrogen generator that supplies pure hydrogen to fuel cell which electrochemically combines hydrogen with oxygen obtained from ambient air to produce 28 v d-c power.
(FUEL CELL, HYDROCARBON, AIR)

H73 34818 HYDROGEN-OXYGEN FUEL CELLS REQUIRING MINIMUM OF MAINTENANCE
Cnobloch, H., (Siemens AG, Erlangen, West Germany), H. Nischik, F.V. Sturm, Chemie-Ingenieur-Technik, V 41:146-54 N4, Fe 2 '69, (In German)
25-w battery made up of two sets of 17 individual cells and capable of functioning in temperature range minus 20 to plus 40 °C has been developed to meet power requirements of television relay transmitter at Dollnstein, Germany.
(BATTERY, TEMPERATURE, POWER)

H73 34819 HYDROGEN GENERATOR MANPACK FUEL CELLS
For advanced design model, improvements were made in the fuel cell power module, the power conditioning, the integral H generator, and the interchangeable fuel cell case. While incorporating these improvements, the military objective of lightweight equipment was considered.
(DESIGN, POWER, MILITARY)

H73 34820 FUEL CELLS
The flight of Gemini V marked the first demonstration of the use of fuel cells as spacecraft power systems. A fuel cell may be considered to be an isothermal steady-state
reactor on which the conversion of hydrogen and oxygen to water is accomplished. In order to maintain steady-state operation, heat and product removal techniques must be applied to the fuel cell.

(SPACECRAFT, POWER REACTOR, HEAT)

H73 34821 FUEL CELLS IN AEROSPACE

Space missions for which primary (hydrogen-oxygen) fuel cells appear to be the optimum energy conversion method are surveyed. The criteria for selecting flight vehicle power supplies for space are listed, and the features that make fuel cells attractive for aerospace applications are outlined.

(ENERGY, CONVERSION, POWER)

H73 34822 FUEL CELLS IN ASTRONAUTICS
Jost, K., Luftfahrttechnik Raumfahrttechnik, V 16:300-304, Nov-Dec 70, (In German), Avail:TAC

Review of the design, operation, and merits of fuel cells used in astronautics. The technological maturity of fuel cells is shown to have been demonstrated by their performance record in the Gemini and Apollo manned mission series. Though their development and manufacturing costs exceed those of conventional energy sources, they still represent the most economical solution of the power supply problem for spacecraft.

(FUEL CELL, SPACECRAFT, DESIGN)

H73 34823 FUEL CELL POWERPLANT OPERATION IN APOLLO SPACECRAFT

Primary electrical power for loads in the Apollo Command and Service Modules is furnished by a system of three fuel cell powerplants. The powerplants convert cryogenic hydrogen and oxygen into direct current. Water formed in the fuel cell reactions is supplied to the spacecraft for crew use. Waste heat is rejected through a
coolant loop to a spacecraft radiator. The ability of the fuel cell to meet its voltage-power requirements and to control its own operating temperature under the environmental extremes of launch, ascent, earth orbit, translunar flight, and lunar orbit was demonstrated on successively more difficult missions leading up to the first lunar landing.

(ELECTRICITY, POWER, WATER, CRYOGENIC, LUNAR)

H73 34824 FUEL-CELL UNIT IN ELECTRIC VEHICLE
Winsel, A., Chemie-Ingenieur-Technik, V 40:154-9 n5, Fe 26 '68
Most of H₂O₂ fuel cells available at present are those with alkaline electrolytes; hydrogen must be carried in pressure bottles or be generated in small reformer useful for electric automobiles; improvements to be expected are possibility of regenerative braking, parallel operation between fuel-cell and lead battery, and utilization of rest-time of car for recovery of fuel in small electrolyzers.

(ELECTROLYTE, REFORMER, BATTERY)

H73 34825 FUEL CELLS AND FUEL BATTERIES - AN ENGINEERING VIEW
Discussion of the usefulness of fuel cells and fuel batteries, and of the problems relating to them. The conventional fuels for these devices - hydrogen, compromise fuels, and hydrocarbons - are investigated, and the efficiency, reliability and working life, and unit capital costs of fuel cells and batteries are studied. Electrical problems of the fuel battery and possible future applications (such as for central power stations) are considered.

(HYDROCARBON, COST, POWER)

H73 34826 GEMINI FUEL CELL SYSTEM
Description of design, operation, and performance of Gemini fuel cell system.

(FUEL CELL, SPACECRAFT)
Information on fully integrated fuel cell power system, developed by Shell Research Ltd., that can generate up to 5 kw of electrical power and can be run from methanol (methyl alcohol or wood alcohol), inexpensive petroleum derivative; in demonstration cell was mounted in utility truck and used to provide power for electric hammer for breaking concrete; fuel is converted into hydrogen by reaction with steam in presence of platinum catalyst; hydrogen is purified in diffuser, then enters battery of fuel cells.

(METHANOL, CATALYST, BATTERY)

H73 34828 FUEL CELL CONNECTED WITH A HYDROGEN GENERATOR
Dezael, C., M. Prigent, (Institut Francais du Petrole, France), French 1,549,206, Dec 13 '68
H, generated catalytically from a MeOH-H2O mixture is utilized in an electric fuel cell. The catalytic burning of the residual gases eliminated from the cell, serves as an energy source for the H generator.

(METHANOL, CATALYST, ENERGY)

H73 34829 FUEL CELLS FOR IMPROVED ELECTRICAL POWER SUPPLY
Morril, C.C., (Pratt and Whitney Aircraft, East Hartford, Conn.), American Institute of Aeronautics, Washington, D.C., Ja 8-10 '73, Paper 73-82, Avail: TAC

Current commercial fuel cell technology and the requirements of utility applications lead to a fuel cell system design which is modular in configuration and is composed of three major subsystems. The subsystems include a fuel processor, a fuel cell power section, and an inverter. Fuel cell operational characteristics are discussed, giving attention to its high efficiency, its environmental characteristics, the load response, and the operational modes.

(DESIGN, MODULAR, LOAD)

H73 34830 5-KW HYDROCARBON-AIR FUEL CELL POWER SOURCE

A fuel cell power source is described which utilizes
a reformer to supply the hydrogen and produces a net output of 5-kw electrical power at 110 v and 60 cps. Major emphasis is placed upon the fuel cell temperature and moisture control systems.

(TEMPERATURE, MOISTURE, REFORMER)

H73 34831 5 KW HYDROCARBON-AIR FUEL CELL POWER PLANT
Operating data, auxiliary system operating data, and inverter operation for experimental 5 kva hydrocarbon fuel cell power plant.
(FUEL CELL, HYDROCARBON)

H73 34832 500 WATT HYDROCARBON AIR FUEL CELL SYSTEM
Operation and performance of hydrogen generator-fuel cell system using liquid hydrocarbon fuels and oxygen (air) to produce 500 w at 32 v; system has specific weight of 140 lb/kw, specific volume of 5 cu ft/kw, and overall thermal efficiency of 30%.
(FUEL CELL, HYDROCARBON, AIR)

H73 34833 ELECTRICALLY COUPLED FUEL CELL AND HYDROGEN GENERATOR
White, D.W., (General Electric Co.), U.S. 3,607,427, Sept 21 '71
A solid 0-ion electrolyte fuel cell electrode coupled directly to a solid 0-ion electrolyte H₂O-dissociation cell (for H generation) is described. Hydrocarbon fuel is reacted with air, steam, or air and steam to produce a reducing gas mixture, which is admitted to the coupled cells to depolarize the anode of the dissociation cell and serve as fuel for the fuel cell.
(ELECTROLYTE, AIR, STEAM, ANODE)

H73 34834 EFFECTS OF CARBON DIOXIDE ON TRAPPED ELECTROLYTE HYDROGEN-OXYGEN, ALKALINE FUEL CELLS
Trapped electrolyte alkaline fuel cells are presently
being used in aerospace applications. Low temperature versions of these systems appear to offer certain advantages over the Apollo-type fuel cell. However, the life characteristics of these low temperature cells have been somewhat disappointing.
(FUEL CELL, ELECTROLYTE, TEMPERATURE)

H73 34835 DEVELOPMENT OF UNDERSEA POWER
A review is given on the fuel cell as an undersea power source. The manufacture of H for the fuel cell from NH$_3$ and from MeOH, and the purification of H by adsorption are also reviewed.
(FUEL CELL, METHANOL, AMMONIA, ADSORPTION)

H73 34836 COLD HYDROGEN CELLS OF THE GENERAL ELECTRIC COMPANY AND THEIR ACCOMPANYING CIRCUITS
Dubois, P., Entropie No. 14, p 73-82, 67, (In French)
A definition of fuel cells is given, and the fundamental thermodynamic laws for transformation of chemical energy into electric energy are presented. General considerations about storage, supply, and control of the feed of the reactants into a battery, and control of the content of reaction products are given for batteries working with the systems H$_2$/O$_2$, N$_2$H$_4$/O$_2$, N$_2$H$_4$/H$_2$O$_2$, N$_2$H$_4$/KOC1, and Na-Hg/O$_2$. Cold cells with H$_2$ and O$_2$ as reactants are described.
(STORAGE, CONTROL, BATTERY)

H73 34837 CIRCULATING ELECTROLYTE HYDROGEN/AIR FUEL CELL SYSTEM
A hydrogen-air fuel cell system with a circulating alkaline electrolyte is described. Electrodes consist of a catalyzed hydrophobic layer supported on porous nickel. Special problems of water and electrolyte management associated with the hydrophobic electrodes are discussed and the problems of working with an electrolyte common to all the cells are analyzed.
(CATALYST, HYDROPHOBIC, ELECTRODE)

290
The technical feasibility of a hydrogen-air circulating alkaline electrolyte fuel cell system incorporating electrolyte regeneration capability has been demonstrated. The fuel cell design features four channels on the air side through which the potassium hydroxide electrolyte flows. The feasibility of this cell design was demonstrated by a 650 hour single cell test.

The system described uses pure H_2, derived by reacting liquid hydrocarbon fuel with water using a reforming catalyst and extracting the product through a Pd-alloy diffusion element. The fuel cells were of the low temperature and pressure type with the alkaline electrolyte held in a matrix and the O_2 supply derived from compressed ambient air.

The fuel cell stack described contains a number of subsystems, including the electrode package, an electrolyte circulation subsystem, a subsystem for the equilibration of electrolyte and gas pressures, the hydrogen circuit, and the air supply subsystem.

Description of an energy source designed for use in space environments and based on a cold hydrogen-oxygen fuel cell.

In French, Avail:TAC
AUTONOMOUS HYDROGEN/AIR FUEL CELL FOR LONG-LIFE MISSIONS

Design and construction of an autonomous H2/air fuel cell for the purpose of power feeding a 70-w radio-beacon for 5000 hr. The reliability required for this use led to the development of a cell operating at low specific power and with no rotating parts.

AUTOMATED ELECTRICAL START FOR JP4-AIR SYSTEMS

Automatic startup and control system for hydrogen-oxygen fuel cells; system logic, major design considerations, and results of preliminary tests; block diagrams for control sequence.

STATUS OF SHUTTLE FUEL CELL TECHNOLOGY PROGRAM

The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle.

ULTRA-PURE HYDROGEN FOR FUEL CELLS

Description of a compact hydrogen generator suitable for integration into fuel-cell power systems. Such generators not only provide a source of ultrapure hydrogen especially suited for fuel-cell use, but also, in principle, can achieve thermal efficiencies approaching 100% for the conversion
of hydrocarbons into hydrogen.
(EFFICIENCY, HYDROCARBON)

H73 34846 THE FLYING H₂/O₂ STORAGE BATTERY

In view of the advanced hydrogen-oxygen primary fuel cell and electrolysis technology developed in the last decade, it is believed that a compact, lightweight, and reliable regenerative hydrogen-oxygen fuel cell can be developed by 1978. Performance goals for such a device are 20 to 30 watt-hours/pound and 7 years life at 0.95 system reliability. The attractiveness of the regenerative fuel cell is illustrated.
(FUEL CELL, REGENERATOR, ELECTROLYSIS)

H73 34847 IN SITU PREPARATION AND CONTROL OF HYDROGEN IN ELECTROCHEMICAL CELLS
Juda, W., (Prototech Inc.), U.S. 3,407,094

A fuel cell consists of molten electrolytic medium, a porous cathode, and an anode consisting of a porous support, which can be impregnated with reforming catalysts and coated with porous Ag and a 0.0001-0.005-in. thick Pd-containing layer, including Ag-Pd alloys. The partial pressure of H₂ produced in situ is maintained at below atmospheric pressure and at less than the pressure existing in the electrolytic medium by drawing current from the cell. The suction effect results in substantially complete electrochemical utilization of H₂.
(ELECTROLYTE, CATHODE, REFORMING, CATALYST)

H73 34848 FUEL CELL IS GOING COMMERCIAL
Bennett, K.W., The Iron Age, Nov 2 '67, p 50

With a growing number of stock model fuel cells available, there's prospect designers will incorporate them into new vehicles and machinery. Union Carbide will offer a unit that will operate on just hydrogen and air. However, market breakthrough is still 2 or 3 years away.
(AIR, MARKET, VEHICLES)
This paper introduces a G.M.'s Electrovan, employing a hydrogen-oxygen fuel cell developed by Union Carbide, to promote radically new alternative to the noisy, air-polluting gasoline engine. (FUEL CELL, POLLUTION)
IV. TRANSMISSION, DISTRIBUTION, & STORAGE
H73 40000 FUEL FOR TOMORROW. LIQUID HYDROGEN. LOW-TEMPERATURE ENGINEERING TECHNOLOGY
Ohta, T., Bussei, V 13:405-9 N7, 72, (In Japanese)
A review with 6 references on possible application of liquid H as fuel and on the problem associated with low temperature engineering.
(HYDROGEN, FUEL, LIQUID, FUTURE)

H73 40001 USES OF CRYOGENIC FLUIDS IN INDUSTRY AND THE LABORATORY
Lafaurie, M., Chim. Ind., Genie Chim., V 99:583-92 N5, 68,
(In French)
The applications of cryogenic fluids, especially liquid N, H, and He, are reviewed.
(CRYOGENIC, INDUSTRY, LABORATORY)

H73 40002* CRYOGENIC FLUIDS
Discussion of the properties and uses of the common liquid refrigerants. The substances considered include liquid nitrogen, liquid oxygen, liquid air, liquid neon, liquid hydrogen, liquid helium and liquid helium-3. General principles regarding the storage of the refrigerants are discussed together with the designs of vessels for specialized applications. Approaches for measuring the liquid level described include methods making use of liquid surface detection devices and hydrostatic methods. The design of transfer lines is also examined.
(CRYOGENIC, LIQUID, NITROGEN, OXYGEN, HYDROGEN)

H73 40003 LIQUID HYDROGEN
Anon, Pure & Applied Cryogenics, V 5, Pergamon Press, N.Y., 66
Volume comprises 12 chapters by different authors, representing lectures given in June 1965 at University of Grenoble, during course organized by Centre de Recherches sur les Tres Basses Temperatures under auspices of International Institute of Refrigeration; lectures treat physical properties and technological aspects of both production and utilization; latter includes space, electrical,

296
and nuclear applications.

(HYDROGEN, LIQUID, CRYOGENIC)

H73 40004* PUBLICATIONS AND SERVICES OF THE NATIONAL BUREAU OF STANDARDS, CRYOGENICS DIVISION

This NBS Technical Note catalogs the publications of the Cryogenics Division, along with author and subject indexes, for the period 1953 through 1972. It also contains a listing of available thermodynamic properties charts, bibliographies, and miscellaneous reports of cryogenic interest.

A resume of the activities of and services provided by the Cryogenics Division is also included.

(PUBLICATION, THERMODYNAMICS, CRYOGENIC)

H73 40005 LIQUID HYDROGEN TECHNOLOGY
Parmley, R.T., (General Dynamics/Astronautics, San Diego, Calif.), Report No. GDA-AE62-0774, Sept 62

This report contains information on liquid hydrogen as related to its use as a propellant for space vehicles. The following 14 areas are included: Manufacture, Transportation, Hydrogen safety, Materials compatibility, Cryogenic insulation, Transfer, Cryogenic measurements, Propulsion methods, Sloshing, Vortexing, Propellant heating, Zero-gravity behavior, Space storage, Properties.

(LIQUID, HYDROGEN, CRYOGENIC, SPACECRAFT)

H73 40006 TRENDS IN CRYOGENIC FLUID PRODUCTION IN THE UNITED STATES

The cryogenic industry in the U.S. has changed dramatically in both scope and character during the last decade. It has progressed from a liquid hydrogen technology to a liquid helium technology to developing new technologies dependent upon both the upper and lower extremes of the cryogenic scale. Among these are practical applications of superconductivity and the use of liquefied natural gas as a major world energy source. This change in the nature of the industry, and some of its implications for the future,
is seen in this paper which traces the production of the economically significant cryogens over the last decade and gives the present status of cryogen production in the U.S.

(CRYOGENIC, LIQUID, INDUSTRY)

H73 40007 THE CRYOGENIC DATA CENTER, AN INFORMATION SERVICE IN THE FIELD OF CRYOGENICS
Olien, N.A., Cryogenics, V 11:11-18 N1, Feb 71, NBS-R-625

The Cryogenic Data Center is the major source of bibliographic information and data on the properties of materials at cryotemperatures in the United States and, to a lesser extent, serves the same function for the rest of the world. The Center also is a source of information for other areas of cryogenics such as metrology, instrumentation, processes and equipment, transport processes, safety, etc. An important output of the Cryogenic Data Center is the critical evaluation of property measurements and measurement techniques.

(CRYOGENIC, DATA, INFORMATION)

H73 40008* SURVEY OF THE PROPERTIES OF HYDROGEN ISOTOPES BELOW THEIR CRITICAL TEMPERATURES

The survey covers PVT, thermodynamic, thermal, transport, electrical radiative and mechanical properties. All isotopic as well as ortho-para modifications of hydrogen have been included. Temperatures are limited to those below the respective critical points, in general below 40 K. The pressure range is not restricted, that is solid, liquid, and gas phases are covered. However, with the exception of hydrogen, very little data exists at pressures other than saturation. The literature surveyed includes all references available to the Cryogenic Data Center up to June of 1972, and for several subjects, through March of 1973. The total number of documents considered was nearly 1500 of which about 10 percent contain pertinent information and are referenced in this report. The various properties are presented in the form of tables or graphs; if extensive tables have been published elsewhere, the reader is referred to the original sources.

(COMPILATION, DENSITY, DEUTERIUM, PROPERTY, ENTHALPHY, ENTROPY, HYDROGEN, ELECTRICAL, MECHANICAL, OPTICAL, TRANSPORT)
Liquefaction of hydrogen and helium, obtaining ultralow temperatures
Liquefaction of hydrogen and helium, and the usage and production of very low temperatures have been investigated. The authors investigated cascade methods of producing low temperatures and described certain cryogenic gases and liquids. Orthopara-transformation of hydrogen was considered in detail, and methods of obtaining this were investigated. Hydrogen and helium liquefiers were described and their usage was discussed. New low temperature cycles were discussed. Magnetic cooling, thermodynamics of demagnetization, and cryostats and magnets were investigated.
(LIQUEFACTION, CASCADE, HELIUM, HYDROGEN)

Multiple-unit hydrogen-helium liquefier
High-pressure (140-50 atmospheres) H was passed through a heat exchanger, where it was cooled by low-pressure H and by-passed N vapor. After cooling by liquid N, H was cooled in another heat exchanger by low-pressure H and H vapor coming from H (1) heat exchanger of the He cycle. After throttling, part of H was liquefied, and the equilibrium gas phase formed the high-pressure H.
(LIQUEFACTION, COST, HEAT EXCHANGER)

Liquefaction and storage of hydrogen
Reiff, D.D., Chemical Engineering, V 72:191-8 N19, Sept 13 '65
Principles of liquefaction of gases and low-temperature heat transfer are basis for discussion of designs required for storage and handling of liquid hydrogen; in liquefaction of hydrogen there are two main considerations; first, low liquefaction-temperatures and safety require hydrogen to be pure; second, it is desirable that molecular variety, parahydrogen, be produced; in selecting insulation, balance must be achieved between considerations of economics, weight, volume, ruggedness and insulation effectiveness; in design of cryogenic storage vessels it is desirable to have simplest and lightest vessel, with minimum heat transfer, at lowest practical cost.
(LIQUEFACTION, HEAT TRANSFER, STORAGE, COST)
H73 40103 HYDROGEN-NEON LIQUEFACTION UNIT WITH A HELIUM EXPANSION COOLING CYCLE

The description, size, and technology and construction data are given for a liquefaction unit for H, Ne, or some other gas (capacity 11.5-20 and 6.5 l./hr, respectively), fitted with a compressor cooling system. The cooling medium is He, and preliminary cooling is attained by liquid N. The system permits obtaining a temperature down to -269°, and a small modification of the apparatus renders possible the liquefaction of He in amounts of approximately 71 l./hr.

(LIQUEFACTION, HELIUM, EXPANSION, COMPRESSION)

H73 40104 HYDROGEN LIQUEFIERS WITH EFFICIENT HEAT EXCHANGERS

Borovik, E.S., I.F. Mikhailov, and N.A. Kosik, Cryogenics, V 4:358-60 N6, Dec 64

Description of two liquefiers using heat exchangers formed of different diameter tubes soldered to one another for heat contact; single stage cooling of hydrogen by nitrogen boiling under reduced pressure is used in VO-10 hydrogen liquefier; two-stage cooling of hydrogen by liquid nitrogen is used in VO-50 unit; both designs are shown in diagrams.

(LIQUEFACTION, HEAT EXCHANGER, NITROGEN)

H73 40105 HYDROGEN LIQUEFIED WITH TWO-STAGE CONVERSION FOR PRODUCTION OF 98% PARAHYDROGEN

Fradkov, A.B., and V.F. Troitskii, Cryogenics, V 5:136-7 N3, Je 65

Report on operating principle and design of liquefier, which is shown in schematic diagram; refrigeration cycle is based on Joule-Thompson effect for normal hydrogen; parahydrogen is produced in line separate from refrigeration cycle by conversion at two temperature levels, these being temperature of liquid nitrogen (in gaseous phase), and temperature of liquid hydrogen; device has been in normal operation since 1961.

(LIQUEFICATION, PARAHYDROGEN)
A large expansion engine with an nonlubricated cylinder, which has been in com. H liquefaction service, was discussed and was shown to be useful for tonnage H liquefaction.

(LIQUEFICATION, EXPANSION)

A review is given of potential uses for liquid H and liquefaction of gases according to the Linde process. A detailed description of a liquefier with a capacity of 6l./hr. is given.

(LIQUEFICATION, PROCESS)

Design studies were made to select and evaluate a practical thermodynamic cycle for a prototype. These studies established that a partial reliquefier capable of liquefying as much as 42% of its feed of 4 lb/hr could be built within the limitations of a 14 mo development program. It is believed that this equipment is representative in design principle of later hardware capable of 10,000 hr maintenance-free operation.

(LIQUEFICATION, SPACECRAFT, THERMODYNAMICS)

A process for liquefying hydrogen, helium and neon more efficiently and economically than by methods previously practiced, which process includes the steps of compressing
the gas (hydrogen, helium or neon) to a pressure such that, upon isobarically cooling the thus compressed gas, a temperature above the critical temperature of the gas is reached at which the gas can be isentropically expanded to yield substantially a single liquid phase at atmospheric pressure.

(HIGHEFICATION, COST, PATENT)

H73 40110 APPLICATION OF THERMOSIPHON FOR PRECOOLING APPARATUS
Bevilogua, L., R. Knoener, and G. Kappler, Cryogenics, V 6:34-5 Nl, Fe 66
Method for cooling large pieces of apparatus from room temperature down to 20 or 4 K is shown schematically; vessels for liquid nitrogen, for liquid hydrogen or neon, and for liquid helium are arranged in vaccum; measuring device is attached to helium vessel; first all three vessels are cooled to liquid nitrogen temperature; then hydrogen (or neon) vessel and helium vessel with measuring device are cooled to liquid hydrogen (or neon) temperature; finally helium vessel with measuring device is cooled to helium temperature.

(THERMOSIPHON, COOLING, APPARATUS)

H73 40111 PRODUCTION OF LIQUID HYDROGEN AT THE ROCKET PROPULSION ESTABLISHMENT
The design, development, and operation of a liquid hydrogen plant with an hourly output of 100 litres of normal liquid hydrogen or 70 litres of 85-90% para-hydrogen are described. The liquid hydrogen produced was used for testing a rocket thrust chamber developed by Rolls Royce and for tank pressurization studies on behalf of ELDO. In a period of six months over 40,000 litres of liquid hydrogen were produced. The performance of a Linde cycle is briefly examined and the major design concepts required to ensure a safe and reliable production facility are discussed.

(LIQUEFICATION, PARAHYDROGEN)
H73 40112* JOULES-THOMSON LIQUEFACTION OF HYDROGEN-
HYDROCARBON GAS MIXTURES
Bartlit, J.R., K.D. Williamson, Jr., F.J. Edeskuty, (Los
Alamos Scientific Lab., Los Alamos, N.M.), Advanced Cryo-
genic Engineering, V 15:452-6, 69

A Joule-Thomson liquefier was operated with H₂-CH₄
or H₂-C₂H₆ as the feed gas. For CH₄, well-mixed streams
containing concentrations less than the soly. limit passed
through the liquefier without plugging and appeared quant.
in the transferred product. CH₄ and C₂H₆ concentrations
above their soly. limits (30 vol. ppm for CH₄; greater
than 1 vol. ppm for C₂H₆) plugged the liquefier within min-
utes. The product formed was flowable as a homogeneous
"milk," without phase separation.
(LIQUEFICATION, HYDROGEN, HYDROCARBON)

H73 40113 THE PRODUCTION OF LIQUID HYDROGEN
Rozhkov, I.V. et al., AD-693480, Ja 69, Avail:TAC

The production of liquid hydrogen, its liquefaction
and its ortho-para-conversions, as well as specific features
involved in the storage and transportation of this material
are covered in detail in this report compiled from recent
Soviet and other publications. The report deals specifically
with the structural materials used in the fabrication of
industrial installations, pumping and storage facilities.
Cryogenic thermal insulation is covered, as are the rules
of safety in connection with the handling of liquid hydro-
gen.
(LIQUEFICATION, STORAGE, TRANSPORTATION)
TECHNIQUES FOR DETERMINING AVERAGE DENSITY AND RELATED PARAMETERS IN TWO-PHASE CRYOGENIC FLOW SYSTEMS

Williamson, K.D., Jr., (Los Alamos Scientific Lab, Los Alamos, N.M.), Advances in Cryogenic Engineering, V 17, 71, Avail: TAC

Two-phase flow is difficult to avoid in cryogenic systems. Each time such systems are cooled to operating temperatures, two-phase flow is encountered unless the system pressure is maintained well above the critical pressure. In addition, many applications involve the low-pressure vaporization of cryogenic liquids in heat exchangers which must operate continuously in the two-phase region. In order to design such systems, a knowledge of the complicated distributions of gas and liquid must be known so that hydrodynamic and heat transfer analyses can be made. Both gross and detailed structure measurements are of interest. These include the average density, fluid quality (mass of vapor/total mass of fluid), void fraction (volume occupied by the gas/total volume), void distribution, flow regimes, and local velocities.

(DENSITY, TWO-PHASE, QUALITY, FLOW, CRYOGENIC)

CAVITATION IN LIQUID CRYOGENS. 1: VENTURI

The results of continuing cavitation studies are reported. The cavitation characteristics of liquid hydrogen and liquid nitrogen flowing in a transparent plastic Venturi are discussed. Thermodynamic data, consisting of pressure and temperature measurements within fully developed hydrogen cavities, are reported. Details concerning test apparatus, test procedure, and data correlation techniques are given.

(CAVITATION, VENTURI, PRESSURE, TEMPERATURE)

COMPUTER PROGRAMS FOR THERMODYNAMIC AND TRANSPORT PROPERTIES OF HYDROGEN

The thermodynamic and transport properties of para and equilibrium hydrogen have been programmed into a series
of computer routines. Input variables are the pair's pressure-temperature and pressure-enthalpy. The programs cover the range from 1 to 5000 psia (34 MN/sq m) with temperatures from the triple point to 6000 R (3300 K) or enthalpies from -130 BTU/lb (-623 J/mol) to 25,000 BTU/lb (117000 J/mol). Output variables are enthalpy or temperature, density, entropy, thermal conductivity, viscosity, velocity of sound, heat capacity at constant pressure, heat capacity at constant volume, the heat capacity ratio, and a heat transfer parameter.

(THERMODYNAMICS, TRANSPORT, COMPUTER, PROPERTY)

H73 40203 INCIPIENT AND NUCLEATE BOILING OF LIQUID

Experimental data are presented for natural convection heat transfer and for the point of inception of vapor formation for liquid hydrogen and liquid nitrogen. Nucleate boiling results with liquid hydrogen are also presented, indicating the so-called hysteresis effect with increasing and decreasing heat flux. The variables covered include heater surface material, roughness, and orientation.

(BOILING, CONVECTION, NUCLEATE)

H73 40204* EQUATION OF STATE AND PHASE DIAGRAM OF DENSE HYDROGEN

The equation of state of hydrogen has been calculated for specific volumes ranging from .01 to 10,000 cu cm/mole and for temperatures ranging from 200 to 1,000,000 K. Three phases are considered: the molecular solid, the metallic solid and the fluid. Chemical equilibrium between molecules, atoms, ions and electrons is considered in calculating the properties of the fluid phase. Transitions between the three phases were discussed. The triple point, where the three phases coexist, is calculated to occur at 2.3 Mbar and 1679 K. At higher temperatures and pressures, the molecular solid is unstable.

(STATE, EQUATION, PHASE)
H73 40205 FINITE RATE EVAPORATION OF CRYOGENIC HYDROGEN
IN TWO-PHASE AIR
Edelman, R., and H. Rosenbaum, (General Applied Sciences
Labs., Inc., Westbury, N.Y.), N66-32644, NASA-CR-76978,
Sept 63, Avail:TAC

A theoretical study of two-phase continuum flow of
hydrogen and air for a given range of initial conditions
is presented. Of special interest is the method employed
in calculating the two-phase boundary and subsequent con-
densation of the air during the hydrogen evaporation pro-
cess.
(TWO-PHASE, EVAPORATION, FLOW)

H73 40206 FLOW AND THERMAL CHARACTERISTICS OF HYDROGEN
NEAR ITS CRITICAL POINT IN A HEATED CYLINDRICAL TUBE
Mahlon, W.T., (Los Alamos Scientific Lab., N.M.), Report
No. LA-4172, Avail:TAC

The flow conditions and mechanism of hydrogen near
its critical point in a heated cylindrical tube were in-
vestigated. A special boiling number was found to be
effective in correlating temperature differences for
pressures greater than the critical pressure. Correlations
were also obtained as a function of reduced pseudocritical
temperatures. With pseudocritical temperatures slightly
less than one, dynamic pressure, temperature, and average
hot wire current were more nearly constant with respect
to radius than at other temperatures. "M" shaped vel-
ocity profiles were observed at pseudocritical temperatures
above one.
(FLOW, CRITICAL POINT, PRESSURE, TEMPERATURE, BOILING)

H73 40207 FORCED CONVECTION HEAT TRANSFER TO SUPER-
critical CRYOGENIC HYDROGEN: PART 1. LITERATURE SURVEY
Beech, J.C., (Explosives Research and Development Establish-
ment, Waltham Abbey, England), Report No. ERDE-1/S/69, Fe
28 '69, Avail:TAC

The published experimental data covering forced con-
vection heat transfer to cryogenic hydrogen are reviewed,
with special attention to the near-critical regions of
temperature and pressure. Data for straight and curved
tubes, of both circular and non-circular cross-sections,
are covered; also the case of asymmetric peripheral heat
flux through the walls. A number of theoretical and semi-
empirical treatments of the near-critical, variable fluid
property condition are discussed, and their effectiveness in correlation of near-critical heat transfer to cryogenic hydrogen considered.

(CONVECTION, CRYOGENIC, CRITICAL POINT, HEAT TRANSFER)

H73 40208 THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS AND SELECTED SOLIDS FOR CRYOGENIC APPLICATIONS

The activities and accomplishments for the data evaluation and compilation program are summarized in the description of the following tasks: (1) properties of hydrogen and related studies including curve fitting techniques and survey of temperature scales.

(THERMODYNAMICS, TRANSPORT, PROPERTY, FLUID)

H73 40209 HEAT TRANSFER TO CRYOGENIC HYDROGEN FLOWING TURBULENTLY IN STRAIGHT AND CURVED TUBES AT HIGH HEAT FLUXES

The forced convection heat transfer characteristics of cryogenic hydrogen were studied at pressures ranging from 800 to 1500 psi and fluxes from 8 to 27 Btu/in.²/sec. The tests were conducted under conditions simulating those predicted for the Phoebus-2 nozzle, in support of the nozzle development program.

(HEAT TRANSFER, TURBULENCE, CRYOGENIC, FLOW)

H73 40210 HEAT TRANSFER TO SUBLIMING SOLID-VAPOR MIXTURE OF HYDROGEN BELOW ITS TRIPLE POINT

Experimental study; heat transfer coefficients are measured for solid vapor mixture of parahydrogen discharging through heated brass tube below triple point pressure.

(HEAT, TRANSFER, TRIPLE POINT, SUBLIMATION)

H73 40211 MECHANICAL PROPERTIES OF SOLID PARA-HYDROGEN AT 4.2K

Ultimate strength, relative elongation, and hardening
coefficient, which depends on deformation rate, were determined; three characteristic regions of deformation curves were considered; low value of static Young's modulus of 29 kg/sq mm is to some extent, due to considerable contribution of zero-point vibrations to total lattice energy.

(SOLID, PARAHYDROGEN, PROPERTY)

H73 40212 NUMERICAL PROCEDURES FOR CALCULATING REAL FLUID PROPERTIES OF NORMAL AND PARAHYDROGEN

The library of single function calls can be used efficiently without initial estimates. When physical conditions are known, engineering estimates of density may be included for additional speed in calculation.

(PROPERTY, PARAHYDROGEN, COMPUTER, FLUID)

H73 40213* TABLES OF PARAHYDROGEN DATA IN ENGINEERING UNITS FROM 36° TO 5000 R AT PRESSURES TO 5000 PSIA

Tables of thermodynamic-transport and related properties of parahydrogen are provided in engineering units for the temperature range 36 to 5000 R and the pressure range 13 to 5000 psia.

(TABLE, PARAHYDROGEN, THERMODYNAMICS)

H73 40214 THERMAL BEHAVIOR AND MEASUREMENTS OF CRYOGENIC LIQUIDS
Jonke, R.J., Revue Scientifique et Technique CECLES/CERS, V 3:129-62, Apr-Je 71

The second stage of Europa III is powered by a liquid hydrogen and liquid oxygen engine. To minimize the amount of cryogenic propellants required - and thus optimize the payload - their behavior under operational conditions has to be studied. The present paper describes experimental work on the thermal behavior of cryogenic liquids carried out in Europe during 1967-1969 and the necessary measurement methods.

(CRYOGENIC, THERMAL, MEASUREMENTS)
H73 40300 CRYOGENIC FLOW-METERING RESEARCH AT NBS
Mann, D.B., Cryogenics, V 11:179-85, Je 71

An NBS program, which focuses attention on the problem, has as its objectives to (1) establish present state-of-the-art by evaluating existing measurement methods, (2) establish methodology to maintain precision and accuracy of field-measurement devices, and (3) establish a comprehensive program to develop new cryogenic fluid-measurement systems. The scope of this program includes a concerted effort to develop new mass-flow measurements for cryogenic fluids such as slush or liquid hydrogen.

(FLOW, CRYOGENIC, MEASUREMENT, SLUSH)

H73 40301 CRYOGENIC DENSITY PROBE
Anon, Instrumentation Technology, V 15:94, Oct 68

A sensor for local density of liquid hydrogen or oxygen provides 0.1 percent accuracy. The method is based on beta-ray absorption in a silicon surface-barrier detector.

(DENSITY, LIQUID, CRYOGENIC)

H73 40302 TEST OF LIQUID-LEVEL SENSORS AND FISSION COUPLES
McMillan, W.D., (General Dynamics, Fort Worth, Tex.), NASA-CR-2162, 21-47, Avail:TAC

Level sensors for gaging the height of liquid H in propellant tanks, comprised of a continuous capacitance probe 40-in. long and several each of point sensors of capacitance, thermal, and magnetostrictive types, were irradiated in a liquid H dewar to a dose exceeding that predicted for 10 missions.

(SENSOR, LIQUID-LEVEL)

H73 40303 LIQUID HYDROGEN FLOW BY NMR TECHNIQUE
Anon, Instruments & Control Systems, V 39:87, Aug 66

The purpose of the investigation is to explore the feasibility of using a nuclear magnetic resonance (NMR) technique to measure the flow rate of liquid hydrogen under conditions that are encountered in the fueling of rockets. The advantage of such a method, over conventional ones, is that no electrical or mechanical measuring device comes into contact with the liquid to introduce energy or heat into it. Although this technique has been successfully demonstrated in laboratory tests using ex-
perimental equipment, actual field tests are yet to be performed.

(FLOW, MEASUREMENT)

H73 40304 QUALITY DETERMINATION OF LIQUID-SOLID HYDROGEN MIXTURES

Current interest in liquid-solid mixtures of para-hydrogen ('slush hydrogen') as a potential rocket propellant has lead to a theoretical and experimental investigation of one method of determining liquid-solid quality. Since knowledge of the quality is necessary to calculate such quantities as (1) the total mass in a container, (2) the storage time possible for these mixtures, and (3) the transport properties of such mixtures, it is desirable to have an accurate means of quality determination.

(LIQUID, SOLID, PARAHYDROGEN)

H73 40305* CRYOGENIC INSTRUMENTATION AT AND ABOVE LIQUID HYDROGEN TEMPERATURE: PRESENT AND FUTURE
Keller, W.E., (Los Alamos Scientific Lab., N.M.), N73-16743, LA-DC-72-855, 72, Avail:TAC

The instrumentation problems associated with present and possible future large scale cryogenic systems operating at or above liquid hydrogen temperatures were investigated. Cryogenic systems relevant to the energy problem, and the instrumentation problem for large scale usage of cryogens are discussed along with liquefaction and refrigeration systems, storage systems, and transportation of cryogens.

(INSTRUMENTATION, CRYOGENIC, TEMPERATURE)

H73 40306 DEVICE FOR MEASURING THE TEMPERATURE OF LIQUID AND GASEOUS HYDROGEN

A cryogenic temperature transducer which is extremely fast in response to changing temperature, has medium accuracy, and measures temperature over a wide range, was developed.

(TRANSDUCER, TEMPERATURE, CRYOGENIC)

Two engineering test models, fabricated from aluminum and from 347 stainless steel, were tested and calibrated in accordance with specified operating conditions and accuracy. The device was designed to indicate the ratio of dry vapor to wet vapor being vented through itself. (VAPOR, CALIBRATION)

Statistical data are presented on the reproducibility and linearity of turbine-type sensors, in 2 to 5 cm sizes, with various types of bearings. Design principles, installation practices, and inspection procedures are suggested that are conducive to reliability. (FLOW, CALIBRATION, DESIGN)

MacIntyre, J.R., (General Electric, Huntsville, Ala.), and T.N. Marshall, Jr., Instrumentation Technology, V 19:29-31 N8, Aug 72

A sensor is described which is characterized by very large resistance changes for relatively low amounts of hydrogen. Its simplicity makes it attractive for continuous monitoring applications. (SENSOR, DETECTION)
PRESSURE VESSEL FOR USE WITH HYDROGEN
Long, C.A., (Struthers Scientific and International Corp.), British Patent 1,182,101, Fe 25 '70
The costs of such vessels may be reduced by using a laminated structure having vented layers of non H-resistant steel for all but the innermost liner. However, the welds are still susceptible to H embrittlement. Methods are described for overcoming this difficulty by using a number of constructions which eliminate continuous gas paths through the metal from the inner liner to the outer reinforcement.
(VEssel, COST, PRESSURE)

HYDROGEN PRESSURE VESSEL WITH LAMINATED WALLS
Oto, Y., T. Yamazaki, T. Shinkawa, (Mitsubishi Heavy Industries, Ltd.), British Patent 1,182,142, Fe 25 '70
The diffusion of H through the welded joints of the innermost layer of the laminate is prevented by the welds being made onto a backing strip and not onto the inner-liner of the vessel.
(VEssel, LAMINATED, PRESSURE, WELD)

THERMAL PROTECTION FOR LIQUID-HYDROGEN FUEL TANKS IN HIGH-SPEED, LONG-RANGE AIRCRAFT
Gosch, W.D., (Rand Corp., Santa Monica, Calif.), AD-625407, 65, Avail: TAC
Part of a continuing study of cryogenic fuel system is presented. An analysis is presented of requirements for thermal protection systems and of fuel boil-off for liquid-hydrogen tanks aboard hypersonic, long-range aircraft. From this analysis it should be possible to obtain preliminary approximations of the weights of fuel boil-off and thermal protection systems over a wide spectrum of tank sizes and heat inputs.
(AIRCRAFT, THERMAL, PROTECTION, LIQUID)

STRUCTURAL DESIGN CONSIDERATIONS FOR STORAGE OF LIQUID HYDROGEN IN SPACE VEHICLE
Sagata, J., SAE-Paper 994D, Ja 11-15 '65, Avail:TAC
Description of S-IV and S-IVB stages for Saturn, designed to use high specific impulse of liquid hydrogen-liquid oxygen propulsion system.
(INSULATION, STRUCTURE, DESIGN, LIQUID, SPACECRAFT)
Two structural concepts have been identified and investigated to obtain a better insight into problems associated with structures for hydrogen-fueled hypersonic airplanes. One of these is the multiwall sandwich concept which combines the evacuated thermal protection, tankage, and load-carrying functions into a single component. The other concept is based on the use of an unsealed structure that does not require vacuum sealing, but rather utilizes carbon dioxide gas to purge the insulation space between the structure and tanks.

(AIRCRAFT, STRUCTURAL, HYPersonic)

A completely open-cell insulation was feasible for a liquid H tank. The most efficient and the lightest weight material was the poly (phenylene oxide) foam. Very small pore sizes (1.5 mils in 400-mesh screen) effectively maintained an insulating gas layer.

(INSULATION, OPEN-CELL, CRYOGENIC)

A technique designed to store cryogenic O and H on the lunar surface with minimum heat leak is described.

(STORAGE, CRYOGENIC, SOLIDIFICATION)

Experiments were carried out to develop a light weight polyurethane foam insulation for liquid H tanks of space vehicles that could be foamed in place on the outside of the tank.

(FOAM, POLYURETHANE, SPACECRAFT)
LIQUID HYDROGEN TANK INSULATION FOR S-II BOOSTER
S-II booster is first large airborne tank to have integrally bonded and sealed external insulation; all of design criteria and manufacturing aspects have been aimed at obtaining practical insulation with high reliability. (INSULATION, RELIABILITY)

INITIAL WARMUP OF 500,000-GALLON LIQUID HYDROGEN DEWAR
A 500,000-gallon liquid hydrogen dewar was warmed to ambient temperature by breaking the annular space with a small quantity of gaseous nitrogen and using an installed 32.3-kW electric heater. Some previously reported hazards were not observed using this procedure. (LIQUID, HAZARD)

HYDROGEN TANKAGE FOR HYPERSONIC CRUISE VEHICLES
Heathman, J.H., (General Dynamics Corp., San Diego, Calif.), and L.G. Kelly, American Institute of Aeronautics and Astronautics, 66, p 430-8
Study of nonintegral liquid-hydrogen tankage for hypersonic aircraft in all aspects affecting the total installation weight. Design criteria are established for vehicle mission requirements. Structural concepts and materials, insulation systems, and fuel system requirements are evaluated. Results of an optimization based on structural materials, insulation concept, insulation distribution and weight, boiloff and spray cooling, and tank operating pressure are given. Test results are given and compared with analytical predictions. (TANK, HYPERSONIC, AIRCRAFT, DESIGN)

EXTERNAL PRESSURIZATION SYSTEMS FOR CRYOGENIC STORAGE SYSTEMS
Recirculation-type external pressurization systems were investigated for use in pressure control of cryogenic hydrogen, oxygen and nitrogen storage systems. (STORAGE, CRYOGENIC)
H73 40412 EXTERNAL PRESSURIZATION SYSTEMS FOR CRYOGENIC STORAGE SYSTEMS: DESIGN REFERENCE MANUAL

The tools and techniques needed by system planners for estimation of the weight and cost of recirculation-type external pressurization systems for hydrogen, oxygen, and nitrogen storage are provided. Characterization information and design procedures are presented for all major system elements.
(STORAGE, CRYOGENIC, DESIGN)

H73 40413 EFFECT OF SIZE ON NORMAL-GRAVITY SELF-PRESSURIZATION OF SPHERICAL LIQUID HYDROGEN TANKAGE

A study was conducted to obtain a correlating parameter which would relate the rate of pressure rise to the volume of spherical liquid hydrogen tankage.
(TANK, VOLUME)

H73 40414 DEVELOPMENT OF A LIGHTWEIGHT EXTERNAL INSULATION SYSTEM FOR LIQUID-HYDROGEN STAGES OF THE SATURN V VEHICLE

A new insulation concept is discussed originating from this program having a weight of approximately 0.50 lb./ft.² and a conductance of 0.33 Btu./hr. ft.² °R. The double-seal insulation consists of an inner portion of individually sealed Mylar honeycomb cells and an outer He purge channel of glass-fiber-reinforced phenolic honeycomb.
(INSULATION, HONEYCOMB)

H73 40415 DEVELOPMENT OF ADVANCED MATERIALS COMPOSITES FOR USE AS INSULATIONS FOR LH2 TANKS

A study of internal insulation materials and fabrication processes for space shuttle LH2 tanks is reported.
Emphasis was placed on an insulation system capable of reentry and multiple reuse in the Shuttle environment.

H73 40416 DETERMINATION OF THE THERMAL CONDUCTIVITY, THE SPECIFIC HEAT AND THE WEIGHT BY VOLUME OF INSULATIONS FOR ROCKET TANKS FILLED WITH LIQUID HYDROGEN
Experimental research into insulating foams at temperatures down to that of liquid hydrogen (200K) is reported. In addition to a general study of the insulation of tank walls for cryogenic high-energy rocket states, a description is given of various measuring methods of determining the thermal conductivity, the specific heat and the density of insulating materials, together with a comprehensive review of the literature.
(TANK, INSULATION, DENSITY, LIQUID)

H73 40417 A COMPUTER PROGRAM FOR THE CALCULATION OF THERMAL STRATIFICATION AND SELF-PRESSURIZATION IN A LIQUID HYDROGEN TANK
An analysis and computer program are described for calculating the thermal stratification and the associated self-pressurization of a closed liquid hydrogen tank.
(STRATIFICATION, TANK, LIQUID)

H73 40418 A CARBON DIOXIDE PURGE AND THERMAL PROTECTION SYSTEM FOR LIQUID-HYDROGEN TANKS OF HYPERSONIC AIRPLANES
Structural studies showed that the CO2-frost thermal protection concept may offer a practical purge and thermal protection system for H tanks.
(TANK, AIRCRAFT, HYPERSONIC)
H73 40419 LIQUID HYDROGEN POSITIVE EXPULSION BLADDERS
Liquid hydrogen expulsion tests performed using multi-ply bladders fabricated from Mylar, Kapton and an experimental polyester film.
(EXPULSION, LIQUID, TEST)

H73 40420 MULTILAYER INSULATION FOR LARGE VESSELS USED IN TRANSPORTING AND STORING CRYOGENIC LIQUIDS
Glaser, P.E., Mechanical Engineering, V 87:23-7, Aug 65
Investigating the thermal performance of multilayer insulations for large vessels used in transporting and storing cryogenic liquids - to make commonplace the large-scale use of these liquid fuels.
(INSULATION, MULTILAYER, STORAGE)

H73 40421 PAYLOAD OPTIMIZATION FACTORS FOR STORAGE OF LIQUID HYDROGEN IN A LOW-GRAVITY ENVIRONMENT
Many of the Apollo application missions and post-Apollo studies require orbital storage of cryogenic propellants. During these periods in orbit, it will be necessary to vent the excess tank pressures caused by pressurant, and auxiliary propellants.
(SPACELAB, STORAGE, LIQUID)

H73 40422 VENTING OF LIQUID-HYDROGEN TANKAGE
A 22-in. diameter spherical tank, 65% of which was filled with liquid H, was subjected to venting tests by uniformly heating the tank at 200-780K, and top-heating at 3110K.
(VENT, LIQUID, TANK, ANALYSIS)
INVESTIGATION OF TWO-PHASE HYDROGEN FLOW IN PUMP INLET LINE
Urasek, D.C., P.R. Meng, and R.E. Connelly, (NASA, Lewis Research Center, Cleveland, O.), NASA-TN-D-5258, J1 69, Avail: TAC

An investigation was conducted to evaluate the vapor-to mixture-volume ratio present in the inlet line of a pump when liquid hydrogen is pumped in a boiling condition from a sealed tank. Both an experimental and an analytical approach were used. The good agreement obtained between the experimental and analytical results indicated that the vapor-to mixture-volume ratio can be predicted with reasonable accuracy. These estimated values of vapor-to mixture-volume ratio, when used with previously reported results, may be useful in predicting pump inducer performance with two-phase flow.

FLOW, TWO-PHASE, BOILING

BEARINGS AND SEALS FOR CRYOGENIC FLUIDS

Bearings and seals in rocket engine turbopumps operate directly in the cryogenic propellant. Special design and lubricating techniques are required since ordinary oils and greases become glasslike solids at these extremely cold temperatures.

BEARING, PUMP, CRYOGENIC

HEAT TRANSFER COEFFICIENTS FOR LIQUID HYDROGEN TURBOPUMPS
Anon, (NASA, Washington D.C. Technology Utilization Division), Report No. PB-180-567, 68

An analytical study effort was undertaken to provide the basic criteria for hydrogen heat transfer coefficients as a function of the hydrogen thermodynamic state and heat transfer rate intensity, as applicable to liquid hydrogen turbopumps.

LIQUID, PUMP, HEAT TRANSFER, BOILING

THERMODYNAMIC-IMPROVEMENTS IN LIQUID HYDROGEN TURBOPUMPS

The completed effort is described in the evaluation of
thermal conditioning problems of liquid hydrogen turbo-
pumps to enhance mixed-phase operation and to minimize
engine system constraints on starts and restarts.
(PUMP, HEAT TRANSFER, LIQUID)

H73 40504 PUMPS FOR LIQUID HYDROGEN
Carter, T.A., Jr., (Air Reduction Co., Inc.) Cryogenic
Technology, V 3:172-5 N4, 67
The problems connected with pumping liquid and slush
H are discussed. The characteristics and performance of
pumps developed by 16 firms are described.
(LIQUID, SLUSH, PUMP, PERFORMANCE)

H73 40505 LUBRICATION AND WEAR OF BALL BEARINGS IN
CRYOGENIC HYDROGEN
Research Center, Cleveland, O.), N68-33065, NASA-TM-X-61165,
68, Avail:TAC
Several basic design and material requirements of ball
bearings used in liquid hydrogen turbopumps are presented.
(PUMP, BEARING, WEAR, LUBRICATION)

H73 40506 HYDRAULIC DESIGN OF THE M-1 LIQUID HYDROGEN
TURBOPUMP
Farquahr, J., and B.K. Lindley, (Aerojet-General Corp.,
Sacramento, Calif.), N66-32334, NASA-CR-54822, J1 66,
Avail:TAC
This report presents the design method and resulting
design details as well as performance predictions for a
ten-stage, axial flow, hydrogen pump for the M-1 oxygen/
hydrogen liquid rocket engine.
(PUMP, DESIGN, PERFORMANCE)

H73 40507 EXPERIMENTAL STUDY OF LOW-SPEED OPERATING
CHARACTERISTICS OF A LIQUID HYDROGEN CENTRIFUGAL TURBO-
PUMP
Ribble, G.H., Jr., and G.E. Turney, (NASA, Lewis Research
Center, Cleveland, O.), N69-33806, NASA-TM-X-1861, Aug 69,
Avail:TAC
The low speed operating characteristics of a liquid
hydrogen centrifugal turbopump are discussed. The turbo-
pump was operated at several speeds, ranging from 6.7 to 49 percent of the rated speed.

(PUMP, LIQUID, TEST, EFFICIENCY)

H73 40508 EXPERIMENTAL FINDINGS FROM ZERO-TANK NET POSITIVE SUCTION HEAD OPERATION OF THE J-2 HYDROGEN PUMP

The results of a series of liquid hydrogen turbopump tests to demonstrate the feasibility of zero-tank net positive suction head are presented. A J-2 engine hydrogen pump and S-IVB stage fuel feed system were used for this investigation.

(TEST, PUMP, SUCTION)

H73 40509 ANALYSIS OF ROCKET-POWERED EJECTORS FOR PUMPING LIQUID OXYGEN AND LIQUID HYDROGEN

A preliminary analysis of the use of rocket-powered ejectors for pumping liquid oxygen and liquid hydrogen in rocket engines was made. The drive gas is the exhaust gas of a smaller hydrogen-oxygen rocket engine. The analysis is one dimensional and does not include shock or friction losses.

(EJECTOR, PUMP, LIQUID, ANALYSIS)

H73 40510 COOLDOWN TIME FOR SIMPLE CRYOGENIC PIPELINES

This paper offers a quick method by which cooldown time for a simple system can be estimated from a dimensionless parameter read from a graph. To use the method it is necessary to know the fluid and pipe enthalpy, density, and velocity of sound in the warm gas. The idealized model and closed form solution are described, and comparison with experimental results is shown.

(CRYOGENIC, PIPELINE)
H73 40511 A 14-M LIQUID-HYDROGEN LINE
The 14-m liquid-H transfer line, between H and He liquefiers, is comprised of a \(\frac{1}{4} \)-inch nominal bore Cu tubing, with wall thickness of 1.15 mm, concentrically insulated with a simple high-vacuum line made of 2-inch nominal bore Cu tubing.
(TRANSFER, PIPE, LIQUEFACTION)

H73 40512 ANALYSIS OF TWO-PHASE FLOW IN LH\(_2\) PUMPS
FOR O\(_2\)/H\(_2\) ROCKET ENGINES
An analysis was made to determine the two-phase pumping capability of liquid-hydrogen pumps and to establish hydrodynamic design criteria to improve two-phase pump performance.
(PUMP, FLOW, TWO-PHASE, DESIGN)
H73 40600* MULTIPLE USE OF CRYOGENIC FLUID TRANSMISSION LINES

Economic advantages accruing from transporting two energy sources concurrently through a single pipeline have been recently discussed. Proposed was the concurrent transport of electricity at liquid hydrogen (LH₂) temperatures, 20 K, (utilizing the greatly reduced resistivity of copper) and liquefied natural gas (LNG) at 110 K, (utilizing decreased pumping costs, thermal shielding, and energy for driving the hydrogen refrigerator offered by LNG). This idea is carried a step further by exploring environmental as well as economic advantages which may be realized by distributing three energy sources concurrently - LNG, LH₂, and electricity.
(COST, PIPELINE, ELECTRIC)

H73 40601* EXPERIENCE IN HANDLING, TRANSPORT AND STORAGE OF LIQUID HYDROGEN-THE RECYCLABLE FUEL

In the past where hydrogen has been used on a large scale, it has sometimes proved advantageous to use it in liquid form for ease in transport and storage. This existing cryogenic technology is found adequate to meet the needs of the most likely future applications for liquid hydrogen which are transportation facilities, remote sites not serviced by pipelines, peak-shaving, and superconducting power lines.

Existing liquefaction facilities, dewar and pipe sizes, flow capacities, design criteria and data, and safety are discussed and compared with future needs.
(TRANSPORTATION, STORAGE, LIQUID)

H73 40602 A 10,000-GPM LIQUID HYDROGEN TRANSFER SYSTEM FOR THE SATURN/APOLLO PROGRAM

Cryogenic loading of the huge Saturn V booster begins
eight hours before the scheduled lift-off. The first
three hours of fueling is the cold hydrogen gas condition-
ing of the S-II stage fuel tank. Then in one hour and
thirty minutes approximately 340,000 gallons of liquid
hydrogen is loaded into the S-II and S-IVB fuel tanks.

This report briefly describes the design and operation
of the liquid hydrogen transfer system used to service
the Saturn V launch vehicle.

(LIQUID, TRANSFER, SYSTEM)

H73 40603* THE STORAGE AND TRANSPORTATION OF SYNTHETIC
FUELS
Johnson, J.E., (Union Carbide Corp., Linde Division),
Report No. ORNL-TM-4307, Sept 72, Avail:TAC

This report summarizes various contributions by the
technical staff of the Engineering and Research Depart-
ments of the Linde Division of Union Carbide Corporation.
It includes a review of the problems associated with the
storage and transportation of energy by the major candi-
date synthetic fuel systems - hydrogen and hydrogen-derived
fuels, such as ammonia and methanol. Particular emphasis
has been placed on the identification of limiting tech-
nologies and on areas in which research and development
efforts should be undertaken to contribute solutions to
the nation's growing problems of energy resources, trans-
mission and conversion.

(STORAGE, TRANSPORTATION)

H73 40604 SHUTTLE: REACTION CONTROL SYSTEM. CRYOGENIC
LIQUID DISTRIBUTION SYSTEM: STUDY
Akkerman, J.W., (NASA, Lyndon B. Johnson Space Center,
Houston, Tex.), N73-16765, NASA-TM-X-68913, Ja 72, Avail:TAC

A cryogenic liquid distribution system suitable for
the reaction control system on space shuttles is described.
The system thermodynamics, operation, performance and
weight analysis are discussed along with the design, main-
tenance and integration concepts.

(SHUTTLE, LIQUID, DISTRIBUTION)

H73 40605 CRYOGENIC PROPELLANT ACQUISITION AND TRANSFER
Tatro, R.E., (General Dynamics, San Diego, Calif.), NASA,
Lewis Research Center Space Transportation System Technology
Symposium, V 5:167-87, J1 70, N70-39613, Avail:TAC

The technologies required to successfully design

323
acquisition and transfer systems for the shuttle are in the areas of storage tank fluid dynamics and thermal conditioning, pressurization and pumping system interfaces, and receiver tank thermodynamics. (SHUTTLE, STORAGE, DESIGN)
H73 41000* A SUMMARY OF THE CHARACTERIZATION STUDY OF SLUSH HYDROGEN
Discussion of a study of slush hydrogen preparation, storage, transfer and equipment which is in progress at the Cryogenics Division of the National Bureau of Standards. A process of slush preparation by intermittent vacuum pumping is described. Observations of solid particle size and structure were made during a 100 h aging of slush, showing marked structural changes and insignificant size particle changes during aging. It was found that slush with over 0.5 solid content could be transferred and pumped with losses similar to losses in triple-point hydrogen when the Reynolds numbers are high. (SLUSH, PREPARATION, STORAGE, TRANSFER, PUMP)

H73 41001 FLOW RESEARCH SYSTEM FOR LIQUID AND SLUSH HYDROGEN
This system is both a combination gravimetric calibration system for flow and quality instrumentation and a hydrogen slush generation system. Discussion focuses on the hydrogen slush flow and generation capability since the characteristics of the system for this use directly apply to liquid hydrogen flow research. (LIQUID, SLUSH, FLOW, QUALITY, GENERATION)

H73 41002 HANDBOOK OF PHYSICAL AND THERMAL PROPERTY DATA FOR HYDROGEN. TRIPLE POINT REGION TO CRITICAL POINT REGION. VOLUME I: A STUDY OF HYDROGEN SLUSH AND/OR HYDROGEN GEL UTILIZATION
Physical and thermal property data for hydrogen in the regions between the triple point and the critical point are tabulated and illustrated in both the English and International systems of units in this handbook for space vehicle designers. Nearly all of the data presented are for parahydrogen, since this is the major component of low temperature equilibrium mixtures. (TRIPLE POINT, CRITICAL POINT, PROPERTY, SLUSH)
H73 41003 HYDROGEN-SLUSH DENSITY REFERENCE SYSTEM

Design considerations are given for a H-slush system for calibration of field-type instruments and (or) transfer standards. A method for slush measurement is described.
(SLUSH, INSTRUMENTATION, DENSITY)

H73 41004* INSTRUMENTATION FOR STORAGE AND TRANSFER OF HYDROGEN SLUSH

A program for development and testing of density and flow instrumentation for use in hydrogen liquid and liquid-solid mixtures (slush) is reviewed. Performance criteria are indicated along with experimental and analytical results which provide some basis for choices among the various candidate systems. The density work is nearing completion; the flow studies have not yet provided data beyond the demonstration of feasibility.
(SLUSH, INSTRUMENTATION, TRANSFER, STORAGE, FLOW)

H73 41005* LIQUID-SOLID MIXTURES OF HYDROGEN NEAR THE TRIPLE POINT

Interim results of a program to determine slush hydrogen properties are reported. The program is motivated by the desirability of using hydrogen in this state as a rocket fuel. A simplified production method was devised and data were secured on solid particle size distribution, aging effects, and terminal velocity of the solid particles in the liquid melt. Experimental data were also obtained on atmospheric pressure storage of the slush mixture.
(SLUSH, TRIPLE POINT, PROPERTY)
The experimental determination of the melting characteristics of solid hydrogen has been accomplished. This required the measurement of appropriate thermodynamic parameters, thermophysical properties and fluid flow rates required to characterize the melting of solid hydrogen in terms of an overall heat transfer coefficient, operating conditions and initial solid geometry.

(SOLID, PROPERTY, CONDUCTIVITY)

Current interest in liquid-solid mixtures of parahydrogen ('slush hydrogen') as a potential rocket propellant lead to a theoretical and experimental investigation of one method of determining liquid-solid quality. It was found that measurement of the mass fraction pumped off during the freeze-thaw process provides a simple, nondestructive, and accurate method of quality determination.

(SLUSH, QUALITY, PARAHYDROGEN)

The heat absorption capability of subcooled and slush H and O can extend the use of present space vehicles to future long duration missions.

(SLUSH, SPACECRAFT)

The pumping characteristics of liquid-solid mixtures of
Parahydrogen (slush hydrogen) are of considerable interest, since its use as a rocket propellant could require that it be pumped in ground installations and space vehicles. Extrapolation of relationships for pumping water slurries indicates that the pumping characteristics of liquid and slush hydrogen should be the same when the difference in density is considered.

H73 41010* SLUSH HYDROGEN CHARACTERISTICS

The paper reviews the work accomplished to date by the NBS Cryogenics Division, and others, in the area of slush hydrogen production, handling, and characteristics.

H73 41011 THE THERMODYNAMIC PROPERTIES OF PARAHYDROGEN FROM 1 TO 22K
Mullins, J.C., W.T. Ziegler, and S. Kirk, (Georgia Institute of Technology, Atlanta, Ga.), Report No. TR-1, Nov 1 '61, Avail:TAC

The thermodynamic properties of parahydrogen have been calculated at one degree intervals from 1 to 22K using existing thermal and equation of state data. The properties calculated include the vapor pressure, heats of vaporization and sublimation, enthalpy, and entropy.

H73 41012 THERMAL CONDUCTIVITY OF SOLID AND LIQUID PARAHYDROGEN

Measurements were made at pressures greater than saturation, and found to be essentially constant within experimental error over range of conditions covered; thermal conductivity of solid was 0.0092 plus or minus 0.0010 w/cm K over temperature range 15 to 17 K at pressures between 88 and 200 atmospheres; thermal conductivity of liquid was estimated from experimental measurements.

(Conductivity, Solid, Liquid, Parahydrogen)
METALLIC HYDROGEN: SIMULATING JUPITER IN THE LABORATORY
Metz, W.D., Science, V 180:398-9, Apr 27 '73, Avail:TAC

At pressures and temperatures found on the earth hydrogen is a gas and it becomes solid when cooled to temperatures below 140 K. But under extremely high pressures hydrogen may become a metal, and metallic hydrogen is commonly thought to constitute as much as 40 percent of the mass of the planetary system - particularly in the massive planet Jupiter. Better information would improve the current models of Jupiter and Saturn. More pragmatic visionaries have suggested that metallic hydrogen could be a very useful rocket fuel, because of its expected high density. It is even possible that metallic hydrogen could be a superconductor at room temperature, and several utility companies are said to be closely watching attempts to produce it in the laboratory.

CORRELATION OF THEORY AND EXPERIMENT FOR HIGH-PRESSURE HYDROGEN

The magnitude of the forces with which hydrogen molecules interact are discussed in the light of recent mutually agreeing quantum calculations and high-pressure experiments. The agreement indicates the usefulness of a par-potential description of dense hydrogen and suggests that pressures of at least 1.7 Mbar will be required to make metallic hydrogen. The expected lifetime of the metal at atmospheric pressure is very short.

SOVIET AND US GROUPS SEEK HYDROGEN'S METALLIC PHASE
Lubkin, G.B., Physics Today, V 26:17, Mar 73, Avail:TAC

A group of Russian experimenters has recently reported that they may have produced metallic hydrogen at a pressure of 2.8 megabars, at the transition the density changed from 1.08 to 1.3 g/cm³. Last year a Livermore group reported on an apparently similar experiment in which they observed
a pressure-volume point centered at 2 megabars and 1 cm3/g. Some people have predicted that metallic hydrogen might be metastable, and others that it would be a room-temperature superconductor.

(METAL, DENSITY, SUPERCONDUCTOR)

H73 41016 'PRESSURE ON' TO MAKE METALLIC HYDROGEN
Anon, Industrial Research, Je 70

An unpublicized race to create metallic hydrogen apparently is underway between materials scientists at Cornell University, Ithaca, N.Y., and their Russian counterparts. The availability of metallic hydrogen could revolutionize rocketry and make it possible to devise a perfect room-temperature electrical conductor.

(METAL, CONDUCTOR)

H73 41017 PRODUCTION OF METALLIC HYDROGEN

The report contains a discussion of predicted properties of metallic hydrogen. Ways of attaining the colossal pressures required to keep hydrogen in the metallic state at room temperature are examined.

(METAL, PRESSURE, PROPERTY)

H73 41018* SOLID HYDROGEN AS A SPACE STORABLE PROPELLANT--A PRELIMINARY STUDY

The significant advantages of subcooled liquid, slush, and solid hydrogen, as space storable propellants, are made evident. Maximum storage duration of hydrogen propellant is obtained by using solid hydrogen and the maximum allowable tank vent pressure. Maximum "no-loss" storage duration is also obtained by using solid hydrogen. A comparison of storage durability of subcooled liquid, slush, and solid hydrogen is given.

(SLUSH, SOLID, STORAGE, SPACECRAFT)
H73 42000 HOW TO DESIGN PIPING SYSTEMS FOR HYDROGEN SERVICE

At ambient temperatures H$_2$ does not permeate steel readily except at extremely high pressures. At high temperatures and high pressures, H from dissociated H$_2$ can enter the steel and cause permanent damage either by physical action of H penetration into the crystal lattice and subsurface voids, or by chemical reaction with C and other elements.
(GAS, PIPE, DESIGN, SYSTEM)

H73 42001 HYDROGEN GAS PRESSURE VESSEL PROBLEMS IN THE M-1 FACILITIES

This report delineates pertinent data and information related to a series of failures, or structural defects, experienced with high pressure, gaseous hydrogen storage receivers procured for, installed, and used as part of the M-1 Engine Development Program.
(GAS, PRESSURE, VESSEL, STORAGE, FAILURE)

H73 42002 HYDROGEN DISTRIBUTION TO PROCESS LABORATORIES

The American Oil Company's research staff has developed a system for supplying hydrogen to its process laboratories. The design facilitates safe handling of the increasing amounts of hydrogen demanded by petroleum and petrochemical process work. Pilot plants within the laboratories are supplied through individual distribution subsystems.
(GAS, DISTRIBUTION, PETROCHEMICAL)

H73 42003* TRANSPORTATION AND STORAGE OF HYDROGEN FOR ECO-ENERGY

Primary emphasis is placed on comparison between the cost of pipeline transportation of natural gas and gaseous
hydrogen. These analyses indicated about a 40 percent higher cost for hydrogen under comparable conditions, but no significant operational problems were identified. Analysis of the costs of liquefaction and storage demonstrate that the low-energy density of hydrogen fuels is indeed a problem, but that several alternatives may offer reasonable solutions.

(PIPE, COST, TRANSPORT, STORAGE)

H73 42004* STANDARD FOR GASEOUS HYDROGEN SYSTEMS AT CONSUMER SITES
Anon, (Compressed Gas Association, Inc., New York, N.Y.), Pamphlet G-5.1, 70, Avail:TAC

This Standard covers the general principles recommended for the installation of gaseous hydrogen systems on consumer premises.

(GAS, STANDARD, CONSUMER, SAFETY)
METAL HYDRIDES AS A SOURCE OF HYDROGEN FUEL

The use of hydrogen as a non-polluting fuel is desirable but the difficulties involved in using the cryogenic or compressed form are formidable. However, it appears that certain reversible metal hydrides can be used as a convenient, cheap and safe source of hydrogen fuel. The heat of dissociation can be supplied by the waste heat of the energy converter or, in certain cases, from the surrounding environment. When the hydride is exhausted it may be regenerated by supplying hydrogen at a pressure above its dissociation pressure. Metal hydrides of particular interest are \(\text{VH}_2 \), \(\text{Mg}_2\text{NiH}_4 \) and \(\text{MgH}_2 \). Vanadium dihydride contains approximately 2 wt % available hydrogen and at 25°C has a dissociation pressure ranging from 2 to 5 atmosphere, depending on its purity. Magnesium nickel hydride and magnesium hydride contain 3.6 wt % and more than 7 wt % hydrogen but both require higher decomposition temperatures. For \(\text{Mg}_2\text{NiH}_4 \) the dissociation pressure at 275°C is 1.9 atmosphere and for \(\text{MgH}_2 \) the dissociation pressure at 300°C is 1.8 atmosphere. These systems appear to be ideal for use as a hydrogen source for fuel cell power systems. They could also be used to supply hydrogen to modified internal combustion engines, gas turbines, etc.

(DISSOCIATION, DECOMPOSITION, PRESSURE, TEMPERATURE, ENERGY)

THE HIGHER HYDRIDES OF VANADIUM AND NIOBIUM

Vanadium dihydride and niobium dihydride were prepared by the direct reaction of hydrogen with the metal. Attempts to prepare tantalum dihydride were unsuccessful. Pressure-composition isotherms were determined for the systems \(\text{VH}_{0.9-2} \), \(\text{VH}_2 \), \(\text{Nb}_{0.9-2} \), \(\text{NbH}_2 \). Pertinent thermodynamic data were calculated for each system. The phase diagrams for the vanadium-hydrogen system and the niobium-hydrogen system were extended to a composition corresponding to \(\text{MH}_2 \).

(HYDRIDE, REACTION, METAL, PRESSURE, VANADIUM, NIOBIUM)

333
A new laboratory gas circulation pump for intermediate pressures

A laboratory gas circulation pump has been built in which the pump driving force is obtained by the alternate decomposition and regeneration of vanadium dihydride (VH₂). This cyclic action is accomplished by alternately heating and cooling the hydride system using hot (50°C) and cold (18°C) water. The particular pump described is suitable for the circulation of gases in systems where the pressure range is between 7 and 24 atmospheres.

(GAS, PUMP, DECOMPOSITION, HYDRIDE)

The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg₂NiH₄

In the Mg-Ni system two intermetallic compounds are formed: Mg₂Ni and MgNi₂. MgNi₂ did not react with H₂ at pressures up to 400 psia and temperatures to 350°; however, Mg₂Ni reacted readily with H₂ at 300 psia and 325°. The product of the reaction was a new ternary hydride with the formula Mg₂NiH₄. The reaction was reversible and upon decomposition the original starting material was regenerated. The X-ray diffraction pattern of the product was indexed. Several pressure-composition isotherms were obtained. The dissociation pressure of the hydride was found to obey the relationship \(\log P_{\text{sup}} = (-3360/T) + 6.389 \) from which thermodynamic data were calculated. In the presence of excess Mg the pressure-composition isotherm exhibited two plateaus; the lower plateau is attributed to the formation of MgH₂ as evidenced by X-ray diffraction data and thermodynamic considerations. The presence of Mg₂Ni appeared to have a catalytic effect on the formation of MgH₂.

(PRESSURE, TEMPERATURE, HYDRIDE, DISSOCIATION, THERMODYNAMIC)

The reaction of hydrogen with alloys of magnesium and copper

The intermetallic compound Mg₂Cu reacts with H₂ at approximately 300° to form MgH₂ and MgCu₂. Excess Mg in
the alloy also reacts to form MgH₂. In the latter case a pressure-composition isotherm exhibits two plateaus. The equilibrium dissociation pressure of H₂ was measured as a function of temperature for both systems from which thermodynamic functions for the reactions concerned were calculated. (EQUILIBRIUM, DISSOCIATION, PRESSURE, THERMODYNAMIC, TEMPERATURE)

H73 43005 THE EFFECT OF MINOR CONSTITUENTS ON THE PROPERTIES OF VANADIUM AND NIOBiUM HYDRIDES
Reilly, J.J., and R.H. Wiswall, Jr., (Brookhaven National Lab., Upton, N.Y.), International Meeting on Hydrogen in Metals, Julich, Germany, Mar 72, Report No. BNL-16546

The stability of vanadium dihydride was found to be remarkably sensitive to small amounts of impurities. For example, at 40°C the dissociation pressure of VH₂ made from zone-refined, vanadium is 4.0 atm while VH₂ made from zone-refined, high-purity, vanadium containing 1.66 atomic percent Si is 18.0 atm. Other metal contaminants, normally found in commercial-grade vanadium have similar effects. Results are given which permit the comparison of the potency of various metal additives after correcting for the effect of an arc melting step, which alone has a slight effect on the subsequent dissociation pressure of VH₂. In some cases the effect of varying the concentration of a single additive by tenfold or more was studied. It was also found that, upon substitution of deuterium for hydrogen, the resulting VD₂ was very much more stable than VH₂.

(HYDRIDE, VANADIUM, NIOBiUM, DISSOCIATION, PRESSURE, IMPURITY)

H73 43006 PURE AND SIMPLE: STORING HYDROGEN IN HYDRIDES
Anon, Scientific American, V 227:46, Aug 72

Workers at the Phillips Research Laboratories in the Netherlands may have found another way: they have successfully synthesized intermetallic compounds in which the hydrogen is held in the form of hydrides. The hydrogen can be released and reabsorbed at room temperature and at pressures of a few atmospheres.

(HYDRIDE, INTERMETALLIC)

H73 43007* METAL HYDRIDES FOR ENERGY STORAGE

The use of metal hydrides as hydrogen reservoirs facil-
Itates the storage and subdivision of central-station power for automotive and other purposes. Hydrides with a wide range of properties have been synthesized and studied, and several appear to have promise for specific storage applications. Results are reported on the effect of alloy constituents on hydride stability; on the formation of hydrides by metals reacting with gas mixtures such as those produced by the steam reforming of hydrocarbons; and on the feasibility of integrated systems of hydride reservoir plus engine or fuel cell.

(HYDRIDE, ENERGY, STORAGE, STABILITY)

H73 43008* METAL HYDRIDE ENERGY STORAGE SYSTEMS

It has been found that Mg-Ni and Mg-Cu alloys will react reversibly with hydrogen to form metal hydrides. These metal hydrides provide the basis of a hydrogen storage technique with many advantages over both liquid and compressed gas hydrogen storage. The possibility of applying this storage concept to a variety of energy conversion systems has been studied and several attractive applications have evolved. Of special interest is a fuel cell power system utilizing a metal hydride as its fuel source.

(HYDRIDE, METAL, ENERGY, STORAGE, FUEL)

H73 43009 REVERSIBLE ROOM TEMPERATURE ABSORPTION OF LARGE QUANTITIES OF HYDROGEN BY INTERMETALLIC COMPOUNDS
Vanvucht, J.H., Philips Research Reports-25, p 133-40, 70

Some hexagonal intermetallic compounds of the composition AB5, where A represents a rare-earth metal and B nickel or cobalt, are reported to absorb and desorb easily large quantities of hydrogen gas under relatively small pressures at room temperature. For some selected compounds, viz., LaNi5 and SmCo5, absorption isotherms and X-ray data are given. The compound LaNi5 forms the hydride LaNi5H6.7 at room temperature under 2.5 atmosphere of hydrogen pressure. Its unit cell expands 25 vol.% and seems to retain its hexagonal symmetry. SmCo5 forms the hydride SmCo5H3 at room temperature under 4.5 atmosphere of hydrogen pressure, while its unit cell expands 10 vol.% and becomes orthorhombic. For both hydrides the heat of reaction is found to be about 7 kcal/mol H2.

(HYDRIDE, TEMPERATURE, ABSORPTION, INTERMETALLIC)
IRON TITANIUM HYDRIDE: ITS FORMATION, PROPERTIES, AND APPLICATION
Reilly, J.J., and R.H. Wiswall, Jr., (Brookhaven National Lab., Upton, N.Y.), Division of Fuel Chemistry, American Chemical Society, Chicago, Ill., Aug 73, Avail TAC

The intermetallic compound FeTi reacts with hydrogen to form, in succession, hydrides of the approximate composition FeTiH and FeTiH₂. The composition limits have been determined and are diagrammed. Both hydrides have dissociation pressures of over one atmosphere at 0°C, unlike the very stable TiH₂. The relative partial molar enthalpies of hydrogen have the rather low values of -3.36 Kcal/gm atoms of hydrogen in the lower hydride and -3.70 to -4.03 in the higher; the properties of the latter vary with the hydrogen content. Pronounced hysteresis effects are observed, the absorption isotherms of pressure vs. composition frequently being several atmospheres higher, at a given composition, than the desorption isotherms. The lower hydride, FeTiH, has tetragonal symmetry and a density of 5.88. The hydriding behavior is quite sensitive to the composition of the Fe-Ti phase. If Ti is in slight excess over the equiatomic proportion, the hydrogen sorption isotherm no longer shows the plateaus and inflections characteristic of the appearance of new phases. The properties of iron-titanium hydride make it useful for hydrogen storage. A working hydride reservoir has actually been made and used as the source of fuel for a hydrogen-burning Wankel engine.
(IRON, TITANIUM, HYDRIDE, STORAGE, ENGINE)

METAL HYDRIDES AS A SOURCE OF FUEL FOR VEHICULAR PROPULSION

Studies of the equilibrium relationships and kinetics of the reversible reaction of hydrogen with magnesium-nickel and magnesium-copper alloys indicate that such systems have properties that may form the basis of a convenient and inexpensive method of storing hydrogen. This unique hydrogen storage technique offers the possibility of utilizing this clean and potentially economical fuel for motor vehicle propulsion. A vehicle propelled by a hydrogen-fueled internal-combustion engine would produce an exhaust that is inherently free of the hydrocarbon, carbon monoxide, and...
carbon dioxide pollutants that are major contributors to the atmospheric pollution problem in urban areas. The characteristics of this vehicular propulsion concept have been estimated and indicate that the hydrogen engine is potentially superior in performance to other inherently hydrocarbon-free propulsion concepts such as battery and fuel cell powered electric drives.

(HYDRIDE, METAL, FUEL, ENGINE, STORAGE)

H73 43012 MAGNETS THAT ATTRACT HYDROGEN
Zijlstra, H., Chemical Technology, V 2:280-4 N5, May 72
Properties of rare-earth elements and compounds are useful in a number of roles: as petrochemical catalysts, grain refiners in steel, getters in vacuum tubes, fluorescent powders, etc. Now there are two newer properties that might acquire economic importance in the near future.

We are considering here a family of compounds of lanthanides, R, and 3d-transition metals, T, of composition RT₅. Some of these compounds are ferro-magnetic and show high magnetocrystalline anisotropy. This makes them potentially suitable for the manufacture of permanent magnets. But they also have a remarkable affinity for hydrogen.

(LANTHANIDE, AFFINITY, MAGNET, RARE EARTH)
V. SAFETY
LIQUEFIED HYDROGEN SAFETY

The accident experience and accident potential in the use of liquefied H is examined with respect to cold damage to tissue, asphyxiation, H/air (O) mixtures, material properties, air and moisture condensation and pressure buildup. The control of liquefied H safety problems is reviewed in: facility design which includes site selection, materials of construction, disposal, pressure relief (storage, insulation space, and explt. volumes) and control of spills; safe procedures which include standard operating procedures, safety training and education, emergency procedures, control of ignition sources; and operating principles such as H monitoring, storage above atmospheric pressure, purging (before and after operations), inerting, leak control, chilldown procedures, venting procedures.
(LIQUID, SAFETY, CONTROL, DAMAGE)

LIQUEFIED HYDROGEN SAFETY. REVIEW
Anon, American Society of Safety Engineers Journal, V 14: 18-23 N5, May 69

Accident problems from use of liquefied hydrogen are discussed with respect to tissue damage, asphyxiation, fires and explosions, material properties and pressure buildup; advice on safety controls is provided in facility and equipment design, and safe procedures including those for emergencies and training and operating principles.
(SAFETY, LIQUID, FIRE, ASPHYXIATION)

SAFETY REQUIREMENTS FOR HIGH-TEMPERATURE DESIGN

In tube furnaces used in hydrogen production plant tubing is subjected to extremely high stresses. As it is difficult to obtain creep rupture values for a service life of 10,000 hours, design for a 50,000 hour life is more appropriate in such plant, the design safety factor is a time variable, so that it is recommended to use initial safety factors in a way that after the planned lifetime the safety factors become unity. Up to that moment, creep
ruptures are unlikely to occur. Afterwards, creep rupture occurrences are ascribed to actual stress increases due to interfacial effects.

(SAFETY, FURNACE, TEMPERATURE, DESIGN)

H73 50003 DESIGN OF FAIL-SAFE CONTROL SYSTEMS FOR STEAM REFORMING PLANTS

The major safety considerations inherent in the design and operation of current steam-CH₄ reforming plants for the production of NH₃-synthesis gas are cited as safety of design in reformer tubes, transfer line, compressed air systems, and the secondary reformer.

(STEAM, REFORMING, CONTROL, SAFETY)

H73 50004 THE INTENSITY OF THE NARCOTIC ACTION OF HYDROGEN AT HIGH PRESSURE

The biological narcotic action of hydrogen under pressure was tested in a preliminary experiment on a white mouse in a pressure chamber containing a mixture of 95 percent nitrogen and 5 percent oxygen; a hydrogen feed up to 55 atmospheric pressure of the nitrogen-hydrogen mixture did not produce narcosis.

(PRESSURE, SAFETY, NARCOTIC)

H73 50005 A PRACTICAL SAFETY STANDARD FOR COMMERCIAL HANDLING OF LIQUEFIED HYDROGEN

The title subject is discussed. Safety factors include non-confinement, welded piping, proper ventilation, flame propagation control, and insulation.

(SAFETY, STANDARD, COMMERCIAL, LIQUID, HANDLING)

H73 50006* HANDLING HAZARDOUS MATERIALS
Cloyd, D.R., (Clyde Williams & Co., Columbus, O.), and W.J. Murphy, (Research Institute of Temple University, Philadelphia, Pa.), NASA-SP-5032, Washington, D.C., Sept 65, Avail:TAC

This publication deals with highly reactive materials that have been studied in the search for fuels and oxidizers
for space work: Liquid hydrogen, pentaborane, fluorine, chlorine trifluoride, ozone, nitrogen tetroxide, and hydrazine and its derivatives. It describes both the hazards that have restricted the use of these materials and the procedures by which they have been handled and stored safely. References are given to work done by NASA and other investigators.

(SPACECRAFT, FUEL, LIQUID, HANDLING, SAFETY)

H73 50007 HYDROGEN VENT FLARE STACK PERFORMANCE

This paper describes the tests that were performed to establish practical limits for a hydrogen vent flare stack operating under adverse weather conditions. The basic components of the vent stack are a flare, molecular seal, flame front generator ignition system, pilots, support skirt, associated piping, valves, and gauges; all assembled and mounted on a concrete pad.

(FLARE, VENT, SAFETY)

H73 50008 PILOT CURRICULUM AND INSTRUCTORS GUIDE
EMPHASIZING SAFETY IN COMPRESSED GASES AND CRYOGENIC LIQUIDS

Emphasis in this guide is on the various safety aspects in the handling of industrial compressed gases and cryogenic liquids at the Manned Spacecraft Center, Houston. Specifically, the guide covers: (1) the atmosphere and the role of quality control in compressed gases; (2) handling and related aspects of compressed gases; (3) an introduction to cryogenics and liquid oxygen; (4) related aspects on liquid nitrogen, liquid hydrogen, and liquid helium.

(SAFETY, CRYOGENIC, COMPRESSED, GAS, LIQUID)

H73 50009 SAFETY IN THE USE OF LIQUEFIED GASES AT VERY LOW TEMPERATURES. PARTICULAR CASE OF LIQUID HYDROGEN.

The physiological and physical risks involved in the use of liquefied H and the U.S. safety regulations applicable are reviewed in relation to the properties of H and in com-
parison with those of hydrocarbons. Recommendations are derived for avoidance of condensation of liquid O in liquid H, of formation of flammable concentrations of H in the atmosphere, and for minimizing the effects of any combustion which occurs.

(LIQUID, SAFETY, FIRE)

H73 50010* STORAGE AND HANDLING OF CRYOGENS

Review of the safety requirements and implementation techniques of cryogen storage and transfer operations. The more demanding requirements of the lower boiling temperature and smaller latent heat of vaporization of liquid hydrogen and liquid helium are shown to have led during the last two decades to a more sophisticated technology and to better handling procedures applicable to all cryogens. Safe operation with any cryogen calls for adequate instrumentation and a thorough knowledge of that cryogen and of the system using it.

(SAFETY, STORAGE, TRANSFER, INSTRUMENTATION)

H73 50011* SAFETY IN THE USE OF LIQUID HYDROGEN

Determination of criteria for safe handling of liquid hydrogen. The physical and chemical properties of hydrogen are reviewed briefly, and considerations entering into the choice of the structural materials used in equipment for handling liquid hydrogen are outlined. Several potentially hazardous conditions existing in connection with large-scale liquid-hydrogen systems are discussed. Certain additional hazards arising in laboratory usage of liquid hydrogen are considered.

(SAFETY, LIQUID, LABORATORY)
H73 50012 HYDROGEN PLANT SHUTDOWNS REDUCED
N5, May 72, Avail:TAC
This is a report of the American Petroleum Institute Committee which contains survey of 34 steam-reformer hydrogen plants throughout the world. Results show shutdown causing failurer reduced but persistent problem remain. These problems include - premature stress-rupture failures of HK-40 alloy-steel reformer-furnace tubes caused by localized overheating; failure of pigtails, headers and transfer lines because of excessive creep, design and fabrication factors, or internal insulation failures; and corrosion failures of carbon and alloy steels in the carbon-dioxide removal facilities. (STEAM, REFORMING, DESIGN, CORROSION)

H73 50013* SAFETY PROBLEMS AND SAFETY CODES CONCERNING LIQUID HYDROGEN AND LIQUID HELIUM
Safety problems which occur in the storage and handling of liquid H and liquid He include material selection, contamination, pressure relief, and stress anal. Proper material selection requires optimization of a number of factors, only one of which is the metal ductility at the use temperature. Careful control must be exercised over contaminants since they can accumulate over a period of time which could result in line plugging or the formation of explosive or detonable mixtures. (SAFETY, STORAGE, PRESSURE, TEMPERATURE, CONTAMINANT)

H73 50014* HYDROGEN SAFETY MANUAL
A manual containing safety guidelines and standards for personnel handling and using hydrogen is presented. Prescribed precautions have general applicability as acceptable standards for meeting minimum safety requirements, and are designed to ensure that the life and health of personnel are not jeopardized and that the risk of damage to property is minimized. The nature of hazards of gaseous and liquid hydrogen, hydrogen-air mixtures, and hazards induced by diffusion and leakage of hydrogen are discussed. Design

344
principles for test facilities, equipment, storage facilities, and related hardware are described. Included are discussions of procedures for eliminating ignition sources; protection of personnel and equipment; storage and test locations and blast effects; operating procedures; and emergency procedures. (SAFETY, MANUAL, LEAKAGE, DESIGN)

H73 50015 CONSIDERATIONS WHEN DESIGNING, ASSEMBLING, AND OPERATING A GASEOUS HYDROGEN PRESSURE SYSTEM

Much of the information required to design, assemble, and operate a gaseous hydrogen system safely is scattered throughout the literature in a number of diverse reports and articles. This report draws on many of these technical papers and the authors' experiences to present some of the more common problems and solutions encountered when dealing with gaseous hydrogen. (GAS, SYSTEM, DESIGN, REVIEW)

H73 50016 PROJECT ROVER LIQUID HYDROGEN SAFETY: FIVE YEAR LOOK

Large scale use of liquid H has been associated with Project Rover at Jackass Flats, Nevada, since 1959. Main components of the liquid H system are described. (LIQUID, SYSTEM, SAFETY)

H73 50017 SAFETY OF HYDROGEN PRESSURE GAUGES

To determine the relative safety of various gauge case designs, thirty-five pressure gauges were purchased and intentionally ruptured using high pressure hydrogen gas. Fire was emitted from nearly all gauges; however, gauges with solid fronts and plastic crystals emitted the fire and debris out the rear of the case making them safer for use in a hydrogen system. (SAFETY, PRESSURE, RUPTURE, FIRE)
H73 51000 EFFECT OF WATER VAPOR ON H₂-O₂ DETONATIONS

The note describes the effects of water vapor addition on the reaction length in detonations of two mixtures of H₂-O₂ and on the quenching conditions of such detonations. It was found that water addition to H₂-O₂ mixtures shortens their reaction lengths, and its effects on the quenching limit can be accounted for by Belles' explosion limit criterion.

(DETONATION, QUENCHING, REACTION)

H73 51001 UPPER LIMIT OF FLAMMABILITY OF HYDROGEN IN AIR, OXYGEN, AND OXYGEN-INERT MIXTURES AT ELEVATED PRESSURES
Holmstedt, G.S., (Lund Institute of Technology, Sweden), Combustion & Flame, V 17:295-301 N3, Dec 71

The upper limit of flammability of hydrogen in air, oxygen, oxygen-helium, oxygen-neon, oxygen-argon, and oxygen-carbon dioxide mixtures was measured at room temperature and pressures between 0.97 and 29 atmospheres. The maximum safe percentage of oxygen in a hydrogen-oxygen-helium mixture was calculated for pressures between 0.97 and 29 atmospheres.

(FLAMMABILITY, LIMIT, AIR, OXYGEN, PRESSURE)

H73 51002 STORAGE AND HANDLING OF HYDROGEN WITH SAFETY
Stoll, A.P., Chemical Engineering, N185:CE11-16, Ja-Fe 65

Safety precautions during handling of hydrogen, liquid or gaseous, indicate that formation of explosive mixtures of hydrogen with air both inside and outside equipment should be prevented; storage and handling of liquid hydrogen at -253 °C and its handling in laboratory.

(SAFETY, STORAGE, HANDLING, LIQUID, GAS, EXPLOSION)

H73 51003 THE DANGER OF EXPLOSION OF MIXTURES OF FLAMMABLE VAPORS AND GASES WITH AIR. XI. THEORY OF EXPLOSIVE COMBUSTION AND METHODS OF COMPUTATION OF TECHNICAL EXPLOSIVITY PARAMETERS

A simple equation for calculating the theoretical and real lower explosion limits regarding the diffusion coefficient of the flammable component is derived. The real limit concentrations of upward propagation of flame for
CH₄, H₂, C₂H₂, and CS₂, are in satisfactory agreement with those obtained exptl.
(EXPLOSION, LIMIT, CALCULATION, DIFFUSION)

H73 51004 THE DEPENDENCE OF THE LOWER LIMIT OF HYDROGEN EXPLOSIVITY ON THE INITIAL TEMPERATURE OF THE HYDROGEN MIXTURE WITH AIR
The lower limit of H explosivity was determined at the downward propagation of the flame at various initial temperatures. The higher the initial temperature of the mixture, the lower the flame temperature.
(EXPLOSION, LIMIT, TEMPERATURE)

H73 51005 HYDROGEN FLARE STACK DIFFUSION FLAMES: LOW AND HIGH FLOW INSTABILITIES, BURNING RATES, DILUTION LIMITS, TEMPERATURES, AND WIND EFFECTS
A laboratory-scale hydrogen safety study was conducted which determined several combustion characteristics of hydrogen diffusion flames. Experiments show that ambient air may enter the top of a hydrogen flare stack when the hydrogen flow is low. A new concept, supported by photographic evidence, predicts that diffusion flames burning in air on a wide, upright pipe (stack) and fed with slow, upward flows of buoyant gas will induce a downward flow of air along the walls of the pipe that can support combustion within the pipe.
(FLARE, FLOW, INSTABILITY, SAFETY)

H73 51006 THE OXIDATION OF HYDROGEN
Study of the reactions of mixtures of hydrogen and oxygen under various conditions. These mixtures react explosively at temperatures above 500 to 600 C. Investigators have found that a slow reaction occurs below these temperatures, and that explosion levels are dependent on several parameters.
such as temperature, pressure, composition, and additives. The low pressure reaction is discussed, and the great importance of the walls is shown.

(Explosion, temperature, pressure, reaction)

H73 51007 HAZARDS DUE TO HYDROGEN ABOARD A SPACE VEHICLE
Caras, G.J., (Redstone Arsenal, Ala.), Report No. 291, Sept 64, Avail:TAC
This bibliography consists of twenty-three annotated references on the subject of hazards to space vehicles as a result of hydrogen leaks.
(Spacecraft, hazard, leak, detection)

H73 51008 FLASH AND FIRE TEST: EVALUATION OF THE BEHAVIOR OF NONMETALLIC MATERIALS IN HYDROGEN
Anon, (MSC White Sands Test Facility, N.M.), N72-30496, NASA-TM-X-68739, Mar 30 '72, Avail:TAC
Tests conducted to evaluate the behavior of nonmetallic materials in hydrogen are described. The results of the flash and fire test are presented. The flash and fire test is used to evaluate the tendency of heated materials to ignite in a hydrogen atmosphere when subjected to an ignition source.
(Flash, fire, ignition, nonmetallic)

H73 51009* HYDROGEN LEAK AND FIRE DETECTION: A SURVEY
The effort described in this report was performed during the period March 1, 1963 to August 31, 1968. This report on the detection of hydrogen fires and leaks contains a critical review of the applicable literature, a discussion of the experiences and needs of typical producers and users of hydrogen, an evaluation of the present state-of-the-art of detecting hydrogen fires and leaks, and recommendations for further development of equipment and basic research.
(Safety, leak, fire, detection, review)

H73 51010 PREVENTION, DETECTION, AND SUPPRESSION OF HYDROGEN EXPLOSIONS IN AEROSPACE VEHICLES
This report reviews and summarizes the hazards to aero-
space vehicles caused by hydrogen. Topics such as flammability limits of hydrogen in hydrogen-oxygen and hydrogen-air mixtures, methods of detecting hazardous conditions, and means of inhibiting fires and explosions are discussed.

(EXPLOSION, SPACECRAFT, DETECTION, SUPPRESSION)

H73 51011 HYDROGEN HANDLING SUIT PROTECTS NASA TECHNICIANS
Anon, Safety Maintenance, V 136:23-4 N4, Oct 68
Hydrogen handlers suit described is made of glass, wool, and with special lining designed to protect wearer against extremely high temperatures for approximately two and one-half minutes; suit features built-in airconditioning unit utilizing liquid air and providing positive pressure inside suit to prevent gaseous hydrogen from entering suit.

(SAFETY, FIRE, PROTECTION)

H73 51012 H₂-O₂- NOₓ FLAMMABILITY AND EXPLOSIBILITY: A LITERATURE SURVEY
Johnson, J.E., Jr., (Allied Chemical Corp., Idaho Falls, Idaho), Report No. ICP-1002, Oct 71
Results of a literature survey are presented concerning hydrogen flammability and explosibility. Combustion and explosion limits are given and effects of nitrogen oxides and other substances on these limits are discussed. Reaction mechanisms are included to help explain these effects. It was concluded that although nitrogen oxides do sensitize near-stoichiometric H₂-O₂ mixtures toward thermal ignition, they do not increase the flammability of hydrogen near its composition limits for combustion.

(FLAMMABILITY, EXPLOSION, SURVEY, IGNITION, REACTION)

H73 51013 HIGH-ALTITUDE EXPLOSION PROPERTIES OF THE HYDROGEN-OXYGEN SYSTEM IN VENTED TANKS
The explosion or detonation hazard arising in the interstage of a Saturn rocket from the presence of liquid and (or) solid H or O was evaluated. Fires generally result when the vent is large, although a few explosions also occur; however, fires and explosions always occurred when the vent was small.

(EXPLOSION, TANK, VENT)

349
Current practices for assessing personnel safety hazards at open-air and enclosed liquid hydrogen test facilities are reviewed. A maximum credible accident for an open-air test facility is specified, and available H-air explosion data are reviewed with due consideration to these specifications. A method of assessing fireball and overpressure hazards at open-air test facilities is deduced; also, references for the evaluation of shrapnel hazard are given. Overpressures in enclosed test facilities are discussed and recommendations given for the minimization of blast hazards; potential blast hazards, in this case, are well defined. Additional experimental work is needed to provide better blast criteria for open and enclosed liquid hydrogen test facilities. Directions for future work are indicated.

(SAFETY, EXPLOSION, LIQUID, CRITERIA)
THE INTERGRANULAR EMBRITTLEMENT OF NICKEL BY HYDROGEN

The mechanical behavior of polycrystalline nickel specimens that were deformed in tension and cathodically charged with hydrogen simultaneously was investigated with particular emphasis on the fracture of such electrodes. This procedure leads to very definite if, however, weak serrated yielding and also markedly reduces the elongation at fracture compared to polycrystals unexposed to hydrogen.

(EMBRITTLEMENT, INTERGRANULAR, NICKEL, BEHAVIOR, MECHANICAL)

THE EFFECT OF COMPOSITION AND TENSILE STRENGTH ON THE SUSCEPTIBILITY OF ALLOY STEELS TO CADMIUM PLATING (HYDROGEN) EMBRITTLEMENT

Sustained load, fracture toughness and bend tests were made to determine the susceptibility to cadmium plating (hydrogen) embrittlement of a range of 3% chromium-molybdenum-vanadium steels of different carbon contents, impurity contents, and tensile strengths. Sustained load life and critical crack size fell sharply with increase of tensile strength from 110 to 120 tonf/sq in.

(STEEL, EMBRITTLEMENT, STRENGTH)

HYDROGEN ENVIRONMENT EMBRITTLEMENT OF METALS

Hydrogen environment embrittlement refers to metals stressed while exposed to a hydrogen atmosphere. Tested in air, even after exposure to hydrogen under pressure, this effect is not observed on similar specimens. Much high purity hydrogen is prepared by evaporation of liquid hydrogen, and thus has low levels for potential impurities which could otherwise inhibit or poison the absorbent reactions that are involved. High strength steels and nickel-base alloys are rated as showing extreme embrittlement; aluminum alloys and the austenitic stainless steels, as well as copper, have negligible susceptibility to this phenomenon. The cracking
The anomalous behavior in ductility exhibited by tantalum, at low temperature, with hydrogen as an impurity was investigated utilizing a Petch-type analysis. The change in lattice friction stress and dislocation locking stress parameters were determined through a temperature range from room temperature to -196 C. The results of the investigation show the locking stress remained essentially unchanged by small hydrogen additions while the lattice friction stress increased significantly at temperatures below -78 C.

A correlation is established between the changes in the strength and ductility of steel, resulting from the hydrogen content and from the type of interaction between iron and hydrogen. It is shown that the influence of hydrogen on the strength properties is most pronounced within the temperature range that is characteristic of chemisorption of hydrogen by iron. An analysis of experimental data shows that hydrogen embrittlement is caused by mechanicochemical processes occurring at tips of developing cracks.

The solubility and permeation of hydrogen in metals is analyzed on the basis of classical thermodynamics plus a minimum of kinetic theory. Expressions are derived from x, the number of H atoms absorbed per solid atom, and J, the permeation rate, in the limiting cases of continuum and free-molecule flow. The analysis provides a simple explanation of
existing experimental data on the solubility and permeation of hydrogen in tungsten and in molybdenum at high temperature and low pressure.

(METAL, PERMEATION, SOLUBILITY, THERMODYNAMICS)

H73 52006 INTERNAL FRICTION MEASUREMENTS FOR THE ANALYSIS OF HYDROGEN IN STEEL PARTS

Damping versus temperature curves were determined, by means of a torsion pendulum internal friction apparatus, for hydrogen charged cold drawn 4340 steel wire. A relaxation peak, identified as the Hydrogen Cold-Work Peak, was found in the curves between -90 C and -70C. A plot of this relaxation peak height versus charging time shows a linear relationship over only a limited range. The low hydrogen concentration levels that can cause hydrogen embrittlement were found to be below the limits of accurate detection by internal friction methods.

(STEEL, FRICTION, INTERNAL, DAMPING, TEMPERATURE)

H73 52007 INFLUENCE OF SURFACE TREATMENTS AND COATINGS ON THE EMBRITTLEMENT OF HIGH-STRENGTH STEELS BY HYDROGEN UNDER PRESSURE: CASE OF 35 NiCrMo 16 STEEL

A rough surface accentuates gaseous hydrogen embrittlement. An improvement of the microgeometrical profile or a superficial compression by blasting improves the life of steel, on the other hand. Electroplated zinc causes an irreversible embrittlement of the investigated steels. The hydrogen-susceptibility of nickel makes its presence undesirable either as a primary deposit or as a bonding coat. Chromizing of a steel which is to be deformed under hydrogen is not desirable if it cannot favor an austenitic barrier coating there.

(EMBRITTLEMENT, STEEL, HIGH STRENGTH, COATING, SURFACE)

H73 52008 HYDROGEN STRESS CRACKING OF HIGH STRENGTH STEELS

The report deals with hydrogen induced embrittlement.
and stress cracking of high strength steel parts. Selected mechanical methods involving the different types of test specimens for the measurement of hydrogen embrittlement or delayed failure, and relevant methods for the quantitative determination of hydrogen extracted from embrittleness susceptible specimens are presented. Different techniques for restoring ductility or preventing delayed failure are also included. A new thermodynamic approach to the interpretation of the hydrogen embrittlement phenomenon is offered and a number of variables which control the generation or minimization of hydrogen embrittlement is analyzed and discussed in the light of electrochemical kinetics.

(STEEL, STRENGTH, CRACK, STRESS, EMBRITTLEMENT)

H73 52009 HYDROGEN PERMEATION AND EMBRITTLEMENT IN FERROUS MATERIALS

The sensitive electrochemical permeation technique was used in conjunction with scanning electron microscopy and tensile loading to determine (i) hydrogen diffusivity and solubility, (ii) effect of plastic deformation on the above parameters, and (iii) structural features and kinetics of hydrogen embrittlement, in Armco iron and 4340-steel.

(PERMEATION, EMBRITTLEMENT, METAL, SOLUBILITY)

H73 52010 HYDROGEN-INDUCED PHASE TRANSFORMATIONS IN TYPE 304L STAINLESS STEELS

Electrolytic charging of hydrogen into Type 304L stainless steel at room temperature and 100C induced partial transformation of the austenite to the same martensitic phases (alpha (bcc) and epsilon (hcp) as are formed by cold-working hydrogen-free austenite at low temperatures (-196C).

(STAINLESS STEEL, DISLOCATION, PHASE, TRANSFORMATION)

H73 52011 HYDROGEN BRITTLENESS IN NONFERROUS METALS

The book is devoted to problems concerning the interaction of hydrogen with metals, and the harmful effects this
has on the properties of the metal. Considerable attention is given to processes that take place during the hydrogen-metal interaction, the state of hydrogen in liquid and solid solution, and the interaction of hydrogen with dislocations and other structural imperfections of metals. The effect of hydrogen on the structure and properties of the following metals are discussed: Be, Mg, Al, U, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Pt, Cu, Ag, Au. Special attention is devoted to the hydrogen brittleness of Ti alloys.

(EMBRITTLEMENT, METAL, NONFERROUS, STRUCTURE)

H73 52012 HYDROGEN BEHAVIOR IN METALS USING NUCLEAR MAGNETIC RESONANCE
Zamir, D., and C. Korn, (Israel Atomic Energy Commission), AD-729-690, Nov 70, Avail: TAC

Parameters considered important for the explanation of hydrogen embrittlement of titanium and its alloys have been measured using NMR techniques. The diffusional activation energy was found to be constant with respect to the hydrogen concentration. Hydrogen in titanium aluminum alloys was found to exist in two different crystallographic environments, one diffusing faster than the other. X-ray measurements on hydrogen free Ti3Al and Ti3Al containing hydrogen giving an H/Ti ration of 1.3, showed extreme distortion to the lattice upon hydrogen absorption.

(EMBRITTLEMENT, TITANIUM, ALLOY, DIFFUSION)

H73 52013 EVALUATION OF HYDROGEN EMBRITTLEMENT MECHANISMS
Barth, C.F., and E.A. Steigerwald, (TRW Equipment Labs, Cleveland, O.), Report No. ER-7477, Jl 1 '70, Avail: TAC

The incubation time which precedes the initiation of slow crack growth in the delayed failure of high-strength steel containing hydrogen was reversible with respect to the applied stress. The kinetics of the reversibility process indicated that it was controlled by the diffusion of hydrogen. Reversible hydrogen embrittlement studies were also conducted at liquid nitrogen temperatures where diffusional processes should not occur. The previously reported low temperature embrittlement behavior was confirmed indicating a basic interaction between hydrogen and the lattice. The experimental results could be satisfactorily explained by the lattice embbrittlement theory proposed by Troiano.

(EMBRITTLEMENT, MECHANISM, STEELS, STRENGTH, DIFFUSION)
EMBRITTLEMENT. VOLUME 1

The annotated bibliography is a compilation of unclassified and unlimited reports on embrittlement. Corporate author-monitoring agency, subject, and contract number indexes are provided.

EMBRITTLEMENT, BIBLIOGRAPHY, INDEX

A NEW APPROACH TO BEND TESTING FOR THE DETERMINATION OF HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF SHEET MATERIALS
Jones, R.L., (General Dynamics/Astronautics, San Diego, Calif.), Report No. GDA-MRG-235, Je 15 '61, Avail:TAC

A series of experimental programs were carried out to determine the suitability and sensitivity of a new test technique for the determination of hydrogen embrittlement susceptibility of materials.

EMBRITTLEMENT, SHEET, BENDING

A COMPARISON OF HYDROGEN EMBRITTLEMENT AND STRESS CORROSION CRACKING IN HIGH STRENGTH STEELS

The purpose of the study was to compare the known behavior of hydrogen embrittled high-strength steel to the characteristics of environmentally-induced stress corrosion failure where hydrogen is continuously generated at the specimen surface.

EMBRITTLEMENT, CRACK, STEEL, STRENGTH, STRESS, CORROSION

A COMPARISON OF VARIOUS TEST METHODS FOR DETECTING HYDROGEN EMBRITTLEMENT

Four hydrogen embrittlement test methods were evaluated using three paint strippers as the embrittling media. Results were compared with those obtained with notched C-rings, the method now prescribed in paint stripper specifications. In general, all the methods give good results and good correlation.

EMBRITTLEMENT, DETECTION, TEST
THE REACTION OF A TITANIUM ALLOY WITH HYDROGEN GAS AT LOW TEMPERATURES

An investigation of the effect of temperature on the surface hydriding reaction of Ti-5Al-2.5Sn alloy exposed to hydrogen at 250 psig was made. Reaction conditions were controlled so as to expose a vacuum-cleaned, oxide-free alloy surface to an ultra-pure hydrogen atmosphere. Reaction times up to 1458 hr were studied. The hydriding reaction was extremely sensitive to experimental variables and the reproducibility of reaction was poor.

TESTS FOR HYDROGEN EMBRITTLEMENT OF STEELS USED IN THE TANK FARM CYLINDERS

Specimens of alloy steels used in H2 storage tanks were exposed to gaseous H2 under pressure for 24 hrs. In separate tests, specimens were exposed to cathodic H2 for 30 minutes at a c.d. of 1 amp./in. Immediately following exposure, samples were deformed through successive 180° bends until broken. None of the steels was measurably affected by exposure to H2 gas under the test conditions, but all steels were embrittled by cathodically liberated H2. Cathodic embrittlement increased with time and stress of the samples.

TESTING FOR HYDROGEN EMBRITTLEMENT: PRIMARY AND SECONDARY INFLUENCES

An overview is presented of the hydrogen embrittlement process, both internal as well as external, to make more clear the type of parameters which must be considered in the selection of a test method and test procedure, so that the resulting data may be meaningfully applied to real engineering structures. Three primary influences on the embrittlement process are considered: (1) the original location and form of

357
the hydrogen, (2) the transport reactions involved in the transport of hydrogen from its origin to some point where it can interact with the metal to cause embrittlement, and (3) the embrittlement interaction itself.

(EMBRITTLEMENT, TEST, PROCEDURE)

H73 52021 HYDROGEN MOVEMENT IN STEEL-ENTRY, DIFFUSION, AND ELIMINATION
Fletcher, E.E., and A.R. Elsea, (Battelle Memorial Inst., Columbus, O.), Report No DMIC-219, Je 30 '65, Avail: TAC

The report discusses the ways in which H₂ enters steels, how it moves through steel, and methods whereby it may be removed from steel. The solubility of H₂ is important in understanding other aspects of the behavior of H₂ in steel and such aspects of solubility as preferred lattice sites, lattice expansion, measurements of solubility, and estimates of equilibrium H₂ pressure in steel are discussed. The permeation of H₂ through steel consisting of interactions at both the entry and exit surfaces of the metal as well as diffusion through the bulk metal is discussed. The various possibilities of H₂ entry by corrosion processes, electrochemical processes, and other means are considered as well as factors which influence the rate of H₂ removal from iron and steel.
(STEEL, DIFFUSION, SOLUBILITY, PERMEATION)

H73 52022 AN X-RAY STUDY OF HYDROGEN INDUCED PHENOMENA AFFECTING MECHANICAL BEHAVIORS OF AUSTENITIC STAINLESS STEELS
Kamachi, K., and S. Miyata, (Yamaguchi University, Japan), Mechanical Behavior of Materials, V 3, Aug 15-20 '71, (In Japanese)

Hydrogen induced phenomena on austenitic stainless steels were studied by the X-ray diffraction method. By hydrogenation of various sorts of austenitic stainless steels, structural changes, i.e., phase transformation of austenite into alpha phase and epsilon phase, development of lattice defects such as dislocations and stacking faults, and surface defects, occurred.

The results by the examinations of X-ray were verified by direct observation by transmission electron microscopy.
(STEEL, STAINLESS, AUSTENITE)
HYDROGEN EMBRITTLEMENT STUDIES OF A TRIP STEEL

The conditions of cathodic charging, gaseous hydrogen environment, and loading for which a TRIP steel may or may not be susceptible to hydrogen embrittlement were investigated. In the austenitic state, the TRIP steel appeared to be relatively immune to hydrogen embrittlement. It was shown that it is the strain-induced martensitic phase, alpha prime, which is embrittled.

(Steel, Embrittlement, Susceptibility)

EMBRITTLEMENT OF TRIP STEEL IN HIGH-PRESSURE HYDROGEN GAS
Vandervoort, R.R., A.W. Ruotola, and E.L. Raymond, (California University, Livermore, Calif.), Metallurgical Transactions, V 4:1175-1178, Apr 73, Avail:TAC

Experimental study of the effects of high-pressure hydrogen gas on the mechanical properties of TRIP steel. The results obtained include the findings that TRIP steel is very notch-sensitive and highly susceptible to embrittlement in a high-pressure hydrogen environment, and that its losses in strength and ductility are caused by the interaction between hydrogen and stress-assisted martensite during deformation.

(Embrittlement, Pressure, Steel, Mechanical)

EFFECTS OF HIGH PRESSURE HYDROGEN ON METALS AT AMBIENT TEMPERATURE

Thirty five alloys were investigated for their susceptibility to high pressure hydrogen environment embrittlement at ambient temperature; subsequently they were ranked according to their reduction of notch strength in 10,000 psi hydrogen. The ranking in order of decreasing embrittlement was as follows: (1) high strength steels and nickel-base alloys; (2) moderate and low strength iron-base alloys, pure nickel, and titanium alloys; (3) nonstable AlSi type 300 stainless steels, beryllium-copper, and commercially pure titanium; and (4) aluminum alloys, pure copper, and the stable AlSi type 300 stainless steels. The degree of hydrogen environment em-
brittlement was found to increase with increasing hydrogen pressure and to be a complex function of notch severity. (EMBRITTLEMENT, PRESSURE, GAS, METAL, ALLOY)

H73 52026* GAS-PHASE HYDROGEN PERMEATION THROUGH ALPHA IRON, 4130 STEEL, AND 304 STAINLESS STEEL FROM LESS THAN 100 C TO NEAR 600 C
Gas phase hydrogen permeation studies were conducted on hollow, cylindrical membranes of triply zone-refined alpha iron, AISI 304 austenitic stainless steel, and AISI-SAE 4130 steel in both the normalized (ferrite and carbide) and quenched and tempered (martensite) conditions. For all membrane materials, expressions for the coefficients for hydrogen permeation were determined by analysis of steady state transport; the coefficients for diffusion were determined by the lag time technique applied to nonsteady state transport; and through a knowledge of the Sievert's constants, the subsurface equilibrium lattice hydrogen concentrations were determined. (PERMEATION, IRON, STEEL, MEMBRANE, DIFFUSION)

H73 52027 HYDROGEN EMBRITTLEMENT IN IRRADIATED STEELS
H₂-charging conditions that completely embrittle type 4340 high-strength steel have a negligible effect on 212-B pressure-vessel steel in tensile and delayed-failure tests. Much higher H₂ charges reduce the notch-tensile strength slightly. Delayed failure is observed only at stresses above 90% of the notch-tensile strength of the hydrogenated 212-B. (EMBRITTLEMENT, STEEL, STRENGTH, TENSILE)

H73 52028 FORMATION AND DEVELOPMENT OF CRACKS DURING THE FRACTURE OF HYDROGEN-ADSORBED IRON
Technical iron in the annealed state was studied. The 10-fold fractured samples were hydrogenated electrolytically to a content of 3 ml/100 g. Fracture surfaces of samples tested at temperatures of maximum development of reverse H

360
embrittlement (-60° to -80°) have a very uneven surface with deep depressions and high hillocks. The present study of the structure and the arrangement of cracks in hydrogenated iron makes it possible to assume that under temperature-rate conditions for the development of reversible H brittleness the formation of the main crack is brought about by way of the emergence of a large number of crack nuclei, their development, and the subsequent impoverishment of the connectors between them. (IRON, CRACK, FRACTURE)

H73 52029 EFFECT OF PRESSURIZED HYDROGEN UPON INCONEL 718 AND 2219 ALUMINUM
Inconel 718 and 2219-T6E46 aluminum were tested in the environment of pressurized high purity hydrogen gas using surface flawed fracture toughness specimens and preflawed Inconel 718 pressure vessels. Presence of pressurized hydrogen gas severely affected flaw growth characteristics of Inconel 718, but had no detectable effect upon 2219-T6E46 aluminum. (INCONEL 718, ALUMINUM 2219, EMBRITTLEMENT, HIGH PRESSURE, GAS)

H73 52030* HYDROGEN ENVIRONMENT EMBRITTLEMENT
Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. (EMBRITTLEMENT, ENVIRONMENT, REACTION, REVERSIBLE)
H73 52031 EFFECT OF HYDROGEN ON TENSILE PROPERTIES
OF PALLADIUM-HYDROGEN SYSTEM
Smith, R.J., and D.A. Otterson, (NASA, Lewis Research Center,
Cleveland, O.), N71-19011, NASA-TN-D-6211, Mar 71, Avail:TAC

Tensile properties of both annealed and as-received
palladium wire were measured as functions of hydrogen content.
The yield stress, ultimate tensile stress, and elongation
at maximum stress were determined and showed abrupt changes
with respect to hydrogen content near the boundaries of
the phase diagram. The dependence of the tensile properties
on hydrogen content within a single phase region was interpreted
in terms of electronic structure and work hardening.
(PALLADIUM, PROPERTY, TENSILE)

H73 52032 DIFFUSION OF GASES THROUGH METALS
Lombard, V., N70-19137, Rev. Met. (Paris), V 26:343-50 N7,
J1 29, NASA-TT-F-12806, (In French), Avail:TAC

The diffusion of hydrogen through metals, under various
temperatures and pressures, chiefly with nickel, was investiga-
ted. Other elements involved to some extent are iron,
platinum, nitrogen, argon and helium. It was found that
when hydrogen is mixed with other gases there is no difference
in the rate of diffusion. The tests concerning nitrogen,
argon and helium do not provide any definitive results
because of poor apparatus. It was found in addition that
metal sheets placed close to one another have an additive
value as far as hydrogen diffusion is concerned, i.e.,
hydrogen diffuses through 2 mm of nickel just as rapidly
whether the nickel is a solid piece or two pieces in close
conjunction.
(DIFFUSION, METAL, RATE, TEMPERATURE, PRESSURE)

H73 52033 COMPATIBILITY OF METALS WITH HYDROGEN
Cataldo, C.E., (NASA, Marshall Space Flight Center, Hunts-
ville, Ala.), N69-19002, NASA-TM-X-53807, Dec 26 '68,
Avail:TAC

This report summarizes three different but related
categories of hydrogen embrittlement problems encountered
in various components of Saturn launch vehicle hardware.
The status of research programs, established to investigate
these failure mechanisms and solutions to prevent failures,
is presented. Corrective actions taken to minimize failures
from high pressure hydrogen effects, the formation of hydrides
in titanium, and hydrogen absorption through various metals
processing techniques are described.

A STUDY OF HYDROGEN EMBRITTLEMENT OF VARIOUS ALLOYS
Groeneveld, T.P., E.E. Fletcher, and A.R. Elsea, (Battelle Memorial Institute, Columbus, O.), N69-28526, NASA-CR-98448, Ja 23 '69, Avail:TAC

The susceptibilities of 14 selected high-strength alloys to hydrogen-stress cracking were evaluated. The susceptible alloys were used to evaluate the hydrogen-embrittling tendencies of selected cleaning, inhibited acid pickling, and electroplating processes, and to evaluate the effectiveness of selected baking treatments for relieving hydrogen embrittlement.

ABSORPTION OF CATHODIC HYDROGEN BY IRON AND STEEL
Radhakrishnan, T.P., (Bhabha Atomic Research Centre, Bombay, India), Report No. BARC-585, 72, Avail:TAC

Delayed failure and embrittlement due to hydrogen absorption pose intricate problems and limit the application of many high-strength steels in industry and technology. Hydrogen pickup occurs concomitantly during various chemical and electrochemical metal finishing processes and also during galvanic corrosion of the plated steel components. The behavior of cathodic hydrogen in iron and steel and, in particular, the various factors which influence absorption were examined. The mechanism of entry and release of hydrogen was considered on the basis of electrochemical kinetics with due emphasis on the location and state of hydrogen in steel.

THE LOW-TEMPERATURE EMBRITTLEMENT OF NIOBium AND VANADIum BY BOTH DISSOLED AND PRECIPITATED HYDROGEN
Hardie, D., and P. McIntyre, Metallurgical Transactions, V 4, May 73

Like other exothermic occluders of hydrogen, niobium (columbium) and vanadium may be embrittled by the presence of a precipitated hydride. However, alloys containing hydrogen
concentrations well below the solubility limits at room temperature show very interesting features when tested in tension at subambient temperatures. Niobium containing 25 ppm H, from which little hydride precipitates above 77K, shows a ductility minimum on cooling which is strain-rate-dependent and may be attributed to diffusion of hydrogen to microcrack nucleation sites. When the hydrogen content is increased a further reduction in ductility occurs at lower temperatures due to the martensitic precipitation of niobium hydride. The behavior displayed by V-H alloys is broadly similar, except that here the influence of hydrogen diffusion overshadows the embrittling effect of the hydride precipitation is less easily distinguished from that involving hydrogen in solution in vanadium than in niobium.

(EMBRITTLEMENT, TEMPERATURE, NIOBIUM, VANADIUM)

H73 52037 EFFECT OF HIGH DISLOCATION DENSITY ON STRESS CORROSION CRACKING AND HYDROGEN EMBRITTLEMENT OF TYPE 304L STAINLESS STEEL

A thermomechanical treatment of Type 304L stainless steel, which retards both the martensitic transformation and coplanar dislocation motion, appears to increase the resistance to SCC and hydrogen embrittlement. However, the importance of the transformation to martensite in reduction resistance needs to be further resolved, because Tenelon and Armco 21Cr-6Ni-9Mn stainless steels, which exhibit coplanar dislocation motion but do not transform to martensite, are susceptible to both stress corrosion and hydrogen embrittlement.

(STEEL, STAINLESS, EMBRITTLEMENT, DISLOCATION, MARTENSITE)

H73 52038 ENHANCED FLAW GROWTH IN SSE MAIN ENGINE ALLOYS IN HIGH PRESSURE GASEOUS HYDROGEN

The effects of high pressure gaseous hydrogen upon candidate alloys for the Space Shuttle Main Engine components
were evaluated for static load conditions using surface flawed flat plate PTC specimens. Tests were performed in high purity, gaseous hydrogen at a pressure of 7500 psig and temperatures in the range of -320°F to +1000°F.

(GAS, PRESSURE, ENGINE, EMBRITTLEMENT)

H73 52039 HYDROGEN EMBRITTLEMENT OF METALS
Rogers, H.C., Science, V 159:1057-64, N3819, Mar 8 '68
Hydrogen interacts with many metals to reduce their ductility and frequently their strength also. It enters metals in the atomic form, diffusing very rapidly even at normal temperatures. During melting and fabrication, as well as during use, there are various ways in which metals come in contact with hydrogen and absorb it. The absorbed hydrogen may react irreversibly with oxides or carbides in some metals to produce a permanently degraded structure.

(EMBRITTLEMENT, METAL, MECHANISM)

H73 52040 A METHOD FOR DETERMINATION OF THE PERMEATION RATE OF HYDROGEN THROUGH METAL MEMBRANES
A sensitive electrochemical method for the precise measurement of diffusion coefficients and permeation rates of hydrogen through metal membranes is described. A mathematical analysis of the pertinent diffusion equations is given. Suggestions are made regarding uses of the method.

(PERMEATION, RATE, MEMBRANE, METAL, DIFFUSION)

H73 52041 HYDROGEN EMBRITTLEMENT AND HYDROGEN TRAPS
The permeation of H through iron and an iron-nickel alloy as a function of time is reported. Below a certain critical H overpotential, the H permeation occurs as a function of time in a simple way; and can be repeated indefinitely on the same specimen.

(EMBRITTLEMENT, IRON, PERMEATION)
The transient current of hydrogen removal from iron following steady-state permeation is analyzed theoretically for two limiting conditions at the input side.

IRON, EXTRACTION, MODEL, MATHEMATICAL

Iron dissolution during cathodic charging of iron and its alloys is generally negligible, in agreement with thermodynamic conditions at the surface. This is not true, however, of iron alloys for which hydrogen discharge is easy, and also may not in general be true within cracks or cavities. Crack propagation occurs for specimens loaded in tension which (i) is independent of the level of hydrogen charging and (ii) has anodic dissolution of iron associated with it. Internal (hydrogen-produced) cracking does not occur. The role of ohmic drops in promoting anodic dissolution at the base of the cracks during hydrogen charging is discussed.

IRON, CRACKING, DISSOLUTION

Cold rolled and stress relieved 0.5% carbon steel specimens electroplated with Ni, 0.50-2.5μ thick and bent to the test span after plating are especially resistant to hydrogen cracking when polarized cathodically in dilute sulfuric acid saturated with As2O3. Arsenic or an As compound deposits cathodically on the Ni coating which supplements protection by Ni alone. The mechanism of protection is apparently one of altering the kinetics of H+ discharge, resulting in less occlusion of hydrogen by steel. Accordingly, such coatings...
to be protective need not be continuous.

(STEEL, CRACKING, PROTECTION, COATING, NICKEL)

H73 52045 PERMEATION OF ELECTROLYTIC HYDROGEN THROUGH PLATINUM
Gileadi, E., M.A. Fullenwider, and J. O'M. Bockris,

The absorption and permeation of electrolytically generated hydrogen through thin platinum foils have been observed directly by an electrochemical method. The diffusion coefficient and the associated apparent energy of activation were determined. The concentration of absorbed hydrogen was obtained, and it was shown that atomic hydrogen tends to concentrate in areas of high strain in the metal where it can be in a lower energy state.

(PERMEATION, PLATINUM, DIFFUSION)

H73 52046 THE ROLE OF ADSORBED CN GROUPS IN THE HYDROGEN EMBRITTLEMENT OF STEEL

Specimens of ultra high strength steel were charged cathodically with hydrogen or immersed without charging in a NaOH solution of NaC\textsubscript{14}N and the adsorption of C\textsubscript{14}N groups determined by means of radioactivity measurements. In addition, the desorption of adsorbed C\textsubscript{14}N groups was also studied. Heats, designated heats of adsorption, energies of activation, and the surface coverage with C\textsubscript{14}N were calculated. It is concluded that C\textsubscript{14}N groups are strongly and preferentially adsorbed on highly active centers and the hydrogen recombination reaction retarded accordingly.

(EMBRYITLEMENT, STEEL)

H73 52047 ESTIMATES OF THE POSSIBILITY OF HYDROGEN EMBRITTLEMENT OF TANTALUM IN THE FRCTF

An evaluation was made of the possibility of destructive hydriding of Ta in the FRCTF. The assumption was made that even if the Na used in the reactor is well gettertered in advance, undetermined amounts of H\textsubscript{2} will get into the system during

367
installation of fuel elements and subsequent operations.
(EMBRITTLEMENT, TANTALUM, CONTAMINATION)

H73 52048 THE EFFECT OF LOADING MODE ON HYDROGEN EMBRITTLEMENT
Saint John, C., and W.W. Gerberich, (Minnesota University, Minneapolis, Minn.), Metallurgical Transactions, V 4:589-94, Fe 73, Avail:TAC

Hydrogen embrittlement is shown to occur very easily in notched-round bars under opening mode I (tension) but not under antiplane shear mode III (torsion). The stress tensor invariants under mode I, II, III loadings and how these affect interstitial diffusion are discussed. It is suggested that long range diffusion of hydrogen down orthogonal trajectories to the vicinity of the crack tip, which can occur under mode I but not mode III, is a key part of any hydrogen embrittlement mechanism.

(LOAD, EMBRITTLEMENT, DIFFUSION)

H73 52049 THE EFFECT OF SURFACE AND COATING TREATMENTS ON THE EMBRITTLEMENT OF STEEL AT HIGH RESISTANCE BY HYDROGEN UNDER PRESSURE: THE CASE OF 35 NiCrMo 16 STEEL

It is shown that gold, aluminum, and cadmium can protect disks for several months, which would be broken after a few minutes under hydrogen pressure if there were no coating. The authors analyze the cause and nature of the rupture of 35 NiCrMo 16 steel under various pressures.

(EMBRITTLEMENT, STEEL, COATING, SURFACE, RUPTURE)

H73 52050 THE EFFECT OF HYDROGEN AND TEMPERATURE ON MECHANICAL PROPERTIES OF THE Ti-5Al-2.5Sn ELI ALLOY

The effects of hydrogen content on the mechanical properties of the Ti-5Al-2.5Sn ELI alloy were investigated in the temperature range -320 to +200°F. In addition, the absorption of hydrogen by the alloy was studied to determine safe operating limits for the 0.020-inch thick core band. The data show that Ti-5Al-2.5Sn ELI can tolerate 300 ppM hydrogen at all temperatures investigated.

(PROPERTY, MECHANICAL, ALLOY)
THE MECHANISM OF HYDROGEN EMBRITTLEMENT IN STEEL

The process of brittle fracture in structural materials can be separated into three stages: (1) crack nucleation, (2) slow crack growth, and (3) rapid, unstable fracture. Hydrogen embrittles steel by affecting the first two of these stages. In corroded, electrolytically charged, or thermally charged specimens, excess hydrogen precipitates at inclusions or carbides in molecular form, causing the initiation of voids or microcracks. The hydrogen pressure in these defects causes them to grow either by plastic deformation or by cleavage, depending on the intrinsic toughness of the particular steel and the shape of the nucleating particle.

STRESS CORROSION CRACKING AND HYDROGEN EMBRITTLEMENT IN 410 STAINLESS STEEL
McGuire, M.F., (Case Western Reserve University, Cleveland, O.), N73-22471, Ph.D. Thesis, 72, Avail:TAC

The stress corrosion cracking behavior of two bcc stainless steels was investigated as a function of yield strength, applied potential, and temperature in several dilute salt solutions. Hydrogen permeation rates for the same environmental and material conditions were obtained. Under all conditions, the occurrence of stress corrosion cracking could be accounted for by a hydrogen embrittlement mechanism rather than either an adsorption of anodic dissolution process.

REVIEW OF LITERATURE ON HYDROGEN EMBRITTLEMENT
Groeneveld, T.P., E.E. Fletcher, and A.R. Elsea, (Battelle Institute, Columbus, O.), N66-23505, NASA-CR-74034, Ja 12 '66, Avail:TAC

This report deals primarily with the loss in mechanical properties experienced by high strength iron-base and nickel-base alloys and by titanium as a result of hydrogen introduced into the material during manufacturing and processing of the alloy, or in service.
Role of Hydrogen in Hot-Salt Stress-Corrosion of a Titanium Alloy

The role of hydrogen was studied in promoting embrittlement at elevated temperatures, where the process of hot-salt stress-corrosion occurs. Salt-coated specimens of the Ti-8Al-1Mo-1V alloy were subjected to low-strain-rate tensile tests, creep exposure tests, and stress-rupture tests to demonstrate the effects of hot-salt stress-corrosion. Severe embrittlement and/or cracking was observed in all types of tests. Significant increases in hydrogen concentrations in stress-corroded specimens were measured by standard vacuum-fusion chemical techniques.

(Embrittlement, Titanium, Corrosion)

Properties of Materials in High Pressure Hydrogen at Cryogenic, Room, and Elevated Temperatures

Harris, J.A., Jr. and M.C. Van Wanderham, (Pratt and Whitney Aircraft, West Palm Beach, Fla.), N71-33728, NASA-CR-119884, Je 30 '71, Avail:TAC

Results of mechanical property tests of nickel, titanium, and iron alloys in 5000 psig gaseous helium and hydrogen at various temperatures, and the comparison of test results to determine degradation of properties due to the hydrogen environment are presented.

(Mechanical, Property, Metal, Pressure, Temperature)

Influence of Gaseous Hydrogen on Metals

The gaseous hydrogen environment embrittlement was investigated in Inconel 718, Inconel 625, AISI 321 stainless steel, Ti-5Al-25Sn EL1, and OFHC copper. The program was divided into the following phases: (1) Tensile tests on notched specimens were used to determine the effect of as-received material condition, heat treatment, and welding on the hydrogen environment embrittlement of Inconel 718 in 5000 psi hydrogen at room temperature. (2) The effect of 5000 psi hydrogen on the tensile properties of the alloys was determined at room temperature and -200 F. (3) Threshold stress intensities for the alloys listed above and in addition
2219-T87 aluminum alloy were determined with modified WOL specimens for a hydrogen pressure of 5000 psi and room temperature.

(GAS, EMBRITTLEMENT, TENSILE, PRESSURE, TEST)

H73 52057 PERMEABILITY DATA FOR AEROSPACE APPLICATIONS

A compilation of data is presented on the permeation of propellants and pressurant gases through metals, nonmetals, and composite materials. The form is suitable for use by the designers of spacecraft liquid propulsion systems. The following information is given for each permeant type or trade name, temperature, permeability rate, permeability rate as reported, units reported, reference, solubility, diffusivity, and relevant comments.

(SPACECRAFT, PERMEATION, PROPELLANT, METAL)

H73 52058 LATTICE DILATATION AND HYDROGEN EMBRITTLEMENT CRACKING

Stress corrosion cracking in a precracked high strength material, occurring by a hydrogen embrittlement mechanism, is investigated. The direction of slow crack growth is shown to be dependent partly on the angular variation in hydrogen concentration and partly on the angular variation of the extensional stress. The maximum dilatation occurs in the crack plane where an increased hydrogen solubility is to be expected.

(EMBRITTLEMENT, CRACK, STRENGTH)

H73 52059 INVESTIGATION OF THE REACTION OF TITANIUM WITH HYDROGEN
Koehl, B.G., D.N. Williams, and E.S. Bartlett, (Battelle Institute, Columbus, O.), N69-19949, NASA-CR-99576, Mar 18 '69, Avail:TAC

An investigation of the reaction between titanium and hydrogen gas was made to determine the factors which promote surface hydriding and methods of preventing it. High-purity hydrogen was essential for a reaction to occur between titanium and hydrogen gas.

(REACTION, TITANIUM, SURFACE, PRESSURE)
INDEX OF AUTHORS

372
SECTION 'A'

<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21006</td>
<td>ABRAHMAN B M</td>
</tr>
<tr>
<td>22195</td>
<td>ADACHI O</td>
</tr>
<tr>
<td>32001</td>
<td>ADI R R</td>
</tr>
<tr>
<td>32000</td>
<td>ADT R R JR</td>
</tr>
<tr>
<td>22617</td>
<td>AGRANAT B D</td>
</tr>
<tr>
<td>40604</td>
<td>AKKERMAN J W</td>
</tr>
<tr>
<td>22642</td>
<td>AL'TSHULER V S</td>
</tr>
<tr>
<td>34640</td>
<td>ALBRIGHT L F</td>
</tr>
<tr>
<td>34639</td>
<td>ALBRIGHT L F</td>
</tr>
<tr>
<td>23402</td>
<td>ALEXIS R W</td>
</tr>
<tr>
<td>34257</td>
<td>ALFORD H R</td>
</tr>
<tr>
<td>34215</td>
<td>ALLEN A C</td>
</tr>
<tr>
<td>23020</td>
<td>ALLEN D W</td>
</tr>
<tr>
<td>22602</td>
<td>ALLEN D W</td>
</tr>
<tr>
<td>23024</td>
<td>ALLGEIER D L</td>
</tr>
<tr>
<td>34101</td>
<td>ALLISON H J</td>
</tr>
<tr>
<td>34261</td>
<td>ALLISON H J</td>
</tr>
<tr>
<td>34262</td>
<td>ALLISON H J</td>
</tr>
<tr>
<td>34260</td>
<td>ALLISON H J</td>
</tr>
<tr>
<td>34259</td>
<td>ALLISON H J</td>
</tr>
<tr>
<td>34032</td>
<td>ALMAULA B C</td>
</tr>
<tr>
<td>34637</td>
<td>ALMAULA S</td>
</tr>
<tr>
<td>34619</td>
<td>ALMAULA S</td>
</tr>
<tr>
<td>33059</td>
<td>ALVERMANN W</td>
</tr>
<tr>
<td>34510</td>
<td>AMANN C A</td>
</tr>
<tr>
<td>22625</td>
<td>AMERIK B K</td>
</tr>
<tr>
<td>22620</td>
<td>AMERIK B K</td>
</tr>
<tr>
<td>10048</td>
<td>AND OTHERS</td>
</tr>
<tr>
<td>30052</td>
<td>ANDERSON J E</td>
</tr>
<tr>
<td>40201</td>
<td>ANDERSON L M</td>
</tr>
<tr>
<td>40418</td>
<td>ANDERSON M S</td>
</tr>
<tr>
<td>31003</td>
<td>ANDERSON M S</td>
</tr>
<tr>
<td>33047</td>
<td>ANDERSON R C</td>
</tr>
<tr>
<td>33046</td>
<td>ANDERSON R C</td>
</tr>
<tr>
<td>33045</td>
<td>ANDERSON R C</td>
</tr>
<tr>
<td>40008</td>
<td>ANGERHOFER P E</td>
</tr>
<tr>
<td>22195</td>
<td>AOKI K</td>
</tr>
<tr>
<td>22109</td>
<td>APPELL H R</td>
</tr>
<tr>
<td>10085</td>
<td>APPLEBY A J</td>
</tr>
<tr>
<td>10037</td>
<td>APPLEBY A J</td>
</tr>
<tr>
<td>34039</td>
<td>APPLEBY A J</td>
</tr>
<tr>
<td>22160</td>
<td>ARAKAWA T</td>
</tr>
<tr>
<td>30029</td>
<td>ARBIT H A</td>
</tr>
<tr>
<td>30027</td>
<td>ARBIT H A</td>
</tr>
<tr>
<td>34020</td>
<td>ARCHER D H</td>
</tr>
<tr>
<td>40100</td>
<td>ARKHAROV A M</td>
</tr>
<tr>
<td>41017</td>
<td>ARKHIPOV R G</td>
</tr>
<tr>
<td>10027</td>
<td>ARMAGNAC A P</td>
</tr>
<tr>
<td>33052</td>
<td>ARMSTRONG W E</td>
</tr>
<tr>
<td>40417</td>
<td>ARNETT R W</td>
</tr>
<tr>
<td>34236</td>
<td>ASTRIN R</td>
</tr>
<tr>
<td>34233</td>
<td>ASTRIN R F</td>
</tr>
<tr>
<td>22636</td>
<td>ATWOOD K A</td>
</tr>
</tbody>
</table>

373
AUTHOR INDEX

SECTION 'A'

22199
30031
30030
32009
30006
34038
34637
34032
34619
50003
40422
40413
22649
34033
34807
34002
22213
33013
22202
34224
40111
34214
34630
34629
34215
22175
22166
22143
22110
22134
22131
22114
22603
32017
33003
34813
23436
33012
23424
34837
34244
34031
34030
34000
34612
21015
21014
21016
52013
52059
40601
40600
40112

AUER W
AUKERMAN C
AUKERMAN C A
AUSTIN A L
AUSTIN G E
AUSTIN L G
AUSTIN L G
AUSTIN L G
AUSTIN L G
AXELROD L C
AYDELOTT J C
AYDELOTT J C
BACH G
BACON F T
BACON F T
BAIKOV A M
BAILEY C R
BAILLIE R A
BAILLIEUL D
BAINBRIDGE R
BAKER B
BAKER B S
BAKER C R
BAKER N R
BAKER W T
BALASKOVIC P
BALDUS W
BALDWIN R R
BANIKIOTES G C
BANNOCHIE J G
BANNOCHIE J G
BARAK M
BARAK M
BARAK M
BARBER W A
BARNERT H
BARNERT H
BARNERT, H
BARTH C F
BARTLETT E S
BARTLIT J R
BARTLIT J R
BARTLIT J R
<p>| 30058 | BARTOO E R |
| 34247 | BARTOSH S J |
| 33014 | BASCOMBE K N |
| 34201 | BATH T D |
| 40101 | BATRAKOV B P |
| 34634 | BAUDOIN L P |
| 22207 | BAUM R L |
| 23405 | BAUMANN G P |
| 52008 | BEAVON D K |
| 52046 | BECK W |
| 52046 | BECK W |
| 31009 | BECK W |
| 22165 | BECKER J V |
| 22121 | BECKER P |
| 23437 | BECKER P D |
| 31016 | BECKER R |
| 40207 | BECKER* J V |
| 52006 | BEECH J C |
| 10042 | BEGEMANN S H A |
| 30000 | BEGHI G |
| 23016 | BELEW L F |
| 34271 | BELL D |
| 34844 | BELL D |
| 40406 | BELL J H JR |
| 34102 | BELL W F |
| 41014 | BENDER C F |
| 22138 | BENDER L |
| 34803 | BENNETT C W |
| 34848 | BENNETT K W |
| 40108 | BENNING M A |
| 33004 | BENOIT A |
| 22003 | BENSON HOMER E |
| 30010 | BEREMAND D G |
| 30020 | BEREMAND D G |
| 22218 | BERG, G J VAN DEN ET AL |
| 34509 | BERGER C |
| 34648 | BERTSCH P |
| 41012 | BERWALDT O E |
| 22217 | BERY R N |
| 40110 | BEWILLOGUA L |
| 34800 | BIANCHI C |
| 34645 | BIHAN R LE |
| 32023 | BILLINGS R E |
| 32022 | BILLINGS R E |
| 10074 | BILLINGS R E |
| 40512 | BISSELL, W R |
| 34258 | BLANCHARD G C |
| 23205 | BLANCHARD G C |
| 10069 | BLANK L |
| 10068 | BLANK L |
| 22011 | BLAUSTEIN B D |
| 23012 | BLOCH O |</p>
<table>
<thead>
<tr>
<th>AUTHOR INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOOMER H E</td>
</tr>
<tr>
<td>BLOOMER H E</td>
</tr>
<tr>
<td>BOCARD J P</td>
</tr>
<tr>
<td>BOCKRIS J O'M</td>
</tr>
<tr>
<td>BODE H</td>
</tr>
<tr>
<td>BOGOTZSKY V S</td>
</tr>
<tr>
<td>BOL'SHUTKIN D N</td>
</tr>
<tr>
<td>BOLOTOV G M</td>
</tr>
<tr>
<td>BONGERS L</td>
</tr>
<tr>
<td>BONGIORNO S J</td>
</tr>
<tr>
<td>BONGIORNO S J</td>
</tr>
<tr>
<td>BOROVIC E S</td>
</tr>
<tr>
<td>BOSSE K D</td>
</tr>
<tr>
<td>BOTOSAN R A</td>
</tr>
<tr>
<td>BOYD G</td>
</tr>
<tr>
<td>BRADY H F</td>
</tr>
<tr>
<td>BRANDON C S</td>
</tr>
<tr>
<td>BRANDON C S</td>
</tr>
<tr>
<td>BRAUN W VON</td>
</tr>
<tr>
<td>BREELE Y</td>
</tr>
<tr>
<td>BREELE Y</td>
</tr>
<tr>
<td>BREELE Y</td>
</tr>
<tr>
<td>BREITENSTEIN A M</td>
</tr>
<tr>
<td>BREITER M W</td>
</tr>
<tr>
<td>BRENNAN J A</td>
</tr>
<tr>
<td>BRENNAN J A</td>
</tr>
<tr>
<td>BRESHEARS R</td>
</tr>
<tr>
<td>BREWE D E</td>
</tr>
<tr>
<td>BREWER G D</td>
</tr>
<tr>
<td>BREWER G D</td>
</tr>
<tr>
<td>BREWER J N</td>
</tr>
<tr>
<td>BROOKS C S</td>
</tr>
<tr>
<td>BROOKS C S</td>
</tr>
<tr>
<td>BROWN J A</td>
</tr>
<tr>
<td>BROWN R</td>
</tr>
<tr>
<td>BRUHIN A C</td>
</tr>
<tr>
<td>BRUNEAU JEAN L G</td>
</tr>
<tr>
<td>BRUNO R P</td>
</tr>
<tr>
<td>BUCHANAN M J</td>
</tr>
<tr>
<td>BUGG F M</td>
</tr>
<tr>
<td>BUIVIDAS L J</td>
</tr>
<tr>
<td>BURGESS E</td>
</tr>
<tr>
<td>BURKHARD D G</td>
</tr>
<tr>
<td>BURRIS W L</td>
</tr>
<tr>
<td>BURSHEIN R KH</td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>22199</td>
</tr>
<tr>
<td>32017</td>
</tr>
<tr>
<td>32002</td>
</tr>
<tr>
<td>34268</td>
</tr>
<tr>
<td>34832</td>
</tr>
<tr>
<td>22185</td>
</tr>
<tr>
<td>40103</td>
</tr>
<tr>
<td>40100</td>
</tr>
<tr>
<td>52043</td>
</tr>
<tr>
<td>34248</td>
</tr>
<tr>
<td>10068</td>
</tr>
<tr>
<td>10069</td>
</tr>
<tr>
<td>34607</td>
</tr>
<tr>
<td>33018</td>
</tr>
<tr>
<td>33019</td>
</tr>
<tr>
<td>22211</td>
</tr>
<tr>
<td>3018</td>
</tr>
<tr>
<td>3072</td>
</tr>
<tr>
<td>3020</td>
</tr>
<tr>
<td>34630</td>
</tr>
<tr>
<td>34629</td>
</tr>
<tr>
<td>51007</td>
</tr>
<tr>
<td>51010</td>
</tr>
<tr>
<td>30062</td>
</tr>
<tr>
<td>32011</td>
</tr>
<tr>
<td>40504</td>
</tr>
<tr>
<td>33053</td>
</tr>
<tr>
<td>52033</td>
</tr>
<tr>
<td>52025</td>
</tr>
<tr>
<td>52056</td>
</tr>
<tr>
<td>52002</td>
</tr>
<tr>
<td>40306</td>
</tr>
<tr>
<td>20006</td>
</tr>
<tr>
<td>34028</td>
</tr>
<tr>
<td>23403</td>
</tr>
<tr>
<td>23440</td>
</tr>
<tr>
<td>23025</td>
</tr>
<tr>
<td>50011</td>
</tr>
<tr>
<td>41005</td>
</tr>
<tr>
<td>41010</td>
</tr>
<tr>
<td>32025</td>
</tr>
<tr>
<td>34202</td>
</tr>
<tr>
<td>22005</td>
</tr>
<tr>
<td>34815</td>
</tr>
<tr>
<td>22651</td>
</tr>
<tr>
<td>34842</td>
</tr>
<tr>
<td>42000</td>
</tr>
<tr>
<td>40008</td>
</tr>
<tr>
<td>30025</td>
</tr>
<tr>
<td>23011</td>
</tr>
<tr>
<td>22170</td>
</tr>
<tr>
<td>34823</td>
</tr>
<tr>
<td>33053</td>
</tr>
<tr>
<td>Page</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>34613</td>
</tr>
<tr>
<td>10013</td>
</tr>
<tr>
<td>33029</td>
</tr>
<tr>
<td>23206</td>
</tr>
<tr>
<td>30031</td>
</tr>
<tr>
<td>33022</td>
</tr>
<tr>
<td>34805</td>
</tr>
<tr>
<td>23019</td>
</tr>
<tr>
<td>31007</td>
</tr>
<tr>
<td>30027</td>
</tr>
<tr>
<td>30029</td>
</tr>
<tr>
<td>34606</td>
</tr>
<tr>
<td>34633</td>
</tr>
<tr>
<td>34625</td>
</tr>
<tr>
<td>34634</td>
</tr>
<tr>
<td>30003</td>
</tr>
<tr>
<td>10044</td>
</tr>
<tr>
<td>34621</td>
</tr>
<tr>
<td>34244</td>
</tr>
<tr>
<td>34837</td>
</tr>
<tr>
<td>50006</td>
</tr>
<tr>
<td>34818</td>
</tr>
<tr>
<td>34646</td>
</tr>
<tr>
<td>34640</td>
</tr>
<tr>
<td>40505</td>
</tr>
<tr>
<td>40203</td>
</tr>
<tr>
<td>34826</td>
</tr>
<tr>
<td>34023</td>
</tr>
<tr>
<td>34019</td>
</tr>
<tr>
<td>34808</td>
</tr>
<tr>
<td>22173</td>
</tr>
<tr>
<td>10072</td>
</tr>
<tr>
<td>31008</td>
</tr>
<tr>
<td>23021</td>
</tr>
<tr>
<td>34631</td>
</tr>
<tr>
<td>34605</td>
</tr>
<tr>
<td>23029</td>
</tr>
<tr>
<td>33033</td>
</tr>
<tr>
<td>22107</td>
</tr>
<tr>
<td>40500</td>
</tr>
<tr>
<td>50005</td>
</tr>
<tr>
<td>34211</td>
</tr>
<tr>
<td>22174</td>
</tr>
<tr>
<td>34506</td>
</tr>
<tr>
<td>41006</td>
</tr>
<tr>
<td>10017</td>
</tr>
<tr>
<td>41012</td>
</tr>
<tr>
<td>33045</td>
</tr>
<tr>
<td>23010</td>
</tr>
<tr>
<td>20503</td>
</tr>
<tr>
<td>34232</td>
</tr>
<tr>
<td>34846</td>
</tr>
<tr>
<td>34235</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>COTRILL H</td>
</tr>
<tr>
<td>COTTIN M</td>
</tr>
<tr>
<td>COX J E</td>
</tr>
<tr>
<td>COX K E</td>
</tr>
<tr>
<td>COX K E</td>
</tr>
<tr>
<td>CROFT A J</td>
</tr>
<tr>
<td>CROFT A J</td>
</tr>
<tr>
<td>CROMEANS J S</td>
</tr>
<tr>
<td>CROUSE J E</td>
</tr>
<tr>
<td>CRUZ J E</td>
</tr>
<tr>
<td>CUIFFREDA A R</td>
</tr>
<tr>
<td>CUIFFREDA A R</td>
</tr>
<tr>
<td>CULLEN R E</td>
</tr>
<tr>
<td>CURLEY J K</td>
</tr>
<tr>
<td>D'Alessandro A F</td>
</tr>
<tr>
<td>DABORA E K</td>
</tr>
<tr>
<td>DADIEU A</td>
</tr>
<tr>
<td>DANAY D E</td>
</tr>
<tr>
<td>DANDLE E E</td>
</tr>
<tr>
<td>DANTOWITZ P</td>
</tr>
<tr>
<td>DARDARE J</td>
</tr>
<tr>
<td>DARDARE J</td>
</tr>
<tr>
<td>DARIVA I</td>
</tr>
<tr>
<td>DARLAND W G</td>
</tr>
<tr>
<td>DARLAND W G</td>
</tr>
<tr>
<td>DARLING A S</td>
</tr>
<tr>
<td>DASH S</td>
</tr>
<tr>
<td>DAVIES R M</td>
</tr>
<tr>
<td>DAVIS J G JR</td>
</tr>
<tr>
<td>DAVIS T</td>
</tr>
<tr>
<td>DAVITT H J</td>
</tr>
<tr>
<td>DAYAN V H</td>
</tr>
<tr>
<td>DE BENI G</td>
</tr>
<tr>
<td>DE BENI G</td>
</tr>
<tr>
<td>DE CLAVIERE G</td>
</tr>
<tr>
<td>DEBENI G</td>
</tr>
<tr>
<td>DEEN J L</td>
</tr>
<tr>
<td>DEGOBERT P</td>
</tr>
<tr>
<td>DELORET J M</td>
</tr>
<tr>
<td>DESPIC A R</td>
</tr>
<tr>
<td>DEUTSCH I</td>
</tr>
<tr>
<td>DEZAZEL C</td>
</tr>
<tr>
<td>DEZAZEL C</td>
</tr>
<tr>
<td>DICKERSON R A</td>
</tr>
<tr>
<td>DILLE R M</td>
</tr>
<tr>
<td>DILLE R M</td>
</tr>
<tr>
<td>DILLER D E</td>
</tr>
<tr>
<td>DIPALMA J</td>
</tr>
<tr>
<td>DIRIAN G</td>
</tr>
<tr>
<td>DIVISION</td>
</tr>
<tr>
<td>Author Name</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>DIXON A G</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

380
<table>
<thead>
<tr>
<th>AUTHOR INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRADKOV A B</td>
</tr>
<tr>
<td>FRAKA E</td>
</tr>
<tr>
<td>FRANCISCUS L</td>
</tr>
<tr>
<td>FRANCISCUS L C</td>
</tr>
<tr>
<td>FRANK D L</td>
</tr>
<tr>
<td>FRANK H A</td>
</tr>
<tr>
<td>FRANK H A</td>
</tr>
<tr>
<td>FRICK V</td>
</tr>
<tr>
<td>FRICK V</td>
</tr>
<tr>
<td>FRIEDEL R A</td>
</tr>
<tr>
<td>FRIEDEL R A</td>
</tr>
<tr>
<td>FRIEDMAN R</td>
</tr>
<tr>
<td>FROHMBERG R P</td>
</tr>
<tr>
<td>FRYSSINGER G R</td>
</tr>
<tr>
<td>FRYSSINGER G R</td>
</tr>
<tr>
<td>FU Y C</td>
</tr>
<tr>
<td>FUKUDA M</td>
</tr>
<tr>
<td>FULLENWIDER M A</td>
</tr>
<tr>
<td>FULTON D L</td>
</tr>
<tr>
<td>FUNK J</td>
</tr>
<tr>
<td>FUNK J E</td>
</tr>
<tr>
<td>FUNK J E</td>
</tr>
<tr>
<td>GAFFRON H</td>
</tr>
<tr>
<td>GAFFRON H</td>
</tr>
<tr>
<td>GAFFRON H</td>
</tr>
<tr>
<td>GARD N R</td>
</tr>
<tr>
<td>GARDINER W C</td>
</tr>
<tr>
<td>GAPVIE J H</td>
</tr>
<tr>
<td>GARWIN L</td>
</tr>
<tr>
<td>GAUGLER R E</td>
</tr>
<tr>
<td>GAZZA G E</td>
</tr>
<tr>
<td>GEHRMANN K</td>
</tr>
<tr>
<td>GEISSLER H H</td>
</tr>
<tr>
<td>GERBERICH W W</td>
</tr>
<tr>
<td>GERBERICH W W</td>
</tr>
<tr>
<td>GERNHARDT P</td>
</tr>
<tr>
<td>GERSHBERG D</td>
</tr>
<tr>
<td>GERSHBERG D</td>
</tr>
<tr>
<td>GERSHENZON IU M</td>
</tr>
<tr>
<td>GEST H</td>
</tr>
<tr>
<td>GETOFF N</td>
</tr>
<tr>
<td>GIBB J W</td>
</tr>
<tr>
<td>GIBSON F</td>
</tr>
<tr>
<td>GIDASPOW D</td>
</tr>
<tr>
<td>GIGNER J</td>
</tr>
<tr>
<td>GILEADI E</td>
</tr>
<tr>
<td>GILLEN R J</td>
</tr>
<tr>
<td>GILLIBRAND M I</td>
</tr>
<tr>
<td>GILLIBRAND M I</td>
</tr>
<tr>
<td>GILLIBRAND M I</td>
</tr>
<tr>
<td>GILLIS A P</td>
</tr>
<tr>
<td>GINER J</td>
</tr>
<tr>
<td>GLASER H</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

ENGLE M L
ENGLISH R E
EPPS C M
ERICKSON W D
EROFEEVA V I
ESCHER W J D
ET AL
ET AL
ET AL
ET AL
ET AL
EVANS D G
FABER J H
FALABELLA B J
FALKENSTEIN G
FALKENSTEIN G
FALKENSTEIN G L
FARMER D A
FARQUAHR J
FARRIS P J
FEILER C E
FEILER C E
FEIN E
FENG H
FICKETT A P
FICKETT A P
FIDELLE J P
FIDELLE J P
FINDL E
FINDL E
FINEGOLD J G
FINNERAN J A
FISCHER P
FLEMING D K
FLEMING H W
FLEMING R D
FLETCHER E E
FLETCHER E E
FLETCHER E E
FLYNN T M
FOERG W
FOERG W
FOLEY R T
FOLEY R T
FORD N C
FORTUNE D
FORTUNE D
FORZIATI A F
FOSS W I
FOULKES F R
<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34252</td>
<td>GRUBER H L</td>
</tr>
<tr>
<td>51005</td>
<td>GRUMER J</td>
</tr>
<tr>
<td>22172</td>
<td>GUBERGRIOTS M</td>
</tr>
<tr>
<td>33010</td>
<td>GUKOV S F</td>
</tr>
<tr>
<td>22203</td>
<td>GUENTHER P</td>
</tr>
<tr>
<td>22647</td>
<td>GUERRIERI S A</td>
</tr>
<tr>
<td>34005</td>
<td>GUPTA C P</td>
</tr>
<tr>
<td>20004</td>
<td>GUSEINOV N M</td>
</tr>
<tr>
<td>23434</td>
<td>GUSEINOVA Z D</td>
</tr>
<tr>
<td>22613</td>
<td>GUSEINOVA Z D</td>
</tr>
<tr>
<td>51005</td>
<td>Gussey P M</td>
</tr>
<tr>
<td>34507</td>
<td>GUTBIER H</td>
</tr>
<tr>
<td>10078</td>
<td>GUTHRIE M P</td>
</tr>
<tr>
<td>22182</td>
<td>GUTMANN W R</td>
</tr>
<tr>
<td>20009</td>
<td>HAAS GEORG</td>
</tr>
<tr>
<td>22636</td>
<td>HABERMEHL R H</td>
</tr>
<tr>
<td>22604</td>
<td>HACK K M</td>
</tr>
<tr>
<td>22120</td>
<td>HAENSEL V</td>
</tr>
<tr>
<td>40212</td>
<td>HAERD A M</td>
</tr>
<tr>
<td>34501</td>
<td>HAGEDORN N H</td>
</tr>
<tr>
<td>34270</td>
<td>HAGEDORN N H</td>
</tr>
<tr>
<td>30001</td>
<td>HALBACH C R</td>
</tr>
<tr>
<td>34605</td>
<td>HALEMAN R G</td>
</tr>
<tr>
<td>22604</td>
<td>HALL B B</td>
</tr>
<tr>
<td>40202</td>
<td>HALL W J</td>
</tr>
<tr>
<td>40201</td>
<td>HALL W J</td>
</tr>
<tr>
<td>10012</td>
<td>HALLET T N C</td>
</tr>
<tr>
<td>30019</td>
<td>HAMILTON M L</td>
</tr>
<tr>
<td>34208</td>
<td>HAMLEN R P</td>
</tr>
<tr>
<td>42002</td>
<td>HAMMERSMITH J W</td>
</tr>
<tr>
<td>10063</td>
<td>HAMMOND A L</td>
</tr>
<tr>
<td>40408</td>
<td>HAMMOND M B JR</td>
</tr>
<tr>
<td>21002</td>
<td>HANNEMAN R E</td>
</tr>
<tr>
<td>30033</td>
<td>HANNUM N P</td>
</tr>
<tr>
<td>30013</td>
<td>HANNUM N P</td>
</tr>
<tr>
<td>30036</td>
<td>HANNUM N P</td>
</tr>
<tr>
<td>22610</td>
<td>HAPPEL J</td>
</tr>
<tr>
<td>52036</td>
<td>HARDIE D</td>
</tr>
<tr>
<td>23006</td>
<td>HARM R L</td>
</tr>
<tr>
<td>34846</td>
<td>HAROOTYAN L S JR</td>
</tr>
<tr>
<td>52055</td>
<td>HARRIS J A JR</td>
</tr>
<tr>
<td>34009</td>
<td>HART A B</td>
</tr>
<tr>
<td>34213</td>
<td>HARTNER A J</td>
</tr>
<tr>
<td>22157</td>
<td>HARVIN R L</td>
</tr>
<tr>
<td>23009</td>
<td>HARVIN R L</td>
</tr>
<tr>
<td>10072</td>
<td>HASS G M</td>
</tr>
<tr>
<td>22623</td>
<td>HAUSER H A</td>
</tr>
<tr>
<td>10052</td>
<td>HAUSZ W</td>
</tr>
<tr>
<td>10048</td>
<td>HAUSZ W</td>
</tr>
<tr>
<td>10043</td>
<td>HAUSZ W</td>
</tr>
<tr>
<td>10050</td>
<td>HAWKES H E</td>
</tr>
<tr>
<td>23027</td>
<td>HAYES H G</td>
</tr>
<tr>
<td>52056</td>
<td></td>
</tr>
</tbody>
</table>

384
AUTHOR INDEX

HAYES J C
HEATH C E
HEATHMAN J H
HEBDEN D
HECK J L
HEIDMANN M F
HEIDT L J
HEIDT L J
HEIDT L J
HEIDT L J
HELMICH B N
HEINZ H
HENRY R J
HEPP H J
HEPPENHEIMER T A
HERDY-GRENA C
HERING B
HERR P
HERR P
HERR P N
HERSCH M
HERSHBERGER D L
MESS P D
HESS R A
HILDEBRANDT A F
HILDEBRANDT A F
HILLENBRAND L J
HILLENBRAND L J
HLAVIN V F
HOBART H F
HOCKSTRA J
HOFFMAN K C
HOFFMAN W
HOGSETT J N
HOLMSTEAD G S
HOLTZ A
HOLZWORTH M L
HONDA K
HONEYCUTT S C
HOOPER, T N
HOOVER W G
HOPE J
HORD J
HORD J
HORD J
HORD J
HORTON T R
HOWORKA S
HUANG D H
AUTHOR INDEX

30022 HUET C
33047 HUFFSTUTLER M C
34259 HUGHES W L
34260 HUGHES W L
22637 HUMPHRIES K J
34264 HURLEY J R
10029 HUSE R A
30067 HUZEL D K
20004 ISMAILOV I A
23602 ITO H
34025 IVANOV A M
40418 JACKSON L R
40404 JACKSON L R
31003 JACKSON L R
22188 JACKSON S B
34222 JACQUELIN J
34480 JACQUELIN J
33056 JACQUES M T
33055 JACQUES M T
23000 JAFFE H
22181 JAMES C R
52017 JANKOWSKY E J
52008 JANKOWSKY E J
52038 JANSER G R
33044 JAQUES M
34623 JASINSKI R
30071 JEFFS A T
33036 JEFFS A T
10072 JENKINS W R
33052 JENNINGS T J
40412 JEW L N
23420 JEWETT D
23606 JEWETT R P
52002 JOHNSTON BEATTY A M
32011 JOHNSTON G
40603 JOHNSTON J E
31013 JOHNSTON J E
22180 JOHNSTON J E
10079 JOHNSTON J E
51012 JOHNSTON J E JR
30065 JOHNSTON R J
20505 JOHNSTON R W
40004 JOHNSTON V J
40206 JOHNSTON V J
33024 JONASH E R
30006 JONES I R
34245 JONES J C
22005 JONES J F
10045 JONES L W
10071 JONES L W
40210 JONES M C
52015 JONES R L
10041 JONES W
<table>
<thead>
<tr>
<th>Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>JONES W L</td>
</tr>
<tr>
<td>JONES W L</td>
</tr>
<tr>
<td>JONKE R J</td>
</tr>
<tr>
<td>JOST K</td>
</tr>
<tr>
<td>JOYCE J P</td>
</tr>
<tr>
<td>JUDA W</td>
</tr>
<tr>
<td>JUDA W</td>
</tr>
<tr>
<td>JUDA W</td>
</tr>
<tr>
<td>JUSTI E</td>
</tr>
<tr>
<td>KALBERLAH A</td>
</tr>
<tr>
<td>KALBERLAH W</td>
</tr>
<tr>
<td>KAMACHI K</td>
</tr>
<tr>
<td>KAMBAROV YU G</td>
</tr>
<tr>
<td>KAMBAROV YU G</td>
</tr>
<tr>
<td>KAMIYA N</td>
</tr>
<tr>
<td>KANE J W</td>
</tr>
<tr>
<td>KANZLER K H</td>
</tr>
<tr>
<td>KAPP E</td>
</tr>
<tr>
<td>KAPPLER G</td>
</tr>
<tr>
<td>KARIM G A</td>
</tr>
<tr>
<td>KARN F S</td>
</tr>
<tr>
<td>KARN F S</td>
</tr>
<tr>
<td>KARTAGE T</td>
</tr>
<tr>
<td>KARWAT E</td>
</tr>
<tr>
<td>KASHIWAYA K</td>
</tr>
<tr>
<td>KATAN T</td>
</tr>
<tr>
<td>KATCHMAN B J</td>
</tr>
<tr>
<td>KATELL S</td>
</tr>
<tr>
<td>KATELL S</td>
</tr>
<tr>
<td>KAYE S</td>
</tr>
<tr>
<td>KEELEY A W</td>
</tr>
<tr>
<td>KELLER W E</td>
</tr>
<tr>
<td>KELLY L G</td>
</tr>
<tr>
<td>KELLY, P J</td>
</tr>
<tr>
<td>KEMPFER T J</td>
</tr>
<tr>
<td>KERKAM B F</td>
</tr>
<tr>
<td>KERLEY G I</td>
</tr>
<tr>
<td>KERNS G P</td>
</tr>
<tr>
<td>KERSLAKE W R</td>
</tr>
<tr>
<td>KERSLAKE W R</td>
</tr>
<tr>
<td>KESSLER G</td>
</tr>
<tr>
<td>KESTEN A S</td>
</tr>
<tr>
<td>KESTEN A S</td>
</tr>
<tr>
<td>KHAITOV V M</td>
</tr>
<tr>
<td>KHAN A R</td>
</tr>
<tr>
<td>KHAIRAMOVA V T</td>
</tr>
<tr>
<td>KHERTERANOVICH O G</td>
</tr>
<tr>
<td>KIMURA S</td>
</tr>
<tr>
<td>387</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

SECTION 'A'

34815 KING J M JR
23602 KIRK R S
41011 KIRK S
31016 KIRKHAM F S
34250 KIRKLAND T G
34831 KIRKLAND T G
34248 KIRKLAND T G
50008 KITTS W T
34500 KITZES G
34219 KLEIN M
34236 KLEIN M
34234 KLEIN M G
34233 KLEIN M G
34235 KLEIN M G
34237 KLEIN M G
34238 KLEIN M G
33002 KLICK G F
34503 KLINK R
30021 KNIP G JR
40110 KNOENER R
23008 KNORRE H
22194 KOCH C
52059 KDEHL B G
22146 KOENER A
23404 KOHLMeyer F
52011 KOLACHEV B A
32026 KORDesch K V
34606 KORDesch K V
34622 KORDesch K V
34605 KORDesch K V
34624 KORDesch K V
34633 KORDesch K V
34625 KORDesch K V
34229 KORDesch K V
52012 KORN C
52016 KORTovich C S
40104 KOSIK N A
22632 KOTElkov N Z
30050 KOVACH R J
22646 KOVALenko N A
22610 KRAMER L
40101 KRAVCHenko V A
34622 KRONENBERG M L
31006 KROUSE J R
34218 KUBOKAWA M
30039 KUENKler H
2239 KUGELER K
22123 KUHRE C J
33021 KUIVinen D E
40100 KULAKOV B M
40108 KUNKLE E B
23023 KURPIT S S
33028 KYDD P H
AUTHOR INDEX

LACKSONEN J W
LACKSONEN J W
LAFURIE M
LAFYATIS P G
LAHTI G P
LALANNE F
LANGSTONE P F
LAPIN A
LAROCHE J
LARSON A R
LARSON A W
LATANISION R M
LAUFFER J R
LAUS T
LAWRENCE L R
LAWS J S
LAZAREV N V
LEAMAN W K
LEE D D
LEE M
LEE W B
LEETH G
LEETH G G
LEETH G G
LEGER D
LEIBUSH A G
LEITZ F B
LEMAIRE J
LEMONS C R
LEONOVA L D
LERNER R M
LESPINASSE B
LESSING L
LESSING L
LESSING L
LEUCHTER O
LEUCHTER O
LEUNG C
LEZBERG E A
LHONORE P
LIDORENKO N S
LIEBENBERG D H
LIEBERMAN M
LIEBHAFSKY H A
LINAN A
LINDE
LINDEN H R
LINDER C
LINDLEY B K
LINNIK Z N
LIOTET P
LITVIN A K
AUTHOR INDEX

22145 LITZ L M
22216 LITZ L M
30026 LO R
34830 LODZINSKI R J
50008 LOGAN E M
34246 LOMAX G R
52032 LOMBARD V
34500 LONDON S A
40400 LONG C A
10005 LONG G M
34250 LOOFT D J
30070 LORDI J A
52029 LORENZ P M
52010 LOUTHAN M R
52037 LOUTHAN M R JR
41004 LOWE L T
30628 LUBICK R J
41015 LURKIN G B
34647 LUDESOLI D
41005 LUDTKE P R
41009 LUDTKE P R
41010 LUDTKE P R
10043 LUECK D
34016 LUNDQUIST J T
32022 LYNCH F E
32023 LYNCH F E
32017 LYNCH F E
10074 LYNCH F E
20004 LYUTFALIEV K A
40309 MACINTYRE J R
40206 MAHON W T
23602 MAHMOUD H
22631 MAKAROV I A
23420 MAKRIDES A C
34017 MAKRIDES A C
34627 MALACHESKY P A
34819 MALASPINA F P
34804 MALASPINA F P
20004 MAMEDALIEV YU G
40004 MANN D B
40300 MANN D B
41005 MANN D B
41004 MANN D B
41007 MANN D B
41010 MANN D B
22600 MANN W L
10040 MARCHETTI C
10036 MARCHETTI C
10035 MARCHETTI C
21012 MARCHETTI C
21005 MARCHETTI C
21009 MARCHETTI C
34646 MARCHETTI M
<table>
<thead>
<tr>
<th>Page Numbers</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>23423</td>
<td>Markbreiter S J</td>
</tr>
<tr>
<td>40309</td>
<td>Marshall T N Jr</td>
</tr>
<tr>
<td>41001</td>
<td>Marshall T N Jr</td>
</tr>
<tr>
<td>22142</td>
<td>Marshall W H Jr</td>
</tr>
<tr>
<td>33006</td>
<td>Martin P E</td>
</tr>
<tr>
<td>23606</td>
<td>Martin W B Jr</td>
</tr>
<tr>
<td>23600</td>
<td>Masanet J</td>
</tr>
<tr>
<td>22182</td>
<td>Mascarich R A</td>
</tr>
<tr>
<td>22213</td>
<td>Maslennikov V M</td>
</tr>
<tr>
<td>30070</td>
<td>Mates R E</td>
</tr>
<tr>
<td>34212</td>
<td>Mather W B Jr</td>
</tr>
<tr>
<td>34253</td>
<td>Mather W B Jr</td>
</tr>
<tr>
<td>23415</td>
<td>Matlack G L</td>
</tr>
<tr>
<td>22603</td>
<td>Matsch L C</td>
</tr>
<tr>
<td>34230</td>
<td>Matsch L C</td>
</tr>
<tr>
<td>52044</td>
<td>Matsushima I</td>
</tr>
<tr>
<td>33003</td>
<td>Matthews S E</td>
</tr>
<tr>
<td>10034</td>
<td>Maugh T H</td>
</tr>
<tr>
<td>10063</td>
<td>Maugh T H II</td>
</tr>
<tr>
<td>22009</td>
<td>Maugh Thomas H</td>
</tr>
<tr>
<td>33049</td>
<td>Maurer F</td>
</tr>
<tr>
<td>33058</td>
<td>Maurer F</td>
</tr>
<tr>
<td>23205</td>
<td>May P S</td>
</tr>
<tr>
<td>33011</td>
<td>Mayer S W</td>
</tr>
<tr>
<td>22208</td>
<td>Mayland B J</td>
</tr>
<tr>
<td>23009</td>
<td>Mayland B J</td>
</tr>
<tr>
<td>22157</td>
<td>Mayland B J</td>
</tr>
<tr>
<td>52040</td>
<td>Mcbreen J</td>
</tr>
<tr>
<td>23411</td>
<td>Mcbride R B</td>
</tr>
<tr>
<td>23408</td>
<td>McCandless F P</td>
</tr>
<tr>
<td>22623</td>
<td>McCartney D E</td>
</tr>
<tr>
<td>40202</td>
<td>McCarty R D</td>
</tr>
<tr>
<td>40008</td>
<td>McCarty R D</td>
</tr>
<tr>
<td>42001</td>
<td>Mcconnell J</td>
</tr>
<tr>
<td>52023</td>
<td>McCoy R A</td>
</tr>
<tr>
<td>10075</td>
<td>McCulloch W H</td>
</tr>
<tr>
<td>34201</td>
<td>Mcelroy A D</td>
</tr>
<tr>
<td>34231</td>
<td>Mcevoy J E</td>
</tr>
<tr>
<td>23412</td>
<td>Mcevoy J E</td>
</tr>
<tr>
<td>52052</td>
<td>Mcguire M F</td>
</tr>
<tr>
<td>52036</td>
<td>McIntyre P</td>
</tr>
<tr>
<td>23411</td>
<td>Mckinley D L</td>
</tr>
<tr>
<td>30005</td>
<td>McLafferty G H</td>
</tr>
<tr>
<td>22150</td>
<td>Mcleod W J</td>
</tr>
<tr>
<td>22177</td>
<td>Mcleod W J</td>
</tr>
<tr>
<td>22618</td>
<td>Mcleod W J</td>
</tr>
<tr>
<td>22179</td>
<td>Mcmahon J F</td>
</tr>
<tr>
<td>23604</td>
<td>McMullan A F</td>
</tr>
<tr>
<td>40302</td>
<td>McMullan W D</td>
</tr>
<tr>
<td>34215</td>
<td>Meek J</td>
</tr>
<tr>
<td>22143</td>
<td>Meek J</td>
</tr>
<tr>
<td>22166</td>
<td>Meek J</td>
</tr>
<tr>
<td>22114</td>
<td>Meek J</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

<table>
<thead>
<tr>
<th>Page</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>22131</td>
<td>MEEK J</td>
</tr>
<tr>
<td>22134</td>
<td>MEEK J</td>
</tr>
<tr>
<td>22110</td>
<td>MEEK J</td>
</tr>
<tr>
<td>23424</td>
<td>MEISLER J</td>
</tr>
<tr>
<td>30050</td>
<td>MELLISH J A</td>
</tr>
<tr>
<td>22187</td>
<td>MENANT R</td>
</tr>
<tr>
<td>40004</td>
<td>MENDENHALL J R</td>
</tr>
<tr>
<td>40500</td>
<td>MENG P R</td>
</tr>
<tr>
<td>40203</td>
<td>MERTE H</td>
</tr>
<tr>
<td>22166</td>
<td>MESHENKO N T</td>
</tr>
<tr>
<td>10063</td>
<td>METZ W D</td>
</tr>
<tr>
<td>41013</td>
<td>METZ W C</td>
</tr>
<tr>
<td>10050</td>
<td>MEYER C</td>
</tr>
<tr>
<td>10043</td>
<td>MEYER C</td>
</tr>
<tr>
<td>10059</td>
<td>MEYER C F</td>
</tr>
<tr>
<td>10038</td>
<td>MEYER C F</td>
</tr>
<tr>
<td>34205</td>
<td>MEYER R</td>
</tr>
<tr>
<td>10031</td>
<td>MICHEL J</td>
</tr>
<tr>
<td>10033</td>
<td>MICHEL J W</td>
</tr>
<tr>
<td>30050</td>
<td>MICHEL R W</td>
</tr>
<tr>
<td>40414</td>
<td>MIDDLETON R L</td>
</tr>
<tr>
<td>40104</td>
<td>MIKHAILOV I F</td>
</tr>
<tr>
<td>23000</td>
<td>MILLER A R</td>
</tr>
<tr>
<td>22190</td>
<td>MILLIKEN T H</td>
</tr>
<tr>
<td>34231</td>
<td>MILLS G A</td>
</tr>
<tr>
<td>52019</td>
<td>MILLS R L</td>
</tr>
<tr>
<td>22628</td>
<td>MILNER G</td>
</tr>
<tr>
<td>40308</td>
<td>MINKIN H L</td>
</tr>
<tr>
<td>52022</td>
<td>MIYATA S</td>
</tr>
<tr>
<td>34220</td>
<td>MIZUGUCHI J</td>
</tr>
<tr>
<td>40503</td>
<td>MONTEATH E B</td>
</tr>
<tr>
<td>40106</td>
<td>MORAIN W A</td>
</tr>
<tr>
<td>30059</td>
<td>MORATH W D</td>
</tr>
<tr>
<td>30073</td>
<td>MORATH W D</td>
</tr>
<tr>
<td>30038</td>
<td>MORGAN C J</td>
</tr>
<tr>
<td>30034</td>
<td>MORGAN C J</td>
</tr>
<tr>
<td>34266</td>
<td>MORGAN J R</td>
</tr>
<tr>
<td>30072</td>
<td>MORGAN N E</td>
</tr>
<tr>
<td>30073</td>
<td>MORGAN N E</td>
</tr>
<tr>
<td>34617</td>
<td>MORGAN W L</td>
</tr>
<tr>
<td>30011</td>
<td>MORGAN W L</td>
</tr>
<tr>
<td>22174</td>
<td>MORGENSTERN H C</td>
</tr>
<tr>
<td>33054</td>
<td>MORGENTHALER J H</td>
</tr>
<tr>
<td>22643</td>
<td>MORIDA Y</td>
</tr>
<tr>
<td>22638</td>
<td>MORITA Y</td>
</tr>
<tr>
<td>2003</td>
<td>MORITZ JEAN</td>
</tr>
<tr>
<td>34829</td>
<td>MRRILL C C</td>
</tr>
<tr>
<td>34249</td>
<td>MRRILL C C</td>
</tr>
<tr>
<td>34252</td>
<td>MOULTON D M</td>
</tr>
<tr>
<td>20013</td>
<td>MOULTON D M</td>
</tr>
<tr>
<td>20507</td>
<td>MROCHEK J E</td>
</tr>
<tr>
<td>34011</td>
<td>MUCHNIK G F</td>
</tr>
<tr>
<td>33065</td>
<td>MUeller G</td>
</tr>
<tr>
<td>Page</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>22213</td>
<td>MUKHAMEDZYANOV A K</td>
</tr>
<tr>
<td>22614</td>
<td>MUKHERJEE N L</td>
</tr>
<tr>
<td>23606</td>
<td>MULLIN M G</td>
</tr>
<tr>
<td>41011</td>
<td>MULLINS J C</td>
</tr>
<tr>
<td>40414</td>
<td>MULLOY L B</td>
</tr>
<tr>
<td>40409</td>
<td>MURLEY E</td>
</tr>
<tr>
<td>50006</td>
<td>MURPHY W J</td>
</tr>
<tr>
<td>32004</td>
<td>MURRAY R G</td>
</tr>
<tr>
<td>32014</td>
<td>MURRAY R G</td>
</tr>
<tr>
<td>51013</td>
<td>MURRAY R T</td>
</tr>
<tr>
<td>33023</td>
<td>MUSIAL N T</td>
</tr>
<tr>
<td>32011</td>
<td>MUZIO L</td>
</tr>
<tr>
<td>52050</td>
<td>NADLER R A</td>
</tr>
<tr>
<td>30027</td>
<td>NAGAI C K</td>
</tr>
<tr>
<td>40210</td>
<td>NAGAMOTO T T</td>
</tr>
<tr>
<td>31009</td>
<td>NAGEL A L</td>
</tr>
<tr>
<td>22104</td>
<td>NAKAMURA S</td>
</tr>
<tr>
<td>34209</td>
<td>NAKANISHI Y</td>
</tr>
<tr>
<td>52042</td>
<td>NAMBOODHIRI T K</td>
</tr>
<tr>
<td>52009</td>
<td>NAMBOODHIRI T K G NANIS L</td>
</tr>
<tr>
<td>52042</td>
<td>NANIS L</td>
</tr>
<tr>
<td>52040</td>
<td>NANIS L</td>
</tr>
<tr>
<td>22147</td>
<td>NEBGEN W H</td>
</tr>
<tr>
<td>52026</td>
<td>NELSON H G</td>
</tr>
<tr>
<td>52020</td>
<td>NELSON H G</td>
</tr>
<tr>
<td>22215</td>
<td>NELSON W L</td>
</tr>
<tr>
<td>22608</td>
<td>NEWTON C L</td>
</tr>
<tr>
<td>10005</td>
<td>NG D Y C</td>
</tr>
<tr>
<td>30054</td>
<td>NICOLLS J A</td>
</tr>
<tr>
<td>34001</td>
<td>NIEDRACH L W</td>
</tr>
<tr>
<td>34611</td>
<td>NIEDRACH L W</td>
</tr>
<tr>
<td>34257</td>
<td>NIEDRACH L W</td>
</tr>
<tr>
<td>33049</td>
<td>NIEZGODKA F J</td>
</tr>
<tr>
<td>22612</td>
<td>NISBET D F</td>
</tr>
<tr>
<td>34646</td>
<td>NISCHIK H</td>
</tr>
<tr>
<td>34818</td>
<td>NISCHIK H</td>
</tr>
<tr>
<td>23011</td>
<td>NORMAND A</td>
</tr>
<tr>
<td>50015</td>
<td>NORRIS C J M, JR</td>
</tr>
<tr>
<td>52028</td>
<td>NOSYREVA E S</td>
</tr>
<tr>
<td>22649</td>
<td>NOWAK S</td>
</tr>
<tr>
<td>34629</td>
<td>NOWOTKA A</td>
</tr>
<tr>
<td>23414</td>
<td>NUMATA A</td>
</tr>
<tr>
<td>20510</td>
<td>NUTTALL L J</td>
</tr>
<tr>
<td>34022</td>
<td>NUTTALL L J</td>
</tr>
<tr>
<td>34801</td>
<td>NUTTALL L J</td>
</tr>
<tr>
<td>30012</td>
<td>OGERO M</td>
</tr>
<tr>
<td>40416</td>
<td>OGLIN B</td>
</tr>
<tr>
<td>40000</td>
<td>OHTA T</td>
</tr>
<tr>
<td>22160</td>
<td>OKA M</td>
</tr>
<tr>
<td>34200</td>
<td>OKRENT E H</td>
</tr>
<tr>
<td>22004</td>
<td>OLDWEILER MORCY E</td>
</tr>
<tr>
<td>40007</td>
<td>OLIEN N A</td>
</tr>
<tr>
<td>40004</td>
<td>OLIEN N A</td>
</tr>
<tr>
<td>Author</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Olness R J</td>
<td>41014</td>
</tr>
<tr>
<td>Olson K E</td>
<td>34631</td>
</tr>
<tr>
<td>Oman R A</td>
<td>33019</td>
</tr>
<tr>
<td>Oppenhauser H Jr</td>
<td>52000</td>
</tr>
<tr>
<td>Orpishko A A</td>
<td>22625</td>
</tr>
<tr>
<td>Orpishko A A</td>
<td>22620</td>
</tr>
<tr>
<td>Oswin H G</td>
<td>34613</td>
</tr>
<tr>
<td>Otc Y</td>
<td>40401</td>
</tr>
<tr>
<td>Otterson D A</td>
<td>52031</td>
</tr>
<tr>
<td>Pagani G</td>
<td>22183</td>
</tr>
<tr>
<td>Page R J</td>
<td>30001</td>
</tr>
<tr>
<td>Palmer N I</td>
<td>34026</td>
</tr>
<tr>
<td>Palmer N I</td>
<td>34613</td>
</tr>
<tr>
<td>Pangborn J B</td>
<td>21008</td>
</tr>
<tr>
<td>Papamarcos John</td>
<td>22006</td>
</tr>
<tr>
<td>Parisot J</td>
<td>34205</td>
</tr>
<tr>
<td>Parnley R T</td>
<td>40005</td>
</tr>
<tr>
<td>Parry J</td>
<td>34626</td>
</tr>
<tr>
<td>Pashukskaya L A</td>
<td>22620</td>
</tr>
<tr>
<td>Paskudskaya L A</td>
<td>22625</td>
</tr>
<tr>
<td>Patrikeev V V</td>
<td>22632</td>
</tr>
<tr>
<td>Pauly J</td>
<td>23022</td>
</tr>
<tr>
<td>Pavli A J</td>
<td>30032</td>
</tr>
<tr>
<td>Payne R</td>
<td>33055</td>
</tr>
<tr>
<td>Peak W R</td>
<td>34838</td>
</tr>
<tr>
<td>Pearce L J</td>
<td>34204</td>
</tr>
<tr>
<td>Pearce L J</td>
<td>34221</td>
</tr>
<tr>
<td>Pearson J W</td>
<td>34217</td>
</tr>
<tr>
<td>Pearson J W</td>
<td>34014</td>
</tr>
<tr>
<td>Peattie C G</td>
<td>34242</td>
</tr>
<tr>
<td>Peattie C G</td>
<td>34027</td>
</tr>
<tr>
<td>Perez Del Notario P</td>
<td>33005</td>
</tr>
<tr>
<td>Perry H Jr</td>
<td>23206</td>
</tr>
<tr>
<td>Petrovic C B</td>
<td>34614</td>
</tr>
<tr>
<td>Pfefferle W C</td>
<td>34100</td>
</tr>
<tr>
<td>Pfefferle W C</td>
<td>34845</td>
</tr>
<tr>
<td>Phillips B R</td>
<td>30032</td>
</tr>
<tr>
<td>Pickering H W</td>
<td>52043</td>
</tr>
<tr>
<td>Pilc A</td>
<td>51003</td>
</tr>
<tr>
<td>Pilc A</td>
<td>51004</td>
</tr>
<tr>
<td>Plank C J</td>
<td>22162</td>
</tr>
<tr>
<td>Platner J L</td>
<td>34505</td>
</tr>
<tr>
<td>Plaucke F M</td>
<td>34823</td>
</tr>
<tr>
<td>Plust H G</td>
<td>34503</td>
</tr>
<tr>
<td>Poljakov Yu G</td>
<td>20004</td>
</tr>
<tr>
<td>Pompon J P</td>
<td>34222</td>
</tr>
<tr>
<td>Pope R B</td>
<td>10075</td>
</tr>
<tr>
<td>Popov K V</td>
<td>52028</td>
</tr>
<tr>
<td>Portugimov E V</td>
<td>22626</td>
</tr>
<tr>
<td>Post H</td>
<td>33049</td>
</tr>
<tr>
<td>Post R E</td>
<td>34834</td>
</tr>
<tr>
<td>Pouli D</td>
<td>34035</td>
</tr>
<tr>
<td>Povinelli L A</td>
<td>33034</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>22201</td>
<td>PRAMUK F S</td>
</tr>
<tr>
<td>22261</td>
<td>PRAZHENNIK YU G</td>
</tr>
<tr>
<td>30028</td>
<td>PRICE H G JR</td>
</tr>
<tr>
<td>23400</td>
<td>PRIDDY M H</td>
</tr>
<tr>
<td>23012</td>
<td>PRIGENT M</td>
</tr>
<tr>
<td>34828</td>
<td>PRIGENT M</td>
</tr>
<tr>
<td>33022</td>
<td>PRINCE W R</td>
</tr>
<tr>
<td>51009</td>
<td>PROFFIT R L</td>
</tr>
<tr>
<td>34508</td>
<td>PROKOPIUS P R</td>
</tr>
<tr>
<td>34502</td>
<td>PRAZHENNIK YU G</td>
</tr>
<tr>
<td>34501</td>
<td>PRONO E</td>
</tr>
<tr>
<td>30064</td>
<td>PROSHCHEHUK K M</td>
</tr>
<tr>
<td>30069</td>
<td>PRONO E</td>
</tr>
<tr>
<td>22646</td>
<td>PROSHCHERUK K M</td>
</tr>
<tr>
<td>20008</td>
<td>PROSKURYAKOV L M ZIZZIN V G</td>
</tr>
<tr>
<td>34643</td>
<td>PSHENICHNIKOV A G</td>
</tr>
<tr>
<td>30044</td>
<td>PULKERT G</td>
</tr>
<tr>
<td>22001</td>
<td>PULSIFER A H</td>
</tr>
<tr>
<td>22000</td>
<td>PULSIFER A H</td>
</tr>
<tr>
<td>22108</td>
<td>PUPKO S</td>
</tr>
<tr>
<td>22171</td>
<td>QUARTULLI D J</td>
</tr>
<tr>
<td>33025</td>
<td>QUENTMEYER R J</td>
</tr>
<tr>
<td>33030</td>
<td>QUENTMEYER R J</td>
</tr>
<tr>
<td>33026</td>
<td>QUENTMEYER R J</td>
</tr>
<tr>
<td>22644</td>
<td>RADANCEVIC M</td>
</tr>
<tr>
<td>52035</td>
<td>RADHAKRISHNAN T P</td>
</tr>
<tr>
<td>30054</td>
<td>RAGLAND K W</td>
</tr>
<tr>
<td>34260</td>
<td>RAMAKUMAR R</td>
</tr>
<tr>
<td>34251</td>
<td>RAMAKUMAR R</td>
</tr>
<tr>
<td>34255</td>
<td>RAMAKUMAR R</td>
</tr>
<tr>
<td>33036</td>
<td>RAMSHAW C</td>
</tr>
<tr>
<td>30071</td>
<td>RAMSHAW C</td>
</tr>
<tr>
<td>33016</td>
<td>RANKIN R L</td>
</tr>
<tr>
<td>52007</td>
<td>RAPIN M</td>
</tr>
<tr>
<td>52037</td>
<td>RAWL D E JR</td>
</tr>
<tr>
<td>52024</td>
<td>RAYMOND E L</td>
</tr>
<tr>
<td>22109</td>
<td>RAYMOND R</td>
</tr>
<tr>
<td>22107</td>
<td>REED R M</td>
</tr>
<tr>
<td>10081</td>
<td>REED T B</td>
</tr>
<tr>
<td>30017</td>
<td>REGNIER W W</td>
</tr>
<tr>
<td>22153</td>
<td>REICHEL H</td>
</tr>
<tr>
<td>50000</td>
<td>REIDER R</td>
</tr>
<tr>
<td>40102</td>
<td>REIFF D D</td>
</tr>
<tr>
<td>43008</td>
<td>REILLY J J</td>
</tr>
<tr>
<td>43004</td>
<td>REILLY J J</td>
</tr>
<tr>
<td>43002</td>
<td>REILLY J J</td>
</tr>
<tr>
<td>43005</td>
<td>REILLY J J</td>
</tr>
<tr>
<td>43001</td>
<td>REILLY J J</td>
</tr>
<tr>
<td>43010</td>
<td>REILLY J J</td>
</tr>
<tr>
<td>43000</td>
<td>REILLY J J</td>
</tr>
<tr>
<td>43007</td>
<td>REILLY J J</td>
</tr>
<tr>
<td>43011</td>
<td>REILLY J J</td>
</tr>
<tr>
<td>43003</td>
<td>REILLY J J</td>
</tr>
<tr>
<td>395</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Author</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>30041</td>
<td>REINKENHOF J</td>
</tr>
<tr>
<td>22214</td>
<td>REINMUTH E</td>
</tr>
<tr>
<td>21003</td>
<td>REINSTROM R</td>
</tr>
<tr>
<td>20512</td>
<td>REINSTROM R M</td>
</tr>
<tr>
<td>33040</td>
<td>RENICH W T</td>
</tr>
<tr>
<td>42003</td>
<td>REYNOLDS R A</td>
</tr>
<tr>
<td>20002</td>
<td>RHODES WILLIAM A</td>
</tr>
<tr>
<td>40507</td>
<td>RIBBLE G H JR</td>
</tr>
<tr>
<td>34844</td>
<td>RICE W E</td>
</tr>
<tr>
<td>41004</td>
<td>RICHARDS R J</td>
</tr>
<tr>
<td>34646</td>
<td>RICHTER G</td>
</tr>
<tr>
<td>51006</td>
<td>RICHTERING H</td>
</tr>
<tr>
<td>33036</td>
<td>RICKETSON B W A</td>
</tr>
<tr>
<td>30071</td>
<td>RICKETSON B W A</td>
</tr>
<tr>
<td>30069</td>
<td>RING T A</td>
</tr>
<tr>
<td>22600</td>
<td>RING T A</td>
</tr>
<tr>
<td>22125</td>
<td>RIPLEY D L</td>
</tr>
<tr>
<td>30048</td>
<td>ROBACK R</td>
</tr>
<tr>
<td>30012</td>
<td>ROBOTTI A C</td>
</tr>
<tr>
<td>32132</td>
<td>ROCHE A</td>
</tr>
<tr>
<td>34636</td>
<td>ROCKETT J A</td>
</tr>
<tr>
<td>33047</td>
<td>RODE J A</td>
</tr>
<tr>
<td>40008</td>
<td>RODE H M</td>
</tr>
<tr>
<td>30064</td>
<td>RODE H M</td>
</tr>
<tr>
<td>30061</td>
<td>RODEWALD N</td>
</tr>
<tr>
<td>41014</td>
<td>RODEWALD N</td>
</tr>
<tr>
<td>50239</td>
<td>ROGER F J</td>
</tr>
<tr>
<td>33043</td>
<td>ROGER H C</td>
</tr>
<tr>
<td>30009</td>
<td>ROGER R C</td>
</tr>
<tr>
<td>30008</td>
<td>ROHLICK H E</td>
</tr>
<tr>
<td>30058</td>
<td>ROLLBEHLER R J</td>
</tr>
<tr>
<td>30004</td>
<td>ROM F E</td>
</tr>
<tr>
<td>51009</td>
<td>ROSEN B</td>
</tr>
<tr>
<td>40005</td>
<td>ROSENBAUM H</td>
</tr>
<tr>
<td>10064</td>
<td>ROSENBERG R R</td>
</tr>
<tr>
<td>22162</td>
<td>ROSINSKI E J</td>
</tr>
<tr>
<td>41014</td>
<td>ROSS M</td>
</tr>
<tr>
<td>52027</td>
<td>ROSSIN A D</td>
</tr>
<tr>
<td>22145</td>
<td>ROTHFLEISCH J E</td>
</tr>
<tr>
<td>22136</td>
<td>ROTHFLEISCH J E</td>
</tr>
<tr>
<td>23013</td>
<td>ROTHFLEISCH J E</td>
</tr>
<tr>
<td>23003</td>
<td>ROTHFLEISCH J E</td>
</tr>
<tr>
<td>22216</td>
<td>ROTHFLEISCH J E</td>
</tr>
<tr>
<td>34813</td>
<td>ROUSCILLES A</td>
</tr>
<tr>
<td>52007</td>
<td>ROUX C</td>
</tr>
<tr>
<td>51005</td>
<td>ROWE V R</td>
</tr>
<tr>
<td>34239</td>
<td>ROWLETTE J J</td>
</tr>
<tr>
<td>22196</td>
<td>ROZHDESTVANSKII V P</td>
</tr>
<tr>
<td>40113</td>
<td>ROZHKOV I V</td>
</tr>
<tr>
<td>23426</td>
<td>RUBIN L R</td>
</tr>
<tr>
<td>23440</td>
<td>RUEHEMMANN M</td>
</tr>
<tr>
<td>34618</td>
<td>RULFS C L</td>
</tr>
<tr>
<td>Author Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>RUOTOLA A W</td>
<td>52024</td>
</tr>
<tr>
<td>RUPE J</td>
<td>32021</td>
</tr>
<tr>
<td>RUSSELL J H</td>
<td>20510</td>
</tr>
<tr>
<td>RUSSELL L M</td>
<td>30033</td>
</tr>
<tr>
<td>RYAN J R</td>
<td>23021</td>
</tr>
<tr>
<td>SABIROV F Z</td>
<td>34643</td>
</tr>
<tr>
<td>SACKS M E</td>
<td>22005</td>
</tr>
<tr>
<td>SAGAR K J</td>
<td>22112</td>
</tr>
<tr>
<td>SAGATA J</td>
<td>40403</td>
</tr>
<tr>
<td>SAGERMAN G D</td>
<td>30003</td>
</tr>
<tr>
<td>SAINT JOHN C</td>
<td>52048</td>
</tr>
<tr>
<td>SAITO M</td>
<td>22638</td>
</tr>
<tr>
<td>SAKIKAWA N</td>
<td>34644</td>
</tr>
<tr>
<td>SALAMANDRA G D</td>
<td>33017</td>
</tr>
<tr>
<td>SALATHE R E</td>
<td>34632</td>
</tr>
<tr>
<td>SALLAMASSY O K</td>
<td>40415</td>
</tr>
<tr>
<td>SALLMI R J</td>
<td>30036</td>
</tr>
<tr>
<td>SALZANO F J</td>
<td>10046</td>
</tr>
<tr>
<td>SANDERSON R A</td>
<td>34506</td>
</tr>
<tr>
<td>SANDSTEDE G</td>
<td>34004</td>
</tr>
<tr>
<td>SANGIOVANNI J S</td>
<td>33051</td>
</tr>
<tr>
<td>SAREEN S</td>
<td>34107</td>
</tr>
<tr>
<td>SARKISOV O M</td>
<td>33008</td>
</tr>
<tr>
<td>SAVAGE R L</td>
<td>10069</td>
</tr>
<tr>
<td>SAVAGE R L</td>
<td>10068</td>
</tr>
<tr>
<td>SAVCHUK P S</td>
<td>22646</td>
</tr>
<tr>
<td>SAWYER R F</td>
<td>32011</td>
</tr>
<tr>
<td>SCHACHT R L</td>
<td>33025</td>
</tr>
<tr>
<td>SCHACHT R L</td>
<td>33026</td>
</tr>
<tr>
<td>SCHACHT R L</td>
<td>33030</td>
</tr>
<tr>
<td>SCHADE C W</td>
<td>20501</td>
</tr>
<tr>
<td>SCHALLUS E</td>
<td>22138</td>
</tr>
<tr>
<td>SCHELL J T</td>
<td>40414</td>
</tr>
<tr>
<td>SCHELLER K</td>
<td>33065</td>
</tr>
<tr>
<td>SCHRUNK G O</td>
<td>23601</td>
</tr>
<tr>
<td>SCHIEFELER L</td>
<td>33011</td>
</tr>
<tr>
<td>SCHILLER T G</td>
<td>34838</td>
</tr>
<tr>
<td>SCHLEGEL H G</td>
<td>23201</td>
</tr>
<tr>
<td>SCHLINGER W G</td>
<td>22200</td>
</tr>
<tr>
<td>SCHLINGER W G</td>
<td>22204</td>
</tr>
<tr>
<td>SCHLINGER W G</td>
<td>22219</td>
</tr>
<tr>
<td>SCHMID M R</td>
<td>22005</td>
</tr>
<tr>
<td>SCHMIDT G</td>
<td>23025</td>
</tr>
<tr>
<td>SCHMIDT H R</td>
<td>22133</td>
</tr>
<tr>
<td>SCHMITZ E W</td>
<td>34631</td>
</tr>
<tr>
<td>SCHNEIDER F A</td>
<td>34809</td>
</tr>
<tr>
<td>SCHOEPEL R J</td>
<td>32015</td>
</tr>
<tr>
<td>SCHOEPEL R J</td>
<td>32016</td>
</tr>
<tr>
<td>SCHOEPEL R J</td>
<td>32004</td>
</tr>
<tr>
<td>SCHOEPEL R J</td>
<td>32014</td>
</tr>
<tr>
<td>SCHOLZ W</td>
<td>10053</td>
</tr>
<tr>
<td>SCHOLZ W</td>
<td>23433</td>
</tr>
<tr>
<td></td>
<td>23451</td>
</tr>
</tbody>
</table>

397
AUTHOR INDEX

<table>
<thead>
<tr>
<th>Page Numbers</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>21006</td>
<td>SCHREINER F</td>
</tr>
<tr>
<td>20020</td>
<td>SCHUBERT F H</td>
</tr>
<tr>
<td>20018</td>
<td>SCHUBERT F H</td>
</tr>
<tr>
<td>20017</td>
<td>SCHUBERT F H</td>
</tr>
<tr>
<td>20016</td>
<td>SCHULDINER S</td>
</tr>
<tr>
<td>34638</td>
<td>SCHULDINER S</td>
</tr>
<tr>
<td>34602</td>
<td>SCHULZE M</td>
</tr>
<tr>
<td>40107</td>
<td>SCHUMAN M D</td>
</tr>
<tr>
<td>33033</td>
<td>SCHWARTZ H J</td>
</tr>
<tr>
<td>34206</td>
<td>SCHWARTZ H J</td>
</tr>
<tr>
<td>34820</td>
<td>SCIBBE H W</td>
</tr>
<tr>
<td>40501</td>
<td>SCIBBE H W</td>
</tr>
<tr>
<td>40505</td>
<td>SCOTT O L</td>
</tr>
<tr>
<td>30052</td>
<td>SECHENOV G P</td>
</tr>
<tr>
<td>22642</td>
<td>SEDERQUIST R A</td>
</tr>
<tr>
<td>22103</td>
<td>SEIDEL A</td>
</tr>
<tr>
<td>30061</td>
<td>SENNEWALD K</td>
</tr>
<tr>
<td>22138</td>
<td>SEREBRYANSKII F Z</td>
</tr>
<tr>
<td>23417</td>
<td>SERFASS E J</td>
</tr>
<tr>
<td>22626</td>
<td>SERGEEEVA S L</td>
</tr>
<tr>
<td>20001</td>
<td>SESHADRI N</td>
</tr>
<tr>
<td>22185</td>
<td>SETZER H J</td>
</tr>
<tr>
<td>22161</td>
<td>SEYMOUR C S</td>
</tr>
<tr>
<td>34211</td>
<td>SHALIT H</td>
</tr>
<tr>
<td>34231</td>
<td>SHALIT H</td>
</tr>
<tr>
<td>22105</td>
<td>SHALIT H</td>
</tr>
<tr>
<td>22008</td>
<td>SHARKEY A G JR</td>
</tr>
<tr>
<td>22012</td>
<td>SHARKEY A G JR</td>
</tr>
<tr>
<td>22123</td>
<td>SHEarer C J</td>
</tr>
<tr>
<td>10032</td>
<td>SHEEHAN T V</td>
</tr>
<tr>
<td>43008</td>
<td>SHEEHAN T V</td>
</tr>
<tr>
<td>43011</td>
<td>SHEEHAN T V</td>
</tr>
<tr>
<td>40421</td>
<td>SHERMAN A L</td>
</tr>
<tr>
<td>40401</td>
<td>SHINKAWA T</td>
</tr>
<tr>
<td>30028</td>
<td>SHINN A M JR</td>
</tr>
<tr>
<td>22617</td>
<td>SHORINA E D</td>
</tr>
<tr>
<td>30001</td>
<td>SHORT R A</td>
</tr>
<tr>
<td>52005</td>
<td>SHUPE D S</td>
</tr>
<tr>
<td>34643</td>
<td>SHURAVLEVA V N</td>
</tr>
<tr>
<td>33009</td>
<td>SIEGELMAN D</td>
</tr>
<tr>
<td>34811</td>
<td>SIEMENS A G</td>
</tr>
<tr>
<td>23417</td>
<td>SILMAN H</td>
</tr>
<tr>
<td>20007</td>
<td>SILMAN H</td>
</tr>
<tr>
<td>41000</td>
<td>SINDT C</td>
</tr>
<tr>
<td>41003</td>
<td>SINDT C F</td>
</tr>
<tr>
<td>41010</td>
<td>SINDT C F</td>
</tr>
<tr>
<td>41005</td>
<td>SINDT C F</td>
</tr>
<tr>
<td>41009</td>
<td>SINDT C F</td>
</tr>
<tr>
<td>22205</td>
<td>SINFELT J H</td>
</tr>
<tr>
<td>51005</td>
<td>SINGER J M</td>
</tr>
<tr>
<td>40108</td>
<td>SINGLETON A H</td>
</tr>
<tr>
<td>34018</td>
<td>SINGMAN D</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

SECTION "A"

22180 SINGMAN T L
34600 SIZERMORE K D
34510 SKELLENGER G D
33065 SKINNER G B
34002 SKUNDIN A M
42003 SLAGER W L
22200 SLATER W L
22204 SLATER W L
22219 SLOOP J L
22219 SLOTSKY S
30074 SMITH A L
33057 SMITH A L
33029 SMITH C N
33024 SMITH C S
40006 SMITH C S
22618 SMITH M
22177 SMITH M
22150 SMITH M
30051 SMITH E B
34802 SMITH G E
30042 SMITH G R
23017 SMITH I E
52031 SMITH R J
40510 SMITH R V
34230 SNYDER
22166 SOENSKEN H
30034 SOOD D E
22130 SOLBAKEN A
52004 SOKHO A I
20508 SPENGLER H H
22207 SPIELMAN M
34511 SPRENGEL D
40422 SPUCKLER C M
40413 SPUCKLER C M
22163 STAEG E H
34821 STARKEY G E
32011 STARKMAN E S
34266 STEEDMAN J K
34224 STEDMAN J K
30056 STEER T E
52016 STEIGERWALD E A
52013 STEIGERWALD E A
52026 STEIN J E
22138 STEPHAN H W
23008 STEPHAN K
30035 STERNFELD H J
30041 STERNFELD H J
40211 STETSENKO YU E
40510 STEWARD W G
30014 STEWARD F M
30014 STEWARD F M
30014 STEWARD H A
23428 STEWARD R D
30000 STEWARD W F
32020 STEZHESKII A I
22631

399
SECTION 'A'

STICKNEY R E
STINSON H P
STOCKEL J F
STOLL A P
STORMONT D H
STORMONT D H
STOTLER H H
STOTT D
STRAIGHT D M
STRASSER A
STREICH M
STRELZOFF S
STRICKLAND R J
STRIE L
STRIER M P
STROKIN V N
STRUM F VON
STRZELECKI J
STUART A K
STUART A K
STUART T S
STUART T S
STUCKEY J M
STURM F V
SUBRAMANYAN P K
SUGGITT R M
SUMMERS C M
SUMNER I E
SUZUKI S
SVATON J
SWAIN M F
SWAIN M R
SWETTE L
SWITHENBANK J
SWITHENBANK J
SYRETT B C
SZYMALAK E J
TAKAHASHI R
TAKEHARA Z
TAKESHIMA G
TALBERT S
TAMPLIN A R
TANNER E C
TANTRAM A D S
TARIFA C S
TATRO R E
TAYLOR E
TAYLOR H
TAYLOR M E
TAYLOR W F
TAYLOR W F
TELSCHOW C G
TER HAAR L W
<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22117</td>
<td>TER HAAR L W</td>
</tr>
<tr>
<td>22101</td>
<td>TER HAAR L W</td>
</tr>
<tr>
<td>20004</td>
<td>TEREGRULOV S KH</td>
</tr>
<tr>
<td>52051</td>
<td>TETELMAN A S</td>
</tr>
<tr>
<td>52004</td>
<td>TETERSKII V A</td>
</tr>
<tr>
<td>34834</td>
<td>THALLER L H</td>
</tr>
<tr>
<td>34269</td>
<td>THALLER L H</td>
</tr>
<tr>
<td>34506</td>
<td>THOMPSON R A</td>
</tr>
<tr>
<td>34634</td>
<td>THRUBER W C</td>
</tr>
<tr>
<td>50009</td>
<td>THUREL G</td>
</tr>
<tr>
<td>22129</td>
<td>TIERROI Y J</td>
</tr>
<tr>
<td>22149</td>
<td>TILLMAN E S JR</td>
</tr>
<tr>
<td>20504</td>
<td>TITTERINGTON W A</td>
</tr>
<tr>
<td>52004</td>
<td>TKACHEV V I</td>
</tr>
<tr>
<td>10059</td>
<td>TODD D K</td>
</tr>
<tr>
<td>10058</td>
<td>TODD D K</td>
</tr>
<tr>
<td>22110</td>
<td>TODESCA F</td>
</tr>
<tr>
<td>22134</td>
<td>TODESCA F</td>
</tr>
<tr>
<td>22638</td>
<td>TOKUNO M</td>
</tr>
<tr>
<td>34220</td>
<td>TORA M</td>
</tr>
<tr>
<td>30058</td>
<td>TOMAZIC W A</td>
</tr>
<tr>
<td>34232</td>
<td>TOMTER S S</td>
</tr>
<tr>
<td>22152</td>
<td>TOPSDE H F A</td>
</tr>
<tr>
<td>33007</td>
<td>TOTH H E</td>
</tr>
<tr>
<td>34242</td>
<td>TRACHTENBERG I</td>
</tr>
<tr>
<td>34635</td>
<td>TRAGERT W E</td>
</tr>
<tr>
<td>22148</td>
<td>TRETNER L</td>
</tr>
<tr>
<td>33064</td>
<td>TRIBBECK T D</td>
</tr>
<tr>
<td>22157</td>
<td>TRIMARKE C R</td>
</tr>
<tr>
<td>40105</td>
<td>TROTTSKII V F</td>
</tr>
<tr>
<td>10021</td>
<td>TROTTER R J</td>
</tr>
<tr>
<td>34242</td>
<td>TRUITT J K</td>
</tr>
<tr>
<td>34241</td>
<td>TRUITT J K</td>
</tr>
<tr>
<td>34243</td>
<td>TRUITT J K</td>
</tr>
<tr>
<td>22600</td>
<td>TSE Y S</td>
</tr>
<tr>
<td>22168</td>
<td>TSIMBALISTAYA N N</td>
</tr>
<tr>
<td>22626</td>
<td>TUGUSHI G A</td>
</tr>
<tr>
<td>40507</td>
<td>TURNFEY C E</td>
</tr>
<tr>
<td>22112</td>
<td>TWIST D R</td>
</tr>
<tr>
<td>34261</td>
<td>UJOJILU</td>
</tr>
<tr>
<td>52044</td>
<td>UHLIG H H</td>
</tr>
<tr>
<td>40500</td>
<td>Urasek D C</td>
</tr>
<tr>
<td>33060</td>
<td>URRUTIA I J</td>
</tr>
<tr>
<td>22601</td>
<td>VAHALA J</td>
</tr>
<tr>
<td>22180</td>
<td>VAHLDIECK N P</td>
</tr>
<tr>
<td>23007</td>
<td>VAHLDIECK N P</td>
</tr>
<tr>
<td>34230</td>
<td>VAHLDIECK N P</td>
</tr>
<tr>
<td>22627</td>
<td>VALIBEKOV Y U V</td>
</tr>
<tr>
<td>23424</td>
<td>VAN BAUSH E H</td>
</tr>
<tr>
<td>23204</td>
<td>VAN HEES W</td>
</tr>
<tr>
<td>22190</td>
<td>VAN HOOK J P</td>
</tr>
<tr>
<td>32002</td>
<td>VAN VORST W D</td>
</tr>
<tr>
<td>52055</td>
<td>VAN WANDERHAM M C</td>
</tr>
<tr>
<td>Author Index</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>VANDERVCORT R R</td>
<td></td>
</tr>
<tr>
<td>VANIMAN J I.</td>
<td></td>
</tr>
<tr>
<td>VANNATTA D W</td>
<td></td>
</tr>
<tr>
<td>VANPEE M</td>
<td></td>
</tr>
<tr>
<td>VANSANT C A</td>
<td></td>
</tr>
<tr>
<td>VANT-HULL L L</td>
<td></td>
</tr>
<tr>
<td>VANVUCHT J H</td>
<td></td>
</tr>
<tr>
<td>VARTA A G</td>
<td></td>
</tr>
<tr>
<td>VARTA A G</td>
<td></td>
</tr>
<tr>
<td>VEDENEEV V I</td>
<td></td>
</tr>
<tr>
<td>VELIEV YA R</td>
<td></td>
</tr>
<tr>
<td>VELIEV YA R</td>
<td></td>
</tr>
<tr>
<td>VERESHCAGIN L F</td>
<td></td>
</tr>
<tr>
<td>VERMEIL C</td>
<td></td>
</tr>
<tr>
<td>VERTFS M A</td>
<td></td>
</tr>
<tr>
<td>VESELOV V V</td>
<td></td>
</tr>
<tr>
<td>VESELOV V V</td>
<td></td>
</tr>
<tr>
<td>VIC R</td>
<td></td>
</tr>
<tr>
<td>VIC R</td>
<td></td>
</tr>
<tr>
<td>VIC R</td>
<td></td>
</tr>
<tr>
<td>VIESTICH W</td>
<td></td>
</tr>
<tr>
<td>VIENS C H</td>
<td></td>
</tr>
<tr>
<td>VINCENT D W</td>
<td></td>
</tr>
<tr>
<td>VOGEL H H</td>
<td></td>
</tr>
<tr>
<td>VOGEL J E</td>
<td></td>
</tr>
<tr>
<td>VOGEL W M</td>
<td></td>
</tr>
<tr>
<td>VOLFKOVICH YU M</td>
<td></td>
</tr>
<tr>
<td>VON WIESENTHAL P</td>
<td></td>
</tr>
<tr>
<td>VOOGD J</td>
<td></td>
</tr>
<tr>
<td>VOOGD J</td>
<td></td>
</tr>
<tr>
<td>VORUM D A</td>
<td></td>
</tr>
<tr>
<td>VOTH R C</td>
<td></td>
</tr>
<tr>
<td>VOTH R O</td>
<td></td>
</tr>
<tr>
<td>VUJCIC V L</td>
<td></td>
</tr>
<tr>
<td>WAGNER W R</td>
<td></td>
</tr>
<tr>
<td>WAIDE C H</td>
<td></td>
</tr>
<tr>
<td>WAKEFIELD C B</td>
<td></td>
</tr>
<tr>
<td>WALKER R W</td>
<td></td>
</tr>
<tr>
<td>WALTER R J</td>
<td></td>
</tr>
<tr>
<td>WALTER R J</td>
<td></td>
</tr>
<tr>
<td>WALTER R J</td>
<td></td>
</tr>
<tr>
<td>WANHAINEN J P</td>
<td></td>
</tr>
<tr>
<td>WAPATO P G</td>
<td></td>
</tr>
<tr>
<td>WAPATO P G</td>
<td></td>
</tr>
<tr>
<td>WARD J J</td>
<td></td>
</tr>
<tr>
<td>WARNER T B</td>
<td></td>
</tr>
<tr>
<td>WARNOCK D R</td>
<td></td>
</tr>
<tr>
<td>WARSHAWSKY I</td>
<td></td>
</tr>
<tr>
<td>WASSERBAUER J F</td>
<td></td>
</tr>
<tr>
<td>WATSON R G H</td>
<td></td>
</tr>
</tbody>
</table>
AUTHOR INDEX

34204
34212
34236
31007
34203
32005
34611
23423
41004
41003
22007
50015
22011
22109
21002
34500
22141
23602
22001
22000
34833
31007
40404
40419
52059
52018
34217
34608
10030
10065
10076
50010
40601
40200
40112
34234
10032
10046
43008
43011
34824
34814
41008
22197
34617
43008
43000
43011
43004
43002
43001
43007

WATSON R G H
WATTS C R
WEBB A N
WEBB A N
WEBER R J
WEIDINGER K
WEIL K H
WEINSTOCK I B
WEISS I
WEITZEL D H
WEITZEL D H
WELLMAN P
WEMPLE R P
WENDER I
WENDER I
WENTORF R H JR
WEST A
WEST B R
WEST R E
WHEELOCK T D
WHEELOCK T D
WHITE D W
WHITLOW J B JR
WICHOREK G R
WIEDERKARIIP K E
WILLIAMS D N
WILLIAMS D N
WILLIAMS K R
WILLIAMS K R
WILLIAMS L O
WILLIAMS L O
WILLIAMS L O
WILLIAMSON K D JR
WILLIAMSON K D JR
WILLIAMSON K D JR
WILLIAMSON K D JR
WILNER B M
WINSCH W E
WINSCH W E
WINSCH W E
WINSCH W E
WINSEL A
WINSEL A
WINSTEAD T W
WINTERS C E
WINTERS C E
WISWALL R H
WISWALL R H JR
<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43005</td>
<td>WISWALL R H JR</td>
</tr>
<tr>
<td>43003</td>
<td>WISWALL R H JR</td>
</tr>
<tr>
<td>43010</td>
<td>WISWALL R H JR</td>
</tr>
<tr>
<td>31012</td>
<td>WITCOFSKI R D</td>
</tr>
<tr>
<td>52047</td>
<td>WOHLBERG C</td>
</tr>
<tr>
<td>34610</td>
<td>WOLF G</td>
</tr>
<tr>
<td>23015</td>
<td>WOLFF G</td>
</tr>
<tr>
<td>23015</td>
<td>WOLFGANG H</td>
</tr>
<tr>
<td>34009</td>
<td>WOMACK G J</td>
</tr>
<tr>
<td>40503</td>
<td>WONG G S</td>
</tr>
<tr>
<td>34102</td>
<td>WOOD K D</td>
</tr>
<tr>
<td>52018</td>
<td>WOOD R A</td>
</tr>
<tr>
<td>34612</td>
<td>WOODBERRY N T</td>
</tr>
<tr>
<td>41008</td>
<td>WORLUND A L</td>
</tr>
<tr>
<td>23004</td>
<td>WRIGHT L O</td>
</tr>
<tr>
<td>33041</td>
<td>WRUBEL J A</td>
</tr>
<tr>
<td>10006</td>
<td>WURM J</td>
</tr>
<tr>
<td>40602</td>
<td>WYBRANDOWSKI E</td>
</tr>
<tr>
<td>34802</td>
<td>WYCZALEK F A</td>
</tr>
<tr>
<td>20505</td>
<td>WYDEVEN T</td>
</tr>
<tr>
<td>20018</td>
<td>WYNVEEN R A</td>
</tr>
<tr>
<td>34034</td>
<td>WYNVEEN R A</td>
</tr>
<tr>
<td>31011</td>
<td>YAFFEE M L</td>
</tr>
<tr>
<td>22191</td>
<td>YAITA G</td>
</tr>
<tr>
<td>22625</td>
<td>YAKUNIN O V</td>
</tr>
<tr>
<td>34835</td>
<td>YAMAMOTO T</td>
</tr>
<tr>
<td>40401</td>
<td>YAMAZAKI T</td>
</tr>
<tr>
<td>33062</td>
<td>YATES C L</td>
</tr>
<tr>
<td>31004</td>
<td>YATES G B</td>
</tr>
<tr>
<td>40405</td>
<td>YATES G B</td>
</tr>
<tr>
<td>34025</td>
<td>YEAGER E</td>
</tr>
<tr>
<td>34209</td>
<td>YOSHIZAWA S</td>
</tr>
<tr>
<td>40412</td>
<td>YOUNG C F</td>
</tr>
<tr>
<td>34011</td>
<td>YPPETS F R</td>
</tr>
<tr>
<td>22620</td>
<td>YUKUNIN O V</td>
</tr>
<tr>
<td>30042</td>
<td>ZACHARY A T</td>
</tr>
<tr>
<td>34011</td>
<td>ZAIDENMAN I A</td>
</tr>
<tr>
<td>52012</td>
<td>ZAMIR D</td>
</tr>
<tr>
<td>34106</td>
<td>ZAROMB S</td>
</tr>
<tr>
<td>34615</td>
<td>ZELIGER H I</td>
</tr>
<tr>
<td>23433</td>
<td>ZELLER H</td>
</tr>
<tr>
<td>10019</td>
<td>ZENER G</td>
</tr>
<tr>
<td>22620</td>
<td>ZHOROV YU M</td>
</tr>
<tr>
<td>22625</td>
<td>ZHOROV YU M</td>
</tr>
<tr>
<td>33031</td>
<td>ZIEBLAND H</td>
</tr>
<tr>
<td>41011</td>
<td>ZIEGLER W T</td>
</tr>
<tr>
<td>43012</td>
<td>ZIJLSTRA H</td>
</tr>
<tr>
<td>40416</td>
<td>ZIMNI W F</td>
</tr>
</tbody>
</table>

END OF SECTION 'A*
INDEX OF CORPORATE SOURCES

405
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Index Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMY OF SCIENCES OF THE USSR, MOSCOW, USSR</td>
<td>134010</td>
</tr>
<tr>
<td>ADVANCED TECHNOLOGY LABS, INC, JERICHO, N Y</td>
<td>133061</td>
</tr>
<tr>
<td>AEROJET LIQUID ROCKET CO, SACRAMENTO, CALIF</td>
<td>130016</td>
</tr>
<tr>
<td>AEROJET LIQUID ROCKET CO, SACRAMENTO, CALIF</td>
<td>133018</td>
</tr>
<tr>
<td>AEROJET LIQUID ROCKET CO, SACRAMENTO, CALIF</td>
<td>152038</td>
</tr>
<tr>
<td>AEROJET-GENERAL AEROMETRICS, SAN RAMON, CALIF</td>
<td>140366</td>
</tr>
<tr>
<td>AEROJET-GENERAL CORP, SACRAMENTO, CALIF</td>
<td>130050</td>
</tr>
<tr>
<td>AEROJET-GENERAL CORP, SACRAMENTO, CALIF</td>
<td>130060</td>
</tr>
<tr>
<td>AEROJET-GENERAL CORP, SACRAMENTO, CALIF</td>
<td>140209</td>
</tr>
<tr>
<td>AEROJET-GENERAL CORP, SACRAMENTO, CALIF</td>
<td>140506</td>
</tr>
<tr>
<td>AEROJET-GENERAL CORP, SACRAMENTO, CALIF</td>
<td>142001</td>
</tr>
<tr>
<td>AEROJET-GENERAL CORP, SACRAMENTO, CALIF, LIQUID ROCKET</td>
<td>130063</td>
</tr>
<tr>
<td>AERONAUTICAL MATERIALS LAB, PHILADELPHIA, PA</td>
<td>152046</td>
</tr>
<tr>
<td>AEROSPACE CORP, EL SEGUNDO, CALIF</td>
<td>130045</td>
</tr>
<tr>
<td>AIR FORCE DEPT, WASHINGTON, D C</td>
<td>133011</td>
</tr>
<tr>
<td>AIR PRODUCTS AND CHEMICALS, INC, ALLENTOWN, PA</td>
<td>110012</td>
</tr>
<tr>
<td>AIR PRODUCTS AND CHEMICALS, INC, ALLENTOWN, PA</td>
<td>150007</td>
</tr>
<tr>
<td>AIR REDUCTION CO, INC, NEW YORK, N Y</td>
<td>150005</td>
</tr>
<tr>
<td>AIR REDUCTION CO, INC</td>
<td>140504</td>
</tr>
<tr>
<td>AIRESEARCH MANUFACTURING CO, LOS ANGELES, CALIF</td>
<td>140411</td>
</tr>
<tr>
<td>AIRESEARCH MFG CO, LOS ANGELES, CALIF</td>
<td>130019</td>
</tr>
<tr>
<td>AIRESEARCH MFG CO, LOS ANGELES, CALIF</td>
<td>140412</td>
</tr>
<tr>
<td>AKADEMIYA NAUK, USSR</td>
<td>134011</td>
</tr>
<tr>
<td>ALABAMA UNIVERSITY RESEARCH INSTITUTE, HUNTSVILLE, ALA</td>
<td>134202</td>
</tr>
<tr>
<td>ALCORN COMBUSTION CO</td>
<td>126640</td>
</tr>
<tr>
<td>ALLIED CHEMICAL CORP, IDAHO FALLS, IDAHO</td>
<td>150012</td>
</tr>
<tr>
<td>ALLIED CHEMICAL CORP, MORRISTOWN, N J</td>
<td>134035</td>
</tr>
<tr>
<td>ALLIS-CHALMERS MANUFACTURING CO</td>
<td>120506</td>
</tr>
<tr>
<td>ALLIS-CHALMERS MANUFACTURING CO</td>
<td>120508</td>
</tr>
<tr>
<td>ALLIS-CHALMERS MANUFACTURING CO, MILWAUKEAN, WIS</td>
<td>134034</td>
</tr>
<tr>
<td>ALLIS-CHALMERS MANUFACTURING CO, MILWAUKEAN, WIS</td>
<td>134830</td>
</tr>
<tr>
<td>ALLIS-CHALMERS, MILWAUKEAN, WIS</td>
<td>134839</td>
</tr>
<tr>
<td>ALLISON DIVISION OF GENERAL MOTORS</td>
<td>120501</td>
</tr>
<tr>
<td>ALLISON DIVISION OF GENERAL MOTORS</td>
<td>120512</td>
</tr>
<tr>
<td>ALUMINUM CO OF AMERICA, ALCOA RESEARCH LABS, NEW KENSINGTON,</td>
<td>123016</td>
</tr>
<tr>
<td>AMERICAN CHEMICAL SOCIETY - DIVISION OF FUEL CHEMISTRY</td>
<td>134608</td>
</tr>
<tr>
<td>AMERICAN CYANAMID CO, STAMFORD, CTN</td>
<td>134631</td>
</tr>
<tr>
<td>APPLIED PHYSICS LAB, JOHNS HOPKINS UNIVERSITY, SILVER SPRING</td>
<td>133054</td>
</tr>
<tr>
<td>APPLIED PHYSICS LAB, JOHNS HOPKINS UNIVERSITY, SILVER SPRING</td>
<td>133062</td>
</tr>
<tr>
<td>ARGONNE NATIONAL LAB, ILL</td>
<td>152027</td>
</tr>
<tr>
<td>ARMY ELECTRONICS COMMAND, FORT MONMOUTH, N J</td>
<td>134004</td>
</tr>
<tr>
<td>ARMY FOREIGN SCIENCE AND TECHNOLOGY CENTER, CHARLOTTESVILLE,</td>
<td>134002</td>
</tr>
<tr>
<td>ARMY MATERIALS RESEARCH AGENCY, WATERTOWN, MASS</td>
<td>152003</td>
</tr>
<tr>
<td>ARMY MISSILE COMMAND, HUNTSVILLE, ALA</td>
<td>151010</td>
</tr>
<tr>
<td>ASSIGNSORS TO CHEVRON RESEARCH CO, SAN FRANCISCO, CALIF</td>
<td>122150</td>
</tr>
<tr>
<td>ASSOCIATION FRANCAISE DES INGENIEURS ET TECHNICIENS DE</td>
<td>130047</td>
</tr>
<tr>
<td>ATLANTIC RICHFIELD CO</td>
<td>122105</td>
</tr>
<tr>
<td>ATLANTIC RICHFIELD CO</td>
<td>134211</td>
</tr>
<tr>
<td>BAD GODESBERG, WEST GERMANY</td>
<td>134203</td>
</tr>
<tr>
<td>BADISCHE ANILIN- UND SODA-FABRIK A-G</td>
<td>122184</td>
</tr>
<tr>
<td>BADISCHE ANILIN- UND SODA-FABRIK A-G</td>
<td>122186</td>
</tr>
<tr>
<td>BADISCHE ANILIN- UND SODA-FABRIK A-G</td>
<td>122199</td>
</tr>
<tr>
<td>BADISCHE ANILIN- UND SODA-FABRIK A-G</td>
<td>122648</td>
</tr>
<tr>
<td>BASHKIR SCIENTIFIC-RESEARCH INSTITUTE OF PETROLEUM REFINING</td>
<td>120008</td>
</tr>
</tbody>
</table>
CORPORATE SOURCE INDEX

BATAAISE INT PETROLEUM MJ. N V. HAGUE, HOLLAND 1 122214
BATTLE INSTITUTE, CONCORD, MA 1 122214
BATTHEL INSTITUTE, FRANKFURT/MAIN, GERMANY 1 134004
BATTHEL INSTITUTE, COLUMBUS, OH 1 134004
BATTHEL INSTITUTE, COLUMBUS, OH 1 152018
BATTHEL MEMORIAL INSTITUTE, COLUMBUS, OH 1 152053
BATTHEL MEMORIAL INSTITUTE, COLUMBUS, OH 1 152053
BATTHEL MEMORIAL INSTITUTE, COLUMBUS, OH 1 152059
BATTHEL MEMORIAL INSTITUTE, COLUMBUS, OH 1 152059
BATTHEL MEMORIAL INSTITUTE, COLUMBUS, OH 1 134641
BATTHEL MEMORIAL INSTITUTE, COLUMBUS, OH 1 134641
BATTHEL MEMORIAL INSTITUTE, COLUMBUS, OH 1 152021
BATTHEL MEMORIAL INSTITUTE, COLUMBUS, OH 1 152034
BATTHEL MEMORIAL INSTITUTE, COLUMBUS, OH 1 152034
BECHTEL CORP., SAN FRANCISCO, CALIF 1 122600
Bhabha atomic research centre, bombay, india 1 152035
BOEING CO., HUNTSVILLE, ALA 1 140406
BOEING CO., RENTON, WASH 1 152006
BOEING CO., SEATTLE, WASH 1 140419
BOEING CO., SEATTLE, WASH 1 152029
BOELKOW GMBH, OTTOBRUNN/MUNICH, GERMANY 1 130061
BONN UNIVERSITAT, BONN, WEST GERMANY 1 134008
BROOKHAVEN NATIONAL LAB., UPTON, N Y 1 143003
BROOKHAVEN NATIONAL LAB., UPTON, N Y 1 143004
BROOKHAVEN NATIONAL LAB., UPTON, N Y 1 143007
BROOKHAVEN NATIONAL LAB., UPTON, N Y 1 143008
BROOKHAVEN NATIONAL LAB., UPTON, N Y 1 143010
BROOKHAVEN NATIONAL LAB., UPTON, N Y 1 143011
BROOKHAVEN NATIONAL LAB., UPTON, NY 1 143000
BROOKHAVEN NATIONAL LAB., UPTON, NY 1 143001
BROOKHAVEN NATIONAL LAB., UPTON, NY 1 143002
BROOKHAVEN NATIONAL LAB., UPTON, NY 1 143005
BUREAU OF MINES, BARTLESVILLE, OKLA. ENERGY RESEARCH CENTER 1 132010
BUREAU OF MINES, PITTSBURGH, PA. SAFETY RESEARCH CENTER 1 151005
C & I/GIRDLER, INC 1 122127
CALIFORNIA UNIVERSITY, LIVERMORE, CALIF 1 141014
CALIFORNIA UNIVERSITY, LIVERMORE, CALIF 1 152024
CALIFORNIA UNIVERSITY, LIVERMORE, CALIF, LAWRENCE LIVERMORE 1 132009
CALIFORNIA UNIVERSITY, RIVERSIDE, CALIF 1 130040
CASE WESTERN RESERVE UNIVERSITY, CLEVELAND, OH 1 152052
CASE-WESTERN-RESERVE UNIVERSITY, CLEVELAND, OH 1 130029
CATALYST CONSULTING SERVICES, INC., LOUISVILLE, KY 1 122212
CATALYSTS AND CHEMICALS INC 1 122182
CATALYSTS AND CHEMICALS INC 1 122637
CENTRAL ELECTRICITY GENERATING BOARD, SURREY, ENGLAND 1 134009
CHEMETRON CORP., CHEMETRON CHEMICALS DIV, CHICAGO, ILL 1 123920
CHEMICAL CONSTRUCTION CORP 1 122147
CHEMICAL CONSTRUCTION CORP 1 122174
CHEMICAL CONSTRUCTION CORP 1 122181
CHEMICAL CONSTRUCTION CORP 1 122193
CHEMISTRY DEPARTMENT, M I T, CAMBRIDGE, MASS 1 123606
CHEVRON RESEARCH CO 1 122177
CHLORIDE BATTERIES, LTD., SWINTON, ENGLAND 1 134031
CLYDE WILLIAMS & CO., COLUMBUS, OH 1 150006
CNRS, LABORATOIRE D' ELECTROLYSE ET SERVICE D' ELECTROPHORESE, COLOGNE 1 110037
1 133058
COMMISSARIAT A L' ENERGIE ATOMIQUE 1 123022
COMMISSION OF THE EUROPEAN COMMUNITIES, JOINT NUCLEAR 1 121013
COMPAGNIE GENERALE D' ELECTRICITE DE PARIS, FRANCE 1 134103
COMPAGNIE GENERALE D' ELECTRICITE DE PARIS, FRANCE 1 134105
COMPAGNIE GENERALE D' ELECTRICITE, PARIS, FRANCE 1 134840

407
<table>
<thead>
<tr>
<th>Corporate Source Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCHER TECHNOLOGY ASSOCIATES</td>
<td>1110061</td>
</tr>
<tr>
<td>ESCHER TECHNOLOGY ASSOCIATES</td>
<td>1131002</td>
</tr>
<tr>
<td>ESSO RESEARCH & ENGINEERING CO, FLORHAM PARK, N J</td>
<td>1142000</td>
</tr>
<tr>
<td>ESSO RESEARCH AND ENGINEERING CO</td>
<td>1122004</td>
</tr>
<tr>
<td>ESSO RESEARCH AND ENGINEERING CO</td>
<td>1122164</td>
</tr>
<tr>
<td>ESSO RESEARCH AND ENGINEERING CO</td>
<td>1122167</td>
</tr>
<tr>
<td>ESSO RESEARCH AND ENGINEERING CO</td>
<td>1122201</td>
</tr>
<tr>
<td>ESSO RESEARCH AND ENGINEERING CO</td>
<td>1122205</td>
</tr>
<tr>
<td>ESSO RESEARCH AND ENGINEERING CO</td>
<td>1122207</td>
</tr>
<tr>
<td>ESSO RESEARCH AND ENGINEERING CO</td>
<td>1123435</td>
</tr>
<tr>
<td>ESSO RESEARCH AND ENGINEERING CO, LINDEN, N J</td>
<td>1150012</td>
</tr>
<tr>
<td>ESSO RESEARCH AND ENGINEERING CO</td>
<td>1134200</td>
</tr>
<tr>
<td>ESSO RESEARCH AND ENGINEERING CO</td>
<td>1134805</td>
</tr>
<tr>
<td>ETHER CORP</td>
<td>1123014</td>
</tr>
<tr>
<td>EURATOM-ISPRA-VARESE, ITALY</td>
<td>1121009</td>
</tr>
<tr>
<td>EURATOM, ISPRA, ITALY</td>
<td>1121011</td>
</tr>
<tr>
<td>EURATOM, JOINT NUCLEAR RESEARCH CENTER, ISPRA, ITALY</td>
<td>1121005</td>
</tr>
<tr>
<td>EURATOM, JOINT NUCLEAR RESEARCH CENTER, ISPRA, ITALY</td>
<td>1121012</td>
</tr>
<tr>
<td>EUROPEISCHEN ATOMGEMEINSCHAFT (EURATOM) EURAPAZENTRUM</td>
<td>1121004</td>
</tr>
<tr>
<td>EUROPEAN ATOMIC ENERGY COMMUNITY, ISPRA, ITALY, JOINT</td>
<td>1110042</td>
</tr>
<tr>
<td>EXPLOSIVES RESEARCH AND DEVELOPMENT ESTABLISHMENT, WALTHAM</td>
<td>1133014</td>
</tr>
<tr>
<td>EXPLOSIVES RESEARCH AND DEVELOPMENT ESTABLISHMENT, WALTHAM</td>
<td>1133031</td>
</tr>
<tr>
<td>EXPLOSIVES RESEARCH AND DEVELOPMENT ESTABLISHMENT, WALTHAM</td>
<td>1140207</td>
</tr>
<tr>
<td>FLINDERS UNIVERSITY OF SOUTH AUSTRALIA, BEDFORD PARK</td>
<td>1110037</td>
</tr>
<tr>
<td>FLINDERS UNIVERSITY OF SOUTH AUSTRALIA</td>
<td>1110084</td>
</tr>
<tr>
<td>FLINDERS UNIVERSITY OF SOUTH AUSTRALIA</td>
<td>1110086</td>
</tr>
<tr>
<td>FLINDERS UNIVERSITY OF SOUTH AUSTRALIA</td>
<td>1110087</td>
</tr>
<tr>
<td>FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLA</td>
<td>1123202</td>
</tr>
<tr>
<td>FMC CORP, LTD</td>
<td>1122138</td>
</tr>
<tr>
<td>FMC CORP, PRINCETON, N J</td>
<td>1122005</td>
</tr>
<tr>
<td>FOREIGN TECHNOLOGY DIV, WRIGHT-PATTERSON AFB, O</td>
<td>1152011</td>
</tr>
<tr>
<td>FOREIGN TECHNOLOGY DIVISION WRIGHT-PATTERSON, AFB, O</td>
<td>1133010</td>
</tr>
<tr>
<td>FOSTER WHEELER CORP</td>
<td>1122117</td>
</tr>
<tr>
<td>FOSTER WHEELER CORP</td>
<td>1122607</td>
</tr>
<tr>
<td>GARRETT CORP, LOS ANGELES, CALIF</td>
<td>1131005</td>
</tr>
<tr>
<td>GAS COUNCIL</td>
<td>1122637</td>
</tr>
<tr>
<td>GENERAL APPLIED SCIENCE LABS, INC, WESTBURY, N Y</td>
<td>1133009</td>
</tr>
<tr>
<td>GENERAL APPLIED SCIENCE LABS, INC, WESTBURY, N Y</td>
<td>1133057</td>
</tr>
<tr>
<td>GENERAL APPLIED SCIENCES LABS, INC, WESTBURY, N Y</td>
<td>1140205</td>
</tr>
<tr>
<td>GENERAL DYNAMICS CORP, SAN DIEGO, CALIF</td>
<td>1140405</td>
</tr>
<tr>
<td>GENERAL DYNAMICS CORP, SAN DIEGO, CALIF</td>
<td>1140410</td>
</tr>
<tr>
<td>GENERAL DYNAMICS/ASTRONAUTICS, SAN DIEGO, CALIF</td>
<td>1140005</td>
</tr>
<tr>
<td>GENERAL DYNAMICS/ASTRONAUTICS, SAN DIEGO, CALIF</td>
<td>1152015</td>
</tr>
<tr>
<td>GENERAL DYNAMICS/CONVAIR, SAN DIEGO, CALIF</td>
<td>1131004</td>
</tr>
<tr>
<td>GENERAL DYNAMICS/CONVAIR, SAN DIEGO, CALIF</td>
<td>1151013</td>
</tr>
<tr>
<td>GENERAL DYNAMICS, FORT WORTH, TEX</td>
<td>1140302</td>
</tr>
<tr>
<td>GENERAL DYNAMICS, SAN DIEGO, CALIF</td>
<td>1140605</td>
</tr>
<tr>
<td>GENERAL ELECTRIC CO, LYNN, MASS</td>
<td>1134256</td>
</tr>
<tr>
<td>GENERAL ELECTRIC CO</td>
<td>1122189</td>
</tr>
<tr>
<td>GENERAL ELECTRIC CO</td>
<td>1123006</td>
</tr>
<tr>
<td>GENERAL ELECTRIC CO</td>
<td>1134227</td>
</tr>
<tr>
<td>GENERAL ELECTRIC CO</td>
<td>1134635</td>
</tr>
<tr>
<td>GENERAL ELECTRIC CO</td>
<td>1134833</td>
</tr>
<tr>
<td>GENERAL ELECTRIC CO, MISSILE AND SPACE VEHICLE DEPT.</td>
<td>1134254</td>
</tr>
<tr>
<td>GENERAL ELECTRIC CO, MISSILE AND SPACE VEHICLE DEPT.</td>
<td>1134255</td>
</tr>
<tr>
<td>GENERAL ELECTRIC CO, NEW YORK, N Y</td>
<td>1134022</td>
</tr>
</tbody>
</table>
CORPORATE SOURCE INDEX

GENERAL ELECTRIC CO, PHILADELPHIA, PA 1 134028
GENERAL ELECTRIC CO, PHILADELPHIA, PA 1 134803
GENERAL ELECTRIC CO, RESEARCH AND DEVELOPMENT CENTER, 1 134001
GENERAL ELECTRIC CO, RESEARCH LAB, SCHENECTADY, N Y 1 133028
GENERAL ELECTRIC CO, SCHENECTADY, N Y 1 134036
GENERAL ELECTRIC CO, SCHENECTADY, N Y 1 134257
GENERAL ELECTRIC CO, SCHENECTADY, N Y 1 134825
GENERAL ELECTRIC, HUNTSVILLE, ALA 1 140309
GEORGE C MARSHALL SPACE FLIGHT CENTER, NASA, HUNTSVILLE, 1 141008
GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA 1 110018
GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA 1 141011
GIRDLER CORP 1 122157
GIRDLER CORP 1 122208
GIRDLER-SUEDCHEMIE KATALYSATOR GMBH 1 122203
GMBH, CRYOGENICS DIV, FRANKFURT AM MAIN, 300 HANAUER 1 122624
GOEDDARD SPACE FLIGHT CENTER, GREENBELT, MD 1 134600
GOTTINGEN UNIVERSITY, WEST GERMANY 1 151006
GOVERNMENT RESEARCH LAB, ESSO RESEARCH AND ENGINEERING CO, 1 123019
GROZNI FILIAL "NEFTEKHIMAVTOMAT," GROZNY, USSR 1 122625
GROZNY BRANCH OF THE SCIENTIFIC-RESEARCH INSTITUTE FOR THE 1 122620
GRUMMAN AEROSPACE CORP, BETHPAGE, N Y 1 133019
GRUMMAN AEROSPACE CORP, BETHPAGE, N Y 1 141006
HARRY DIAMOND LABS, WASHINGTON, D C 1 134018
HAWKER SIDDELEY DYNAMICS, LTD, STEVENAGE, ENGLAND, SPACE 1 130025
HENES MANUF G CO 1 120002
HITACHI SHIPYARD, HITACHI, JAPAN 1 122195
HULL UNIVERSITY, DEPT OF CHEMISTRY, ENGLAND 1 133012
HYDROCARBON RESEARCH, INC 1 122161
HYDROCARBON RESEARCH, INC AND UNITED STATES DEPT OF THE 1 122630
ILLINOIS INSTITUTE OF TECHNOLOGY, INSTITUTE OF GAS 1 152057
INST GAZA, KIEV, USSR 1 122134
INST GAZA, KIEV, USSR 1 122631
INST GORYUCH ISKOP, MOSCOW, USSR 1 122646
INST KHIM, DUSHANBE, USSR 1 122642
INST RADIUM, LAB CHEM PHYS, PARIS, FRANCE 1 122627
INSTITUT FR PET, FRANCE 1 123600
INSTITUT FRANCAIS DU PETROLE, FRANCE 1 134504
INSTITUT FRANCAIS DU PETROLE, FRANCE 1 134828
INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FRANCE 1 134842
INSTITUT FUR MIKROBIOLOGIE DER UNIVERSITAT GOTTINGEN 1 123012
INSTITUT IND KJEMI, NOR TEK HEIDGSK, TRONDHEIM, NORWAY 1 123201
INSTITUTE CHEM IZOLNEJ, WARSAW, POLAND 1 122130
INSTITUTE GAZA, USSR 1 122168
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 110000
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 110001
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 110002
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 110003
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 110004
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 110011
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 110056
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 110062
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 110064
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 121008
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 122131
INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL 1 122166

210
<table>
<thead>
<tr>
<th>Corporate Source Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL</td>
</tr>
<tr>
<td>INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL</td>
</tr>
<tr>
<td>INSTITUTE OF GAS TECHNOLOGY, CHICAGO, ILL</td>
</tr>
<tr>
<td>INSTITUTE OF PETROCHEMICAL PROCESSES, ACADEMY OF SCIENCES,</td>
</tr>
<tr>
<td>INSTITUTO NACIONAL DE TECNICA AEROSPAICAL, MADRID, SPAIN</td>
</tr>
<tr>
<td>INSTITUTO NACIONAL DE TECNICA AEROSPAICAL, MADRID, SPAIN</td>
</tr>
<tr>
<td>INSTITUTE CHEM IGOLNEJ, WARSAW, POLAND</td>
</tr>
<tr>
<td>INT SELAS CORP AM, NETHERLANDS</td>
</tr>
<tr>
<td>INTERNATIONAL NICKEL CO, INC, SUFFERN, N Y</td>
</tr>
<tr>
<td>INTERNATIONAL NICKEL LTD</td>
</tr>
<tr>
<td>IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY, AMES, IOWA</td>
</tr>
<tr>
<td>IOWA STATE UNIVERSITY, AMES, IOWA</td>
</tr>
<tr>
<td>IOWA STATE UNIVERSITY, AMES, IOWA</td>
</tr>
<tr>
<td>ISRAEL ATOMIC ENERGY COMMISSION</td>
</tr>
<tr>
<td>JET PROPULSION LAB, CALIFORNIA INSTITUTE OF TECHNOLOGY,</td>
</tr>
<tr>
<td>JOHNS HOPKINS UNIVERSITY, SILVER SPRING, MD</td>
</tr>
<tr>
<td>JOHNS HOPKINS UNIVERSITY, SILVER SPRING, MD, APPLIED PHYSICS</td>
</tr>
<tr>
<td>JOINT PUBLICATIONS RESEARCH SERVICE, ARLINGTON, VA</td>
</tr>
<tr>
<td>KERNFORSCHUNGSANLAGE</td>
</tr>
<tr>
<td>KERNFORSCHUNGSANLAGE JULICH GESELLSCHAFT MIT BESCHRANKTER</td>
</tr>
<tr>
<td>KERNFORSCHUNGSANLAGE, JULICH, GERMANY</td>
</tr>
<tr>
<td>KERNFORSCHUNGSZENTRUM, KARLSRUHE, WEST GERMANY</td>
</tr>
<tr>
<td>LABORATOIRES DE MARCOURSSIS, FRANCE</td>
</tr>
<tr>
<td>LAWRENCE LIVERMORE LAB, LIVERMORE, CALIF</td>
</tr>
<tr>
<td>LEESONA MOOS LABS, GREAT NECK, N Y</td>
</tr>
<tr>
<td>LIFE SYSTEMS, INC, CLEVELAND, O</td>
</tr>
<tr>
<td>LIFE SYSTEMS, INC, CLEVELAND, O</td>
</tr>
<tr>
<td>LIFE SYSTEMS, INC, CLEVELAND, O</td>
</tr>
<tr>
<td>LINCOLN LAB, MIT, LEXINGTON, MASS</td>
</tr>
<tr>
<td>LINDE A -G</td>
</tr>
<tr>
<td>LINDE A -G</td>
</tr>
<tr>
<td>LINDE A -G</td>
</tr>
<tr>
<td>LINDE A-G, HOELLRIEGELSKREUTH, GERMANY</td>
</tr>
<tr>
<td>LINDE AG, WERKSGRUPPE, MUNICH, WEST GERMANY</td>
</tr>
<tr>
<td>LINDE DIV, UNION CARBIDE CORP, NEW YORK, N Y</td>
</tr>
<tr>
<td>LINDE DIVISION OF UNION CARBIDE</td>
</tr>
<tr>
<td>LINDE DIVISION OF UNION CARBIDE</td>
</tr>
<tr>
<td>LINDE REPRESENTATIVE</td>
</tr>
<tr>
<td>LITHIUM CORP OF AMERICA, INC</td>
</tr>
<tr>
<td>LOCKHEED MISSILES AND SPACE CO, SUNNYVALE, CALIF</td>
</tr>
<tr>
<td>LOCKHEED-CALIFORNIA CO, A DIVISION OF LOCKHEED AIRCRAFT CORP</td>
</tr>
<tr>
<td>LOCKHEED-CALIFORNIA CO, BURBANK, CALIF</td>
</tr>
<tr>
<td>LOCKHEED-GEORGIA CO, MARIETTA, NUCLEAR LAB</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>LOS ALAMOS SCIENTIFIC LAB, LOS ALAMOS, N M</td>
</tr>
<tr>
<td>Corporation</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Los Alamos Scientific Lab, Los Alamos, NM</td>
</tr>
<tr>
<td>Los Alamos Scientific Lab, NM</td>
</tr>
<tr>
<td>Lummas Co</td>
</tr>
<tr>
<td>Lummas Co</td>
</tr>
<tr>
<td>Lund Institute of Technology, Sweden</td>
</tr>
<tr>
<td>M W Kellogg Co, New York, N Y</td>
</tr>
<tr>
<td>Marquardt Corp, Van Nuys, Calif</td>
</tr>
<tr>
<td>Marquardt Corp, Van Nuys, Calif</td>
</tr>
<tr>
<td>Martin Co, Denver, Colo</td>
</tr>
<tr>
<td>Martin Co, Denver, Colo</td>
</tr>
<tr>
<td>Martin Marietta Aerospace, Denver, Colo</td>
</tr>
<tr>
<td>Martin Marietta Corp, Denver, Colo</td>
</tr>
<tr>
<td>Martin Marietta Labs, Baltimore, MD</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology, Amherst, Mass</td>
</tr>
<tr>
<td>Matsushita Electric Industrial Co, Ltd</td>
</tr>
<tr>
<td>Max-Planck Inst Kohlenforsch. Muelheim/Ruhr, Germany</td>
</tr>
<tr>
<td>McDonnell-Douglas Co, Newport Beach, Calif</td>
</tr>
<tr>
<td>McDonnell-Douglas Astronautics Co, Huntington Beach, Calif</td>
</tr>
<tr>
<td>McDonnell-Douglas Astronautics Co, St Louis, MO</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering, Oklahoma State Univ.</td>
</tr>
<tr>
<td>Messer Griesheim Gmbh, Frankfurt/Main, Germany</td>
</tr>
<tr>
<td>Messerschmitt-Boelkow-Blohm Gmbh, Ottobrunn, West Germany</td>
</tr>
<tr>
<td>Meteorological Instruments Workshop, New Delhi, India</td>
</tr>
<tr>
<td>Miami Valley Hospital, Dayton, O</td>
</tr>
<tr>
<td>Michigan University, Ann Arbor, Mich</td>
</tr>
<tr>
<td>Midland Research Station, Gas Council, Solihull, England</td>
</tr>
<tr>
<td>Midwest Research Institute, Kansas City, MO</td>
</tr>
<tr>
<td>Ministry of Aviation, Rocket Propulsion Establishment,</td>
</tr>
<tr>
<td>Ministry of Technology, London, England</td>
</tr>
<tr>
<td>Minnesota University, Minneapolis, Minn</td>
</tr>
<tr>
<td>Mitt Cambridge, Mass</td>
</tr>
<tr>
<td>Mita Cambridge, Mass</td>
</tr>
<tr>
<td>Mitsubishi Chemical Industries Co, Ltd</td>
</tr>
<tr>
<td>Mitsubishi Heavy Industries, Ltd</td>
</tr>
<tr>
<td>Mitsubishi Co, Tokyo, Japan</td>
</tr>
<tr>
<td>Mobil Oil Corp</td>
</tr>
<tr>
<td>Montecatini Edison S P A</td>
</tr>
<tr>
<td>Msa Research Corp, Evans City, PA</td>
</tr>
<tr>
<td>Msc White Sands Test Facility, N M</td>
</tr>
<tr>
<td>NASA Marshall Space Flight Center, Huntsville, Ala</td>
</tr>
<tr>
<td>NASA Manned Spacecraft Center, Houston, TX</td>
</tr>
<tr>
<td>NASA-ASEE Systems Design Institute</td>
</tr>
<tr>
<td>NASA-ASEE Systems Design Institute</td>
</tr>
<tr>
<td>NASA Ames Research Center, Moffett Field, Calif</td>
</tr>
<tr>
<td>NASA Ames Research Center, Moffett Field, Calif</td>
</tr>
<tr>
<td>NASA Ames Research Center, Moffett Field, Calif</td>
</tr>
<tr>
<td>NASA Cleveland, O</td>
</tr>
<tr>
<td>NASA Hampton, VA</td>
</tr>
<tr>
<td>NASA Institute of Electrical and Electronics Engineers,</td>
</tr>
<tr>
<td>NASA John F Kennedy Space Center, Fla</td>
</tr>
<tr>
<td>NASA Langley Research Center, Hampton, Va</td>
</tr>
<tr>
<td>NASA Langley Research Center, Langley Station, Va</td>
</tr>
<tr>
<td>NASA, LANGLEY RESEARCH CENTER, LANGLEY STATION, VA</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>NASA, LANGLEY RESEARCH CENTER, CLEVELAND, 0</td>
</tr>
<tr>
<td>NASA, LEWIS RESEARCH CENTER, CLEVELAND, 0</td>
</tr>
<tr>
<td>Corporate Source Index</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>NASA, LEWIS RESEARCH CENTER, CLEVELAND, O</td>
</tr>
<tr>
<td>NASA, LYNDON B JOHNSON SPACE CENTER, HOUSTON, TEX</td>
</tr>
<tr>
<td>NASA, MANNED SPACECRAFT CENTER, HOUSTON, TEX</td>
</tr>
<tr>
<td>NASA, MANNED SPACECRAFT CENTER, HOUSTON, TEX</td>
</tr>
<tr>
<td>NASA, MANNED SPACECRAFT CENTER, HOUSTON, TEX</td>
</tr>
<tr>
<td>NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE, ALA</td>
</tr>
<tr>
<td>NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE, ALA</td>
</tr>
<tr>
<td>NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE, ALA</td>
</tr>
<tr>
<td>NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE, ALA</td>
</tr>
<tr>
<td>NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE, ALA</td>
</tr>
<tr>
<td>NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE, ALA</td>
</tr>
<tr>
<td>NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE, ALA</td>
</tr>
<tr>
<td>NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE, ALA</td>
</tr>
<tr>
<td>NASA, TECHNOLOGY UTILIZATION DIVISION, WASHINGTON, D C</td>
</tr>
<tr>
<td>NASA, WASHINGTON, D C</td>
</tr>
<tr>
<td>NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, LEWIS FLIGHT</td>
</tr>
<tr>
<td>NATIONAL BUREAU OF STANDARDS, BOULDER, CO</td>
</tr>
<tr>
<td>NATIONAL BUREAU OF STANDARDS, BOULDER, CO, CRYOGENICS DIV</td>
</tr>
<tr>
<td>NATIONAL BUREAU OF STANDARDS, BOULDER, CO, CRYOGENICS DIV</td>
</tr>
<tr>
<td>NATIONAL BUREAU OF STANDARDS, BOULDER, CO, CRYOGENICS DIV</td>
</tr>
<tr>
<td>NATIONAL BUREAU OF STANDARDS, BOULDER, CO, INSTITUTE FOR INSTITUTE FOR</td>
</tr>
<tr>
<td>NATIONAL BUREAU OF STANDARDS, BOULDER, CO, INSTITUTE FOR INSTITUTE FOR</td>
</tr>
<tr>
<td>NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LAB</td>
</tr>
<tr>
<td>NATIONAL BUREAU OF STANDARDS, INSTITUTE OF BASIC STANDARDS</td>
</tr>
<tr>
<td>NATIONAL BUREAU OF STANDARDS, WASHINGTON, D C</td>
</tr>
<tr>
<td>NATIONAL DISTILLERS AND CHEMICAL CORP</td>
</tr>
<tr>
<td>NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VA</td>
</tr>
<tr>
<td>NAVAL AIR DEVELOPMENT CENTER, WARMINGER, PA</td>
</tr>
<tr>
<td>NAVAL AIR DEVELOPMENT CENTER, WARMINGER, PA</td>
</tr>
<tr>
<td>NAVAL INTELLIGENCE COMMAND, WASHINGTON, D C</td>
</tr>
<tr>
<td>NAVAL RESEARCH LAB, WASHINGTON, D C</td>
</tr>
<tr>
<td>NORTH AMERICAN ROCKWELL CORP, CANOGA PARK, CALIF</td>
</tr>
<tr>
<td>NORTH AMERICAN ROCKWELL CORP, ROCKETDYNE DIV, CANOGA PARK</td>
</tr>
<tr>
<td>NUCLEAR RESEARCH CENTER, JUELICH, GERMANY</td>
</tr>
<tr>
<td>NUCLEAR RESEARCH CENTER, JUELICH, GERMANY</td>
</tr>
<tr>
<td>NUCLEAR RESEARCH CENTER, JUELICH, GERMANY</td>
</tr>
<tr>
<td>OAK RIDGE NATIONAL LAB, OAK RIDGE, TENN</td>
</tr>
<tr>
<td>OAK RIDGE NATIONAL LAB, OAK RIDGE, TENN</td>
</tr>
<tr>
<td>OAK RIDGE NATIONAL LAB, TENN</td>
</tr>
<tr>
<td>OFFICE NATIONAL D'ETUDES ET DE RECHERCHE AEROSPATIALES,</td>
</tr>
<tr>
<td>OFFICE NATIONAL INDUSTRIEL DE L'AZOTE</td>
</tr>
<tr>
<td>OHIO STATE UNIVERSITY RESEARCH FOUNDATION, COLUMBUS, O</td>
</tr>
<tr>
<td>OHIO STATE UNIVERSITY RESEARCH FOUNDATION, COLUMBUS, O</td>
</tr>
<tr>
<td>Corporate Source Index</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>OHIO STATE UNIVERSITY RESEARCH FOUNDATION,</td>
</tr>
<tr>
<td>COLUMBUS, O</td>
</tr>
<tr>
<td>OKLAHOMA CITY, OKLA</td>
</tr>
<tr>
<td>OKLAHOMA STATE UNIVERSITY</td>
</tr>
<tr>
<td>OKLAHOMA STATE UNIVERSITY</td>
</tr>
<tr>
<td>OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLA</td>
</tr>
<tr>
<td>OPERATIONS RESEARCH, INC, SILVER SPRING, MD</td>
</tr>
<tr>
<td>OXFORD UNIVERSITY, OXFORD, ENGLAND</td>
</tr>
<tr>
<td>P E C CORP., 1001 MAPLETON AVE, BOULDER, COLO</td>
</tr>
<tr>
<td>PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PA</td>
</tr>
<tr>
<td>PENNSYLVANIA UNIVERSITY, PHILADELPHIA, PA</td>
</tr>
<tr>
<td>PETROCARBON DEV., MANCHESTER, ENGLAND</td>
</tr>
<tr>
<td>PETROCARBON DEVELOPMENTS LTD</td>
</tr>
<tr>
<td>PETROLEUM REFINERY DOSANSKI BROD, BOSANSKI BROD, YUGOSLAVIA</td>
</tr>
<tr>
<td>PHILLIPS PETROLEUM CO</td>
</tr>
<tr>
<td>PHYSICS DEPT., UNIVERSITY OF HOUSTON, HOUSTON, TEX</td>
</tr>
<tr>
<td>PITTSBURGH COAL RESEARCH CENTER, BUREAU OF MINES,</td>
</tr>
<tr>
<td>PITTSBURGH CCAL RESEARCH CENTER, PITTSBURGH, PA</td>
</tr>
<tr>
<td>PITTSBURGH ENERGY RESEARCH CENTER, BUREAU OF MINES,</td>
</tr>
<tr>
<td>POWER-GAS CORP., LTD</td>
</tr>
<tr>
<td>PRATT & WHITNEY AIRCRAFT, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>PRATT & WHITNEY AIRCRAFT, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>PRATT & WHITNEY AIRCRAFT, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>PRATT & WHITNEY AIRCRAFT, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>PRATT & WHITNEY AIRCRAFT, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>PRATT & WHITNEY AIRCRAFT, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>PRATT & WHITNEY AIRCRAFT, EAST HARTFORD, CONN, SOUTH</td>
</tr>
<tr>
<td>PRATT & WHITNEY AIRCRAFT, MIDDLETOWN, CONN</td>
</tr>
<tr>
<td>PRATT & WHITNEY AIRCRAFT, SOUTH WINDSOR, CONN</td>
</tr>
<tr>
<td>PRATT & WHITNEY AIRCRAFT, WEST PALM BEACH, FLA</td>
</tr>
<tr>
<td>PRATT & WHITNEY DIV, UNITED AIRCRAFT CORP., EAST HARTFORD</td>
</tr>
<tr>
<td>PRATT & WHITNEY, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>PROTECH INC., AND ATLANTIC RICHFIELD CO</td>
</tr>
<tr>
<td>PROTOTECH INC</td>
</tr>
<tr>
<td>PULLMAN INC</td>
</tr>
<tr>
<td>PULLMAN INC</td>
</tr>
<tr>
<td>PULLMAN INC</td>
</tr>
<tr>
<td>PULLMAN INC</td>
</tr>
<tr>
<td>PURDUE UNIVERSITY, LAFAYETTE, IND</td>
</tr>
<tr>
<td>PURDUE UNIVERSITY, LAFAYETTE, IND</td>
</tr>
<tr>
<td>RAND CORP., SANTA MONICA, CALIF</td>
</tr>
<tr>
<td>REDSTONE ARSENAL, ALA</td>
</tr>
<tr>
<td>RESEARCH DIVISION, ALLIS-CHALMERS, MILWAUKEE, WIS</td>
</tr>
<tr>
<td>RESEARCH FOR INORGANIC CHEMISTRY, USTI NAD LABEM</td>
</tr>
<tr>
<td>ROCKETDYNE, CANOGA PARK, CALIF</td>
</tr>
<tr>
<td>Corporate Source Index</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>ROCKE</td>
</tr>
<tr>
<td>ROKE</td>
</tr>
<tr>
<td>ROKE</td>
</tr>
<tr>
<td>ROKE</td>
</tr>
<tr>
<td>SAN</td>
</tr>
<tr>
<td>Sani</td>
</tr>
<tr>
<td>SAR</td>
</tr>
<tr>
<td>SAV</td>
</tr>
<tr>
<td>SEL</td>
</tr>
<tr>
<td>SHEF</td>
</tr>
<tr>
<td>SHEF</td>
</tr>
<tr>
<td>SHEF</td>
</tr>
<tr>
<td>SHEL</td>
</tr>
<tr>
<td>SIEM</td>
</tr>
<tr>
<td>SIEM</td>
</tr>
<tr>
<td>SIEM</td>
</tr>
<tr>
<td>SOT</td>
</tr>
<tr>
<td>SOT</td>
</tr>
<tr>
<td>SOT</td>
</tr>
<tr>
<td>SOT</td>
</tr>
<tr>
<td>SPERR</td>
</tr>
<tr>
<td>STAN</td>
</tr>
<tr>
<td>STAN</td>
</tr>
<tr>
<td>STEV</td>
</tr>
<tr>
<td>STRU</td>
</tr>
<tr>
<td>SUN</td>
</tr>
<tr>
<td>TEANE</td>
</tr>
<tr>
<td>TECH</td>
</tr>
<tr>
<td>TEMPO - GENERAL ELECTRIC CO, SANTA BARBARA, CALIF</td>
</tr>
<tr>
<td>TEMPO - GENERAL ELECTRIC COMPANY - CENTER FOR ADVANCED</td>
</tr>
<tr>
<td>TEMPO - GENERAL ELECTRIC COMPANY - CENTER FOR ADVANCED</td>
</tr>
<tr>
<td>TEMPO - GENERAL ELECTRIC COMPANY - CENTER FOR ADVANCED</td>
</tr>
<tr>
<td>TEMPO - GENERAL ELECTRIC COMPANY - CENTER FOR ADVANCED</td>
</tr>
<tr>
<td>TEMPO - GENERAL ELECTRIC COMPANY - SANTA BARBARA, CALIF</td>
</tr>
<tr>
<td>TEMPO - GENERAL ELECTRIC COMPANY CENTER FOR ADVANCED STUDIES</td>
</tr>
<tr>
<td>TEXACO DEVELOPMENT CORP</td>
</tr>
<tr>
<td>TEXACO INC</td>
</tr>
<tr>
<td>TEXACO INC, MONTEBELLO, CALIF</td>
</tr>
<tr>
<td>TEXACO RESEARCH CENTER, BEACON, N Y</td>
</tr>
<tr>
<td>TEXACO, INC, BEACON, N Y</td>
</tr>
<tr>
<td>TEXAS INSTRUMENTS INC</td>
</tr>
<tr>
<td>TEXAS INSTRUMENTS INC</td>
</tr>
<tr>
<td>Corporate Source Index</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>TEXAS INSTRUMENTS, INC</td>
</tr>
<tr>
<td>TEXAS UNIVERSITY, DEPARTMENT OF CHEMISTRY, AUSTIN, TX</td>
</tr>
<tr>
<td>TEXAS UNIVERSITY, DEFENSE RESEARCH LAB, AUSTIN, TX</td>
</tr>
<tr>
<td>TEXAS UNIVERSITY, DEPARTMENT OF DEFENSE RESEARCH, AUSTIN, TX</td>
</tr>
<tr>
<td>TEXAS TECHNOLOGICAL COLLEGE, LUBBOCK, TEX</td>
</tr>
<tr>
<td>THE ELECTROLYSER CORP., LTD., 122 THE WEST MALL, ETOBICOKE,</td>
</tr>
<tr>
<td>THE FUTURES GROUP, GLASTONBURY, CONN</td>
</tr>
<tr>
<td>THE U.S. DEPARTMENT OF INTERIOR, BUREAU OF MINES, MORGANTOWN,</td>
</tr>
<tr>
<td>THERMO ELECTRON CORP., WALTHAM, MASS</td>
</tr>
<tr>
<td>THERMO ELECTRON CORP., WALTHAM, MASS</td>
</tr>
<tr>
<td>TRW SYSTEMS GROUP, REDONDO BEACH, CALIF</td>
</tr>
<tr>
<td>TRW, INC</td>
</tr>
<tr>
<td>U.S. ARMY ELECTRONICS COMMAND, FORT MONMOUTH, N.J.</td>
</tr>
<tr>
<td>U.S. ARMY ELECTRONICS COMMAND, FORT MONMOUTH, N.J.</td>
</tr>
<tr>
<td>U.S. NAVY, WASHINGTON, D.C.</td>
</tr>
<tr>
<td>U.S. STEEL RESEARCH CENTER, MONROEVILLE, PA</td>
</tr>
<tr>
<td>UCLA, LOS ANGELES, CALIF</td>
</tr>
<tr>
<td>UNION CARBIDE CORP., LINDE DIVISION, 270 PARK AVE., NEW YORK,</td>
</tr>
<tr>
<td>UNION CARBIDE CORP</td>
</tr>
<tr>
<td>UNION CARBIDE CORP, CLEVELAND, OH</td>
</tr>
<tr>
<td>UNION CARBIDE CORP</td>
</tr>
<tr>
<td>CORPORATE SOURCE INDEX</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>UNION CARBIDE CORP., DEVELOPMENT DEPT., SOUTH CHARLESTON, W VA</td>
</tr>
<tr>
<td>UNION CARBIDE CORP., LINDE DIVISION</td>
</tr>
<tr>
<td>UNION CARBIDE CORP., LINDE DIVISION</td>
</tr>
<tr>
<td>UNION CARBIDE CORP., NEW YORK, N Y</td>
</tr>
<tr>
<td>UNION CARBIDE CORP., NEW YORK, N Y</td>
</tr>
<tr>
<td>UNION CARBIDE CORP., PARMA, O</td>
</tr>
<tr>
<td>UNION CARBIDE CORP., PARMA, O</td>
</tr>
<tr>
<td>UNION CARBIDE CORP., PARMA, O</td>
</tr>
<tr>
<td>UNION CARBIDE, LINDE DIVISION</td>
</tr>
<tr>
<td>UNION CARBIDE, N Y</td>
</tr>
<tr>
<td>UNITED AIRCRAFT CORP</td>
</tr>
<tr>
<td>UNITED AIRCRAFT CORP, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>UNITED AIRCRAFT CORP, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>UNITED AIRCRAFT CORP, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>UNITED AIRCRAFT CORP, EAST HARTFORD, CONN, RESEARCH LABS</td>
</tr>
<tr>
<td>UNITED AIRCRAFT RESEARCH LAB, EAST HARTFORD, CONN</td>
</tr>
<tr>
<td>UNIVERSAL OIL PRODUCTS CO</td>
</tr>
<tr>
<td>UNIVERSAL OIL PRODUCTS CO</td>
</tr>
<tr>
<td>UNIVERSAL OIL PRODUCTS CO</td>
</tr>
<tr>
<td>UNIVERSITY OF CALGARY, ALTA</td>
</tr>
<tr>
<td>UNIVERSITY OF CALIFORNIA, BERKELEY, CALIF</td>
</tr>
<tr>
<td>UNIVERSITY OF CALIFORNIA, BERKELEY, CALIF</td>
</tr>
<tr>
<td>UNIVERSITY OF CALIFORNIA, BERKELEY, CALIF</td>
</tr>
<tr>
<td>UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIF</td>
</tr>
<tr>
<td>UNIVERSITY OF HOUSTON, HOUSTON, TEX</td>
</tr>
<tr>
<td>UNIVERSITY OF KENTUCKY, LEXINGTON, KEN</td>
</tr>
<tr>
<td>UNIVERSITY OF MIAMI, CORAL GABLES, FLA</td>
</tr>
<tr>
<td>UNIVERSITY OF MIAMI, CORAL GABLES, FLA</td>
</tr>
<tr>
<td>UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN</td>
</tr>
<tr>
<td>UNIVERSITY OF MILAN, ITALY</td>
</tr>
<tr>
<td>UNIVERSITY OF OXFORD, ENGLAND</td>
</tr>
<tr>
<td>UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA</td>
</tr>
<tr>
<td>UNIVERSITY OF ROORKEE, INDIA</td>
</tr>
<tr>
<td>USAF, AEROSPACE RESEARCH LABS, WRIGHT-PATTERSON AFB, OHIO</td>
</tr>
<tr>
<td>USAF, WRIGHT-PATTERSON AFB, OHIO</td>
</tr>
<tr>
<td>USISR</td>
</tr>
<tr>
<td>VETERANS ADMINISTRATION HOSPITAL, BOSTON, MASS</td>
</tr>
<tr>
<td>VICKERS INC., TORRANCE, CALIF, AEROSPACE DIVISION</td>
</tr>
<tr>
<td>VICKERS, INC., DETROIT, MICH</td>
</tr>
<tr>
<td>VICKERS, INC., TORRANCE, CALIF</td>
</tr>
<tr>
<td>VNIDOLEFIN, BAKU, USSR</td>
</tr>
<tr>
<td>WASENDA UNIVERSITY, TOKYO, JAPAN</td>
</tr>
<tr>
<td>WESTINGHOUSE ELECTRIC CORP., PITTSBURGH, PA, ASTRONUCLEAR</td>
</tr>
<tr>
<td>WHITELEY INDUSTRIES INC., WILMINGTON, MASS</td>
</tr>
<tr>
<td>WRIGHT-PATTERSON AFB, OHIO</td>
</tr>
<tr>
<td>XEROX CORP., ROCHESTER, N Y</td>
</tr>
<tr>
<td>YAMAGUCHI UNIVERSITY, JAPAN</td>
</tr>
<tr>
<td>ZAROMBA RESEARCH CORP., PASSAIC, N J</td>
</tr>
</tbody>
</table>
INDEX OF TITLES (PERMUTED)

419
34034 CELL TECHNOLOGY - A SURVEY OF ADVANCES AND PROBLEMS
31000 AERODENERGY: A NEW FRONTIER
34812 MEGAWATT FUEL CELLS FOR AEROSPACE APPLICATIONS
52057 PERMEABILITY DATA FOR AEROSPACE APPLICATIONS
51010ION OF HYDROGEN EXPLOSIONS IN AEROSPACE VEHICLES
22007 SURE AND OXYGEN/METHANE RATIO AFFECT PARTIAL OXIDATION
34246 FACTORS AFFECTING LIFE OF FUEL CELLS
52022 OF HYDROGEN INDUCED PHENOMENA AFFECTING MECHANICAL BEHAVIORS
33039 HYDROGEN FUEL IN A SIMULATED AFTERBURNER TESTS WITH
34849 GINE THE REVOLT AGAINST INTERNAL-COMBUSTION EN
10039 INDUSTRY'S ROLE IN THE NUCLEAR AGE
10038 THE MASTER OF A NEW AGE
33000 JET IN A STREAM OF OXIDIZING AGENTION OF A TURBULENT GAS
20511 NERGY CENTERS, INDUSTRIAL AND AGRO-INDUSTRIAL COMPLEXES
22624 AIR AND GAS SEPARATION PLANTS
34227 FUEL-CELL DESIGN BASED ON AIR AND REFORMABLE FUEL
34504 500-WATT HYDROGEN-AIR CELL
33051ION, DISSIPATION AND HYDROGEN-AIR COMBUSTION WITH DIFFUS
33002 E AND WATER VAPOR ON HYDROGEN-AIR CONSTANT-PRESSURE COMBUST
34615 NEW AIR ELECTRODE FOR FUEL CELLS
34624TURE FUEL CELLS CARBON-AIR ELECTRODES FOR LOW TEMPERA
34241 LANT DESIGN/ 15-KW HYDROCARBON-AIR FUEL CELL ELECTRIC POWER P
34830 5-KW HYDROCARBON-AIR FUEL CELL POWER SOURCE
34831 5 KW HYDROCARBON-AIR FUEL CELL POWER PLANT
34248 5 KVA HYDROCARBON REFORMER - AIR FUEL CELL SYSTEM
34817 ARY APPLICATION HYDROCARBON-AIR FUEL CELL SYSTEM FOR MILIT
34832 500 WATT HYDROCARBON AIR FUEL CELL SYSTEM
34027 HYDROCARBON - AIR FUEL CELL SYSTEMS
34844 FORMER A 500 WATT HYDROGEN-AIR FUEL CELL WITH METHANOL RE
32026 E YEAR OPER/ CITY CAR WITH H2-AIR FUEL CELL/LEAD BATTERY (ON
34214 ANCE OF COMPACT-DESIGN BUTANE-AIR FUEL CELL PERFORM
34839 A HYDROCARBON-AIR FUEL CELL
34813 PLY ON STRATOSPHERIC AIRS/ H2-AIR FUEL CELLS AS ELECTRIC SUP
32001 PART I) THE HYDROGEN - AIR FUELED AUTOMOBILE ENGINE (3
32000 THE HYDROGEN-AIR FUELED AUTOMOBILE
10044 MASTER FUEL TO POWER A CLEAN-AIR FUTURE MAY EMERGE AS THE
33015 TRANSFORMATIONS IN A HYDROGEN-AIR MIXING LAYER CHEMICAL
33062 RSONIC MIXING OF HYDROGEN AND AIR NEAR A WALL SIGNAL, SUPE
23419 MIXTURES IN FRACTIONATION OF AIR OR HYDROGEN-CONTAINING GAS
30039 IDN EFFECT ON THE AIR BREATH/ AIR PRECOOLING BEFORE COMPRESS
33057 N OF HYDROGEN IN A HYPERSONIC AIR STREAMION OF COMBUSTIO
33009 AND COMBUSTION OF HYDROGEN IN AIR STREAMS FOR THE MIXING
33063 OW DENSIS STUDIES OF HYDROGEN-AIR SUPersonIC COMBUSTION AT L
33014 NITION DELAYS IN THE HYDROGEN-AIR SYSTEM CALCULATION OF IG
34843 ATED ELECTRICAL START FOR JP4-AIR SYSTEMS AUTOM
31013 OF LIQUID HYDROGEN SUPPLY FOR AIR TRANSPORTATION CONOMICS
51003 AMMABLE VAPORS AND GASES WITH AIR XI, THEORY OF EXPLOSIVE C
34632 UEL CELL-ELECTRODES (HYDROGEN-AIR)
31006 A RANGE OF A HYDROGEN-FUELED, AIR-BREATHING HYPERSONIC AIRCR

420
SECTION 'T'

"+" NOT INDEXED

34203 RATURE RANGE -20 DEGREES C TO +60 DEGREES C# /THIN THE TEMPE

34208 KE HYDROGEN GAS FRO/ IGT GETS $18-MILLION OCR CONTRACT TO MA

32025 OF TRANSPORTATION HAS GRANTED $60,000 FOR HYDROGEN-FUELED-CA

30050 LARGE HYDROGEN-OXYGEN ABLATIVE CHAMBER TEST PROGRAM#

33037 TION INSTABILITY IN STEEL AND ABLATIVE ROCKET CHAMBERS# /BUS

40305 OGENIC INSTRUMENTATION AT AND ABOVE LIQUID HYDROGEN TEMPERAT

52035 N BY IRON AND STEEL# ABSORPTION OF CATHODIC HYDROGE

43009 REVERSIBLE ROOM TEMPERATURE ABSORPTION OF LARGE QUANTITIES

10078 NSF-RANN ENERGY ABSTRACTS#

10074 HYDROGEN - THE KEY TO ABUNDANT CLEAN ENERGY#

34836 AL ELECTRIC COMPANY AND THEIR ACCOMPANYING CIRCUITS# / GENER

23606 AQUEOUS SULFURIC ACID AND THE ACCOMPANYING REDUCTION OF WATE

23005 CYANIC ACID AND HYDROGEN FROM ACETONITRILE AND AMMONIA# /DO

22610 E PYROLYSIS OF METHANE# ACETYLENE AND HYDROGEN FROM TH

2136 CRACKING OF HYDROCARBONS TO ACETYLENE, ETHYLENE, METHANE,

22627 ECHNICAL HYDRO/ PRODUCTION OF ACETYLENE, ITS HOMOLOGS, AND T

23005 TRILE AND AMMONI/ HYDROCYANIC ACID AND HYDROGEN FROM ACETONI

23606 TO FERRIC IN AQUEOUS SULFURIC ACID AND THE ACCOMPANYING REDU

34215 MANE OF REFORMED NATURAL GAS-ACID FUEL CELL SYSTEM# PERFOR

34244 ON OF HYDROCARBONS FOR USE IN ACID FUEL CELLS#/TIAL OXIDATI

34228 FUEL / IMMOBILIZED PHOSPHORIC ACID INTERMEDIATE-TEMPERATURE

23607 IN DILUTE AQUEOUS PERCHLORIC ACID#/ OF CERIUM PERCHLORATES

20020 ECTROLYSIS CELLS: ALKALINE OR ACID#/ OF ELECTROLYSIS FOR EL

30002 EXPERIMENTAL INVESTIGATION OF ACIDIC LINERS TO SUPPRESS SC

30051 HIGH-SPEED FLOWS# ACIDIC SCALE-MODEL TESTS OF

30038 ENT, AND CONTRACTION RATIO ON ACIDIC-MODE INSTABILITY IN H

30015 HYDROGEN-OXYGEN SPACE SHUTTLE ACPS THRUSTER TECHNOLOGY REVIE

40605 CYROGENIC PROPellant ACQUISITION AND TRANSFER#

50004 THE INTENSITY OF THE NARCOTIC ACTION OF HYDROGEN AT HIGH PRE

33011 ONSTANTS COMPUTED FOR THE CO/ ACTIVATION ENERGIES AND RATE C

33058 MEANS OF HYDROGEN COMB/ HEAT ADDITION IN SUPersonic FLOW BY

33046 ETSKY ANDMASON EQUATIONS, V,/ ADDITIONAL CALCULATIONS BY MAL

23001 A FUEL CELL WITH BOROHYDRIDE ADDUCT#/ SUPPLYING HYDROGEN TO

33028 TION OF FUEL-LEAN MIXTURES IN ADIABATIC, WELL- STIRRED REACT

52046 OGEN EMBRITTLEME/ THE ROLE OF ADSORBED CN GROUPS IN THE HYDR

52028 RING THE FRACTURE OF HYDROGEN-ADSORBED IRON# /T OF CRACKS DU

34600 AND THE OXYGEN FU/ USE OF THE ADSORPTION HYDROGEN ELECTRODE

23429 GHER-PUR I TY HYDROGEN# NEW ADSORPTION PROCESS PRODUCES HI

23402 GRADING HYDROGEN VIA HEATLESS ADSORPTION#

23428 PRESSURE-SWING ADSORPTION#

23409 REFORMING AND MOLECULAR SIEVE ADSORPTION#/BTAINED BY STEAM

34202 OLOGY# ADVANCED ELECTROCHEMICAL TECHN

20000 TIAL PROPELLANT RESUPPLY FOR ADVANCED MANNED MISSIONS# /RES

40415 FOR USE AS IN/ DEVELOPMENT OF ADVANCED MATERIALS COMPOSITES

30040 YDROGEN ENGINE TECHNOLOGY FOR ADVANCED MISSIONS# /N OF LOX/H

32006 (H2O#) IN AUTOMOTIVE VEHICLE ADVANCED POWER SYSTEMS# /WATER

30052 S FOR CRYOGENIC PROPELLANTS# ADVANCED PRESSURIZATION SYSTEM

34269 SYSTEMS# ADVANCED SPACECRAFT FUEL CELL
TITLE INDEX

SECTION 'T'

32014 ORMANCE CHARACTERISTICS OF AN AIR-BREATHTING HYDROGEN-FUELED I
34647 EXTENDING THE DIMENSIONS OF AIR-HYDROGEN THIN ELECTRODES*
51001 F FLAMMABILITY OF HYDROGEN IN AIR, OXYGEN, AND OXYGEN-INERT.
33054 RSONIC MIXING OF HYDROGEN AND AIR*
51004 OF THE HYDROGEN MIXTURE WITH AIR# / THE INITIAL TEMPERATURE
40205 YDGENIC HYDROGEN IN TWO-PHASE AIR#/E RATE EVAPORATION OF CR
33035 THE COMBUSTION OF HYDROGEN IN AIR#/ZLE FLOW OF PRODUCTS OF
51009 F KEY TECHNOLOGY FOR AIRBREATHING HYPERSONIC AIRCRA
31017 FOR HYDROGEN FUELED TRANSPORT AIRCRAFT# THE CASE
31002 HYDROGEN FUELED COMMERCIAL AIRCRAFT#
31001 CRYOGENIC FUELS FOR AIRCRAFT#
31009 Y FOR AIRBREATHING HYPERSONIC AIRCRAFT# KEY TECHNOL
31015 UM ON LIQUID HYDROGEN-FUELED AIRCRAFT# WORKING SYMPOS
40402 KS IN HIGH-SPEED, LONG-RANGE AIRCRAFT# D-HYDROGEN FUEL TAN
51006 LED, AIR-BREATHING HYPERSONIC AIRCRAFT# E OF A HYDROGEN-FUE
31012 LED SUPERSONIC AND HYPERSONIC AIRCRAFT# EMS OF HYDROGEN FUE
51011 DDD, AIRLINES FACE ENERGY CRISIS#
31003 HYDROGEN TANKS OF HYPERSONIC AIRPLANES# SYSTEM FOR LIQUID
40418 -HYDROGEN TANKS OF HYPERSONIC AIRPLANES# SYSTEM FOR LIQUID
40404 OR HYDROGEN-FUELED HYPERSONIC AIRPLANES# UCTURAL CONCEPTS F
34813 TRIC SUPPLY ON STRATOSPHERIC AIRSHIP#/IR FUEL CELLS AS ELE
33043 ECTORS NORMAL TO A SUPERSONIC AIRSTREAM#/ FROM MULTIPLE INJ
33056 N OF HYDROGEN IN A SUPERSONIC AIRSTREAM#/xing AND COMBUSTIO
32019 ERED TRUCK# LOS ALAMOS LAB MAKING HYDROGEN-POW
23202 USED EVOLUTION OF HYDROGEN IN ALGAE AND BACTERIA#/IGHT- IND
23209 EN PHOTOPRODUCTION IN SEVERAL ALGAE II: THE CONTRIBUTION OF
23208 EN PHOTOPRODUCTION BY SEVERAL ALGAE II: THE EFFECT OF INHIBI
23000 HYDROGEN FROM WATER USING AN ALKALI METAL# S FOR PRODUCING
34222 OGEN-AIR FUEL BATTERY WITH AN ALKALINE ELECTROLYTE#/KW HYDR
34626 GEN/OXYGEN FUEL CELLS WITH AN ALKALINE ELECTROLYTE#/E HYDRO
34834 ELECTROLYTE HYDROGEN- OXYGEN, ALKALINE FUEL CELLS# TRAPPED
20020 LYSIS FOR ELECTROLYSIS CELLS: ALKALINE OR ACID#/ OF ELECTRO
52026 E HYDROGEN PERMEATION THROUGH ALLMA IRON, 4130 STEEL, AND 30
34635 LECTROLYTE AND NICKEL- SILVER ALLOY ANODE# LIZED ZIRCONIA E
52001 NGTH ON THE SUSCEPTIBILITY OF ALLOY STEELS TO CADMIUM PLATIN
52018 / THE REACTION OF A TITANIUM ALLOY WITH HYDROGEN GAS AT LOW
52043 HYDROGEN CHARGING OF AN FE-PT ALLOY#/ CK PROPAGATION DURING
52054 TRESS-CORROSION OF A TITANIUM ALLOY#/HYDROGEN IN HOT-SALT S
52050 RTIES OF THE TI-5AL-2.5SN ELI ALLOY#/E ON MECHANICAL PROPE
52036 LAW GROWTH IN SSE MAIN ENGINE ALLOYS IN HIGH PRESSURE GASEOU
43004 THE REACTION OF HYDROGEN WITH ALLOYS OF MAGNESIUM AND COPPER
43033 THE REACTION OF HYDROGEN WITH ALLOYS OF MAGNESIUM AND NICKEL
52034 OGEN EMBRITTLEMENT OF VARIOUS ALLOYS# A STUDY OF HYDR
32011 OF ENGINE EMISSION# ALTERNATIVE FUELS FOR CONTROL
10008 , WATER# ENERGY ALTERNATIVES: SUN, WIND, EARTH
51013 OF THE HYDROGEN-OXYGEN / HIGH-ALTITUDE EXPLOSION PROPERTIES
33023 UP TO 12 DEGREES AND PRESSURE ALTIMES UP TO 110,000 FEET#/ 22162 NG OF HEXANE WITH CRYSTALLINE
23016 SOLUTION AS A S/ REACTION OF ALUMINUM WITH SODIUM HYDROXIDE
23017 EN GENERATION BY MEANS OF THE ALUMINUM/WATER REACTION#/DROG
52029 GEN UPON INCONEL 718 AND 2219 ALUMINUM#/F PRESSURIZED HYDRO
52025 RESURE HYDROGEN ON METALS AT AMBIENT TEMPERATURE#/F HIGH P
22619 HYDROGEN: SELAS CORP OF AMERICA#
TITLE INDEX

SECTION 'T'

10030 "THE CLEANING OF AMERICA"
22183 SYNTHESIS-GAS MIXTURES FOR AMMONIA AND METHANOL
22165 IN PRODUCING HYDROGEN OR AMMONIA SYNTHESIS GAS AT MEDIU
22645 AMMONIA SYNTHESIS GAS
23423 NIC RECOVERY OF HYDROGEN FROM AMMONIA SYNTHESIS GAS# CRYOGE
23005 YDROGEN FROM ACETONITRILE AND AMMONIA#/ACRYLIC ACID AND H

22186 PRODUCTION OF BASIC CHEMICALS AND INTERMEDIATES FROM PETROLEU

22197 RBONS TO PRODUCE HYDROGEN# APPARATUS FOR CRACKING HYDROCA
20004 EN AND / AUTOMATIC LABORATORY APPARATUS FOR OBTAINING HYDROG
20033 RE GASES# ELECTROLYSIS APPARATUS FOR PRODUCTION OF PU
22156 EN-CARBON MONOXIDE GAS MIXTU/ APPARATUS FOR PRODUCING HYDROG
22101 OLING GASEOUS MIXTURES OF HY/ APPARATUS FOR PRODUCING AND CO
23436 ILING GASES IN G/ PROCESS AND APPARATUS FOR PURIFYING LOW-BO
22169 ACEOUS MATERIAL INTO HYDROGE/ APPARATUS FOR REFORMING CARBON
23437 IES FROM HYDROGE/ PROCESS AND APPARATUS FOR REMOVING IMPURIT

40509 CTORS FOR PUMPING LIQUID OXY/ ANALYSIS OF ROCKET-POWERED EJE

34602 RANSFER SYSTEM FOR THE SATURN APOLLO PROGRAM# ID HYDROGEN T

34607 RT OF HYDROGEN TO CYLINDRICAL ANODES IN STIRRED ELECTROLYTES

34613 TERISTICS OF PALLADIUM-SILVER ANODE ON IMPURE HYDROGEN STREA

34620 N A BIOCHEMICAL FUEL CELL (AN ANODE REACTION)# /LUE SYSTEM I

34623 CELL POWERPLANT OPERATION IN APOLLO SPACECRAFT# FUEL

10006 ULTIMATE ECONOMY? A PRACTICAL ANSWER TO THE PROBLEM OF ENERG

10037 A STUDY OF HYDROGEN SLUSH AND/OR HYDROGEN GEL UTILIZATIO

20016 ANOTHER HYDROGEN CAR OUT WEST#
TITLE INDEX

SECTION 'T'

40110 F THERMOSIPHON FOR PRECOOLING APPARATUS* APPLICATION 0
22117 OLEUM AND CHEMICAL INDUSTRIES APPLICATION AND MANUFACTURE* /
40110 R PRECOOLING APPARATUS* APPLICATION OF THERMOSIPHON FO
33064 IND STEADY STATE SHOCK WAVES, APPLICATION TO THE COMPOSITION
34009 FUEL CELLS: THEORY AND APPLICATION#
34817 FUEL CELL SYSTEM FOR MILITARY APPLICATION# HYDROCARBON-AIR
43010 TS FORMATION, PROPERTIES, AND APPLICATION# /ANITUM HYDRIDE: I
34809 # STORAGE AND APPLICATIONS OF GALVANIC CELLS
10042 THERMOSERIES: NEW FUTURE PROSPECTS FOR APPLICATIONS OF NUCLEAR ENERGY
22153 ON AND EXAMPLES OF PRACTICAL APPLICATIONS OF THE PURIFICATIONS
30009 OGEN-PROPPELED NUCLEAR ROCKET APPLICATIONS* II: EXPERIMENTAL
30008 OGEN-PROPPELED NUCLEAR ROCKET APPLICATIONS* I: DESIGN OF TURBINES
34815 LE FUEL CELL SYSTEM FOR SPACE APPLICATIONS# OPEN CYCLE
34812 WWATT FUEL CELLS FOR AEROSPACE APPLICATIONS# MEGA
52057 REABILITY DATA FOR AEROSPACE APPLICATIONS# PE
20007 HYDROGEN--ITS MANUFACTURE AND APPLICATIONS# ELECTROLYTIC
40208 SELECTED SOLIDS FOR CRYOGENIC APPLICATIONS# OF FLUIDS AND
33055 ONIC COMBUSTION IN PROPULSION APPLICATIONS* /ATION OF SUPERS
31007 OGEN IN A MA PRELIMINARY APPRAISAL OF HYDROGEN AND METHANE
52015 HE DETERMINATION OF HYDROGEN--A NEW APPROACH TO BEND TESTING FOR TURBINES
34101 H-TEMPERATURE HYDROGEN/ A NEW APPROACH TO HIGH-PRESSURE, HIG
30018 SHUTTLE AUXILIARY POWER UNIT (APU)# SPACE
23607 CERIUM PERCHLORATES IN DILUTE AQUEOUS PERCHLORIC ACID# OF
23606 7 A, FOR FERROUS TO FERRIC IN AQUEOUS SULFURIC ACID AND THE
22138 HYDROGEN HEATED IN AN ELECTRIC ARC# AN ELECTROLYTIC
30012 YSIS OF THE PERFORMANCE OF AN ARCJET DRIVEN BY HYDROGEN AND
30030 AND EXHAUST NOZZLE EXPANSION AREA RATIOS# /HAMBER PRESSURES
10032 OGEN--A CLEAN FUEL FOR URBAN AREAS#
33065 HYDROGEN OXYGEN-ARGON MIXTURES# / BY INCIDENT
22109 UCTIVE DEHYDROGENATION OF THE AROMATIC RING# DESTRUCTIVITY
34807 L CELL# SOME ENGINEERING ASPECTS OF HYDROGEN-OXYGEN FUELS
33044 ON# FUNDAMENTAL ASPECTS OF SUPersonic combUStion
22149 HYDROGEN GENERATOR ASSEMBLIES#
50015 ONSIDERATIONS WHEN DESIGNING, ASSEMBLING, AND OPERATING A GA TROPIC
34264 ROG-OXYGEN FUEL/ RELIABILITY ASSESSMENT TESTING OF 2 KW HYDROGEN packets
32003 PERRIS SMOGLess AUTOMOBILE ASSOCIATION#
34822 FUEL CELLS IN ASTRONAUTICS#
*AT ' NOT INDEXED

30022 ELS FOR THE FIRST STAGE OF AN ATMOSPHERIC BOOSTER# /DY OF掳
30070 DIZZLES/ FUEL CELLS, 1 JI TO AUGUST 1966# /ELECTROLYTIC REG
23600 OF HOT HYDROGEN OR DEUTERIUM ATOMS BY PHOTOLYSIS OF ORDINARY
33023 MACH NUMBER OF 36 ANGLES OF ATTACK UP TO 12 DEGREES AND PRO
30044 Ydro/ DEVELOPMENT OF PULSABLE ATTITUDE CONTROL ENGINES FOR H
43012 AGNETS THAT ATTRACT HYDROGEN#
34237 ENERGIC FUEL CELLS, 1 JI TO AUGUST 1966# /ELECTROLYTIC REG
23418 DURCH PERMEATION AN MEMBRANE AUS PALLADIUM-LEGIERUNGEN# /F
52022 CTING MECHANICAL BEHAVIORS OF AUSTENITIC STAINLESS STEELS#
34843 J4P-AIR SYSTEMS# AUTOMATED ELECTRICAL START FOR
22626 METHANE AND CARBON MONOXIDE / AUTOMATIC CONTROL OF COMBINED
20004 FOR OBTAINING HYDROGEN AND / AUTOMATIC LABORATORY APPARATUS
32003 PERRIS SMOGLess AUTOMOBILE ASSOCIATION#
32001 THE HYDROGEN - AIR FUELED AUTOMOBILE ENGINE (PART 1)#
TITLE INDEX

SECTION 'T'

32000 THE HYDROGEN-AIR FUELED AUTOMOBILE#
32010 ONS USING NATURAL GAS./ CLEAN AUTOMOTIVE FUEL: ENGINE EMISSE
32020 A LIQUID HYDROGEN SYSTEM FOR AUTOMOTIVE TRANSPORTATION# /OF
32006 NERGY FORM OF WATER (H2O*) IN AUTOMOTIVE VEHICLE ADVANCED PO
34842 ELL FOR LONG-LIFE MISSIONS# AUTONOMOUS HYDROGEN/AIR FUEL C
30019 PAC/ PRELIMINARY DESIGN OF AN AUXILIARY POWER UNIT FOR THE S
30020 SHUTTLE# AN H2-02 AUXILIARY POWER UNIT FOR SPACE
30018 SPACE SHUTTLE AUXILIARY POWER UNIT (APU)#
30016 PACE SHUTTLE/ HYDROGEN-OXYGEN AUXILIARY PROPULSION FOR THE S
30017 SPACE SHUTTLE HIGH PRESSURE AUXILIARY PROPULSION SUBSYSTEM
22187 # AVAILABLE HYDROGEN IN REFINERY
23604 SUNLIGHT INTO CHEMICAL ENERGY AVAILABLE IN STORAGE FOR MAN'S
40200 R/ TECHNIQUES FOR DETERMINING AVERAGE DENSITY AND RELATED PA
33030 TIONS OF HOT-GAS-SIDE HEAT-/ AXIAL AND CIRCUMFERENTIAL VARI
30023 PROGRAM STUDY 3-2 ON AN ELDO B LAUNCHING SYSTEM WITH A STAN
23200 N AND UTILIZATION IN HYDROGEN BACTERIA# ENERGY GENERATION
23202 TION OF HYDROGEN IN ALGAE AND BACTERIA# /IGHT- INDUCED EVOLU
23204 BACTERIAL METHANE FUEL CELL#
30013 ECTS OF SEVERAL INJECTOR FACE BAFFLE CONFIGURATIONS ON SCREE
23201 HILFE VON ELEKTROLYSEGAS UND BAKTERIEN# /OSSENEN SYSTEM MIT
34411 L CELLS# WATER AND HEAT BALANCE OF HYDROGEN-OXYGEN FUE
40505 RGE/ LUBRICATION AND WEAR OF BALL BEARINGS IN CRYOGENIC HYD
22632 N BLACK FROM NATURAL GAS IN A BALL MILL# /HYDROGEN AND CARB
10067 A HYDROGEN BASED ENERGY ECONOMY#
34643 THE NICKEL SKELETAL CATALYST BASED HYDROGEN ELECTRODE AND H
34227 EL# FUEL-CELL DESIGN BASED ON AIR AND REFORMABLE FU
22186 OCESSES FOR THE PRODUCTION OF BASIC CHEMICALS AND INTERMEDIAT
20013 CHEAP HYDROGEN FOR BASIC CHEMICALS#
34103 RESEARCH / COLD HYDROGEN AND BASIC ELECTROLYTE CELLS AT THE
34012 UEL CELL CONCEPT, A REVIEW OF BASIC PRINCIPLES# THE F
34105 URE BATTERIES A/ HYDROGEN AND BASIC-ELECTROLYTE LOW-TEMPERAT
34825 W# FUEL CELLS AND FUEL BATTERIES - AN ENGINEERING VIE
34003 ENERGY INTO ELECTRICAL ENERGY-BATTERIES AND FUEL CELLS# /AL
34603 ROGEN CELLS OF C G E EXISTING BATTERIES AND FUTURE PROSPECTS
34105 C-ELECTROLYTE LOW-TEMPERATURE BATTERIES AT THE CGE RESSEARCH
34217 LOW TEMPERATURE FUEL BATTERIES#
32026 AR WITH H2-AIR FUEL CELL/LEAD BATTERY (ONE YEAR OPERATING EX
34243 MOLTEN-CARBONATE FUEL BATTERY PROGRAM#
34242 OLTEN CARBONATE FUEL CELL AND BATTERY SYSTEM# /RMANCE OF A M
34222 ROL/ A 5-KW HYDROGEN-AIR FUEL BATTERY WITH AN ALKALINE ELECT
34811 NG ELECTRICITY TO HY/ STORAGE BATTERY-FUEL CELL FOR CONVERTI
34223 A 1 KW HYDROGEN FUEL BATTERY#
34846 THE FLYING H2/O2 STORAGE BATTERY#
34219 IVE HYDROGEN-OXYGEN FUEL-CELL BATTERY# /ECTROLYTIC REGENERAT
34037 F A HYDROGEN-OXYGEN FUEL CELL BATTERY# /NT CHARACTERISTICS O
22210 DROGEN MAY BECOME UTILITY AND BE PIPED TO CONSUMERS THROUGH
40501 IC FLUIDS# BEARINGS AND SEALS FOR CRYOGEN
40505 RATION AND WEAR OF BALL BEARINGS IN CRYOGENIC HYDROGEN
32018 HYDROGEN-POWERED CARS MAY BEAT POLLUTION STANDARDS#
22210 CONSUMERS THR/ HYDROGEN MAY BECOME UTILITY AND BE PIPED TO
10007 # WHEN HYDROGEN BECOMES THE WORLD'S CHIEF FUEL
22649 PROPANE CRACKING IN FLUIDIZED BED REACTORS# KINETICS OF
22642 GEN CONVERSION IN A FLUIDIZED BED UNDER PRESSURE# /TEAM- OXY
TITLE INDEX

SECTION 'T'

22172 S OF SHALE OIL IN A FLUIDIZED BED# KINETICS OF THE PYROLYSIS
30039 HE AIR BREATHING/ AIR PRECOOLING BEFORE COMPRESSION EFFECT ON T
33017 THE CONDITION OF THE MEDIUM BEFORE THE FLAME FRONT DURING
40214 RYGENIC LIQUIDS# THERMAL BEHAVIOR AND MEASUREMENTS OF C
34646 OF RANEY-U PREPARATION AND BEHAVIOR IN CONTINUOUS SERVICE
52012 AR MAGNETIC RESONANCE HYDROGEN BEHAVIOR IN METALS USING NUCLE
31004 CAL EVALUATION OF THE THERMAL BEHAVIOR OF LIQUID HYDROGEN IN
51008 FIRE TEST: EVALUATION OF THE BEHAVIOR OF NONMETALLIC MATERIAL
52022 HEMENOA AFFECTING MECHANICAL BEHAVIORS OF AUSTENITIC STAINLE
33064 THE HYDROGEN-OXYGEN REACTION BEHIND STEADY STATE SHOCK WAVE
40210 LID-VAPOR MIXTURE OF HYDROGEN BELOW ITS TRIPLE POINT# NG SO
40008 OPERATIONS OF HYDROGEN ISOTOPES BELOW THEIR CRITICAL TEMPERATU
52015 TION OF HY/ A NEW APPROACH TO BEND TESTING FOR THE DETERMINA
23414 DROGEN PURIFICATION PLANT FOR BENZENE MANUFACTURE# HY
10018 HYDROGEN PRODUCTION FOR BETTER NUCLEAR UTILIZATION#
10228 HYDROGEN GETS TOP BILLING AS FUTURE "CLEAN FUEL"
23408 Y PERMEATION T/ SEPARATION OF BINARY MIXTURES OF CO AND H2 B
2326 SE-METHYLENE BLUE SYSTEM IN A BIOCHEMICAL FUEL CELL (AN ANOD
23205 S#
23207 LAR HYDROGEN#
10070 ENERGY OPTIONS: PHYSICAL AND BIOLOGICAL# OUR SOLAR
23201 EN SYSTEM MIT HILFE VON ELEK/ BIOREGENERATION IM GESCHLOSSEN
34803 POWER SYSTEM# THE BIOSSATELLITE FUEL CELL/BATTERY
22210 TO CONSUMERS THROUGH GRID SAY BIPM SPOKESMAN# AND BE PIPIED
22632 RATION OF HYDROGEN AND CARBON BLACK FROM NATURAL GAS IN A BA
34627 THE DEGRADATION OF PLATINUM BLACK FUEL CELL CATHODES# Y O
40419 D HYDROGEN POSITIVE EXPULSION BLADDERS# LIQUI
23426 RS# BLEED BURNING HYDROGEN PURIFIE
30007 OGEC/ ANALYSIS OF TOPPING AND BLEED TURBOPUMP UNITS FOR HYDR
30008 ESTIGATION OF THE EIGHT-STAGE BLEED-TYPE TURBINE FOR HYDROGE
30009 INVESTIGATION OF EIGHT-STAGE BLEED-TYPE TURBINE FOR HYDROGE
34510 ELECTRICALLY DRIVEN HYDROGEN BLOWER FOR VEHICULARFUEL CELL
34220 USE OF HYDROGENASE-METHYLENE BLUE SYSTEM IN A BIOCHEMICAL F
33049 BUSTION IN THE FLOW FIELDS OF BODIES OF REVOLUTION AND NEAR
22189 ING A MIXTURE/ COMPACT REACTOR-BOILER COMBINATION FOR CONVERT
23436 D APPARATUS FOR PURIFYING LOW-BOILING GASES IN GASMIXTURES#/ 22121 HYDROGEN FROM HIGH-BOILING HYDROCARBON FUELS#
40203 INCIPIENT AND NUCLEATE BOILING OF LIQUID#
40409 OGEC TANK INSULATION FOR S-I1 BOOSTER# LIQUID HYDR
30022 FIRST STAGE OF AN ATMOSPHERIC BOOSTER# OFY OF FUELS FOR THE
30043 NT DYNAMICS IN A LARGE ROCKET BOOSTER# TIGATION OF PROPELLA
40108 RMODYNAMIC CYCLE FOR A SPACE- BORNE HYDROGEN RELIQUEFIER#/ E
23001 HYDROGEN TO A FUEL CELL WITH BOROHYDRIDE ADDUCT# /SUPPLYING
52036 NT OF NIOBAND VANADIUM BY BOTH DISSOLVED AND PRECIPITAT
30039 COMPRESSION EFFECT ON THE AIR BREATHING ENGINES OF A SPACE-C
31006 NGE OF A HYDROGEN-FUELED, AIR-BREATHEING HYPERSONIC AIRCRAFT#
32014 NCE CHARACTERISTICS OF AN AIR-BREATHEINGHYDROGEN-FUELED INTER
33029 USTOR AND FUEL-SYSTEM OPERAT/ BRIEF STUDIES OF TURBOJET COMB
34015 EARTH# BRINGING THE FUEL CELL DOWN TO
52011 LS# HYDROGEN BRITTLNESS IN NONFERROUS META
33045 URING VELOCITIES IN HYDROGEN-BROMINE AND DEUTERIUM- BROMINE
33046 URING VELOCITIES FOR HYDROGEN-BROMINE MIXTURES. IV. EQUATION

426
TITLE INDEX

SECTION 'T'

33045 DROGEN-BROMINE AND DEUTERIUM-BROMINE MIXTURES* /ITIES IN HY
33047 RNING VELOCITIES IN HYDROGEN-BROMINE MIXTURES# /ENTS ON BU
30046 FO/ PRATT & WHITNEY PICKED TO BUILD CRYOGENIC ROCKET ENGINE
41006 MELTING CHARACTERISTICS AND BULK THERMOPHYSICAL PROPERTIES
40004 AND SERVICES OF THE NATIONAL BUREAU OF STANDARDS. CRYOGENIC
10066 LLUTION-FREE CAR ENGINES THAT BURN A GASOLINE-HYDROGEN MIXTU
22199 ON OF HYDROCARBONS FOR SYNTH/ BURNER FOR THE PARTIAL OXIDATI
32015 DESIGN CRITERIA FOR HYDROGEN BURNING ENGINES#
33006 THERMAL RADIATION FROM BURNING HYDROGEN PLUME#
23426 BLEED BURNING HYDROGEN PURIFIERS#
33032 SUPERSONIC COMBUSTION AND BURNING IN RAMJET COMBUSTORS#
30071 TER IN A SMALL ROCKET CHAMBER BURNING LIQUID AND GASEOUS HYD
51005 AND HIGH FLOW INSTABILITIES, BURNING RATES, DILUTION LIMITS
33046 N-BROMINE Mi/ CALCULATIONS OF BURNING VELOCITIES FOR HYDROGE
33047 - BROW/ EFFECT OF DILUENTS ON BURNING VELOCITIES IN HYDROGEN
33045 -BROMINE AND DEUTERIUM- BROM/ BURNING VELOCITIES IN HYDROGEN
33036 NSFER IN SMALL ROCKET CHAMBER BURNINGLIQUID OXYGEN AND GASED
10060 HYDROGEN: IT'S CLEAN, BUT IS IT A PRACTICAL FUEL?#
22617 DOM KATALITICHESKOI KONVERSII BUTANA POD DALENIEI# /DA METO
22604 OF HIGH-PURITY HYDROGEN FROM BUTANE WITH SPECIAL REFERENCE
34214 PERFORMANCE OF COMPACT-DESIGN BUTANE-AIR FUEL CELL#
22638 WITH STEAM / REACTIONS OF N-BUTANE. ETHYLENE. AND 1-BUTENE
22638 WITH STEAM / REACTIONS OF N-BUTANE. ETHYLENE. AND 1-BUTENE
30024 PRELIMINARY PROJECT LAUNCHERS B1 AND B2# STUDY NO. 3.5: A DE
30024 NARY PROJECT LAUNCHERS B1 AND B2# STUDY NO. 3.5: A DETAILED
10062 C & EN TALKS WITH******/
22151 HYDROGEN STEAM REFORMING: C & I/GTROLER INC#
32005 URE IN THE EM/ THE HYDROGEN I C ENGINE - ITS ORIGINS AND FUT
34603 TEMPERATURE HYDROGEN CELLS OF C G E EXISTING BATTERIES AND F
22144 OESSION AND OTHER TECHNI/ THE I C I STEAM NAPHTHA REFORMING PR
34203 TEMPERATURE RANGE -20 DEGREES C TO +60 DEGREES C# /THIN THE
52026 LESS STEEL FROM LESS THAN 600 C TO NEAR 600 C# /ND 304 STAIN
52026 M LESS THAN 600 C TO NEAR 600 C# /ND 304 STAINLESS STEEL FRO
34203 -20 DEGREES C TO +60 DEGREES C# /THIN THE TEMPERATURE RANGE
20019 OLYSIS SYSTEMS FOR SPACECRAFT CABIN OXYGEN GENERATION# /ECTO
34600 FUEL-CELL ELECTRODE IN NICKEL-CADMIUM CELLS# /ND THE OXYGEN
52001 EPTIBILITY OF ALLOY STEELS TO CADMIUM PLATING (HYDROGEN) EMB
40212 IES/ NUMERICAL PROCEDURES FOR CALCULATING REAL FLUID PROPERT
33014 IN THE HYDROGEN-AIR SYSTEM# CALCULATION OF IGNITION DELAYS
33035 INETICS CONSIDERATIONS DURING CALCULATION OF THE NOZZLE FLOW
40417 I/ A COMPUTER PROGRAM FOR THE CALCULATION OF THERMAL STRATIF
33046 NSON EQUATIONS. V. ADDITIONAL CALCULATIONS BY MALLARD-LECHAT
33046 TIES FOR HYDROGEN-BROMINE Mi/ CALCULATIONS OF BURNING VELOC\n10025 HYDROGEN FUEL USE CALLS FOR NEW SOURCE#
10009 "HYDROGEN: CANDIDATE FOR UNIVERSAL FUE/'#
34505 L CONCEPT FOR HYDROGEN-OXYGEN CAPILLARY FUEL CELL# /E REMOVA
34010 ROGEN-OXYGEN FUEL CELL WITH A CAPILLARY MEMBRANE# / IN A HYD
10066 NE-HYDROGEN Mi/ POLLUTION-FREE CAR ENGINES THAT BURN A GASOLI
10016 ANOTHER HYDROGEN CAR OUT WEST#
32026 $60,000 FOR HYDROGEN-FUELED-CAR RESEARCH# /TION HAS GRANTE
32026 BATTERY (ONE YEAR OPER/ CITY CAR WITH H2-AIR FUEL CELL/LEAD
32017 PERFORMAN/ THE UCLA HYDROGEN CAR: DESIGN. CONSTRUCTION, AN

427
TITLE INDEX

SECTION 'T'

32002 ON THE UCLA HYDROGEN CAR#
22532 C PREPARATION OF HYDROGEN AND CARBON BLACK FROM NATURAL GAS
22632 ROGEN ANODES/ THE PLATINUM-ON-CARBON CATALYST SYSTEM FOR HYD
34641 ROGEN ANODES/ THE PLATINUM-ON-CARBON CATALYST SYSTEM FOR HYD
33002 INETIC STUDY OF THE EFFECT OF CARBON DIOXIDE AND WATER VAPOR
34834 TROLYTE HYDROGEN-/ EFFECTS OF CARBON DIOXIDE ON TRAPPED ELEC
40418 AL PROTECTION SYSTEM FOR L/ A CARBON DIOXIDE PURGE AND THERM
31003 AL PROTECTION SYSTEM FOR L/ A CARBON DIOXIDE PURGE AND THERM
34648 ICAL STUDIES ON HIGHLY POROUS CARBON ELECTRODES# /LECTROCHEM
34606 CARBON FUEL CELL ELECTRODES#
22181 OF PRODUCING HYDROGEN FROM A CARBON MONOXIDE CONTAINING GAS
22148 ES FROM FUEL GA/ HYDROGEN AND CARBON MONOXIDE CONTAINING GAS
22626 NTROL OF COMBINED METHANE AND CARBON MONOXIDE CONVERSION SEC
22156 ARATUS FOR PRODUCING HYDROGEN-CARBON MONOXIDE GAS MIXTURES# /
34611 TURE FUEL CEL/ PERFORMANCE OF CARBON MONOXIDE IN LOW-TEMPERA
22633 F HYDROGEN AND OF A HYDROGEN- CARBON MONOXIDE MIXTURE# /RE O
22616 HYDROGEN AND CARBON MONOXIDE#
22160 XTURE CONTAINING HYDROGEN AND CARBON MONOXIDE# GAS MI
22101 EGUS MIXTURES OF HYDROGEN AND CARBON MONOXIDE# COOLING GAS
22154 XTURE CONTAINING HYDROGEN AND CARBON MONOXIDE# OF A GAS MI
34642 CHEMICAL REQUIREMENTS OF THE CARBON SURFACE# /N ANODES II,
34624 TEMPERATURE FUEL CELLS# CARBON-AIR ELECTRODES FOR LOW
34625 EL CELLS# COMPOSITE CARBON-METAL ELECTRODES FOR FU
34212 OPERATION ON DILUTE HYDROGEN, CARBONACEOUS FUELS, AND DILUTE
22169 ROGE/ APPARATUS FOR REFORMING CARBONACEOUS MATERIAL INTO HYD
34253 L# STUDIES OF THE MOLTEN CARBONATE ELECTROLYTE FUEL CEL
34243 MOLN-CARBONATE FUEL BATTERY PROGRAM
34242 Y SY/ PERFORMANCE OF A MOLTEN CARBONATE FUEL CELL AND BATTER
34640 EN-PLATINUM ANODES OF A MOLTEN-CARBONATE FUEL CELLE HYDROG
22175 YDROCARBONS AND USE IN MOLTEN CARBONATE FUEL CELLS# FROM H
10069 A HYDROGEN ENERGY CARRIER#
10058 A HYDROGEN ENERGY CARRIER#
32018 RDS# HYDROGEN-POWERED CARS MAY BEAT POLLUTION STANDA
31014 ERSION TRANSPORT# THE CASE FOR A HYDROGEN-FUELED SUP
31017 PORT AIRCRAFT# THE CASE FOR HYDROGEN FUELED TRANS
22612 EAM-METHANE REFORMER FURNACE/ CASE HISTORY: FAILURES IN A ST
50009 LOW TEMPERATURES+ PARTICULAR CASE OF LIQUID HYDROGEN# /ERY
34645 E - ELECTROLYTE INTERFACE FOR CASE OF OXYGEN-HYDROGEN CELLE /
52007 S BY HYDROGEN UNDER PRESSURE: CASE OF 35 NICRMD 16 STEEL# /L
52049 HYDROGEN UNDER PRESSURE: THE CASE OF 35 NICRMD 16 STEEL# /Y
30070OMBINATION IN ROCKET NOZZLES/ CATALYSIS OF HYDROGEN-ATOM REC
34641 S. 1s CHARACTERIZATION OF THE CATALYST AND SUPPORT#/N ANODE
34643 ODE AND / THE NICKEL SKELETAL CATALYST BASED HYDROGEN ELECTR
22179 FROM HYDROCARBONS# CONTACT CATALYST FOR HYDROGEN-RICH GAS
22182 PROTECTION OF A METHANATION CATALYST IN HYDROCARBON REFORM
22638 VER A SILICA-SUPPORTED NICKEL CATALYST IN THE TEMPERATURE RA
34641 NODES/ THE PLATINUM-ON-CARBON CATALYST SYSTEM FOR HYDROGEN A
34642 NODES/ THE PLATINUM-ON-CARBON CATALYST SYSTEM FOR HYDROGEN A
22212 E WITH HYDROGEN MANUFACTURING CATALYST# /COMMERICAL EXPERIENC
22209 TION BY REFORMI/ RANEY NICKEL CATALYSTS FOR HYDROGEN PREPARA
34616 LS# RANEY-NICKEL CATALYSTS IN GALVANIC FUEL CEL
34630 INEXPENSIVE CATHODE CATALYSTS#
33052 EVOLUTION OF HYDROGEN-OXYGEN CATALYSTS#
TITLE INDEX

SECTION 'T'

34633 THIN FUEL CELL ELECTRODES
34614 NEW METHODS OF OBTAINING FUEL CELL ELECTRODES
34612 PAPER FUEL CELL ELECTRODES
34606 CARBON FUEL CELL ELECTRODES
34636 RAMANCE OF FLOODED POROUS FUEL CELL ELECTRODES
34604 LOW COST FUEL CELL ELECTRODES
34622 ANY DISCHARGE PULSING ON FUEL CELL ELECTRODES / EFFECTS OF HE
34257 A NEW HIGH-PERFORMANCE FUEL CELL EMPLYING CONDUCTING- POR
23012 AINING PURE HYDROGEN FOR FUEL CELL FEEDING OUT OF METHANOL /
34711 Y TO HY/ STORAGE BATTERY-FUEL CELL FOR CONVERTING ELECTRICIT
20008 ND OXYGEN / ELECTROLYSIS CELL FOR GENERATING HYDROGEN A
34842 AUTONOMOUS HYDROGEN/AIR FUEL CELL FOR LONG-LIFE MISSIONS
34201 PURIFICATION OF FUEL CELL GASES
22166 S# FUEL-CELL HYDROGEN FROM HYDROCARBON
22122 FORMING; A GOOD ROUTE TO FUEL-CELL HYDROGEN / TEMPERATURE RE
34224 DUAL CELL REGENERATIVE FUEL CELL INVESTIGATION
34848 FUEL CELL IS GOING COMMERCIAL
34617 EN-OXYGEN THIN ELECTRODE FUEL CELL MODULE
22158 HYDROGEN PRODUCTION FOR FUEL CELL MODULES
34601 DROGEN FEED MECHANISM OF FUEL CELL ON OPEN CIRCUIT / ON HY
34639 MOBABLE, PARTIALLY SUBM/ FUEL CELL OXIDATION OF HYDROGEN ON
34266 INCREASED HYDROX FUEL CELL PERFORMANCE
34831 5 KW HYDROCARBON-AIR FUEL CELL POWER PLANT
34830 5-KW HYDROCARBON-AIR FUEL CELL POWER SOURCE
34609 N USE OF HYDROCARBONS IN FUEL CELL POWER SYSTEMS /RLBLEMS I
34823 POLLO SPACECRAFT FUEL CELL POWERPLANT OPERATION IN A
34838 CIRCULATING ELECTROLYTE FUEL CELL POWERPLANT
34510 OGEN BLOWER FOR VEHICULAR FUEL CELL POWERPLANT / DRIVEN HYD
34023 - THE FUEL CELL PROBLEM
34231 IFACTION USING MODIFIED FUEL CELL PROCESS / HYDROGEN PUR
23122 ICAUTION USING A MODIFIED FUEL CELL PROCESS / HYDROGEN PURIF
20010 NG ELECTROL/ HYDROGEN-OXYGEN CELL PRODUCING ELECTRICITY DUR
340229 EXTRATERRESTRIAL (HOPE) FUEL CELL PROGRAM PHASE 1A / PRIMARY
34254 EXTRATERRESTRIAL (HOPE) FUEL CELL PROGRAM / OXYGEN PRIMARY
34255 EXTRATERRESTRIAL (HOPE) FUEL CELL PROGRAM / OXYGEN PRIMARY
34224 VESTIGATION DUAL CELL REGENERATIVE FUEL CELL IN
34261 E UNIVERSITY FUEL CELL RESEARCH AT OKLAHOMA STAT
34264 OF 2 KW HYDROGEN-OXYGEN FUEL CELL STACKS / SESSMENT TESTING
20018 REGENERATIVE FUEL CELL STUDY
34817 CATION HYDROCARBON-AIR FUEL CELL SYSTEM FOR MILITARY APPLI
34815 IONS OPEN CYCLE FUEL CELL SYSTEM FOR SPACE APPLICAT
23028 LITHIUM HYPOCHLORITE TO/ FUEL CELL SYSTEM USING LITHIUM AND
34106 RSATURA HYDROGEN-OXYGEN FUEL CELL SYSTEM WITH REACTANT SUPE
34832 500 WATT HYDROCARBON AIR FUEL CELL SYSTEM
34826 GEMINI FUEL CELL SYSTEM
34802 VEHICLE FUEL CELL SYSTEM
34248 DROCARBON REFORMER - AIR FUEL CELL SYSTEM
34249 DROAPOLLO FUEL CELL SYSTEM
22176 GAS SHIFT CONVERTER AND FUEL CELL SYSTEM WATER
34837 ELECTROLYTE HYDROGEN/AIR FUEL CELL SYSTEM / CIRCULATING
34215 EFORMED NATURAL GAS-ACID FUEL CELL SYSTEM PERFORMANCE OF R
34019 ENERGETICS FUEL-CELL SYSTEMS
34026 LOW-TEMPERATURE FUEL CELL SYSTEMS

430
TITLE INDEX

SECTION 'T'

34027 HYDROCARBON - AIR FUEL CELL SYSTEMS#
34814 OXYGEN FUEL CELLS: VARTA FUEL CELL SYSTEMS# HYDROGEN-
34269 ADVANCED SPACECRAFT FUEL CELL SYSTEMS#
34503 T-REMOVAL UNIT FOR H2/O2 FUEL CELL SYSTEMS# WATER- AND HEA
34260 GEN-OXYGEN REGENERATIVE FUEL- CELL SYSTEMS# /PRESSURE HYDRO
34034 ADVANCES AND PROBLEMS# FUEL CELL TECHNOLOGY - A SURVEY OF
34226 FUEL CELL TECHNOLOGY PROGRAM#
34225 CT SUMMARY REPORT# FUEL CELL TECHNOLOGY PROGRAM CONTRA
34258 FUEL CELL TECHNOLOGY PROGRAM#
34844 STATIST OF SHUTTLE FUEL CELL TECHNOLOGY PROGRAM#
34501 N FROM A HYDROGEN-OXYGEN FUEL CELL TO A HYDROGEN STREAM# /IO
34824 FUEL-CELL UNIT IN ELECTRIC VEHICLE#
22161 HYDROGEN GENERATOR FOR FUEL CELL USE IN SUBMARINES#
34500 ON# EVALUATION OF FUEL CELL WATER FOR HUMAN CONSUMPTI
34010 NGE IN A HYDROGEN-OXYGEN FUEL CELL WITH A CAPILLARY MEMBRANE
23001 SUPPLYING HYDROGEN TO A FUEL CELL WITH BOROHYDRIDE ADDUCT# /
34840 A 500 WATT HYDROGEN-AIR FUEL CELL WITH METHANOL REFORMER#
34258 ATION OF AN ION-MEMBRANE FUEL CELL WITH MICROBIALY-PRODUCED
34635 ELECTROLYTE AND NICKEL-/ FUEL CELL WITH STABILIZED ZIRCONIA
34803 THE BIOSATELLITE FUEL CELL/BATTERY POWER SYSTEM#
32026 ER/ CITY CAR WITH H2-AIR FUEL CELL/LEAO BATTERY (ONE YEAR OP
34211 OPERATION OF A FUEL CELL#
34228 HYDROGEN FOR FUEL CELL#
34800 THE HYDROGEN-CHLORINE FUEL CELL#
34841 A COMPACT HYDROGEN-OXYGEN CELL#
34268 HIGH POWER DENSITY FUEL CELL#
34504 500-WATT HYDROGEN-AIR CELL#
34263 HIGH PERFORMANCE FUEL CELL#
34839 A HYDROCARBON-AIR FUEL CELL#
34506 LOW TEMPERATURE FUEL CELL#
23204 BACTERIAL METHANE FUEL CELL#
34218 RGE OF A HYDROGEN-OXYGEN FUEL CELL# SELF-DISCHA
34232 R PER POUND REGENERATIVE FUEL CELL# 20 WATT-HOU
34214 OMPT-DESIGN BUTANE-AIR FUEL CELL# PERFORMANCE OF C
34240 NERATIVE HYDROGEN-OXYGEN FUEL CELL# ELECTRICALLY-REGE
34807 PCTS OF HYDROGEN-OXYGEN FUEL CELL# SOME ENGINEERING AS
34253 EN CARBONATE ELECTROLYTE FUEL CELL# STUDIES OF THE MOLT
34234 NERATIVE HYDROGEN-OXYGEN FUEL CELL# ELECTROLYTICALLY REGE
34644 TION OF HIGH TEMPERATURE FUEL CELL# STUDIES ON ANODIC REAC
34645 E FOR CASE OF OXYGEN-HYDROGEN CELL# / - ELECTROLYTE INTERFAC
34640 DE OF A MOLTEN-CARBONATE FUEL CELL#/E HYDROGEN-PLATINUM AND
34505 YDROGEN-OXYGEN CAPILLARY FUEL CELL#/E REMOVAL CONCEPT FOR H
34267 ARGEABLE HYDROGEN-OXYGEN FUEL CELL#/FOR A LIGHTWEIGHT, RECH
34208 INTERMEDIATE-TEMPERATURE FUEL CELL#/ILIZED PHOSPHORIC ACID
34245 MANE OF HYDROGEN-OXYGEN FUEL CELL#/LY IMPURITIES ON PERFOR
34259 ARGEABLE HYDROGEN-OXYGEN FUEL CELL#/MANE STUDIES ON A RECH
34252 OLYTE (HYDROGEN-HALOGEN) FUEL CELL#/OVER IN A MOLTEN ELECTR
34270 CTROLYTE HYDROGEN-OXYGEN FUEL CELL#/PERATURE, CONTAINED-ELE
34502 TYPE OF HYDROGEN-OXYGEN FUEL CELL#/REJECTION FROM A MATRIX
30007 CONVERTERS OF FUTURE# FUEL CELLS - ELECTROCHEMICAL ENERGY
30000 UTSTANDING PROBLEMS# FUEL CELLS - PRESENT POSITION AND O
30031 UTURE PROSPECTS# FUEL CELLS - PRESENT POSITION AND F
Title Index

SECTION "T"

34030 ENGINEERS: FUEL CELLS - PROBLEMS FOR CHEMICAL
34029 E OUTLOOK: FUEL CELLS - THEIR STATUS AND FUTURE
34039 HYDROGEN ECONOMY: FUEL CELLS AND ELECTROLYZERS IN THE
34885 ENGINEERING VIEW: FUEL CELLS AND FUEL BATTERIES - AN
34813 ATMOSPHERIC AIRS/ H2-AIR FUEL CELLS AS ELECTRIC SUPPLY ON ST
34139 OXYGEN AND BASIC ELECTROLYTE CELLS AT THE RESEARCH CENTER 0
34507 N OF REACTION WATER FROM FUEL CELLS BY DIFFUSION AND CONDENS
34812 NS# MEGAWATT FUEL CELLS FOR AEROSPACE APPLICATION
34020 TION: FUEL CELLS FOR CENTRAL POWER GENERATION
34829 POWER SUPPLY: FUEL CELLS FOR IMPROVED ELECTRICAL
34808 PRIMARY HYDROGEN-OXYGEN FUEL CELLS FOR SPACE
34821 FUEL CELLS IN AEROSPACE
34822 FUEL CELLS IN ASTRONAUTICS
34216 OF GASES MIXING IN H2/O2 FUEL CELLS IN WHICH GAS CIRCULATES
34810 POWER OF OXYGEN-HYDROGEN FUEL CELLS INTENDED FOR EMERGENCY P
34603 IES/ LOW TEMPERATURE HYDROGEN CELLS OF THE GENERAL ELECTRIC
34836 COMPANY AND TH/ COLD HYDROGEN CELLS OF THE GENERAL ELECTRIC
34205 OXIDATION PROBLEMS: FUEL CELLS PRESENT STATUS AND DEVELOPMENT
34818 NITROGEN/OXYGEN FUEL CELLS REQUIRING MINIMUM OF MAINTENANCE
34804 O-WATT METAL HYDROGEN/AIR FUEL CELLS SYSTEM
34626 PERATURE HYDROGEN/OXYGEN FUEL CELLS WITH AN ALKALINE ELECTRODE
34628 TEMPERATURE FUEL CELLS WITH ELECTROCHEMICAL HYDROGEN COMBUSTION
34205 ROGEN COMBUSTION: FUEL CELLS WITH ELECTROCHEMICAL HYDROGEN COMBUSTION
34025 NSFER IN ELECTROCHEMICAL FUEL CELLS WITH ION EXCHANGE MEMBRANE
34209 OF THE HYDROGEN-CHLORINE FUEL CELLS: VAPOR DISCHARGE MECHANISM
34032 FUEL CELLS: A PROGRESS REPORT
34104 FUEL CELLS: DESIGN & COMPONENTS
34035 FUEL CELLS: TODAY AND TOMORROW
34237 ELECTROLYTIC REGENERATIVE FUEL CELLS, 1 JL TO AUGUST 1966
20820 ELECTROLYSIS FOR ELECTROLYSIS CELLS: ALKALINE OR ACID SOLUTIONS
34008 E ELECTROCHEMICAL PRODUCTION OF FUEL CELLS: MODERN PROCESSES FOR THE
34009 FUEL CELLS: THEORY AND APPLICATION
34814 HYDROGEN-OXYGEN FUEL CELLS: VARTA FUEL CELL SYSTEMS
34629 MATRICES FOR H3PO4 FUEL CELLS
34615 NEW AIR ELECTRODE FOR FUEL CELLS
34600 AND APPLICATIONS OF GALVANIC CELLS
34801 USE OF HYDROGEN IN FUEL CELLS
34616 EL CATALYSTS IN GALVANIC FUEL CELLS
34845 ULTRA-PURE HYDROGEN FOR FUEL CELLS
34820 FUEL CELLS
34618 FUEL CELLS
34265 OF SILVER OXIDE-ZINC STORAGE CELLS
34819 DROGEN GENERATOR MANPACK FUEL CELLS
34206 COMPACT H2 GENERATORS FOR FUEL CELLS
23206 BIOCHEMICAL FUEL CELLS
34006 FUEL CELLS
34004 ELECTROCHEMICAL FUEL CELLS
23013 DROGEN FROM METHANOL FOR FUEL CELLS
23009 HYDROGEN PRODUCTION FOR FUEL CELLS
34001 FUEL CELLS
23003 HYDROGEN GENERATION FOR FUEL CELLS
34002 HE PRESENT AND FUTURE OF FUEL CELLS
34206 FUEL CELLS.
TITLE INDEX

SECTION 'T'

22188 ROCR/ HYDROGEN COMPRESSION BY
CENTRIFUGAL COMPRESSORS IN HYD
22618 CENTRIFUGAL COMPRESSORS USED
40507 ERISTICS OF A LIQUID HYDROGEN
CENTRIFUGAL TURBOPUMP/ HARC
41009 MING CHARACTERISTICS USING A
CENTRIFUGAL- TYPE PUMP (J-2)/
23607 AQUEOUS PE/ PHOTOCHEMISTRY OF
CEM PERCHLORATES IN DILUTE
34105 -TEMPERATURE BATTERIES AT THE
CGER RESEARCH CENTER/ LYTE LOW
34103 AT THE RESEARCH CENTER OF THE
CGER/ BASIC ELECTROLYTE CELLS
30071 AT TRANSFER IN A SMALL ROCKET
CHAMBER BURNING LIQUID AND GAS
33036 HEAT TRANSFER IN SMALL ROCKET
CHAMBER BURNINGLIQUID OXYGEN A
30066 STOR EFFECTS ON ROCKET THRUST
CHAMBER PERFORMANCE/ OF COMBU
30038 ENT, AND CONTRACT/ EFFECT OF
CHAMBER PRESSURE, FLOW PER ELE
30030 RINE ROCKET ENGINE AT SEVERAL
30058 GEN IN REGENERATIVE ENGINESAT
30050 ARGE HYDROGEN-OXYGEN ABLATIVE
CHAMBER TEST PROGRAM/
30028 GATION OF INJECTORS FOR A LOW-CHAMBER-PRESSURE HYDROGEN-FLUID
30056URE OF LIQUID HYDROGEN THRUST
CHAMBER/ DESIGN AND MANUFACT
30062 REGENERATIVELY COOLED THRUST
CHAMBER/ COATING SYSTEM FOR A
33031 OGEN/OXYGEN ROCKET COMBUSTION
CHAMBERS/ AT TRANSFER IN HYDR
33037 IN STEEL AND ABLATIVE ROCKET
CHAMBERS/ BUSTION INSTABILITY
34016 S/ CONCENTRATION CHANGES IN OPERATING FUEL CELL
10024 EN FUEL ECONOMY: WIDE-RANGING
22000 DUCTION OF HYDROGEN FROM COAL
22001 DUCTION OF HYDROGEN FROM COAL
22005 CHAR OIL ENERGY DEVELOPMENT/
22010 O MAKE HYDROGEN GAS FROM COAL
41006 PHYICAL PROPERTIES/ MELTING
30037 EXPERIMENTAL VOLTAGE-CURRENT
30041 E/ PERFORMANCE AND COMBUSTION
30036 MENT ON COMBUSTION STABILITY
34251 RE MEDIUM- TEMPERA/ OPERATING
30038 AR ITS CRIT/ FLOW AND THERMAL
34206 CHARACTERISTICS OF HYDROGEN NE
22195 E HYDROGEN PRODUC/ DESIGN AND
34613 SILVER ANODE ON IMP/ OPERATING
41009 FUGAL/ SLUSH HYDROGEN PUMPING
CHARACTERISTICS USING A CENTRI
41010 SLUSH HYDROGEN
33013 CH DYES-THROHYDROGENCOMBUSTION
34641 STEM FOR HYDROGEN ANODES, 1n
41000 H HYDROGEN A SUMMARY OF THE
22105 N FROM HYDROCARBON-CONTAINING
52043 K PROPAGATION DURING HYDROGEN
22605 GOKE-OVEN GAS SEPARATION/
20013 CALS/
20500 GE PROCESS COULDC MAKE
CHEAPER HYDROGEN/
21013 ECOMPOSITION OF WATER THROUGH
CHEMICAL CYCLES USING A FE-CL2
23604 CONVERSION OF SUNLIGHT INTO
CHEMICAL ENERGY AVAILABLE IN S
34038 L ENERG/ DIRECT CONVERSION OF
CHEMICAL ENERGY INTO ELECTRICA
34011 BEMS OF DIRECT CONVERSION OF
CHEMICAL ENERGY INTO ELECTRICA
34030 FUEL CELLS - PROBLEMS FOR
CHEMICAL ENGINEERS/
22117 N / HYDROGEN IN PETROLEUM AND
CHEMICAL INDUSTRIES APPLICATIO
33002 EFFECT OF CARBON / ANALYTICAL
CHEMICAL KINETIC STUDY OF THE
33035 NS DURING CALCULATION OF THE/ CHEMICAL KINETICS CONSIDERATIO
33066 INTEGRATED COMBUSTION OF HY/ CHEMICAL KINETICS OF THE SHOCK
22626 ERSION SECTION AT THE RUSTAVI CHEMICAL PLANT# /MONOXIDE CONV
21009 WATER USING NUCLEAR HEAT# CHEMICAL PROCESS TO DECOMPOSE
33001 ROCKET ENG/ HYDROGEN-OXYGEN CHEMICAL REACTION KINETICS IN
34642 STEM FOR HYDROGEN ANODEs# II# CHEMICAL REQUIREMENTS OF THE C
33015 HYDROGEN-AIR MIXING LAYER# CHEMICAL TRANSFORMATIONS IN A
30003 TE NUCLEAR ROCKET STAGES WITH CHEMICAL UPPER STAGES FOR UNMA
22186 S FOR THE PRODUCTION OF BASIC CHEMICALS ANDINTERMEDIATES FROM
20013 CHEAP HYDROGEN FOR BASIC CHEMICALS#
10007 HYDROGEN BECOMES THE WORLD'S CHIEF FUEL# WHEN
34209 RGE MECHANISM OF THE HYDROGEN-CHLORINE FUEL CELL AT HIGH TEM
34800 THE HYDROGEN-CHLORINE FUEL CELL#
34209 RGE MECHANISM OF THE HYDROGEN-CHLORINE FUEL CELLS# V# DISCHARGE
33020 URES OF HYDROGEN, OXYGEN, AND CHLORINE# /MES IN FLOWING MIXTURES
20012 PRESSURE-RESPONSIVE CONTROL CIRCUIT FOR AN ELECTROLYSIS-TYPE
34601 ECHANISM OF FUEL CELL ON OPEN CIRCUIT# /H ON HYDROGEN FEED M
34836 OMPANY AND THEIR ACCOMPANYING CIRCUITS# / GENERAL ELECTRIC C
34216 H2/02 FUEL CELLS IN WHICH GAS CIRCULATES THROUGH ELECTROLYTE
34838 ELL POWERPLANT# CIRCULATING ELECTROLYTE FUEL CELL
34837 EN/AIR FUEL CELL SYSTEM# CIRCULATING ELECTROLYTE HYDROGEN
43002 ATE PRE/ A NEW LABORATORY GAS CIRCULATION PUMP FOR INTERMEDIATE
33030 HOT-GAS-SIDE HEAT/- AXIAL AND CIRCUMFERENTIAL VARIATIONS OF
32026 LEAD BATTERY (ONE YEAR OPER/# CITY CAR WITH H2-AIR FUEL CELL
22152 SYNTHESIS GAS# CITY GAS, AND REDUCING GAS#
32010 EMISSIONS USING NATURAL GAS# CLEAN AUTOMOTIVE FUEL: ENGINE
10065 HNOLOGY# CLEAN ENERGY VIA CRYOGENIC TECHNOLOGY
10074 HYDROGEN - THE KEY TO ABUNDANT CLEAN ENERGY#
10032 HYDROGEN--A CLEAN FUEL FOR URBAN AREAS#
22009 ION; ARediscovered SOURCE OF CLEAN FUEL# GASIFICATION
10028 N GETS TOP BILLING AS FUTURE "CLEAN FUEL"# HYDROGEN
10044 AS THE MASTER FUEL TO POWER A CLEAN-AIR FUTURE# MAY EMERGE
10060 UEL?# HYDROGEN: IT'S CLEAN, BUT IS IT A PRACTICAL FUEL?
10030 "THE CLEANING OF AMERICA"#
33019 HAUSTSI NONEQUILIBRIUM CLUSTER FORMATION IN ROCKET EX
21013 UGH CHEMICAL CYCLES USING A FE-Cl2 FAMILY# /ION OF WATER THROUGH
52046 ITTLEME/ THE ROLE OF ADSORBED CN GROUPS IN THE HYDROGEN EMBR
22602 RE FORMATION OF HYDROGEN FROM CO + H2O# LOW TEMPERATURE
23020 RE FORMATION OF HYDROGEN FROM CO + H2O# LOW TEMPERATURE
23498 RATION OF BINARY MIXTURES OF CO AND H2 BY PERMEATION THROUGH
22609 PRODUCTION OF PURE H2 AND CO BY METHANE WASH#
22621 HYPRO: UNIVERSAL OIL PRODUCTS CO#
22622 OCESS: UNIVERSAL OIL PRODUCTS CO# HYPRO PRO
32010 AS, AND GAS MANUFACTURED FROM COAL (SYNTHANE)# /ED NATURAL G
22630 ER# SYSTEM EMPLOYING COAL AS FUEL IN A STEAM REFORM
22000 PRODUCTION OF HYDROGEN FROM COAL CHAR IN AN ELECTROFLUID R
22001 PRODUCTION OF HYDROGEN FROM COAL CHAR IN AN ELECTROFLUID R
22100 ACT TO MAKE HYDROGEN GAS FROM COAL CHAR WASTE# /ON OCR CONTR
22013 WHAT HYDROGEN FROM COAL COSTS#
22002 DICS, PHASE II# COAL PROCESSING BY ELECTROFLUID
22007 DUCTS FROM LASER PYROLYSIS OF COALS OF VARIOUS RANKS# /S PRO
30062 IVELY COOLED THRU/ PROTECTIVE COATING SYSTEM FOR A REGENERAT
52049 IT/ THE EFFECT OF SURFACE AND COATING TREATMENTS ON THE EMBRITTLEMENT
52007 NCE OF SURFACE TREATMENTS AND COATINGS ON THE EMBRITTLEMENT
33005 E FUNDAMENTAL PROBLEMS ON THE COMBUSTION OF LIQUID OXIDIZERS
33004 EXPONENTS FOR CONSTANT-VOLUME COMBUSTION OF STOICHIOMETRIC M
33058 NIC FLOW BY MEANS OF HYDROGEN COMBUSTION ON A FLAT PLATE IN
33040 ET FUELS: HYDROG/ THEORETICAL COMBUSTION PERFORMANCE OF RAMJ
33017 DURING THE INITIAL PHASE OF A COMBUSTION PROCESS# /ME FRONT
33021 LIQUID OXYGEN-LIQUID HYDROGEN COMBUSTION PRODUCTS# /YSIS OF
30053 ANALYSIS OF A SUPERSONIC-COMBUSTION ROCKET CONCEPT#
30036 FECT OF THRUST PER ELEMENT ON COMBUSTION STABILITY CHARACTER
33007 ORT PROPERTIES OF FUEL-OXYGEN COMBUSTION SYSTEMS# /NO TRANSP
33018 INVESTIGATION OF GH2-GO2 COMBUSTION#
33060 FFUSION FLAMES AND SUPERSONIC COMBUSTION#
34628 WITH ELECTROCHEMICAL HYDROGEN COMBUSTION# FUEL CELLS
34205 WITH ELECTROCHEMICAL HYDROGEN COMBUSTION# ELECTRIC CELLS
33002 YDROGEN-AIR CONSTANT-PRESSURE COMBUSTION# / WATER VAPOR ON H
33001 ION KINETICS IN ROCKET ENGINE COMBUSTION# /EN CHEMICAL REACT
33061 DISSIPATION AND HYDROGEN-AIR COMBUSTION# /S WITH DIFFUSION,
33029 AT/ BRIEF STUDIES OF TURBOJET COMBUSTOR AND FUEL-SYSTEM OPER
30066 EXPERIMENTAL INVESTIGATION OF COMBUSTOR EFFECTS ON ROCKET TH
30037 ABILITY OF GASEOUS EFFECT OF COMBUSTOR PARAMETERS ON THE ST
33024 SURE PERFORMANCE OF A TUBULAR COMBUSTOR WITH GASEOUS HYDROGE
33038 OF A 28-INCH-DIAMETER RAMJET COMBUSTOR# A 35 DEGREE SECTOR
33034 0-DIMENSIONAL HYDROGEN-OXYGEN COMBUSTOR# TE DAMPING IN A TW
30034 RABLE LENGTH HYDROGEN OXYGEN COMBUSTOR# Y LIMITS WITH A VA
33032 BUSTION AND BURNING IN RAMJET COMBUSTORS# SUPERSONIC COM
10086 R ENERGY# THE COMING ENERGY CRISIS, AND SOLA
10039 THE COMING HYDROGEN ECONOMY#
31002 HYDROGEN FUELED COMMERCIAL AIRCRAFT#
22212 HYDROGEN MANUFACTURING CATALYST/ COMMERCIAL EXPERIENCE WITH HYD
50005 PRACTICAL SAFETY STANDARD FOR COMMERCIAL HANDLING OF LIQUEFI
34848 FUEL CELL IS GOING COMMERCIAL#
23023 ENERATORS# COMPACT HIGH PURITY HYDROGEN G
34841 A COMPACT HYDROGEN-OXYGEN CELL#
23026 CELLS# COMPACT H2 GENERATORS FOR FUEL
22189 TION FOR CONVERTING A MIXTURE/ COMPACT REACTOR-BOILER COMBINA
34214 CELL# PERFORMANCE OF COMPACT-DESIGN BUTANE-AIR FUEL
34836 CELLS OF THE GENERAL ELECTRIC COMPANY AND THEIR ACCOMPANYING
22195 PMENT BY HITACHI SHIPBUILDING COMPANY# OXYGEN PRODUCTION EQUI
30022 THE FIRST STAGE OF AN ATMOS/ COMPARATIVE STUDY OF FUELS FOR
52016 LEMENT AND STRESS CORROSION A COMPARISON OF HYDROGEN EMBRIT
30003 HITE NUCLEAR ROCKET STAGES W/ COMPARISON OF SMALL WATER-GRAP
10075 EN CONCEPTS# ECONOMIC COMPARISON OF TWO SOLAR/HYDROG
52017 HODS FOR DETECTING HYDROGE/ A COMPARISON OF VARIOUS TEST MET
52033 YDROGEN# COMPATIBILITY OF METALS WITH H
20507 ION BY WATER ELECTROLYSIS AND COMPLETE POWER SOURCES#
34014 COMITATIVE PROCESSES# PRODUC
20511 NDUSTRIAL AND AGRO-INDUSTRIAL COMPLETE POWER SOURCES# COMPLEXES# ENERGY CENTERS, I
30042 OXYGEN/HYDROGEN COMPONENT TECHNOLOGY STATUS#
23435 ROCESS FOR SEPARATING GASEOUS COMPONENTS FROM GASEOUS MIXTUR
34104 FUEL CELLS, DESIGN & COMPONENTS#
34625 DES FOR FUEL CELLS# COMPOSITE CARBON-METAL ELECTRO
33041 PERFORMANCE ANALYSIS OF COMPOSITE PROPULSION SYSTEMS#
40415 LDMENT OF ADVANCED MATERIALS COMPOSITES FOR USE AS INSULATI
TITLE INDEX

52001 TH ON THE SUSC/ THE EFFECT OF COMPOSITION AND TENSILE STRENGTH
33064 DCK WAVES, APPLICATION TO THE COMPOSITION LIMITS AND TRANSVE
22190 M REFORMING OF HYD/ CATALYTIC COMPOUNDS# /F LARGE QUANTITIES
43009 OF HYDROGEN BY INTERMETALLIC COMPOUNDS# /F LARGE QUANTITIES
50008 S GUIDE EMPHASIZING SAFETY IN COMPRESSED GASES AND CRYOGENIC
34806 WATER SEPARATE STORAGE OF COMPRESSED HYDROGEN AND OXYGEN
22188 PRESSORS IN HYDROCR/ HYDROGEN COMPRESSION BY CENTRIFUGAL COM
30039 BREATH/ AIR PRECOOLING BEFORE COMPRESSION EFFECT ON THE AIR
22188 EN COMPRESSION BY CENTRIFUGAL COMPRESSORS IN HYDROCRACKING P
22618 COMPRESSORS USED#
22177 AS TURBINE-DRIVEN CENTRIFUGAL COMPRESSORS# /UFACTURE USING G
51003 IVE COMBUSTION AND METHODS OF COMPUTATION OF TECHNICAL EXPLOD
33064 ETICS OF THE HYDROGEN-OXYGEN/ COMPUTATIONAL STUDY OF THE KIN
33011 N ENERGIES AND RATE CONSTANTS COMPUTED FOR THE COMBUSTION OF
40417 LATION OF THERMAL STRATIFI/ A CONCENTRATION AND CONVERSION O
33009 NG AND COMBUSTION OF HYDROG/E CONCENTRATION CHANGES IN OPERA
40202 NAMIC AND TRANSPORT PROPERTI/ CONCENTRATION OF HYDROGEN BY C
22613 METHANE- HYDR/ PRODUCTION OF CONCENTRATED HYDROGEN FROM THE
23434 ETHANE- HYDROI/ SEPARATION OF CONCENTRATED HYDROGEN FROM A M
16072 F SOLAR ENERGY LARGE-SCALE CONCENTRATION OF HYDROGEN BY C
34016 TING FUEL CELLS# CONCENTRIC TUBULAR RESISTOJET CONCEPT FOR A LIGHTWEIGHT, REC
23438 RYOGENIC PROCESSES# CONCEPT FOR HYDROGEN-OXYGEN CA
30001 PERFORMANCE# 3-KILOWATT CONCEPT IN ENERGY TRANSMISSION
34267 EVALUATION OF THE SINGLE-CELL CONCEPT, A REVIEW OF BASIC PRI
34505 PILL/ STATIC MOISTURE REMOVAL CONCEPT# NASA TEST
10004 # A NEW TECHNIQUES FOR PR
34012 NCIPLES# THE FUEL CELL CONCEPT# "THE ECOLO
32024 ING HYDROGEN INJECTION ENGINE CONCEPT# ANALYSIS OF A
10001 GY FUEL# THE HYDROGEN ECONOMY CONCEPT# "THE ECOLO
30053 SUPersonic-COMBUSTION ROCKET CONCEPT# "THE ECOLO
22173 EPARING PURE HYDROGEN ST/ NEW CONCEPTS AND TECHNIQUES FOR PR
40404 YPERSONIC AIRPLAN/ STRUCTURAL CONCEPTS FOR HYDROGEN-FUELED H
30003 LATION OF SPEECH SUPPRESSION CONCEPTS IN A 20,000- POUND-TH
10075 PARISON OF TWO SOLAR/HYDROGEN CONCEPTS# ECONOMIC COM
50013 ETy PROBLEMS AND SAFETY CODES CONCERNING LIQUID HYDROGEN AND
34507 M FUEL CELLS BY DIFFUSION AND CONDENSATION# ACTION WATER FOR
33017 THE FLAME FRONT DURING THE CONDITION OF THE MEDIUM BEFORE
34257 RFORMANCE FUEL CELL EMPLOYING CONDUCTING- POROUS-TEFLON ELEC
41012 ID PARAHYDROGEN# THERMAL CONDUCTIVITY OF SOLID AND LIQU
40416 DETERMINATION OF THE THERMAL CONDUCTIVITY, THE SPECIFIC HEA
30013 SEVERAL INJECTOR FACE BAFFLE CONFIGURATIONS ON SCREECH IN A
34828 RATOR# FUEL CELL CONNECTED WITH A HYDROGEN GENE
10058 THER/ HEAT-STORAGE WELLS FOR CONSERVING ENERGY AND REDUCING
10059 ORAGE WELLS# CONSERVING ENERGY WITH HEAT ST
33035 ION OF THE/ CHEMICAL KINETICS CONSIDERATIONS DURING CALCULAT
40403 LIQUID HYD/ STRUCTURAL DESIGN CONSIDERATIONS FOR STORAGE OF
50015 ASSEMBLING, AND OPERATING AS/ CONSIDERATIONS WHEN DESIGNING,
33048 AND ISENTROPIC EXPONENTS FOR CONSTANT- VOLUME COMBUSTION OF
33002 O WATER VAPOR ON HYDROGEN-AIR CONSTANT-PRESSURE COMBUSTION/
33011 ACTIVATION ENERGIES AND RATE CONSTANTS COMPUTED FOR THE COM
43005 OF VANA/ THE EFFECT OF MINOR CONSTITUENTS ON THE PROPERTIES
22604 IAL REFERENCE TO MATERIALS OF CONSTRUCTION AND OPERATING PRO
34203 GEN FUEL CELL AND ITS PERFOR/ CONSTRUCTION OF A HYDROGEN-OXY
TITLE INDEX

SECTION 'T'

32017 HE UCLA HYDROGEN CAR: DESIGN, CONSTRUCTION, AND PERFORMANCE
42004 R GASEDUS HYDROGEN SYSTEMS AT CONSUMER SITES: STANDARD FD
22121 ECOME UTILITY AND BE PIPED TO CONSUMERS THROUGH GRID SAY BIP
22118 RAKTE FEED STOCK SUITABLE FOR CONSUMPTION BY A FUEL CELL UNIT
34500 OF FUEL CELL WATER FOR HUMAN CONSUMPTION: EVALUATION
22179 RICH GAS FROM HYDROCARBONS: CONTACT CATALYST FOR HYDROGEN-
22625 AL DESCRIPTION OF THE THERMAL-CONTACT PREPARATION OF HYDROGE
22620 AL DESCRIPTION OF THE THERMAL CONTACT PROCESS FOR THE PRODUC
34270 LEAKAGE IN A LOW-TEMPERATURE, CONTAINED-ELECTROLYTE HYDROG
22105 ITY HYDROGEN FROM HYDROCARBON-CONTAINING CHARGED MATERIAL BY
22137 ATION OF HYDROGEN OR HYDROGEN-CONTAINING GAS MIXTURES: S/EPAR
23419 CTIONATION OF AIR OR HYDROGEN-CONTAINING GAS MIXTURES: FRA
21281 DROGEN MONOXIDE CONTAINING GAS STREAM AND HEAT
21245 HYDROGEN AND CARBON MONOXIDE CONTAINING GASES FROM FUEL GAS
22650 BONS: PRODUCTION OF HYDROGEN-CONTAINING GASES FROM HYDROCAR
22203 WITH STEAM TO OBTAIN HYDROGEN-CONTAINING GASES: S/DROCARBONS
23437 VING IMPURITIES FROM HYDROGEN-CONTAINING GASES: S/SUE FOR REMO
22154 MANUFACTURE OF A GAS MIXTURE CONTAINING HYDROGEN AND CARBON
21260 MONOXIDE: GAS MIXTURE CONTAINING HYDROGEN AND CARBON
22189 FUEL AND STEAM TO A HYDROGEN-CONTAINING REFORMATE FEED STOC
34646 PREPARATION AND BEHAVIOR IN CONTINUOUS SERVICE OF RANEY-
34225 FUEL CELL TECHNOLOGY PROGRAM CONTRACT SUMMARY REPORT
22010 FRO/ IGT GETS $18-MILLION OCR CONTRACT TO MAKE HYDROGEN GAS
30038 ESSURE, FLOW PER ELEMENT, AND CONTRACTION RATIO ON ACOUSTIC-
23207 N IN SEVERAL ALGAE II: THE CONTRIBUTION OF PHOTO-SYSTEM I
20012 LYSIS-TRY: PRESSURE-RESPONSIVE CONTROL CIRCUIT FOR AN ELECTRO
30044 ELOPMENT OF PULSABLE ATTITUDE CONTROL ENGINES FOR HYDROGEN A
22154 A GAS MIXTURE CONTAINING HYDROGEN AND CARBON
22626 D CARBON MONOXIDE: AUTOMATIC CONTROL OF COMBINED METHANE AN
32011 ALTERNATIVE FUELS FOR CONTROL OF ENGINE EMISSION
34847 CHEM: IN SITU PREPARATION AND CONTROL OF HYDROGEN IN ELECTRO
32023 PERFORMANCE AND NITRIC OXIDE CONTROL PARAMETERS OF THE HYDR
40604 ID DISTRIBUT/ SHUTTLE: REACTION CONTROL SYSTEM: CRYOGENIC LIQU
50003 RMING PL: DESIGN OF FAIL-SAFE CONTROL SYSTEMS FOR STEAM REPO
30069 OXYGEN/HYDROGEN) FOR REACTION CONTROL SYSTEMS: II: EXPERIMEN
50064 OXYGEN/HYDROGEN) FOR REACTION CONTROL SYSTEMS: VOLUME 2: EXP
30065 USTORS FOR CRYOGENIC REACTION CONTROL SYSTEMS: VOLUME 1# /HR
30041 COMBUSTION CHARACTERISTICS OF CONTROLLABLE HIGH-ENERGY ROCKE
40207 PER-CRITICAL CRYOGENIC/ FORCED CONVECTION HEAT TRANSFER TO SU
34262 MENTAL WORK TO DATE ON ENERGY CONVERSION AND STORAGE AT OKLA
34005 FUEL CELL AS ENERGY CONVERSION DEVICE
40105 OXYGEN LIQUEFIED WITH TWO-STAGE CONVERSION FOR PRODUCTION OF 9
22642 CARBON GASES BY STEAM- OXYGEN CONVERSION IN A FLUIDIZED BED
34621 EN DI: ELECTROCHEMICAL ENERGY CONVERSION IN PALLADIUM-HYDROG
22168 NAT UNDER PRESSURE: VAPOR CONVERSION OF A GASOLINE RAFFI
34003 INTO ELECTRICAL ENERGY: DIRECT CONVERSION OF CHEMICAL ENERGY
34011 TECHNICAL PROBLEMS OF DIRECT CONVERSION OF CHEMICAL ENERGY
34021 THE CONVERSION OF ENERGY
22201 HYDROGEN AT LOW TE: CATALYTIC CONVERSION OF HYDROCARBONS TO
22196 ITS MIXTURES WITH HY: STEAM CONVERSION OF LIQUEFIED GAS AN
22205 BONS TO HYDROGEN: SELECTIVE CONVERSION OF NAPHTHA HYDROCAR
10072 LARGE-SCALE CONCENTRATION AND CONVERSION OF SOLAR ENERGY
23604 EMICAL ENERGY AVAILABLE IN S: CONVERSION OF SUNLIGHT INTO CH
<table>
<thead>
<tr>
<th>SECTION 'T'</th>
</tr>
</thead>
<tbody>
<tr>
<td>22626 D METHANE AND CARBON MONOXIDE CONVERSION SECTION AT THE RUST CONVAINED IC ENGINE RUNS ON HY</td>
</tr>
<tr>
<td>32013 DROGEN# WATER GAS SHIFT CONVERTER AND FUEL CELL SYSTEM</td>
</tr>
<tr>
<td>22176 # ELLS - ELECTROCHEMICAL ENERGY CONVERTERS OF FUTURE# FUEL C</td>
</tr>
<tr>
<td>34007 EACTOR-BOILER COMBINATION FOR CONVETING A MIXTURE OF A REFO</td>
</tr>
<tr>
<td>34811 STORAGE BATTERY-FUEL CELL FOR CONVERTING ELECTRICITY TO HYDR</td>
</tr>
<tr>
<td>33026 ES FOR A HYDROGEN-OXYGEN ROC/ COOLANT-SIDE HEAT-TRANSFER RAT</td>
</tr>
<tr>
<td>40510 ENIC PIPELINES# COOLDOWN TIME FOR SIMPLE CRYOG</td>
</tr>
<tr>
<td>30062 G SYSTEM FOR A REGENERATIVELY COOLED THRUST CHAMBER# /COATIN</td>
</tr>
<tr>
<td>41014 UNIT WITH A HELIUM EXPANSION COOLING CYCLE# /N LIQUEFACTION</td>
</tr>
<tr>
<td>22101 APPARATUS FOR PRODUCING AND COOLING GASEDUS MIXTURES OF HY</td>
</tr>
<tr>
<td>31008 E OR HYDROGEN FUEL FOR DIRECT COOLING OF A FIRST-STAGE TURBI</td>
</tr>
<tr>
<td>43004 WITH ALLOYS OF MAGNISIUM AND COPPER# / REACTION OF HYDROGEN</td>
</tr>
<tr>
<td>30004 GAS CORE NUCLEAR REACTOR#</td>
</tr>
<tr>
<td>22619 HYDROGEN: SELAS CORP OF AMERICA#</td>
</tr>
<tr>
<td>22102 EAM REFORMING: FOSTER WHEELER CORPORATION# HYDROGEN, ST</td>
</tr>
<tr>
<td>41014 RIMENT FOR HIGH-PRESSURE HYD/ CORRELATION OF THEORY AND EXPE</td>
</tr>
<tr>
<td>30026 AND A NEW TECHNIQUE FOR DATA CORRELATION# /EN-OXYGEN ROCKET</td>
</tr>
<tr>
<td>52052 N EMBRITTLEMENT IN 41/ STRESS CORROSION CRACKING AND HYDROGE</td>
</tr>
<tr>
<td>52037 DILOCATION DENSITY ON STRESS CORROSION CRACKING AND HYDROGE</td>
</tr>
<tr>
<td>52016 OGEN EMBRITTLEMENT AND STRESS CORROSION CRACKING IN HIGH STR</td>
</tr>
<tr>
<td>52054 F HYDROGEN IN HOT-SALT STRESS-CORROSION OF A TITANIUM ALLOY#</td>
</tr>
<tr>
<td>34604 LOW COST FUEL CELL ELECTRODES#</td>
</tr>
<tr>
<td>10012 LIQUID HYDROGEN PRODUC/ STUDY, COST, AND SYSTEM ANALYSIS OF L</td>
</tr>
<tr>
<td>22215 ANUFACTURE INCREASE LITTLE IN COST# PLANTS FOR HYDROGEN M</td>
</tr>
<tr>
<td>22112 SIGN VARIABLES AND PRODUCTION COSTS IN LARGE-SCALE MANUFACTU</td>
</tr>
<tr>
<td>22013 WHAT HYDROGEN FROM COAL COSTS#</td>
</tr>
<tr>
<td>20500 GE PROCESS COULD MAKE CHEAPER HYDROGEN#</td>
</tr>
<tr>
<td>34833 GENERATOR# ELECTRICALLY COUPLED FUEL CELL AND HYDROGEN</td>
</tr>
<tr>
<td>40302 UID-LEVEL SENSORS AND FISSION COUPLES# TEST OF LIQ</td>
</tr>
<tr>
<td>23405 S# CO2 REMOVAL BY HEATLESS PROCES</td>
</tr>
<tr>
<td>52043 E ROLE OF IRON DISSOLUTION IN CRACK PROPAGATION DURING HYDRO</td>
</tr>
<tr>
<td>52037 N DENSITY ON STRESS CORROSION CRACKING AND HYDROGEN EMBRITTL</td>
</tr>
<tr>
<td>52052 N EMBRITTLEMENT IN 41/ STRESS CORROSION CRACKING AND HYDROGEN EMBRITTL</td>
</tr>
<tr>
<td>52044 ECTION OF STEEL FROM HYDROGEN CRACKING BY THIN METALLIC COAT</td>
</tr>
<tr>
<td>22197 CE HYDROGEN# APPARATUS FOR CRACKING HYDROCARBONS TO PRODU</td>
</tr>
<tr>
<td>22649 TORS# KINETICS OF PROPANE CRACKING IN FLUIDIZED BED REAC</td>
</tr>
<tr>
<td>52016 TTLEMENT AND STRESS CORROSION CRACKING IN HIGH STRENGTH STEE</td>
</tr>
<tr>
<td>52008 LS# HYDROGEN STREET CRACKING OF HIGH STRENGTH STEE</td>
</tr>
<tr>
<td>2203 STEAM TO OBTAIN / STEAM PHASE CRACKING OF HYDROCARBONS WITH</td>
</tr>
<tr>
<td>22184 CATALYTIC CRACKING OF HYDROCARBONS#</td>
</tr>
<tr>
<td>22138 ETYLENE, ETHYLENE, METHANE, / CRACKING OF HYDROCARBONS TO AC</td>
</tr>
<tr>
<td>21008 THERMOCHEMICAL CRACKING OF WATER#</td>
</tr>
<tr>
<td>52058 ON AND HYDROGEN EMBRITTLEMENT CRACKING# LATTICE DILATATI</td>
</tr>
<tr>
<td>52028 FORMATION AND DEVELOPMENT OF CRACKS DURING THE FRACTURE OF</td>
</tr>
<tr>
<td>30039 BREATHING ENGINES OF A SPACE-CRAFT LAUNCH VEHICLE# /THE AIR</td>
</tr>
<tr>
<td>10015 HEATED TOWNS PLACED ON ENERGY CRISIS SOLUTION LIST# /ROGEN-</td>
</tr>
<tr>
<td>10086 THE COMING ENERGY CRISIS, AND SOLAR ENERGY#</td>
</tr>
<tr>
<td>31011 COD, AIRLINES FACE ENERGY CRISIS#</td>
</tr>
<tr>
<td>32015 ENGINES# DESIGN CRITERIA FOR HYDROGEN BURNING</td>
</tr>
<tr>
<td>51014 EST FACILITIES# EXPLOSION CRITERIA FOR LIQUID HYDROGEN T</td>
</tr>
<tr>
<td>40207 ECTION HEAT TRANSFER TO SUPER-CRITICAL CRYOGENIC HYDROGEN: P</td>
</tr>
<tr>
<td>40206 ERICTICS OF HYDROGEN NEAR ITS CRITICAL POINT IN A HEATED CYL</td>
</tr>
</tbody>
</table>
SECTION 'T'

41002 DROGEN, TRIPLE POINT REGION TO CRITICAL POINT REGION, VOLUME
40008 HYDROGEN ISOTOPES BELOW THEIR CRITICAL TEMPERATURES / YES OF
34270 TURE, CON/ SIMULATED HYDROGEN
31006 LED, AI/ DETERMINATION OF THE CRUISE RANGE OF A HYDROGEN-FUE
40410 DROGEN TANKAGE FOR HYPERSONIC CRUISE VEHICLES /
40208 LUIDS AND SELECTED SOLIDS FOR HYDROGEN ISOTOPES BELOW THEIR CRITICAL
40007 RMATION SERVICE IN THE F/ THE CRYOGENIC APPLICATIONS / OF F
40301 CRYOGENIC DENSITY PROBE /
40106 TONNAGE HYDROGE/ DESIGN OF A CRYOGENIC EXPANSION ENGINE FOR
40200 LATED PARAMETERS IN TWO-PHASE CRYOGENIC FLOW SYSTEMS / ND RE
40300 CH AT NBS /
40006 THE UNITED STATES TRENDS IN CRYOGENIC FLUID PRODUCTION IN
40500 INFERENCE / MULTIPLE USE OF CRYOGENIC FLUID TRANSMISSION L
40001 ND THE LABORATORY USES OF CRYOGENIC FLUIDS IN INDUSTRY A
40002 BEARINGS AND SEALS FOR CRYOGENIC FLUIDS /
40501 CRYOGENIC FLUIDS /
31001 HYDROGE/ DESIGN OF A CRYOGENIC EXPANSION ENGINE FOR
40209 BULENTLY IN/ HEAT TRANSFER TO CRYOGENIC HYDROGEN FLOWING TUR
40205 E/ FINITE RATE EVAPORATION OF CRYOGENIC HYDROGEN IN TWO-PHAS
23401 CRYOGENIC HYDROGEN UPGRADING /
40207 AT TRANSFER TO SUPER-CRITICAL CRYOGENIC HYDROGEN: PART 1, LI
40505 AND WEAR OF BALL BEARINGS IN CRYOGENIC HYDROGEN/ /BRICATION
10020 GY NEEDS /
40305 ND ABOVE LIQUID HYDROGEN TEM/ CRYOGENIC INSTRUMENTATION AT A
40405 OPEN-CELL CRYOGENIC INSULATION /
40504 TLE: REACTION CONTROL SYSTEMS CRYOGENIC LIQUID DISTRIBUTION
23214 BEHAVIOR AND MEASUREMENTS OF CRYOGENIC LIQUIDS / THERMAL
40420 D IN TRANSPORTING AND STORING CRYOGENIC LIQUIDS / ESSELS USE
50008 AFETY IN COMPRESSED GASES AND CRYOGENIC LIQUIDS / HASIZING S
40510 COOLDOWN TIME FOR SIMPLE CRYOGENIC PIPELINES /
23438 CONCENTRATION OF HYDROGEN BY CRYOGENIC PROCESSES /
30064 D DEMONSTRATION OF THE USE OF CRYOGENIC PROPELLANTS (OXYGEN/]
30069 D DEMONSTRATION OF THE USE OF CRYOGENIC PROPELLANTS (OXYGEN/
30052 ED PRESSURIZATION SYSTEMS FOR CRYOGENIC PROPELLANTS / ADVANC
40505 ON AND TRANSFER /
30065 INVESTIGATION OF THRUSTORS FOR CRYOGENIC REACTION CONTROL SYS
23423 FROM AMMONIA SYNTHESIS GAS CRYOGENIC RECOVERY OF HYDROGEN
30046 ATT & WHITNEY PICKED TO BUILD CRYOGENIC ROCKET ENGINE FOR LA
40406 SURFACE NO-LOSS CRYOGENIC STORAGE ON THE LUNAR
40412 AL PRESSURIZATION SYSTEMS FOR CRYOGENIC STORAGE SYSTEMS: DES
40411 AL PRESSURIZATION SYSTEMS FOR CRYOGENIC STORAGE SYSTEMS / RN
10065 CLEAN ENERGY VIA CRYOGENIC TECHNOLOGY /
23406 HYDROGEN, CRYOGENIC UPGRADING /
52055 IN HIGH PRESSURE HYDROGEN AT CRYOGENIC, ROOM, AND ELEVATED
40004 NATIONAL BUREAU OF STANDARDS, CRYOGENICS DIVISION / OF THE
40007 ATION SERVICE IN THE FIELD OF CRYOGENICS / CENTER, AN INFORM
30024 A DETAILED DESCRIPTION OF THE CRYOGENICSTAGES / DY NO, 3,5:
40201 CAVITATION IN LIQUID CRYOGENS: 1: VENTURI /
50010 STORAGE AND HANDLING OF CRYOGENS /
22162 TEAM REFORMING OF HEXANE WITH CRYSTALLINE ALUMINOSILICATE CA
34037 ZING THE EXPERIMENTAL VOLTAGE-CURRENT CHARACTERISTICS OF A H
50008 DE EMPHASIZING SAFETY / PILOT CURRICULUM AND INSTRUCTORS GUI
40209 G TURBULENTLY IN STRAIGHT AND CURVED TUBES AT HIGH HEAT FLUX
TITLE INDEX

SECTION 'T'

40108 OF A PRACTICAL THERMODYNAMIC CYCLE FOR A SPACE-BORNE HYDRO
34815 CE APPLICATIONS
40103 TH A HELIUM EXPANSION COOLING CYCLE / N LIQUEFACTION UNIT WI
21013 ION OF WATER THROUGH CHEMICAL CYCLES USING FE-CL2 FAMILY /
21004 HYDROGEN PRODUCTION CYCLIC PROCESS
21014 UNDAMENTALS OF THERMOCHEMICAL CYCLIC PROCESSES
52019 STEELS USED IN THE TANK FARM CYLINDERS / N EMBRITTLEMENT OF
34607 ELE/ TRANSPORT OF HYDROGEN TO CYLINDRICAL ANODES IN STIRRED
40206 TS CRITICAL POINT IN A HEATED CYLINDRICAL TUBE / OGEN NEAR I
22106 REFINERY STREAMS RANGING FROM C6 TO HEAVY OILS / ROM EXCESS
22113 STWASSERSTOFFER-ZEUGUNG DURCH DAMPFREFORMIEREN VON KOHLENWAS
33034 AN EXPERIMENT ON PARTICULATE DAMPING IN A TWO-DIMENSIONAL H
21003 S OF FLAMMABLE VAPORS AN/ THE DANGER OF EXPLOSION OF MIXTURE
40007 RVICE IN THE F/ THE CRYOGENIC DATA CENTER, AN INFORMATION SE
33026 OCKET AND A NEW TECHNIQUE FOR DATA CORRELATION / EN-OXYGEN R
52057 SKF PERMEABILITY DATA FOR AEROSPACE APPLICATION
41002 PHYSICAL AND THERMAL PROPERTY DATA FOR HYDROGEN#TRIPLE POINT
40213 36 D/ TABLES OF PARAHYDROGEN DATA IN ENGINEERING UNITS FROM
34262 STORAGE/ EXPERIMENTAL WORK TO DATE ON ENERGY CONVERSION AND
22617 ICHESKOV KONVERSIJ BUTANA POD DAVLENIEM / DA METODOM KATALIT
21009 HEA# CHEMICAL PROCESS TO DECOMPOSE WATER USING NUCLEAR
22646 HE PRODUCTION OF H/ CATALYTIC DECOMPOSITION OF METHANE FOR T
21013 CHEMICAL CYCLES USI/ THERMAL DECOMPOSITION OF WATER THROUGH
21006 ATURE THERMAL PROCESS FOR THE DECOMPOSITION OF WATER#EMPER
23602 ZATION OF SOLAR ENERGY BY THE DECOMPOSITION OF WATER INTO HY
21000 ODYNAMICS OF MULTI-STEP WATER DECOMPOSITION PROCESSES# HERM
23203 DROGEN FORMATION BY ANAEROBIC DECOMPOSITION# HY
21010 LEAR HEAT PROCESSES FOR WATER DECOMPOSITION# LIATION OF NUC
30017 UXILIARY PROPULSION SUBSYSTEM DEFINITION STUDY# / PRESSURE A
33053 OF HYDROGEN-FLUORINE MIXTURES OF THE DÉFLAGRATION IN THE COMBUSTION
34627 FUEL CELL CAT/ A STUDY OF THE DEGRADATION OF PLATINUM BLACK
33038 OGEN AT LOW PRESSURES IN A 35 DEGREE SECTOR OF A 28-INCH-DIA
33023 3.6 ANGLES OF ATTACK UP TO 12 DEGREES AND PRESSURE ALTITUDES
34203 MIN THE TEMPERATURE RANGE -20 DEGREES C TO +60 DEGREES C / T
34203 RE RANGE -20 DEGREES C TO +60 DEGREES C / THIN THE TEMPERATU
33029 ON WITH HYDROGEN FUEL AT -400 DEGREES F / FUEL-SYSTEM OPERATI
40213 UNITS FROM 36 DEGREES TO 5000 DEGREES R AT PRESSURES TO 5000
30048 ON TEMPERATURES UP TO 200,000 DEGREES R / STATE AT STAGNATI
40213 IN ENGINEERING UNITS FROM 36 DEGREES TO 5000 DEGREES R AT P
22109 C RING# DESTRUCTIVE DEHYDROGENATION OF THE AROMATI
33014 TEM# CALCULATION OF IGNITION DELAYS IN THE HYDROGEN-AIR SYS
23025 N TO SATISFY SMALL INDUSTRIAL DEMANDS# REDUCTION OF HYDROGE
30029 PART 1: ANALYSIS, DESIGN, AND DEMONSTRATION OF HIGH PERFORMA
30069 YOGENIC PROPE/ EVALUATION AND DEMONSTRATION OF THE USE OF CR
30064 YOGENIC PROPE/ EVALUATION AND DEMONSTRATION OF THE USE OF CR
30064 EXPERIMENTAL EVALUATIONS AND DEMONSTRATION# S/ME S, VOLUME 2:
30069 EXPERIMENTAL EVALUATIONS AND DEMONSTRATION# S/LE S, VOLUME II:
40204 OF STATE AND PHASE DIAGRAM OF DENSE HYDROGEN# EQUATION
33065 SUPERSONIC COMBUSTION AT LOW DENSITIES# FES OF HYDROGEN-AIR
40200 IQUES FOR DETERMINING AVERAGE DENSITY AND RELATED PARAMETERS
40407 QUID-HYDROGEN TANKS# LOW-DENSITY FOAM FOR INSULATING LI
34268 HIGH POWER DENSITY FUEL CELL#

52037 A/ EFFECT OF HIGH DISLOCATION DENSITY ON STRESS CORROSION CR
SECTION 'T'

40301 CRYOGENIC DENSITY PROBE#
41003 HYDROGEN-SLUSH DENSITY REFERENCE SYSTEM#
32025 AS GRANTED $60,000 FOR H/ THE DEPARTMENT OF TRANSPORTATION H
51004 OF HYDROGEN EXPLOSION / THE DEPENDENCE OF THE LOWER LIMIT
20501 GAS# ENERGY DEPOT ELECTROLYSIS SYSTEMS STUD
30024 B2 TACT STUDY NO 3 5: A DETAILED DESCRIPTION OF THE CRYOGENIC T
22625 TACT PREPARATION / MATHEMATICAL DESCRIPTION OF THE THERMAL CON
22620 TACT PROCESS FO/ MATHEMATICAL DESCRIPTION OF THE THERMAL CON
34104 FUEL CELLS, DESIGN & COMPONENTS#
52196 H AND G TYPE HYDROGEN PRODUC/ DESIGN AND CHARACTERISTICS OF
30056 ID H2/O2 ENGINES# DESIGN AND FABRICATION OF SMAL
34102 N LIFE AND PER/ THE EFFECT OF DESIGN AND OPERATING FACTORS D
34227 ABLE FUEL# FUEL-CELL DESIGN BASED ON AIR AND REFORM
34214 PERFORMANCE OF COMPACT-DESIGN BUTANE-AIR FUEL CELL#
40403 AGE OF LIQUID HYD/ STRUCTURAL DESIGN CONSIDERATIONS FOR STOR
32015 UNING ENGINES# DESIGN CRITERIA FOR HYDROGEN B
40106 N ENGINE FOR TONNAGE HYDROGE/ DESIGN OF A CRYOGENIC EXPANSI
40107 # DESIGN OF A HYDROGEN LIQUEFIER
30019 NIT FOR THE SPAC/ PRELIMINARY DESIGN OF AN AUXILIARY POWER U
50003 STEMS FOR STEAM REFORMING PL/ DESIGN OF FAIL-SAFE CONTROL SY
30067 CSET ENGINES# DESIGN OF LIQUID PROPPELLANT RO
40506 GEN TURBOPUMP# HYDRAULIC DESIGN OF THE M-1 LIQUID HYDRO
30008 CLEAR Rocket APPLICATIONS, 1: DESIGN OF TURBINE AND EXPERI
42000 OGEN SERVICE# HOW TO DESIGN PIPING SYSTEMS FOR HYDR
40412 OR CRYOGENIC STORAGE SYSTEMS: DESIGN REFERENCE MANUAL# /MS F
20506 CTION BY ELECTROLYS# DESIGN STUDY OF HYDROGEN PRODU
22112 N COSTS IN LARGE-SCALE MANUF/ DESIGN VARIABLES AND PRODUCTIO
30029 N, PHASE 1, PART 1: ANALYSIS# DESIGN, AND DEMONSTRATION OF H
32017 ORMAN/ THE UCLA HYDROGEN CAR: DESIGN, CONSTRUCTION, AND PERF
50002 IREMENTS FOR HIGH-TEMPERATURE DESIGN# SAFETY REQU
34241 UEL CELL ELECTRIC POWER PLANT DESIGN# /-KW HYDROCARBON-AIR F
34101 EL-CELL AND ELECTROLYSIS-CELL DESIGN# /RE HYDROGEN OXYGEN FU
23004 EMERGENCY LIFE SUPPORT SYSTEM DESIGN# /REFORMING FOR USE IN
31004 OF LIQUID HYDROGEN IN A TANK DESIGNED AND INSULATED FOR USE
50015 RATING A/ CONSIDERATIONS WHEN DESIGNING, ASSEMBLING, AND DPE
22109 THE AROMATIC RING# DESTRUCTIVE DEHYDROGENATION OF
52017 N OF VARIOUS TEST METHODS FOR DETECTING HYDROGEN EMBRILYME
51010 HYDROGEN EXPLOSI/ PREVENTION, DETECTION, AND SUPPRESSION OF
51009 HYDROGEN LEAK AND FIRE DETECTION: A SURVEY#
52015 ROACH TO BEND TESTING FOR THE DETERMINATION OF HYDROGEN EMBR
40304 HYDROGEN MIXTURES# QUALITY DETERMINATION OF LIQUID-SOLID
41007 HYDROGEN MIXTURES# QUALITY DETERMINATION OF LIQUID-SOLID
40416 CONDUCTIVITY, THE SPECIFIC HE/ DETERMINATION OF THE THERMAL C
31006 MGE OF A HYDROGEN-FUELED, A/ DETERMINATION OF THE CRUISE RA
52040 N RATE OF HYDRO/ A METHOD FOR DETERMINATION OF THE PERMEATI
30009 L AND STAGE GROUP PERFORMANCE DETERMINED IN COLD NITROGEN# /
40200 D RELATED PAR/ TECHNIQUES FOR DETERMINING AVERAGE DENSITY AN
33065 AVES IN HYDRO/ INITIATION OF DETONATION BY INCIDENT SHOCK W
30054 AIBILITY STUDIES OF ROTATING DETONATION WAVE ROCKET MOTO# /
51000 EFFECT OF WATER VAPE ON H2-O2 DETONATIONS#/
51000 E
33064 ANVERSE STABILITY OF GASEOUS DETONATIONS# /ON LIMITS AND TR
23600 BY PHOTOLYSIS OF ORDINARY OR DEUTERATED WATER VAPOR /ATOMS
23600 FORMATION OF HOT HYDROGEN OR DEUTERIUM ATOMS BY PHOTOLYSIS
23022 PRODUCTION OF HYDROGEN FOR DEUTERIUM EXTRACTION#
33045 IETIES IN HYDROGEN-BROMINE AND DEUTERIUM- BROMINE MIXTURES /ATOMS
34510 HYDROGEN BLOWER FOR VEHICLE DEVELOPING ELECTRICALLY DRIVEN
22136 DROGEN GENERATOR EXPLORATORY DEVELOPMENT MODEL MINIATURE HY
30073 EN INTERNAL COMBUSTION ENGIN DEVELOPMENT OF A HYDROGEN-OXYG
30059 EN SPACE POWER SUPPLY SYSTEM DEVELOPMENT OF A HYDROGEN-OXYG
40414 XTERNAL INSULATION SYSTEM FOR DEVELOPMENT OF A LIGHTWEIGHT E
40108 RMODYNAMIC CYCLE FOR A SPACE DEVELOPMENT OF A PRACTICAL THE
30060 THRUST (NOMINAL VACUUM) LQU DEVELOPMENT OF A 1,500,000-LB-
40415 ALS COMPOSITES FOR USE AS IN DEVELOPMENT OF ADVANCED MATERI
34626 OCATALYSTS FOR USE IN LOW TE DEVELOPMENT OF CATHODIC ELECTR
52028 HE FRACTURE OF FORMATION AND DEVELOPMENT OF CRACKS DURING T
34634 RODES ELECTRODE IMPROVEMENT DEVELOPMENT OF FUEL CELL ELECT
30072 FUELED 3-KILOWATT INTERNAL DEVELOPMENT OF HYDROGEN-OXYGEN
33052 CATALYSTS DEVELOPMENT OF HYDROGEN-OXYGEN
22531 ATION PROCESSES DEVELOPMENT OF HYDROGEN PREPAR
30061 LIQUID HYDROGEN PROPULSIVE UN DEVELOPMENT OF LIQUID OXYGEN/L
30063 ERATORS FOR THE M-1 ENGINE DEVELOPMENT OF LO2/LH2 GAS GEN
30044 DE CONTROL ENGINES FOR HYDRO DEVELOPMENT OF PULSABLE ATTITU
30049 ENGINE: A 40 KN THRUST THE DEVELOPMENT OF THE S E P R HM4
44835 TION POWER DEVELOPMENT OF UNDERSEA POWER#
34250 ELS PRESENT STATUS AND DEVELOPMENT PROBLEMS#
22129 AKING REFINING PROCESS DEVELOPMENT; IMPROVEMENTS IN M
22005 CHAR OIL ENERGY DEVELOPMENT#
23400 ERATION MOLECULAR SIEV NEW DEVELOPMENTS IN HYDROGEN GAS G
40306 TATURE OF LIQUID AND GASEOUS/ DEVICE FOR MEASURING THE TEMPE
34005 UEL CELL AS ENERGY CONVERSION DEVICE#
40409 00,000-GALLON LIQUID HYDROGEN DEWAR INITIAL WARMUP OF 5
40204 EQUATION OF STATE AND PHASE DIAGRAM OF DENSE HYDROGEN#
21010 NUCLEAR HEAT PROCES MOLLIER DIAGRAMS FOR THE EVALUATION OF
33038 35 DEGREE SECTOR OF A 28-INCH-DIAMETER RAMJET COMBUSTOR /
34507 TION WATER FROM FUEL CELLS BY DIFFUSION AND CONDENSATION /C
34621 VERSION IN PALLADIUM-HYDROGEN DIFFUSION ELECTRODE/ ERGY CON
34637 E OF OPERATION OF POROUS GAS-DIFFUSION ELECTRODES WITH HYDR
34619 E OF OPERATION OF POROUS GAS- DIFFUSION ELECTRODES WITH HYDR
33060 C COMBUSTION DIFFUSION FLAMES AND SUPERSONI
51005 FLOW / HYDROGEN FLARE STACK DIFFUSION FLAMES: LOW AND HIGH
52032 ALS DIFFUSION OF GASES THROUGH MET
23417 UCTION AND PURIFICATION BY DIFFUSION PROCESS HYDROGEN P
23415 FULLY INTEGRATED HYDROGEN DIFFUSION SYSTEM#
23422 YDROGEN PALLADIUM DIFFUSION YIELDS HIGH-VOLUME H
52021 GEN MOVEMENT IN STEEL-ENTRY: DIFFUSION, AND ELIMINATION /R
33061 TERNAL SUPERSONIC FLOWS WITH DIFFUSION, DISSIPATION AND HYD
23404 UNG VON REINST-WASSERSTOFF IN DIFFUSIONSANLAGEN ERZEUG
52035 TEMENT CRACKING LATTICE DI LATION AND HYDROGEN EMBRIT
33047 IN HYDROGEN- BROM EFFECT OF DILUENTS ON BURNING VELOCITIES
23607 TRY OF CERIUM PERCHLORATES IN DILUTE AQUEOUS PERCHLORIC ACID
34212 TRUE FUEL CELL - OPERATION ON DILUTE HYDROGEN, CARBONACEOUS
34212 GEN, CARBONACEOUS FUELS, AND DILUTE OXYGEN ON DILUTE HYDR
33004 MIXTURES OF HYDROGEN- OXYGEN DILUTED WITH HELIUM HYDROGEN/
51005 INSTABILITIES, BURNING RATES, DIULUTION LIMITS, TEMPERATURES.
TITLE INDEX

33034 PARTICULATE DAMPING IN A TWO-DIMENSIONAL HYDROGEN-OXYGEN CO
33062 OF HYDROGEN AND AIR NEA/ TWO-DIMENSIONAL, SUPERSONIC MIXING
34647 N ELECTRODES# EXTENDING THE DIMENSIONS OF AIR-HYDROGEN THI
30010 NFC GENERATORS AND THERMIONIC DIODES# /OXYGEN FIRED THERM
33002 STUDY OF THE EFFECT OF CARBON DIOXIDE AND WATER VAPOR ON HYD
34834 HYDROGEN# EFFECTS OF CARBON DIOXIDE ON TRAPPED ELECTROLYTE
31003 ECTION SYSTEM FOR L/ A CARBON DIOXIDE PURGE AND THERMAL PROT
40418 ECTION SYSTEM FOR L/ A CARBON DIOXIDE PURGE AND THERMAL PROT
34609 H NONSTOICHIOMETRIC MANGANESE DIOXIDE# /TION OF HYDROGEN WIT
34011 CAL AND TECHNICAL PROBLEMS OF DIRECT CONVERSION OF CHEMICAL
34003 ENERGY INTO ELECTRICAL ENERGY/ DIRECT CONVERSION OF CHEMICAL
31008 METHANE OR HYDROGEN FUEL FOR DIRECT COOLING OF A FIRST-STAG
21011 W/ PROCEEDINGS ROUND TABLE ON DIRECT PRODUCTION OF HYDROGEN
34209 RGEN-CHLORINE FUEL CELLS# V. DISCHARGE MECHANISM OF THE HYD
34218 FUEL CELL# SELF-DISCHARGE OF A HYDROGEN-OXYGEN
34622 ELECTRODES/ EFFECTS OF HEAVY DISCHARGE PULSING ON FUEL CELL
22011 D FOSDIIL FUELS IN A MICROWAVE DISCHARGE# /SIFICATION OF SOLI
52037 CORROSION CR/ EFFECT OF HIGH DISLOCATION DENSITY ON STRESS
23024 DISPOSABLE HYDROGEN GENERATOR# 22603 N# PRODUCTION AND DISTRIBUTION OF LIQUID HYDROGEN FROM LIGHT DISTILLATES FOR FUEL CELLS#
10010 UNIVERSAL FUEL# PRODUCTION AND DISTRIBUTION OF HYDROGEN AS A
22603 N# PRODUCTION AND DISTRIBUTION OF LIQUID HYDROGEN
40604 TROL SYSTEM# CRYOGENIC LIQUID DISTRIBUTION SYSTEM: STUDY# /N
42002 TOIRES# HYDROGEN DISTRIBUTION TO PROCESS LABORA
40004 REAU OF STANDARDS; CRYOGENICS DIVISION# / OF THE NATIONAL BU
31011 IS# DOD# AIRLINES FACE ENERGY CRIS
34015 BRINGING THE FUEL CELL DOWN TO EARTH# 33003 RSDNIC STREAM B/ REDUCTION OF DRAG OF A PROJECTILE IN A SUPE
30012 THE PERFORMANCE OF AN ARCJET DRIVEN BY HYDROGEN AND NITROGE
22177 MANUFACTURE USING GAS TURBINE-DRIVEN CENTRIFUGAL COMPRESSORS
34510 ICL/ DEVELOPING ELECTRICALLY DRIVEN HYDROGEN BLOWER FOR VEH
34224 LL INVESTIGATION# DUAL CELL REGENERATIVE FUEL CE
51007 VEHICLE# HAZARDS DUE TO HYDROGEN ABOARD A SPACE
22113 R REINSTWASSERSTOFFER-ZEUGUNG DURICH DAMPFREFORMIEREN VON KOH
23418 UND REINIGUNG VON WASSERSTOFF DURICH PERMEATION AN MEMBRANEN
33035 MICAL KINETICS CONSIDERATIONS DURING CALCULATION OF THE NDZ
20010 EN CELL PRODUCING ELECTRICITY DURING ELECTROLYSIS# /GEN-OXYG
52043 SUTION IN CRACK PROPAGATION DURING HYDROGEN CHARGING OF AN
22004 ED COKE TO THE REHEATING ZONE DURING HYDROGEN GENERATION BY
52028 ID AND DEVELOPMENT OF CRACKS DURING THE FRACTURE OF HYDROGE
33017 MEDIUM BEFORE THE FLAME FRONT DURING THE INITIAL PHASE OF A
30045 UST# COLD-GAS REACTION JETS / DYNAMIC PERFORMANCE OF LOW-THR
30043 L INVESTIGATION OF PROPELLANT DYNAMICS IN A LARGE ROCKET BOO
34107 Purge DYNAMICS OF FUEL CELLS# 34501 OM A HY# INVESTIGATION OF THE DYNAMICS OF WATER REJECTION FR
34502 RMENTAL INVESTIGATION OF THE DYNAMICS OF WATER REJECTION FR
34603 EATURATUION HYDROGEN CELLS OF C G E EXISTING BATTERIES AND FUTUR
30049 ST / THE DEVELOPMENT OF THE S E P R HMA ENGINE: A 40 KN THRU
TITLE INDEX

SECT I ON 'T'

32021 INTERNAL COMBUSTION ENGINES EFFECT ON EMISSIONS AND FUEL E
30039 PRECOOLING BEFORE COMPRESSION EFFECT ON THE AIR BREATHING EN
34834 RAPED ELECTROLYTE HYDROGEN- EFFECTS OF CARBON DIOXIDE ON T
34622 SING ON FUEL CELL ELECTRODES/ EFFECTS OF HEAVY DISCHARGE PUL
52025 GEN ON METALS AT AMBIENT TEM/ EFFECTS OF HIGH PRESSURE HYDRO
30013 CE BAFFLE CONFIG/ STABILIZING EFFECTS OF SEVERAL INJECTOR FA
30066 AL INVESTIGATION OF COMBUSTOR EFFECTS ON ROCKET THRUST CHAMB
51005 LIMITS, TEMPERATURES AND WIND EFFECTS/ING RATES, DILUTION
23208 TION BY SEVERAL ALGAE II, THE EFFECTS OF INHIBITORS OF PHOTOPO
23602 THE PURPOSE OF IMPROVING THE EFFICIENCY OF UTILIZATION OF SO
40104 HYDROGEN LIQUEFIED WITH EFFICIENT HEAT EXCHANGERS/
30009 FOR HYDRO/ INVESTIGATION OF EIGHT-STAGE BLEED-TYPE TURBINE
30008 FOR HY/ INVESTIGATION OF THE EIGHT-STAGE BLEED-TYPE TURBINE
22113 WASSERSTOFFER-ZEUGUNG DURCH / EIN NEUES VERFAHREN ZUR REINST
40509 Y/ ANALYSIS OF ROCKET-POWERED EJECTORS FOR PUMPING LIQUID OX
20513 TROLYTE HYDROGEN BY PRESSURE ELECTROLYSIS IN THE ZDANSKY-LON
30023 UTER PROGRAM STUDY 3.2 ON AN ELDO B LAUNCHING SYSTEM WITH A
30023 ON AN ELDO B LAUNCHING SYSTE/ ELDO FUTURE PROGRAM STUDY 3.2
30024 ANY PROJECT LAUNCHERS B1 AND/ ELDO FUTURE PROGRAMS, PRELIMIN
30025 HIGH ENERGY UPPER STAGES FOR ELDO VEHICLES/
30012 AN/ EXPERIMENTAL RESEARCH ON ELECTRIC PROPULSION, NOTE VII:
22138 EN WITH HYDROGEN HEATED IN AN ELECTRIC ARC /ANE, AND HYDROG
34205 MICAL HYDROGEN COMBUSTION/ ELECTRIC CELLS WITH ELECTROCHE
34836 HYDROGEN CELLS OF THE GENERAL ELECTRIC COMPANY AND THEIR ACC
10053 HYDROGEN AND THE ELECTRIC ECONOMY/
10043 HYDROGEN SYSTEMS FOR ELECTRIC ENERGY/
34241 -KW HYDROCARBON-AIR FUEL CELL ELECTRIC POWER PLANT DESIGN/
34813 IC AIRS/ H2-AIR FUEL CELLS AS ELECTRIC SUPPLY ON STRATOSPHER
10029 ARTICULAR REFEREN/ A HYDROGEN-ELECTRIC UTILITY SYSTEM WITH P
34824 FUEL-CELL UNIT IN ELECTRIC VEHICLE/
34806 SIS OF WATE/ STORAGE OF SOLAR ELECTRICAL ENERGY BY ELECTROLY
34033 RSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY-BATTERIES AN
10061 RANSPORTATION SYSTEMS AND FOR ELECTRIC POWER GENERATION/
34816 TIONS / PC88-4-X562 FUEL CELL ELECTRICAL POWER SUPPLY, OPERA
34829 FUEL CELLS FOR IMPROVED ELECTRICAL POWER SUPPLY/
34843 SYSTEMS/ AUTOMATED ELECTRICAL START FOR JP4-AIR S
34011 RSION OF CHEMICAL ENERGY INTO ELECTRICAL/ S OF DIRECT CONVE
34833 AND HYDROGEN GENERATOR/ ELECTRICALLY COUPLED FUEL CELL
34510 LOWER FOR VEHICL/ DEVELOPING ELECTRICALLY DRIVEN HYDROGEN B
34240 OGEN-OXYGEN FUEL CELL/ ELECTRICALLY-REGENERATIVE HYDR
20010 HYDROGEN-OXYGEN CELL PRODUCING ELECTRICITY DURING ELECTROLYS
34811 TERY-FUEL CELL FOR CONVERTING ELECTRICITY TO HYDROGEN AND OX
34626 W TE/ DEVELOPMENT OF CATHODIC
34017 EN AND CONTROL OF HYDROGEN IN ELECTROCHEMICAL CELLS/ PARATI
34621 ON IN PALLADIUM-HYDROGEN DI/ ELECTROCHEMICAL ENERGY CONVERS
34007 ERS OF FUTURE# FUEL CELLS - ELECTROCHEMICAL ENERGY CONVERT
52042 HYDROGEN / MATHEMATICS OF THE ELECTROCHEMICAL EXTRACTION OF
34004 ELECTROCHEMICAL FUEL CELLS/
34025 H ION EXCHA/ MASS TRANSFER IN ELECTROCHEMICAL FUEL CELLS WIT
34205 STION/ ELECTRIC CELLS WITH ELECTROCHEMICAL HYDROGEN COMBU
34628 STION/ FUEL CELLS WITH ELECTROCHEMICAL HYDROGEN COMBUI
23603 WATER AT A SEMICONDUCTOR ELECTROCHEMICAL PHOTOLYSIS OF
TITLE INDEX

SECTION 'T'

34805 STUDY OF MULTIPLE RESERVE ELECTROCHEMICAL POWER SOURCE
23019 STUDY OF MULTIPLE RESERVE ELECTROCHEMICAL POWER SOURCE
34036 UEL CELLS
22105 CHARGED MATERIAL BY USE OF AN ELECTROCHEMICAL PROCESS
34008 LLS: MODERN PROCESSES FOR THE ELECTROCHEMICAL PRODUCTIONS OF
34648 HLY POROUS CARBON ELECTRODES/ ELECTROCHEMICAL STUDIES ON HIG
34202 ADVANCED ELECTROCHEMICAL TECHNOLOGY
34645 ACE FOR CASE OF OXY/ STUDY OF ELECTRODE - ELECTROLYTE INTERF
34643 MENT OF FUEL CELL ELECTRODES; ELECTRODE IMPROVEMENT AND LIFE
34600 RODE AND THE OXYGEN FUEL-CELL ELECTRODE IN NICKEL-CADMIUM CE
34620 ELECTROFORMED FUEL CELL ELECTRODE MATRICES
34610 TATE OF SCIENTIFIC STUDIES ON ELECTRODE PROCESSES IN FUEL CE
34602 YDROGEN ON A PASSIVE PLATINUM ELECTRODE# OXIDATION OF H
23603 S OF WATER AT A SEMICONDUCTOR ELECTRODE# CHEMICAL PHOTOLYSI
34621 PALLADIUM-HYDROGEN DIFFUSION ELECTRODE# ENERGY CONVERSION IN
34632 FUEL CELL ELECTRODES (HYDROGEN-AIR)
34605 LIGHT-WEIGHT FUEL CELL ELECTRODES - 1, 2
34257 ING CONDUCTING- POROUS-TEFLON ELECTRODES AND LIQUID ELECTROL
34625 COMPOSITE CARBON-METAL ELECTRODES FOR FUEL CELLS
34631 HIGH PERFORMANCE LIGHT-WEIGHT ELECTRODES FOR HYDROGEN- OXYE
34624 FUEL CELLS# CARBON-AIR ELECTRODES FOR LOW TEMPERATURE
34637 ATION OF POROUS GAS-DIFFUSION ELECTRODES WITH HYDROGEN FUEL
34619 TION OF POROUS GAS- DIFFUSION ELECTRODES WITH HYDROGEN FUEL
34634 ENT/ DEVELOPMENT OF FUEL CELL ELECTRODES; ELECTRODE IMPROVEM
34612 PAPER FUEL CELL ELECTRODES
34614 METHODS OF OBTAINING FUEL CELL ELECTRODES# NEW M
34633 THIN FUEL CELL ELECTRODES
34606 CARBON FUEL CELL ELECTRODES
34604 LOW COST FUEL CELL ELECTRODES
34636 E OF FLOODED POROUS FUEL CELL ELECTRODES# THE PERFORMANC
34647 MENSIONS OF AIR-HYDROGEN THIN ELECTRODES# EXTENDING THE DI
34622 ISCHARGE PULSING ON FUEL CELL ELECTRODES# EFFECTS OF HEAVY D
34648 UDIES ON HIGHLY POROUS CARBON ELECTRODES# ELECTROCHEMICAL ST
22001 HYDROGEN FROM COAL CHAR IN AN ELECTROFLUID REACTOR# ION OF
22000 HYDROGEN FROM COAL CHAR IN AN ELECTROFLUID REACTOR# ION OF
22002 COAL PROCESSING BY ELECTROFLUIDICS, PHASE II#
34620 ODE MATRICES# ELECTROFORMED FUEL CELL ELECTR
20001 N / PERFORMANCE STUDIES ON AN ELECTROLYSER FOR THE PRODUCTIO
20014 MODERN ELECTROLYSER TECHNOLOGY#
20507 NO OXYGEN PRODUCTION BY WATER ELECTROLYSIS AND COMPETITIVE P
20009 ELECTROLYSIS APPARATUS#
20003 DUCTION OF PURE GASES# ELECTROLYSIS APPARATUS FOR PRO
20503 DROGEN AND OXYGEN# ELECTROLYSIS AS A SOURCE OF HY
20008 NG HYDROGEN AND OXYGEN# ELECTROLYSIS CELL FOR GENERATI
20020 SELECTION OF ELECTROLYSIS FOR ELECTROLYSIS CELLS: ALKALINE O
20020 CELLS: ALKALINE SELECTION OF ELECTROLYSIS FOR ELECTROLYSI
20017 N-G-TERM OPERATION OF A WATER ELECTROLYSIS MODULE# L
34806 OF SOLAR ELECTRICAL ENERGY BY ELECTROLYSIS OF WATER, SEPARATE

448
TITLE INDEX

SECTION 'T'

20016 IFE SYSTEM STATIC FEED WATER ELECTROLYSIS SYSTEM OF THE L
20501 ENERGY DEPOT ELECTROLYSIS SYSTEMS STUDY
20019 TEST PROGRAM OF TWO WATER ELECTROLYSIS SYSTEMS FOR SPACE
34101 HYDROGEN OXYGEN FUEL-CELL AND ELECTROLYSIS-CELL DESIGN
20505 FUTURE WATER ELECTROLYSIS-PROMPT FOR THE
20012 ONSIVE CONTROL CIRCUIT FOR AN ELECTROLYSIS-TYPE HYDROGEN GENE
20006 PRODUCTION OF HYDROGEN BY ELECTROLYSIS
20506 UDY OF HYDROGEN PRODUCTION BY ELECTROLYSIS DESIGN ST
20510 LID POLYMER ELECTROLYTE WATER ELECTROLYSIS GENERATION BY SO
20010 PRODUCING ELECTRICITY DURING ELECTROLYSIS GEN-OXYGEN CELL
34252 GENERATING POWER IN A MOLTEN ELECTROLYTE (HYDROGEN-HALOGEN)
34635 CELL WITH STABILIZED ZIRCONIA ELECTROLYTE AND NICKEL SILVER
3103 RCH / COLD HYDROGEN AND BASIC ELECTROLYTE CELLS AT THE RESEA
3106 WITH REACTANT SUPERSATURATED ELECTROLYTE FEED CELL SYSTEM
34253 UDDIES OF THE MOLTEN CARBONATE ELECTROLYTE FUEL CELL ST
34838 NT CIRCULATING ELECTROLYTE FUEL CELL POWERPLA
34837 CELL SYSTEM CIRCULATING ELECTROLYTE HYDROGEN/AIR FUEL
34270 A LOW-TEMPERATURE, CONTAINED-ELECTROLYTE HYDROGEN-OXYGEN
34834 OF CARBON DIOXIDE ON TRAPPED ELECTROLYTE HYDROGEN OXYGEN
34513 RE ELECTROLYSIS IN THE ZDANSK ELECTROLYTE HYDROGEN BY PRESSU
34615 OF OXY STUDY OF ELECTRODE ELECTROLYTE INTERFACE FOR CASE
34105 TTERIES A HYDROGEN AND BASIC ELECTROLYTE LOW-TEMPERATURE BA
20510 N GENERATION BY SOLID POLYMER ELECTROLYTE WATER ELECTROLYSIS
34626 N FUEL CELLS WITH AN ALKALINE ELECTROLYTE HYDROGEN/OXYGEN
34222 FUEL BATTERY WITH AN ALKALINE ELECTROLYTE HYDROGEN-AIR
34216 WHICH GAS CIRCULATES THROUGH ELECTROLYTE O2 FUEL CELLS IN
20509 DROGSD SOLID ELECTROLYTES OFFER ROUTE TO HY
34257 TEFLON ELECTRODES AND LIQUID ELECTROLYTES DUCTING POROUS
34607 CYLINDRICAL ANODES IN STIRRED ELECTROLYTES OF HYDROGEN TO
20011 ELECTROLYTIC HYDROGEN PLANT
20007 UFACTURE AND APPLICATIONS ELECTROLYTIC HYDROGEN ITS MAN
20504 DUCTION WITH SOLID POLYMER ELECTROLYTIC HYDROGEN FUEL PRO
52045 PLATINUM PERMEATION OF ELECTROLYTIC HYDROGEN THROUGH
20005 THE PRODUCTION OPERATION OF ELECTROLYTIC INSTALLATIONS FOR
20002 ROGEN AND OXYGEN ELECTROLYTIC PRODUCTION OF HYD
34237 CELLS, I JL HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL
34219 OGEN-OXYGEN FUEL-CELL BATTER ELECTROLYTIC REGENERATIVE HYDR
34233 CELLS HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL
34239 CELLS HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL
34235 2 SECONDARY FUEL CELLS ELECTROLYTIC REGENERATIVE H2-0
34236 CELLS HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL
34238 CELLS HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL
34234 HYDROGEN-OXYGEN FUEL CELL ELECTROLYTICALLY REGENERATIVE
20513 TROLYSIS IN THE ZDANSKY-LOENZA ELECTROLYTIC BY PRESSURE ELC
34039 ECONOMY FUEL CELLS AND ELECTROLYZERS IN THE HYDROGEN
23201 LOSSENEN SYSTEM MIT HILFE VON ELEKTROLYSEGAS UND BAKTERIEN
30036 Y CHARA EFFECT OF THRUST PER ELEMENT ON COMBUSTION STABILIT
30038 OF CHAMBER PRESSURE, FLOW PER ELEMENT, AND CONTRACTION RATIO
22119 N FROM LIQUID HYDROCARBONS AT ELEVATED PRESSURES HYDROGE
51001 AND OXYGEN-INERT MIXTURES AT ELEVATED PRESSURES OXYGEN
52055 ROGEN AT CRYOGENIC, ROOM, AND ELEVATED TEMPERATURES RE HYD
52050 PROPERTIES OF THE Ti-SAL-2S SN ELI ALLOY RE ON MECHANICAL P
10076 PLAN FOR THE ELIMINATION OF POLLUTION
TITLE INDEX

SECTION 'T'

10068 A HYDROGEN ENERGY CARRIER#
10069 A HYDROGEN ENERGY CARRIER#
20511 AGRO-INDUSTRIAL COM/NUCLEAR ENERGY CENTERS: INDUSTRIAL AND
10089 A TOWER TOP FOCUS SOLAR ENERGY COLLECTOR#
34262 EXPERIMENTAL WORK TO DATE ON ENERGY CONVERSION AND STORAGE
34005 FUEL CELL AS ENERGY CONVERSION DEVICE#
34621 HYDROGEN DIRECT ELECTROCHEMICAL ENERGY CONVERSION IN PALLADIUM
34007 FUEL CELLS - ELECTROCHEMICAL ENERGY CONVERTERS OF FUTURE#
10015 HYDROGEN-HEATED TOWNS PLACED ON ENERGY CRISIS SOLUTION LIST#
10086 DVRGEN: THE COMING ENERGY CRISIS, AND SOLAR ENERGY
31011 DOD, AIRLINES FACE ENERGY CRISIS#
20501 EMS STUDY# ENERGY DEPOT ELECTROLYSIS SYS
22005 CHAR OIL ENERGY DEVELOPMENT#
10067 A HYDROGEN BASED ENERGY ECONOMY#
10046 S FUTURE ROLE IN THE NATION'S ENERGY ECONOMY# HYDROGEN: IT
32006 AUTOMOTIVE VE/ ON THE HIGHER ENERGY FORM OF WATER (H2O#) IN
23200 ION IN HYDROGEN BACTERIA# ENERGY GENERATION AND UTILIZATION
23015 METHOD FOR UTILIZING NUCLEAR ENERGY IN THE PRODUCTION OF HY
34003 DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY-
34011 DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL# /S OF
10055 THE ENERGY LABYRINTH#
10049 HYDROGEN: KEY TO THE ENERGY MARKET#
10036 HYDROGEN, MASTER-KEY TO THE ENERGY MARKET#
10052 THE INFLUENCE IN AN ENERGY MARKETPLACE#
10071 INFLUENCE OF HYDROGEN IN AN ENERGY MARKETPLACE#
10029 CRYOGENIC H2 AND NATIONAL ENERGY NEEDS#
10064 R TRANSPORTATION AND NATURAL ENERGY NEEDS# SYNTHETIC FUELS FOR
10070 I OLOGICAL# OUR SOLAR ENERGY OPTIONS: PHYSICAL AND B
10023 HYDROGEN FIGURES IN MANY ENERGY PROPOSALS#
21003 DUCTION OF HYDROGEN FROM WATER ENERGY REQUIREMENTS IN THE PRO
30074 RCH AT THE NACA/NASA LE/ HIGH ENERGY ROCKET PROPPELLANT RESEA
30041 ERISTICS OF CONTROLLABLE HIGH-ENERGY ROCKET PROPULSION SYSTE
10029 LITERATURE ON FUSION AS THE ENERGY SOURCE# /WITH PARTICU
10084 TRIAL SOCIETY# ENERGY SOURCES ON A POST-INDUS
43008 METAL HYDRIDE ENERGY STORAGE SYSTEMS#
43017 METAL HYDRIDES FOR ENERGY STORAGE#
10048 ECO-ENERGY STUDIES AT TEMPO#
10037 CAL ANSWER TO THE PROBLEM OF ENERGY SUPPLY AND POLLUTION# /
10002 A HYDROGEN-ENERGY SYSTEM#
10011 HYDROGEN-ENERGY SYSTEM#
10054 PROPULSION# HYDROGEN ENERGY SYSTEMS AND VEHICULAR P
23202 APIABLE PHOTOSYNTHETIC UNITS, ENERGY TRANSFER AND LIGHT-IND
10079 EN# ENERGY TRANSMISSION VIA HYDROG
10004 A NEW CONCEPT IN ENERGY TRANSMISSION#
30025 HIGH ENERGY UPPER STAGES FOR ELDO V
10042 PECTIONS FOR APP/ HYDROGEN AS A HIGH ENERGY VECTOR: NEW FUTURE PROS
10065 Y# CLEAN ENERGY VIA CRYOGENIC TECHNOLOGY
10059 CONSERVING ENERGY WITH HEAT STORAGE WELLS
34003 EMICAL ENERGY INTO ELECTRICAL ENERGY-BATTERIES AND FUEL CELL
32005 NS AND FUTURE IN THE EMERGING ENERGY-TRANSPORTATION-ENVIRONM
10043 HYDROGEN SYSTEMS FOR ELECTRIC ENERGY#
10050 ECO-ENERGY#
10047 HYDROGEN PRODUCTION FOR ECO-ENERGY#

451
10074 N - THE KEY TO ABUNDANT CLEAN ENERGY
10086 MING ENERGY CRISIS, AND SOLAR ENERGY
10035 HYDROGEN AND ENERGY
34021 THE CONVERSION OF ENERGY
20512 HYDROGEN GENERATION BY THERMAL ENERGY
42003 D STORAGE OF HYDROGEN FOR ECO-ENERGY
23018 NT FOR THE WORKING OF NUCLEAR ENERGY
10072 AION AND CONVERSION OF SOLAR ENERGY
23002 OR THE UTILIZATION OF NUCLEAR ENERGY
10042 S FOR APPLICATIONS OF NUCLEAR ENERGY
34008 LECTROCHEMICAL PRODUCTIONS OF ENERGY
32001 ROGEN - AIR FUELED AUTOMOBILE ENGINE (PART I)
30047 N AND HYDROG/ THE SEP R ROCKET ENGINE - HM4 WITH LIQUID OXYGE
32005 E IN THE EM/ THE HYDROGEN I C ENGINE - ITS ORIGINS AND FUTUR
52038 ANCED FLAW GROWTH IN SSE MAIN ENGINE ALLOYS IN HIGH PRESSURE
30030 OF A HYDROGEN-FLUORINE ROCKET ENGINE AT SEVERAL CHAMBER PRES
33001 L REACTION KINETICS IN ROCKET ENGINE COMBUSTION
32024 SA TESTING HYDROGEN INJECTION ENGINE CONCEPT
32011 ERATIVE FUELS FOR CONTROL OF ENGINE EMISSION
3010 GAS/ CLEAN AUTOMOTIVE FUEL: ENGINE EMISSIONS USING NATURAL
30046 KED TO BUILD CRYOGENIC ROCKET ENGINE FOR LATE '70S USE
40106 SIGN OF A CRYOGENIC EXPANSION ENGINE FOR TONNAGE HYDROGEN LI
32004 THE HYDROGEN ENGINE IN PERSPECTIVE
30023 NCHING SYSTEM WITH A STANDARD ENGINE OF 5-8 TONS DF THRUST
30063 H2 GAS GENERATORS FOR THE M-1 ENGINE OPERATIONS
31010 ON GAS PROPERTIES ON TURBOJET-ENGINE PERFORMANCE WITH HYDROG
32013 CONVERTED IC ENGINE RUNS ON HYDROGEN
30073 EN-OXYGEN INTERNAL COMBUSTION ENGINE SPACE POWER SYSTEM
30040 AN EVALUATION OF LOX/HYDROGEN ENGINE TECHNOLOGY FOR ADVANCED
30049 EVELOPMENT OF THE S E P R HM4 ENGINE: A 40 KN THRUST LIQ
32007 EN-FUELED INTERNAL COMBUSTION ENGINE
30014 SPACE SHUTTLE ENGINE
34849 T AGAINST INTERNAL-COMBUSTION ENGINE
30011 ACE POWER INTERNAL-COMBUSTION ENGINE
33049 ST LIQUID OXYGEN AND HYDROGEN ENGINE/ ENGINE: A 40 KN THRU
32012 SABILITY OF A HYDROGEN OXYGEN ENGINE/ AS A FUEL AND THE FEA
32014 EN-FUELED INTERNAL COMBUSTION ENGINE/ N AIR-BREATHTINGHYDROG
32023 OL PARAMETERS OF THE HYDROGEN ENGINE/ ND NITRIC OXIDE CONTR
30072 KILOWATT INTERNAL- COMBUSTION ENGINE/ OGEN-OXYGEN FUELED 3-
30037 ASEUS HYDROGEN-LIQUID OXYGEN ENGINE/ ON THE STABILITY OF G
30028 SURE HYDROGEN-FLUORINE ROCKET ENGINE/ OR A LOW-CHAMBER-PRES
30060 LIQUIDHYDROGEN/LIQUID OXYGEN ENGINE/ RUST (NOMINAL VACUUM)
34807 N-OXYGEN FUEL CELL/ SOME ENGINEERING ASPECTS OF HYDROGE
40000 UID HYDROGEN, LOW-TEMPERATURE ENGINEERING TECHNOLOGY
40213 ALES OF PARAHYDROGEN DATA IN ENGINEERING UNITS FROM 36 DEGR
34825 CELLS AND FUEL BATTERIES - AN ENGINEERING VIEW
34030 CELLS - PROBLEMS FOR CHEMICAL ENGINEERS
32021 TION INTO INTERNAL COMBUSTION ENGINES EFFECT ON EMISSIONS AN
30044 OF PULSABLE ATTITUDE CONTROL ENGINES FOR HYDROGEN AND OXYGE
30039 N EFFECT ON THE AIR BREATHING ENGINES OF A SPACE-CRAFT LAUNC
10066 YDROGEN M/ POLLUTION-FREE CAR ENGINES THAT BURN A GASOLINE-H
30048 RETICAL PERFORMANCE OF ROCKET ENGINES USING GASEOUS HYDROGEN
30067 N OF LIQUID PROPELLANT ROCKET ENGINES
Title Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>32015</td>
<td>Criteria for Hydrogen Burning Engines (Design)</td>
</tr>
<tr>
<td>30000</td>
<td>NASA Experience with Hydrogen Engines (Recent)</td>
</tr>
<tr>
<td>30055</td>
<td>No Fabrication of Small H2/O2 Engines (Recent)</td>
</tr>
<tr>
<td>32022</td>
<td>EN-Fueled Internal Combustion Engines (Design)</td>
</tr>
<tr>
<td>30036</td>
<td>ICS of Hydrogen-Oxygen Rocket Engines (Ability Characteristic)</td>
</tr>
<tr>
<td>30038</td>
<td>En and Oxygen in Regenerative Engines at Chamber Pressures (Recent)</td>
</tr>
<tr>
<td>52038</td>
<td>In engine alloys in high pres/ enhanced flow growth in sse ma</td>
</tr>
<tr>
<td>32010</td>
<td>S Using Natural Gas, Hydrogen-Enriched Natural Gas, and Gas</td>
</tr>
<tr>
<td>52058</td>
<td>En and Oxygen in Regenerative Engines at Chamber Pressures (Recent)</td>
</tr>
<tr>
<td>32010</td>
<td>S Using Natural Gas, Hydrogen-Enriched Natural Gas, and Gas</td>
</tr>
<tr>
<td>32011</td>
<td>Ogen at the Rocket Propulsion Establishment (Storage of Liquid Hydrogen)</td>
</tr>
<tr>
<td>30047</td>
<td>F hydrogen embrittlement of (Estimates of the possibility of)</td>
</tr>
<tr>
<td>22638</td>
<td>EAM 0/ reactions of n-butan, ethylene, and 1-butene with st</td>
</tr>
<tr>
<td>22138</td>
<td>Of hydrocarbons to acetylene, ethylene, methane, and hydrogen</td>
</tr>
<tr>
<td>30064</td>
<td>F the use of cryogenic propellant evaluation and demonstration (Recent)</td>
</tr>
<tr>
<td>30069</td>
<td>F the use of cryogenic propellant evaluation and demonstration (Recent)</td>
</tr>
<tr>
<td>34500</td>
<td>For human consumption (Recent)</td>
</tr>
<tr>
<td>52013</td>
<td>Lement mechanisms (Evaluation of Hydrogen EMBRITT)</td>
</tr>
<tr>
<td>33021</td>
<td>A full-scale afterburner (Evaluation of Hydrogen Fuel in)</td>
</tr>
<tr>
<td>30040</td>
<td>INE technology for advanced (Evaluation of LOX/Hydrogen Energy)</td>
</tr>
<tr>
<td>21010</td>
<td>CEs/ Moliere diagrams for the evaluation of nuclear heat produ</td>
</tr>
<tr>
<td>30038</td>
<td>On concepts in a 20,000 - pou evaluation of speech suppressi</td>
</tr>
<tr>
<td>23004</td>
<td>Ant reforming for use in eme evaluation of storable propellant</td>
</tr>
<tr>
<td>51008</td>
<td>Nonmetal flash and fire test: evaluation of the behavior of</td>
</tr>
<tr>
<td>34267</td>
<td>Concept for a L/ experimental evaluation of the single-cell</td>
</tr>
<tr>
<td>31004</td>
<td>N experimental and analytical evaluation of the thermal beha</td>
</tr>
<tr>
<td>30029</td>
<td>Fluorine-hydrogen performance evaluation (Phase 1, Part 1)</td>
</tr>
<tr>
<td>30064</td>
<td>STEMS, Volume 2: experimental evaluations and demonstration (Recent)</td>
</tr>
<tr>
<td>30069</td>
<td>RDL systems, II: experimental evaluations and demonstration (Recent)</td>
</tr>
<tr>
<td>40205</td>
<td>GEN in two-phase/ finite rate evaporation of cryogenic hydrogen</td>
</tr>
<tr>
<td>23202</td>
<td>Y transfer and light-induced evolution of hydrogen in algae</td>
</tr>
<tr>
<td>22153</td>
<td>Ions in the purification and/ examples of practical applicat</td>
</tr>
<tr>
<td>22106</td>
<td>G from C6 to H2 hydrogen from excess refinery streams rangin</td>
</tr>
<tr>
<td>34010</td>
<td>Fuel cell with a capilll/ mass exchange in a hydrogen-oxygen</td>
</tr>
<tr>
<td>34210</td>
<td>Hydrogen-oxygen ion-exchange membrane fuel cells (Recent)</td>
</tr>
<tr>
<td>34025</td>
<td>Ochemical fuel cells with ion exchange membranes (Recent)</td>
</tr>
<tr>
<td>40104</td>
<td>Iqueifiers with efficient heat exchangers (Hydrogen)</td>
</tr>
<tr>
<td>30030</td>
<td>Several chamber pressures and exhaust nozzle expansion area</td>
</tr>
<tr>
<td>33019</td>
<td>M cluster formation in rocket exhausts (Nonequilibrium)</td>
</tr>
<tr>
<td>34603</td>
<td>Future hydrogen cells of C Ge existing batteries and future</td>
</tr>
<tr>
<td>30030</td>
<td>Pressures and exhaust nozzle expansion area ratios (Recent)</td>
</tr>
</tbody>
</table>

Note: The page number 453 is not related to the content of the index.
TITLE INDEX

40103 OUEFACTION UNIT WITH A HELIUM EXPANSION COOLING CYCLE# // LI
40106 YDROGEN/ DESIGN OF A CRYOGENIC EXPANSION ENGINE FOR TONNAGE H
33027 RGEN AND METHANE TO SIMULATE EXPANSION OF STORABLE PROPELLA
40601 ORT AND STORAGE OF LIQUID HY/ EXPERIENCE IN HANDLING, TRANSP
30000 ES# RECENT NASA EXPERIENCE WITH HYDROGEN ENGIN
22122 CTING CATALYST/ COMMERCIAL EXPERIENCE WITH LIQUID HYDROCA
22116 RBON FUELS# EXPERIENCES)# / FUEL CELL/LEA
32026 D BATTERY (ONE YEAR OPERATING EXPERIMENT ON HIGH-PRESSURE H
41014 YD/ CORRELATION OF THEORY AND EXPERIMENT FOR HIGH-PRESSURE H
33034 NG IN A TWO-DIMENSIONAL / AN EXPERIMENT ON PARTICULATE Damp
31004 ALUATION OF THE THERMAL B/ AN EXPERIMENTAL EVALUATIONS AND D
30069 REACTION CONTROL SYSTEMS. II. EXPERIMENTAL EVALUATIONS AND D
30064 ON CONTROL SYSTEMS. VOLUME 2: EXPERIMENTAL EVALUATION OF THE
40508 O-TANK NET POSITIVE SUCTION / EXPERIMENTAL FINDINGS FROM ZER
30031 ROCET PERFORMANCE AT LOW# EXPERIMENTAL HYDROGEN-FLUORINE
30002 ACOUSTIC LINERS TO SUPPRESS / EXPERIMENTAL INVESTIGATION OF
30066 COMBUSTOR EFFECTS ON ROCKET / EXPERIMENTAL INVESTIGATION OF
33025 HOT-GAS SIDE HEAT-TRANSFER R/ EXPERIMENTAL INVESTIGATIONS ON
33049 SUPERSONIC COMBUSTION IN THE/ EXPERIMENTAL INVESTIGATION OF
34502 THE DYNAMICS OF WATER REJECT/ EXPERIMENTAL INVESTIGATION OF
30009 LEAR ROCKET APPLICATIONS. II.: EXPERIMENTAL OVERALL AND STAGE
30030 HYDROGEN-FLUORINE ROCKET ENG: EXPERIMENTAL PERFORMANCE OF A
30008 ONS. 1: DESIGN OF TURBINE AND EXPERIMENTAL PERFORMANCE OF FI
30012 RIC PROPULSION. NOTE VII: AN/ EXPERIMENTAL RESEARCH ON ELECG
34619 OPERATION OF POROUS GAS- DIF/ EXPERIMENTAL STUDY OF MODE OF
30067 OF OPERATION OF POROUS G/ AN EXPERIMENTAL STUDY OF THE MODE
40507 D OPERATING CHARACTERISTICS / EXPERIMENTAL STUDY OF LOW-SPEE
34037 HA/ A MODEL FOR ANALYZING THE EXPERIMENTAL VOLTAGE-CURRENT C
34262 NERGY CONVERSION AND STORAGE/ EXPERIMENTAL WORK TO DATE ON E
30058 OXYGEN IN REGENERATIVE ENGIN/ EXPERIMENTS WITH HYDROGEN AND
22136 MINIATURE HYDROGEN GENERATOR/ EXPLORATORY DEVELOPMENT MODEL
51012 R/ H2-D2-NOX FLAMMABILITY AND EXPLOSIBILITY: A LITERATURE SU
51014 HYDROGEN TEST FACILITIES# EXPLOSION CRITERIA FOR LIQUID
51003 ALE VAPORS AN/ THE DANGER OF EXPLOSION OF MIXTURES OF FLAMM
51013 DROGEN-OXYGEN / HIGH-ALTITUDE EXPLOSION PROPERTIES OF THE HY
51010 ; AND SUPPRESSION OF HYDROGEN EXPLOSIONS IN AEROSPACE VEHICL
51003 GASES WITH AIR. XI. THEORY OF EXPLOSIVE COMBUSTION AND METHO
51004 F THE LOWER LIMIT OF HYDROGEN EXPLOSIVITY ON THE INITIAL TEM
51003 S OF COMPUTATION OF TECHNICAL EXPLOSIVITY PARAMETERS# /ETHOD
33004 IC HEAT RATIOS AND ISENTROPIC EXPONENTS FOR CONSTANT- VOLUME
40419 LIQUID HYDROGEN POSITIVE EXPULSION BLADDERS#
34647 R-HYDROGEN THIN ELECTRODES# EXTENDING THE DIMENSIONS OF AI
40414 DEVELOPMENT OF A LIGHTWEIGHT EXTERNAL INSULATION SYSTEM FOR
40412 S FOR CRYOGENIC STORAGE SYST/ EXTERNAL PRESSURIZATION SYSTEM
40411 S FOR CRYOGENIC STORAGE SYST/ EXTERNAL PRESSURIZATION SYSTEM
52042 MATICS OF THE ELECTROCHEMICAL EXTRATERRESTRIAL (HOPE) FUEL C
23022 ION OF HYDROGEN FOR DEUTERIUM EXTRACTION# PRODUCT
34255 ELL / HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIAL (HOPE) FUEL C
34254 ELL / HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIAL (HOPE) FUEL C
34028 ELL / HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIAL (HOPE) FUEL C
20009 SUPPLY FOR ADVANCED MANNED MI# EXTRATERRESTRIAL PROPellant RE
33029 HYDROGEN.FUEL AT -400 DEGREES F# / FUEL-SYSTEM OPERATION WITH

454
<table>
<thead>
<tr>
<th>Title Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>30055 INES#</td>
</tr>
<tr>
<td>30013 G EFFECTS OF SEVERAL INJECTOR FACE BAFFLE CONFIGURATIONS ON</td>
</tr>
<tr>
<td>31011 DOD, AIRLINES FACE ENERGY CRISIS#</td>
</tr>
<tr>
<td>51014 ERKA FOR LIQUID HYDROGEN TEST FACILITIES#</td>
</tr>
<tr>
<td>42001 RE VESSEL PROBLEMS IN THE M-1 FACILITIES#</td>
</tr>
<tr>
<td>22217 HYDROGEN-KEY FACTOR IN REFINING'S FUTURE#</td>
</tr>
<tr>
<td>34246 CELLS#</td>
</tr>
<tr>
<td>40421 HYDROGEN/ PAYLOAD OPTIMIZATION FACTORS FOR STORAGE OF LIQUID</td>
</tr>
<tr>
<td>34102 EFFECT OF DESIGN AND OPERATING FACTORS ON LIFE AND PERFORMANCE</td>
</tr>
<tr>
<td>50003 STEAM REFORMING PL/ DESIGN OF FAIL-SAFE CONTROL SYSTEMS FOR</td>
</tr>
<tr>
<td>22612 FORMER FURNACE/ CASE HISTORY: FAILURES IN A STEAM-METHANE RE</td>
</tr>
<tr>
<td>21013 CHEMICAL CYCLES USING A FE-CL2 FAMILY#</td>
</tr>
<tr>
<td>52019 NT OF STEELS USED IN THE TANK FARM CYLINDERS#</td>
</tr>
<tr>
<td>21013 THROUGH CHEMICAL CYCLES USING A FE-CL2 FAMILY#</td>
</tr>
<tr>
<td>52043 URING HYDROGEN CHARGING OF AN FE-PT ALLOY#</td>
</tr>
<tr>
<td>32012 E/ HYDROGEN AS A FUEL AND THE FEASIBILITY OF A HYDROGEN OXYG</td>
</tr>
<tr>
<td>31008 R HYDROGEN FUEL FOR / THERMAL FEASIBILITY OF USING METHANE O</td>
</tr>
<tr>
<td>30054 G DETONATION WAVE ROCKET MOT/ FEASIBILITY STUDIES OF ROTATIN</td>
</tr>
<tr>
<td>33048 DROGEN POWDERED METAL IGNITI/ FEASIBILITY STUDY OF OXYGEN/HY</td>
</tr>
<tr>
<td>34200 ORMANCE HYDROGEN-OXYGEN FUEL/ FEASIBILITY STUDY OF HIGH PERF</td>
</tr>
<tr>
<td>30051 GEN#</td>
</tr>
<tr>
<td>34601 OPEN C/ RESEARCH ON HYDROGEN FEED MECHANISM OF FUEL CELL ON</td>
</tr>
<tr>
<td>22189 HYDROGEN-CONTAINING REFORMATE FEED STOCK SUITABLE FOR CONSUM</td>
</tr>
<tr>
<td>22131 JET FUEL AS A FEED STOCK#</td>
</tr>
<tr>
<td>20016 US OF THE LIFE SYSTEM#</td>
</tr>
<tr>
<td>34106 NT SUPER SATURATED ELECTROLYTE FEED#</td>
</tr>
<tr>
<td>22185 : HYDRODESULFURIZATION OF THE FEED#</td>
</tr>
<tr>
<td>23012 G PURE HYDROGEN FOR FUEL CELL FEEDING OUT OF METHANOL#</td>
</tr>
<tr>
<td>22114 JET FUEL AS FEEDSTOCK#</td>
</tr>
<tr>
<td>22651 OUCING HYDROGEN FROM GASEOUS FEEDSTOCK#</td>
</tr>
<tr>
<td>22629 TEAM REFORMING OF HYDROCARBON FEEDSTOCKS#</td>
</tr>
<tr>
<td>33023 SSURE ALTITUDES UP TO 110,000 FEET#</td>
</tr>
<tr>
<td>23606 LDS AT 2537 A, FOR FERROUS TO FERRIC IN AQUEOUS SULFURIC ACI</td>
</tr>
<tr>
<td>52009 MEATION, AND EMBRITTLEME IN FERROUS MATERIALS#</td>
</tr>
<tr>
<td>23606 QUANTUM YIELDS AT 2537 A; FOR FERROUS TO FERRIC IN AQUEOUS S</td>
</tr>
<tr>
<td>22614 NICAL HYDROGEN PRODUCTION FOR FERTILIZER INDUSTRY IN INDIA#</td>
</tr>
<tr>
<td>40007 AN INFORMATION SERVICE IN THE FIELD OF CRYOGENICS#</td>
</tr>
<tr>
<td>33049 RSIC COMBUSTION IN THE FLOW FIELDS OF BODIES OF REVOLUTION</td>
</tr>
<tr>
<td>10023 LS#</td>
</tr>
<tr>
<td>40416 INSULATIONS FOR ROCKET TANKS FILLED WITH LIQUID HYDROGEN#</td>
</tr>
<tr>
<td>40309 THIN-FILM HYDROGEN SENSOR#</td>
</tr>
<tr>
<td>23408 PERMEATION THROUGH POLYMERIC FILMS#</td>
</tr>
<tr>
<td>10012 DF LIQUID HYDROGEN PRODUCTION FINAL REPORT#</td>
</tr>
<tr>
<td>40508 SITIVE SUCTION / EXPERIMENTAL FINDINGS FROM ZERO-TANK NET PO</td>
</tr>
<tr>
<td>40205 OGENIC HYDROGEN IN TWO-PHASE/ FINITE RATE EVAPORATION OF CRY</td>
</tr>
<tr>
<td>51009 HYDROGEN LEAK AND FIRE DETECTION: A SURVEY#</td>
</tr>
<tr>
<td>51008 EHAIOR OF NONMETA/ FLASH AND FIRE TEST: EVALUATION OF THE B</td>
</tr>
<tr>
<td>30010 D THERMIONIC/ HYDROGEN-OXYGEN FIRED THERMIONIC GENERATORS AN</td>
</tr>
<tr>
<td>30222 RATIVE STUDY OF FUELS FOR THE FIRST STAGE OF AN ATMOSPHERIC</td>
</tr>
<tr>
<td>30021 NE FUELED TURBORAMJET POWERED FIRST STAGE#</td>
</tr>
<tr>
<td>30008 D EXPERIMENTAL PERFORMANCE OF FIRST TWO STAGES#</td>
</tr>
<tr>
<td>31009 FUEL FOR DIRECT COOLING OF A FIRST-STAGE TURBINE STATOR#</td>
</tr>
<tr>
<td>40302 T OF LIQUID-LEVEL SENSORS AND FISSION COUPLES#</td>
</tr>
</tbody>
</table>
TITLE INDEX

SECTION 'T'

50016 ROVER LIQUID HYDROGEN SAFETY: FIVE YEAR LOOK\# PROJECT
33017 TION OF THE MEDIUM BEFORE THE FLAME FRONT DURING THE INITIAL
33010 THANE CATALYZED BY A HYDROGEN FLAME\# COMPLETE OXIDATION OF ME
22194 OF H/ HYDROGEN BY INCOMPLETE FLAMELESS CATALYTIC COMBUSTION
33060 ON\# DIFFUSION FLAMES AND SUPERSONIC COMBUSTI
51005 YDROGEN FLARE STACK DIFFUSION FLAMES: LOW AND HIGH FLOW INST
51012 : A LITERATURE SUR/ H2-O2-NOX FLAMMABILITY AND EXPLOSIBILITY
51001 R, OXYGEN, AN/ UPPER LIMIT OF FLAMMABILITY OF HYDROGEN IN A
51003 R OF EXPLOSION OF MIXTURES OF FLAMMABLE VAPORS AND GASES WIT
51005 LOW AND HIGH FLOW I/ HYDROGEN FLARE STACK DIFFUSION FLAMES:
50007 HYDROGEN VENT FLARE STACK PERFORMANCE\#
51008 N OF THE BEHAVIOR OF NONMETA/ FLASH AND FIRE TEST: EVALUATION
33058 S OF HYDROGEN COMBUSTION ON A FLAT PLATE IN TANGENTIAL FLOW\#
33049 DIES OF REACTION AND NEAR A PLATE INTANGENTIAL FLOW# / 52038 ALLOYS IN HIGH PRE/ ENHANCED FLAW GROWTH IN SSE MAIN ENGINE
34536 THE PERFORMANCE OF FLOODED POROUS FUEL CELL ELECT
40206 CS OF HYDROGEN NEAR ITS CRIT/ FLOW AND THERMAL CHARACTERISTI
33059 HEAT ADDITION IN SUPERSONIC FLOW BY MEANS OF HYDROGEN COMB
40303 LIQUID HYDROGEN FLOW BY NMR TECHNIQUE\#
33049 SUPERSONIC COMBUSTION IN THE FLOW FIELDS OF BODIES OF REVOL
40512 H2 ROC/ ANALYSIS OF TWO-PHASE FLOW FLOW IN LH2 PUMPS FOR O2/
40512 C/ ANALYSIS OF TWO-PHASE FLOW FLOW IN LH2 PUMPS FOR O2/H2 RO
40509 IGATION OF TWO-PHASE HYDROGEN FLOW IN PUMP INLET LINE# /VEST
51005 IFFUSION FLAMES: LOW AND HIGH FLOW INSTABILITIES, BURNING RA
22004 REHEATING ZONE DURIN/ UNIFORM FLOW OF FLUIDIZED COKE TO THE
33035 ING CALCULATION OF THE NOZZLE FLOW OF PRODUCTS OF THE COMBUS
30038 EFFECT OF CHAMBER PRESSURE, FLOW PER ELEMENT, AND CONTRACT
41001 D AND SLUSH HYDROGEN# FLOW RESEARCH SYSTEM FOR LIQU
40200 METERS IN TWO-PHASE CRYOGENIC FLOW SYSTEMS# /ND RELATED PARA
40300 CRYOGENIC FLOW-METERING RESEARCH AT NBS# 33049 EAR A PLATE INTANGENTIAL FLOW# /IES OF REACTION AND N
33058 ON A PLATE IN TANGENTIAL FLOW# /OF HYDROGEN COMBUSTION
33020 TOCHEMICAL INDUCTION TIMES IN FLOWING MIXTURES OF HYDROGEN,
40209 RANSFER TO CRYOGENIC HYDROGEN FLOWING TURBULENTLY IN STRAIGH
40308 # SMALL TURBINE-TYPE FLOWMETERS FOR LIQUID HYDROGEN
33061 AYSIS OF INTERNAL SUPERSONIC FLOWS WITH DIFFUSION, DISSIPAT
30051 ALE-MODEL TESTS OF HIGH-SPEED FLOWS# ACOUSTIC SC
40006 STATES# TRENDS IN CRYOGENIC FLUID PRODUCTION IN THE UNITED
40212 OCEDURES FOR CALCULATING REAL FLUID PROPERTIES OF NORMAL AND
40600 MULTIPLE USE OF CRYOGENIC FLUID TRANSMISSION LINES# 34508 TY SENSOR FOR A HYD/ USE OF A FLUIDIC OSCILLATOR AS A HUMIDI
22649 NETICS OF PROPANE CRACKING IN FLUIDIZED BED REACTORS# KI
22642 STEAM- OXYGEN CONVERSION IN A FLUIDIZED BED UNDER PRESSURE# / 22172 E PYROLYSIS OF SHALE OIL IN A FLUIDIZED BED# /KINETICS OF TH
22004 G ZONE DURIN/ UNIFORM FLOW OF FLUIDIZED COKE TO THE REHEATIN
40208 C AND TRANSPORT PROPERTIES OF FLUIDS AND SELECTED SOLIDS FOR
40001 ORATORY# USES OF CRYOGENIC FLUIDS IN INDUSTRY AND THE LAB
40002 CRYOGENIC FLUIDS# 40501 RINGS AND SEALS FOR CRYOGENIC FLUIDS# BEA
33053 IN THE COMBUSTION OF HYDROGEN-FLUORINE MIXTURES# /LAGRATION
30029 LOW-CHAMBER-PRESSURE HYDROGEN-FLUORINE ROCKET ENGINE# /OR A
30030 TAL PERFORMANCE OF A HYDROGEN-FLUORINE ROCKET ENGINE AT SEVE
30031 LOW# EXPERIMENTAL HYDROGEN-FLUORINE ROCKET PERFORMANCE AT

456
TITLE INDEX

SECTION 'T'

30029 ANE INJECTORS FOR THE LIQUID FLUORINE-GASEOUS HYDROGEN COMB
30029 EVALUATION: PHASE 1, PART I: FLUORINE-HYDROGEN PERFORMANCE
30027 TUDY# LITHIUM-FLUORINE-HYDROGEN PROPELLANT S
30026 TRIERGOLIC ROCKET FUEL SYSTEM FLUORINE-LITHIUM HYDRIDE-HYDRO
40209 AND CURVED TUBES AT HIGH HEAT FLUXES# /BULENTLY IN STRAIGHT
34846 THE FLYING H2O2 STORAGE BATTERY#
40407 ROGEN TANKS# LOW-DENSITY FOAM FOR INSULATING LIQUID-HYD
10089 A TOWER TOP FOCUS SOLAR ENERGY COLLECTOR#
*FOR ' NOT INDEXED
40207 R TO SUPER-CRITICAL CRYOGENI/ FORCED CONVECTION HEAT TRANSFE
32006 TIVE VE/ ON THE HIGHER ENERGY FORM OF WATER (H2O*) IN AUTOMO
52028 RACKS DURING THE FRACUTRE OF/ FORMATION AND DEVELOPMENT OF C
23203 SITION# HYDROGEN FORMATION BY ANAEROBIC DECOMPO
33019 NONEQUILIBRIUM CLUSTER FORMATION IN ROCKET EXHAUSTS#
23600 EUTERIUM ATOMS BY PHOTOLYSIS/ FORMATION OF HOT HYDROGEN OR D
22602 + H2O# LOW TEMPERATURE FORMATION OF HYDROGEN FROM CO
23200 + H2O# LOW TEMPERATURE FORMATION OF HYDROGEN FROM CO
43003 MAGNESIUM AND NICKEL AND THE FORMATION OF Mg2NiH4#/ LOYS OF
23207 N# BIOLOGICAL FORMATION OF MOLECULAR HYDROGE
43010 L/ IRON TITANIUM HYDRIDE: ITS FORMATION, PROPERTIES, AND APP
22011 SCHARG/ GASIFICATION OF SOLID FOSSIL FUELS IN A MICROWAVE DI
22102 HYDROGEN, STEAM REFORMING: FOSTER WHEELER CORPORATION#
22613 EN FROM THE METHANE- HYDROGEN FRACTION OF PYROGAS# /D HYDROG
23434 ROGEN FROM A METHANE-HYDROGEN FRACTION OF PYROLYSIS GAS# /YD
23419 EN-CONTAINING GAS MIXTURES# FRACTIONATION OF AIR OR HYDROG
52028 ELOPMENT OF CRACKS DURING THE FRACTURE OF HYDROGEN-ADSORBED
33046 + IV# EQUATION OF SEMENOV AND FRANK-KAMENETSKY ANDMANSON EQU
52047 RITTELEMENT OF TANTALUM IN THE FRACTF# /LEMENT OF HYDROGEN EMB
10066 ASOLINE-HYDROGEN M/ POLLUTION-FREE CAR ENGINES THAT BURN A G
23027 TROLEUM# FREE HYDROGEN IN GENESIS OF PE
52006 ANALYSIS OF HYDROGE/ INTERNAL FRICTION MEASUREMENTS FOR THE
*FROM ' NOT INDEXED
33017 F THE MEDIUM BEFORE THE FLAME FRONT DURING THE INITIAL PHASE
31000 AEROENERGY: A NEW FRONTIER#
22189 ING A MIXTURE OF A REFORMABLE FUEL AND STEAM TO A HYDROGEN-C
32012 HYDROGEN OXYGE/ HYDROGEN AS A FUEL AND THE FEASIBILITY OF A
22131 JET FUEL AS A FEED STOCK#
22114 JET FUEL AS FEEDSTOCK#
33029 SYSTEM OPERATION WITH HYDROGEN FUEL AT -400 DEGREES F# /UEL-S
34825 G VIEW# FUEL CELLS AND FUEL BATTERIES - AN ENGINEERIN
34217 LOW TEMPERATURE FUEL BATTERIES#
34243 MOLLEN-CARBONATE FUEL BATTERY PROGRAM#
34222 ELECTROL/ A 5-KW HYDROGEN-AIR FUEL BATTERY WITH AN ALKALINE
34223 A 1 KW HYDROGEN FUEL BATTERY#
34220 BLUE SYSTEM IN A BIOCHEMICAL FUEL CELL (AN ANODE REACTION)#
34212 E H/ INTERMEDIATE TEMPERATURE FUEL CELL - OPERATION ON DILUT
34827 FROM SHELL'S FUEL CELL - PORTABLE POWER#
34013 THE FUEL CELL - WHEN#
34242 ORMANCE OF A MOLLEN CARBONATE FUEL CELL AND BATTERY SYSTEM# /
34833 OR# ELECTRICALLY COUPLED FUEL CELL AND HYDROGEN GENERAT
34203 TRUCTION OF A HYDROGEN-OXYGEN FUEL CELL AND ITS PERFORMANCE
34005 DEVICE# FUEL CELL AS ENERGY CONVERSION
34209 NSM OF THE HYDROGEN-CHLORINE FUEL CELL AT HIGH TEMPERATURES
TITLE INDEX

SECTION 'T'

34837 TING ELECTROLYTE HYDROGEN/AIR FUEL CELL SYSTEM# CIRCULA
34832 500 WATT HYDROCARBON AIR FUEL CELL SYSTEM#
22176 WATER GAS SHIFT CONVERTER AND FUEL CELL SYSTEM#
34215 OF REFORMED NATURAL GAS-ACID FUEL CELL SYSTEM# PERFORMANCE
34026 LOW-Temperature FUEL CELL SYSTEM#
34269 ADVANCED SPACECRAFT FUEL CELL SYSTEM#
34027 HYDROCARBON - AIR FUEL CELL SYSTEM#
34814 OXGEN-OXYGEN FUEL CELLS: VARTA FUEL CELL SYSTEM# HYDRO
34503 D HEAT-REMOVAL UNIT FOR H2/O2 FUEL CELL SYSTEM# WATER- AN
34256 FUEL CELL TECHNOLOGY PROGRAM#
34226 FUEL CELL TECHNOLOGY PROGRAM#
34271 FUEL CELL TECHNOLOGY PROGRAM#
34225 ONTRACT SUMMARY REPORT# FUEL CELL TECHNOLOGY PROGRAM C
34034 Y OF ADVANCES AND PROBLEMS# FUEL CELL TECHNOLOGY - A SURVE
34844 STATUS OF SHUTTLE FUEL CELL TECHNOLOGY PROGRAM#
34501 ECTION FROM A HYDROGEN-OXYGEN FUEL CELL TO A HYDROGEN STREAM
22161 HYDROGEN GENERATOR FOR FUEL CELL USE IN SUBMARINES#
34500 UPTION# EVALUATION OF FUEL CELL WATER FOR HUMAN CONS
34010 EXCHANGE IN A HYDROGEN-OXYGEN FUEL CELL WITH A CAPILLARY MEM
23001 SS OF SUPPLYING HYDROGEN TO A FUEL CELL WITH BOROHYDRIDE ADD
34840 ER# A 500 WATT HYDROGEN-AIR FUEL CELL WITH METHANOL REFORM
34258 OPERATION OF AN ION-MEMBRANE FUEL CELL WITH MIOCROBIALLY-PRO
34635 ONIA ELECTROLYTE AND NICKEL-# FUEL CELL WITH STABILIZED ZIRC
34803 # THE BIOSATELLITE FUEL CELL/BATTERY POWER SYSTEM
32026 AR DPER/ CITY CAR WITH H2-AIR FUEL CELL/LEAD BATTERY (ONE YE
34839 A HYDROCARBON-AIR FUEL CELL#
3480 ATOMIC ELECTROLYTE AND NICKEL-# FUEL CELL WITH STABILIZED ZIRC
34506 LOW TEMPERATURE FUEL CELL#
34228 HYDROGEN FOR FUEL CELL#
34263 HIGH PERFORMANCE FUEL CELL#
34232 T-HOUR PER POUND REGENERATIVE FUEL CELL# 20 WAT
34218 ISCHARGE OF A HYDROGEN-OXYGEN FUEL CELL# SELF-D
34268 HIGH POWER DENSITY FUEL CELL#
34211 OPERATION OF A FUEL CELL#
23204 BACTERIAL METHANE FUEL CELL#
34214 OF COMPACT-DESIGN BUTANE-AIR FUEL CELL# PERFORMANCE
34240 -REGENERATIVE HYDROGEN-OXYGEN FUEL CELL# ELECTRICALLY
34807 NG ASPECTS OF HYDROGEN-OXYGEN FUEL CELL# SOME ENGINEERI
34253 MOLLEN CARBONATE ELECTROLYTE FUEL CELL# STUDIES OF THE
34234 REGENERATIVE HYDROGEN-OXYGEN FUEL CELL# ELECTROLYTICALLY
34644 REACTION OF HIGH TEMPERATURE FUEL CELL# STUDIES ON ANODIC
34643 M ANODE OF A MOLLEN-CARBONATE FUEL CELL# E HYDROGEN-PLATINI
34505 FOR HYDROGEN-OXYGEN CAPILLARY FUEL CELL# E REMOVAL CONCEPT
34267 RECHARGEABLE HYDROGEN-OXYGEN FUEL CELL# FOR A LIGHTWEIGHT,
34208 ACID INTERMEDIATE-TEMPERATURE FUEL CELL# ILIZED PHOSPHORIC
34245 ERFORMANCE OF HYDROGEN-OXYGEN FUEL CELL# IMPURITIES ON P
34259 RECHARGEABLE HYDROGEN-OXYGEN FUEL CELL# MANE STUDIES ON A
34252 ELECTROLYTE (HYDROGEN-HALOGEN) FUEL CELL# POWR IN A MOLLEN E
34270 D-ELECTROLYTE HYDROGEN-OXYGEN FUEL CELL# PERATURE, CONTAIN
34502 ATRIX TYPE OF HYDROGEN-OXYGEN FUEL CELL# REJECTION FROM A M
34007 NERGY CONVERTERS OF FUTURE# FUEL CELLS - ELECTROCHEMICAL E
34000 AND OUTSTANDING PROBLEMS# FUEL CELLS - PRESENT POSITION
34031 AND FUTURE PROSPECTS# FUEL CELLS - PRESENT POSITION
<table>
<thead>
<tr>
<th>INDEX</th>
<th>TITLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>34030</td>
<td>ICAL ENGINEERS# FUEL CELLS - PROBLEMS FOR CHEM</td>
</tr>
<tr>
<td>34029</td>
<td>FUTURE OUTLOOK# FUEL CELLS - THEIR STATUS AND</td>
</tr>
<tr>
<td>34039</td>
<td>N THE HYDROGEN ECONOMY# FUEL CELLS AND ELECTROLYZERS I</td>
</tr>
<tr>
<td>34825</td>
<td>- AN ENGINEERING VIEW# FUEL CELLS AND FUEL BATTERIES</td>
</tr>
<tr>
<td>34813</td>
<td>ON STRATOSPHERIC AIRS/ H2-AIR FUEL CELLS AS ELECTRIC SUPPLY</td>
</tr>
<tr>
<td>34507</td>
<td>RATION OF REACTION WATER FROM FUEL CELLS BY DIFFUSION AND CO</td>
</tr>
<tr>
<td>34812</td>
<td>CATIONS# MEGAWATT FUEL CELLS FOR AEROSPACE APPLICATION</td>
</tr>
<tr>
<td>34820</td>
<td>ENERATION# FUEL CELLS FOR CENTRAL POWER GENERATION</td>
</tr>
<tr>
<td>34829</td>
<td>ICAL POWER SUPPLY# FUEL CELLS FOR IMPROVED ELECTRIC SUPPLY</td>
</tr>
<tr>
<td>34808</td>
<td>PRIMARY HYDROGEN-OXYGEN FUEL CELLS IN SPACE#</td>
</tr>
<tr>
<td>34821</td>
<td>FUEL CELLS IN AEROSPACE#</td>
</tr>
<tr>
<td>34822</td>
<td>FUEL CELLS IN ASTRONAUTICS#</td>
</tr>
<tr>
<td>34216</td>
<td>LEMS OF GASES MIXING IN H2/O2 FUEL CELLS IN WHICH GAS CIRCUL</td>
</tr>
<tr>
<td>34810</td>
<td>INAL POWER OF OXYGEN-HYDROGEN FUEL CELLS INTENDED FOR EMERGE</td>
</tr>
<tr>
<td>34250</td>
<td>DEVELOPMENT PROBLEMS# FUEL CELLS PRESENT STATUS AND</td>
</tr>
<tr>
<td>34818</td>
<td>F MAINTENANCE/ HYDROGEN-OXYGEN FUEL CELLS REQUIRING MINIMUM O</td>
</tr>
<tr>
<td>34804</td>
<td>30-WATT METAL HYDRIDE/AIR FUEL CELLS SYSTEM#</td>
</tr>
<tr>
<td>34626</td>
<td>W TEMPERATURE HYDROGEN/OXYGEN FUEL CELLS WITH AN ALKALINE EL</td>
</tr>
<tr>
<td>34628</td>
<td>L HYDROGEN COMBUSTION# FUEL CELLS WITH ELECTROCHEMICAL</td>
</tr>
<tr>
<td>34025</td>
<td>S TRANSFER IN ELECTROCHEMICAL FUEL CELLS WITH ION EXCHANGE M</td>
</tr>
<tr>
<td>34209</td>
<td>NISM OF THE HYDROGEN-CHLORINE FUEL CELLS V DISCHARGE MECHANISM</td>
</tr>
<tr>
<td>34032</td>
<td>FUEL CELLS: A PROGRESS REPORT#</td>
</tr>
<tr>
<td>34104</td>
<td>S# FUEL CELLS, DESIGN & COMPONENT</td>
</tr>
<tr>
<td>34035</td>
<td># FUEL CELLS, TODAY AND TOMORROW</td>
</tr>
<tr>
<td>34237</td>
<td>GEN ELECTROLYTIC REGENERATIVE FUEL CELLS: 1 JL TO AUGUST 196</td>
</tr>
<tr>
<td>34008</td>
<td>OR THE ELECTROCHEMICAL PRODUCTION FUEL CELLS: MODERN PROCESSES F</td>
</tr>
<tr>
<td>34009</td>
<td>TION# FUEL CELLS: THEORY AND APPLICATION</td>
</tr>
<tr>
<td>34814</td>
<td>STEMS# HYDROGEN-OXYGEN FUEL CELLS: VARTA FUEL CELL SYSTEM COMPOSIT</td>
</tr>
<tr>
<td>34801</td>
<td>USE OF HYDROGEN IN FUEL CELLS#</td>
</tr>
<tr>
<td>34845</td>
<td>ULTRA-PURE HYDROGEN FOR FUEL CELLS#</td>
</tr>
<tr>
<td>34615</td>
<td>NEW AIR ELECTRODE FOR FUEL CELLS#</td>
</tr>
<tr>
<td>34629</td>
<td>MATRICES FOR H3PO4 FUEL CELLS#</td>
</tr>
<tr>
<td>34625</td>
<td>E CARBON-METAL ELECTRODES FOR FUEL CELLS# COMPOSIT RANEY</td>
</tr>
<tr>
<td>34616</td>
<td>-NICKEL CATALYSTS IN GALVANIC FUEL CELLS# RANEY</td>
</tr>
<tr>
<td>34618</td>
<td>FUEL CELLS#</td>
</tr>
<tr>
<td>34820</td>
<td>FUEL CELLS#</td>
</tr>
<tr>
<td>34819</td>
<td>HYDROGEN GENERATOR MANPACK FUEL CELLS#</td>
</tr>
<tr>
<td>34001</td>
<td>FUEL CELLS#</td>
</tr>
<tr>
<td>34003</td>
<td>HYDROGEN GENERATION FOR FUEL CELLS#</td>
</tr>
<tr>
<td>34004</td>
<td>ELECTROCHEMICAL FUEL CELLS#</td>
</tr>
<tr>
<td>34006</td>
<td>COMPACT H2 GENERATORS FOR FUEL CELLS#</td>
</tr>
<tr>
<td>34013</td>
<td>HYDROGEN FROM METHANOL FOR FUEL CELLS#</td>
</tr>
<tr>
<td>34002</td>
<td>THE PRESENT AND FUTURE OF FUEL CELLS#</td>
</tr>
<tr>
<td>34009</td>
<td>HYDROGEN PRODUCTION FOR FUEL CELLS#</td>
</tr>
<tr>
<td>34206</td>
<td>BIOCHEMICAL FUEL CELLS#</td>
</tr>
<tr>
<td>34246</td>
<td>FACTORS AFFECTING LIFE OF FUEL CELLS#</td>
</tr>
<tr>
<td>34038</td>
<td>FUEL CELLS#</td>
</tr>
<tr>
<td>34213</td>
<td>METHANOL IN-SITU REFORMING FUEL CELLS#</td>
</tr>
<tr>
<td>34018</td>
<td>HYDROGEN SOURCES FOR FUEL CELLS#</td>
</tr>
<tr>
<td>34221</td>
<td>PRESSURE OPERATION OF FUEL CELLS#</td>
</tr>
<tr>
<td>34107</td>
<td>PURGE DYNAMICS OF FUEL CELLS#</td>
</tr>
<tr>
<td>34206</td>
<td>FUEL CELLS#</td>
</tr>
</tbody>
</table>
TITLE INDEX

SECTION 'T'

34016 NITRATION CHANGES IN OPERATING FUEL CELLS# CONCE
34207 FUELS FOR FUEL CELLS# HYDROGEN
34210 -OXYGEN ION-EXCHANGE MEMBRANE FUEL CELLS# HYDROGEN
34100 ULTRA-PURE HYDROGEN FOR FUEL CELLS#
34229 HYDROGEN GENERATION FOR FUEL CELLS#
34036 ELECTROCHEMICAL PROCESSES IN FUEL CELLS#
34033 FUEL CELLS#
34024 TECHNOLOGY OF FUEL CELLS#
34022 USE OF HYDROGEN IN FUEL CELLS#
22143 EN FROM LIGHT DISTILLATES FOR FUEL CELLS# HYDROG
22110 FROM LIQUID HYDROCARBONS FOR FUEL CELLS# HYDROGEN
22115 HYDROGEN SUPPLY FOR FUEL CELLS#
22134 FROM LIQUID HYDROCARBONS FOR FUEL CELLS# HYDROGEN
34624 ELECTRODES FOR LOW TEMPERATURE FUEL CELLS# CARBON-AIR E
34235 REGENERATIVE H2-02 SECONDARY FUEL CELLS# ELECTROLYTIC
34239 GEN ELECTROLYTIC REGENERATIVE FUEL CELLS# HYDROGEN-OXY
34238 GEN ELECTROLYTIC REGENERATIVE FUEL CELLS# HYDROGEN-OXY
34236 GEN ELECTROLYTIC REGENERATIVE FUEL CELLS# HYDROGEN-OXY
34233 GEN ELECTROLYTIC REGENERATIVE FUEL CELLS# HYDROGEN-OXY
34511 AT BALANCE OF HYDROGEN-OXYGEN FUEL CELLS# WATER AND HE
34230 PLYING HYDROGEN AND OXYGEN TO FUEL CELLS# PROCESS FOR SUP
23007 PLYING HYDROGEN AND OXYGEN TO FUEL CELLS# PROCESS FOR SUP
34204 RE ON PERFORMANCE OF HYDROGEN FUEL CELLS# EFFECT OF PRESSU
22175 S AND USE IN MOLten CARBONATE FUEL CELLS# FROM HYDROCARBON
34003 ELECTRICAL ENERGY-BATTERIES AND FUEL CELLS# AL ENERGY INTO EL
34806 COMBINATION OF THESE GASES BY FUEL CELLS# AND SUBSEQUENT RE
34251 HYDROGEN-OXYGEN RECHARGEABLE FUEL CELLS# DIUM- TEMPERATURE
34631 ELECTRODES FOR HYDROGEN- OXYGEN FUEL CELLS# LIGHT-WEIGHT EL
34610 IES ON ELECTRODE PROCESSES IN FUEL CELLS# F SCIENTIFIC STUD
34200 H PERFORMANCE HYDROGEN-OXYGEN FUEL CELLS# LITY STUDY OF HIG
23029 NERATORS AND MEAN TEMPERATURE FUEL CELLS# GIBLE HYDROGEN GE
34509 FOR INTERMEDIATE TEMPERATURE FUEL CELLS# OSPHATE MEMBRANES
34244 HYDROCARBONS FOR USE IN ACID FUEL CELLS# TIAL OXIDATION OF
34120 IFE AND PERFORMANCE OF MATRIX FUEL CELLS# TING FACTORS ON L
34834 TE HYDROGEN- OXYGEN; ALKALINE FUEL CELLS# TRAPPED ELECTROLY
34611 N MONOXIDE IN LOW-TEMPERATURE FUEL CELLS CONTAINING OXIDE CAT
22189 SUITABLE FOR CONSUMPTION BY A FUEL CELL UNIT# FEED STOCK
10024 NGES# HYDROGEN FUEL ECONOMY: WIDE-RANGING CHA
32021 GINES EFFECT ON EMISSIONS AND FUEL ECONOMY# /L COMBUSTION EN
31008 OF USING METHANE OR HYDROGEN FUEL FOR DIRECT COOLING OF A F
10045 LIQUID HYDROGEN AS A FUEL FOR THE FUTURE#
40000 OGENES LOW-TEMPERATURE ENGINE/ FUEL FOR TOMORROW# LIQUID HYDR
10061 PROSPECTS FOR HYDROGEN AS A FUEL FOR TRANSPORTATION SYSTEM
10032 HYDROGEN--A CLEAN FUEL FOR URBAN AREAS#
30111 METAL HYDRIDES AS A SOURCE OF FUEL FOR VEHICULAR PROPULSION#
10080 OUT# HYDROGEN FUEL FROM WATER BY A NUCLEAR R
22148 ONOXIDE CONTAINING GASES FROM FUEL GASIFICATION COLUMNS# M
33022 ER# EVALUATION OF HYDROGEN FUEL IN A FULL-SCALE AFTERBURN
31007 AIS OF HYDROGEN AND METHANE FUEL IN MACH 2.7 SUPersonic
33039 R# TESTS WITH HYDROGEN FUEL IN A SIMULATED AFTERBURN
22630 SYSTEM EMPLOYING COAL AS FUEL IN A STEAM REFORMER#
10027 HYDROGEN - FUEL OF THE FUTURE#}

10021 IS HYDROGEN THE FUEL OF THE FUTURE?
TITLE INDEX

SECTION 'T'

10034 HYDROGEN: SYNTHETIC FUEL OF THE FUTURE#
10008 HYDROGEN: LIKELY FUEL OF THE FUTURE#
10063 "HYDROGEN SYNTHETIC FUEL OF THE FUTURE"#
20504 YMER# ELECTROLYTIC HYDROGEN FUEL PRODUCTION WITH SOLID POM
30026 NCESS OF THE TRIERGOLIC ROCKET FUEL SYSTEM FLUORINE-LITHIUM H
40402 ROTION FOR LIQUID-HYDROGEN FUEL TANKS IN HIGH-SPEED, LON
10044 OGEN MAY Emerge AS THE MASTER FUEL TO POWER A CLEAN- AIR FUTU
10025 HYDROGEN FUEL USE CALLS FOR NEW SOURCE#
34260 HYDROGEN-OXYGEN REGENERATIVE FUEL-CELL SYSTEMS# /-PRESSURE
34101 H-TEMPERATURE HYDROGEN OXYGEN FUEL-CELL AND ELECTROLYSIS-CEL
34219 REGENERATIVE HYDROGEN-OXYGEN FUEL-CELL BATTERY# /ELECTROLYTIC
34227 AND REFORMABLE FUEL# FUEL-CELL DESIGN BASED ON AIR
34600 OGEN ELECTRODE AND THE OXYGEN FUEL-CELL ELECTRODE IN NICKEL-
22166 ARBONS# FUEL-CELL HYDROGEN FROM HYDROG
22122 RE REFORMING; A GOOD ROUTE TO FUEL-CELL HYDROGEN# /TEMPERATU
34019 ENERGETICS: FUEL-CELL SYSTEMS#
34242 ICLE# FUEL-CELL UNIT IN ELECTRIC VEH
33028 C, WELL- STIRR/ COMBUSTION OF FUEL-LEAN MIXTURES IN ADIABATI
33007 C AND TRANSPORT PROPERTIES OF FUEL-OXYGEN COMBUSTION SYSTEMS
33029 IES OF TURBOJET COMBUSTOR AND FUEL-SYSTEM OPERATION WITH HYD
10077 UED QUARTERLY HYDROGEN FUTURE FUEL. (A LITERATURE SURVEY ISS
10013 HYDROGEN: TOMORROW'S FUEL#
10060 CLEAN, BUT IS IT A PRACTICAL FUEL?# HYDROGEN: IT'S
32010 ATURAL GAS, CLEAN AUTOMOTIVE FUEL: ENGINE EMISSIONS USING N
32008 LIQUID HYDROGEN AS A MOTOR FUEL#
10057 HYDROGEN AS A FUEL#
10041 HYDROGEN: THE WONDERFUL FUEL# WHEN HYDRO
10007 GEN BECOMES THE WORLD'S CHIEF FUEL# METAL HYD
43000 RIDES AS A SOURCE OF HYDROGEN FUEL#
31005 GEN AS A SUPersonic TRANSPORT FUEL# LIQUID HYDRO
22208 IQUID HYDROCARBONS TO GASEOUS FUEL#
34227 N BASED ON AIR AND REFORMABLE FUEL#
22009 REDISCOVERED SOURCE OF CLEAN FUEL#
32009 EN'S POTENTIAL AS A VEHICULAR FUEL# GASIFICATION; A
34637 SION ELECTRODES WITH HYDROGEN FUEL# /ION OF POROUS GAS-DIFFU
10006 ON OF HYDROGEN AS A UNIVERSAL FUEL# /DUCTION AND DISTRIBUTI
34619 SION ELECTRODES WITH HYDROGEN FUEL# /ION OF POROUS GAS- DIFFU
40601 UID HYDROGEN - THE RECYCLABLE FUEL# /PORT AND STORAGE OF LIQ
31010 PERFORMANCE WITH HYDROGEN AS FUEL# /TIES ON TURBOJET-ENGINE
10001 CEPT# "THE ECOLOGY FUEL" THE HYDROGEN ECONOMY CON
10009 OGEN: CANDIDATE FOR UNIVERSAL FUEL## "HYDR
10028 TOP BILLING AS FUTURE "CLEAN FUEL"# HYDROG GETS
31015 SYMPOSIUM ON LIQUID HYDROGEN-FUELED AIRCRAFT# WORKING
32001 1# THE HYDROGEN - AIR FUELED AUTOMOBILE ENGINE (PART
32000 THE HYDROGEN-AIR FUELED AUTOMOBILE#
31002 HYDROGEN FUELED COMMERCIAL AIRCRAFT#
40404 UCTURAL CONCEPTS FOR HYDROGEN-FUELED HYPERSONIC AIRPLANES#/ /
32022 INES# HISTORY OF HYDROGEN-FUELED INTERNAL COMBUSTION ENG
32014 S OF AN AIR-BREATHTINGHYDROGEN-FUELED INTERNAL COMBUSTION ENG
32007 IN# HYDROGEN-FUELED INTERNAL COMBUSTION ENG
31012 IALS AND PROBLEMS OF HYDROGEN FUELED SUPERSONIC AND HYPERSON
31014 THE CASE FOR A HYDROGEN-FUELED SUPERSONIC TRANSPORT#

[Signature]
THE CASE FOR HYDROGEN FUELED TRANSPORT AIRCRAFT

USING A HYDROGEN OR A METHANE FUELED TURBORAMJET POWERED FIR

EVELOPMENT OF HYDROGEN-OXYGEN/FUELED 3-KILOWATT INTERNAL- CO

GRANTED $60,000 FOR HYDROGEN-FUELED-CAR RESEARCH

HE CRUISE RANGE OF A HYDROGEN-FUELED, AIR-BREATHING HYPERSON

PROSPECTS FOR HYDROGEN-FUELED VEHICLES

EVELOPMENT OF HYDROGEN-OXYGEN-FUELED 3-KILOWATT INTERNAL- CO

EXPRESS

CUTED FOR FUEL CELLS

HYDROGEN AND OTHER SYNTHETIC FUELS

THE STORAGE AN

PERM-CATALYTIC HYDROGE

EXPER

FULL-Scale AFTERBURNER

FULLY INTEGRATED HYDROGEN DIFF

FUNDAMENTAL ASPECTS OF SUPERSO

FUNDAMENTAL PROBLEMS ON THE CO

FUNDAMENTALS OF THERMOCHEMICAL

HIGH-TEMP

FAILURE

THE ENERGY SOURCE

FUTURE "CLEAN FUEL"

FUTURE FUEL, (A LITERATURE SUR

THE PRESENT AND FUTURE IN THE EMERGING ENERGY-

THE PERIOD AND FUTURE OUTLOOK

ELDO B LAUNCHING SYSTE/ ELDO FUTURE PROGRAM STUDY 3.2 ON AN

PRELIMINARY P

NEW FUTURE PROSPECTS FOR APPLICATI

FUTURE PROSPECTS

PERIODIC BATTERIES AND FUTURE PROSPECTS

HYDROGEN: ITS FUTURE ROLE IN THE NATION'S EN

HYDROGEN - FUEL OF THE FUTURE?

HYDROGEN: SYNTHETIC FUEL OF THE FUTURE

HYDROGEN: LIKELY FUEL OF THE FUTURE

HYDROGEN - KEY FACTOR IN REFINING'S FUTURE

HYDROGEN: SYNTHETIC FUEL OF THE FUTURE

FUEL CELLS - ELECTRO
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10033</td>
<td>N AND SYNTHETIC FUELS FOR THE FUTURE</td>
</tr>
<tr>
<td>34603</td>
<td>TEMPERATURE HYDROGEN CELLS OF C G E EXISTING BATTERIES AND FUT</td>
</tr>
<tr>
<td>22195</td>
<td>AND CHARACTERISTICS OF H AND G TYPE HYDROGEN PRODUCTION EQUI</td>
</tr>
<tr>
<td>40409</td>
<td>INITIAL WARMUP OF 500,000-GALLON LIQUID HYDROGEN DEWAR</td>
</tr>
<tr>
<td>34809</td>
<td>STORAGE AND APPLICATIONS OF GALVANIC CELLS</td>
</tr>
<tr>
<td>34616</td>
<td>RANEY-NICKEL CATALYSTS IN GALVANIC FUEL CELLS</td>
</tr>
<tr>
<td>22000</td>
<td>HYDROCARBONS SYNTHESIS GAS AND HYDROGEN FROM LIQUID H</td>
</tr>
<tr>
<td>22163</td>
<td>S PRODUCTION OF OXD SYNTHESIS GAS AND HYDROGEN SIMULTANEOU</td>
</tr>
<tr>
<td>22196</td>
<td>STEAM CONVERSION OF LIQUEFIED GAS AND ITS MIXTURES WITH HYDR</td>
</tr>
<tr>
<td>52018</td>
<td>TITANIUM ALLOY WITH HYDROGEN GAS AT LOW TEMPERATURES OF A</td>
</tr>
<tr>
<td>22165</td>
<td>HYDROGEN OR AMMONIA SYNTHESIS GAS AT MEDIUM PRESSURE CING</td>
</tr>
<tr>
<td>22044</td>
<td>QUID HYDROCARB HYDROGEN-RICH GAS BY PARTIAL OXIDATION OF LI</td>
</tr>
<tr>
<td>22527</td>
<td>CHNICAL HYDROGEN FROM NATURAL GAS BY PLASMA JET SYNTHESIS</td>
</tr>
<tr>
<td>34216</td>
<td>IN H2/02 FUEL CELLS IN WHICH GAS CIRCULATES THROUGH ELECTRO</td>
</tr>
<tr>
<td>43002</td>
<td>MEDIATE PRE A NEW LABORATORY GAS CIRCULATION PUMP FOR INTER</td>
</tr>
<tr>
<td>30004</td>
<td>GAS CORE NUCLEAR REACTOR</td>
</tr>
<tr>
<td>22101</td>
<td>OCR CONTRACT TO MAKE HYDROGEN GAS FROM COAL CHAR WASTE ON</td>
</tr>
<tr>
<td>22123</td>
<td>SYNTHETIC GAS FROM HEAVY FUELS</td>
</tr>
<tr>
<td>22179</td>
<td>CT CATALYST FOR HYDROGEN-RICH GAS FROM HYDROCARBONS CONTA</td>
</tr>
<tr>
<td>23400</td>
<td>NEW DEVELOPMENTS IN HYDROGEN GAS GENERATION MOLECULAR SIEVE</td>
</tr>
<tr>
<td>30063</td>
<td>INE D DEVELOPMENT OF LD2/0H2 GAS GENERATORS FOR THE M-1 ENG</td>
</tr>
<tr>
<td>22532</td>
<td>AND CARBON BLACK FROM NATURAL GAS IN A BALL MILL HYDROGEN</td>
</tr>
<tr>
<td>10003</td>
<td>LEAR AGE GAS INDUSTRY'S ROLE IN THE NUC</td>
</tr>
<tr>
<td>33000</td>
<td>SELF-IGNITION OF A TURBULENT GAS JET IN A STREAM OF OXIDIZI</td>
</tr>
<tr>
<td>22535</td>
<td>SYNTHESIS GAS MANUFACTURE</td>
</tr>
<tr>
<td>32010</td>
<td>GEN-ENRICHED NATURAL GAS, AND GAS MANUFACTURED FROM COAL (SY</td>
</tr>
<tr>
<td>22160</td>
<td>N AND CARBON MONOXIDE GAS MIXTURE CONTAINING HYDROGE</td>
</tr>
<tr>
<td>22154</td>
<td>NTROL IN THE MANUFACTURE OF A GAS MIXTURE CONTAINING HYDRO</td>
</tr>
<tr>
<td>22171</td>
<td>HYDROGEN-RICH GAS MIXTURE</td>
</tr>
<tr>
<td>22183</td>
<td>ETHANOL SYNTHESIS-GAS MIXTURES FOR AMMONIA AND M</td>
</tr>
<tr>
<td>23403</td>
<td>Y OF HYDROGEN FROM INDUSTRIAL GAS MIXTURES RECOVER</td>
</tr>
<tr>
<td>23419</td>
<td>DF AIR OR HYDROGEN-CONTAINING GAS MIXTURES FRACTIONATION</td>
</tr>
<tr>
<td>22137</td>
<td>DROGEN OR HYDROGEN-CONTAINING GAS MIXTURES SEPARATION OF HY</td>
</tr>
<tr>
<td>22156</td>
<td>CING HYDROGEN-CARBON MONOXIDE GAS MIXTURES RATUS FOR PRODU</td>
</tr>
<tr>
<td>40112</td>
<td>CTION OF HYDROGEN-HYDROCARBON GAS MIXTURES THOMSON LIQUEF</td>
</tr>
<tr>
<td>22132</td>
<td>FOR PRODUCTION OF HYDROGEN OR HYDROGEN NG IN TUBES</td>
</tr>
<tr>
<td>42001</td>
<td>N THE M-1 FACILITY HYDROGEN GAS PRESSURE VESSEL PROBLEMS I</td>
</tr>
<tr>
<td>22191</td>
<td>USE OF HYDROGEN IN TOWN GAS PRODUCTION</td>
</tr>
<tr>
<td>22615</td>
<td>SYNTHESIS GAS PRODUCTION</td>
</tr>
<tr>
<td>31010</td>
<td>INE PER EFFECT OF COMBUSTION GAS PROPERTIES ON TURBOJET-ENG</td>
</tr>
<tr>
<td>30045</td>
<td>RFORMANCE OF LOW-THRUST COLD-GAS REACTION JETS IN A VACUUM</td>
</tr>
<tr>
<td>22624</td>
<td>AIR AND GAS SEPARATION PLANTS</td>
</tr>
<tr>
<td>22605</td>
<td>GEN BY REGENERATIVE COKE-OVEN GAS SEPARATION CHEAP HYDRO</td>
</tr>
<tr>
<td>22176</td>
<td>ELL SYSTEM WATER GAS SHIFT CONVERTER AND FUEL C</td>
</tr>
<tr>
<td>33025</td>
<td>RIMENTAL INVESTIGATION OF HOT-GAS SIDE HEAT-TRANSFER RATES F</td>
</tr>
<tr>
<td>22818</td>
<td>A CARBON MONOXIDE CONTAINING GAS STREAM AND HEAT RECOVERY</td>
</tr>
<tr>
<td>22177</td>
<td>HYDROGEN MANUFACTURE USING GAS TURBINE-DRIVEN CENTRIFUGAL</td>
</tr>
<tr>
<td>22539</td>
<td>ROGEN GENERATION FROM NATURAL GAS WITH HEAT FROM NUCLEAR REA</td>
</tr>
<tr>
<td>34619</td>
<td>F MODE OF OPERATION OF POROUS GAS-DIFFUSION ELECTRODES WITH</td>
</tr>
<tr>
<td>34215</td>
<td>RFORMANCE OF REFORMED NATURAL GAS-ACID FUEL CELL SYSTEM PE</td>
</tr>
<tr>
<td>34637</td>
<td>E MODE OF OPERATION OF POROUS GAS-DIFFUSION ELECTRODES WITH</td>
</tr>
<tr>
<td>52026</td>
<td>THROUGH ALLHA IRON, 4130 STE GAS-PHASE HYDROGEN PERMEATION</td>
</tr>
<tr>
<td>33030</td>
<td>UMFERENTIAL VARIATIONS OF HOT-GAS-SIDE HEAT TRANSFER RATES</td>
</tr>
</tbody>
</table>

2464
TITLE INDEX

SECTION 'T'

32010 AS, HYDROGEN-ENRICHED NATURAL GAS, AND GAS MANUFACTURED FROM
22152 SYNTHESIS GAS, CITY GAS, AND REDUCING GAS
22152 S# SYNTHESIS GAS, CITY GAS, AND REDUCING GAS
32010 ENGINE EMISSIONS USING NATURAL GAS, HYDROGEN-ENRICHED NATURAL
22193 SYNTHESIS GAS
22192 REDUCING GAS
22152 S GAS, CITY GAS, AND REDUCING GAS# SYNTHESI
22130 ION OF HYDROGEN AND SYNTHESIS GAS# PRODUCT
22628 PRODUCTION OF REDUCING GAS#
22645 AMMONIA SYNTHESIS GAS#
22140 EN FROM PETROLEUM AND NATURAL GAS# MANUFACTURE OF HYDRO
23423 DROGEN FROM AMMONIA SYNTHESIS GAS# CRYOGENIC RECOVERY OF HY
52024 EEL IN HIGH-PRESSURE HYDROGEN GAS# EMBRITTLEMENT OF TRIP ST
22199 OF HYDROCARBONS FOR SYNTHESIS GAS# /R THE PARTIAL OXIDATION
23434 YDROGEN FRACTION OF PYROLYSIS GAS# /YDROGEN FROM A METHANE-H
23435 S MIX/ PROCESS FOR SEPARATING GASEOUS COMPONENTS FROM GASEOU
33064 S AND TRANSVERSE STABILITY OF GASEOUS DETONATIONS# /ON LIMIT
22661 CS OF PRODUCING HYDROGEN FROM GASEOUS FEEDSTOCK# ECONOMI
22208 ING OF LIQUID HYDROCARBONS TO GASEOUS FUEL# REFORM
33033 DY-STATE ROCKET COMBUSTION OF GASEOUS HYDROGEN AND# STEA
33023 OF A 28-INCH RAMJET UTILIZING GASEOUS HYDROGEN AT A MACH NUM
33038 RES IN A 35 DE/ COMBUSTION OF GASEOUS HYDROGEN AT LOW PRESSU
30029 CTORS FOR THE LIQUID FLUORINE-GASEOUS HYDROGEN COMBINATION# /
30048 MANE OF ROCKET ENGINES USING GASEOUS HYDROGEN IN THE IDEAL
52056 INFLUENCE OF GASEOUS HYDROGEN ON METALS#
50015 . ASSEMBLING, AND OPERATING A GASEOUS HYDROGEN PRESSURE SYST
42004 NSUMER SITES# STANDARD FOR GASEOUS HYDROGEN SYSTEMS AT CO
30037 ARAMETERS ON THE STABILITY OF GASEOUS HYDROGEN-LIQUID OXYGEN
30071 ET CHAMBER BURNING LIQUID AND GASEOUS HYDROGEN# / SMALL ROCK
52038 NGINE ALLOYS IN HIGH PRESSURE GASEOUS HYDROGEN# / SSE MAIN E
33036 MBER BURNINGLIQUID OXYGEN AND GASEOUS HYDROGEN# / ROCKET CHA
33024 E OF A TUBULAR COMBUSTOR WITH GASEOUS HYDROGEN# / PERFORMANC
49036 THE TEMPERATURE OF LIQUID AND GASEOUS HYDROGEN# / MEASURING
30035 AL INJECTORS IN LIQUID OXYGEN-GASEOUS HYDROGEN# CE OF COAXI
23606 PANYING REDUCTION OF WATER TO GASEOUS HYDROGEN# / THE ACCOM
22101 TUS FOR PRODUCING AND COOLING GASEOUS MIXTURES OF HYDROGEN A
23435 TING GASEOUS COMPONENTS FROM GASEOUS MIXTURES# /S FOR SEPAR
30005 OGY# INVESTIGATION OF GASEOUS NUCLEAR ROCKET TECHNOL
22008 ROLYSIS OF C/ DISTRIBUTION OF GASEOUS PRODUCTS FROM LASER PY
50008 HAZING SAFETY IN COMPRESSED GASES AND CRYOGENIC LIQUIDS# /
50009 AFETY IN THE USE OF LIQUIFIED GASES AT VERY LOW TEMPERATURES
34806 EQUENT RECOMBINATION OF THESE GASES BY FUEL CELLS# /AND SUBS
22642 OF HYDROGEN FROM HYDROCARBON GASES BY STEAM- OXYGEN CONVERS
22148 ND CARBON MONOXIDE CONTAINING GASES FROM FUEL GASIFICATION C
22650 UCTING OF HYDROGEN-CONTAINING GASES FROM HYDROCARBONS# PROD
22012 ORGANIC MATERIALS# GASES FROM LASER PYROLYSIS OF
23436 TUS FOR PURIFYING LOW-BOILING GASES IN GASMIXTURES# / APPARA
34216 LS IN WHICH GAS / PROBLEMS OF GASES MIXING IN H2/O2 FUEL CEL
22190 REFORMING OF HYDROCARBONS TO GASES RICH IN HYDROGEN# /STEAM
52032 DIFFUSION OF GASES THROUGH METALS#
51003 TURES OF FLAMMABLE VAPORS AND GASES WITH AIR, XI, THEORY OF
22174 HYDROGEN-RICH SYNTHESIS GASES#
22164 HYDROGEN-RICH GASES#
TITLE INDEX

SECTION 'T'

34201 PURIFICATION OF FUEL CELL GASES
23439 RATION OF HYDROGEN FROM OTHER GASES
22637 PRODUCTION OF HYDROGEN-RICH GASES
23433 RECOVERY FROM REFINERY WASTE GASES
20003 ARATUS FOR PRODUCTION OF PURE GASES
22644 YDROGEN BY REFORMING REFINERY GASES
22153 URIFICATION AND SEPARATION OF GASES
22203 TO OBTAIN HYDROGEN-CONTAINING GASES
23440 N OF HYDROGEN FROM INDUSTRIAL GASES
23437 TIES FROM HYDROGEN-CONTAINING GASES
22148 DE CONTAINING GASES FROM FUEL GASIFICATION COLUMNS
22213 OF THE INCOMPLETE COMBUSTION (GASIFICATION) OF LIQUID FUELS
22009 DURCE OF CLEAN FUEL
23436 URIFYING LOW-BOILING GASES IN GAS MIXTURES
22168 URE
20008 ELECTROLYSIS CELL FOR GENERATING HYDROGEN AND OXYGEN
23014 GENERATING HYDROGEN
34252 ELECTROLYTE (HYDROGEN-HALOGEN)
23200 HYDROGEN BACTERIA
22004 EHEATING ZONE DURING HYDROGEN GENERATION BY COKING
23017 MINUM/WATER REACTIO
20510 ELECTROLYTE WATER ELE
22178 N OF N-HEXANE OVER
20512 SYSTEM STUDY OF HYDROGEN GENERATION BY THERMAL ENERGY
23003 HYDROGEN GENERATION FOR FUEL CELLS
34229 HYDROGEN GENERATION FOR FUEL CELLS
22211 EL/ THERMO-CATALYTIC HYDROGEN GENERATION FROM HYDROCARBON FUEL
22639 TH HEAT FROM NUCLEA/ HYDROGEN GENERATION FROM NATURAL GAS WI
23400 DEVELOPMENTS IN HYDROGEN GAS GENERATION MOLECULAR SIEVES
23059 TEMPERATURES BY PRECOMBUSTIO
22175 DROCARBONS AND USE IN MOLTEN/ GENERATION OF HYDROGEN FROM HY
22642 DROCARBON GASES BY STEAM- OX/ GENERATION OF HYDROGEN FROM HY
34020 FUEL CELLS FOR CENTRAL POWER GENERATION
21002 THERMOCHEMICAL HYDROGEN GENERATION
20019 S FOR SPACECRAFT CABIN OXYGEN GENERATION/ ELECTROLYSIS SYSTEM
10061 TEMS AND FOR ELECTRICAL POWER GENERATION/ TRANSPORTATION SYS
22149 HYDROGEN GENERATOR ASSEMBLIES
22161 SUBMARINES
34619 HYDROGEN GENERATOR FOR FUEL CELL USE IN
23021 MODIFICATION OF A HYDROGEN GENERATOR ML-539/TM TO PRODUCE
23010 PORTABLE HYDROGEN GENERATOR
23008 PORTABLE HYDROGEN GENERATOR
23006 SELF-REGULATING HYDROGEN GENERATOR
23024 DISPOSABLE HYDROGEN GENERATOR
34828 ELL CONNECTED WITH A HYDROGEN GENERATOR
20508 OXYGENHYDROGEN GENERATOR

H404
34833 Duplicated FUEL CELL AND HYDROGEN GENERATOR# ELECTRICALLY
20012 AN ELECTROLYSIS-TYPE HYDROGEN GENERATOR# CONTROL CIRCUIT FOR
22136 FUEL MODEL MINIATURE HYDROGEN GENERATOR# EXPLORATORY DEVELOP
23029 FUEL CELLS/ MOBILE HYDROGEN GENERATORS AND MEAN TEMPERATURE
30010 ROGEN-OXYGEN FIRED THERMIonic GENERATORS AND THERMIonic DIODE
23026 COMPACT H2 GENERATORS FOR FUEL CELLS#
30063 DEVELOPMENT OF LO2/LH2 GAS GENERATORS FOR THE M-1 ENGINE
23205 BIOCHEMICAL HYDROGEN GENERATOR# AN ELECTROLYSIS-TYPE HYDROGEN
22116 MINIATURE HYDROGEN GENERATOR# CIRCUIT FOR
23023 COMPACT HIGH PURITY HYDROGEN GENERATOR# MONITORING
23027 MINIATURE HYDROGEN GENERATOR# MODEL MP
22145 COMPACT HIGH PURITY HYDROGEN GENERATOR# NATURE HYDROGEN
23205 BIOCHEMICAL HYDROGEN GENERATOR# EXPERIMENTAL THERMIONIC GENERATORS AND THERMIonic DIODE
23027 FREE HYDROGEN IN GENERESIS OF PETROLEUM#
23201 VON ELEK/ BIODEGENERATION IN GESCHLOSSENEN SYSTEM MIT HILFE
22010 TO MAKE HYDROGEN GAS FROM IGT GETS $18-MILLION OCR CONTRACT
10028 ELECTRIC# HYDROGEN GETS TOP BILLING AS FUTURE "CL
33018 INVESTIGATION OF GH2-GO2 COMBUSTION#
34848 FUEL CELL IS GOING COMMERCIAL#
22122 LOW-TEMPERATURE REFORMING; A GOOD ROUTE TO FUEL-CELL HYDRO
33018 INVESTIGATION OF GH2-GO2 COMBUSTION# GENERATOR# ELECTRICALLY
40602 SYSTEM FOR THE SATUR/ A 16,000-GPM LIQUID HYDROGEN TRANSFER S
32025 ARMENT OF TRANSPORTATION HAS GRANTED $60,000 FOR HYDROGEN-F
39003 W/ COMPARISON OF SMALL WATER-GRAPHITE NUCLEAR ROCKET STAGES
40421 OF LIQUID HYDROGEN IN A LOW-REFERENCE ENVIRONMENT# STORAGE
40413 SP/ EFFECT OF SIZE ON NORMAL-REFERENCE SELF-PRESSURIZATION OF
22210 BE PIPED TO CONSUMERS THROUGH GRID SAY BIPM SPECKSMAN# AND
23606 T 2537 A FOR FERROUS TO FER/ GROSS AND NET QUANTUM YIELDS A
36009 EXPERIMENTAL OVERALL AND STAGE GROUP PERFORMANCE DETERMINED I
52046 LENER/ THE ROLE OF ADSORBED CN GROUPS IN THE HYDROGEN EMBRITT
41015 PHASE# SOVIET AND U.S.- GROUPS SEEK HYDROGEN'S METALLI
52038 YS IN HIGH-REFERENCES ENHANCED FLAW GROWTH IN SSE MAIN ENGINE ALLO
50008 OT CURRICULUM AND INSTRUCTORS GUIDE EMPHASIZING SAFETY IN CG
22195 DESIGN AND CHARACTERISTICS OF H AND G TYPE HYDROGEN PRODUCTIONS
34252 MOLTEN ELECTROLYTE (HYDROGEN-HALOGEN) FUEL CELL# POWER IN A
41002 AL PROPERTY DATA FOR HYDROGEN/ HANDBOOK OF PHYSICAL AND THERM
50006 FOR SAFETY HANDLING HAZARDOUS MATERIALS#
50010 STORAGE AND HANDLING OF CRYOGENS#
50022 TV# STORAGE AND HANDLING OF HYDROGEN WITH SAFE
50055 SAFETY STANDARD FOR COMMERCIAL HANDLING OF LIQUEFIED HYDROGEN
51011 CHNIQUINOS# HYDROGEN HANDLING SUIT PROTECTS NASA TE
49616 OF LIQUID HY/ EXPERIENCE IN HANDLING/ TRANSPORT AND STORAG
32025 DEPARTMENT OF TRANSPORTATION HAS GRANTED $60,000 FOR HYDRO
50006 HANDLING HAZARDOUS MATERIALS#
51001 A SPACE VEHICLE# HAZARDS DUE TO HYDROGEN ABOARD
49508 ERD-TANK NET POSITIVE SUCTION HEAD OPERATION OF THE J-2 HYDR
33058 DW/ BY MEANS OF HYDROGEN COMB# HEAT ADDITION IN SUPersonic FL
34511 N FUEL CELLS# WATER AND HEAT BALANCE OF HYDROGEN-OXYGE
40104 GEN LIQUEFIERS WITH EFFICIENT HEAT EXCHANGERS HYDRO
42099 IGH AND CURVED TUBES AT HIGH HEAT FLUXES# /BULLENTLY IN STRA
22639 ERATION FROM NATURAL GAS WITH HEAT FROM NUCLEAR REACTOR# INS
21010 FOR THE EVALUATION OF NUCLEAR HEAT PROCESSES FOR WATER DECOM
33004 ENENTS FOR CONSTANT/ SPECIFIC HEAT RATIO AND ISENTROPIC EXP
22181 IDE CONTAINING GAS STREAM AND HEAT RECOVERY# A CARBON MONOX
10059 CONSERVING ENERGY WITH HEAT STORAGE WELLS#
TITLE INDEX

SECTION 'T'

22201 DROGEN AT LOW TEMPERATURE AND HIGH PRESSURE# /OCARBONS TO HY
22213 IFICATION) OF LIQUID FuELS AT HIGH PRESSURE# /COMBUSTION (GAS
22204 ION OF LIQUID HYDROCARBONS AT HIGH PRESSURES# /ARTIAL OXIDAT
22105 OCARBON-CONTAINING CHARGED M# /HIGH PURITY HYDROGEN FROM HYDR
23023 S# COMPACT HIGH PURITY HYDROGEN GENERATOR
22349 THE EMBRITTLEMENT OF STEEL AT HIGH RESISTANCE BY HYDROGEN UN
33059 Y PRECOMBUSTION GENERATION OF HIGH STAGNATION TEMPERATURES B
52C16 STRESS CORROSION CRACKING IN HIGH STRENGTH STEELS# /ENT AND
52008 HYDROGEN STRESS CRACKING OF HIGH STRENGTH STEELS#
34644 STUDIES ON ANODIC REACTION OF HIGH TEMPERATURE FUEL CELL#
52005 TION OF HYDROGEN IN METALS AT HIGH TEMPERATURES AND LOW PRES
34209 HYDROGEN-CHLORINE FUEL TANKS IN HIGH- SPEED. LONG-RANGE AIRCRA
40402 LIQUID-HYDROGEN FUEL TANKS IN HIGH- SPEED, LONG-RANGE AIRCRA
51013 TIES OF THE HYDROGEN-OXYGEN / HIGH-ALTITUDE EXPLOSION PROPER
22121 # HYDROGEN FROM HIGH-BOILING HYDROCARBON FuELS
30041 ARACTERISTICS OF CONTROLLABLE HIGH-ENERGY ROCKET PROPELSION
34257 LOYING CONDUCTING- POR/ A NEW HIGH-PERFORMANCE FUEL CELL EMP
34631 ELECTRODES FOR HYDROGEN# OXY/ HIGH-PERFORMANCE LIGHT-WEIGHT
34260 REGENERATIVE FUEL- / ECONOMIC HIGH-PRESSURE HYDROGEN-OXYGEN
14014 OF THEORY AND EXPERIMENT FOR HIGH-PRESSURE HYDROGEN# ATION
52024 MBRITTLEMENT OF TRIP STEEL IN HIGH-PRESSURE HYDROGEN GAS# E
34251 OPERATING CHARACTERISTICS OF HIGH-PRESSURE MEDIUM- TEMPERAT
22170 ROCARBONS# HIGH-PRESSURE REFORMING OF HYD
34101 E HYDROGEN/ A NEW APPROACH TO HIGH-PRESSURE, HIGH-TEMPERATUR
22694 NE WITH SPECIAL# PRODUCTION OF HIGH-PURITY HYDROGEN FROM BUTA
30051 ACOUSTIC SCALE-MODEL TESTS OF HIGH-SPEED FLOWS#
52007 TINGS ON THE EMBRITTLEMENT OF HIGH-STRENGTH STEELS BY HYDROG
50002 SAFETY REQUIREMENTS FOR HIGH-TEMPERATURE DESIGN#
22640 EFORMING FURNACE# HIGH-TEMPERATURE HYDROCARBON R
34101 EW APPROACH TO HIGH-PRESSURE. HIGH-PRESSURE HYDROGEN OXYG
23422 PALLADIUM DIFFUSION YIELDS HIGH-VOLUME HYDROGEN#
32006 20*) IN AUTOMOTIVE VE/ ON THE HIGHER ENERGY FORM OF WATER (H
43001 D NICBIUM# THE HIGHER HYDRIDES OF VANADIUM AN
23429 M ADSORPTION PROCESS PRODUCES HIGHER-PURITY HYDROGEN# NE
34648 S/ ELECTROCHEMICAL STUDIES ON HIGHLY POROUS CARBON ELECTRODE
25201 N IM GESCHLOSSENNEN SYSTEM MIT HILFE VON ELEKTROLYSEGAS UND B
32022 EUAL COMBUSTION ENGINES# HISTORY OF HYDROGEN-FUELED INT
22612 ETHANE REFORMER FURNACE/ CASE HISTORY: FAILURES IN A STEAM-M
22195 ROGEN PRODUCTION EQUIPMENT BY HITACHI SHIPBUILDING COMPANY# /
30049 NE DEVELOPMENT OF THE S E P R HM4 ENGINE: A 40 KN THRUST LIQ
30047 ROG/ THE SEPR ROCKET ENGINE - HM4 WITH LIQUID OXYGEN AND HYD
22627 PRODUCTION OF ACETYLENE. ITS HOMOLOGS, AND TECHNICAL HYDROG
34254 GEN PRIMARY EXTRATERRESTRIAL (HOPE) FUEL CELL PROGRAM# /-OXY
34028 GEN PRIMARY EXTRATERRESTRIAL (HOPE) FUEL CELL PROGRAM PHASE
34255 GEN PRIMARY EXTRATERRESTRIAL (HOPE) FUEL CELL PROGRAM# /-OXY
23600 S BY PHOTOLYSIS/ FORMATION OF HOT HYDROGEN OR DEUTERIUM ATOM
33025 EXPERIMENTAL INVESTIGATION OF HOT-GAS SIDE HEAT-TRANSFER RAT
33030 CIRCUMFERENTIAL VARIATIONS OF HOT-GAS-SIDE HEAT- TRANSFER RA
52054 TITANIUM/ ROLE OF HYDROGEN IN HOT-SALT STRESS-CORROSION OF A
34232 EL CELL# 20 WATT-HOUR PER POUND REGENERATIVE Fu
34643 BASED HYDROGEN ELECTRODE AND HOW IT WORKS# /ELETAL CATALYST
22007 E RATIO AFFECT PARTIAL OXIDA/ HOW PRESSURE AND OXYGEN/METHAN
42000 OR HYDROGEN SERVICE# HOW TO DESIGN PIPING SYSTEMS F
TITLE INDEX

34500 UATION OF FUEL CELL WATER FOR HUMAN CONSUMPTION EVAL
34508 OF A FLUIDIC OSCILLATOR AS A HUMIDITY SENSOR FOR A HYDROGEN
40506 QUID HYDROGEN TURBOPUMP HYDRAULIC DESIGN OF THE M-1 LI
43008 METAL HYDRIDE ENERGY STORAGE SYSTEMS
30026 FUEL SYSTEM FLUORINE-LITHIUM HYDRIDE-HYDROGEN OLIC ROCKET
34804 30-WATT METAL HYDRIDE/AIR FUEL CELLS SYSTEM
43010 TIES, AND APPL/ IRON TITANIUM HYDRIDE: ITS FORMATION, PROPER
43011 OR VENICULAR PROPULSION/ METAL HYDRIDES AS A SOURCE OF FUEL F
43000 EN FUEL METAL HYDRIDES AS A SOURCE OF HYDROG
43007 TIES OF VANADIUM AND NIOBI METAL HYDRIDES FOR ENERGY STORAGE #
43001 UM# THE HIGHER HYDRIDES OF VANADIUM AND NIOBI PURE AN
43005 RTIES OF VANADIUM AND NIOBIUM HYDRIDES TIENTS ON THE PROPE
34027 STEMS HYDROCARBON - AIR FUEL CELL SY
34832 EM# 500 WATT HYDROCARBON AIR FUEL CELL SYST
34011 OMPUTED FOR THE CBMUSTION OF HYDROCARBON AND HYDROGEN FUELS
22629 STEAM REFORMING OF HYDROCARBON FEEDSTOCKS #
22121 HYDROGEN FROM HIGH-BOILING HYDROCARBON FUELS #
22116 EXPERIENCE WITH LIQUID HYDROCARBON FUELS #
22211 YTIC HYDROGEN GENERATION FROM HYDROCARBON FUELS # ERMO-CATAL
40112 MSON LIQUEFACTION OF HYDROGEN-HYDROCARBON GAS MIXTURES /THO
22644 GENERATION OF HYDROGEN FROM HYDROCARBON GASES BY STEAM- OX
22194 TLESS CATALYTIC COMBUSTION OF HYDROCARBON OILS /COMPLETE FLAM
34248 L CELL SYSTEM 5 KVA HYDROCARBON REFORMER - AIR FUE
22199 HYDROGEN FROM HYDROCARBON REFORMING #
22182 OF A METHANATION CATALYST IN HYDROCARBON REFORMING # SECT
22640 HIGH-TEMPERATURE HYDROCARBON REFORMING FURNACE #
22132 N TUBES, FOR PRODUCTION OF S/ HYDROCARBON STEAM REFORMING, I
34247 500-WATT INDIRECT HYDROCARBON SYSTEM #
34241 TRIC POWER PLANT DESIGN 15-KW HYDROCARBON-AIR FUEL CELL ELEC
34817 EM FOR MILITARY APPLICATION # HYDROCARBON-AIR FUEL CELL SYST
34839 A HYDROCARBON-AIR FUEL CELL #
34830 R SOURCE 5-KW HYDROCARBON-AIR FUEL CELL POWER #
34831 R PLANT 5 KW HYDROCARBON-AIR FUEL CELL POWER #
22195 M/ HIGH PURITY HYDROGEN FROM HYDROCARBON-CONTAINING CHARGED
33012 NETICS OF HYDROGEN-OXYGEN AND HYDROCARBON-OXYGEN REACTIONS #
22175 GENERATION OF HYDROGEN FROM HYDROCARBONS AND USE IN MOLTEN
22119 NTION OF HYDROGEN FROM LIQUID HYDROCARBONS AT ELEVATED PRESS
22204 Y PARTIAL OXIDATION OF LIQUID HYDROCARBONS AT HIGH PRESSURES
22134 HYDROGEN FROM LIQUID HYDROCARBONS FOR FUEL CELLS #
22110 HYDROGEN FROM LIQUID HYDROCARBONS FOR FUEL CELLS #
22199 FOR THE PARTIAL OXIDATION OF HYDROCARBONS FOR SYNTHESIS GAS
34244 MODIFIED PARTIAL OXIDATION OF HYDROCARBONS FOR USE IN ACID F
34608 R SY/ SOME PROBLEMS IN USE OF HYDROCARBONS IN FUEL CELL POWER #
22138 YLENE, METHANE, / CRACKING OF HYDROCARBONS TO ACETYLENE, ETH
22190 ED FOR THE STEAM REFORMING OF HYDROCARBONS TO GASES RICH IN
22208 REFORMING OF LIQUID HYDROCARBONS TO GASEOUS FUEL #
22205 LECTIVE CONVERSION OF NAPHTHA HYDROCARBONS TO HYDROGEN # SE
22201 W TE/ CATALYTIC CONVERSION OF HYDROCARBONS TO HYDROGEN AT LO
22197 EN# APPARATUS FOR CRACKING HYDROCARBONS TO PRODUCE HYDROG
22203 AIN/ STEAM PHASE CRACKING OF HYDROCARBONS WITH STEAM TO OBT
22185 TION OF THE FE/ HYDROGEN FROM HYDROCARBONS: HYDRODESULFURIZATION
22141 FROM THE PARTIAL OXIDATION OF HYDROCARBONS # HYDROGEN

470
TITLE INDEX

SECTION 'T'

22166 FUEL-CELL HYDROGEN FROM HYDROCARBONS
22147 TIC STEAM REFORMING OF LIQUID HYDROCARBONS
22170 HIGH-PRESSURE REFORMING OF HYDROCARBONS
22200 GAS AND HYDROGEN FROM LIQUID HYDROCARBONS
22184 CATALYTIC CRACKING OF HYDROCARBONS
22120 PREPARATION OF HYDROGEN FROM HYDROCARBONS
22648 CATALYTIC DISSOCIATION OF HYDROCARBONS
22179 ST FOR HYDROGEN-RICH GAS FROM HYDROCARBONS
22650 HYDROGEN-CONTAINING GASES FROM HYDROCARBONS
22173 G/PURE HYDROGEN STARTING FROM HYDROCARBONS
22186 DINTERMEDIATES FROM PETROLEUM HYDROCARBONS
22135 GEN BY CATALYTIC REFORMING OF HYDROCARBONS
22159 PURIFICATION OF HYDROGEN IN HYDROCONVERSION PROCESSES
22188 BY CENTRIFUGAL COMPRESSORS IN HYDROCRACKING PROCESSES
22146 HYDROGEN FOR HYDROCRACKING
23005 FROM ACETONITRILE AND AMMONIA /
22135 HYDROGEN FROM HYDROCARBONS
32001 LE ENGINE (PART I)
10027 #
10074 CLEAN ENERGY
40501 ANSPORT AND STORAGE OF LIQUID HYDROGEN
51007 ENTHALPY AND THERMODYNAMICS OF LIQUID HYDROGEN
33062 NSIGNAL, SUPersonic MIXING OF HYDROGEN AND AIR
33054 SUPersonic MIXING OF HYDROGEN AND AIR
34103 CELLS AT THE RESEARCH
34105 LOW-TEMPERATURE BATTERIES
22154 E OF A GAS MIXTURE CONTAINING HYDROGEN AND CARBON MONOXIDE
22101 D Cooling Gaseous Mixtures of HYDROGEN AND CARBON MONOXIDE
22160 GAS MIXTURE CONTAINING HYDROGEN AND CARBON MONOXIDE
22148 OBTAINING GASES FROM FUEL GAS
22632 NA/ CATALYTIC PREPARATION OF HYDROGEN AND CARBON BLACK FROM HYDROGEN
22616 HYDROGEN AND CARBON MONOXIDE
10035 HYDROGEN AND ENERGY
40100 ULTRALOW TEMPERATURE LIQUEFACTION OF HYDROGEN AND HELIUM
50013 SAFETY CODES CONCERNING LIQUID HYDROGEN AND LIQUID HeliUM
33027 TE EXPANSION OF COMBUSTION OF HYDROGEN AND METHANE TO SIMULATE
31007 MA/ PRELIMINARY APPRAISAL OF HYDROGEN AND METHANE FUEL IN A RMANCE OF AN ARCJET DRIVEN BY HYDROGEN AND NITROGEN
22633 SIMULTANEOUS MANUFACTURE OF HYDROGEN AND OF A HYDROGEN-CA
10031 UELS
20507 BY WATER E/ THE ECONOMICS OF HYDROGEN AND OXYGEN PRODUCTION
22007 LLs# PROCESS FOR SUPPLYING HYDROGEN AND OXYGEN TO FUEL CE
30058 ACTIVE ENGINE EXPERIMENTS WITH HYDROGEN AND OXYGEN IN REGENER
34230 LLs# PROCESS FOR SUPPLYING HYDROGEN AND OXYGEN TO FUEL CE
34811 FOR CONVERTING ELECTRICITY TO HYDROGEN AND OXYGEN AND VICE V
34836 EPARATE STORAGE OF COMPRESSED HYDROGEN AND OXYGEN, AND SUBSEPATURE CONTROL ENGINES FOR HYDROGEN AND OXYGEN
23602 E DECOMPOSITION OF WATER INTO HYDROGEN AND OXYGEN
23028 THIUM HYPOCHLORITE TO PRODUCE HYDROGEN AND OXYGEN)
20503 ELECTROLYSIS AS A SOURCE OF HYDROGEN AND OXYGEN
20052 ELECTROLYTIC PRODUCTION OF HYDROGEN AND OXYGEN
20034 ATOMARY APPARATUS FOR OBTAINING HYDROGEN AND OXYGEN
SECTION 'T'

10016 ANOTHER HYDROGEN CAR OUT WEST#
32017 TION. AND PERFORMAN/ THE UCLA HYDROGEN CAR: DESIGN, CONSTRUC
32022 ON THE UCLA HYDROGEN CAR#
34645 INTERFACE FOR CASE OF OXYGEN-HYDROGEN CELL# / - ELECTROLYTE
34603 NG BATTERIES/ LOW TEMPERATURE HYDROGEN CELLS OF C G E EXISTI
34836 ELECTRIC COMPANY AND TH/ COLD HYDROGEN CELLS OF THE GENERAL
40507 G CHARACTERISTICS OF A LIQUID HYDROGEN CENTRIFUGAL TURBPUMP
41010 SLUSH HYDROGEN CHARACTERISTICS#
52043 N IN CRACK PROPAGATION DURING HYDROGEN CHARGING OF AN FE-PT
30029 R THE LIQUID FLUORINE-GASEOUS HYDROGEN COMBINATION# /TORS FO
33021 LYSIS OF LIQUID OXYGEN-LIQUID HYDROGEN COMBUSTION PRODUCTS# /
33058 N SUPersonic FLOW BY MEANS OF HYDROGEN COMBUSTION ON A FLAT
34205 IC CELLS WITH ELECTROCHEMICAL HYDROGEN COMBUSTION# ELECTR
34628 EL CELLS WITH ELECTROCHEMICAL HYDROGEN COMBUSTION# FU
22188 FUGAL COMPRESSORS IN HYDROC/ HYDROGEN COMPRESSION BY CENTRI
52044 LLI/ PROTECTION OF STEEL FROM HYDROGEN CRACKING BY THIN META
34270 W-TEMPERATURE, CON/ SIMULATED HYDROGEN CROSS-LEAKAGE IN A LO
40409 RMUP OF 500,000-GALLON LIQUID HYDROGEN DEWAR# INITIAL WA
34621 NERGY CONVERSION IN PALLADIUM-HYDROGEN DIFFUSION ELECTRODE# /
23415 FULLY INTEGRATED HYDROGEN DIFFUSION SYSTEM#
42002 SS LABORATOIRES# HYDROGEN DISTRIBUTION TO PROCE
10085 ECONOMY? THE HYDROGEN ECONOMY - AN ULTIMATE
10001 "THE ECOLOGY FUEL" THE HYDROGEN ECONOMY CONCEPT#
10337 ECONOMY? A PRACTICAL ANS/ THE HYDROGEN ECONOMY--AN ULTIMATE
10073 A HYDROGEN ECONOMY?#
10056 THE HYDROGEN ECONOMY#
10026 A HYDROGEN ECONOMY#
10039 THE COMING HYDROGEN ECONOMY#
10000 THE HYDROGEN ECONOMY#
34039 ELLS AND ELECTROLYZERS IN THE HYDROGEN ECONOMY# FUEL C
10081 - A PRACTICAL VERSION OF THE HYDROGEN ECONOMY# /NOL ECONOMY
10005 "THE HYDROGEN ECONOMY"#
10014 "SECOND THOUGHTS ON THE HYDROGEN ECONOMY"#
34600 GEN FU/ USE OF THE ADSORPTION HYDROGEN ELECTRODE AND THE OXY
34643 ICHEL SKELETAL CATALYST BASED HYDROGEN ELECTRODE AND HOW IT
52016 ESS CORROSION/ A COMPARISON OF HYDROGEN EMRRITTLEMENT AND STR
52034 OUS ALLOYS# A STUDY OF HYDROGEN EMMRITTLEMENT OF VARI
52027 DIATED STEELS# HYDROGEN EMMRITTLEMENT IN IRRA
52037 STRESS CORROSION CRACKING AND HYDROGEN EMMRITTLEMENT OF TYPE
52020 Y AND SECONDARY / TESTING FOR HYDROGEN EMMRITTLEMENT: PRIMAR
52213 SMS# EVALUATION OF HYDROGEN EMMRITTLEMENT MECHANI
52041 ROGEN TRAPS# HYDROGEN EMMRITTLEMENT AND HYD
52017 US TEST METHODS FOR DETECTING HYDROGEN EMMRITTLEMENT# /VARI
52004 L# HYDROGEN EMMRITTLEMENT OF STEE
52023 OF A TRIP STEEL# HYDROGEN EMMRITTLEMENT STUDIES
52015 TING FOR THE DETERMINATION OF HYDROGEN EMMRITTLEMENT SUSCEPT
52039 LS# HYDROGEN EMMRITTLEMENT OF META
52019 LS USED IN THE TAN/ TESTS FOR HYDROGEN EMMRITTLEMENT OF STEE
52053 REVIEW OF LITERATURE ON HYDROGEN EMMRITTLEMENT#
52052 STRESS CORROSION CRACKING AND HYDROGEN EMMRITTLEMENT IN 410
52051 L# THE MECHANISM OF HYDROGEN EMMRITTLEMENT IN STEE
52046 OF ADSORBED CN GROUPS IN THE HYDROGEN EMMRITTLEMENT OF STEE
52047 OF HYDROGEN EMMRITTLEMENT OF HYDROGEN EMMRITTLEMENT OF TANT
TITLE INDEX

SECTION 'T'

52048 THE EFFECT OF LOADING MODE ON HYDROGEN EMBRITTLEMENT
52047 TIMATES OF THE POSSIBILITY OF HYDROGEN EMBRITTLEMENT OF HYDR
52058 LAT TICE DILATATION AND HYDROGEN EMBRITTLEMENT CRACKIN
10069 A HYDROGEN ENERGY CARRIER
10068 A HYDROGEN ENERGY CARRIER
10054 HICULAR PROPULSION THE HYDROGEN ENGINE IN PERSPECTIVE
32004 HYDROGEN ENERGY SYSTEMS AND VE
30049 0 KN THRUST LIQUID OXYGEN AND HYDROGEN ENGINES ENGINE: A 4
32023 IDE CONTROL PARAMETERS OF THE HYDROGEN ENGINES NO NITRIC OX
30000 RECENT NASA EXPERIENCE WITH HYDROGEN ENGINES
52002 MENT OF METALS HYDROGEN ENVIRONMENT EMBRITTLE
52030 MENT HYDROGEN ENVIRONMENT EMBRITTLE
51010 DETECTION, AND SUPPRESSION OF HYDROGEN EXPLOSIONS IN AEROSPA
51004 ENDEANCE OF THE LOWER LIMIT OF HYDROGEN EXPLOSI ON ON THE IN
34601 L CELL ON OPEN C/ RESEARCH ON HYDROGEN FEED MECHANISM OF FUE
10023 Y PROPOSALS HYDROGEN FIGURES IN MANY ENERG
33010 ION OF METHANE CATALYZED BY A HYDROGEN FLAME COMPLET E OXIDAT
51005 FLAMES: LOW AND HIGH FLOW HYDROGEN FLARE STACK DIFFUSION
40303 LIQUID HYDROGEN FLOW BY NMR TECHNIQUE
40500 N/ INVESTIGATION OF TWO-PHASE HYDROGEN FLOW IN PUMP INLET LI
40209 N/ HEAT TRANSFER TO CRYOGENIC HYDROGEN FLOWING TURBULENTLY I
2013 CHEAP HYDROGEN FOR BASIC CHEMICALS
23022 ION PRODUCTION OF HYDROGEN FOR DEUTERIUM EXTRACT
42003 TRANSPORTATION AND STORAGE OF HYDROGEN FOR ECO-ENERGY
23012 O/ M ETHOD OF OBTAINING PURE HYDROGEN FOR FUEL CELL FEEDING
34845 ULTRA-PURE HYDROGEN FOR FUEL CELLS
34228 HYDROGEN FOR FUEL CELL
34107 ULTRA-PURE HYDROGEN FOR FUEL CELLS
22146 HYDROGEN FOR HYDROCRACKING
23203 C DECOMPOSITION HYDROGEN FORMATION BY ANAEROB I
23434 RATED HYDROGEN FROM A METHANE-HYDROGEN FRACTION OF PYROLYS
22613 ED HYDROGEN FROM THE METHANE- HYDROGEN FRACTION OF PYROGAS
22181 E CONTAIN METHOD OF PRODUCING HYDROGEN FROM A CARBON MONOXID
23434 E/ SEPARATION OF CONCENTRATED HYDROGEN FROM A METHANE-HYDROG
23005 AMMONI/ HYDROCYANIC ACID AND HYDROGEN FROM ACETONITRILE AND
23423 S GAS CRYOCENIC RECOVERY OF HYDROGEN FROM ANMNONIA SYNTHESI
22604 IA/ PRODUCTION OF HIGH-PURITY HYDROGEN FROM BUTANE WITH SPEC
22602 LOW TEMPERATURE FORMATION OF HYDROGEN FROM CO + H2O
23022 LOW TEMPERATURE FORMATION OF HYDROGEN FROM CO + H2O
22001 ELECTROFLUID R/ PRODUCTION OF HYDROGEN FROM COAL CHAR IN AN
22000 ELECTROFLUID R/ PRODUCTION OF HYDROGEN FROM COAL CHAR IN AN
22013 WHAT HYDROGEN FROM COAL COSTS
22106 STREAMS RANGING FROM C6 TO H/ HYDROGEN FROM EXCESS REFINERY
22651 K/ ECONOMICS OF PRODUCING HYDROGEN FROM GASEOUS FEEDSTOC
22218 HYDROGEN FROM HEAVY RESIDUES
22214 HYDROGEN FROM HEAVY TAILINGS
22121 RDCARBON FUELS HYDROGEN FROM HIGH-BORING HYD
22120 PREPARATION OF HYDROGEN FROM HYDROCARBONS
22166 FUEL-CELL HYDROGEN FROM HYDROCARBONS
22175 USE IN MOL TEN/ GENERATION OF HYDROGEN FROM HYDROCARBONS AND
22185 DRODESULFURIZATION OF THE FE HYDROGEN FROM HYDROCARBONS: HY
22105 AING CHARGED M/ HIGH PURITY HYDROGEN FROM HYDROCARBON-CONT
22198 RMING HYDROGEN FROM HYDROCARBON REFO
SECTION 'T'

TITLE INDEX

22642 S BY STEAM- OX/ GENERATION OF HYDROGEN FROM HYDROCARBON GASE
23403 IXTURES# RECOVERY OF HYDROGEN FROM INDUSTRIAL GAS M
23440 -TEMPERATURE REGENERATION OF HYDROGEN FROM INDUSTRIAL GASES
52042 ELECTROCHEMICAL EXTRACTION DF HYDROGEN FROM IRON# /S OF THE
22143 S FOR FUEL CELLS# HYDROGEN FROM LIGHT DISTILLATE
22119 ONS AT ELEVATE/ PRODUCTION OF HYDROGEN FROM LIQUID HYDROCARB
22134 ONS FOR FUEL CELLS# HYDROGEN FROM LIQUID HYDROCARB
22110 ONS FOR FUEL CELLS# HYDROGEN FROM LIQUID HYDROCARB
22200 ONS# SYNTHESIS GAS AND HYDROGEN FROM LIQUID HYDROCARB
23013 L CELLS# HYDROGEN FROM METHANOL FOR FUE
22841 HYDROGEN FROM METHANE#
22647 R# HYDROGEN FROM METHANE AND WATE
22627 . ITS HOMOLOGS, AND TECHNICAL HYDROGEN FROM NATURAL GAS BY P
23439 SEPARATION OF HYDROGEN FROM OTHER GASES#
22140 TURAL GAS# MANUFACTURE OF HYDROGEN FROM PETROLEUM AND NA
22613 R/ PRODUCTION OF CONCENTRATED HYDROGEN FROM THE METHANE- HYD
22141 ATION OF HYDROCARBONS# HYDROGEN FROM THE PARTIAL OXID
22610 METHANE# ACETYLENE AND HYDROGEN FROM THE PYROLYSIS OF
23000 LKALI / PROCESS FOR PRODUCING HYDROGEN FROM WATER USING AN A
21003 REMENTS IN THE PRODUCTION OF HYDROGEN FROM WATER# /RGY REQU
33029 ND FUEL-SYSTEM OPERATION WITH HYDROGEN FUEL AT -400 DEGREES
34223 A 1 KW HYDROGEN FUEL BATTERY#
34810 G THE NOMINAL POWER OF OXYGEN-HYDROGEN FUEL CELLS INTENDED F
34204 OF PRESSURE ON PERFORMANCE OF HYDROGEN FUEL CELLS# EFFECT
10024 NGING CHANGES# HYDROGEN FUEL ECONOMY: WIDE-RA
31008 ASIBILITY OF USING METHANE OR HYDROGEN FUEL FOR DIRECT COOLI
10030 NUCLEAR ROUTE# HYDROGEN FUEL FROM WATER BY A
33022 AFTERBURNER# EVALUATION OF HYDROGEN FUEL IN A FULL-SCALE
33039 FTERBURNER# TESTS WITH HYDROGEN FUEL IN A SIMULATED A
20504 SOLID POLYMER# ELECTROLYTIC HYDROGEN FUEL PRODUCTION WITH
40402 THERMAL PROTECTION FOR LIQUID-HYDROGEN FUEL TANKS IN HIGH- S
10025 W SOURCE# HYDROGEN FUEL USE CALLS FOR NE
43000 METAL HYDRIDES AS A SOURCE OF HYDROGEN FUEL#
34637 GAS-DIFFUSION ELECTRODES WITH HYDROGEN FUEL# /ION OF POROUS
34619 AS- DIFFUSION ELECTRODES WITH HYDROGEN FUEL# /ION OF POROUS G
31002 CRAFT# HYDROGEN FUELED COMMERCIAL AIR
31012 / POTENTIALS AND PROBLEMS OF HYDROGEN FUELED SUPERSONIC AND
31017 RAFT# THE CASE FOR HYDROGEN FUELED TRANSPORT AIRC
33011 COMBUSTION OF HYDROCARBON AND HYDROGEN FUELS# /UED FOR THE
10077 ATURE SURVEY ISSUED QUARTERL/ HYDROGEN FUTURE FUEL, IA LITER
52018 TION OF A TITANIUM ALLOY WITH HYDROGEN GAS AT LOW TEMPERATUR
22018 -MILLION OGR CONTRACT TO MAKE HYDROGEN GAS FROM COAL CHAR WA
23400 LAR SIEV/ NEW DEVELOPMENTS IN HYDROGEN GAS GENERATION MOLEC
42001 ROBLEMS IN THE M-1 FACILITIE/ HYDROGEN GAS PRESSURE VESSEL P
52024 F TRIP STEEL IN HIGH-PRESSURE HYDROGEN GAS# EMBRITTLEMENT O
41002 TUDY OF HYDROGEN SLUSH AND/OR HYDROGEN GEL UTILIZATION# /A S
23017 F THE ALUMINUM/WATER REACTIO/ HYDROGEN GENERATION BY MEANS O
22639 AL GAS WITH HEAT FROM NUCLEA/ HYDROGEN GENERATION FROM NATUR
23003 ELLS# HYDROGEN GENERATION FOR FUEL C
22211 CARBON FUEL/ THERMO-CATALYTIC HYDROGEN GENERATION FROM HYDRO
20512 ENERGY# SYSTEM STUDY OF HYDROGEN GENERATION BY THERMAL
20510 OLYMER ELECTROLYTE WATER ELE/ HYDROGEN GENERATION BY SOLID P
22004 TO THE REHEATING ZONE DURING HYDROGEN GENERATION BY CDING#
TITLE INDEX

SECTION 'T':

22178 EFORMATION OF N-HEXANE OVER / HYDROGEN GENERATION BY STEAM R
34229 ELLS# HYDROGEN GENERATION FOR FUEL C
21002 THERMOCHEMICAL HYDROGEN GENERATION#
22149 HYDROGEN GENERATOR ASSEMBLIES#
22161 USE IN SUBMARINES# HYDROGEN GENERATOR FOR FUEL CE
23021 O PRODUCE / MODIFICATION OF A HYDROGEN GENERATOR ML-539/TM T
34819 L CELLS# HYDROGEN GENERATOR MANPACK FUE
34833 RICALLY COUPLED FUEL CELL AND HYDROGEN GENERATOR# ELECT
34828 FUEL CELL CONNECTED WITH A HYDROGEN GENERATOR#
23006 SELF-REGULATING HYDROGEN GENERATOR#
23008 PORTABLE HYDROGEN GENERATOR#
23024 DISPOSABLE HYDROGEN GENERATOR#
23010 PORTABLE HYDROGEN GENERATOR#
22136 Y DEVELOPMENT MODEL MINIATURE HYDROGEN GENERATOR# EXPLORATOR
23029 TEMPERATURE FUEL CELLS/ MOBILE HYDROGEN GENERATORS AND MAN T
23205 BIOCHEMICAL HYDROGEN GENERATORS#
22216 MINIATURE HYDROGEN GENERATORS#
23023 COMPACT HIGH PURITY HYDROGEN GENERATORS#
22145 MINIATURE HYDROGEN GENERATORS#
10028 FUTURE "CLEAN FUEL"# HYDROGEN GETS TOP BILLING AS F
51011 S NASA TECHNICIANS# HYDROGEN HANDLING SUIT PROTECT
22138 E METHANE, AND HYDROGEN WITH HYDROGEN HEATED IN AN ELECTRIC
32005 INS AND FUTURE IN THE EM/ THE HYDROGEN I C ENGINE - ITS ORIG
33057 INVESTIGATION OF COMBUSTION OF HYDROGEN IN A HYPERSONIC AIR S
40421 FACTORS FOR STORAGE OF LIQUID HYDROGEN IN A LOW- GRAVITY ENVI
33056 REA/ MIXING AND COMBUSTION OF HYDROGEN IN A SUPERSONIC AIRST
31004 HE THERMAL BEHAVIOR OF LIQUID HYDROGEN IN A TANK DESIGNED AN
33009 THE MIXING AND COMBUSTION OF HYDROGEN IN AIR STREAMS# FOR
51001 PER LIMIT OF FLAMMABILITY OF HYDROGEN IN AIR, OXYGEN, AND O
33035 PRODUCTS OF THE COMBUSTION OF HYDROGEN IN AIR# ZLE FLOW OF
23202 D LIGHT- INDUCED EVOLUTION OF HYDROGEN IN ALGAE AND BACTERIA
10071 ACE# INFLUENCE OF HYDROGEN IN AN ENERGY MARKETPL
34847 TU PREPARATION AND CONTROL OF HYDROGEN IN ELECTROCHEMICAL CE
34801 USE OF HYDROGEN IN FUEL CELLS#
34622 USE OF HYDROGEN IN FUEL CELLS#
23027 UM# FREE HYDROGEN IN GENESIS OF PETROLE
52054 RROSION OF A TITANIUM/ ROLE OF HYDROGEN IN HOT-SALT STRESS-CO
43006 PURE AND SIMPLE: STORING HYDROGEN IN HYDRIDES#
22159 OCESSES# PURIFICATION OF HYDROGEN IN HYDROCONVERSION PR
33042 AND SUPersonic COMBUSTION OF HYDROGEN IN HYPERSONIC RAMJETS
22139 MANUFACTURE OF HYDROGEN IN IMPURE STATE#
52005 SOLUBILITY AND PERMEATION OF HYDROGEN IN METALS AT HIGH TEM
33008 UPPER SELF-IGNITION LIMIT OF HYDROGEN IN OXYGEN#
22117 TICAL INDUSTRIES APPLICATION / HYDROGEN IN PETROLEUM AND CHEM
22187 AVAILABLE HYDROGEN IN REFINERY#
52054 RROSION OF A TITANIUM/ ROLE OF HYDROGEN IN HOT-SALT STRESS-CO
43006 PURE AND SIMPLE: STORING HYDROGEN IN HYDRIDES#
22159 OCESSES# PURIFICATION OF HYDROGEN IN HYDROCONVERSION PR
33042 AND SUPersonic COMBUSTION OF HYDROGEN IN HYPERSONIC RAMJETS
22139 MANUFACTURE OF HYDROGEN IN IMPURE STATE#
52005 SOLUBILITY AND PERMEATION OF HYDROGEN IN METALS AT HIGH TEM
33008 UPPER SELF-IGNITION LIMIT OF HYDROGEN IN OXYGEN#
22117 TICAL INDUSTRIES APPLICATION / HYDROGEN IN PETROLEUM AND CHEM
22187 AVAILABLE HYDROGEN IN REFINERY#
40403 RATIONS FOR STORAGE OF LIQUID HYDROGEN IN SPACE VEHICLE#/ DE
52006 SURENTS FOR THE ANALYSIS OF HYDROGEN IN STEEL PARTS# MEA
30048 ROCKET ENGINES USING GASEOUS HYDROGEN IN THE IDEAL STATE AT
33003 C STREAM BY THE COMBUSTION OF HYDROGEN IN THE TURBULENT WAKE
22191 N# USE OF HYDROGEN IN TOWN GAS PRODUCTIO
40205 RATE EVAPORATION OF CRYOGENIC HYDROGEN IN TWO-PHASE AIR# SE
52022 ECING MECE AN X-RAY STUDY OF HYDROGEN INDUCED PHENOMENA AFF
33043 E INJECTORS NORMAL/ MIXING OF HYDROGEN INJECTED FROM MULTIPL
<table>
<thead>
<tr>
<th>EPT#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA</td>
<td>TESTING HYDROGEN INJECTION ENGINE CONCENTRATION</td>
</tr>
<tr>
<td>AL</td>
<td>COMBUSTION ENGINE/ PARTIAL HYDROGEN INJECTION INTO INTERNAL COMBUSTION</td>
</tr>
<tr>
<td>SURVEY</td>
<td>OF THE PROPERTIES OF HYDROGEN ISOTOPES BELOW THEIR BOILING POINTS</td>
</tr>
<tr>
<td>ON: A</td>
<td>SURVEY OF HYDROGEN LEAK AND FIRE DETECTION</td>
</tr>
<tr>
<td>14-M</td>
<td>LIQUID-HYDROGEN LINE</td>
</tr>
<tr>
<td>EXPANSION ENGINE FOR TONNAGE HYDROGEN LIQUEFICATION AND GENIC</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>CONVERSION FOR PRODUCTION/ HYDROGEN LIQUEFIED WITH TWO-STAGE</td>
</tr>
<tr>
<td>DESIGN</td>
<td>OF A HYDROGEN LIQUEFIER</td>
</tr>
<tr>
<td>IENT HEAT EXCHANGERS# HYDROGEN LIQUEFIES WITH EFFICIENTLY</td>
<td></td>
</tr>
<tr>
<td>TURBINE-DRIVEN CENTRIFUGAL / HYDROGEN MANUFACTURE USING GAS</td>
<td></td>
</tr>
<tr>
<td>LITTLE</td>
<td>IN COST# PLANTS FOR HYDROGEN MANUFACTURE INCREASE</td>
</tr>
<tr>
<td>T/ COMMERCIAL EXPERIENCE WITH HYDROGEN MANUFACTURING CATALYSTS</td>
<td></td>
</tr>
<tr>
<td>CATALYTIC PROCESSES FOR HYDROGEN MANUFACTURING#</td>
<td></td>
</tr>
<tr>
<td>D BE PIPED TO CONSUMERS THRO/ HYDROGEN MAY BECOME UTILITY AN</td>
<td></td>
</tr>
<tr>
<td>TER FUEL TO POWER A CLEAN-ALTERNATIVE HYDROGEN MAY EMERGE AS THE MAS</td>
<td></td>
</tr>
<tr>
<td>ME INITIAL TEMPERATURE OF THE HYDROGEN MIXTURE WITH AIR# / T</td>
<td></td>
</tr>
<tr>
<td>ENGINES THAT BURN A GASOLINE-HYDROGEN MIXTURE# / ON-FREE CAR</td>
<td></td>
</tr>
<tr>
<td>DETERMINATION OF LIQUID-SOLID HYDROGEN MIXTURES# QUALITY</td>
<td></td>
</tr>
<tr>
<td>DETERMINATION OF LIQUID-SOLID HYDROGEN MIXTURES# QUALITY</td>
<td></td>
</tr>
<tr>
<td>RY, DIFFUSION, AND ELIMINATION/ HYDROGEN MOVEMENT IN STEEL-ENT</td>
<td></td>
</tr>
<tr>
<td>ND THERMAL CHARACTERISTICS OF HYDROGEN NEAR ITS CRITICAL POINT</td>
<td></td>
</tr>
<tr>
<td>LIQUID-SOLID MIXTURES OF HYDROGEN NEAR THE TRIPLE POINT</td>
<td></td>
</tr>
<tr>
<td>ORMING AND MOLECULAR ULTRA-PURE HYDROGEN OBTAINED BY STEAM REFERENCE</td>
<td></td>
</tr>
<tr>
<td>ELECTRODE# OXIDATION OF HYDROGEN ON A PASSIVE PLATINUM</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE/ EFFECTS OF HIGH PRESSURE HYDROGEN ON METALS AT AMBIENT</td>
<td></td>
</tr>
<tr>
<td>INFLUENCE OF GASEOUS HYDROGEN ON METALS#</td>
<td></td>
</tr>
<tr>
<td>SUBSTRATE FUEL CELL OXIDATION OF HYDROGEN ON MOVABLE, PARTIALLY</td>
<td></td>
</tr>
<tr>
<td>OF PALLADIUM- HYDROGEN EFFECT OF HYDROGEN ON TENSILE PROPERTIES</td>
<td></td>
</tr>
<tr>
<td>GAS SHUTTLE VEHICLES USING A HYDROGEN OR A METHANE FUELED TANK</td>
<td></td>
</tr>
<tr>
<td>GAS AT MEDIUM PRESSURE/ PRODUCING HYDROGEN OR AMMONIA SYNTHESIS</td>
<td></td>
</tr>
<tr>
<td>PHOTOYLYSIS/ FORMATION OF HOT HYDROGEN OR DEUTERIUM ATOMS BY PHOTOLYSIS</td>
<td></td>
</tr>
<tr>
<td>G AS MIXTURE/ PREPARATION OF HYDROGEN OR HYDROGEN-CONTAINING MIXTURE</td>
<td></td>
</tr>
<tr>
<td>AT LOW PARTIAL PRESSURES OF HYDROGEN OR OXYGEN# ELECTRODES</td>
<td></td>
</tr>
<tr>
<td>LIMITS WITH A VARIABLE LENGTH HYDROGEN OXYGEN COMBUSTOR# / Y</td>
<td></td>
</tr>
<tr>
<td>FUEL AND THE FEASIBILITY OF A HYDROGEN OXYGEN ENGINE# AS A</td>
<td></td>
</tr>
<tr>
<td>HIGH-PRESSURE, HIGH-TEMPERATURE HYDROGEN OXYGEN FUEL-CELL AND</td>
<td></td>
</tr>
<tr>
<td>STABILITY CHARACTERISTICS OF HYDROGEN OXYGEN ROCKET ENGINES</td>
<td></td>
</tr>
<tr>
<td>LÜHORS PHASE I, PART II/ FLUORINE-HYDROGEN PERFORMANCE EVALUATION</td>
<td></td>
</tr>
<tr>
<td>LHA IRON, 4130 STE/ GAS-PHASE HYDROGEN PERMEATION THROUGH ALUMINUM</td>
<td></td>
</tr>
<tr>
<td>TITANIUM IN FERROUS MATERIAL/ HYDROGEN PERMEATION, AND EMBRIO</td>
<td></td>
</tr>
<tr>
<td>VERAL ALGAE/ THE MECHANISM OF HYDROGEN PHOTOPRODUCTION IN SEVERAL ALGAE</td>
<td></td>
</tr>
<tr>
<td>VERAL ALGAE/ THE MECHANISM OF HYDROGEN PHOTOPRODUCTION BY SEVERAL ALGAE</td>
<td></td>
</tr>
<tr>
<td>HYDROGEN PLANT SHUTDOWNS REDUCED</td>
<td></td>
</tr>
<tr>
<td>ELECTROLYTIC HYDROGEN PLANTS</td>
<td></td>
</tr>
<tr>
<td>TURE IN REFINING OPERATIONS# HYDROGEN PLANTS TAKING NEW STARTS</td>
<td></td>
</tr>
<tr>
<td>THERMAL RADIATION FROM BURNING HYDROGEN PLUMES#</td>
<td></td>
</tr>
<tr>
<td>LIQUID HYDROGEN POSITIVE EXPULSION BLADE#</td>
<td></td>
</tr>
<tr>
<td>T/ RANEY NICKEL CATALYSTS FOR HYDROGEN PREPARATION BY REFORMATION</td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT OF HYDROGEN PREPARATION PROCESSES</td>
<td></td>
</tr>
<tr>
<td>SAFETY OF HYDROGEN PRESSURE GAUGES#</td>
<td></td>
</tr>
<tr>
<td>LING, AND OPERATING A GASEOUS HYDROGEN PRESSURE SYSTEM# EMBRIO</td>
<td></td>
</tr>
</tbody>
</table>
SECTION '4'

40401 LAMINATED WALLS# HYDROGEN PRESSURE VESSEL WITH
22623 HYDROGEN PRODUCING SYSTEM#
23417 CATION BY DIFFUSION PROCESS# HYDROGEN PRODUCTION AND PURIFI
22614 IZER INDUSTRY IN I/ TECHNICAL HYDROGEN PRODUCTION FOR FERTIL
22608 ACTION# HYDROGEN PRODUCTION AND LIQUEF
23009 ELLS# HYDROGEN PRODUCTION FOR FUEL C
22180 EFOMING# HYDROGEN PRODUCTION BY STEAM R
22133 ERY OPERATIONS# INTEGRATE HYDROGEN PRODUCTION WITH REFIN
22158 ELL MODULES# HYDROGEN PRODUCTION FOR FUEL C
22195 ARACTERISTICS OF M AND G TYPE HYDROGEN PRODUCTION EQUIPMENT
23417 HYDROGEN PRODUCTION FINAL REPOR
10012 AND SYSTEM ANALYSIS OF LIQUID HYDROGEN PRODUCTION BY ELECTRO
10047 ERGY# HYDROGEN PRODUCTION FOR ECO-ENV
21005 USING NUCLEAR HEAT# HYDROGEN PRODUCTION FROM WATER
21004 CESS# HYDROGEN PRODUCTION CYCLIC PRO
21012 USING NUCLEAR HEAT# HYDROGEN PRODUCTION FROM WATER
10018 NUCLEAR UTILIZATION# HYDROGEN PRODUCTION FOR BETTER
10049 NUCLEAR POWER PLANTS FOR HYDROGEN PRODUCTION#
22202 HIGH PRESSURE HYDROGEN PRODUCTION#
22125 INNOVATIONS IN HYDROGEN PRODUCTION#
23011 HYDROGEN PRODUCTION#
22600 INNOVATIONS IN HYDROGEN PRODUCTION#
30027 LITHIUM-FLUORINE-HYDROGEN PROPELLANT STUDY#
30061 PMENT OF LIQUID OXYGEN/LIQUID HYDROGEN PROPULSIVE UNIT WITH
22611 OPTIMIZE HYDROGEN PRODUCTION BY MODEL#
40508 ION HEAD OPERATION OF THE J-2 HYDROGEN PUMP#/ POSITIVE SUCK
41009 CS USING A CENTRIFUGAL/ SLUSH HYDROGEN PUMPING CHARACTERISTI
23414 R BENZENE MANUFACTURE# HYDROGEN PURIFICATION PLANT F
23420 S# RESEARCH STUDIES ON SOLID HYDROGEN PURIFICATION MEMBRANE
23413 HYDROGEN PURIFICATION#
23424 HYDROGEN PURIFICATION#
23412 MODIFIED FUEL CELL PROCESS# HYDROGEN PURIFICATION USING A
23421 EMPERATURES# HYDROGEN PURIFICATION AT LOW T
23432 HYDROGEN PURIFICATION#
34231 DIFIED FUEL CELL PROCESS# HYDROGEN PURIFICATION USING MO
23426 BLEED BURNING HYDROGEN PURIFIERS#
23433 Y WASTE GASES# HYDROGEN RECOVERY FROM REFINER
23410 HYDROGEN RECOVERY PROCESS#
23411 NEW HYDROGEN RECOVERY ROUTE#
23427 LUSTER IN SOME PLANTS# HYDROGEN RECOVERY TAKES ON NEW
40108 AMIC CYCLE FOR A SPACE- BORNE HYDROGEN RELIQUEFYER# /ERMODYN
50014 HYDROGEN SAFETY MANUAL#
5001 LIQUEFIED HYDROGEN SAFETY REVIEW#
50016 K# PROJECT ROVER LIQUID HYDROGEN SAFETY: FIVE YEAR LOD
50000 LIQUEFIED HYDROGEN SAFETY#
40309 THIN-F ILM HYDROGEN SENSOR#
42000 TO DESIGN PIPING SYSTEMS FOR HYDROGEN SERVICE# HOW
41002 REGION# VOLUME I: A STUDY OF HYDROGEN SLUSH AND/OR HYDROGEN
41004 N FOR STORAGE AND TRANSFER OF HYDROGEN SLUSH# /NSUMENTATIO
21007 ICAL MEANS# HYDROGEN Sought VIA THERMOCHEM
34018 S# HYDROGEN SOURCES FOR FUEL CELL
40414 INSULATION SYSTEM FOR LIQUID-HYDROGEN STAGES OF THE SATURN
22173 TECHNIQUES FOR PREPARING PURE HYDROGEN STARTING FROM HYDROCA
TITLE INDEX

SECTION 'T'

22151 I/GIRDLER INC
34501 HYDROGEN-OXYGEN FUEL CELL TO A HYDROGEN STREAM/ION FROM A H
34613 LADUUM-SILVER ANODE ON IMPURE HYDROGEN STREAMS/STICS OF PAL
52008 HYDROGEN STRESS CRACKING OF HI
22115 HYDROGEN SUPPLY FOR FUEL CELLS
31013 THE ECONOMICS OF LIQUID HYDROGEN SUPPLY FOR AIR TRANSPL
10063 HYDROGEN SYNTHETIC FUEL OF THE FUTURE''
32020 OMICS, AND SAFETY OF A LIQUID HYDROGEN SYSTEM FOR AUTOMOTIVE
52031 SILY PROPERTIES OF PALLADIUM- HYDROGEN SYSTEMS AT CONSUMER S
42004 STANDARDS FOR GASEOUS HYDROGEN SYSTEMS FOR ELECTRIC
10043 HYDROGEN STRENGTH STRENGTHS OF STANDARD FOR GASEOUS HYDROGEN SYSTEMS AT CONSUMER S
52037 HYDROGEN TECHNOLOGY FUTURE ENERGY
52041 HYDROGEN EMBRITTLEMENT AND HYDROGEN TRAPS.

40408-II BOOSTER LIQUID HYDROGEN TANK INSULATION FOR S
40417 LF-PRESSURIZATION IN A LIQUID HYDROGEN TANKAGE AND SE
43310 C CRUISE VEHICLES HYDROGEN TANKAGE FOR HYPERSONIC A
40422 VENTING OF LIQUID-HYDROGEN TANKAGE
40413 URIZATION OF SPHERICAL LIQUID HYDROGEN TANKAGE/ SELF-PRESS
40418 PROTECTION SYSTEM FOR LIQUID-HYDROGEN TANKS OF HYPERSONIC A
31003 PROTECTION SYSTEM FOR LIQUID HYDROGEN TANKS OF HYPERSONIC A
31007 PROTECTION SYSTEM FOR LIQUID-HYDROGEN TANKS OF HYPERSONIC A
40407 TY FOAM FOR INSULATING LIQUID-HYDROGEN TANKAGE LOW-DENSITY
31005 LIQUID HYDROGEN TECHNOLOGY
40305 MENTATION AT AND ABOVE LIQUID HYDROGEN TEMPERATURE PRESENT
51014 EXPLOSION CRITERIA FOR LIQUID HYDROGEN TEST FACILITIES IS HYDROGEN THE FUEL OF THE FUTURE?
34608 E TENDING THE DIMENSIONS OF AIR-HYDROGEN THIN ELECTRODES EX
52040 IGNITION OF THE PERMEATION RATE OF HYDROGEN THROUGH METAL MEMBRAN
52045 PERMEATION OF ELECTROLYTIC HYDROGEN THROUGH PLATINUM
30056 IGN AND MANUFACTURE OF LIQUID HYDROGEN THRUST CHAMBER DES
23001 OROHYDR PROCESS OF SUPPLYING HYDROGEN TO A FUEL CELL WITH B
34507 IN STIRRED ELE/ TRANSPORT OF HYDROGEN TO CYLINDRICAL ANODES
23025 STRIAL DEMANDS/ PRODUCTION OF HYDROGEN TO SATISFY SMALL INDU
40602 HE SATUR/ A 10,000-GPM LIQUID HYDROGEN TRANSFER SYSTEM FOR T
52041 HYDROGEN EMBRITTLEMENT AND HYDROGEN TRAPS
40506 ULIC DESIGN OF THE M-1 LIQUID HYDROGEN TURBOPUMP HYDRA
40503 YMNIC IMPROVEMENTS IN LIQUID HYDROGEN TURBOPUMPS THERMOD
40502 NSFER COEFFICIENTS FOR LIQUID HYDROGEN TURBOPUMPS/ HEAT TRA
52007 HT OF HIGH-STRENGTH STEELS BY HYDROGEN UNDER PRESSURE CASE
52049 F STEEL AT HIGH RESISTANCE BY HYDROGEN UNDER PRESSURE: THE C
23416 LOW PURITY HYDROGEN UPGRADE
32004 CRYOGENIC HYDROGEN UPGRADE
52029 2219 A/ EFFECT OF PRESSURIZED HYDROGEN UPON INCONEL 718 AND
50007 ORMANCE HYDROGEN VENT FLARE STACK PERF
23402 ON UPGRADING HYDROGEN VIA HEATLESS ADSORPTION
43009 IUM AND COPPER THE REACTION OF HYDROGEN WITH ALLOYS OF MAGNES
43003 IUM AND NICKEL THE REACTION OF HYDROGEN WITH ALLOYS OF MAGNES
22138 YLENE, ETHERY, METHANE, AND HYDROGEN WITH HYDROGEN HEATED
34609 C MANGANESE DIOXIDE REACTION OF HYDROGEN WITH NONSTOICHIOMETRIC
21011 TABLE ON DIRECT PRODUCTION OF HYDROGEN WITH NUCLEAR HEAT
51002 STORAGE AND HANDLING OF HYDROGEN WITH SAFETY
40000 NE/ FUEL FOR TOMORROW LIQUID HYDROGEN LOW-TEMPERATURE ENGI
50002 ES PARTICULAR CASE OF LIQUID HYDROGEN LOW TEMPERATURE
41002 AND THERMAL PROPERTY DATA FOR HYDROGEN TRIPLE POINT REGION T
52001 OY STEELS TO CADMIUM PLATING (HYDROGEN) EMBRITTLEMENT ALL
33047 ENTS ON BURNING VELOCITIES IN HYDROGEN- BROMINE MIXTURES U
TITLE INDEX

SECTION 'T'

22633 MANUFACTURE OF HYDROGEN AND OF A HYDROGEN-CARBON MONOXIDE MIXTURE
33044 OF STOICHIOMETRIC MIXTURES OF HYDROGEN-OXYGEN DILUTED WITH
34631 LIGHT-WEIGHT ELECTRODES FOR HYDROGEN-OXYGEN FUEL CELLS# / 1
30038 ACOUSTIC-MODE INSTABILITY IN HYDROGEN-OXYGEN ROCKETS# / ON
34834 OXIDE ON TRAPPED ELECTROLYTE HYDROGEN-OXYGEN, ALKALINE FUEL
30007 AND BLEED TURBOPUMP UNITS FOR HYDROGEN-PROPELLED NUCLEAR RO
10032 AN AREAS# HYDROGEN--A CLEAN FUEL FOR URB
20007 APPLICATIONS# ELECTROLYTIC HYDROGEN--ITS MANUFACTURE AND
52028 CRACKS DURING THE FRACTURE OF HYDROGEN-ADSORBED IRON# / T OF
34504 500-WATT HYDROGEN-AIR CELL#
33061 TH DIFFUSION, DISSIPATION AND HYDROGEN-AIR COMBUSTIONS# / S WI
33002 ON OXIDE AND WATER VAPOR ON HYDROGEN-AIR CONSTANT-PRESSURE
34222 AN ALKALINE ELECTROLYTE HYDROGEN-AIR FUEL BATTERY WITH
34840 THANOL REFORMER# A 500 WATT HYDROGEN-AIR FUEL CELL WITH ME
32000 THE HYDROGEN-AIR FUELED AUTOMOBILE
33015 CHEMICAL TRANSFORMATIONS IN A HYDROGEN-AIR MIXING LAYER#
33063 TION AT LOW DENSITIES OF HYDROGEN-AIR SUPersonic COMBUSTION
33014 ON OF IGNITION DELAYS IN THE HYDROGEN-AIR SYSTEM# CALCULAT
34632 FUEL CELL ELECTRODES (HYDROGEN-AIR)#
30070 ROCKET NOZZLES# CATALYSIS OF HYDROGEN-ATOM RECOMBINATION IN
33045 - BROMINE BURNING VELOCITIES IN HYDROGEN-BROMINE AND DEUTERIUM
33046 ONS OF BURNING VELOCITIES FOR HYDROGEN-BROMINE MIXTURES, IV#
22156 IXITUTION FOR PRODUCING HYDROGEN-CARBON MONOXIDE GAS M
34800 THE HYDROGEN-CHLORINE FUELED AUTOMOBILE
34209 V. DISCHARGE MECHANISM OF THE HYDROGEN-CHLORINE FUEL CELLS#
34209 V. DISCHARGE MECHANISM OF THE HYDROGEN-CHLORINE FUEL CELL AT
22203 OCARBONS WITH STEAM TO OBTAIN HYDROGEN-CONTAINING GASES# / OR
22189 FORMATION OF FUEL AND STEAM TO A HYDROGEN-CONTAINING REFORMATE
22137 E/ PREPARATION OF HYDROGEN OR HYDROGEN-CONTAINING GAS MIXTURES
23419 ES# FRACTIONATION OF AIR OR HYDROGEN-CONTAINING GAS MIXTURES
23437 FOR REMOVING IMPURITIES FROM HYDROGEN-CONTAINING GASES# / US
22650 HYDROCARBONS# PRODUCTION OF HYDROGEN-CONTAINING GASES FROM
10029 EM WITH PARTICULAR REFERENCE# A HYDROGEN-ELECTRIC UTILITY SYST
10011 HYDROGEN-ENERGY SYSTEM#
10002 A HYDROGEN-ENERGY SYSTEM#
32010 EMISSIONS USING NATURAL GAS# HYDROGEN-ENRICHED NATURAL GAS#
33053 AGNATION IN THE COMBUSTION OF HYDROGEN-FLUORINE MIXTURES# / L
30031 RMANCE AT LOW# EXPERIMENTAL HYDROGEN-FLUORINE ROCKET PERFOM
30028 RS FOR A LOW-CHAMBER-PRESSURE HYDROGEN-FLUORINE ROCKET ENGINE
30030 EXPERIMENTAL PERFORMANCE OF A HYDROGEN-FLUORINE ROCKET ENGINE
31015 WORKING SYMPOSIUM ON LIQUID HYDROGEN-FUELED AIRCRAFT#
40044 PLAN# STRUCTURAL CONCEPTS FOR HYDROGEN-FUELED HYPersonic AIR
32007 STION ENGINE# HYDROGEN-FUELED INTERNAL COMBUSTION
32022 STION ENGINES# HISTORY OF HYDROGEN-FUELED INTERNAL COMBUSTION
31014 NSPORT# THE CASE FOR A HYDROGEN-FUELED SUPersonic TRANSPORT
32016 PROSPECTS FOR HYDROGEN-FUELED VEHICLES#
32025 ATION HAS GRANTED $60,000 FOR HYDROGEN-FUELED-CAR RESEARCH# /
31006 TION OF THE CRUISE RANGE OF HYDROGEN-FUELED, AIR-BREATHING
34252 OXER IN A MOLTEN ELECTROLYTE (HYDROGEN-HALOGEN) FUEL CELL# /
10015 N ENERGY CRISIS SOLUTION LI/ "HYDROGEN-HEATED TOWNS PLACED O
40101 MULTIPLE-UNIT HYDROGEN-MELIUM LIQUEFIER#
40112 OXLES-THOMSON LIQUEFICATION OF HYDROGEN-HYDROCARBON GAS MIXTURE
52010 RMATIONS IN TYPE 304L STAINLESS HYDROGEN-INDUCED PHASE TRANSFORMATION
SECTION 'T'

TITLE INDEX

22217 G'S FUTURE# HYDROGEN-KEY FACTOR IN REFININ
30037 S ON THE STABILITY OF GASEOUS HYDROGEN-LIQUID OXYGEN ENGINE#
40103 T WITH A HELIUM EXPANSION CO/ HYDROGEN-NEON LIQUEFACTION UNI
30050 ER TEST PROGRAM# LARGE HYDROGEN-OXYGEN ABLATIVE CHAMB
33012 N-OXYGEN REACTAD/ KINETICS OF HYDROGEN-OXYGEN AND HYDROCARB
30016 ULSION FOR THE SPACE SHUTTLE HYDROGEN-OXYGEN AUXILIARY PROP
34055 MOISTURE REMOVAL CONCEPT FOR HYDROGEN-OXYGEN CAPILLARY FUEL
33052 DEVELOPMENT OF HYDROGEN-OXYGEN CATALYSTS#
34841 A COMPACT HYDROGEN-OXYGEN CELL#

20010 ELECTRICITY DURING ELECTROL HYDROGEN-OXYGEN CELL PRODUCING
38001 IDN KINETICS IN ROCKET ENGIN HYDROGEN-OXYGEN CHEMICAL REACT
33034 DAMPING IN A TWO-DIMENSIONAL HYDROGEN-OXYGEN COMBUSTOR# /TE
34039 EGENERATIVE FUEL CELLS# HYDROGEN-OXYGEN ELECTROLYTIC R
34233 EGENERATIVE FUEL CELLS# HYDROGEN-OXYGEN ELECTROLYTIC R
34239 EGENERATIVE FUEL CELLS# HYDROGEN-OXYGEN ELECTROLYTIC R
34236 EGENERATIVE FUEL CELLS# HYDROGEN-OXYGEN ELECTROLYTIC R

34237 EGENERATIVE FUEL CELLS, I JL HYDROGEN-OXYGEN ELECTROLYTIC R
30010 IC GENERATORS AND THERMIONIC HYDROGEN-OXYGEN FIRED THERMION
34020 ITS PERFOR/ CONSTRUCTION OF A HYDROGEN-OXYGEN FUEL CELL AND
34259 NCE STUDIES ON A RECHARGEABLE HYDROGEN-OXYGEN FUEL CELL# /MA
34037 -CURRENT CHARACTERISTICS OF A HYDROGEN-OXYGEN FUEL CELL BATT
34452 ECTION FROM A MATRIX TYPE OF HYDROGEN-OXYGEN FUEL CELL# /RE
34270 RATURE, CONTAINED-ELECTROLYTE HYDROGEN-OXYGEN FUEL CELL# /PE
34219 ER/ ELECTROLYTIC REGENERATIVE HYDROGEN-OXYGEN FUEL-CELL BATT
34420 ELECTRICALLY-REGENERATIVE HYDROGEN-OXYGEN FUEL CELL#
34218 SELF-DISCHARGE OF A HYDROGEN-OXYGEN FUEL CELL#
34234 ELECTROLYTICALLY REGENERATIVE HYDROGEN-OXYGEN FUEL CELL#
34266 TY ASSESSMENT TESTING OF 2 KW HYDROGEN-OXYGEN FUEL CELL STAC
34200 ITY STUDY OF HIGH PERFORMANCE HYDROGEN-OXYGEN FUEL CELLS# /L
34245 IMPURITIES ON PERFORMANCE OF HYDROGEN-OXYGEN FUEL CELLS# /Ly
34106 EM WITH REACTANT SUPERSATURA HYDROGEN-OXYGEN FUEL CELL SYST
34501 ICS OF WATER REJECTION FROM A HYDROGEN-OXYGEN FUEL CELL TO A
34511 WATER AND HEAT BALANCE OF HYDROGEN-OXYGEN FUEL CELLS#
34267 R A LIGHTWEIGHT RECHARGEABLE HYDROGEN-OXYGEN FUEL CELL# /FO
34010 A CAPILL/ MASS EXCHANGE IN A HYDROGEN-OXYGEN FUEL CELL WITH
34007 ATT INTERNAL/- DEVELOPMENT OF HYDROGEN-OXYGEN FUELED 3-KILOW
34814 RTA FUEL CELL SYSTEMS# HYDROGEN-OXYGEN FUEL CELLS: VA
34807 SOME ENGINEERING ASPECTS OF HYDROGEN-OXYGEN FUEL CELLS#
34808 SPACE PRIMARY HYDROGEN-OXYGEN FUEL CELLS FOR
34818 UIRING MINIMUM OF MAINTENANC HYDROGEN-OXYGEN FUEL CELLS REQ
33050 UDY OF CATALYTIC REACTORS FOR HYDROGEN-OXYGEN IGNITION# ST
30073 STION ENGIN/ DEVELOPMENT OF A HYDROGEN-OXYGEN INTERNAL COMBU
34210 EMBRANE FUEL CELLS# HYDROGEN-OXYGEN ION-EXCHANGE M
30032 RESONANCE TUBE IGNITION OF HYDROGEN-OXYGEN MIXTURES#
34254 ERRESTIAL (HOPE) FUEL CELL HYDROGEN-OXYGEN PRIMARY EXTRAT
34028 ERRESTIAL (HOPE) FUEL CELL HYDROGEN-OXYGEN PRIMARY EXTRAT
34255 ERRESTIAL (HOPE) FUEL CELL HYDROGEN-OXYGEN PRIMARY EXTRAT
33054 UDY OF THE KINETICS OF THE HYDROGEN-OXYGEN REACTION BEHIN
34251 -PRESSURE MEDIUM- TEMPERATURE HYDROGEN-OXYGEN RECHARGEABLE F
34260 UEL- / ECONOMIC HIGH-PRESSURE HYDROGEN-OXYGEN REGENERATIVE F
33025 IDE HEAT-TRANSFER RATES FOR A HYDROGEN-OXYGEN ROCKET# /GAS S
33030 IDE HEAT- TRANSFER RATES IN A HYDROGEN-OXYGEN ROCKET# /GAS-S
33026 IDE HEAT-TRANSFER RATES FOR A HYDROGEN-OXYGEN ROCKET AND A N

2481
TITLE INDEX

SECTION 'T'

30033 PTS IN A 20,000-POUND-THRUST HYDROGEN-OXYGEN ROCKET
30013 EACH IN A 20,000-POUND-THRUST HYDROGEN-OXYGEN ROCKET
30002 LINERS TO SUPPRESS SCREECH IN HYDROGEN-OXYGEN ROCKET
30011 TERNAL-COMBUSTION ENGINE HYDROGEN-OXYGEN SPACE POWER IN
30015 ACPS THRUSTER TECHNOLOGY REV HYDROGEN-OXYGEN SPACE SHUTTLE
30059 PPLY SYSTEM/DEVELOPMENT OF A HYDROGEN-OXYGEN SYSTEM IN VENT
51013 E EXPLOSION PROPERTIES OF THE HYDROGEN-OXYGEN SYSTEM IN VENT
34617 FUEL CELL MODULE HYDROGEN-OXYGEN THIN ELECTRODE
33016 MIXTURE/COMBUSTION LIMITS OF THE HYDROGEN-OXYGEN SYSTEM IN VENT
34640 ION AND MENISCUS SHAPE ON THE HYDROGEN-OXYGEN SYSTEM IN VENT
32019 POLLUTION STANDARDS HYDROGEN-POWERED CARS MAY BEAT
32029 LOS ALAMOS LAB MAKING HYDROGEN-POWERED TRUCK
30020 -STAGE BLEED-TYPE TURBINE FOR HYDROGEN-PROPELLED NUCLEAR ROCKET
30009 -STAGE BLEED-TYPE TURBINE FOR HYDROGEN-PROPELLED NUCLEAR ROCKET
22204 XIDATION OF LIQUID HYDROCARB HYDROGEN-RICH GAS BY PARTIAL O
22179 RBONS# CONTACT CATALYST FOR HYDROGEN-RICH GAS FROM HYDROCAR
22171 HYDROGEN-RICH GAS MIXTURE
22164 HYDROGEN-RICH GASES
22637 PRODUCTION OF HYDROGEN-RICH GASES
22174 HYDROGEN-RICH SYNTHESIS GASES
41003 CE SYSTEM HYDROGEN-SLUSH DENSITY REFERENCE
34508 OR AS A HUMIDITY SENSOR FOR A HYDROGEN-STEAM MIXTURE# ILLAT
34842 G-LIFE MISSIONS# AUTONOMOUS HYDROGEN/AIR FUEL CELLS FOR LONG
34837 CIRCULATING ELECTROLYTE HYDROGEN/AIR FUEL CELL SYSTEM
34626 TS FOR USE IN LOW TEMPERATURE HYDROGEN/OXYGEN FUEL CELLS WITH
33051 TRANSIENT MODEL OF HYDROGEN/OXYGEN REACTOR
33031 REDUCTION TO HEAT TRANSFER IN HYDROGEN/OXYGEN ROCKET COMBUST
34212 EL CELL - OPERATION ON DILUTE HYDROGEN, CARBONACIOUS FUELS,
23406 HYDROGEN, CRYOGENIC UPGRADE
10009 ACCESS FOR PRODUCING LIQUEFIED HYDROGEN, HELIUM, AND NEON# R
10036 ERGY MARKET# HYDROGEN, MASTER-KEY TO THE ENERGY MARKET
33020 TIMES IN FLOWING MIXTURES OF HYDROGEN, OXYGEN, AND CHLORINE
22118 HYDROGEN, PARTIAL OXIDATION
22128 HYDROGEN, PARTIAL OXIDATION# HYDROGEN, STEAM REFORMING
22127 HYDROGEN, STEAM REFORMING: FOSS HYDROGEN, STEAM REFORMING: FOS
22102 TER WHEELER CORPORATION# HYDROGEN, STEAM REFORMING: FOSS
10029 SAL FUEL"# "HYDROGEN: CANDIDATE FOR UNIVER
10060 T A PRACTICAL FUEL?# HYDROGEN: IT'S CLEAN, BUT IS IT...
10046 HE NATION'S ENERGY ECONOMY# HYDROGEN: ITS FUTURE ROLE IN THE FUTURE
10040 RKET# HYDROGEN: KEY TO THE ENERGY MARKET
10098 UTURE# HYDROGEN: LIKELY FUEL OF THE FUTURE
40207 R TO SUPER-CRITICAL CRYOGENIC HYDROGEN: PART 1: LITERATURE SURVEY
22619 A# HYDROGEN: SELECT CORP OF AMERICA
41013 N THE LABORATORY# METALLIC HYDROGEN: SIMULATING JUPITER
10034 E FUTURE# HYDROGEN: SYNTHETIC FUEL OF THE FUTURE
10041 HYDROGEN: THE NEW FUEL
10013 HYDROGEN: TOMORROW'S FUEL?
20500 GE PROCESS COULD MAKE CHEAPER HYDROGEN HYDROGEN
10501 FEDERAL PANEL REPORTS ON HYDROGEN HYDROGEN
10079 ENERGY TRANSMISSION VIA HYDROGEN HYDROGEN
22111 LOW-TEMPERATURE REFORMING FOR HYDROGEN HYDROGEN
23509 D ELECTROLYTES OFFER ROUTE TO HYDROGEN HYDROGEN
20502 PREPARATION OF PURE HYDROGEN HYDROGEN
TITLE INDEX

SECTION 'T'

51006 THE OXIDATION OF HYDROGEN
52033 COMPATIBILITY OF METALS WITH HYDROGEN
41016 PRESSURE ON** TO MAKE METALLIC HYDROGEN
40504 PUMPS FOR LIQUID HYDROGEN
41017 PRODUCTION OF METALLIC HYDROGEN
43012 MAGNETS THAT ATTRACT HYDROGEN
50011 SAFETY IN THE USE OF LIQUID HYDROGEN
23431 PERMEATION METHOD RECovers HYDROGEN
22643 PREPARATION OF HYDROGEN
23422 DIFFUSION YIELDS HIGH-VOLUME HYDROGEN
22603 ON AND DISTRIBUTION OF LIQUID HYDROGEN
23014 GENERATING HYDROGEN
23430 SEPARATION PLANT FOR PURE HYDROGEN
41001 H SYSTEM FOR LIQUID AND SLUSH HYDROGEN
40308 NE-TYPE FLOWMETERS FOR LIQUID HYDROGEN
41001 H SYSTEM FOR LIQUID AND SLUSH HYDROGEN
22207 PRODUCTION OF HYDROGEN
22129 PRODUCTION OF HYDROGEN
22167 PRODUCTION OF HYDROGEN
22142 PROCESS FOR PRODUCTION OF HYDROGEN
32013 CONVERTED IC ENGINE RUNS ON HYDROGEN
30057 N BY LIQUID OXYGEN AND LIQUID HYDROGEN
40308 NE-TYPE FLOWMETERS FOR LIQUID HYDROGEN
41001 H SYSTEM FOR LIQUID AND SLUSH HYDROGEN
40204 TE AND PHASE DIAGRAM OF DENSE HYDROGEN
22610 PROCESS FOR THE PRODUCTION OF HYDROGEN
22197 CING HYDROCARBONS TO PRODUCE HYDROGEN
52059 THE REACTION OF TITANIUM WITH HYDROGEN
22205 ON OF NAPHTHA HYDROCARBONS TO HYDROGEN
22163 TION OF OXO SYNTHESIS GAS AND HYDROGEN SIMULTANEOUS PRODUC
43416 CCKET TANKS FILLED WITH LIQUID HYDROGEN/INSULATIONS FOR RO
40306 EATURE OF LIQUID AND GASEOUS HYDROGEN/MEDURING THE TEMP
33024 UBULAR COMBUSTOR WITH GASEOUS HYDROGEN/PERFORMANCE OF A T
33036 LNGLIQUID OXYGEN AND GASEOUS HYDROGEN/ROCKET CHAMBER BUR
30071 ER BURNING LIQUID AND GASEOUS HYDROGEN/SMALL ROCKET CHAMB
52038 LOYS IN HIGH PRESSURE GASEOUS HYDROGEN/SSE MAIN ENGINE AL
52036 H DISSOLVED AND PRECIPITATED HYDROGEN/AND VANADIUM BY BOT
41000 ARACTERIZATION STUDY OF SLUSH HYDROGEN/A SUMMARY OF THE CH
22163 TION OF OXO SYNTHESIS GAS AND HYDROGEN SIMULTANEOUS PRODUC
43416 CCKET TANKS FILLED WITH LIQUID HYDROGEN/INSULATIONS FOR RO
40306 EATURE OF LIQUID AND GASEOUS HYDROGEN/MEDURING THE TEMP
33024 UBULAR COMBUSTOR WITH GASEOUS HYDROGEN/PERFORMANCE OF A T
33036 LNGLIQUID OXYGEN AND GASEOUS HYDROGEN/ROCKET CHAMBER BUR
30071 ER BURNING LIQUID AND GASEOUS HYDROGEN/SMALL ROCKET CHAMB
52038 LOYS IN HIGH PRESSURE GASEOUS HYDROGEN/SSE MAIN ENGINE AL
52036 H DISSOLVED AND PRECIPITATED HYDROGEN/AND VANADIUM BY BOT
41014 EXPERIMENT FOR HIGH-PRESSURE HYDROGEN/ATION OF THEORY AND
40505 OF BALL BEARINGS IN CRYOGENIC HYDROGEN/BRICATION AND WEAR
22646 METHANE FOR THE PRODUCTION OF HYDROGEN/DCOMPOSITION OF
30035 TORS IN LIQUID OXYGEN-GASEOUS HYDROGEN/CE OF COAXIAL INJEC
22112 IN LARGE-SCALE MANUFACTURE OF HYDROGEN/PRODUCTION COSTS
23606 REDUCTION OF WATER TO GASEOUS HYDROGEN/HE ACCOMPANYING
40509 PING LIQUID OXYGEN AND LIQUID HYDROGEN/EJECTORS FOR PUM
22625 HEMAL-CONTACT PREPARATION OF HYDROGEN/ESRIPTION OF THE T
23021 TOR ML-539/TM TO PRODUCE PURE HYDROGEN/F A HYDROGEN GENERA
22620 PROCESS FOR THE PRODUCTION OF HYDROGEN/HE THERMAL CONTACT
33059 PERATURES BY PRECOMBUSTION OF HYDROGEN/HSHE THERMAL STAGNATION TEM
34258 ELL WITH MICROBIALY-PRODUCED HYDROGEN# /ICN-MEMBRANE FUEL C
33004 N- OXYGEN DILUTED WITH HELIUM HYDROGEN# /MIXTURES OF HYDROGE
40202 C AND TRANSPORT PROPERTIES OF HYDROGEN# /NS FOR THERMODYNAM
22132 REDUCTION OF SYNTHESIS GAS OR HYDROGEN# /NG, IN TUBES, FOR P
30026 STEM FLUORINE-LITHIUM HYDRIIDE-HYDROGEN# /OLIC ROCKE FUEL SY
22196 IED GAS AND ITS MIXTURES WITH HYDROGEN# /CONVERSION OF LIQUEF
23015 R ENERGY IN THE PRODUCTION OF HYDROGEN# FOR UTILIZING NUCLEA
33040 PERFORMANCE OF RAMJET FUELS: HYDROGEN# /DRETICAL COMBUSTION
22169 NG CARBONACEOUS MATERIAL INTO HYDROGEN# /PARATUS FOR REFORMI
33005 USTION OF LIQUID OXIDIZERS IN HYDROGEN# /ROBLEMS ON THE COMB
22190 HYDROCARBONS TO GASES RICH IN HYDROGEN# /STEAM REFORMI N
51002 R OF NONMETALLIC MATERIALS IN HYDROGEN# /TION OF THE BEHAVIO
50005 MERICAL HANDLING OF LIQUEFIED HYDROGEN# /TY STANDARD FOR COM
23016 OXIDE SOLUTION AS A SOURCE OF HYDROGEN# /UM WITH SODIUM HYDR
41015 SOVIEI AND US GROUPS SEEK HYDROGEN'S METALLIC PHASE#
32099 CULAR FUEL# SURVEY OF HYDROGEN'S POTENTIAL AS A VEHI
34220 TEM IN A BIOCHEMI/ THE USE OF HYDROGENASE-METHYLENE BLUE SYS
52003 PETCH ANALYSIS OF HYDROGENATED TANTALUM SHEET#
33013 ATION OF OXIDIZER-RICH OXYGEN-HYDROGENCOMBUSTION CHARACTERIS
30047 - H44 WITH LIQUID OXYGEN AND HYDROGENDESIGN AND OPERATION/
33055 ON BY INCIDENT SHOCK WAVES IN HYDROGENOXYGEN-ARGON MIXTURES/
34266 INCREASED HYDROX FUEL CELL PERFORMANCE#
23016 CTION OF ALUMINUM WITH SODIUM HYDROXIDE SOLUTION AS A SOURCE
22006 HYDROGEN PROGRAMS#
33057 F COMBUSTION OF HYDROGEN IN A HYPERSOIC AIR STREAM# /TION O
31009 Y TECHNOLOGY FOR AIRBREATHING HYPERSOIC AIRCRAFT# KE
31012 YDROGEN FUELED SUPERSONIC AND HYPERSOIC AIRCRAFT# /ENS OF H
31006 YDROGEN-FUELED, AIR-BREATHING HYPERSOIC AIRCRAFT# /E OF A H
31003 FOR LIQUID HYDROGEN TANKS OF HYPERSOIC AIRPLANES# / SYSTEM
40418 FOR LIQUID-HYDROGEN TANKS OF HYPERSOIC AIRPLANES# / SYSTEM
40404 CONCEPTS FOR HYDROGEN-FUELED HYPERSOIC AIRPLANES# /UCTURAL
40410 HYDROGEN TANKAGE FOR HYPERSOIC CRUISE VEHICLES#
33042 NICS COMBUSTION OF HYDROGEN IN HYPERSOIC RAMJETS# /D SUPERSO
31016 HYPERSOIC TRANSPORTS#
31004 NED AND INSULATEDFOR USE IN A HYPERSOIC VEHICLE# /ANK DESIG
23028 TEM USING LITHIUM AND LITHIUM HYPOCHLORITE TO PRODUCE HYDROG
22622 REDUCTS CO#
22621 CO# PRODUCTION OF PURE H2 AND CO BY METHANE WASH#
10020 CRYOCENIC H2 AND NATIONAL ENERGY NEEDS#
23408 OF BINARY MIXTURES OF CO AND H2 BY PERMEATION THROUGH POLYM
23026 COMPACT H2 GENERATORS FOR FUEL CELLS#
22100 EMPHASIS OF H2 STRENGTHENED#
32026 ONE YEAR OPER/ CITY CAR WITH H2-AIR FUEL CELL/LEAD BATTERY
34813 SUPPLY ON STRATOSPHERIC AIRS/ H2-AIR FUEL CELLS AS ELECTRIC
30020 SPACE SHUTTLE# AN H2-02 AUXILIARY POWER UNIT FOR
51000 EFFECT OF WATER VAPOR ON H2-02 DETONATIONS#
34235 ELECTROLYTIC REGENERATIVE H2-02 SECONDARY FUEL CELLS#
51012 LOSIBILITY: A LITERATURE SUR/ H2-02--NOX FLAMMABILITY AND EXP
30055 SIGN AND FABRICATION OF SMALL H2/02 ENGINES#
<table>
<thead>
<tr>
<th>Title Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>34503 ER- AND HEAT-REMOVAL UNIT FOR H2/02 FUEL CELL SYSTEMS / WAT</td>
<td>10601</td>
</tr>
<tr>
<td>34216 PROBLEMS OF GASES MIXING IN H2/02 FUEL CELLS IN WHICH GAS</td>
<td>13926</td>
</tr>
<tr>
<td>34846 THE FLYING H2/02 STORAGE BATTERY / THE H2INDENBURG SOCIETY</td>
<td>32006</td>
</tr>
<tr>
<td>34634 EL CELL ELECTRODES; ELECTRODE IMPROVEMENT AND LIFE TESTING</td>
<td>22126</td>
</tr>
<tr>
<td>34375 HYDROGEN S, ENERGY TRANSFER AND LIGHT-INDUCED EVOLUTION OF HYDROGEN</td>
<td>22502</td>
</tr>
<tr>
<td>34247 500-WATT INDIRECT HYDROCARBON SYSTEM</td>
<td>34266</td>
</tr>
<tr>
<td>34245 500-WATT INDIRECT HYDROCARBON SYSTEM</td>
<td>34613</td>
</tr>
<tr>
<td>33014 N-ΑIR SYSTEM; CALCULATION OF IGNITION DELAYS IN THE HYDROGEN</td>
<td>30019</td>
</tr>
<tr>
<td>33008 OXYGEN # UPPER SELF-IGNITION LIMIT OF HYDROGEN IN</td>
<td>32003</td>
</tr>
<tr>
<td>33001 T IN A / ANALYSIS OF THE SELF-IGNITION OF A TURBULENT GAS JET</td>
<td>30032</td>
</tr>
<tr>
<td>33030 XTURES / RESONANCE TUBE IGNITION OF HYDROGEN-OXYGEN</td>
<td>30050</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF HYDROGEN-OXYGEN IGNITION / STUDY OF CATALYTIC</td>
<td>33048</td>
</tr>
<tr>
<td>33010 ESTIMATION OF THE REACTION OF INCOMPLETE OXIDATION OF METHANE ON</td>
<td>33065</td>
</tr>
<tr>
<td>33052 OF PRESSURIZED HYDROGEN UPON INCONEL 718 AND 2219 ALUMINUM</td>
<td>22139</td>
</tr>
<tr>
<td>33048 OF PRESSURIZED HYDROGEN UPON INCONEL 718 AND 2219 ALUMINUM</td>
<td>22139</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
<tr>
<td>33023 HYDROGEN/PERFORMANCE OF A 28-INCCH RAMJET UTILIZING GASEOUS</td>
<td>33038</td>
</tr>
<tr>
<td>33038 IN A 35 DEGREE SECTOR OF A 28-INCCH-DIAMETER RAMJET COMBUSTOR</td>
<td>33065</td>
</tr>
</tbody>
</table>
TITLE INDEX

SECTION 'T'

40416 ATAND THE WEIGHT BY VOLUME OF INSULATIONS FOR ROCKET TANKS F
33049 OLUTION AND NEAR A FLAT PLATE INTANGENTIAL FLOW# /IES OF REV
22133 WITH REFINERY OPERATIONS# INTEGRATE HYDROGEN PRODUCTION
33066 EMICAL KINETICS OF THE SHOCK-INTEGRATED COMBUSTION OF HYDRO
23415 SYSTEM# FULLY INTEGRATED HYDROGEN DIFFUSION
22103 OF OXYGEN-HYDROGEN FUEL CELLS INTEGRATED REFORMER UNIT#
50004 ON OF HYDROGEN AT HIGH P/ THE INTENSITY OF THE NARCOTIC ACTI
34664 DY OF ELECTRODE - ELECTROLYTE INTERFACE FOR CASE OF OXYGEN-H
52000 NICKEL BY HYDROGEN# THE INTERGRANULAR EMBRITTLEMENT OF
43002 TORY GAS CIRCULATION PUMP FOR INTERMEDIATE PRESSURES# /ABORA
34207 CELL - OPERATION ON DILUTE H/ INTERMEDIATE TEMPERATURE FUEL
34500 ON PHOSPHATE MEMBRANES FOR INTERMEDIATE TEMPERATURE FUEL
34849 IMMOBILIZED PHOSPHORIC ACID INTERMETALLIC COMPOUNDS# /F LA
43009 RGE QUANTITIES OF HYDROGEN BY INTERGRATED HYDROGEN-FUELED
30073 ELOPMENT OF A HYDROGEN-OXYGEN INTERNAL COMBUSTION ENGINE#
32022 HISTORY OF HYDROGEN-FUELED INTERNAL COMBUSTION ENGINES#
32007 HYDROGEN-FUELED INTERNAL COMBUSTION ENGINE#
32021 RTIAL HYDROGEN INJECTION INTO INTERNAL COMBUSTION ENGINES EF
52006 FOR THE ANALYSIS OF HYDROGEN# INTERNAL FRICTION MEASUREMENTS
33061 DIFFUSION, D/ AN ANALYSIS OF INTERNAL SUPERSONIC FLOWS WITH
30072 OGEN-OXYGEN FUELED 3-KILOWATT INTERNAL COMBUSTION ENGINE#
34849 THE REVOLT AGAINST INTERNAL-COMBUSTION ENGINE#
30011 HYDROGEN-OXYGEN SPACE POWER INTERNAL-COMBUSTION ENGINE#
41008 LED PROPELLANTS FOR LUNAR AND INTERPLANETARY MISSIONS# /BC00
23604 IN S/ CONVERSION OF SUNLIGHT INTO CHEMICAL ENERGY AVAILABLE
30003 CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY-BATTERI
34011 CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL# /S OF DIRECT
23502 BY THE DECOMPOSITION OF WATER INTO HYDROGEN AND OXYGEN# /GY
22169 FORMING CARBONACEOUS MATERIAL INTO HYDROGEN# /PARATUS FOR RE
32021 E/ PARTIAL HYDROGEN INJECTION INTO INTERNAL COMBUSTION ENGIN
33031 IN HYDROGEN/OXYGEN ROCKET/ AN INTRODUCTION TO HEAT TRANSFER
23602 OF IMPROVING THE EFFICIENCY / INVESTIGATION FOR THE PURPOSE
30002 RS TO SUPPRESS / EXPERIMENTAL INVESTIGATION OF ACOUSTIC LINE
30066 ECTS ON ROCKET / EXPERIMENTAL INVESTIGATION OF COMBUSTOR EFF
33057 HYDROGEN IN A HYPERSONIC AI/ INVESTIGATION OF COMBUSTION OF
30009 LEO-TYPE TURBINE FOR HYDRO/ INVESTIGATION OF EIGHT-STAGE B
30005 AR ROCKET TECHNOLOGY# INVESTIGATION OF GASEOUS NUCLE
33018 STION# INVESTIGATION OF GH2-GO2 COMBU
33025 HEAT-TRANSFER R/ EXPERIMENTAL INVESTIGATION OF HOT-GAS SIDE
30028 A LOW-CHAMBER-PRESSURE HYDR/ INVESTIGATION OF INJECTORS FOR
33013 OXYGEN-HYDRO/ A PRELIMINARY INVESTIGATION OF OXIDIZER-RICH
30043 NMICS IN A LARGE RO/ ORBITAL INVESTIGATION OF PROPELLANT DY
33010 OF INCOMPLETE OXIDATION OF M/ INVESTIGATION OF THE REACTION
30008 GE BLEED-TYPE TURBINE FOR HY/ INVESTIGATION OF THE EIGHT-STA
34502 OF WATER REJECT/ EXPERIMENTAL INVESTIGATION OF THE DYNAMICS
34501 OF WATER REJECTION FROM A HY/ INVESTIGATION OF THE DYNAMICS
52059 OF TITANIUM WITH HYDROGEN# INVESTIGATION OF THE REACTION
30065 CRYOGENIC REACTION CONTROL / INVESTIGATION OF THRUSTORS FOR
40500 ROGEN FLOW IN PUMP INLET LIN/ INVESTIGATION OF TWO-PHASE HYD
34224 L CELL REGENERATIVE FUEL CELL INVESTIGATION# DUA
33049 OMBUSTION IN TH/ EXPERIMENTAL INVESTIGATIONS ON SUPERSONIC C
34025 ELECTROCHEMICAL FUEL CELLS WITH ION EXCHANGE MEMBRANES
34210 HYDROGEN-OXYGEN ION-EXCHANGE MEMBRANE FUEL CELL
34258 THE OPERATION OF AN ION-MEMBRANE FUEL CELL WITH IRON AND STEEL
52035 AGATION DURING ON THE ROLE OF IRON DISSOLUTION IN CRACK PROP
52043 NATION, PROPERTIES, AND APPLICATION OF TITANIUM HYDRIDE: ITS FOR
52026 OXIDATION THROUGH ALLHA IRON, 4130 STEEL, AND 304 STAIN
52042 E EXTRACTION OF HYDROGEN FROM IRON/OXYGEN/STAIN.
52027 HYDROGEN EMBRITTLEMENT IN IRRADIATED STEELS
34848 FUEL CELL IS GOING COMMERCIAL
10021 TURE# IS HYDROGEN THE FUEL OF THE FUTURE?
10060 HYDROGEN: IT'S CLEAN, BUT IS IT A PRACTICAL FUEL?
33004 ANT/ SPECIFIC HEAT RATIOS AND ISENTROPIC EXPONENTS FOR CONSTANT
40038 PROPERTIES OF HYDROGEN ISOTOPES BELOW THEIR CRITICAL
10077 RE FUEL: (A LITERATURE SURVEY ISSUED QUARTERLY)
43004 OR HYDROGEN-BROMINE MIXTURES
34830 HYDROGEN: KEY TO THE ENERGY MARKET
33046 EQUATION OF SEMENOV AND FRANK-KAMENETSKY AND MANSON EQUATIONS
40508 SUCTION HEAD OPERATION OF THE J-2 HYDROGEN PUMP
41009 ING A CENTRIFUGAL-TYPE PUMP (J-2)
22131 JET FUEL AS A FEED STOCK
22114 JET FUEL AS FEEDSTOCK
33033 PART II: ANALYSIS FOR COAXIAL JET INJECTION
22627 EN FROM NATURAL GAS BY PLASMA JET SYNTHESIS
30045 LOW-THRUST COLD-GAS REACTION JETS IN A VACUUM
34237 RC REGENERATIVE FUEL CELLS, 1 JUL TO AUGUST 1966
40112 HYDROGEN-HYDROCARBON GAS MIXTURE EQUATIONS
33046 UMAT ELECTRICAL START FOR JPA-AIR SYSTEMS
41013 METALLIC HYDROGEN: SIMULATING JUPITER IN THE LABORATORY
33046 EQUATION OF SEMENOV AND FRANK-KAMENETSKY AND MANSON EQUATIONS
22617 POLUCHEMIEN VODORODA METODOM KATALITICHESKOI KONVERSII BUTA
22217 HYDROGEN-KEY FACTOR IN REFINING'S FUTURE
31069 HYDROGEN-KEY FACTOR IN REFINING'S FUTURE
10074 HYDROGEN: THE KEY TO ABUNDANT CLEAN ENERGY
10040 HYDROGEN: KEY TO THE ENERGY MARKET
10036 HYDROGEN, MASTER-KEY TO THE ENERGY MARKET
30001 SISTOJET PERFORMANCE
30072 OF HYDROGEN-OXYGEN FUELED 3-KILOWATT INTERNAL COMBUSTION
33002 CARBON/ANALYTICAL CHEMICAL KINETIC STUDY OF THE EFFECT OF
33035 CALCULATION OF THE CHEMICAL KINETICS CONSIDERATIONS DURING
33000 OXIDATION CHEMICAL REACTION KINETICS IN ROCKET ENGINE COMBUSTION
30012 HYDROCARBON-OXYGEN REACTION KINETICS OF HYDROGEN-OXYGEN AN
22649 N FLUIDIZED BED REACTORS
33064 N COMPUTATIONAL STUDY OF THE KINETICS OF THE HYDROGEN-OXYGEN
33066 ED COMBUSTION OF HYDROGEN KINETICS OF THE SHOCK-INTEGRATION
30049 THE S E P HMA ENGINE: A 40 KN THRUST LIQUID OXYGEN AND HYDROCARBON REFORMER - AIR
22113 NH DURCH DAMPFREFORMIEREN VON KOHLENWASSERSTOFFEN
22617 DRODA METODOM KATALITICHESKOI KONVERSII BUTANA POD DAVLENEM
34248 FUEL CELL SYSTEM
34248 FUEL CELL SYSTEM: 5 KVA HYDROCARBON REFORMER - AIR
34241 ELECTRIC POWER PLANT DESIGN: 15-KILOWATT HYDROCARBON-AIR FUEL CELL E
34830 POWER SOURCE: 5-KILOWATT HYDROCARBON-AIR FUEL CELL P

488
TITLE INDEX

SECTION 'T'

34831 POWER PLANT# 5 KW HYDROCARBON-AIR FUEL CELL P
34223 A 1 KW HYDROGEN FUEL BATTERY#
34222 ITH AN ALKALINE ELECTROL/ A 5-KW HYDROGEN-AIR FUEL BATTERY W
34264 ILITY ASSESSMENT TESTING OF 2 KW HYDROGEN-OXYGEN FUEL CELL S
32019 UCK# LOS ALAMOS LAB MAKING HYDROGEN-POWERED TR
42002 ROGEN DISTRIBUTION TO PROCESS LABORATORIES# HYD
2004 NING HYDROGEN AND / AUTOMATIC LABORATORY APPARATUS FOR OBTAI
43002 P FOR INTERMEDIATE PRE/ A NEW LABORATORY GAS CIRCULATION PUM
41013 EN: SIMULATING JUPITER IN THE LABORATORY# METALLIC HYDROG
40001 IC FLUIDS IN INDUSTRY AND THE LABORATORY# USES OF CRYOGEN
10055 THE ENERGY LABYRINTH#

40401 HYDROGEN PRESSURE VESSEL WITH LAMINATED WALLS#
30050 CHAMBER TEST PROGRAM# LARGE HYDROGEN-OXYGEN ABLATIVE
43009 DOM TEMPERATURE ABSORPTION OF LARGE QUANTITIES OF HYDROGEN B
30043 N OF PROPELLANT DYNAMICS IN A LARGE ROCKET BOOSTER# /TIGATIO
40420 TI/ MULTILAYER INSULATION FOR LARGE VESSELS USED IN TRANSPOR
10072 CONVERSION OF SOLAR ENERGY# LARGE-SCALE CONCENTRATION AND
22112 ABLES AND PRODUCTION COSTS IN LARGE-SCALE MANUFACTURE OF HYD
22008 TION OF GASEOUS PRODUCTS FROM LASER PYROLYSIS OF COALS OF VA
22012 ERIALS# GASES FROM LASER PYROLYSIS OF ORGANIC MAT
30046 D CRYOGENIC ROCKET ENGINE FOR LATE '70S USE# /PICKED TO BUIL
52058 N EMBRITTLEMENT CRACKING LA TICE OILATATION AND HYDROGE
30039 HING ENGINES OF A SPACE-CRAFT LAUNCH VEHICLE# /THE AIR BREAT
30024 PROGRAMS, PRELIMINARY PROJECT LAUNCHERS B1 AND B2, STUDY NO.
30023 PROGRAM STUDY 3-2 ON AN ELDO B LAUNCHING SYSTEM WITH A STANDA
33015 IONS IN A HYDROGEN-AIR MIXING LAYER# CHEMICAL TRANSFORMAT
30050 U/ DEVELOPMENT OF A 1.500,000-LB-THRUST (NOMINAL VACUUM) LIQ
33055 SUPERSONIC COMBUSTION STUDIES LEADING TO THE REALIZATION OF
51009 VEY# HYDROGEN LEAK AND FIRE DETECTION: A SUR
34270 CON/ SIMULATED HYDROGEN CROSS-LEAKAGE IN A LOW-TEMPERATURE,
33028 LL- STIRR/ COMBUSTION OF FUEL-LEAN MIXTURES IN ADIABATIC. WE
33046 IONAL CALCULATIONS BY MALLARD-LECHATELIER EQUATION#/ /ADDIT
23418 ON AN MEMBRANEN AUS PALLADIUM-LEGERUTEN# /F DURCH PERMEATI
30034 BILITY LIMITS WITH A VARIABLE LENGTH HYDROGEN OXYGEN COMBUST
52026 AND 304 STAINLESS STEEL FROM LESS THAN 600 C TO NEAR 600 C#
10017 HYDROGEN AND POWER: A LETTER#
10022 HYDROGEN AND POWER: A LETTER#
40302 LES# TEST OF LIQUID-LEVEL SENSORS AND FISSION COUP
30074 ANT RESEARCH AT THE NASA/LEWIS RESEARCH CENTER. 1945-19
40512 SIS OF TWO-PHASE FLOW FLOW IN LH2 PUMPS FOR OZ/H2 ROCKET ENG
40307 LH2 QUALITY METER#
40415 ES FOR USE AS INSULATIONS FOR LH2 TANKS# /MATERIALS COMPOSIT
34102 SIGN AND OPERATING FACTORS ON LIFE AND PERFORMANCE OF MATRIX
34842 DROGEN/AIR FUEL CELL FOR LONG-LIFE MISSIONS# AUTONOMOUS HY
34246 FACTORS AFFECTING LIFE OF FUEL CELLS#
23004 EFORMING FOR USE IN EMERGENCY LIFE SUPPORT SYSTEM DESIGN#/ /R
20016 ELECTROLYSIS / STATUS OF THE LIFE SYSTEM# STATIC FEED WATER
34634 ES; ELECTRODE IMPROVEMENT AND LIFE TESTING#/ /L CELL ELECTROD
22143 LS# HYDROGEN FROM LIGHT DISTILLATES FOR FUEL CEL
23202 IC UNITS, ENERGY TRANSFER AND LIGHT- INDUCED EVOLUTION OF HY
34631 DROGEN- OXY/ HIGH-PERFORMANCE LIGHT-WEIGHT ELECTRODES FOR HY
34605 DES - 1, 2# LIGHT-WEIGHT FUEL CELL ELECTRO
40414 N SYSTEM FOR DEVELOPMENT OF A LIGHTWEIGHT EXTERNAL INSULATIO
TITLE INDEX

SECTION 'T'

30267 THE SINGLE-CELL CONCEPT FOR A LIGHTWEIGHT, RECHARGEABLE HYDROGEN LIKELY FUEL OF THE FUTURE
10008 GEN IN AIR, OXYGEN, AN/ UPPER LIMIT OF FLAMMABILITY OF HYDROGEN
51004 THE DEPENDENCE OF THE LOWER LIMIT OF HYDROGEN EXPLOSIVITY
33008 UPPER SELF-IGNITION LIMIT OF HYDROGEN IN OXYGEN
33064 APPLICATION TO THE COMPOSITION LIMITS AND TRANSVERSE STABILITY
33016 OXYGEN-STEAM MIXTURE COMBUSTION LIMITS OF HYDROGEN-OXYGEN-NITROUS OXIDE
30034 HYDROGEN LONGITUDINAL INSTABILITIES LIMITS WITH A VARIABLE LENGTH
51005 TIES, BURNING RATES, DILUTION LIMITS, TEMPERATURES, AND WIND
40511 A 14-M LIQUID-HYDROGEN LINE
40500 HYDROGEN FLOW IN PUMP INLET LINE
30002 FINAL INVESTIGATION OF ACOUSTIC LINERS TO SUPPRESS SCREECH IN CRYOGENIC FLUID TRANSMISSION LINES
40600 MULTIPLE USE OF LIQUEFACTION AND STORAGE OF HYDROGEN
40100 ELIUM, OBTAINING ULTRALOW TEMPERATURE LIQUEFACTION OF HYDROGEN AND HELIUM
40112 CARBON GAS MIXTURES-JOULES-THOMSON LIQUEFACTION OF HYDROGEN-HELIO-HELIUM
40103 HYDROGEN-NEON LIQUEFACTION UNIT WITH A HELIUM INPUT
22608 HYDROGEN PRODUCTION AND LIQUEFACTION
40106 OXYGEN-HELIUM MIXTURE LIQUEFACTION
22196 WITH HYDROGEN FLOW IN STEM CONVERSION OF LIQUEFIED GAS AND ITS MIXTURES
50001 LIQUEFIED HYDROGEN SAFETY
50000 LIQUEFIED HELIUM SAFETY
40104 LIQUEFIERS WITH efficient HEAT EXCHANGERS
40306 MEASURING THE TEMPERATURE OF LIQUID AND GASEOUS HYDROGEN
30071 SMALL ROCKET CHAMBER BURNING LIQUID AND GASEOUS HYDROGEN
40111 FLOW RESEARCH SYSTEM FOR LIQUID AND SLUSH HYDROGEN
40201 CAVITATION IN LIQUID CRYOGENS. 1: VENTURI
40604 LIQUEFIERS WITH LIQUID DISTRIBUTION SYSTEM: STATION
34257 POROUS-TEFLON ELECTRODES AND LIQUID ELECTROLYTES DUCTING-
30029 PERFORMANCE INJECTORS FOR THE LIQUID FLUORINE-GASEOUS HYDROGEN COMBUSTION (GASIFICATION) OF LIQUID FUELS AT HIGH PRESSURE
50013 LIQUID HYDROGEN AND HYDROGEN HELIUM, SAFETY CODES CONCERNING LIQUID AND GASEOUS HYDROGEN
22116 EXPERIENCE WITH LIQUID HYDROCARBON FUELS
22110 HYDROGEN FROM LIQUID HYDROCARBONS FOR FUEL
22204 PRODUCTION OF HYDROGEN FROM LIQUID HYDROCARBONS AT HIGH PRESSURE
22119 PRODUCTION OF HYDROGEN FROM LIQUID HYDROCARBONS FOR FUEL
22134 ELLS FROM LIQUID HYDROCARBONS FUEL
22208 FUEL REFORMING OF LIQUID HYDROCARBONS TO GASEOUS HYDROGEN
22200 REFORMING OF LIQUID HYDROCARBONS TO GASEOUS HYDROGEN
22147 CATALYTIC STEAM REFORMING OF LIQUID HYDROCARBONS
40601 ING, TRANSPORT AND STORAGE OF LIQUID HYDROGEN - THE RECYCLABLE LIQUID HYDROGEN AND LIQUID HELIUM
50013 LIQUID HYDROGEN AS A FUEL FOR GAS HYDROGEN AS A SUPERSONIC FUEL
31005 LIQUID HYDROGEN AS A SUPERSONIC FUEL
32004 LIQUID HYDROGEN AS A MOTOR FUEL
40111 PROPULSION EST/ PRODUCTION OF LIQUID HYDROGEN AT THE ROCKET
40500 PERMANENT CHARACTERISTICS OF LIQUID HYDROGEN CENTRIFUGAL TURBINES
33021 LIQUID HYDROGEN AS A FUEL FOR HYDROGEN COMBUSTION PRO...
SECTION 'I'

40409 TIAL WARMUP OF 500,000-GALLON LIQUID HYDROGEN DEWAR
40303 CHNIQUE LIQUID HYDROGEN FLOW BY NMR TE
40421 ZATION FACTORS FOR STORAGE OF LIQUID HYDROGEN IN A LOW-GRAV
31004 ON OF THE THERMAL BEHAVIOR OF LIQUID HYDROGEN IN A TANK DESI
40403 CONSIDERATIONS FOR STORAGE OF LIQUID HYDROGEN IN SPACE VEHIC
40419 SION BLADDERS LIQUID HYDROGEN POSITIVE EXPUL
10012 COST, AND SYSTEM ANALYSIS OF LIQUID HYDROGEN PRODUCTION FIN
50016 EAR LOCK PROJECT ROVER LIQUID HYDROGEN SAFETY: FIVE Y
31013 TRANSPORT THE ECONOMICS OF LIQUID HYDROGEN SUPPLY FOR AIR
32020 S, ECONOMICS, AND SAFETY OF A LIQUID HYDROGEN SYSTEM FOR AUT
31003 THERMAL PROTECTION SYSTEM FOR LIQUID HYDROGEN TANKS OF HYPER
40417 AND SELF-PRESSURIZATION IN A LIQUID HYDROGEN TANK# /ICATION
40413 F-PRESSURIZATION OF SPHERICAL LIQUID HYDROGEN TANKAGE# / SEL
40408 N FOR S-II BOOSTER LIQUID HYDROGEN TANK INSULATIO
40005 LIQUID HYDROGEN TECHNOLOGY
40305 INSTRUMENTATION AT AND ABOVE LIQUID HYDROGEN TEMPERATURE: P
51014 S# EXPLOSION CRITERIA FOR LIQUID HYDROGEN TEST FACILITIE
30056 # DESIGN AND MANUFACTURE OF LIQUID HYDROGEN THRUST CHAMBER
40502 HYDRAULIC DESIGN OF THE M-1 LIQUID HYDROGEN TURBOPUMP#
40506 EAT TRANSFER COEFFICIENTS FOR LIQUID HYDROGEN TURBOPUMPS# H
40503 THERMODYNAMIC IMPROVEMENTS IN LIQUID HYDROGEN TURBOPUMPS#
40000 RE ENGINE/ FUEL FOR TOMORROW LIQUID HYDROGEN# LOW-TEMPERATU
50009 PERATURES, PARTICULAR CASE OF LIQUID HYDROGEN# /ERY LOW TEM
31015 T# WORKING SYMPOSIUM ON LIQUID HYDROGEN-FUELED AIRCRAF
30057 OPULATION BY LIQUID OXYGEN AND LIQUID HYDROGEN# PR
50011 SAFETY IN THE USE OF LIQUID HYDROGEN#
40003 LIQUID HYDROGEN#
40308 L TURBINE-TYPE FLOWMETERS FOR LIQUID HYDROGEN# SMAL
40504 PUMPS FOR LIQUID HYDROGEN#
40113 THE PRODUCTION OF LIQUID HYDROGEN#
22603 PRODUCTION AND DISTRIBUTION OF LIQUID HYDROGEN# P
40416 FOR ROCKET TANKS FILLED WITH LIQUID HYDROGEN# / INSULATIONS
40509 FOR PUMPING LIQUID OXYGEN AND LIQUID HYDROGEN# ED EJECTORS
33005 PROBLEMS ON THE COMBUSTION OF LIQUID OXIDIZERS IN HYDROGEN# /
30049 R HM4 ENGINE: A 40 KN THRUST LIQUID OXYGEN AND HYDROGEN ENG
30047 SEPR ROCKET ENGINE - HM4 WITH LIQUID OXYGEN AND HYDROGENDES
30057 GEN# PROPULSION BY LIQUID OXYGEN AND LIQUID HYDRO
40509 -POWERED EJECTORS FOR PUMPING LIQUID OXYGEN AND LIQUID HYDRO
30037 STABILITY OF GASEOUS HYDROGEN-LIQUID OXYGEN ENGINE# /ON THE
33033 IS FOR COAXIAL JET INJECTION/ LIQUID OXYGEN# PART II: ANALYS
30035 MANCE OF COAXIAL INJECTORS IN LIQUID OXYGEN-GASEOUS HYDROGEN
33021 COM/ QUANTITATIVE ANALYSIS OF LIQUID OXYGEN-LIQUID HYDROGEN
30061 PROPULSIVE UN/ DEVELOPMENT OF LIQUID OXYGEN/LIQUID HYDRO
41012 MAL CONDUCTIVITY OF SOLID AND LIQUID PARAHYDROGEN# THER
30067 ES# DESIGN OF LIQUID PROPELLANT ROCKET ENGIN
23601 6, 1470 / PRIMARY PRODUCTS OF LIQUID WATER PHOTOLYSIS AT 123
40402 HIGH-/ THERMAL PROTECTION FOR LIQUID-HYDROGEN FUEL TANKS IN
40511 A 14-# LIQUID-HYDROGEN LINE#
40414 XTERNAL INSULATION SYSTEM FOR LIQUID-HYDROGEN STAGES OF THE
40422 VENTING OF LIQUID-HYDROGEN TANKAGE#
40418 THERMAL PROTECTION SYSTEM FOR LIQUID-HYDROGEN TANKS OF HYPER
40407 W-DENSITY FOAM FOR INSULATING LIQUID-HYDROGEN TANKS# LO
TITLE INDEX

SECTION 'T'

40302 ON COUPLES TEST OF LIQUID-LEVEL SENSORS AND FISSION

40304 QUALITY DETERMINATION OF LIQUID-SOLID HYDROGEN MIXTURES

40107 QUALITY DETERMINATION OF LIQUID-SOLID HYDROGEN MIXTURES

41005 GEN NEAR THE TRIPLE POINT LIQUID-SOLID MIXTURES OF HYDROGEN

40203 PIEN AND NUCLEATE BOILING OF LIQUID# INCIDENCE

30660 00-LB-THRUST (NOMINAL VACUUM) LIQUIDHYDROGEN/LIQUID OXYGEN EJECTED

40214 AND MEASUREMENTS OF CRYOGENIC LIQUIDS# THERMAL BEHAVIOR

40420 PORTING AND STORING CRYOGENIC LIQUIDS# ESSELS USED IN TRANSFER

50008 COMPRESSED GASES AND CRYOGENIC LIQUIDS# HAZARDOUS SAFETY IN CRYOGENICS

50009 MPERATUR# SAFETY IN THE USE OF LIQUIFIED GASES AT VERY LOW TEMPERATURES

10015 CED ON ENERGY CRISIS SOLUTION LITHIUM-FLUORINE-HYDROGEN SYSTEMS PRODUCED

52053 LEMENT# REVIEW OF LITERATURE ON HYDROGEN EMBRITTENESS

10077 ERL/ HYDROGEN FUTURE FUEL, (A LITERATURE SURVEY ISSUED QUARTERLY)

51012 MABILITY AND EXPLOSIIBILITY: A LITERATURE SURVEY# 2-NCX FLAME

40207 CRYOGENIC HYDROGEN: PART 1# LITERATURE SURVEY# UR-CRITICA

23038 TE TO/ FUEL CELL SYSTEM USING LITHIUM AND LITHIUM HYPOCHLORITE

30236 C ROCKET FUEL SYSTEM FLUORINE-LITHIUM HYDROIDE-HYDROGEN# ESSELS

23028 CELL SYSTEM USING LITHIUM AND LITHIUM HYPOCHLORITE TO PRODUCE

50027 ELLANT STUDY# LITHIUM-FLUORINE-HYDROGEN PROPELLANT

22215 HYDROGEN MANUFACTURE INCREASE LITTLE IN COST# PLANTS FOR

52048 TLEMENT# THE EFFECT OF LOADING MODE ON HYDROGEN EMBRITTENESS

32020 TY OF A LIQUID HYDROGEN SYSTEM LOGISTICS, ECONOMICS, AND SAFE

34642 US HYDROGEN/AIR FUEL CELL FOR LONG-LIFE MISSIONS# AUTONOMOUS

40402 ER FUEL TANKS IN HIGH- SPEED# LONG-RANGE AIRCRAFT# /D-HYDROGEN

20017 ELECTROLYSIS MODULE# LONG-TERM OPERATION OF A WATER ELECTROLYSER

30034 S WITH A VARIABLE LENGTH HYDROGEN LONGITUDINAL INSTABILITY LIMIT

20513 RE ELECTROLYSIS IN THE ZDANSKY-LONZA ELECTROLYTIC TRIGGERS# BY PRESSURE

50016 ID HYDROGEN SAFETY: FIVE YEAR LOOK# PROJECT ROVER LIQUID HYDROGEN

32019 -POWERED TRUCK# LOS ALAMOS LAB MAKING HYDROGEN

40406 LUNAR SURFACE# NO-LOSS CRYOGENIC STORAGE ON THE MOON

51005 FLARE STACK DIFFUSION FLAMES: LOW AND HIGH FLOW INSTABILITY

34604 LOW COST FUEL CELL ELECTRODES# HYDROGEN AT LOW TEMPERATURES

33063 -AIR SUPERSONIC COMBUSTION AT LOW DENSITIES# ES OF HYDROGEN

34638 AL OF A PLATINUM ELECTRODE AT LOW PARTIAL PRESSURES OF HYDROGEN

30016 THE SPACE SHUTTLE, VOLUME 2: LOW PRESSURE THRUSTERS# IN FORCES

33038 USION OF GASEOUS HYDROGEN AT LOW PressURES IN A 35 DEGREE SLOPE

52005 TALS AT HIGH TEMPERATURES AND LOW PRESSURES# HYDROGEN IN MECHANICAL ACTION

23416 LOW PURITY HYDROGEN UPGRADER# HYDROGEN AT LOW TEMPERATURES

22201 F HYDROCARBONS TO HYDROGEN AT LOW TEMPERATURE AND HIGH PRESSURE

22602 HYDROGEN FROM CO + H20# LOW TEMPERATURE FORMATION OF HYDROGEN

23020 HYDROGEN FROM CO + H20# LOW TEMPERATURE FORMATION OF HYDROGEN

34505 LOW TEMPERATURE FUEL CELLS# CARBON-AIR ELECTRODES FOR

34624 CARBON-AIR ELECTRODES FOR LOW TEMPERATURE FUEL CELLS#

34217 # LOW TEMPERATURE FUEL BATTERIES

34603 OF C GE EXISTING BATTERIES# LOW TEMPERATURE HYDROGEN CELLS

34626 C ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN/OXYGEN SYSTEMS

21006 S FOR THE DECOMPOSITION OF HYDROGEN AT LOW TEMPERATURES THERMAL PROCESSES

50009 SE OF LIQUIFIED GASES AT VERY LOW TEMPERATURES# PARTICULAR CONDITIONS

23425 ATION OF HYDROGEN BY MEANS OF LOW TEMPERATURES# PURIFICATION

23421 HYDROGEN PURIFICATION AT LOW TEMPERATURES# HYDROGEN AT LOW TEMPERATURES

33066 HYDROGEN AT HIGH PRESSURE AND LOW TEMPERATURES# FUSION OF HYDROGEN

52018 UM ALLOY WITH HYDROGEN GAS AT LOW TEMPERATURES# OF A TITANIUM ALLOY

23436 S AND APPARATUS FOR PURIFYING LOW-BOILING GASES IN GASMIXTURES
TITLE INDEX

SECTION 'I'

30028 ESTIMATION OF INJECTORS FOR A LIQUID-HYDROGEN TANKS
40407 LOW-CHAMBER-PRESSURE HYDROGEN-
40421 LOW-DENSITY FOAM FOR INSULATION
40424 LOW-GR AVITY ENVIRONMENT / R S T
33024 TUBULAR COMBUSTOR WITH GASEO/
40507 STICS / EXPERIMENTAL STUDY OF LOW-SPEED OPERATING CHARACTERI
34105 HYDROGEN AND BASIC-ELECTROLYTE LOW-TEMPERATURE BATTERIES AT T
52036 OF NIOBIUM AND VANADIUM / THE LOW-TEMPERATURE EMBRITTLEMENT
40000 OR TOMORROW: LIQUID HYDROGEN:
34026 EMS:
34611 DRAMANCE OF CARBON MONOXIDE IN
22122 OOD ROUTE TO FUEL-CELL HYDRO/
22111 HYDROGEN:
23440 F HYDROGEN FROM INDUSTRIAL G/
34270 D HYDROGEN CROSS-LEAKAGE IN A LOW-TEMPERATURE, CONTAINED-ELE
30045 JETS / DYNAMIC PERFORMANCE OF LOW-THRUST, COLD-GAS REACTION
30031 LUORINE ROCKET PERFORMANCE AT LOW# EXPERIMENTAL HYDROGEN-F
51004 IVITY / THE DEPENDENCE OF THE LOWER LIMIT OF HYDROGEN EXPLOS
30040 FOR ADVANC/ AN EVALUATION OF LOX/HYDROGEN ENGINE TECHNOLOGY
30053 M-1 ENGINE O/ DEVELOPMENT OF L02/LH2 GAS GENERATORS FOR THE
40505 EARINGS IN CRYOGENIC HYDROGE/
41008 AND SUBCOOLED PROPELLANTS FOR LUNAR AND INTERPLANETARY MISSI
40406 LOSS CRYOGENIC STORAGE ON THE LUNAR SURFACE# NO-
23427 HYDROGEN RECOVERY TAKES ON NEW LUSTER IN SOME PLANTS# H
40511 A I4-M LIQUID-HYDROGEN LINE#
30053 D2/LH2 GAS GENERATORS FOR THE M-1 ENGINE OPERATIONS# /T OF L
42001 ESSURE VESSEL PROBLEMS IN THE M-1 FACILITIES# /DROGEN GAS PR
40506 HYDRAULIC DESIGN OF THE M-1 LIQUID HYDROGEN TURBOPUMP#
33023 ILIZING GASEOUS HYDROGEN AT A MACH NUMBER OF 3.6 ANGLES OF A
31007 HYDROGEN AND METHANE FUEL IN A MACH 2.7 SUPersonic TRANSPORT#
22172 OF SHALE OIL IN A FLUIDIZED/
43004 ON OF HYDROGEN WITH ALLOYS OF MACROKINETICS OF THE PYROLYSIS
43003 ON OF HYDROGEN WITH ALLOYS OF MAGNESIUM AND COPPER# / REACTI
52012 AVIDR IN METALS USING NUCLEAR MAGNETIC RESONANCE# /ROGEN BEH
43012 MAGNETS THAT ATTRACT HYDROGEN#
52036 ENHANCED FLAW GROWTH IN SSE MAIN ENGINE ALLOYS IN HIGH PRE
34818 EL CELLS REQUIRING MINIMUM OF MAINTENANCE# /DROGEN-OXYGEN FU
20500 GE PROCESS COULD MAKE CHEAPER HYDROGEN#
22010 S $18-MILLION OCR CONTRACT TO MAKE HYDROGEN GAS FROM COAL CH
41016 "PRESSURE ON" TO MAKE METALLIC HYDROGEN#
20015 MAKING HYDROGEN AND OXYGEN#
32019 LOS ALAMOS LAB MAKING HYDROGEN-POWERED TRUCK#
22129 DEVELOPMENT; IMPROVEMENTS IN MAKING# REFINING PROCESS
33046 V, ADDITIONAL CALCULATIONS BY MALLARD-LECHATELIER EQUATION# /
23604 ERGY AVAILABLE IN STORAGE FOR MAN'S USE# /T INTO CHEMICAL EN
34609 DROGEN WITH NONSTOICHIOMETRIC MANGANESE DIOXIDE# /TION OF HY
20000 PELLANT RESUPPLY FOR ADVANCED MANNED MISSIONS# /RESTRIAL PRO
34819 HYDROGEN GENERATOR MANPAC FUEL CELLS#
50014 HYDROGEN SAFETY MANUAL#
40412 AGE SYSTEMS: DESIGN REFERENCE MANUAL# /MS FOR CRYOGENIC STOR
34816 ICAL POWER SUPPLY, OPERATIONS MANUAL# /X562 FUEL CELL ELECTR
20007 ELECTROLYTIC HYDROGEN--ITS MANUFACTURE AND APPLICATIONS#
22215 COST# PLANTS FOR HYDROGEN MANUFACTURE INCREASE LITTLE IN
22154 ONTA/ PRESSURE CONTROL IN THE MANUFACTURE OF A GAS MIXTURE C
SECTION 'T'

22139 URE STATE# MANUFACTURE OF HYDROGEN IN IMP
22140 ETROLEUM AND NATURAL GAS# MANUFACTURE OF HYDROGEN FROM P
22104 DRMING OF NAPHTHA# MANUFACTURE OF HYDROGEN BY REF
22112 DDUCTION COSTS IN LARGE-SCALE MANUFACTURE OF HYDROGEN# /D PR
22633 A HYDROGEN- CA/ SIMULTANEOUS MANUFACTURE OF HYDROGEN AND OF
22644 DRMING REFINERY GASES# THE MANUFACTURE OF HYDROGEN BY REF
30056 THRUST CHAMBER# DESIGN AND MANUFACTURE OF LIQUID HYDROGEN
22177 DRIVEN CENTRIFUGAL / HYDROGEN MANUFACTURE USING GAS TURBINE-
22150 HYDROGEN MANUFACTURE#
22635 SYNTHESIS GAS MANUFACTURE#
23414 URIFICATION PLANT FOR BENZENE MANUFACTURE# HYDROGEN P
22219 POLLUTION ROUTE FOR HYDROGEN MANUFACTURE# /ATION# A MINIMUM
22117 AL INDUSTRIES APPLICATION AND MANUFACTURE# /OLEUM AND CHEMIC
32010 ENRICHED NATURAL GAS, AND GAS MANUFACTURED FROM COAL (SYNTHA
22212 CIAL EXPERIENCE WITH HYDROGEN MANUFACTURING CATALYST# /OMMER
22107 ALYTIC PROCESSES FOR HYDROGEN MANUFACTURING# CAT
10023 HYDROGEN FIGURES IN MANY ENERGY PROPOSALS# HYDRO
10040 HYDROGEN: KEY TO THE ENERGY MARKET# HYDRO
10092 THE INFLUENCE IN AN ENERGY MARKETPLACE# INFLU
10071 ENCE OF HYDROGEN IN AN ENERGY MARKETPLACE# ENCE
34010 YGEN FUEL CELL WITH A CAPILL/ MASS EXCHANGE IN A HYDROGEN-OX
34025 AL FUEL CELLS WITH ION EXCHA/ MASS TRANSFER IN ELECTROCHEMIC
10044 I/ HYDROGEN MAY EMERGE AS THE MASTER FUEL TO POWER A CLEAN-A
10038 THE MASTER OF A NEW AGE# HYDRO
10036 T# HYDROGEN, MASTER-KEY TO THE ENERGY MARKET# HYDRO
22105 YDROCARBON-CONTAINING CHARGED MATERIAL BY USE OF AN ELECTRO
22169 US FOR REFORMING CARBONACEOUS MATERIAL INTO HYDROGEN# /PARAT
40415 S IN/ DEVELOPMENT OF ADVANCED MATERIALS COMPOSITES FOR USE A
52055 ROGEN AT CRYOG/ PROPERTIES OF MATERIALS IN HIGH PRESSURE HYD
51008 F THE BEHAVIOR OF NONMETALLIC MATERIALS IN HYDROGEN# /TION O
22604 ANE WITH SPECIAL REFERENCE TO MATERIALS OF CONSTRUCTION AND
50006 HANDLING HAZARDOUS MATERIALS# MANUFACTURE# GASES FR
52015 EMENT SUSCEPTIBILITY OF SHEET MATERIALS# HYDROGEN EMBRITTL,
52009 AND EMBRITTLEMENT IN FERROUS MATERIALS# /ROGEN PERMEATION,
22625 E THERMAL-CONTACT PREPARATIO/ MATHEMATICAL DESCRIPTION OF TH
22620 E THERMAL CONTACT PROCESS FO/ MATHEMATICAL DESCRIPTION OF TH
52042 ICAL EXTRACTION OF HYDROGEN / MATHEMATICS OF THE ELECTROCHEM
34629 TROFORMED FUEL CELL ELECTRODE MATRICES# H3PO4 FUEL CELLS#
34620 RS ON LIFE AND PERFORMANCE OF MATRIX FUEL CELLS# /ING FACTO
34502 ICS OF WATER REJECTION FROM A MATRIX TYPE OF HYDROGEN-OXYGEN
32018 HYDROGEN-POWERED CARS MAY BEAT POLLUTION STANDARDS# MANUFACTURE#
22210 D TO CONSUMERS THRO/ HYDROGEN MAY BECOME UTILITY AND BE PIPE
10044 TO POWER A CLEAN-A/ HYDROGEN MAY EMERGE AS THE MASTER FUEL
23029 DBILE HYDROGEN GENERATORS AND MEAN TEMPERATURE FUEL CELLS# MANUFACTURE#
33058 DDITION IN SUPersonic FLOW BY MEANS OF HYDROGEN COMBUSTION O
23425 PURIFICATION OF HYDROGEN BY MEANS OF LOW TEMPERATURES# MANUFACTURE#
21001 OBTAINING HYDROGEN BY MEANS OF REACTOR HEAT#
23017 ACTIO/ HYDROGEN GENERATION BY MEANS OF THE ALUMINUM/WATER RE
21007 GEN SOUGHT VIA THERMOCHEMICAL MEANS# MANUFACTURE#
52068 OF HYDROGEN/ INTERNAL FRICTION MEASUREMENTS FOR THE ANALYSIS
TITLE INDEX

SECTION 'T'

40214 IDS# THERMAL BEHAVIOR AND MEASUREMENTS OF CRYOGENIC LIQUID
40306 IQUID AND GASEOUS/ DEVICE FOR MEASURING THE TEMPERATURE OF LIQUID
52022 N INDUCED PHENOMENA AFFECTING MECHANICAL BEHAVIORS OF AUSTENITE
52050 F HYDROGEN AND TEMPERATURE ON MECHANICAL PROPERTIES OF TITANIUM
40211 PARA-HYDROGEN AT 4.2K# MECHANICAL PROPERTIES OF SOLID
34601 C/ RESEARCH ON HYDROGEN FEED MECHANISM OF FUEL CELL ON OPEN
52051 EMENT IN STEEL# THE MECHANISM OF HYDROGEN EMBRITTLEMENT
23209 DUCTION IN SEVERAL ALGAE/ THE MECHANISM OF HYDROGEN PHOTOPRODUCTION
23203 DUCTION BY SEVERAL ALGAE/ THE MECHANISM OF HYDROGEN PHOTOPRODUCTION
34209 RINE FUEL CELLS, V. DISCHARGE MECHANISM OF THE HYDROGEN-CHLORINE FUEL CELL
52013 ION OF HYDROGEN EMBRITTLEMENT MECHANISMS# EVALUATION
33017 DURING THE / CONDITION OF THE MEDIUM BEFORE THE FLAME FRONT
22165 N OR AMMONIA SYNTHESIS GAS AT MEDIUM PRESSURE# CINCING HYDROGEN
34251 RACTERISTICS OF HIGH-PRESSURE MEDIUM-TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS
34812 ACE APPLICATIONS# MEGAWATT FUEL CELLS FOR AEROSPACE
41006 LK THERMOPHYSICAL PROPERTIES/ MELTING CHARACTERISTICS AND ALLOY
34258 IALL/ THE OPERATION OF AN ION-MEMBRANE FUEL CELL WITH MICROBIOLOGY
34210 HYDROGEN-OXYGEN ION-EXCHANGE MEMBRANE FUEL CELLS#
34010 EN FUEL CELL WITH A CAPILLARY MEMBRANE# IN A HYDROGEN-OXYGEN SYSTEM
23418 SSERSTOFF DURCH PERMEATION AN MEMBRANEN AUS PALLADIUM-LEGIERUNG
34509 PERATURE/ ZIRCONIUM PHOSPHATE MEMBRANES FOR INTERMEDIATE TEMPERATURES
23420 N SOLID HYDROGEN PURIFICATION MEMBRANES# RESEARCH STUDIES ON SOLID HYDROGEN
52040 TATE OF HYDROGEN THROUGH METAL MEMBRANES# IF THE PERMEATION RATE
34025 FUEL CELLS WITH ION EXCHANGE MEMBRANES# IN ELECTROCHEMICAL
34640 HE EFFECT OF PREOXIDATION AND MENISCUS SHAPE ON THE HYDROGEN
34625 S# COMPOSITE CARBON-METAL ELECTRODES FOR FUEL CELL MEDIAN
43009 SYSTEMS# METAL HYDRIDE ENERGY STORAGE SYSTEMS
34804 SYSTEMS# 30-WATT METAL HYDRIDE/AIR FUEL CELLS SYSTEM
43003 HYDROGEN FUEL# METAL HYDRIDES AS A SOURCE OF METAL HYDROGEN
43011 FUEL FOR VEHICULAR PROPULSION/ METAL HYDRIDES AS A SOURCE OF METAL HYDROGEN
43007 AGE# METAL HYDRIDES FOR ENERGY STORAGE
33048 Y OF OXYGEN/HYDROGEN POWDERED METAL IGNITION# SIBILITY STUDY
52040 TION RATE OF HYDROGEN THROUGH METAL MEMBRANES# IF THE PERMEATION RATE
23400 EN FROM WATER USING AN ALKALI METAL# FOR PRODUCING HYDROGEN
52044 ROM HYDROGEN CACKING BY THIN METALLIC COATINGS# FOR STEEL FABRICATION
41013 JUPITER IN THE LABORATORY# METAL HYDRIDE SIMULATION
41016 "PRESSURE ON" TO MAKE METALLIC HYDROGEN#
41017 PRODUCTION OF METALLIC HYDROGEN#
41015 D U.S., GROUPS SEEK HYDROGEN'S METALLIC PHASE# SOVIET AND
52025 OF HIGH PRESSURE HYDROGEN ON METALS AT AMBIENT TEMPERATURE#
52060 AND PERMEATION OF HYDROGEN IN METALS AT HIGH TEMPERATURES AN
52012 RESONANCE/ HYDROGEN BEHAVIOR IN METALS USING NUCLEAR MAGNETIC
52033 COMPATIBILITY OF METALS WITH HYDROGEN#
52056 LUCENCE OF GASEOUS HYDROGEN ON METALS# INFLECTION
52002 ENVIRONMENT EMBRITTLEMENT OF METALS# HYDROGEN
52032 DIFFUSION OF GASES THROUGH METALS#
52039 HYDROGEN EMBRITTLEMENT OF METALS#
52011 GEN BRITTLENESS IN NONFERROUS METALS# HYDROGEN
40307 LH2 QUALITY METER#
42600 CRYOGENIC FLOW-METERING RESEARCH AT NBS#
22182 ARBON REFORMING PROTECTION OF A METHANATION CATALYST IN HYDROGEN
22601 METHANATION CATALYSTS#
22625 AUTOMATIC CONTROL OF COMBINED METHANE AND CARBON MONOXIDE CO
TITLE INDEX

SECTION 'T'

22647 HYDROGEN FROM METHANE AND WATER#
33010 ON OF INCOMPLETE OXIDATION OF METHANE CATALYZED BY A HYDROGEN
22646 HYDROGEN FROM METHANE CATALYZED BY A METHANE CATALYTIC DECOMPOSITION OF METHANE FOR THE PRODUCTION OF
23204 BACTERIAL METHANE FUEL CELL#
31007 ARY APPRAISAL OF HYDROGEN AND METHANE FUEL IN A MACH 2.7 SUP
30221 ELECTRODES USING A HYDROGEN OR A METHANE FUELED TURBOMANJET POW
31008 THERMAL FEASIBILITY OF USING METHANE OR HYDROGEN FUEL FOR D
22612 HISTORY: FAILURES IN A STEAM-METHANE REFORMER FURNACE# / ASE
22607 STEAM-METHANE REFORMING#

22636 HYDROGEN BY STEAM-METHANE REFORMING#
33027 O/ COMBUSTION OF HYDROGEN AND METHANE TO SIMULATE EXPANSION
22609 REDUCTION OF PURE H2 AND CO BY METHANE WASH#
22613 REDUCTION OF METHANE HYDROGEN FRACTION OF
23434 CONCENTRATED HYDROGEN FROM A METHANE-HYDROGEN FRACTION OF P
22138 PBONS TO ACETYLENE, ETHYLENE, METHANE, AND HYDROGEN WITH HYD
22641 HYDROGEN FROM METHANE#
22610 HYDROGEN FROM THE PYROLYSIS OF METHANE# ACETYLENE AND H
10081 VERSION OF THE HYDROGEN/ METHANOL ECONOMY - A PRACTICAL
23013 HYDROGEN FROM METHANOL FOR FUEL CELLS#
34213 L CELLS# METHANOL IN-SITU REFORMING FUEL
34840 T HYDROGEN-AIR FUEL CELL WITH METHANOL REFORMER# A 500 WAT
22133 -GAS MIXTURES FOR AMMONIA AND METHANOL# SYNTHESIS
23012 FOR FUEL CELL FEEDING OUT OF METHANOL#/ INING PURE HYDROGEN
52040 E PERMEATION RATE OF HYDRO/ A METHOD FOR DETERMINATION OF TH
23015 ENERGY IN THE PRODUCTION OF H/ METHOD FOR UTILIZING NUCLEAR E
23002 ILIZATION OF NUCLEAR ENERGY# METHOD OF AND PLANET FOR THE UT
23012 GEN FOR FUEL CELL FEEDING OU/ METHOD OF OBTAINING PURE HYDRO
22181 RDM A CARBON MONOXIDE CONTAIN# METHOD OF PRODUCING HYDROGEN F
23431 PERMEATION METHOD RECOVERS HYDROGEN#
52017 A COMPARISON OF VARIOUS TEST METHODS FOR DETECTING HYDROGEN
51003 Y OF EXPLOSIVE COMBUSTION AND METHODS OF COMPUTATION OF TECH
34614 ELECTRODES# NEW METHODS OF OBTAINING FUEL CELL
34220 CHEMI/ THE USE OF HYDROGENASE-METHYLENE BLUE SYSTEM IN A BIO
22617 SII BUTA/ POLUCHE IN VODRODA METODOM KATALITICHEKSOGI KONVER
43003 D NICKEL AND THE FORMATION OF MG2NiH4# / LOYS OF MAGNESIUM AN
34258 N IG-MEMBRANE FUEL CELL WITH MICROBially-PRODUCED HYDROGEN#
22011 ON OF SOLID FOSSIL FUELS IN A MICROWAVE DISCHARGE# /SIFICATI
34817 RBON-AIR FUEL CELL SYSTEM FOR MILITARY APPLICATION# HYDROCA
22632 CK FROM NATURAL GAS IN A BALL MILL# HYDROGEN AND CARBON BLA
22010 YDROGEN GAS FRO/ IGT GETS $18-MILLION OCR CONTRACT TO MAKE H
22216 MINIATURE HYDROGEN GENERATORS#
22136 EXPLORATORY DEVELOPMENT MODEL MINIATURE HYDROGEN GENERATOR# /
22145 MINIATURE HYDROGEN GENERATORS#
34818 N-OXYGEN FUEL CELLS REQUIRING MINIMUM OF MAINTENANCE# /DROG
22219 DROGEN / PARTIAL OXIDATION# A MINIMUM POLLUTION ROUTE FOR HY
43005 ERTIES OF VANA/ THE EFFECT OF MINOR CONSTITUENTS ON THE PROG
34842 N/AIR FUEL CELL FOR LONG-LIFE MISSIONS# AUTONOMOUS HYDROG
41008 FOR LUNAR AND INTERPLANETARY MISSIONS# BCOOLED PROPELLANTS
30040 NGINE TECHNOLOGY FOR ADVANCED MISSIONS# N OF LOX/HYDROGEN E
20000 RESUPPLY FOR ADVANCED MANNED MISSIONS# /RESTRIAL PROPELLANT
30003 CAL UPPER STAGES FOR UNMANNED MISSIONS# /T STAGES WITH CHEMI
23201 ATION IM GESCHLOSSENEN SYSTEM MIT HILFE VON ELEKTROLYSEGAS U
33039 GE/ COMPUTER PROGRAMS FOR THE MIXING AND COMBUSTION OF HYDRO
TITLE INDEX

SECTION 'T'

33056 GEN IN A SUPERSONIC AIRSTREAM/ MIXING AND COMBUSTION OF HYDRO
33042 ON OF HYDROGEN I/ PROBLEMS OF MIXING AND SUPERSONIC COMBUSTI
34216 WHICH GAS / PROBLEMS OF GASES MIXING IN H2/O2 FUEL CELLS IN
33015 SFORMATIONS IN A HYDROGEN-AIR MIXING LAYER/ CHEMICAL TRAN
33054 SUPersonic MIXING OF HYDROGEN AND AIR/
33062 TWO-DIMENSIONAL, SUPERSONIC MIXING OF HYDROGEN AND AIR NEA
33043 OM MULTIPLE INJECTORS NORMAL/ MIXING OF HYDROGEN INJECTED FR
22154 L IN THE MANUFACTURE OF A GAS MIXTURE CONTAINING HYDROGEN AN
22160 D CARBON MONOXIDE# GAS MIXTURE CONTAINING HYDROGEN AN
22189 COMBINATION FOR CONVERTING A MIXTURE OF A REFORMABLE FUEL A
22003 PRODUCTION OF A MIXTURE OF HYDROGEN AND STEAM/
40210 SFER TO SUBLIMING SOLID-VAPOR MIXTURE OF HYDROGEN BELOW ITS
51004 L TEMPERATURE OF THE HYDROGEN MIXTURE WITH AIR# / THE INITIA
22171 HYDROGEN-RICH GAS MIXTURE/
34508 Y SENSOR FOR A HYDROGEN-STEAM MIXTURE# /ILLATOR AS A HUMIDIT
10066 Y THAT BURN A GASOLINE-HYDROGEN MIXTURE# /ON-FREE CAR ENGINES
22633 F A HYDROGEN- CARBON MONOXIDE MIXTURE# /RE OF HYDROGEN AND O
51001 AIR, OXYGEN, AND OXYGEN-INERT MIXTURES AT ELEVATED PRESSURES
22183 NOL# SYNTHESIS-GAS MIXTURES FOR AMMONIA AND METHA
33028 TIRR/ COMBUSTION OF FUEL-LEAN MIXTURES IN ADIABATIC, WELL- S
23408 ATION T/ SEPARATION OF BINARY MIXTURES OF CO AND H2 BY PERME
51003 N/ THE DANGER OF EXPLOSION OF MIXTURES OF FLAMMABLE VAPORS A
41005 TRIPLE POINT# LIQUID-SOLID MIXTURES OF HYDROGEN NEAR THE
33004 COMBUSTION OFstoichiometric MIXTURES OF HYDROGEN- OXYGEN D
33020 AL INDUCTION TIMES IN FLOWING MIXTURES OF HYDROGEN, OXYGN,
22101 PRODUCING AND COOLING GASEOUS MIXTURES OF HYDROGEN AND CARBO
22196 SION OF LIQUEFIED GAS AND ITS MIXTURES WITH HYDROGEN# /ONVER
33046 LOCITIES FOR HYDROGEN-BROMINE MIXTURES. IV. EQUATION OF SEME
23403 HYDROGEN FROM INDUSTRIAL GAS MIXTURES# RECOVERY OF
30032 E IGNITION OF HYDROGEN-OXYGEN MIXTURES# RESONANCE TUB
41007 TRION OF LIQUID-SOLID HYDROGEN MIXTURES# QUALITY DETERMINA
40304 TION OF LIQUID-SOLID HYDROGEN MIXTURES# QUALITY DETERMINA
23419 IR OR HYDROGEN-CONTAINING GAS MIXTURES# FRACTIONATION OF A
33065 WAVES IN HYDROGOXYGEN-ARGON MIXTURES# /BY INCIDENT SHOCK
33016 HDRGEN-OXYGEN- NITROGEN-STEAM MIXTURES# /BUSTION LIMITS OF H
22137 EN OR HYDROGEN-CONTAINING GAS MIXTURES# /SEPARATION OF HYDROG
33045 ROME AND DEUTERIUM- BROMINE MIXTURES# /ITIES IN HYDROGEN-B
33053 MBUSTION OF HYDROGEN-FLUORINE MIXTURES# /LAGRATION IN THE CO
22156 HYDROGEN-CARBON MONOXIDE GAS MIXTURES# /RATUS FOR PRODUCING
23435 SEOUS COMPONENTS FROM GASEOUS MIXTURES# /S FOR SEPARATING GA
40112 N OF HYDROGEN-HYDROCARBON GAS MIXTURES# /THOMSON LIQUEFACTIO
33047 LOCITIES IN HYDROGEN- BROMINE MIXTURES# /UENT,S ON BURNING VE
23021 ATION OF A HYDROGEN GENERATOR ML-539/TM TO PRODUCE PURE HYDR
23029 MEAN TEMPERATURE FUEL CELLS/ MOBILE HYDROGEN GENERATORS AND
30038 CONTRACTION RATIO ON ACOUSTIC-MODE INSTABILITY IN HYDROGEN-
34637 AN EXPERIMENTAL STUDY OF THE MODE OF OPERATION OF POROUS GA
34619 S- DIF/ EXPERIMENTAL STUDY OF MODE OF OPERATION OF POROUS GA
52048 # THE EFFECT OF LOADING MODE ON HYDROGEN EMBRITTLEMENT
34037 MENTAL VOLTAGE-CURRENT CH/_ A MODEL FOR ANALYZING THE EXPERI
22136 ATOR/ EXPLORATORY DEVELOPMENT MODEL MINIATURE HYDROGEN GENER
33051 OR# TRANSIENT MODEL OF HYDROGEN/OXYGEN REACT
30051 S# ACOUSTIC SCALE-MODEL TESTS OF HIGH-SPEED FLOW
22611 TIMIZE HYDROGEN PREDICTION BY MODEL#
TITLE INDEX

SECTION 'T'

20014 # MODERN ELECTROLYSER TECHNOLOGY
34008 ROCHEMICAL PRODU/ FUEL CELLS: MODERN PROCESSES FOR THE ELECT
23021 ROATOR ML-539/TM TO PRODUCE MODIFICATION OF A HYDROGEN GEN
23412 HYDROGEN PURIFICATION USING A MODIFIED FUEL CELL PROCES#
34231 HYDROGEN PURIFICATION USING MODIFIED FUEL CELL PROCES#
34244 HYDROCARBONS FOR USE IN ACID/ MODIFIED FUEL CELL PROCE#
34617 YGEN THIN ELECTRODE FUEL CELL MODULE# MODIFIED PARTIAL OXIDATION OF
20017 ATION OF A WATER ELECTROLYS MODIFIED FUEL CELL MODULE# LONG-TERM OPER
22158 DGEN PRODUCTION FOR FUEL CELL MODUL# HYDR
34505 YDROGEN-OXYGEN CAPILL/ STATIC MOISTURE REMOVAL CONCEPT FOR H
23207 BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN#
34609 TAINED BY STEAM REFORMING AND MOLECULAR SIEVE ADSORPTION# /B
34490 TS IN HYDROGEN GAS GENERATION MOLECULAR SIEVES# / DEVELOPMEN
20110 ATION OF NUCLEAR HEAT PROCES/ MOLLIER DIAGRAMS FOR THE EVALU
34253 UEL CELL# STUDIES OF THE MOLTEN CARBONATE ELECTROLYTE F
34242 BATTERY SY/ PERFORMANCE OF A MOLTEN CARBONATE FUEL CELL AND
22175 FROM HYDROCARBONS AND USE IN MOLTEN CARBONATE FUEL CELLS# /M
34252 DLOGEN/ GENERATING POWER IN A MOLTEN ELECTROLYTE (HYDROGEN-H
34243 PROGRAM# MOLTEN-CARBONATE FUEL BATTERY
34640 HYDROGEN-PALLADIUM ANODE OF A MOLTEN-CARBONATE FUEL CELL# /E
22181 DUCING HYDROGEN FROM A CARBON MONOXIDE CONTAINING GAS STREAM
22148 FUEL GAS/ HYDROGEN AND CARBON MONOXIDE CONTAINING GASES FROM
22626 F COMBINED METHANE AND CARBON MONOXIDE CONVERSION SECTION AT
22156 FOR PRODUCING HYDROGEN-CARBON MONOXIDE GAS MIXTURES# /ATUS
34611 EL CEL/ PERFORMANCE OF CARBON MONOXIDE IN LOW-TEMPERATURE FU
22633 GEN AND OF A HYDROGEN-CARBON MONOXIDE MIXTURE# /RE OF HYDRO
22616 HYDROGEN AND CARBON MONOXIDE#
22160 DNTAINING HYDROGEN AND CARBON MONOXIDE# GAS MIXTURE C
22101 XTURES OF HYDROGEN AND CARBON MONOXIDE# / COOLING GASEOUS MI
22154 DNTAINING HYDROGEN AND CARBON MONOXIDE# OF A GAS MIXTURE C
20019 R ELECTROLYS SYSTEMS F/ SIX-MONTH TEST PROGRAM OF TWO WATE
30208 LIQUID HYDROGEN AS A MOTOR FUEL#
30054 TATING DETONATION WAVE ROCKET MOTOR# /SIBILITY STUDIES OF RO
34635 CELL OXIDATION OF HYDROGEN ON MOVABLE, PARTIALLY SUBMERGED P
52021 SION, AND ELIMINAT/ HYDROGEN MOVEMENT IN STEEL-ENTRY, DIFFU
21000 PROCESSES/ THERMODYNAMICS OF MULTI-STEP WATER DECOMPOSITION
40420 ING VESSELS USED IN TRANSPORTI/ MULTILAYER INSULATION FOR LARG
33043 ING OF HYDROGEN INJECTED FROM MULTIPLE INJECTORS NORMAL TO A
34805 AL POWER SOURCE# STUDY OF MULTIPLE RESERVE ELECTROCHEMIC
23019 AL POWER SOURCE# STUDY OF MULTIPLE RESERVE ELECTROCHEMIC
40600 D TRANSMISSION LINES# MULTIPLE USE OF CRYOGENIC FLUI
40101 LIGFIER# MULTIPLE-UNIT HYDROGEN-HELIUM
32616 DGEN PROPULSIVE UNIT WITH 300 N VACUUM THRUST# /LIQUID HYDRO
22638 NE WITH STEAM O/ REACTIONS OF N-BUTANE, ETHYLENE, AND 1-BUTE
22178 ATION BY STEAM REFORMATION OF N-HEXANE OVER ZEOLITE CATALYST
30074 ET PROPELLANT RESEARCH AT THE NACA/NASA LEWIS RESEARCH CENTE
22205 EN# SELECTIVE CONVERSION OF NAPHTHA HYDROCARBONS TO HYDRO
22144 OTHER TECHNI/ THE I C I STEAM REFORMATION OF NAPHTHA# MANUFACTUR
22157 CATALYTIC STEAM REFORMING OF NAPHTHA# MANUFACTUR
22104 E OF HYDROGEN BY REFORMING OF NAPHTHA# MANUFACTUR
50004 HIGH P/ THE INTENSITY OF THE NARCOTIC ACTION OF HYDROGEN AT
30007 ENGINES# RECENT NASA EXPERIENCE WITH HYDROG
51011 DROGEN HANDLING SUIT PROTECTS NASA TECHNICIANS# HY
TITLE INDEX

SECTION 'T'

32024 N ENGINE CONCEPT
10046 ROGEN: ITS FUTURE ROLE IN THE NATION'S ENERGY ECONOMY
10004 LIQUATIONS AND SERVICES OF THE NATIONAL BUREAU OF STANDARDS.
10064 FUELS FOR TRANSPORTATION AND NATIONAL ENERGY NEEDS
10020 CRYOGENIC H2 AND NATIONAL ENERGY NEEDS
22627, AND TECHNICAL HYDROGEN FROM NATURAL GAS BY PLASMA JET SYNT
22632 YDROGEN AND CARBON BLACK FROM NATURAL GAS IN A BALL MILL
22639 HYDROGEN GENERATION FROM NATURAL GAS WITH HEAT FROM NUC
34215 TEM# PERFORMANCE OF REFORMED NATURAL GAS-ACID FUEL CELL SYM
32010 NATURAL GAS, HYDROGEN-ENRICHED NATURAL GAS, AND GAS MANUFACTU
32010 FUEL: ENGINE EMISSIONS USING NATURAL GAS, HYDROGEN-ENRICHED
22143 HYDROGEN FROM PETROLEUM AND NATURAL GAS
40300 NIC FLOW-METERING RESEARCH AT NBS
40103 HELIUM EXPANSION CO/ HYDROGEN NEON LIQUEFACTION UNIT WITH A
40109 RUEFED HYDROGEN, HELIUM, AND NEON/ PROCESSES FOR PRODUCING LI
40300 ENTAIL FINDINGS FROM ZERO-TANK NET POSITIVE SUCTION HEAD OPER
23636 FOR FERROUS TO FERRO/ GROSS AND NET QUANTUM YIELDS AT 2537 A
22113 ERSTOFFER-ZEUGUNG DURCH / EIN NEUES VERFAHREN ZUR REINSTWASS
'NEW' NOT INDEXED

34303 WITH ALLOYS OF MAGNESIUM AND NICKEL AND THE FORMATION OF MG
52000 INTERGRANULAR EMBRITTLEMENT OF NICKEL BY HYDROGEN/ THE I
22638 STEAM OVER A SILICA-SUPPORTED NICKEL CATALYST IN THE TEMPERA
22209 PREPARATION BY REFORMING RANEY NICKEL CATALYSTS FOR HYDROGEN
34616 UEL CELLS/ RANEY-NICKEL CATALYSTS IN GALVANIC F
34643 HYDROGEN ELECTRODE AND / THE NICKEL SKELETAL CATALYST BASED
34635 12ED ZIRCONIA ELECTROLYTE AND NICKEL- SILVER ALLOY ANODE
34600 OXYGEN FUEL-CELL ELECTRODE IN NICKEL-CADMIUM CELLS
52007 EN UNDER PRESSURE: CASE OF 35 NICRMO 16 STEEL / LS BY HYDROG
52049 NDER PRESSURE: THE CASE OF 35 NICRMO 16 STEEL / Y HYDROGEN U
52036 -TEMPERATURE EMBRITTLEMENT OF NICBIUM AND VANADIUM BY BOTH D
43005 HE PROPERTIES OF VANADIUM AND NICBIUM HYDRIDES / TENTS ON T
43001 GHER HYDRIDES OF VANADIUM AND NICBIUM / THE HI
32023 S OF THE HYD/ PERFORMANCE AND NITRIC OXIDE CONTROL PARAMETER
33016 ION LIMITS OF HYDROGEN-OXYGEN-NITROGEN-STEAM MIXTURES
3012 BERFORMANCE DETERMINED IN COLD NITROGEN / L AND STAGE GROUP P
30403 LIQUID HYDROGEN FLOW BY NMR TECHNIQUE
30408 CT LAUNCHERS B1 AND B2: STUDY NO. 3; 5; A DETAILED DESCRIPTIO
40406 HE LUNAR SURFACE / NO-LOSS CRYOGENIC STORAGE ON T
34810 EN FUEL CELL/ STABILIZING THE NOMINAL POWER OF OXYGEN-HYDROG
30060 ENT OF A 1,500,000-LB-THRUST (NOMINAL VACUUM) LIQUID HYDROGEN
33019 ON IN ROCKET EXHAUSTS / NONEQUILIBRIUM CLUSTER FORMATI
52011 HYDROGEN BRITTLENESS IN NONFERROUS METALS
51008 EVALUATION OF THE BEHAVIOR OF NONMETALLIC MATERIALS IN HYDRO
36609 DX/ REACTION OF HYDROGEN WITH NONSTOICHIOMETRIC MANGANESE DI
40212 TING REAL FLUID PROPERTIES OF NORMAL AND PARAHYDROGEN/ SCULA

499
ECTED FROM MULTIPLE INJECTORS NORMAL TO A SUPersonic airstre
40413 ECTION OF SP\ EFFECT OF SIZE ON NORMAL-GRAvITY SELF-PRESSURIZA
50012 EARCH ON ELEC\PROPULSION. NOTe VII: ANALYSIS OF THE PERF
51012 TNESS: A LITERATURE SUR/ H2-02-NOX FLAMMABILITY AND EXPLOSI
30030 CHAMBER PRESSURES AND EXHAUST NOZZLE EXPANSION AREA RATIOS# /
33035 ONS DURING CALCULATION OF THE NOZZLE FLOW OF PRODUCTS OF THE
30070 -ATOM RECOMBINATION IN ROCKET NOZZLES# /ATALYSIS OF HYDROGEN
10078 NSF-RANN ENERGY ABSTRACTS#
10003 GAS INDUSTRY'S ROLE IN THE NUCLEAR AGE#
20511 RIAL AND AGRO-INDUSTRIAL COM/ NUCLEAR ENERGY CENTERS, INDUST
23015 ON OF H/ METHOD FOR UTILIZING NUCLEAR ENERGY IN THE PRODUCTI
23018 EQUIPMENT FOR THE WORKING OF NUCLEAR ENERGY PROCESS AND
23002 PLANT FOR THE UTILIZATION OF NUCLEAR ENERGY METHOD OF AND
10042 PROSPECTS FOR APPLICATIONS OF NUCLEAR ENERGY# / NEW FUTURE
21010 IAGRAMS FOR THE EVALUATION OF NUCLEAR HEAT PROCESSES FOR WAT
21012 N PRODUCTION FROM WATER USING NUCLEAR HEAT# HYDROGE
21005 N PRODUCTION FROM WATER USING NUCLEAR HEAT# HYDROGE
21009 CESS TO DECOMPOSE WATER USING NUCLEAR HEAT# CHEMICAL PRO
21011 T PRODUCTION OF HYDROGEN WITH NUCLEAR HEAT# / TABLE ON DIRECT
30068 STRATIFICATION# NUCLEAR HEATING AND PROPELLANT
52012 OGEN BEHAVIOR IN METALS USING NUCLEAR MAGNETIC RESONANCE# /R
10049 EN PRODUCTION# NUCLEAR POWER PLANTS FOR HYDRO
30004 GAS CORE NUCLEAR REACTOR#
22639 OM NATURAL GAS WITH HEAT FROM NUCLEAR REACTOR# GENERATION FR
30008 URBINE FOR HYDROGEN-PROPELLED NUCLEAR ROCKET APPLICATIONS. 1
30009 URBINE FOR HYDROGEN-PROPELLED NUCLEAR ROCKET APPLICATIONS. I
30033 RISON OF SMALL WATER-GRAPHITE NUCLEAR ROCKET STAGES: WITH CHE
30005 INVESTIGATION OF GASEOUS NUCLEAR ROCKET TECHNOLOGY#
30007 UNITS FOR HYDROGEN- PROPELLED NUCLEAR ROCKETS# / TURBOPUMP
10080 HYDROGEN FUEL FROM WATER BY A NUCLEAR ROUTE#
21016 WATER SP/ THERMOCHEMICAL AND NUCLEAR TECHNOLOGY FOR NUCLEAR
10018 YDROGEN PRODUCTION FOR BETTER NUCLEAR UTILIZATION# H
21016 AL AND NUCLEAR TECHNOLOGY FOR NUCLEAR WATER SPLITTING#/ EMIC
21015 NUCLEAR WATERSPLITTING#
40203 INCIPIENT AND NUCLEATE BOILING OF LIQUID#
33023 NG GASEOUS HYDROGEN AT A MACH NUMBER OF 3e6 ANGLES OF ATTACK
40212 LATING REAL FLUID PROPERTIES/ MECHANICAL PROPERTIES #
22203 OF HYDROCARBONS WITH STEAM TO OBTAIN HYDROGEN-CONTAINING GAS
23409 D MOLECUL/ ULTRA-PURE HYDROGEN OBTAINED BY STEAM REFORMING AN
34614 # NEW METHODS OF OBTAINING FUEL CELL ELECTRODES
20004 ATIC LABORATORY APPARATUS FOR OBTAINING HYDROGEN AND OXYGEN#
21001 REACTOR HEAT# OBTAINING HYDROGEN BY MEANS OF
23012 EL CELL FEEDING OU/ METHOD OF OBTAINING PURE HYDROGEN FOR FU
43010 CTION OF HYDROGEN AND HELIUM. OBTAINING ULTRALOW TEMPERATURE
22010 GAS FRD/ IGT GETS $18-MILLION OICR CONTRACT TO MAKE HYDROGEN
OF ' NOT INDEXED
20509 SOLID ELECTROLYTES OFFER ROUTE TO HYDROGEN#
23602 E OF IMPROVING THE EFFICIENCY OF UTILIZATION OF SOLAR ENERGY
22005 CHAR OIL ENERGY DEVELOPMENT#
22172 ICS OF THE PYROLYSIS OF SHALE OIL IN A FLUIDIZED BED# /KINET
22622 HYPRO PROCESS: UNIVERSAL OIL PRODUCTS CO#
22621 HYPRO: UNIVERSAL OIL PRODUCTS CO#
22194 TIC COMBUSTION OF HYDROCARBON OILS# /COMPLETE FLAMELESS CATALY
TITLE INDEX

SECTION 'T'

22106 EAMS RANGING FROM C6 TO HEAVY OILS# /ROM EXCESS REFINERY STR
34261 FUEL CELL RESEARCH AT OKLAHOMA STATE UNIVERSITY# /NE
34262 RGY CONVERSION AND STORAGE AT OKLAHOMA STATE UNIVERSITY# /NE
30015 ON ' NOT INDEXED
32026 2-AIR FUEL CELL/LEAD BATTERY (ONE YEAR OPERATING EXPERIENCES
34601 EED MECHANISM OF FUEL CELL ON OPEN CIRCUIT# /H ON HYDROGEN F
34815 R SPACE APPLICATIONS# OPEN CYCLE FUEL CELL SYSTEM F0
40405 #
50015 EN DESIGNING, ASSEMBLING, AND OPERATING A GASEOUS HYDROGEN P
40507 PERIMENTAL STUDY OF LOW-SPEED OPERATING CHARACTERISTICS OF A
34613 ALLADIUM-SILVER ANODE ON IMPL/ OPERATING CHARACTERISTICS OF P
34251 IGH-PRESSURE MEDIUM- TEMPERA/ OPERATING CHARACTERISTICS OF H
32026 L CELL/LEAD BATTERY (ONE YEAR OPERATING EXPERIENCES) /R FUE
34102 PER/ THE EFFECT OF DESIGN AND OPERATING FACTORS ON LIFE AND
34016 CONCENTRATION CHANGES IN OPERATING FUEL CELLS#
22604 MATERIALS OF CONSTRUCTION AND OPERATING PROBLEMS# /RENCE TO
34823 # FUEL CELL POWERPLANT OPERATION IN APOLLO SPACECRAFT
34211 OPERATION OF A FUEL CELL#
20017 SIS MODULE# LONG-TERM OPERATION OF A WATER ELECTROLY
34258 UEL CELL WITH MICROBIALL/ THE OPERATION OF AN ION-MEMBRANE F
20005 ALLATIONS FOR THE PRODUCTION/ OPERATION OF ELECTROLYTIC INST
34221 PRESSURE OPERATION OF FUEL CELLS#
34637 RIMENTAL STUDY OF THE MODE OF OPERATION OF POROUS GAS-DIFFUS
34619 PERIMENTAL STUDY OF MODE OF OPERATION OF POROUS GAS- DIFFU
40508 ANK NET POSITIVE SUCTION HEAD OPERATION OF THE J-2 HYDROGEN
34212 DIATE TEMPERATURE FUEL CELL - OPERATING ON DILUTE HYDROGEN,
33029 JET COMBUSTOR AND FUEL-SYSTEM WITH HYDROGEN FUEL A
30047 OXYGEN AND HYDROGEN DESIGN AND OPERATION# /*NA WITH LIQUID
34816 CELL ELECTRICAL POWER SUPPLY, OPERATIONS MANUAL# /X562 FUEL
22124 OG PRODUCTION WITH REFINERY OPERATIONS# INTEGRATE HYDR
22124 AKING NEW STATURE IN REFINING OPERATIONS# HYDROGEN PLANTS T
30063 GENERATORS FOR THE M-1 ENGINE OPERATIONS# /T OF LO2/LH2 GAS
40421 GE OF LIQUID HYDROGE/ PAYLOAD OPTIMIZATION FACTORS FOR STORA
22611 Y MODEL# OPTIMIZE HYDROGEN PRODUCTION B
10707 AL# OUR SOLAR ENERGY OPTIONS: PHYSICAL AND BIOLOGIC
10707 ICAL AND BIOLOGICAL# OR ' NOT INDEXED
30043 LLANT DYNAMICS IN A LARGE RO/ ORBITAL INVESTIGATION OF PROPE
23600 TERIUM ATOMS BY PHOTOLYSIS OF ORDINARY OR DEUTERATED WATER V
22012 GASES FROM LASER PYROLYSIS OF ORGANIC MATERIALS#
32005 THE HYDROGEN I C ENGINE - ITS ORIGINS AND FUTURE IN THE EMER
34508 R FOR A HYD/ USE OF A FLUIDIC OSCILLATOR AS A HUMIDITY SENSO
10707 ICAL AND BIOLOGICAL# OUR SOLAR ENERGY OPTIONS: PHYS
10707 ICAL AND BIOLOGICAL# /OUT ' NOT INDEXED
34029 LLS - THEIR STATUS AND FUTURE OUTLOOK# FUEL CE
34000 CELLS - PRESENT POSITION AND OUTSTANDING PROBLEMS# FUEL
22605 HYDROGEN BY REGENERATIVE COKE-OVEN GAS SEPARATION# CHEAP
22638 LENE, AND 1-BUTENE WITH STEAM OVER A SILICA-SUPPORTED NICKEL
22178 STEAM REFORMATION OF N-Hexane OVER ZEOLITE CATALYSTS# /N BY
30009 PPLICATIONS, II: EXPERIMENTAL OVERALL AND STAGE GROUP PERFOR
22141 HYDROGEN FROM THE PARTIAL OXIDATION OF HYDROCARBONS#
22199 SYNTH/ BURNER FOR THE PARTIAL OXIDATION OF HYDROCARBONS FOR
34244 USE IN ACID/ MODIFIED PARTIAL OXIDATION OF HYDROCARBONS FOR
TITLE INDEX

34639 LE, PARTIALLY SUBM/ FUEL CELL OXIDATION OF HYDROGEN ON MOVABLE
34602 SIVE PLATINUM ELECTRODE# OXIDATION OF HYDROGEN ON A PASS
51006 THE OXIDATION OF HYDROGEN#
22204 HYDROGEN-RICH GAS BY PARTIAL OXIDATION OF LIQUID HYDROCARBO
33010 OF THE REACTION OF INCOMPLETE OXIDATION OF METHANE CATALYZED
22606 PARTIAL-OXIDATION PROCESS#
22219 ROUTE FOR HYDROGEN / PARTIAL OXIDATION, A MINIMUM POLLUTION
22118 HYDROGEN, PARTIAL OXIDATION#
22128 HYDROGEN, PARTIAL OXIDATION#
22007 /METHANE RATIO AFFECT PARTIAL OXIDATION# PRESSURE AND OXYGEN
34611 PERATURE FUEL CELLS CONTAINING OXIDE CATALYSTS# E IN LOW-TEMP
32023 HYDROGEN RICH GAS PERFORMANCE AND NITRIC OXIDE CONTROL PARAMETERS OF TH
34265 SEALSING OF SILVER OXIDE-ZINC STORAGE CELLS#
33013 PRELIMINARY INVESTIGATION OF OXIDIZER-RICH OXYGEN-HYDROGENC
33005 S ON THE COMBUSTION OF LIQUID OXIDIZERS IN HYDROGEN#/PROBLEM
33000 BULENT GAS JET IN A STREAM OF OXIDIZING AGENTS#/ION OF A TUR
22163 SIMULTANEOUS PRODUCTION OF SYNTHESIS GAS AND HYDROGEN
22129 LARGE HYDROGEN-OXYGEN ABLATIVE CHAMBER TEST P
33036 ROCKET CHAMBER BURNING LIQUID OXYGEN AND GASEOUS HYDROGEN# /
33012 REACTIO/ KINETICS OF HYDROGEN-OXYGEN AND HYDROCARBON-OXYGEN
30049 ENGINE: A 40 KN THRUST LIQUID OXYGEN AND HYDROGEN ENGINE# /
30047 CKET ENGINE - HM4 WITH LIQUID OXYGEN AND HYDROGEN DESIGN AND
30057 PROPULSION BY LIQUID OXYGEN AND LIQUID HYDROGEN#
40509 D EJECTORS FOR PUMPING LIQUID OXYGEN AND LIQUID HYDROGEN#/E
34811 ELECTRICITY TO HYDROGEN AND OXYGEN AND VICE VERSA#/VERTIN
30016 R THE SPACE SHUTTLE/ HYDROGEN-OXYGEN AUXILIARY PROPULSION FD
34505 REMOVAL CONCEPT FOR HYDROGEN-OXYGEN CAPILLARY FUEL CELLS# E
33007 DEVELOPMENT OF HYDROGEN-OXYGEN CATALYSTS#
20010 ITY DURING ELECTROLYSIS HYDROGEN-OXYGEN CELL PRODUCING ELECTRIC
34841 A COMPACT HYDROGEN-OXYGEN CELL#
33001 ICS IN ROCKET ENGINE/ HYDROGEN-OXYGEN CHEMICAL REACTION KINET
33007 TRANSPORT PROPERTIES OF FUEL-OXYGEN COMBUSTION SYSTEMS# /ND
33034 IN A TWO-DIMENSIONAL HYDROGEN-OXYGEN COMBUSTOR# E TE DAMPING
30034 H A VARIABLE LENGTH HYDROGEN-OXYGEN COMBUSTOR# /Y LIMITS WI
22642 M HYDROCARBON GASES BY STEAM- OXYGEN CONVERSION IN A FLUIDIZ
33004 OMERIC MIXTURES OF HYDROGEN- OXYGEN DILUTED WITH HELIUM HYD
34237 VE FUEL CELLS: 1 JL/ HYDROGEN-OXYGEN ELECTROLYTIC REGENERATI
34238 VE FUEL CELLS# HYDROGEN-OXYGEN ELECTROLYTIC REGENERATION
34236 VE FUEL CELLS# HYDROGEN-OXYGEN ELECTROLYTIC REGENERATION
34239 VE FUEL CELLS# HYDROGEN-OXYGEN ELECTROLYTIC REGENERATION
34233 VE FUEL CELLS# HYDROGEN-OXYGEN ELECTROLYTIC REGENERATION
32012 THE FEASIBILITY OF A HYDROGEN OXYGEN ENGINE AS A FUEL AND
30037 TY OF GASEOUS HYDROGEN-LIQUID OXYGEN ENGINE# ON THE StABILI
30060 VACUUM LIQUIDHYDROGEN/ LIQUID OXYGEN ENGINE# /RUST (NOMINAL
30010 TORS AND THERMIONIC/ HYDROGEN-OXYGEN FIRED THERMIONIC GENERA
34203 R/ CONSTRUCTION OF A HYDROGEN-OXYGEN FUEL CELL AND ITS PERFO
34637 CHARACTERISTICS OF A HYDROGEN-OXYGEN FUEL CELL BATTERY#/NT
34264 MENT TESTING OF 2 KW HYDROGEN-OXYGEN FUEL CELL STACKS# /SESS
34106 ELECTANT SUPERSATURA/ HYDROGEN-OXYGEN FUEL CELL SYSTEM WITH R
34501 TER REJECTION FROM A HYDROGEN-OXYGEN FUEL CELL TO A HYDROGEN
34010 MASS EXCHANGE IN A HYDROGEN-OXYGEN FUEL CELL WITH A CAPILL
34243 RICALLY-REGENERATIVE HYDROGEN-OXYGEN FUEL CELL# ELECT
34218 SELF-DISCHARGE OF A HYDROGEN-OXYGEN FUEL CELL#
TITLE INDEX

34234 TICALLY REGENERATIVE HYDROGEN-OXYGEN FUEL CELL# ELECTROLY
34807 GINEERING ASPECTS OF HYDROGEN-OXYGEN FUEL CELL# SOME EN
34267 WEIGHT, RECHARGEABLE HYDROGEN-OXYGEN FUEL CELL# FOR A LIGHT
34245 ES ON PERFORMANCE OF HYDROGEN-OXYGEN FUEL CELL# ELY IMPURITI
34259 ES ON A RECHARGEABLE HYDROGEN-OXYGEN FUEL CELL# MANE STUDI
34270 TAINED-ELECTROLYTE HYDROGEN-OXYGEN FUEL CELL# PERATURE, C
34502 ROM A MATRIX TYPE OF HYDROGEN-OXYGEN FUEL CELL# REJECTION F
34608 PRIMARY HYDROGEN-OXYGEN FUEL CELLS FOR SPACE#
34818 NIMUM OF MAINTENANCE HYDROGEN-OXYGEN FUEL CELLS REQUIRING MI
34814 CELL SYSTEMS# HYDROGEN-OXYGEN FUEL CELLS: VARTA FUEL
34511 AND HEAT BALANCE OF HYDROGEN-OXYGEN FUEL CELLS# WATER
34200 OF HIGH PERFORMANCE HYDROGEN-OXYGEN FUEL CELLS# LITY STUDY
34631 IGT ELECTRODES FOR HYDROGEN- OXYGEN FUEL CELLS# LIGHT-WE
34101 RE. HIGH-TEMPERATURE HYDROGEN OXYGEN FUEL-CELL AND ELECTROLY
34219 ROLYTIC REGENERATIVE HYDROGEN-OXYGEN FUEL-CELL BATTERY# ELECT
34600 ON HYDROGEN ELECTRODE AND THE OXYGEN FUEL-CELL ELECTRODE IN
30072 NAL- DEVELOPMENT OF HYDROGEN-OXYGEN FUELED 3-KILOWATT INTER
20019 SYSTEMS FOR SPACECRAFT CABIN OXYGEN GENERATION# ELECTROLYSIS
33050 TALYTIC REACTORS FOR HYDROGEN-OXYGEN IGNITION# STUDY OF CA
30056 EXPERIMENTS WITH HYDROGEN AND OXYGEN IN REGENERATIVE ENGI
30373 IN/ DEVELOPMENT OF A HYDROGEN-OXYGEN INTERNAL COMBUSTION ENG
34210 UEL CELLS# HYDROGEN-OXYGEN ION-EXCHANGE MEMBRANE F
30322 NCE TUBE IGNITION OF HYDROGEN-OXYGEN MIXTURES# RESONA
34028 L (HOPE) FUEL CELL / HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIA
34254 L (HOPE) FUEL CELL / HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIA
34255 L (HOPE) FUEL CELL / HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIA
20507 THE ECONOMICS OF HYDROGEN AND OXYGEN PRODUCTION BY WATER ELE
33064 THE KINETICS OF THE HYDROGEN-OXYGEN REACTION BEHIND STEADY
33012 DROGEN-OXYGEN AND HYDROCARBON-OXYGEN REACTIONS# ETICS OF HY
34251 MEDIUM- TEMPERATURE HYDROGEN-OXYGEN RECHARGEABLE FUEL CELLS
34260 ONOMIC HIGH-PRESSURE HYDROGEN-OXYGEN REGENERATIVE FUEL- CELL
33026 TRANSFER RATES FOR A HYDROGEN-OXYGEN ROCKET AND A NEW TECHNI
30036 Y CHARACTERISTICS OF HYDROGEN OXYGEN ROCKET ENGINES# ABILITY
30033 20,000- POUND-THRUST HYDROGEN-OXYGEN ROCKET#/CONCEPTS IN A
3025 TRANSFER RATES FOR A HYDROGEN-OXYGEN ROCKET# GAS SIDE HEAT-
3303 TRANSFER RATES IN A HYDROGEN-OXYGEN ROCKET# GAS-SIDE HEAT-
30013 20,000 POUND-THRUST HYDROGEN-OXYGEN ROCKET#/N SCREECH IN A
30038 MODE INSTABILITY IN HYDROGEN- OXYGEN ROCKETS# ON ACOUSTIC-
30002 SUPPRESS SCREECH IN HYDROGEN-OXYGEN ROCKETS# /TIC LINERS TO
30011 MRUST ENGINE# HYDROGEN-OXYGEN SPACE POWER INTERNAL-GO
30059 EM/ DEVELOPMENT OF A HYDROGEN-OXYGEN SPACE POWER SUPPLY SYST
30015 STER TECHNOLOGY REV/ HYDROGEN-OXYGEN SPACE SHUTTLE ACPS THRU
51013 ON PROPERTIES OF THE HYDROGEN-OXYGEN SYSTEM IN VENTED TANKS#
34617 L MODULE# HYDROGEN-OXYGEN THIN ELECTRODE FUEL CEL
34230 SS FOR SUPPLYING HYDROGEN AND OXYGEN TO FUEL CELLS# PROCE
23007 SS FOR SUPPLYING HYDROGEN AND OXYGEN TO FUEL CELLS# PROCE
33033 COAXIAL JET INJECTION/ LIQUID OXYGEN# PART II: ANALYSIS FOR
30035 F COAXIAL INJECTORS IN LIQUID OXYGEN-GASEOUS HYDROGEN# CE 0
34645 TROYLITE INTERFACE FOR CASE OF OXYGEN-HYDROGEN CELL# ELECT
34810 BILIZING THE NOMINAL POWER OF HYDROGEN-OXYGEN FUEL CELLS INT
33013 NVESTIGATION OF OXIDIZER-RICH OXYGEN-HYDROGENCOMBUSTION CHAR
51001 HYDROGEN IN AIR, OXYGEN, AND OXYGEN-INERT MIXTURES AT ELEV
33021 ANTITATIVE ANALYSIS OF LIQUID OXYGEN-LIQUID HYDROGEN COMBUST
TITLE INDEX

SECTION 'T'

33016 COMBUSTION LIMITS OF HYDROGEN-OXYGEN-NITROGEN-STEAM MIXTURES
34243 PERFORMANCE OF HYDRO/ EFFECT OF OXYGEN-SUPPLY IMPURITIES ON PE
30042 NOLOGY STATUS# OXYGEN/HYDROGEN COMPONENT TECH
33048 IGNITI/ FEASIBILITY STUDY OF OXYGEN/HYDROGEN POWDERED METAL
30069 USE OF CRYOGENIC PROPELLANTS (OXYGEN/HYDROGEN) FOR REACTION
30064 USE OF CRYOGENIC PROPELLANTS (OXYGEN/HYDROGEN) FOR REACTION
30061 USE OF DEVELOPMENT OF LIQUID OXYGEN/LIQUID HYDROGEN PROPS
22007 RTIAL OXIDA/ HOW PRESSURE AND OXYGEN/METHANE RATIO AFFECT PA
34834 EFFECT OF OXYGEN-HYDROGEN MIXTURES ON PE
33024 TRAPPED ELECTROLYTE HYDROGEN-OXYGEN, ALKALINE FUEL CELLS# / OXYGEN, AND CHLORINE# /MES IN
30042 STATUS OF HYDROGEN IN AIR, OXYGEN, AND OXYGEN-INERT MIXTURES
34806 USE OF COMPRESSED HYDROGEN AND OXYGEN, AND SUBSEQUENT RECOMBI
20002 IC PRODUCTION OF HYDROGEN AND OXYGEN# ELECTROLYT
20015 MAKING HYDROGEN AND OXYGEN# ELECTROLYS
20503 S AS A SOURCE OF HYDROGEN AND OXYGEN# LOWER SELF-
20008 L FOR GENERATING HYDROGEN AND OXYGEN# ELECTROLYSIS CEL
34638 TIAL PRESSURES OF HYDROGEN OR OXYGEN# / ELECTRODE AT LOW PAR
20005 HE PRODUCTION OF HYDROGEN AND OXYGEN# /C INSTALLATIONS FOR T
23602 ON OF WATER INTO HYDROGEN AND OXYGEN# /GY BY THE DECOMPOSIT
20004 US FOR OBTAINING HYDROGEN AND OXYGEN#/IC LABORATORY APPARAT
23028 ORITE TO PRODUCE HYDROGEN AND OXYGEN# /M AND LITHIUM HYP
34212 ARBONACEOUS FUELS, AND DILUTE OXYGEN# ON DILUTE HYDROGEN, C
30044 TROL ENGINES FOR HYDROGEN AND OXYGEN# /PULSABLE ATTITUDE CON
20506 OXYGENHYDROGEN GENERATOR#
30020 ACE SHUTTLE# AN H2-02 AUXILIARY POWER UNIT FOR SP
51009 EFFECT OF WATER VAPOR ON H2-02 DETONATIONS#
34235 ELECTROLYTIC REGENERATIVE H2-02 SECONDARY FUEL CELLS#
51012 IBILITY: A LITERATURE SUR/ H2-02-NOX FLAMMABILITY AND EXPLOS
40512 SE FLOW FLOW IN LH2 PUMPS FOR 02/H2 ROCKET ENGINES# /TWO-PHA
30049 / THE DEVELOPMENT OF THE S E P R HM4 ENGINE: A 40 KN THRUST
23422 H-VOLUME HYDROGEN# PALLADIUM DIFFUSION YIELDS HIG
52031 OGEN ON TENSILE PROPERTIES OF PALLADIUM- HYDROGEN SYSTEM#/ R
34621 CHEMICAL ENERGY CONVERSION IN PALLADIUM-HYDROGEN DIFFUSION E
23418 H PERMEATION AN MEMBRANEN AUS PALLADIUM-LEGIERUNGEN# /F DURC
34613 OPERATING CHARACTERISTICS OF PALLADIUM-SILVER ANODE ON IMPU
10051 FEDERAL PANEL REPORTS ON HYDROGEN#
34612 PAPER FUEL CELL ELECTRODES#
40211 ECHANICAL PROPERTIES OF SOLID PARA-HYDROGEN AT 4.2K# M
22108 STEAM REFORMING PARAFFINIC HYDROCARBONS#
40213 NG UNITS FROM 36 D/ TABLES OF PARAHYDROGEN DATA IN ENGINEERI
41011 E THERMODYNAMIC PROPERTIES OF PARAHYDROGEN FROM 1 TO 22K# /H
41012 DUCTIVITY OF SOLID AND LIQUID PARAHYDROGEN#/ THERMAL CON
40212 LUID PROPERTIES OF NORMAL AND PARAHYDROGEN# /CALCULATING REAL F
40105 VERSION FOR PRODUCTION OF 98% PARAHYDROGEN#/H TWO-STAGE CON
40200 G AVERAGE DENSITY AND RELATED PARAMETERS IN TWO-PHASE CRYOGE
32023 ANCE AND NITRIC OXIDE CONTROL PARAMETERS OF THE HYDROGEN ENG
30037 GASEOUS/ EFFECT OF COMBUSTOR PARAMETERS ON THE STABILITY OF
51003 TION OF TECHNICAL EXPLOSION PARAMETERS# /ETHODS OF COMPUTA
33033 JET INJECTION/ LIQUID OXYGEN# PART II: ANALYSIS FOR COAXIAL
40207 -CRITICAL CRYOGENIC HYDROGEN: PART 1# LITERATURE SURVEY# /E
32001 AIR FUELED AUTOMOBILE ENGINE (PART 1)# THE HYDROGEN -
30029 FORMANCE EVALUATION. PHASE 1, PART 1: ANALYSIS, DESIGN, AND
TITLE INDEX

SECTION 'T'

32021 " INTERNAL COMBUSTION ENGINE/ PARTIAL HYDROGEN INJECTION INTEN
22199 ONS FOR SYNTH/ BURNER FOR THE PARTIAL OXIDATION OF HYDROCARB
22204 OROCARB/ HYDROGEN-RICH GAS BY PARTIAL OXIDATION OF LIQUID HY
22141 ONS# HYDROGEN FROM THE PARTIAL OXIDATION OF HYDROCARB
34244 ONS FOR USE IN ACID/ MODIFIED PARTIAL OXIDATION OF HYDROCARB
22199 OLLUTION ROUTE FOR HYDROGEN / PARTIAL OXIDATION, A MINIMUM P
22128 HYDROGEN, PARTIAL OXIDATION/
22118 HYDROGEN, PARTIAL OXIDATION/
22037 D OXYGEN/METHANE RATIO AFFECT PARTIAL OXIDATION#/ PRESSURE AN
34638 F A PLATINUM ELECTRODE AT LOW PARTIAL PRESSURES OF HYDROGEN
22606 PARTIAL-OXIDATION PROCESS/
34639 ATION OF HYDROGEN ON MOVABLE, PARTIALLY SUBMERGED PLATINUM A
50009 SES AT VERY LOW TEMPERATURES, PARTICULAR CASE OF LIQUID HYDR
10029 -ELECTRIC UTILITY SYSTEM WITH PARTICULAR REFERENCE TO FUSION
33034 IMENSIONAL / AN EXPERIMENT ON PARTICULATE DAMPING IN A TWO-D
52006 ANALYSIS OF HYDROGEN IN STEEL PARTS# / MEASUREMENTS FOR THE
34602 OXIDATION OF HYDROGEN ON A PASSIVE PLATINUM ELECTRODE/
40421 OR STORAGE OF LIQUID HYDROGE/ PAYLOAD OPTIMIZATION FACTORS F
34816 AL POWER SUPPLY, OPERATIONS / PCBB-4-X562 FUEL CELL ELECTRIC
30036 ILLI CHARA/ EFFECT OF THRUST PER ELEMENT ON COMBUSTION STAB
30038 ECT OF CHAMBER PRESSURE, FLOW PER ELEMENT, AND CONTRACTION R
34232 LL#/ 20 WATT-HOUR PER POUND REGENERATIVE FUEL CE
30058 SSURES FROM 100 TO 300 POUNDS PER SQUARE INCH ABSOLUTE#/ PRESS
23607 PE/ PHOTOCHEMISTRY OF CERIUM PERCHLORATES IN DILUTE AQUEOUS
23607 ERCHLORIDES IN DILUTE AQUEOUS PERCHLORIC ACID#/ OF CERIUM P
33041 LTE PROPULSION SYSTEMS# PERFORMANCE ANALYSIS OF COMPOS
30041 RACTERISTICS OF CONTROLLABLE/ PERFORMANCE AND COMBUSTION CHA
32023 NTROL PARAMETERS OF THE HYD/ PERFORMANCE AND NITRIC OXIDE C
30031 NAL HYDROGEN-FLUORINE ROCKET PERFORMANCE AT LOW# EXPERIME
32014 AN AIR-BREATH/ EMISSION AND PERFORMANCE CHARACTERISTICS OF
30099 NTAL OVERALL AND STAGE GROUP PERFORMANCE DETERMINED IN COLD
30021 E SHUTTLE VEHICLES USING A H/ PERFORMANCE ESTIMATES FOR SPAC
30029 1, PART 1:/ FLUORINE-HYDROGEN PERFORMANCE EVALUATION, PHASE
34263 H HIGH PERFORMANCE FUEL CELL/
34257 G CONDUCTING- POR/ A NEW HIGH-PERFORMANCE FUEL CELL EMPLOYIN
34200 EL/ FEASIBILITY STUDY OF HIGH PERFORMANCE HYDROGEN-OXYGEN FU
30029 GN, AND DEMONSTRATION OF HIGH PERFORMANCE INJECTORS FOR THE
34631 RODES FOR HYDROGEN- OXY/ HIGH-PERFORMANCE LIGHT-WEIGHT ELECT
30030 RINE ROCKET ENG/ EXPERIMENTAL PERFORMANCE OF A HYDROGEN-FLUO
34242 ATE FUEL CELL AND BATTERY SY/ PERFORMANCE OF A MOLTEN CARBON
33024 STOR WITH GASEO/ LOW-PRESSURE PERFORMANCE OF A TUBULAR COMBU
33023 T UTILIZING GASEOUS HYDROGEN/ PERFORMANCE OF A 28-INCH RAMJE
30012 ON, NOTE VII: ANALYSIS OF THE PERFORMANCE OF AN ARCJET DRIVE
34611 IN LOW-TEMPERATURE FUEL CEL/ PERFORMANCE OF CARBON MONOXIDE
30035 RS IN LIQUID OXYGEN-GASEOUS / PERFORMANCE OF COAXIAL INJECTO
34214 BUTANE-AIR FUEL CELL# PERFORMANCE OF COMPACT-DESIGN
30008 N OF TURBINE AND EXPERIMENTAL PERFORMANCE OF FIRST TWO STAGE
34636 FUEL CELL ELECTRODES# THE PERFORMANCE OF FLOODED POROUS
34245 F OXYGEN-SUPPLY IMPURITIES ON PERFORMANCE OF HYDROGEN-OXYGEN
34204 ELLS# EFFECT OF PRESSURE ON PERFORMANCE OF HYDROGEN FUEL C
30045 D-GAS REACTION JETS / DYNAMIC PERFORMANCE OF LOW-THRUST, COL
34102 OPERATING FACTORS ON LIFE AND PERFORMANCE OF MATRIX FUEL CEL
33040 YDROG/ THEORETICAL COMBUSTION PERFORMANCE OF RAMJET FUELS: H
TITLE INDEX

SECTION 'T'

23209 AE/ THE MECHANISM OF HYDROGEN PHOTOPRODUCTION IN SEVERAL ALG
23202 TRANSFER AND LIGHT- VARIABLE PHOTOSYNTHETIC UNITS, ENERGY T
34623 THODE COBALT PHThALOCYANINE AS FUEL CELL CA
10070 OUR SOLAR ENERGY OPTIONS: PHYSICAL AND BIOLOGICAL#
34011 S. OF DIRECT CONVERSION OF CH/ PHYSICAL AND TECHNICAL PROBLEM
41002 DATA FOR HYDROG/ HANDBOOK OF PHYSICAL AND THERMAL PROPERTY
30046 ET ENGINE FOR/ PRATT & WHITNEY PICKED TO BUILD CRYOGENIC ROCK
50008 RS GUIDE EMPHASIZING SAFETY / PILOT CURRICULUM AND INSTRUCI
22210 GEN MAY BECOME UTILITY AND BE PIPED TO CONSUMERS THROUGH GRI
40510 OWN TIME FOR SIMPLE CRYOGENIC PIPELINES# COOLD
42000 RVICE# HOW TO DESIGN PIPING SYSTEMS FOR HYDROGEN SE
10015 DN LI/ "HYDROGEN-HEATED TOWNS PLACED ON ENERGY CRISIS SOLUTI
10076 PLAN FOR THE ELIMINATION OF PO
34241 AIR FUEL CELL ELECTRIC POWER PLANT DESIGN# /-KW HYDROCARBON
23414 HYDROGEN PURIFICATION PLANT FOR BENZENE MANUFACTURE#
23430 SEPARATION PLANT FOR PURE HYDROGEN#
23002 NUCLEAR ENERGY# METHOD OF AND PLANT FOR THE UTILIZATION OF N
50012 HYDROGEN PLANT SHUTDOWNRED#
20011 ELECTROLYTIC HYDROGEN PLANT#
34831 DROCARBON-AIR FUEL CELL POWER PLANT# 5 KW HY
22626 CTION AT THE RUSTAVI CHEMICAL PLANT# /MONOXIDE CONVERSION SE
22215 E INCREASE LITTLE IN COST# PLANTS FOR HYDROGEN MANUFACT
10049 # NUCLEAR POWER PLANTS FOR HYDROGEN PRODUCTION
22124 EFINDING OPERATIONS# HYDROGEN PLANTS TAKING NEW STATURE IN R
22624 AIR AND GAS SEPARATION PLANTS#
23427 Y TAKES ON NEW LUSTER IN SOME PLANTS# HYDROGEN RECOVER
50003 L SYSTEMS FOR STEAM REFORMING PLANTS# /N OF FAIL-SAFE CONTRO
22267 HYDROGEN FROM NATURAL GAS BY PLASMA JET SYNTHESIS# /CHNICAL
33058 HYDROGEN COMBUSTION ON A FLAT PLATE IN TANGENTIAL FLOW# /OF
33049 OF REVELATION AND NEAR A FLAT PLATE INTANGENTIAL FLOW# /IES
52001 T OF ALLOY STEELS TO CADMIUM PLATING (HYDROGEN) EMBRITTLME
34640 ENISCUS SHAPE ON THE HYDROGEN-PLATINUM ANODE OF A MOLTEN-CAR
34639 MOBILE, PARTIALLY SUBMERGED PLATINUM ANODES# / HYDROGEN ON
34627 A STUDY OF THE DEGRADATION OF PLATINUM BLACK FUEL CELL CATHO
34638 IAL PRESSURES/ POTENTIAL OF A PLATINUM ELECTRODE AT LOW PART
34602 TION OF HYDROGEN ON A PASSIVE PLATINUM ELECTRODE# OXIDA
34641 STEM FOR HYDROGEN ANODES/ THE PLATINUM-ON-CARBON CATALYST SY
34642 STEM FOR HYDROGEN ANODES/ THE PLATINUM-ON-CARBON CATALYST SY
52045 ELECTROLYTIC HYDROGEN THROUGH PLATINUM# PERMEATION OF
33006 DIATION FROM BURNING HYDROGEN PLUME# THERMAL RA
22617 ALITIESKOEI KONVERSII BUTANA POD DAVLENIEM# /DA METODOM KAT
40206 OF HYDROGEN NEAR ITS CRITICAL POINT IN A HEATED CYLINDRICAL
41002 ERTY DATA FOR HYDROGEN TRIPLE POINT REGION TO CRITICAL POINT
41002 IPLE REGION TO CRITICAL POINT REGION# VOLUME I: A STUD
41005 S OF HYDROGEN NEAR THE TRIPLE POINT# LIQUID-SOLID MIXTURE
40210 OF HYDROGEN BELOW ITS TRIPLE POINT# /NG SOLID-VAPOR MIXTURE
22219 PARTIAL OXIDATION, A MINIMUM POLLUTION ROUTE FOR HYDROGEN M
32018 HYDROGEN-POWERED CARS MAY BEAT POLLUTION STANDARDS# H
10065 T BURN A GASOLINE-HYDROGEN M/ POLLUTION-FREE CAR ENGINES THEA
10076 PLAN FOR THE ELIMINATION OF POLLUTION#
10087 POWER WITHOUT POLLUTION#
10058 G ENERGY AND REDUCING THERMAL POLLUTION# /ELLS FOR CONSERVING
10037 PROBLEM OF ENERGY SUPPLY AND POLLUTION# /ICAL ANSWER TO THE

507
TITLE INDEX

22617 TALITICHESKOI KONVERSII BUTA/
23510 HYDROGEN GENERATION BY SOLID
20504 EN FUEL PRODUCTION WITH SOLID
23428 AND H2 BY PERMEATION THROUGH
30006 TECHNOLOGY#
34648 TROCHEMICAL STUDIES ON HIGHLY
34636 THE PERFORMANCE OF FLOODED
34619 STUDY OF MODE OF OPERATION OF
34637 Y OF THE MODE OF OPERATION OF
34257 EL CELL EMPLOYING CONDUCTING-
23010
23038 PORTABLE HYDROGEN GENERATOR#
34827 FROM SHELL'S FUEL CELL -
34031 FROM FUEL CELLS - PRESENT
34000 EMS#
40419 LIQUID HYDROGEN
40508 L FINDINGS FROM ZERO-TANK NET
52047 TLEMENT OF / ESTIMATES OF THE
10084 ENERGY SOURCES ON A
32009 SURVEY OF HYDROGEN'S
34638 ODE AT LOW PARTIAL PRESSURES/
31012 ROGEN FUELED SUPERSONIC AND /
34232 20 WATT-HOUR PER
30013 ATIONS ON SCREECH IN A 20,000
30033 RESSION CONCEPTS IN A 20,000-
30058 BER PRESSURES FROM 100 TO 300
33048 LITY STUDY OF OXYGEN/HYDROG
10044 EMERGE AS THE MASTER FUEL TO
34268 HIGH
34020 FUEL CELLS FOR CENTRAL
10061 ON SYSTEMS AND FOR ELECTRICAL
34252 (HYDROGEN-HALOGEN/ GENERATING
30011 NE# HYDROGEN-OXYGEN SPACE
34810 CELL/ STABILIZING THE NOMINAL
34241 CARBON-AIR FUEL CELL ELECTRIC
34831 KW HYDROCARBON-AIR FUEL CELL
10049 UCTION#
34830 -KW HYDROCARBON-AIR FUEL CELL
34805 TIPLE RESERVE ELECTROCHEMICAL
23019 TIPLE RESERVE ELECTROCHEMICAL
34014 COMPLETE POWER SOURCES#
30059 NT OF A HYDROGEN-OXYGEN SPACE
34818 9-4-X562 FUEL CELL ELECTRICAL
34829 CELLS FOR IMPROVED ELECTRICAL
34810 CELLS INTENDED FOR EMERGENCY
34803 IODSATELLE FUEL CELL/BATTERY
30073 ERNAL COMBUSTION ENGINE SPACE
34608 OF HYDROCARBONS IN FUEL CELL
32006 N AUTOMOTIVE VEHICLE ADVANCED
30018 SPACE SHUTTLE AUXILIARY POWER UNIT (APU)#
30020 AN H2-02 AUXILIARY POWER UNIT FOR SPACE SHUTTLE#
30019 MINARY DESIGN OF AN AUXILIARY
10087
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10017</td>
<td>HYDROGEN AND POWER: A LETTER#</td>
</tr>
<tr>
<td>10022</td>
<td>HYDROGEN AND POWER: A LETTER*</td>
</tr>
<tr>
<td>10019</td>
<td>SOLAR SEA POWER#</td>
</tr>
<tr>
<td>10083</td>
<td>SOLAR POWER#</td>
</tr>
<tr>
<td>34827</td>
<td>SHELL'S FUEL CELL - PORTABLE POWER#</td>
</tr>
<tr>
<td>34835</td>
<td>DEVELOPMENT OF UNDERSEA POWER#</td>
</tr>
<tr>
<td>32018</td>
<td>N STANDARDS# HYDROGEN-POWERED CARS MAY BEAT POLLUTION</td>
</tr>
<tr>
<td>40509</td>
<td>LIQUID OXY/ ANALYSIS OF ROCKET-POWERED EJECTORS FOR PUMPING L</td>
</tr>
<tr>
<td>30021</td>
<td>A METHANE FUELED TURBOMACHJET POWERED FIRST STAGE# /ROGEN OR</td>
</tr>
<tr>
<td>32019</td>
<td>OS ALAMOS LAB MAKING HYDROGEN-POWERED TRUCK#</td>
</tr>
<tr>
<td>34823</td>
<td>SPACECRAFT# FUEL CELL POWERPLANT OPERATION IN APOLLO</td>
</tr>
<tr>
<td>34838</td>
<td>ULATING ELECTROLYTE FUEL CELL POWERPLANT#</td>
</tr>
<tr>
<td>34510</td>
<td>BLOWER FOR VEHICULARFUEL CELL POWERPLANT# / DRIVEN HYDROGEN</td>
</tr>
<tr>
<td>34887</td>
<td>HYDROGEN POWERPLANT FROM DEVELOPMENT OF UNDERSEA POWER#</td>
</tr>
<tr>
<td>10081</td>
<td>GEN/ THE METHANOL ECONOMY - A PRACTICAL VERSION OF THE HYDRO</td>
</tr>
<tr>
<td>30046</td>
<td>D CRYOGENIC ROCKET ENGINE FO/ PRATT & WHITNEY PICKED TO BUILD</td>
</tr>
<tr>
<td>52036</td>
<td>ANADILUM BY BOTH DISSOLVED AND</td>
</tr>
<tr>
<td>33059</td>
<td>STATION TEMPERATURES BY</td>
</tr>
<tr>
<td>40108</td>
<td>FOR A SPACE/ DEVELOPMENT OF A PRACTICAL THERMODYNAMIC CYCLE</td>
</tr>
<tr>
<td>30017</td>
<td>SUBSYSTEM/ SPACE SHUTTLE HIGH PRESSURE AUXILIARY PROPULSION</td>
</tr>
<tr>
<td>30024</td>
<td>BI AND/ ELDQ FUTURE PROGRAMS, PRELIMINARY DESIGN OF AN AUXIL</td>
</tr>
<tr>
<td>30013</td>
<td>XIDIZER-RICH OXYGEN-HYDRO# A PRELIMINARY INVESTIGATION OF O</td>
</tr>
<tr>
<td>30029</td>
<td>H AND/ ELDQ FUTURE PROGRAMS, PRELIMINARY PROJECT LAUNCHERS</td>
</tr>
<tr>
<td>34640</td>
<td>E ON THE HYDRO/ THE EFFECT OF</td>
</tr>
<tr>
<td>34646</td>
<td>NTINUOUS SERVICE OF RANEY--AN ULTIMATE ECONOMY? A PRACTICAL ANSWER TO THE PROBLEM</td>
</tr>
<tr>
<td>34847</td>
<td>ROGEN IN ELECTROCHEM/ IN SITU</td>
</tr>
<tr>
<td>22209</td>
<td>NICKEL CATALYSTS FOR HYDROGEN</td>
</tr>
<tr>
<td>22632</td>
<td>RBDON BLACK FROM NA/ CATALYTIC</td>
</tr>
<tr>
<td>22625</td>
<td>IPTION OF THE THERMAL-CONTACT</td>
</tr>
<tr>
<td>22643</td>
<td>PREPARATION OF HYDROGEN# /ESC</td>
</tr>
<tr>
<td>22135</td>
<td>ALYTIC REFORMING OF HYDROCAR/</td>
</tr>
<tr>
<td>22120</td>
<td>YDROCARBONS#</td>
</tr>
<tr>
<td>22137</td>
<td>ROGEN-CONTAINING GAS MIXTURE/</td>
</tr>
<tr>
<td>20502</td>
<td>PROPERATION OF HYDROGEN OR HYD</td>
</tr>
<tr>
<td>22631</td>
<td>DEVELOPMENT OF HYDROGEN</td>
</tr>
<tr>
<td>22173</td>
<td>W CONCEPTS AND TECHNIQUES FOR</td>
</tr>
<tr>
<td>34002</td>
<td>LS# THE PRESENT AND FUTURE OF FUEL CEL</td>
</tr>
<tr>
<td>40305</td>
<td>LIQUID HYDROGEN TEMPERATURE: PRESENT AND FUTURE# /AND ABOVE</td>
</tr>
<tr>
<td>34000</td>
<td>NG PROBLEMS# FUEL CELLS - PRESENT POSITION AND OUTSTANDI</td>
</tr>
<tr>
<td>34031</td>
<td>OSPECTS# FUEL CELLS - PRESENT POSITION AND FUTURE PR</td>
</tr>
<tr>
<td>34610</td>
<td>UDIES ON ELECTRODE PROCESSES/</td>
</tr>
<tr>
<td>34250</td>
<td>ROBLEMS# FUEL CELLS PRESENT STATUS AND DEVELOPMENT</td>
</tr>
<tr>
<td>33023</td>
<td>F ATTACK UP TO 12 DEGREES AND PRESSURE ALTITUDES UP TO 110,0</td>
</tr>
<tr>
<td>33066</td>
<td>MOUTHMENT OF HYDROGEN AT HIGH PRESSURE AND LOW TEMPERATURES#</td>
</tr>
<tr>
<td>22007</td>
<td>TIO AFFECT POXIAL OXIDA/ HIGH PRESSURE AND OXYGEN METHANE RA</td>
</tr>
<tr>
<td>30017</td>
<td>SUBSYSTEM/ SPACE SHUTTLE HIGH PRESSURE AUXILIARY PROPULSION</td>
</tr>
<tr>
<td>33002</td>
<td>APOR ON HYDROGEN-AIR CONSTANT-PRESSURE COMBUSTION# / WATER V</td>
</tr>
</tbody>
</table>
22154 CURE OF A GAS MIXTURE CONTA/ PRESSURE CONTROL IN THE MANUFA
20513 ANSK/ ELECTROLYTE HYDROGEN BY PRESSURE ELECTROLYSIS IN THE ZD
20538 SE MAIN ENGINE ALLOYS IN HIGH PRESSURE GASEOUS HYDROGEN/ S
50017 SAFETY OF HYDROGEN PRESSURE GAUGES
52055 OPERATIONS OF MATERIALS IN HIGH PRESSURE HYDROGEN AT CRYOGENIC
52024 TLEMENT OF TRIP STEEL IN HIGH-PRESSURE HYDROGEN GAS# EMBRIT
52025 AMBIENT TEM/ EFFECTS OF HIGH PRESSURE HYDROGEN ON METALS AT
22202 HIGH PRESSURE HYDROGEN PRODUCTION#
30028 F INJECTORS FOR A LOW-CHAMBER-PRESSURE HYDROGEN-FLUORINE ROC
34260 ERATIVE FUEL- / ECONOMIC HIGH-PRESSURE HYDROGEN-OXYGEN REGEN
41014 HEEDY AND EXPERIMENT FOR HIGH-PRESSURE HYDROGEN FUEL CELLS# EFFECT OF PRESSURE ON PERFORMANCE OF HYD
41016 HYDROGEN# "PRESSURE ON" TO MAKE METALLIC PRESSURE Operation OF FUEL CEL
33024 LAR COMBUSTOR WITH GASED/ LOW-PRESSURE PERFORMANCE OF A TUBU
22170 BONS# HIGH-PRESSURE REFORMING OF HYDROCAR
50015 OPERATING A GASEOUS HYDROGEN PRESSURE SYSTEM# EMBLING, AND
30016 SPACE SHUTTLE# VOLUME 2: LOW PRESSURE THRUSTERS# /N FOR THE
40400 HYDROGEN# PRESSURE VESSEL FOR USE WITH H
42001 E M-1 FACILITIE/ HYDROGEN GAS PRESSURE VESSEL PROBLEMS IN TH
40401 WALLS# HYDROGEN PRESSURE VESSEL WITH LAMINATED
20012 RCUIT FOR AN ELECTROLYSIS-TY/ PRESSURE-RESPONSIVE CONTROL CI
32438 PRESSURE-SWING ADSORPTION#
30038 D CONTRACT/ EFFECT OF CHAMBER PRESSURE, FLOW PER ELEMENT, AN
34101 ROGEN/ A NEW APPROACH TO HIGH-PRESSURE, HIGH-TEMPERATURE HYD
52007 NGTH STEELS BY HYDROGEN UNDER PRESSURE: CASE OF 35 NICRMO 16
52049 RESISTANCE BY HYDROGEN UNDER PRESSURE: THE CASE OF 35 NICRM
22168 DF A GASOLINE RAFFINATE UNDER PRESSURE# VAPOIR CONVERSION
22165 MONIA SYNTHESIS GAS AT MEDIUM PRESSURE# CING HYDROGEN OR AM
50004 IC ACTION OF HYDROGEN AT HIGH PRESSURE# NSITY OF THE NARCOT
22201 N AT LOW TEMPERATURE AND HIGH PRESSURE# OCARBONS TO HYDROGE
22213 TION) OF LIQUID FUELS AT HIGH PRESSURE# OMBUSTION (GASIFICA
22642 SION IN A FLUIDIZED BED UNDER PRESSURE# TEAM- OXYGEN CONVER
30030 KET ENGINE AT SEVERAL CHAMBER PressURES AND EXHAUST NOZZLE E
30058 EGENERATIVE ENGINES CHAMBER PressURES FROM 10G TO 300 POUN
33038 ON OF GASEOUS HYDROGEN AT LOW PRESSURES IN A 35 DEGREE SECTO
34638 INUM ELECTRODE AT LOW PARTIAL PressURES OF HYDROGEN OR OXYGE
40213 DEGREES TO 5000 DEGREES R AT PressURES TO 5000 PSIA# /OM S
51001 EN-INERT MIXTURES AT ELEVATED PressURES# /, OXYGEN, AND OXYG
43002 UATION PUMP FOR INTERMEDIATE Pressures# ABORTORY GAS CIRC
22204 F LIQUID HYDROCARBONS AT HIGH Pressures# PARTIAL OXIDATION D
22119 QUID HYDROCARBONS AT ELEVATED Pressures# F HYDROGEN FROM LI
52005 AT HIGH TEMPERATURES AND LOW Pressures# HYDROGEN IN METALS
40417 EMAL STRATIFICATION AND SELF-PRESSURIZATION IN A LIQUID HYD
40413 F SIZE ON NORMAL-GRAVITY SELF-PRESSURIZATION OF SPHERICAL LI
40412 OGENIC STORAGE SYST/ EXTERNAL PRESSURIZATION SYSTEMS FOR CRY
40411 OGENIC STORAGE SYST/ EXTERNAL PRESSURIZATION SYSTEMS FOR CRY
30052 OGENIC PROPPELLANTS# ADVANCED PRESSURIZATION SYSTEMS FOR CRY
52029 NEL 718 AND 2219 A/ EFFECT OF PressURIZED HYDROGEN UPON INCO
51010 PRESSION OF HYDROGEN EXPLOS/ PREVENTION, DETECTION, AND SUP
52020 G FOR HYDROGEN EMBRITTLEMENT: PRIMARY AND SECONDARY INFLUENC
34028) FUEL CELL / HYDROGEN-OXYGEN PRIMAR EXTRATERRESTRIAL (HOPE
TITLE INDEX

SECTION 'T'

34255 FUEL CELL / HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIAL (HOPE
34254 FUEL CELL / HYDROGEN-OXYGEN PRIMARY EXTRATERRESTRIAL (HOPE
34808 ELLS FOR SPACE PRIMARY HYDROGEN-OXYGEN FUEL C
23601 ER PHOTOYSIS AT 1236, 1470 PRIMARY PRODUCTS OF LIQUID WAT
34012 LL CONCEPT, A REVIEW OF BASIC PRINCIPLES THE FUEL CE
34608 S IN FUEL CELL POWER SY SOME PROBLEMS IN USE OF HYDROCARBON
40301 CRYOGENIC DENSITY PROBE
10037 HY? A PRACTICAL ANSWER TO THE PROBLEM OF ENERGY SUPPLY AND P
34023 THE FUEL CELL PROBLEM
50013 ERING LIQUID HYDROGE SAFETY PROBLEMS AND SAFETY CODES CONC
34030 FUEL CELLS - PROBLEMS FOR CHEMICAL ENGINEER
42001 HYDROGEN GAS PRESSURE VESSEL PROBLEMS IN THE M-1 FACILITIES
34011 OF CH PHYSICAL AND TECHNICAL PROBLEMS OF DIRECT CONVERSION
34216 O2 FUEL CELLS WHICH GAS PROBLEMS OF GASES MIXING IN H2
31012 PERSO AND / POTENTIALS AND PROBLEMS OF HYDROGEN FUELED SU
33042 NIC COMBUSTION OF HYDROGEN I PROBLEMS OF MIXING AND SUPERSONO
33005 LIQUID OXID SOME FUNDAMENTAL PROBLEMS ON THE COMBUSTION OF
34250 RESENT STATUS AND DEVELOPMENT PROBLEMS FUEL CELLS P
34000 SENT POSITION AND OUTSTANDING PROBLEMS FUEL CELLS - PRE
34034 GY - A SURVEY OF ADVANCES AND PROBLEMS FUEL CELL TECHNOLOGY
22604 OF CONSTRUCTION AND OPERATING PROBLEMS /RENCE TO MATERIALS
40212 L FLUID PROPERTIES NUMERICAL PROCEDURES FOR CALCULATING REA
21011 EC PRODUCTION OF HYDROGEN W PROCEEDINGS ROUND TABLE ON DIR
23436 FYING LOW-BOILING GASES IN G PROCESS AND APPARATUS FOR PURI
23437 VING IMPURITIES FROM HYDROGE PROCESS AND APPARATUS FOR REMO
23018 WORKING OF NUCLEAR ENERGY PROCESS AND EQUIPMENT FOR THE
22144 I C I STEAM NAPHTHA REFORMING PROCESS AND OTHER TECHNIQUES /
20500 ROGEN GE PROCESS COULD MAKE CHEAPER HYD
22129 NTS IN MAKING REFINING PROCESS DEVELOPMENT; IMPROVEMENT
23000 FROM WATER USING AN ALKALI PROCESS FOR PRODUCING HYDROGEN
40109 D HYDROGEN, HELIUM. AND NEON PROCESS FOR PRODUCING LIQUEFIE
22142 OGEN PROCESS FOR PRODUCTION OF HYDROGEN
23435 COMPONENTS FROM GASEOUS MIX PROCESS FOR SEPARATING GASEOUS
23007 AND OXYGEN TO FUEL CELLS PROCESS FOR SUPPLYING HYDROGEN
34230 AND OXYGEN TO FUEL CELLS PROCESS FOR SUPPLYING HYDROGEN
21006 DF/ A LOW TEMPERATURE THERMAL PROCESS FOR THE DECOMPOSITION
22620 IPTION OF THE THERMAL CONTACT PROCESS FOR THE PRODUCTION OF
42002 HYDROGEN DISTRIBUTION TO PROCESS LABORATOIRES
23031 TO A FUEL CELL WITH BOROHYDR PROCESS OF SUPPLYING HYDROGEN
23429 HYDROGEN NEW ADSORPTION PROCESS PRODUCES HIGHER-PURITY
21009 NG NUCLEAR HEAT CHEMICAL PROCESS TO DECOMPOSE WATER USI
22622 S CO HYPRO PROCESS: UNIVERSAL OIL PRODUCT
22606 PARTIAL-OXIDATION PROCESS
21004 HYDROGEN PRODUCTION CYCLIC PROCESS
23405 CO2 REMOVAL BY HEATLESS PROCESS
23410 HYDROGEN RECOVERY PROCESS
34231 TION USING MODIFIED FUEL CELL PROCESS HYDROGEN PURIFICATION
23412 ON USING A MODIFIED FUEL CELL PROCESS HYDROGEN PURIFICATION
23417 AND PURIFICATION BY DIFFUSION PROGRESS HYDROGEN PRODUCTION
22105 BY USE OF AN ELECTROCHEMICAL PROCESS ING CHARGED MATERIAL
33017 INITIAL PHASE OF A COMBUSTION PROCESS ME FRONT DURING THE
22107 TURING CATALYTIC PROCESSES FOR HYDROGEN MANUFACTU
TITLE INDEX

SECTION 'T'

22186 F BASIC CHEMICALS A/ SELECTED PROCESSES FOR THE PRODUCTION OF
21010 HE EVALUATION OF NUCLEAR heats PROCESSES FOR WATER DECOMPOSITION
34036 ELECTROCHEMICAL PROCESSES IN FUEL CELLS#
34810 IDENTIFIC STUDIES ON ELECTRODE PROCESSES IN FUEL CELLS# / SC
21014 TALS OF THERMOCHEMICAL CYCLIC PROCESSES# FUNDAMENTAL
22631 PMENT OF HYDROGEN PREPARATION PROCESSES# DEVELOPMENT
23438 TION OF HYDROGEN BY CRYOGENIC PROCESSES# CONCENTRATION
22159 F HYDROGEN IN HYDROCONVERSION PROCESSES# PURIFICATION OF
21000 ULTI-STEP WATER DECOMPOSITION PROCESSES# HERMODYNAMICS OF M
22183 COMPRESSORS IN HYDROCRACKING PROCESSES# DEION BY CENTRIFUGAL
20507 ELECTROLYSIS AND COMPETITIVE PROCESSES# PRODUCTION BY WATER
22002 PHASE II# COAL PROCESSING BY ELECTROFLUIDICS,
23028 M AND LITHIUM HYPOCHLORITE TO PRODUCE HYDROGEN AND OXYGEN# /
22197 FOR CRACKING HYDROCARBONS TO PRODUCE HYDROGEN# APPARATUS
23021 OGEN GENERATOR ML-539/TM TO PRODUCE PURE HYDROGEN# A HY
34259 NE FUEL CELL WITH MICROBIALLY-PRODUCED HYDROGEN# ION-MEMBRANE
23429 NEW ADSORPTION PROCESS PRODUCES HIGHER-PURITY HYDROGEN.
22623 HYDROGEN PRODUCTION SYSTEM#
22603 LIQUID HYDROGEN# PRODUCTION AND DISTRIBUTION OF
10006 HYDROGEN AS A UNIVERSAL FUEL# PRODUCTION AND DISTRIBUTION OF
22608 HYDROGEN PRODUCTION AND LIQUEFACTION#
23417 DIFFUSION PROCESS# HYDROGEN PRODUCTION AND PURIFICATION BY
20506 DESIGN STUDY OF HYDROGEN PRODUCTION BY ELECTROLYSIS#
22180 HYDROGEN PRODUCTION BY STEAM REFORMING#
20507 NOMICS OF HYDROGEN AND OXYGEN PRODUCTION BY WATER ELECTROLYS
22112 E MANUF/ DESIGN VARIABLES AND PRODUCTION COSTS IN LARGE-SCALE
21004 HYDROGEN PRODUCTION CYCLIC PROCESS#
22195 TICS OF H AND G TYPE HYDROGEN PRODUCTION EQUIPMENT BY HITACHI
10012 M ANALYSIS OF LIQUID HYDROGEN PRODUCTION FINAL REPORT# SYSTE
10018 UTILIZATION# HYDROGEN PRODUCTION FOR BETTER NUCLEAR
10047 HYDROGEN PRODUCTION FOR ECO-ENERGY#
22614 STY IN I/ TECHNICAL HYDROGEN PRODUCTION FOR FERTILIZER INDU
22158 ES# HYDROGEN PRODUCTION FOR FUEL CELL MODULAR
23009 HYDROGEN PRODUCTION FOR FUEL CELLS#
21005 CLEAR HEAT# HYDROGEN PRODUCTION FROM WATER USING NU
21012 CLEAR HEAT# HYDROGEN PRODUCTION FROM WATER USING NU
40006 S# TRENDS IN CRYOGENIC FLUID PRODUCTION IN THE UNITED STATE
22003 ROGEN AND STEAM# PRODUCTION OF A MIXTURE OF HYDROCARBONS,
22627 OMLOGS. AND TECHNICAL HYDRO/ PRODUCTION OF ACETYLENE. ITS H
22186 A/ SELECTED PROCESSES FOR THE PRODUCTION OF BASIC CHEMICALS
22613 ROGEN FROM THE METHANE- HYDROGEN PRODUCTION OF CONCENTRATED HYDROCARBON MONO
22637 SES# PRODUCTION OF HYDROGEN-RICH GAS
22207 HYDROGEN PRODUCTION OF HYDROGEN#
22167 HYDROGEN PRODUCTION OF HYDROGEN#
<table>
<thead>
<tr>
<th>Title/Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22620 ERMAL CONTACT PROCESS FOR THE PRODUCTION OF HYDROGEN</td>
<td>Production of hydrogen and/or helium</td>
</tr>
<tr>
<td>21011 EEDINGS ROUND TABLE ON DIRECT PRODUCTION OF HYDROGEN</td>
<td>Production of hydrogen with nuclear gas production</td>
</tr>
<tr>
<td>20005 POLYTIC INSTALLATIONS FOR THE PRODUCTION OF HYDROGEN AND OXYGEN</td>
<td>Production of hydrogen and oxygen</td>
</tr>
<tr>
<td>20001 ES ON AN ELECTROLYSER FOR THE PRODUCTION OF HYDROGEN</td>
<td>Production of hydrogen and oxygen</td>
</tr>
<tr>
<td>20002 GEN# ELECTROLYTIC PROCESS FOR THE PRODUCTION OF HYDROGEN AND OXYGEN</td>
<td>Production of hydrogen from CO2 gasification</td>
</tr>
<tr>
<td>22000 AL CHAR IN AN ELECTROFLUID R/</td>
<td>Production of hydrogen for small industrial demands</td>
</tr>
<tr>
<td>22119 QUID HYDROCARBONS AT ELEVATED PRESSURE</td>
<td>Production of hydrogen from liquid hydrocarbons</td>
</tr>
<tr>
<td>22006 TROLYSIS# PRODUCTION OF LIQUID HYDROGEN</td>
<td>Production of hydrogen by electrolysis</td>
</tr>
<tr>
<td>22031 AL CHAR IN AN ELECTROFLUID R/</td>
<td>Production of hydrogen by electrolysis</td>
</tr>
<tr>
<td>2103 T/ ENERGY REQUIREMENTS IN THE PRODUCTION OF HYDROGEN FROM WASTE</td>
<td>Production of hydrogen from waste</td>
</tr>
</tbody>
</table>
| 23015 ILIZING NUCLEAR ENERGY IN THE PRODUCTION OF HYDROGEN | Production of hydrogen from nuclear energy and/or uranium
| 22646 COMPOSITION OF METHANE FOR THE ELECTROLYSIS OF METHANE WASH | Production of hydrogen for deuterium extraction |
| 23022 TERIUM EXTRACTION# | Production of hydrogen to satisfy future demands |
| 23025 SFY SMALL INDUSTRIAL DEMANDS/ | Production of hydrogen from liquid hydrocarbons |
| 22650 ING GASES FROM HYDROCARBONS# | Production of hydrogen from liquid hydrocarbons |
| 40113 AT THE Rocket Propulsion EST/ | Production of liquid hydrogen |
| 40117 N# AT THE ROCKET PROPULSION EST/ | Production of liquid hydrogen |
| 22163 S AND HYDROGEN# SIMULTANEOUSLY | Production of metallic hydrogen and hydrogen |
| 20003 ELECTROLYSIS APPARATUS FOR SYNTHESIS GAS PRODUCTION | Production of pure gases |
| 22609 Y METHANE WASH# | Production of pure H2 and CO products |
| 22628 PRODUCTION OF REDUCING GAS# | Production of reducing gas |
| 22132 TEAM REFORMING, IN TUBES, FOR REDUCING GAS# | Production of synthesis gas or hydrogen |
| 40105 WITH TWO-STAGE CONVERSION FOR HIGH PRESSURE HYDROGEN | Production of hydrogen from waste energy |
| 22133 TIONS# INTEGRATE HYDROGEN | Production of hydrogen from solar power plants |
| 20504 ELECTROLYTIC HYDROGEN FUEL PRODUCTION WITH REFINERY OPERATIONS | Production of hydrogen from refinery operations |
| 22125 INNOVATIONS IN HYDROGEN FUEL PRODUCTION | Production of hydrogen from synthesis gas production |
| 10049 EAR POWER PLANTS FOR HYDROGEN | Production of hydrogen from nuclear power plants |
| 22202 HIGH PRESSURE HYDROGEN | Production of hydrogen from high pressure electrolysis |
| 22191 USE OF HYDROGEN IN TOWN GAS | Production of hydrogen from gas distribution |
| 22600 INNOVATIONS IN HYDROGEN | Production of hydrogen from electrolysis apparatus |
| 22615 SYNTHESIS GAS PRODUCTION | Production of hydrogen from synthesis gas apparatus |
| 23011 HYDROGEN | Production of hydrogen from hydrocarbon decomposition |
| 34008 ESSES FOR THE ELECTROCHEMICAL PRODUCTION OF ENERGY | Production of energy from hydrogen extraction |
| 22622 HYPRO PROCESS: UNIVERSAL OIL PRODUCTS CO# | Production of hydrogen from universal oil products |
| 22621 HYPRO; UNIVERSAL OIL PRODUCTS CO# | Production of hydrogen from universal oil products |
| 22008 OF C/ DISTRIBUTION OF GASEOUS PRODUCTS FROM LASER PYROLYSIS | Production of hydrogen from gas distribution |
| 23601 LYSIS AT 1236, 1470 / PRIMARY PRODUCTS OF LIQUID WATER PHOTOLYSIS | Production of hydrogen from liquid water photolysis |
| 33035 ULATION OF THE NOZZLE FLOW OF PRODUCTS OF THE COMBUSTION OF EN-LIQUID HYDROGEN COMBUSTION | Production of hydrogen from liquid oxygen combustion |
| 33021 EN-LIQUID HYDROGEN COMBUSTION | Production of hydrogen from liquid oxygen combustion |
| 34225 T# FUEL CELL TECHNOLOGY PROGRAM CONTRACT SUMMARY REPORT | Program contract summary report |
| 40417 THERMAL STRATIFIED A COMPUTER PROGRAM FOR THE CALCULATION | Program for the calculation of solar energy systems |
| 20019 SIS SYSTEMS F/ SIX-MONTH TEST PROGRAM OF TWO WATER ELECTROLYSIS | Program of two water electrolysis |
| 34028 TERTIESTIAL (HOPE) FUEL CELL PROGRAM PHASE 1A# /PRIMARY EXTR | Program phase 1A for primary extraction |
| 30023 LAUNCHING SYSTEMS ON AN ELDO B | Program study 3.2 on an ELDO B shuttle |
| 34844 SHUTTLE FUEL CELL TECHNOLOGY PROGRAM# STATUS OF PERFORMANCE | Program status of shuttle fuel cell technology |
| 34256 FUEL CELL TECHNOLOGY PROGRAM# | Program of fuel cell technology |
| 34271 FUEL CELL TECHNOLOGY PROGRAM# | Program of fuel cell technology |
| 34226 FUEL CELL TECHNOLOGY PROGRAM# | Program of fuel cell technology |
| 34243 MOLTEN-CARBONATE FUEL BATTERY PROGRAM# LARGE HYDROGEN | Program of molten carbonate fuel battery |
TITLE INDEX

SECTION 'T'

34254 ATERRESTRIAL (HOPE) FUEL CELL PROGRAM/ OXYGEN PRIMARY EXTR
34255 ATERRESTRIAL (HOPE) FUEL CELL PROGRAM/ OXYGEN PRIMARY EXTR
40602 SYSTEM FOR THE SATURN APOLLO PROGRMS, PRELIMINARY PROJECT
33009 MBUSTION OF HYDROG/ COMPUTER PROGRAMS FOR THE MIXING AND CO
40202 TRANSPORT PROPERTI/ COMPUTER PROGRAMS FOR THERMODYNAMIC AND
30024 LAUNCHERS B1 AND/ ELDO FUTURE PROGRMS, PRELIMINARY PROJECT
22006 HYGAS PROGRAMS/
34032 FUEL CELLS, A PROGRESS REPORT/
30024 FUTURE PROGRAMS, PRELIMINARY PROJECT LAUNCHERS B1 AND B2, S
50016 SAFETY: FIVE YEAR LOOK# PROJECT ROVER LIQUID HYDROGEN
33003 EAM BY REDUCTION OF DRAG OF A PROJECTILE IN A SUPersonic STR
52043 OF IRON DISSOLUTION IN CRACK PROPAGATION DURING HYDROGEN CH
22649 BED REACTORS# KINETICS OF PROPANE CRACKING IN FLUIDIZED
40605 NSFER# CRYGENIC PROPELLANT ACQUISITION AND IRA
30043 RO/ ORBITAL INVESTIGATION OF PROPELLANT DYNAMICS IN A LARGE
23004 N EME/ EVALUATION OF STORABLE PROPELLANT REFORMING FOR USE I
30074 A/NASA LE/ HIGH ENERGY ROCKET PROPELLANT RESEARCH AT THE NAC
20000 ED MANNED M/ EXTRATERRESTRIAL PROPELLANT RESUPPLY FOR ADVANC
30067 DESIGN OF LIQUID PROPELLANT ROCKET ENGINES#
30068 NUCLEAR HEATING AND PROPELLANT STRATIFICATION#
30297 LITHIUM-FLUORINE-HYDROGEN PROPELLANT STUDY#
41018 HYDROGEN AS A SPACE STORABLE PROPELLANT--A PRELIMINARY STUDY
30064 ATION OF THE USE OF CRYOGENIC PROPPELLANTS (OXYGEN/HYDROGEN)
30069 ATION OF THE USE OF CRYOGENIC PROPPELLANTS (OXYGEN/HYDROGEN)
41008 RPLANETA/ SLUSH AND SUBCOOLED PROPELLANTS FOR LUNAR AND INTE
30052 IZATION SYSTEMS FOR CRYOGENIC PROPELLANTS# ADVANCED PRESSUR
33027 IMULATE EXPANSION OF STORABLE PROPPELLANTS# AND METHANE TO S
30008 EED-TYPE TURBINE FOR HYDROGEN-PROPELLED NUCLEAR ROCKET APPLI
30009 EED-TYPE TURBINE FOR HYDROGEN-PROPELLED NUCLEAR ROCKET APPLI
30007 TURBOPUMP UNITS FOR HYDROGEN-PROPELLED NUCLEAR ROCKETS# D
40208 THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS AND SELEC
33007 THERMODYNAMIC AND TRANSPORT PROPERTIES OF FUEL-OXYGEN COMB
40008 BELLOW THEIR / SURVEY OF THE PROPERTIES OF HYDROGEN ISO TOPE
40202 R THERMODYNAMIC AND TRANSPORT PROPERTIES OF HYDROGEN# /
52055 H PRESSURE HYDROGEN AT CRYO/ PROPERTIES OF MATERIALS IN HIG
40212 ES FOR CALCULATING REAL FLUID PROPERTIES OF NORMAL AND PARAH
52031 EFFECT OF HYDROGEN ON TENSILE PROPERTIES OF PALLADIUM- HYDRO
41011 M 1 TO 22K/ THE THERMODYNAMIC PROPERTIES OF PARAHYDROGEN FRO
40211 GEN AT 4°2K# MECHANICAL PROPERTIES OF SOLID PARA-HYDRO
41006 STICS AND BULK THERMOPHYSICAL PROPERTIES OF SOLID HYDROGEN# /
51013 GEN / HIGH-ALTITUDE EXPLOSION PROPERTIES OF THE HYDROGEN-OXY
52050 AND TEMPERATURE ON MECHANICAL PROPERTIES OF THE TI-5AL-2°5SN
43005 OF MINOR CONSTITUENTS ON THE PROPERTIES OF VANADIUM AND NIO
31010 PER/ EFFECT OF COMBUSTION GAS PROPERTIES ON TURBOJET-ENGINE
43010 ANIUM HYDRIDE: ITS FORMATION, PROPERTIES, AND APPLICATION# /
41002 DBOCK OF PHYSICAL AND THERMAL PROPERTY DATA FOR HYDROGEN TRI
10023 DROGEN FIGURES IN MANY ENERGY PROPOSALS# HY
33055 N OF SUPERSONIC COMBUSTION IN PROPULSION APPLICATIONS# /ATIO
30057 D LIQUID HYDROGEN# PROPULSION BY LIQUID OXYGEN AN
41011 LIQUID HYDROGEN AT THE ROCKET PROPULSION ESTABLISHMENT# OF
30016 LE/ HYDROGEN-OXYGEN AUXILIARY PROPULSION FOR THE SPACE SHUTT
30017 ULLER HIGH PRESSURE AUXILIARY PROPULSION SUBSYSTEM DEFINITIO
30041 NTROLLABLE HIGH-ENERGY ROCKET PROPULSION SYSTEMS# ICS OF CO
<table>
<thead>
<tr>
<th>TITLE INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 'T'</td>
</tr>
</tbody>
</table>

33041	ORMANCE ANALYSIS OF COMPOSITE PROPULSION SYSTEMS* PERF
30006	Poodle Radiisotope Propulsion Technology#
30012	Rimental Research on Electric Propulsion Note VII: Analysis
10054	Energy Systems and Vehicular Propulsion# Hydrogen
43011	Source of Fuel for Vehicular Propulsion# Datal Hydrides as a
30061	Liquid Oxygen/Liquid Hydrogen Propulsive Unit with 300 N Vac
20505	Water Electrolysis—Prospect for the Future#
10042	An Energy Vector: New Future Prospects for Applications of
10061	EL for Transportation System Prospects for Hydrogen as a Fu
32016	Vehicles# Prospects for Hydrogen-Fueled
34031	Present Position and Future Prospects# Fuel Cells
34603	Existing Batteries and Future Prospects# LEN Cells of C Ge
40402	Fuel Tanks in High-# Thermal Protection for Liquid-Hydrogen
22182	Catalyst in Hydrocarbon Reform/ Protection of a Methanation CA
52044	Gen Cracking by Thin Metalli/ Protection of Steel from Hydro
40418	Bon Dioxide Purge and Thermal Protection System for Liquid-H
31003	Bon Dioxide Purge and Thermal Protection System for Liquid H
30062	A Regeneratively Cooled thru/ Protective Coating System for
51011	Hydrogen Handling Suit Protects NASA Technicians#
22611	Optimize Hydrogen Production by Model#
40213	Degrees R at Pressures to 5000 PSIA/# DM 36 Degrees to 5000 D
52043	NG Hydrogen Charging of an FE-PT Alloy#/ CK Propagation Duri
40004	ME National Bureau of Standa/ Publications and Services of T
30044	NES for Hydro/ Development of Pulsable Attitude Control Engi
34622	S/# Effects of Heavy Discharge Pulsing on Fuel Cell Electrode
41009	Ics Using a Centrifugal- Type Pump (J-2)# /Pumping Characterist
33002	Ew Laboratory Gas Circulation Pump for Intermediate Pressure
40500	of Two-Phase Hydrogen Flow in Pump Inlet Line/# /Vestigation
40508	Operation of the J-2 Hydrogen Pump#/ Positive Suction Head
41009	A Centrifugal/ Slush Hydrogen Pumping Characteristics Using
40509	F Rocket-Powered Ejectors for Pumping Liquid Oxygen and Liqu
40504	Pumps for Liquid Hydrogen#
40512	of Two-Phase Flow Flow in LH2 Pumps for 02/H2 Rocket Engines
43006	Gen in Hydrides# Pure and Simple: Storing Hydro
20003	S Apparatus for Production of Pure Gases# Electrolysi
34845	Ultra-Pure Hydrogen for Fuel Cells#
23012	Eding Ou/ Method of Obtaining Pure Hydrogen for Fuel Cell Fe
34100	Ultra-Pure Hydrogen for Fuel Cells#
23409	M Reforming and Molecu/ Ultra-Pure Hydrogen Obtained by Stea
22173	And Techniques for Preparing Pure Hydrogen Starting from Hy
23430	Separation Plant for Pure Hydrogen#
20502	Preparation of Pure Hydrogen#
23021	ENERATOR ML-539/TM to Produce Pure Hydrogen# /F A Hydrogen G
22609	# Production of Pure H2 and CO by Methane Wash
31003	Ystem for L/ a Carbon Dioxide Purge and Thermal Protection S
40418	Ystem for L/ a Carbon Dioxide Purge and Thermal Protection S
34107	Purge Dynamics of Fuel Cells#
22153	PRACTICAL APPLICATIONS OF THE PURIFICATION AND SEPARATION OF
23421	ES# Hydrogen Purification at Low Temperatur
23417	ESS# Hydrogen Production and Purification by Diffusion Prdc
23420	RCH Studies on Solid Hydrogen Purification Membranes# Resea
34201	S# Purification of Fuel Cell Gase
23425	Ans of Low Temperatures# Purification of Hydrogen by Me
TITLE INDEX

22159 DROCONVERSION PROCESSES# PURIFICATION OF HYDROGEN IN HY
23414 MANUFACTURE# HYDROGEN PURIFICATION PLANT FOR BENZENE
23412 FUEL CELL PROCESS# HYDROGEN PURIFICATION USING A MODIFIED FU
23423 EL CELL PROCESS# HYDROGEN PURIFICATION USING MODIFIED FU
23424 HYDROGEN PURIFICATION#
23413 HYDROGEN PURIFICATION#
23432 HYDROGEN PURIFICATION#
23426 BLEED BURNING HYDROGEN PURIFIERS#
23436 G/ PROCESS AND APPARATUS FOR PURIFYING LOW-BOILING GASES IN
22604 TH SPECIA/ PRODUCTION OF HIGH-PURITY HYDROGEN FROM BUTANE WI
22105 ON-CONTAINING CHARGED M/ HIGH PURITY HYDROGEN FROM HYDROCARB
23023 COMPACT HIGH PURITY HYDROGEN GENERATORS#
23416 LOW PURITY HYDROGEN UPGRADER#
23429 PTION PROCESS PRODUCES HIGHER-PURITY HYDROGEN# NEW ADSOR
23602 IENCY / INVESTIGATION FOR THE PURPOSE OF IMPROVING THE EFFIC
22613 METHANE- HYDROGEN FRACTION OF PYROGAS# /D HYDROGEN FROM THE
23434 METHANE-HYDROGEN FRACTION OF PYROLYSIS GAS# /HYDROGEN FROM A
22008 F GASEOUS PRODUCTS FROM LASER PYROLYSIS OF COALS OF VARIOUS
22610 ETYLENE AND HYDROGEN FROM THE PYROLYSIS OF METHANE# AC
22012 GASES FROM LASER PYROLYSIS OF ORGANIC MATERIALS
22172 UDIZED/ MACROKINETICS OF THE PYROLYSIS OF SHALE OIL IN A FL
40304 D-SOLID HYDROGEN MIXTURES# QUALITY DETERMINATION OF LIQUI
41007 D-SOLID HYDROGEN MIXTURES# QUALITY DETERMINATION OF LIQUI
40307 LH2 QUALITY METER#
33021 D OXYGEN-LIQUID HYDROGEN COM/ QUANTITATIVE ANALYSIS OF LIQUI
34009 MPERATURE ABSORPTION OF LARGE QUANTITIES OF HYDROGEN BY INTE
23606 FERROUS TO FER/ GROSS AND NET QUANTUM YIELDS AT 2537 A. FOR
10077 , (A LITERATURE SURVEY ISSUED QUARTERLY)# /ROGEN FUTURE FUE
22185 SEDERQUIST RA#
40213 DM 36 DEGREES TO 5000 DEGREES R AT PRESSURES TO 5000 PSIA# /
30049 THE DEVELOPMENT OF THE S E P R HM4 ENGINE: A 40 KN THRUST L
30048 RATURES UP TO 200,000 DEGREES R# / STATE AT STAGNATION TEMPE
33006 N PLUME# THERMAL RADIATION FROM BURNING HYDROGE
30006 LOGY# POODLE RADIOISOTOPE PROPULSION TECHN
22168 APOR CONVERSION OF A GASOLINE RAFFINATE UNDER PRESSURE# V
33038 SECTOR OF A 28-INCH-DIAMETER RAMJET COMBUSTOR# /A 35 DEGREE
33032 NIC COMBUSTION AND BURNING IN RAMJET COMBUSTORS# SUPERSO
33040 CAL COMBUSTION PERFORMANCE OF RAMJET FUELS: HYDROGEN# SORTEI
33023 GEN/ PERFORMANCE OF A 28-INCH RAMJET UTILIZING GASEOUS HYDRO
33042 ICN OF HYDROGEN IN HYPersonic RAMJETS# /D SUPersonic COMBUST
22209 RGEN PREPARATION BY REFORMI/ RANEY NICKEL CATALYSTS FOR HYD
34646 VIOR IN CONTINUOUS SERVICE OF RANEY-# PREPARATION AND BEHA
34616 ANIC FUEL CELLS# RANEY-NICKEL CATALYSTS IN GALV
34203 RMANCE WITHIN THE TEMPERATURE RANGE -20 DEGREES C TO +60 DEG
40402 EL TANKS IN HIGH- SPEED, LONG-RANGE AIRCRAFT# /D-HYDROGEN FU
31006 DETERMINATION OF THE CRUISE RANGE OF A HYDROGEN-FUELED, AI
22638 L CATALYST IN THE TEMPERATURE RANGE 370-450# /SUPORTED NICKE
10024 HYDROGEN FUEL ECONOMY: WIDE-RANGING CHANGES#
22106 FROM EXCESS REFINERY STREAMS RANGING FROM C6 TO HEAVY OILS#
22008 PYROLYSIS OF COALS OF VARIOUS RANKS# /S PRODUCTS FROM LASER
10078 NSF-RANN ENERGY ABSTRACTS#
33011 E CO/ ACTIVATION ENERGIES AND-RATE CONSTANTS COMPUTED FOR TH
40205 HYDROGEN IN TWO-PHASE/ FINITE RATE EVAPORATION OF CRYOGENIC
TITLE INDEX

52040 TERMINATION OF THE PERMEATION RATE OF HYDROGEN THROUGH METAL
33025 OF HOT-GAS SIDE HEAT-TRANSFER RATES FOR A HYDROGEN-OXYGEN RO
33026 C/ COOLANT-SIDE HEAT-TRANSFER RATES FOR A HYDROGEN-OXYGEN RO
33030 F HOT-GAS-SIDE HEAT-TRANSFER RATES IN A HYDROGEN-OXYGEN ROC
51005 H FLOW INSTABILITIES, BURNING RATES, DIURATION LIMITS, TEMPER
22007 W PRESSURE AND OXYGEN/ METHANE RATIO AFFECT PARTIAL OXIDATION
30038 PER ELEMENT, AND CONTRACTION RATIO ON ACOUSTIC-MODE INSTABIL
33004 S FOR CONSTANT/ SPECIFIC HEAT RATIOS AND ISENTROPIC EXPONENT
30030 EXHAUST NOZZLE EXPANSION AREA RATIOS / OR HAMMER PRESSURES AND
52022 PHENOMENA AFFECTING MEC/ AN X-RAY STUDY OF HYDROGEN INDUCED
34106 - OXYGEN FUEL CELL SYSTEM WITH REACTANT SUPERSATURATED ELECTR
33064 HYDROGEN-OXYGEN REACTION BEHIND STEADY STATE S
34106 - OXYGEN FUEL CELL SYSTEM WITH REACTANT SUPERSATURATED ELECTR
30065 ON OF THRUSTORS FOR CRYOGENIC REACTION CONTROL SYSTEMS, VOLU
30069 ELLANTS (OXYGEN/HYDROGEN) FOR REACTION CONTROL SYSTEMS. II.
30064 ELLANTS (OXYGEN/HYDROGEN) FOR REACTION CONTROL SYSTEMS, VOLU
40604 ENIC LIQUID DISTRIBUTION SHUTTLE: REACTION CONTROL SYSTEM.. CRYO
30045 MANCE OF LOW-THRUST, COLD-GAS REACTION JETS IN A VACUUM / OR
33001 GIN/ HYDROGEN OXYGEN CHEMICAL REACTION KINETICS IN ROCKET EN
52018 ITH HYDROGEN GAS AT LOW / THE REACTION OF A TITANIUM ALLOY W
23016 UM HYDROXIDE SOLUTION AS A S/ REACTION OF ALUMINUM WITH SODI
46444 ECEL BOUNDARY LAYS OF THE ALUMINUM OXYGEN REACTION BEHIND STEADY STATE S
34609 TOICHIOMETRIC MANGANESE DIOXIDE REACTION OF HYDROGEN WITH NONS
43003 YS OF MAGNESIUM AND NICK/ THE REACTION OF HYDROGEN WITH ALLO
43004 YS OF MAGNESIUM AND COPP/ THE REACTION OF HYDROGEN WITH ALLO
33010 ON OF M/ INVESTIGATION OF THE REACTION OF INCOMPLETE OXIDATION
52059 OGEN/ INVESTIGATION OF THE REACTION OF TITANIUM WITH HYDR
34507 BY DIFFUSION OF THE SEPARATION OF REACTION WATER FROM FUEL CELLS
34220 OXICHEMICAL FUEL CELL (AN ANODE REACTION)/ SYSTEM IN A BI
23017 Y MEANS OF THE ALUMINUM/WATER REACTION#/ DROGEN GENERATION B
22638 E, AND 1-BUTENE WITH STEAM / REACTIONS OF N-BUTANE, ETHYLEN
34017 ELECTROCATALYTIC REACTIONS/
33012 OXYGEN AND HYDROCARBON- OXYGEN REACTIONS/ ETICS OF HYDROGEN-
21001 STAINING HYDROGEN BY MEANS OF REACTOR HEAT/
0
22189 CONVERTING A MIXTURE/ COMPACT REACTOR-BOILER COMBINATION FOR
33051 IENT MODEL OF HYDROGEN/OXYGEN REACTOR/ TRAN"S
30004 GAS CORE NUCLEAR REACTOR/
22639 AL GAS WITH HEAT FROM NUCLEAR REACTOR/ GENERATION FROM NATUR
22000 COAL CHAR IN AN ELECTROFLUID REACTOR/ ION OF HYDROGEN FROM
22001 COAL CHAR IN AN ELECTROFLUID REACTOR/ ION OF HYDROGEN FROM
33050 GNITION/ STUDY OF CATALYTIC REACTORS FOR HYDROGEN-OXYGEN I
22649 ANE CRACKING IN FLUIDIZED BED REACTORS/ KINETICS OF PROD
33028 S IN ADIABATIC, WELL- STIRRED REACTORS/ FUEL-LEAN MIXTURE
40212 AL PROCEDURES FOR CALCULATING REAL FLUID PROPERTIES OF NORMA
33055 USTIO/ STUDIES LEADING TO THE REALIZATION OF SUPersonic comb
30000 DROGEN ENGINES/ RECENT NASA EXPERIENCE WITH HY
34251 TEMPERATURE HYDROGEN-OXYGEN RECHARGEABLE FUEL CELLS/ DIUM
34267 L CONCEPT FOR A LIGHTWEIGHT, RECHARGEABLE HYDROGEN-OXYGEN F
34259 UEL/ PERFORMANCE STUDIES ON A RECHARGEABLE HYDROGEN-OXYGEN F
30070 S/ CATALYSIS OF HYDROGEN-ATOM RECOMBINATION IN ROCKET NOZZLE
34086 EN AND OXYGEN, AND SUBSEQUENT RECOMBINATION OF THESE GASES B
23431 PERMEATION METHOD RECOVERS HYDROGEN/
23433 ASES HYDROGEN RECOVERY FROM REFINERY WASTE G
23403 STRIAL GAS MIXTURES/ RECOVERY OF HYDROGEN FROM INDU
23423 NIA SYNTHESIS GAS# CRYOGENIC RECOVERY OF HYDROGEN FROM AMMO
23410 HYDROGEN RECOVERY PROCESS#
23411 NEW HYDROGEN RECOVERY ROUTE#
23427 N SOME PLANTS# HYDROGEN RECOVERY TAKES ON NEW LUSTER I
22181 OBTAINING GAS STREAM AND HEAT RECOVERY# A CARBON MONOXIDE C
40601 RAGE OF LIQUID HYDROGEN - THE RECYCLABLE FUEL# /PORT AND STO
22009 UEL# GASIFICATION: A REDISCOVERED SOURCE OF CLEAN F
50012 HYDROGEN PLANT SHUTDOWNS REJECTED#
22152 SYNTHESIS GAS, CITY GAS, AND REDUCING GAS#
22268 PRODUCTION OF REDUCING GAS#
22192 REDUCING GAS#
10058 LLS FOR CONSERVING ENERGY AND REDUCING THERMAL POLLUTION# /E
33003 ILE IN A SUPersonic STREAM BY REDUCTION OF DRAG OF A PROJECT
23606 RIC ACID AND THE ACCOMPANYING REDUCTION OF WATER TO GASEOUS
40412 GENIC STORAGE SYSTEMS: DESIGN REFERENCE MANUAL# /MS FOR CRYO
41003 HYDROGEN-SLUSH DENSITY REFERENCE SYSTEM#
22604 OGEN FROM BUTANE WITH SPECIAL REFERENCE TO MATERIALS OF CONS
10029 TILITY SYSTEM WITH PARTICULAR REFERENCE TO FUSION AS THE ENERGY
22644 TURE OF HYDROGEN BY REFORMING REFINERY GASES# THE MANUFACT
22133 RATE HYDROGEN PRODUCTION WITH REFINERY OPERATIONS# INTEGR
22106 C6 TO H/ HYDROGEN FROM EXCESS REFINERY STREAMS RANGING FROM
23433 HYDROGEN RECOVERY FROM REFINERY WASTE GASES#
22187 AVAILABLE HYDROGEN IN REFINERY#
22124 PLANTS TAKING NEW STATURE IN REFINING OPERATIONS# HYDROGEN
22129 IMPROVEMENTS IN MAKING# REFINING PROCESS DEVELOPMENT;
22217 HYDROGEN-KEY FACTOR IN REFINING'S FUTURE#
22189 FOR CONVERTING A MIXTURE OF A REFORMABLE FUEL AND STEAM TO A
34227 -CELL DESIGN BASED ON AIR AND REFORMABLE FUEL# FUEL
22189 TEAM TO A HYDROGEN-CONTAINING REFORMATE FEED STOCK SUITABLE
22178 HYDROGEN GENERATION BY STEAM REFORMATION OF N-HEXANE OVER Z
34215 CELL SYSTEM# PERFORMANCE OF REFORMED NATURAL GAS-ACID FUEL
34248 5 KVA HYDROCARBON REFORMER - AIR FUEL CELL SYSTE
22612 : FAILURES IN A STEAM-METHANE REFORMER FURNACE# /ASE HISTORY
22103 INTEGRATED REFORMER UNIT#
22630 DYING COAL AS FUEL IN A STEAM REFORMER# SYSTEM EMPL
34840 N-AIR FUEL CELL WITH METHANOL REFORMER# A 500 WATT HYDROGE
22126 IMPROVING RELIABILITY OF STEAM REFORMERS#
23409 RE HYDROGEN OBTAINED BY STEAM REFORMING AND MOLECULAR SIEVE
22169 L INTO HYDROGEN APPARATUS FOR REFORMING CARBONACEOUS MATERIAL
22111 LOW-TEMPERATURE REFORMING FOR HYDROGEN#
23004 UATION OF STORABLE PROPELLANT REFORMING FOR USE IN EMERGENCY
34213 METHANOL IN-SITU REFORMING FUEL CELLS#
22640 HIGH-TEMPERATURE HYDROCARBON REFORMING FURNACE#
22162 ALLINE ALUMINOSILICATE/ STEAM REFORMING OF HEXANE WITH CRYST
22190 MPOSITIONS USED FOR THE STEAM REFORMING OF HYDROCARBONS TO G
22629 TOCS# STEAM REFORMING OF HYDROCARBON FEEDS
22170 HIGH-PRESSURE REFORMING OF HYDROCARBONS#
22135 TION OF HYDROGEN BY CATALYTIC REFORMING OF HYDROCARBONS# /RA
22147 NS# CATALYTIC STEAM REFORMING OF LIQUID HYDROCARB
22298 NS TO GASEOUS FUEL# REFORMING OF LIQUID HYDROCARB
22104 MANUFACTURE OF HYDROGEN BY REFORMING OF NAPHTHA#
22157 CATALYTIC STEAM REFORMING OF NAPHTHA#
22107 ONS# STEAM REFORMING PARAFFINIC HYDROCARB
TITLE INDEX

SECTION 'T'

50003 AFE CONTROL SYSTEMS FOR STEAM REFORMING PLANTS* IN OF FAIL-S
22144 CHNI/ THE I C I STEAM NAPHTHA REFORMING PROCESS AND OTHER TE
22644 MANUFACTURE OF HYDROGEN BY REFORMING REFINERY GASES* T
22122 L-CELL HYDRO/ LOW-TEMPERATURE REFORMING: A GOOD ROUTE TO FUE
22132 CTION OF S/ HYDROCARBON STEAM REFORMING, IN TUBES, FOR PRODU
22151 HYDROGEN STEAM REFORMING: C & I/GIRDLER INC
22102 ORATION* HYDROGEN, STEAM REFORMING: FOSTER WHEELER CORP
22155 CATALYTIC REFORMING
22127 HYDROGEN, STEAM REFORMING#
22206 HYDROGEN BY STEAM REFORMING#
22607 STEAM-METHANE REFORMING#
22198 HYDROGEN FROM HYDROCARBON REFORMING#
22636 HYDROGEN BY STEAM-METHANE REFORMING#
22180 HYDROGEN PRODUCTION BY STEAM REFORMING#
22182 ATION CATALYST IN HYDROCARBON REFORMING* SECTION OF A METHAN
22209 S FOR HYDROGEN PREPARATION BY REFORMING HYDROCARBONS* TALYS
23440 INDUSTRIAL G/ LOW-TEMPERATURE REGENERATION OF HYDROGEN FROM
22605 ARATION* CHEAP HYDROGEN BY REGENERATIVE COKE-OVEN GAS SEP
30058 S WITH HYDROGEN AND OXYGEN IN REGENERATIVE ENGINESAT CHAMER
20018 REGENERATIVE FUEL CELL STUDY#
34236 HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS#
34232 20 WATT-HOUR PER POUND REGENERATIVE FUEL CELLS#
34224 GATION* DUAL CELL REGENERATIVE FUEL CELL INVESTI
34233 HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS#
34238 HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS#
3437 HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS, 1 JL
3439 HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS#
34260 HIGH-PRESSURE HYDROGEN-OXYGEN REGENERATIVE FUEL-CELL SYSTEM
34234 UEL CELL* ELECTROLYTICALLY REGENERATIVE HYDROGEN-OXYGEN F
34219 UEL-CELL BATTER/ ELECTROLYTIC REGENERATIVE HYDROGEN-OXYGEN F
34240 UEL CELL* ELECTRICALLY-REGENERATIVE HYDROGEN-OXYGEN F
34235 UEL CELLS* ELECTROLYTIC REGENERATIVE H2-02 SECONDARY F
30062 DETECTIVE COATING SYSTEM FOR A REGENERATIVELY COOLED THRUST C
41002 ATA FOR HYDROGEN-TRIPLE POINT REGION TO CRITICAL POINT REGIO
41002 DINT REGION TO CRITICAL POINT REGION* VOLUME 1: A STUDY OF H
23006 SELF-REGULATING HYDROGEN GENERATOR#
22004 FLOW OF FLUIDIZED COKE TO THE REHEATING ZONE DURING HYDROGEN
23418 H PERMEATION AN/ TRENUNG UND REINIGUNG VON WASSERSTOFF DURC
23404 NSANLAGEN* ERZEUGUNG VON REINST-WASSERSTOFF IN DIFFUSIO
22113 RCH / EIN NEUES VERFAHREN ZUR REINSTWASSERSTOFFER-ZEUGUNG DU
34501 TION OF THE DYNAMICS OF WATER REJECTION FROM A HYDROGEN-OXYG
34501 TION OF THE DYNAMICS OF WATER REJECTION FROM A MATRIX TYPE D
40200 TERMINING AVERAGE DENSITY AND RELATED PARAMETERS IN TWO-PHAS
34264 OF 2 KW HYDROGEN-OXYGEN FUEL/ RELIABILITY ASSESSMENT TESTING
2126 # IMPROVING RELIABILITY OF STEAM REFORMERS
40108 E FOR A SPACE- BORNE HYDROGEN RELIQUEFIER# /ERODYNAMIC CYCL
23405 CO2 REMOVAL BY HEATLESS PROCESS#
34505 XYLEN CAPILL/ STATIC MOISTURE REMOVAL CONCEPT FOR HYDROGEN-D
34503 LL / IMPROVED WATER- AND HEAT-REMOVAL UNIT FOR H2/O2 FUEL CE
23437 GE/ PROCESS AND APPARATUS FOR REMOVING IMPURITIES FROM HYDRO
34032 FUEL CELLS, A PROGRESS REPORT#
34225 LOGY PROGRAM CONTRACT SUMMARY REPORT# FUEL CELL TECHNO
10312 UID HYDROGEN PRODUCTION FINAL REPORT# SYSTEM ANALYSIS OF LIQ
TITLE INDEX

SECTION *T*

10051 FEDERAL PANEL REPORTS ON HYDROGEN

50052 URE DESIGN SAFETY REQUIREMENTS FOR HIGH-TEMPERATURE

21053 OF HYDROGEN FROM WATER ENERGY REQUIREMENTS IN THE PRODUCTION

34642 HYDROGEN ANODES II CHEMICAL REQUIREMENTS OF THE CARBON SURFACE

34846 C/ HYDROGEN-OXYGEN FUEL CELLS REQUIRING MINIMUM OF MAINTENANCE

40300 CRYOGENIC FLOW-METERING RESEARCH AT NBS

34261 VERSITY FUEL CELL RESEARCH AT OKLAHOMA STATE UNIVERSITY

30024 HIGH ENERGY ROCKET PROPULSANT RESEARCH AT THE NACA/NASA LEWIS

34103 ASIC ELECTROLYTE CELLS AT THE RESEARCH CENTER OF THE CGE

34505 SEARCH AT THE NACA/NASA LEWIS RESEARCH CENTER, 1945-1960

30012 N6 NOTE VII: AN EXPERIMENTAL RESEARCH ON ELECTRIC PROPELLANT

34601 ANISOM OF FUEL CELL ON OPEN C/ RESEARCH ON HYDROGEN FEED MECHAN

23420 OXEN PURIFICATION MEMBRANES RESEARCH STUDIES ON SOLID HYDROGEN

41001 SLUSH HYDROGEN FLOW RESEARCH SYSTEM FOR LIQUID AND GAS

32025 0,000 FOR HYDROGEN-FUELED-CAR RESEARCH ION HAS GRANTED $B

23019 SOURCE STUDY OF MULTIPLE RESERVE ELECTROCHEMICAL POWER

34805 SOURCE STUDY OF MULTIPLE RESERVE ELECTROCHEMICAL POWER

22218 HYDROGEN FROM HEAVY RESIDUES

52049 MBRITTLEMENT OF STEEL AT HIGH RESISTANCE BY HYDROGEN UNDER PRESSURE

30001 3-KILOWATT CONCENTRIC TUBULAR RESISTOJET PERFORMANCE

30032 OXEN-OXYGEN MIXTURES RESONANCE TUBE IGNITION OF HYDROGEN

52012 METALS USING NUCLEAR MAGNETIC RESONANCE OXEN BEHAVIOR IN AN ELECTROLYSIS-TYPE PRESSURE-RESPONSIVE CONTROL CIRCUIT FOR

23000 EXTRATERRESTRIAL PROPULSANT RESUPPLY FOR ADVANCED MANNED SPACEFLIGHT

43009 SORPTION OF LARGE QUANTITIES REVERSIBLE ROOM TEMPERATURE ABILITY

34012 THE FUEL CELL CONCEPT, A REVIEW OF BASIC PRINCIPLES

52053 EN EMBRITTLEMENT REVIEW OF LITERATURE ON HYDROGEN

50001 LIQUEFIED HYDROGEN SAFETY REVIEW

30015 TLE ACPS THRUSTER TECHNOLOGY REVIEW OXEN-OXYGEN SPACE SHUTTLE

34849 TION ENGINE THE REVOLT AGAINST INTERNAL-COMBUSTION
tion

33049 THE FLOW FIELDS OF BODIES OF REVOLUTION AND NEAR A FLAT PLANE

22204 OF LIQUID HYDROCARBON HYDROGEN-RICH GAS BY PARTIAL OXIDATION

22179 CONTACT CATALYST FOR HYDROGEN-RICH GAS FROM HYDROCARBONS

22171 HYDROGEN-RICH GAS MIXTURE

22637 PRODUCTION OF HYDROGEN-RICH GASES

22164 HYDROGEN-RICH GASES

22190 MING OF HYDROCARBONS TO GASES RICH IN HYDROGEN STEAM REFORMING

33013 ARY INVESTIGATION OF OXIDIZER-RICH OXYGEN-HYDROGEN COMBUSTION

22174 HYDROGEN-RICH SYNTHESIS GASES

22109 HYDROGENATION OF THE AROMATIC RING DESTRUCTIVE DEHYDROGENATION

33052 RATES FOR A HYDROGEN-OXYGEN ROCKET AND A NEW TECHNIQUE FOR

30009 OR HYDROGEN-PROPELLED NUCLEAR ROCKET APPLICATIONS II EXPERIMENTAL

30008 OR HYDROGEN-PROPELLED NUCLEAR ROCKET APPLICATIONS I DESIGN

30043 ROPELLANT DYNAMICS IN A LARGE ROCKET BOOSTER IIGNITION OF PROPULSANT

30071 AND HEAT TRANSFER IN A SMALL ROCKET CHAMBER BURNING LIQUID

33036 ON AND HEAT TRANSFER IN SMALL ROCKET CHAMBER BURNING LIQUID

30037 ABILITY IN STEEL AND ABLATIVE ROCKET CHAMBERS IIGNITION INSTANT

33031 T TRANSFER IN HYDROGEN/OXYGEN ROCKET COMBUSTION CHAMBERS

30033 HYDROGEN AND STEADY-STATE ROCKET COMBUSTION OF GASEOUS HYDROGEN

30053 IS OF A SUPersonic COMBUSTION ROCKET CONCEPT ANALYSIS

30047 D OXYGEN AND HYDROGEN SEPARATION ROCKET ENGINE HM4 WITH LIQUID

30030 RMANCE OF A HYDROGEN-FLUORINE ROCKET ENGINE AT SEVERAL CHAMBERS
33001 CHEMICAL REACTION KINETICS IN ROCKET ENGINE COMBUSTION
30046 NEY PICKED TO BUILD CRYOGENIC ROCKET ENGINE FOR LATE '70S US
30028 ER-PRESSURE HYDROGEN-FLUORINE ROCKET ENGINE FOR A LOW-CHAMB
30048 THEORETICAL PERFORMANCE OF ROCKET ENGINES USING GASEOUS H
30067 DESIGN OF LIQUID PROPELLANT ROCKET ENGINES
30036 CTHERISTICS OF HYDROGEN OXYGEN ROCKET ENGINES ABILITY CHARA
40512 W FLOW IN LH2 PUMPS FOR O2/H2 ROCKET ENGINES TWO-PHASE FLO
33019 ILIBRIUM CLUSTER FORMATION IN ROCKET EXHAUSTS NONEQU
30026 ERFORMANCES OF THE TRIERGOLIC ROCKET FUEL SYSTEM FLUORINE-LI
30054 S OF ROTATING DETONATION WAVE ROCKET MOTOR SIBILITY STUDE
30070 HYDROGEN-ATOM RECOMBINATION IN ROCKET NOZZLES S ANALYSIS OF H
30031 EXPERIMENTAL HYDROGEN-FLUORINE ROCKET PERFORMANCE AT LOW E
30074 THE NACA/NASA LE/ HIGH ENERGY ROCKET PROPELLANT RESEARCH AT
40111 ION OF LIQUID HYDROGEN AT THE ROCKET PROPULSION ESTABLISHMEN
30041 S OF CONTROLLABLE HIGH-ENERGY ROCKET PROPULSION SYSTEMS IC
30003 SMALL WATER-GRAPHITE NUCLEAR ROCKET STAGES WITH CHEMICAL UP
40416 BY VOLUME OF INSULATIONS FOR ROCKET TANKS FILLED W LIQUI
30005 ESTIGATION OF GASEOUS NUCLEAR ROCKET TECHNOLOGY INV
30066 ATION OF COMBUSTOR EFFECTS ON ROCKET THRUST CHAMBER PERFORMA
40509 MING LIQUID OXY/ ANALYSIS OF ROCKET-POWERED EJECTORS FOR PU
30033 POUND-THRUST HYDROGEN-OXYGEN ROCKET CONCEPTS IN A 20,000-
30025 R RATES FOR A HYDROGEN-OXYGEN ROCKET GAS SIDE HEAT-TRANSFE
30033 ER RATES IN A HYDROGEN-OXYGEN ROCKET GAS-SIDE HEAT-TRANSF
30013 POUND-THRUST HYDROGEN-OXYGEN ROCKET SCREECH IN A 20,000
30075 ROCKETRY IN THE 1950'S
30038 STABILITY IN HYDROGEN- OXYGEN ROCKETS ON ACoustIC-MODE IN
30007 R HYDROGEN- PROPELLED NUCLEAR ROCKETS TURBOPUMP UNITS FO
30002 SS SCREECH IN HYDROGEN-OXYGEN ROCKETS IC LINERS TO SUPPRE
10046 ONOMY HYDROGEN ITS FUTURE ROLE IN THE NATION'S ENERGY EC
10003 GAS INDUSTRY'S ROLE IN THE NUCLEAR AGE
52046 THE HYDROGEN EMBRITLLEME THE ROLE OF ADSORBED CN GROUPS IN
52054 TRESS-CORROSION OF A TITANIUM ROLE OF HYDROGEN IN HOT-SALT'S
52043 ACK PROPAGATION DURIN ON THE ROLE OF IRON DISSOLUTION IN CR
43309 LARGE QUANTITIES REVERSIBLE ROOM TEMPERATURE ABSORPTION OF
52055 ESSURE HYDROGEN AT CRYOGENIC ROOMS AND ELEVATED TEMPERATURE
30054 T MOT FEASIBILITY STUDIES OF ROTATING DETONATION WAVE ROCKE
21011 ON OF HYDROGEN W PROCEEDINGS ROUND TABLE ON DIRECT PRODUCI
22219 XIDATION A MINIMUM POLLUTION ROUTE FOR HYDROGEN MANUFACTURE
22122 TEMPERATURE REFORMING; A GOOD ROUTE TO FUEL-CELL HYDROGEN
20509 SOLID ELECTROLYTES OFFER ROUTE TO HYDROGEN
10080 FUEL FROM WATER BY A NUCLEAR ROUTE
23411 NEW HYDROGEN RECOVERY ROUTE
50016 FIVE YEAR LOOK PROJECT ROVER LIQUID HYDROGEN SAFETY
32913 CONVERTED IC ENGINE RUNS ON HYDROGEN
22626 IDE CONVERSION SECTION AT THE RUSTAVI CHEMICAL PLANT MONOX
10007 EN HYDROGEN BECOMES THE WORLD'S CHIEF FUEL WH
10060 FUEL HYDROGEN IT'S CLEAN, BUT IS IT A PRACTICAL
30049 RUST THE DEVELOPMENT OF THE S E P R HMA ENGINE A 40 KN TH
10046 ITS FUTURE ROLE IN THE NATION'S ENERGY ECONOMY HYDROGEN
34827 FROM SHELL'S FUEL CELL PORTABLE POWER
10013 HYDROGEN TOMORROW'S FUEL
22217 DROGEN KEY FACTOR IN REFINING'S FUTURE
41015 AND U S GROUPS SEEK HYDROGEN'S METALLIC PHASE
TITLE INDEX

SECTION 'T'

32009 L# SURVEY OF HYDROGEN'S POTENTIAL AS A VEHICULAR FUE
10003 GAS INDUSTRY'S ROLE IN THE NUCLEAR AGE#
23604 AVAILABLE IN STORAGE FOR MAN'S USE#/T INTO CHEMICAL ENERGY
41015 LlC PHASE#/ SOVIET AND U.S. GROUPS SEEK HYDROGEN'S META
40408 HYDROGEN TANK INSULATION FOR S-II BOOSTER#/ LIQUID
30075 ROCKETRY IN THE 1950'S#
50003 REFORMING PL/ DESIGN OF FAIL-SAFE CONTROL SYSTEMS FOR STEAM
50013 HYDROGEN#/ SAFETY PROBLEMS AND SAFETY CODES CONCERNING LIQUID
50008 INSTRUCTORS GUIDE EMPHASIZING SAFETY IN COMPRESSED GASES AND
50009 GASES AT VERY LOW TEMPERATURE#/ SAFETY IN THE USE OF LIQUIFIED
50011 DROGEN# SAFETY IN THE USE OF LIQUID HY
50014 HYDROGEN SAFETY MANUAL#
32020 ST/ LOGISTICS, ECONOMICS, AND SAFETY OF A LIQUID HYDROGEN SY
50017 UGES# SAFETY OF HYDROGEN PRESSURE GA
50013 ES CONCERNING LIQUID HYDROGEN#/ SAFETY PROBLEMS AND SAFETY COD
50002 TEMPERATURE DESIGN#/ SAFETY REQUIREMENTS FOR HIGH-T
50005 HANDLING OF LIQ/ A PRACTICAL SAFETY STANDARD FOR COMMERCIAL
50001 LIQUEFIED HYDROGEN SAFETY# REVIEW#
50016 PROJECT ROVER LIQUID HYDROGEN SAFETY: FIVE YEAR LOOK#
50000 LIQUEFIED HYDROGEN SAFETY#
51002 AND HANDLING OF HYDROGEN WITH SAFETY# STORAGE
52054 ANI/ ROLE OF HYDROGEN IN HOT-SALT STRESS-CORROSION OF A TIT
23025 DS/ PRODUCTION OF HYDROGEN TO SATISFY SMALL INDUSTRIAL DEMAN
40602 ROGEN TRANSFER SYSTEM FOR THE SATURN APOLLO PROGRAM#/ID HYD
40414 LIQUID-HYDROGEN STAGES OF THE SATURN V VEHICLE#/SYSTEM FOR
22210 PED TO CONSUMERS THROUGH GRID SAY BIPM SPOKESMAN#/AND BE PI
33022 ON OF HYDROGEN FUEL IN A FULL-SCALE AFTERBURNER# EVALUATI
10072 SION OF SOLAR ENERGY# LARGE-SCALE CONCENTRATION AND CONVER
22112 AND PRODUCTION COSTS IN LARGE-SCALE MANUFACTURE OF HYDROGEN#
30051 D FLOWS# ACOUTIC MODEL TESTS OF HIGH-SPEE
34610 E PROCESSES/P PRESENT STATE OF SCIENTIFIC STUDIES ON ELECTRO
30013 FACE BAFFLE CONFIGURATIONS ON SCREECH IN A 20,000 POUND-THRU
30002 F ACOUSTIC LINERS TO SUPPRESS SCREECH IN HYDROGEN-OXYGEN ROC
10019 SOLAR SEA POWER#
34265 TORAGE CELLS# SEALING OF SILVER OXIDE-ZINC S
40501 BEARINGS AND SEALS FOR CRYOGENIC FLUIDS#
10014 N ECONOMY#" SECOND THOUGHTS ON THE HYDROGE
34235 ECTROLYTIC REGENERATIVE H2-O2 SECONDARY FUEL CELLS# EL
52020 EN EMBRITTLEMENT: PRIMARY AND SECONDARY INFLUENCES#/HYDROG
22626 ND CARBON MONOXIDE CONVERSION SECTION AT THE RUSTAVI CHEMICA
33038 LOW PRESSURES IN A 35 DEGREE SECTOR OF A 28-INCH-DIAMETER R
22185 SEGERQUIST R A#
41015 # SOVIET AND U.S. GROUPS SEEK HYDROGEN'S METALLIC PHASE
22619 HYDROGEN: SELAS CORP OF AMERICA#
22186 DUCTION OF BASIC CHEMICALS A/ SELECTED PROCESSES FOR THE PRO
40208 PORT PROPERTIES OF FLUIDS AND SELECTED SOLIDS FOR CRYOGENIC
20020 ELECTROLYSIS CELLS: ALKALINE/ SELECTION OF ELECTROLYSIS FOR
22205 A HYDROCARBONS TO HYDROGEN# SELECTIVE CONVERSION OF NAPHTH
34218 XYGEN FUEL CELL# SELF-DISCHARGE OF A HYDROGEN-O
33008 N IN OXYGEN# UPPER SELF-IGNITION LIMIT OF HYDROGE
33000 AS JET IN A / ANALYSIS OF THE SELF-IGNITION OF A TURBULENT G
40417 OF THERMAL STRATIFICATION AND SELF-PRESSURIZATION IN A LIQUI
40413 ECT OF SIZE ON NORMAL-GRAVITY SELF-PRESSURIZATION OF SPHERIC
TITLE INDEX

SECTION 'T'

23006 ATORW SELF-REGULATING HYDROGEN GENER
33046 IVE MIXTURES, IV, EQUATION OF SEMENOV AND FRANK-KAMENETSKY A
23603 ICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE CHEM
34508 IDIC OSCILLATOR AS A HUMIDITY SENSOR FOR A HYDROGEN-STEAM MIX
40309 THIN-FILM HYDROGEN SENSOR CHEM
40302 TEST OF LIQUID-LEVEL SENSORS AND FISSION COUPLES CHEM
34806 ERGY BY ELECTROLYSIS OF WATER, SEPARATE STORAGE OF COMPRESSED CHEM
23435 FROM GASEOUS MIX/ PROCESS FOR SEPARATING GASEOUS COMPONENTS CHEM
23408 OF CO AND H2 BY PERMEATION TO SEPARATION OF BINARY MIXTURES CHEM
23434 ROGEN FROM A METHANE-HYDROG/ SEPARATION OF CONCENTRATED HYD CHEM
2153 TIONS OF THE PURIFICATION AND SEPARATION OF GASES# APPICA
23439 HER GASES# CHEM
34507 DOM FUEL CELLS BY DIFFUS/ THE SEPARATION OF REACTION WATER F CHEM
23430 OGEN# CHEM
22624 AIR AND GAS SEPARATION PLANTS CHEM
22605 BY REGENERATIVE COKE-OVEN GAS SEPARATION CHEM
30047 LIQUID OXYGEN AND HYDROG/ THE SEPR ROCKET ENGINE - HM4 CHEM
40007 C DATA CENTER, AN INFORMATION SERVICE IN THE FIELD OF CRYOGE CHEM
34646 ON AND BEHAVIOR IN CONTINUOUS SERVICE OF RANEY# PREPARATI CHEM
42000 N PIPING SYSTEMS FOR HYDROGEN SERVICE CHEM
40004 U OF STANDA/ PUBLICATIONS AND SERVICES OF THE NATIONAL BUREA CHEM
23209 F HYDROGEN PHOTOPRODUCTION IN SEVERAL ALGAE II, THE CONTRIBU CHEM
23208 F HYDROGEN PHOTOPRODUCTION BY SEVERAL ALGAE II. THE EFFECT O CHEM
30030 GEN-FLUORINE ROCKET ENGINE AT SEVERAL CHAMBER PRESSURES AND CHEM
30013 ONGIF/ STABILIZING EFFECTS OF SEVERAL INJECTOR FACE BAFFLE C CHEM
22172 OKINETICS OF THE PYROLYSIS OF SHALE OIL IN A FLUIDIZED BED# CHEM
34640 OF PREOXIDATION AND MENISCUS SHAPE CN THE HYDROGEN-PLATINUM CHEM
5215 BRITTLENESS SUSCEPTIBILITY OF SHEET MATERIALS# HYDROGEN EM CHEM
52003 SIS OF HYDROGENATED TANTALUM SHEET# PETCH ANAL CHEM
34827 OWER# CHEM
22176 SYSTEM# WATER GAS SHIFT CONVERTER AND FUEL CELL CHEM
22195 DUCTION EQUIPMENT BY HITACHI SHIPBUILDING COMPANY# GEN PR CHEM
33065 ION OF DETONATION BY INCIDENT SHOCK WAVES IN HYDROGEN-OXYGEN- CHEM
33064 REACTION BEHIND STEADY STATE SHOCK WAVES. APPLICATION TO TH CHEM
33066 HY/ CHEMICAL KINETICS OF THE SHOCK-INTEGRATED COMBUSTION OF CHEM
50012 HYDROGEN PLANT SHUTDOWNS REDUCED CHEM
30015 GY REV/ HYDROGEN-OXYGEN SPACE SHUTTLE ACPS THRUSTER TECHNOLO CHEM
30018 APU)# SPACE SHUTTLE AUXILIARY POWER UNIT (CHEM
30014 SPACE SHUTTLE ENGINE CHEM
34844 ROGRAM# STATUS OF SHUTTLE FUEL CELL TECHNOLOGY P CHEM
30017 Y PROPULSION SUBSYSTEM/ SPACE SHUTTLE HIGH PRESSURE AUXILIAR CHEM
30021 RFORMANCE ESTIMATES FOR SPACE SHUTTLE VEHICLES USING A HYDRO CHEM
30019 IARY POWER UNIT FOR THE SPACE SHUTTLE# VOLUME I: SUMMARY# L CHEM
30016 IARY PROPULSION FOR THE SPACE SHUTTLE# VOLUME 2: LOW PRESSUR CHEM
40604 EM. CRYOGENIC LIQUID DISTRIBUTION# SHUTTLE: REACTION CONTROL SYST CHEM
30020 UILIARY POWER UNIT FOR SPACE SHUTTLE# AN H2-02 A CHEM
33030 RENTIAL VARIATIONS OF HOT-GAS-SIDE HEAT-TRANSFER RATES IN A CHEM
33026 HYDROGEN-OXYGEN ROC/ COOLANT-SIDE HEAT-TRANSFER RATES FOR A CHEM
33025 NTAL INVESTIGATION OF HOT-GAS SIDE HEAT-TRANSFER RATES FOR A CHEM
23409 STEAM REFORMING AND MOLECULAR SIEVES# OBTAINED BY CHEM
23430 GEN GAS GENERATION MOLECULAR SIEVES# DEVELOPMENTS IN HYDR CHEM
22638 ND 1-BUTENE WITH STEAM OVER A SILICA-SUPPORTED NICKEL CATALY CHEM
34635 CONIA ELECTROLYTE AND NICKEL- SILVER ALLOY ANODE# LIZED ZIR CHEM
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF PALLADIUM-SILVER ANODE ON IMPURE HYDROGEN</td>
<td>34613</td>
</tr>
<tr>
<td>SEALING OF SILVER OXIDE-ZINC STORAGE CELL</td>
<td>34265</td>
</tr>
<tr>
<td>COOLDOWN TIME FOR SIMPLE CRYOGENIC PIPELINES</td>
<td>40510</td>
</tr>
<tr>
<td>PURE AND SIMPLE: STORING HYDROGEN IN HYDROGEN FUEL IN A SIMULATED</td>
<td>43006</td>
</tr>
<tr>
<td>AFTERBURNER</td>
<td></td>
</tr>
<tr>
<td>GE IN A LOW-TEMPERATURE, CON/ SIMULATED HYDROGEN CROSS-LEAKA</td>
<td>34270</td>
</tr>
<tr>
<td>METALLIC HYDROGEN: SIMULATING JUPITER IN THE LABO</td>
<td>41013</td>
</tr>
<tr>
<td>DROG/en AND OF A HYDROGEN-CA/ SIMULTANEOUS MANUFACTURE OF HYDROGEN</td>
<td>22633</td>
</tr>
<tr>
<td>SIMULTANEOUS PRODUCTION OF OXO</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENTAL EVALUATION OF THE SINGLE-CELL CONCEPT FOR A LIGHT</td>
<td>42004</td>
</tr>
<tr>
<td>HYDROGEN SYSTEMS AT CONSUMER SITES# STANDARD FOR GASEOUS HYDROGEN</td>
<td></td>
</tr>
<tr>
<td>F HYDROGEN IN ELECTROCHEM/ IN SITU PREPARATION AND CONTROL</td>
<td>34847</td>
</tr>
<tr>
<td>METHANOL IN-SITU REFORMING FUEL CELLS#</td>
<td></td>
</tr>
<tr>
<td>WATER ELECTROLYSIS SYSTEMS F/ SIX-MONTH TEST PROGRAM OF TWO</td>
<td>20019</td>
</tr>
<tr>
<td>ESSURIZATION OF SP/ EFFECT OF SIZE ON NORMAL-GRAVITY SELF-PR</td>
<td>40413</td>
</tr>
<tr>
<td>EN ELECTRODE AND / THE NICKEL SKELETAL CATALYST BASED DROG</td>
<td>34643</td>
</tr>
<tr>
<td>S FOR LUNAR AND INTERPLANETAN/ SLUSH AND SUBCOOLED PROPELLANT</td>
<td>41008</td>
</tr>
<tr>
<td>VOLUME I: A STUDY OF HYDROGEN SLUSH AND/OR HYDROGEN GEL UTIL</td>
<td>41002</td>
</tr>
<tr>
<td>HYDROGEN-SLUSH DENSITY REFERENCE SYSTEM</td>
<td></td>
</tr>
<tr>
<td>SLUSH HYDROGEN CHARACTERISTICS</td>
<td>41009</td>
</tr>
<tr>
<td>ERISTICS USING A CENTRIFUGAL/ SLUSH HYDROGEN PUMPING CHARACT</td>
<td></td>
</tr>
<tr>
<td>SYSTEM FOR LIQUID AND SLUSH HYDROGEN FLOW R</td>
<td>41001</td>
</tr>
<tr>
<td>THE CHARACTERIZATION STUDY OF SLUSH HYDROGEN# A SUMMARY OF</td>
<td>41000</td>
</tr>
<tr>
<td>RAGE AND TRANSFER OF HYDROGEN SLUSH# /INSTRUMENTATION FOR STO</td>
<td>34055</td>
</tr>
<tr>
<td>DESIGN AND FABRICATION OF SMALL H2/O2 ENGINES#</td>
<td></td>
</tr>
<tr>
<td>UCTION OF HYDROGEN TO SATISFY SMALL INDUSTRIAL DEMANDS/ROD</td>
<td>33025</td>
</tr>
<tr>
<td>MBUSTION AND HEAT TRANSFER IN SMALL ROCKET CHAMBER BURNINGL</td>
<td>33036</td>
</tr>
<tr>
<td>USION AND HEAT TRANSFER IN A SMALL ROCKET CHAMBER BURNING L</td>
<td>30071</td>
</tr>
<tr>
<td>LIQUID HYDROGEN# SMALL TURBINE-TYPE FLOWMETERS</td>
<td>40308</td>
</tr>
<tr>
<td>ocket stages W/ COMPARISON OF SMALL WATER-GRAVITATE NUCLEAR R</td>
<td>30003</td>
</tr>
<tr>
<td>SMOGLESS AUTOMOBILE ASSOCIATI</td>
<td></td>
</tr>
<tr>
<td>SOURCES ON A POST-INDUSTRIAL ENERGY</td>
<td>10084</td>
</tr>
<tr>
<td>"THE H2INKENBURG SOCIETY"</td>
<td>10010</td>
</tr>
<tr>
<td>S/ REACTION OF ALUMINUM WITH SODIUM HYDROXIDE SOLUTION AS A</td>
<td>23016</td>
</tr>
<tr>
<td>CRYOLYSIS OF WATER STORAGE OF SOLAR ELECTRICAL ENERGY BY ELE</td>
<td>34806</td>
</tr>
<tr>
<td>EFFICIENCY OF UTILIZATION OF SOLAR ENERGY BY THE DECOMPOSIT</td>
<td>23602</td>
</tr>
<tr>
<td>A TOWER TOP FOCUS SOLAR ENERGY COLLECTOR#</td>
<td>10089</td>
</tr>
<tr>
<td>AND BIOLOGICAL# OUR SOLAR ENERGY OPTIONS: PHYSICAL</td>
<td>10070</td>
</tr>
<tr>
<td>THE COMING ENERGY CRISIS, AND SOLAR ENERGY#</td>
<td>10086</td>
</tr>
<tr>
<td>NCENTRATION AND CONVERSION OF SOLAR ENERGY# LARGE-SCALE CO</td>
<td>10072</td>
</tr>
<tr>
<td>SOLAR POWER#</td>
<td>10083</td>
</tr>
<tr>
<td>SOLAR SEA POWER#</td>
<td>10019</td>
</tr>
<tr>
<td>ECONOMIC COMPARISON OF TWO SOLAR/HYDROGEN CONCEPTS#</td>
<td>10075</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY OF SOLID AND LIQUID PARAHYDROGEN#</td>
<td>41012</td>
</tr>
<tr>
<td>TO HYDROGEN# SOLID ELECTROLYTES OFFER ROUTE</td>
<td>20509</td>
</tr>
<tr>
<td>AVE DISCHARG/ GASIFICATION OF SOLID FOSSIL FUELS IN A MICROW</td>
<td>22011</td>
</tr>
<tr>
<td>ABLE PROPELLANT--A PRELIMINA/ SOLID HYDROGEN AS A SPACE STOR</td>
<td>41018</td>
</tr>
<tr>
<td>ABILITY DETERMINATION OF LIQUID-SOLID HYDROGEN MIXTURES# QU</td>
<td>40304</td>
</tr>
<tr>
<td>ALITY DETERMINATION OF LIQUID-SOLID HYDROGEN MIXTURES# QU</td>
<td>41007</td>
</tr>
<tr>
<td>MBANES# RESEARCH STUDIES ON SOLID HYDROGEN PURIFICATION ME</td>
<td>23420</td>
</tr>
<tr>
<td>THERMOPHYSICAL PROPERTIES OF SOLID HYDROGEN# TICS AND BULK</td>
<td>41006</td>
</tr>
<tr>
<td>THE TRIPLE POINT# LIQUID-SOLID MIXTURES OF HYDROGEN NEA</td>
<td>41005</td>
</tr>
</tbody>
</table>
SECTION 'T'

40211 MECHANICAL PROPERTIES OF SOLID PARA-HYDROGEN AT 4.2K.
20510 HYDROGEN GENERATION BY SOLID POLYMER ELECTROLYTE WATER.
20504 HYDROGEN FUEL PRODUCTION WITH SOLID POLYMER ELECTROLYTE.
40210 N/ HEAT TRANSFER TO SUBLIMING SOLID-VAPOR MIXTURE OF HYDROGEN.
40208 ERTIES OF FLUIDS AND SELECTED SOLIDS FOR CRYOGENIC APPLICATION.
52005 YOROGE THERMODYNAMICS OF THE SOLUTION AS A SOURCE OF HYDROGEN.
23016 LUMINUM WITH SODIUM HYDROXIDE SOLUTION AS A SOURCE OF HYDROGEN.
10015 TOWNS PLACED ON ENERGY CRISIS SOLUTION LIST.

21007 S# HYDROGEN SOUGHT VIA THERMOCHEMICAL MEAN.
22009 GASIFICATION; A REDISCOVERED SOURCE OF CLEAN FUEL.
43011 ROPULSIO METAL HYDRIDES AS A SOURCE OF FUEL FOR VEHICULAR PROPULSION.
20503 ELECTROLYSIS AS A SOURCE OF HYDROGEN AND OXYGEN.
43000 METAL HYDRIDES AS A SOURCE OF HYDROGEN FUEL.
23016 ODIN HYDROXIDE SOLUTION AS A SOURCE OF HYDROGEN HUM WITH S.
34830 DROCARBON-AIR FUEL CELL POWER SOURCE.
10025 DROGEN FUEL USE CALLS FOR NEW SOURCE.
23019 RESERVE ELECTROCHEMICAL POWER SOURCE.
34805 RESERVE ELECTROCHEMICAL POWER SOURCE.
23019 ERENGETO FUSION AS THE ENERGY SOURCE.
10029 RESERVE ELECTROCHEMICAL POWER SOURCE.
34018 HYDROGEN SOURCES FOR FUEL CELLS.
10084 SOCIETY COMPLETE POWER SOURCES.
34014 METALLIC PHASE.
41015 DROGEN'S METALLIC PHASE.
34815 EN CYCLE FUEL CELL SYSTEM FOR SPACE APPLICATIONS.
30011 ENGINE HYDROGEN-OXYGEN SPACE POWER INTERNAL-COMBUSTION.
30059 ELOPMENT OF A HYDROGEN-OXYGEN SPACE POWER SUPPLY SYSTEM.
30073 EN INTERNAL COMBUSTION ENGINE SPACE POWER SYSTEM.
30015 CHNOLOGY REV HYDROGEN-OXYGEN SPACE SHUTTLE ACPS THRUSTER.
30018 UNIT (APU).
30014 AUXILIARY POWER UNIT.
30017 XIILIARY PROPSLUN SUBSYSTEM.
30021 HI PERFORMANCE ESTIMATES FOR SPACE SHUTTLE VEHICLES USING A.
30016 AUXILIARY PROPULSION FOR THE SPACE SHUTTLE VOLUME 2:
30019 AUXILIARY POWER UNIT FOR THE SPACE SHUTTLE VOLUME 1:
30020 2-0 AUXILIARY POWER UNIT FOR SPACE SHUTTLE AN H.
41018 RELIMINA SOLID HYDROGEN AS A SPACE STORABLE PROPELLANT--A P.
51007 ARDS DUE TO HYDROGEN ABOARD A SPACE VEHICLE HAZ.
40403 STORAGE OF LIQUID HYDROGEN IN SPACE VEHICLE.
40108 CAL THERMODYNAMIC CYCLE FOR SPACE-BORNE HYDROGEN RELIQUEF.
30039 HE AIR BREATHING ENGINES OF A SPACE-CRAFT LAUNCH VEHICLE.
34808 YDROGEN-OXYGEN FUEL CELLS FOR SPACE PRIMARY.
20019 ATER ELECTROLYSIS SYSTEMS FOR SPACECRAFT CABIN OXYGEN GENERA.
34269 ADVANCED SPACECRAFT FUEL CELL SYSTEMS.
34823 OWERPLANT OPERATION IN APOLLO SPACECRAFT.
22604 PTY HYDROGEN FROM BUTANE WITH SPECIAL REFERENCE TO MATERIALS.
33004 ROPIC EXPONENTS FOR CONSTANT SPECIFIC HEAT RATIOS AND ISENT.
40416 THE THERMAL CONDUCTIVITY, THE SPECIFIC HEAT AND THE WEIGHT BY.
30033 A 20,000-PDU EVALUATION OF SPEECH SUPPRESSION CONCEPTS IN.
30051 TIC SCALE-MODEL TESTS OF HIGH-SPEED FLOWS.

40507 S EXPERIMENTAL STUDY OF LOW-SPEED OPERATING CHARACTERISTIC.
40402 HYDROGEN FUEL TANKS IN HIGH-SPEED, LONG-RANGE AIRCRAFT.
40413 RAVITY SELF-PRESSURIZATION OF SPHERICAL LIQUID HYDROGEN TANK.

525
TITLE INDEX

SECTION 'T'

21016 TECHNOLOGY FOR NUCLEAR WATER SPLITTING# /EMICAL AND NUCLEAR
22210 NSUMERS THROUGH GRID SAY BIPM SPOKESMAN# /AND BE PIPED TO CO
30058 ES FROM 100 TO 300 POUNDS PER SQUARE INCH ABSOLUTE# /PRESSUR
52038 PRE/ ENHANCED FLAW GROWTH IN SSE MAIN ENGINE ALLOYS IN HIGH
30036 UST PER ELEMENT ON COMBUSTION STABILITY CHARACTERISTICS OF H
30037 F COMBUSTOR PARAMETERS ON THE STABILITY OF GASEOUS HYDROGEN-
33064 OSITION LIMITS AND TRANSVERSE STABILITY OF GASEOUS DETONATIO
34635 E AND NICKEL-/ FUEL CELL WITH STABILIZED ZIRCONIA ELECTROLYT
30013 INJECTOR FACE BAFFLE CONFIG/ STABILIZING EFFECTS OF SEVERAL
34810 OF OXYGEN-HYDROGEN FUEL CELL/ STABILIZING THE NOMINAL POWER
51005 D HIGH FLOW I/ HYDROGEN FLARE STACK DIFFUSION FLAMES: LOW AN
50007 HYDROGEN VENT FLARE STACK PERFORMANCE#
34264 KW HYDROGEN-OXYGEN FUEL CELL STACKS# /SESSMENT TESTING OF 2
30009 YDRO/ INVESTIGATION OF EIGHT-STAGE BLEED-TYPE TURBINE FOR H
30008 Y/ INVESTIGATION OF THE EIGHT-STAGE BLEED-TYPE TURBINE FOR H
40105 HYDROGEN LIQUEFIED WITH TWO-STAGE CONVERSION FOR PRODUCTIO
30009 II: EXPERIMENTAL OVERALL AND STAGE GROUP PERFORMANCE DETERM
30022 STUDY OF FUELS FOR THE FIRST STAGE OF AN ATMOSPHERIC BOOSTE
31008 FOR DIRECT COOLING OF A FIRST-STAGE TURBINE STATOR# /N FUEL
30021 LED TURBORAMJET POWERED FIRST STAGE# /ROGEN OR A METHANE FUE
30025 HIGH ENERGY UPPER STAGES FOR ELDO VEHICLES#
30003 ET STAGES WITH CHEMICAL UPPER STAGES FOR UNMANNED MISSIONS# /
40414 ON SYSTEM FOR LIQUID-HYDROGEN STAGES OF THE SATURN V VEHICLE
30003 WATER-GRAFITE NUCLEAR ROCKET STAGES WITH CHEMICAL UPPER STA
30008 NTAL PERFORMANCE OF FIRST TWO STAGES# / TURBINE AND EXPERIME
30043 HYDROGEN IN THE IDEAL STATE AT STAGNATION TEMPERATURES UP TO
33059 COMBUSTIO/ GENERATION OF HIGH STAGNATION TEMPERATURES BY PRE
52026 LHA IRON, 4130 STEEL, AND 304 STAINLESS STEEL FROM LESS THAN
52037 EN EMBRITTLEMENT OF TYPE 304L STAINLESS STEEL# /G AND HYDROG
52052 HYDROGEN EMBRITTLEMENT IN 410 STAINLESS STEEL# /RACKING AND
52022 NICAL BEHAVIORS OF AUSTENITIC STAINLESS STEELS# /CTING MECHA
52010 TRANSFORMATIONS IN TYPE 304L STAINLESS STEELS# /DUCED PHASE
30023 LDO B LAUNCHING SYSTEM WITH A STANDARD ENGINE OF 6-8 TONS OF
50005 NG OF LIQ/ A PRACTICAL SAFETY STANDARD FOR COMMERCIAL HANDLI
42004 SYSTEMS AT CONSUMER SITES# /TANDARD FOR GASEOUS HYDROGEN
40004 CES OF THE NATIONAL BUREAU OF STANDARDS, CRYOGENICS DIVISION
32018 WERED CAPS MAY BEAT POLLUTION STANDARDS# /HYDROGEN-PO
34843 AUTOMATED ELECTRICAL START FOR JP4-AIR SYSTEMS#
22173 S FOR PREPARING PURE HYDROGEN STARTING FROM HYDROCARBONS# /
21004 SE HYDROGEN# /QUATION OF STATE AND PHASE DIAGRAM OF DENG
30048 GASEOUS HYDROGEN IN THE IDEAL STATE AT STAGNATION TEMPERATUR
34610 ELECTRODE PROCESSES/ PRESENT STATE OF SCIENTIFIC STUDIES ON
33033 EOUS HYDROGEN AND# /STEADY-STATE ROCKET COMBUSTION OF GAS
33064 OXYGEN REACTION BEHIND STEADY STATE SHOCK WAVES, APPLICATION
34261 UEL CELL RESEARCH AT OKLAHOMA STATE UNIVERSITY# /ENERGY CONVE
22139 FACTURE OF HYDROGEN IN IMPURE STA#
40006 LUID PRODUCTION IN THE UNITED STATES# /TRENDS IN CRYOGENIC F
20016 / STATUS OF THE LIFE SYSTEM# /TATIC FEED WATER ELECTROLYSIS
34505 T FOR HYDROGEN-OXYGEN CAPILL/ STATIC MOISTURE REMOVAL CONCEP
31008 LING OF A FIRST-STAGE TURBINE STATOR# /N FUEL FOR DIRECT C00
22124 # HYDROGEN PLANTS TAKING NEW STATURE IN REFINING OPERATIONS
34250 S# /EEL CELLS PRESENT STATUS AND DEVELOPMENT PROBLEM

526
34029 FUEL CELLS - THEIR STATUS AND FUTURE OUTLOOK
34844 TECHNOLOGY PROGRAM
20316 TIC FEED WATER ELECTROLYSIS / STATUS OF THE LIFE SYSTEM: STATUS
30042 HYDROGEN COMPONENT TECHNOLOGY STATUS: OXYGEN
33064 OXYGEN-OXYGEN REACTION BEHIND STEADY STATE SHOCK WAVES, APPLICATION
33033 OF GASEOUS HYDROGEN AND STEADY-STATE ROCKET COMBUSTION
22196 GAS AND ITS MIXTURES WITH HYDROGEN-STEAM CONVERSION OF LIQUEFIED
34508 HUMIDITY SENSOR FOR A HYDROGEN-STEAM MIXTURE / ILLUMINATOR AS A HYDROGEN
33061 HYDROGEN-OXYGEN-NITROGEN-STEAM MIXTURES / BURNING LIMIT
22146 S AND OTHER TECHNOLOGIES / THE I C I STEAM NAPHTHA REFORMING PROCESS
22638 ETHYLENE, AND 1-BUTENE WITH STEAM OVER A SILICA-SUPPORTED
22203 ARBONS WITH STEAM TO OBTAIN STEAM PHASE CRACKING OF HYDROCARBON
22178 OXYGEN
22630 M EMPLOYING COAL AS FUEL IN A STEAM REFORMER SYSTEM
22126 IMPROVING RELIABILITY OF STEAM REFORMERS
23409 TRA-PURE HYDROGEN OBTAINED BY STEAM REFORMING AND MOLECULAR
22162 CRYSTALLINE ALUMINOSILICATE STEAM REFORMING OF HEXANE
22190 TRIC COMPOSITIONS USED FOR THE STEAM REFORMING OF HYDROCARBON
22629 FEEDSTOCKS STEAM REFORMING OF HYDROCARBON
22147 OCTARONS CATALYTIC STEAM REFORMING OF LIQUID HYDR
22157 CATALYTIC STEAM REFORMING OF NAPHTHA
22128 ROCARIONS STEAM REFORMING PARAFFINIC HYDROCARBON
50008 FAIL-SAFE CONTROL SYSTEMS FOR STEAM REFORMING PLANTS / IN OR
22132 PRODUCTION OF S/ HYDROCARBON STEAM REFORMING, IN TUBES, FOR
22151 INC HYDROGEN STEAM REFORMING: C & I GIRDLER
22102 R CORPORATION HYDROGEN, STEAM REFORMING: FOSTER WHEELE
22127 HYDROGEN, STEAM REFORMING
22180 HYDROGEN PRODUCTION BY STEAM REFORMING
22206 HYDROGEN BY STEAM REFORMING
22189 TURE OF A REFORMABLE FUEL AND STEAM TO A HYDROGEN-CONTAINING
22203 CRACKING OF HYDROCARBONS WITH STEAM TO OBTAIN HYDROGEN-CONTAINING
22642 GEN FROM HYDROCARBON GASES BY STEAM-OXYGEN CONVERSION IN A
22636 HYDROGEN BY STEAM-METHANE REFORMING
22607 STEAM-METHANE REFORMING
22612 CASE HISTORY: FAILURES IN A STEAM-METHANE REFORMER FURNACE
22603 OF A MIXTURE OF HYDROGEN AND STEAM PRODUCTION
33037 BE/ COMBUSTION INSTABILITY IN STEEL AND ABLATIVE ROCKET CHAM
52049 MENTS ON THE EMBRITTLEMENT OF STEEL AT HIGH RESISTANCE BY HYDROGEN
52044 Y THIN METALLIC PROTECTION OF STEEL FROM HYDROGEN CRACKING BY
52026 4130 STEEL, AND 304 STAINLESS STEEL FROM LESS THAN 600 C TO
52024 N GAS EMBRITTLEMENT OF TRIP STEEL IN HIGH-PRESSURE HYDROGEN
52006 R THE ANALYSIS OF HYDROGEN IN STEEL PARTS / MEASUREMENTS FOR
52021 IMINITION HYDROGEN MOVEMENT IN STEEL-ENTRY, DIFFUSION, AND ELASTIC
52026 TION THROUGH ALLOYS, IRON, 4130 STEEL, AND 304 STAINLESS STEEL
52004 HYDROGEN EMBRITTLEMENT OF STEEL
52023 BRAZIL STUDIES OF A TRIP STEEL HYDROGEN EMBRITTLEMENT
52051 OF HYDROGEN EMBRITTLEMENT IN STEEL THE MECHANISM
52035 CATHODIC HYDROGEN BY IRON AND STEEL ABSORPTION OF
52046 THE HYDROGEN EMBRITTLEMENT OF STEEL/ADSORBED CN GROUPS IN
52037 ELEMENT OF TYPE 304L STAINLESS STEEL/ G AND HYDROGEN EMBRITTLEMENT
52017 RESURRE: CASE OF 35 NICRMO 16 STEEL/LS BY HYDROGEN UNDER PRESSURE
52052 MBRITTLEMENT IN 410 STAINLESS STEEL/ CRACKING AND HYDROGEN EMBRITTLEMENT
52049 URE: THE CASE OF 35 NICRMO 16 STEEL/ HYDROGEN UNDER PRESSURE
TITLE INDEX

SECTION 'T'

52007 EMBRITTLEMENT OF HIGH-STRENGTH STEELS BY HYDROGEN UNDER PRESS
52001 N THE SUSCEPTIBILITY OF ALLOY STEELS TO CADMIUM PLATING (HYD
52019 FOR HYDROGEN EMBRITTLEMENT OF STEELS USED IN THE TANK FARM C
52027 N EMBRITTLEMENT IN IRRADIATED STEELS# HYDROGEN
52008 ESS CRACKING OF HIGH STRENGTH STEELS# HYDROGEN STR
52022 VIORS OF AUSTENITIC STAINLESS STEELS# ACTING MECHANICAL BEHA
52010 ATIONS IN TYPE 304L STAINLESS STEELS# DUCED PHASE TRANSFORM
52016 ION CRACKING IN HIGH STRENGTH STEELS# ENT AND STRESS CORROS
21000 SSES/ THERMODYNAMICS OF MULTI-STEP WATER DECOMPOSITION PROCE
34607 OGEN TO CYLINDRICAL ANODES IN STIRRED ELECTROLYTES# OF HYDR
33028 MIXTURES IN ADIABATIC, WELL- STIRRED REACTORS# FUEL-LEAN
22189 GEN-CONTAINING REFORMATE FEED STOCK SUITABLE FOR CONSUMPTION
22131 JET FUEL AS A FEED STOCK#
33004 ONSTANT- VOLUME COMBUSTION OF STOICHIOMETRIC MIXTURES OF HYD
23004 FOR USE IN EME/ EVALUATION OF STORABLE PROPELLANT REFORMING
41018 NA/ SOLID HYDROGEN AS A SPACE STORABLE PROPELLANT--A PRELIMI
33027 HANE TO SIMULATE EXPANSION OF STORABLE PROPELLANTS# AND MET
34809 LVANIC CELLS# STORAGE AND APPLICATIONS OF GA
51002 EN WITH SAFETY# STORAGE AND HANDLING OF HYDROG
50010 NS# STORAGE AND HANDLING OF CRYOGE
41004 EN SLUSH/ INSTRUMENTATION FOR STORAGE AND TRANSFER OF HYDROG
40603 SYNTHETIC FUELS# THE STORAGE AND TRANSPORTATION OF HYDROG
34262 DATE ON ENERGY CONVERSION AND STORAGE AT OKLAHOMA STATE UNIV
34811 CONVERTING ELECTRICITY TO HY/ STORAGE BATTERY-FUEL CELL FOR
34844 THE FLYING H2/O2 STORAGE BATTERY#
34265 SEALING OF SILVER OXIDE-ZINC STORAGE CELLS#
23604 CHEMICAL ENERGY AVAILABLE IN STORAGE FOR MAN'S USE# TO INTO
34806 LECTROLYSIS OF WATER# SEPARATE STORAGE OF COMPRESSED HYDROG
42003 ERGY# TRANSPORTATION AND STORAGE OF HYDROGEN FOR ECO-EN
40102 LIQUEFACTION AND STORAGE OF HYDROGEN#
40403 RAL DESIGN CONSIDERATIONS FOR STORAGE OF LIQUID HYDROGEN IN
40421 LOAD OPTIMIZATION FACTORS FOR STORAGE OF LIQUID HYDROGEN IN
40601 CE IN HANDLING, TRANSPORT AND STORAGE OF LIQUID HYDROGEN - T
34806 ERGY BY LECTROLYSIS OF WATER/ STORAGE OF SOLAR ELECTRICAL EN
40426 NO-LOSS CRYOGENIC STORAGE ON THE LUNAR SURFACE#
40412 IZATION SYSTEMS FOR CRYOGENIC STORAGE SYSTEMS: DESIGN REFERE
43008 METAL HYDRIDE ENERGY STORAGE SYSTEMS#
40411 IZATION SYSTEMS FOR CRYOGENIC STORAGE SYSTEMS# RAL PRESSUR
10058 NERGY AND REDUCING THER/ HEAT-STORAGE WELLS FOR CONSERVING E
10059 CONSERVING ENERGY WITH HEAT STORAGE WELLS#
43007 METAL HYDRODES FOR ENERGY STORAGE#
40420 SELS USED IN TRANSPORTING AND STORING CRYOGENIC LIQUIDS# ES
43006 PURE AND SIMPLE: STORING HYDROGEN IN HYDRIDES#
40209 DROGEN FLOWING TURBULENTLY IN STRAIGHT AND CURVED TUBES AT H
40417 OR THE CALCULATION OF THERMAL STRATIFICATION AND SELF-PRESSU
30068 UCLEAR HEATING AND PROPELLANT STRATIFICATION# N
34813 L CELLS AS ELECTRIC SUPPLY ON STRATOSPHERIC AIRSHIP# IR FUE
22181 ARBON MONOXIDE CONTAINING GAS STREAM AND HEAT RECOVERY# A C
33003 A PROJECTILE IN A SUPERSONIC STREAM BY THE COMBUSTION OF HY
33000 N OF A TURBULENT GAS JET IN A STREAM OF OXIDIZING AGENT# I0
34501 XYGEN FUEL CELL TO A HYDROGEN STREAM# ION FROM A HYDROGEN-O
33057 HYDROGEN IN A HYPERSOIC AIR STREAM# ION OF COMBUSTION OF
22106 HYDROGEN FROM EXCESS REFINERY STREAMS RANGING FROM C6 TO HEA
<table>
<thead>
<tr>
<th>Title Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMBUSTION OF HYDROGEN IN AIR STREAMS</td>
<td>33009</td>
</tr>
<tr>
<td>LOWER ANODE ON IMPURE HYDROGEN STREAMS</td>
<td>34613</td>
</tr>
<tr>
<td>CT OF COMPOSITION AND TENSILE STRENGTH ON THE SUSCEPTIBILITY</td>
<td>52001</td>
</tr>
<tr>
<td>ON THE EMBRITTLEMENT OF HIGH-STRENGTH STEELS BY HYDROGEN UN</td>
<td>52007</td>
</tr>
<tr>
<td>ROGEN STRESS CRACKING OF HIGH STRENGTH STEELS</td>
<td>52008</td>
</tr>
<tr>
<td>CORROSION CRACKING IN HIGH STRENGTH STEELS</td>
<td>52016</td>
</tr>
<tr>
<td>EMPHASIS OF H2 STRENGTHENED</td>
<td>21000</td>
</tr>
<tr>
<td>F HIGH DISLOCATION DENSITY ON STRESS CORROSION CRACKING AND</td>
<td>52037</td>
</tr>
<tr>
<td>HYDROGEN EMBRITTLEMENT IN 41/ HYDROGEN EM</td>
<td>52052</td>
</tr>
<tr>
<td>EMBRITTLEMENT AND</td>
<td>52016</td>
</tr>
<tr>
<td>OF HYDROGEN EMBRITTLEMENT AND</td>
<td>52038</td>
</tr>
<tr>
<td>STRESS CORROSION CRACKING OF HIGH STRENGTH STEELS</td>
<td>52016</td>
</tr>
<tr>
<td>STRESS CORROSION CRACKING IN HIGH STRENGTH STEELS</td>
<td>52038</td>
</tr>
<tr>
<td>ROLE OF HYDROGEN IN HOT-SALT</td>
<td>52054</td>
</tr>
<tr>
<td>STRESS-CORROSION OF A TITANIUM</td>
<td>40404</td>
</tr>
<tr>
<td>EN-FUELED HYPERSONIC AIRPLA</td>
<td>40403</td>
</tr>
<tr>
<td>NS FOR STORAGE OF LIQUID HYD</td>
<td>10048</td>
</tr>
<tr>
<td>ECO-ENERGY STUDIES AT TEMPO</td>
<td>33055</td>
</tr>
<tr>
<td>TION OF SUPersonic COMBUSTIO</td>
<td>52023</td>
</tr>
<tr>
<td>HYDROGEN EMBRITTLEMENT STUDIES OF A TRIP STEEL</td>
<td>33063</td>
</tr>
<tr>
<td>ONIC COMBUSTION AT LOW DENS</td>
<td>30054</td>
</tr>
<tr>
<td>WAVE ROCKET MOT FEASIBILITY STUDIES OF ROTATING DETONATION</td>
<td>34253</td>
</tr>
<tr>
<td>ELECTROLYTE FUEL CELL STUDIES OF THE MOLTEN CARBONAT</td>
<td>33029</td>
</tr>
<tr>
<td>AND FUEL-SYSTEM OPERAT BRIEF STUDIES OF TURBOJET COMBUSTOR</td>
<td>34259</td>
</tr>
<tr>
<td>OGEN-OXYGEN FUEL PERFORMANCE STUDIES ON A RECHARGEABLE HYDR</td>
<td>20001</td>
</tr>
<tr>
<td>THE PRODUCTION PERFORMANCE STUDIES ON AN ELECTROLYSER FOR</td>
<td>34644</td>
</tr>
<tr>
<td>HIGH TEMPERATURE FUEL CELL STUDIES ON ANODIC REACTION OF</td>
<td>34646</td>
</tr>
<tr>
<td>PRESENT STATE OF SCIENTIFIC STUDIES ON ELECTRODE PROCESSES</td>
<td>34610</td>
</tr>
<tr>
<td>N ELECTRODES ELECTROCHEMICAL STUDIES ON HIGHLY POROUS CARB</td>
<td>34648</td>
</tr>
<tr>
<td>FICATION MEMBRANES RESEARCH STUDIES ON SOLID HYDROGEN PURI</td>
<td>23420</td>
</tr>
<tr>
<td>PROJECT LAUNCHERS B1 AND B2 STUDY NO 3S5 A DETAILED DESC</td>
<td>30024</td>
</tr>
<tr>
<td>HYDROGEN-OXYGEN IGNITION STUDY OF CATALYTIC REACTORS FO</td>
<td>33050</td>
</tr>
<tr>
<td>INTERFACE FOR CASE OF OXY STUDY OF ELECTRODE ELECTROLY</td>
<td>34645</td>
</tr>
<tr>
<td>TAGE OF AN ATMOS COMPARATIVE STUDIES OF FUELS FOR THE FIRST S</td>
<td>30022</td>
</tr>
<tr>
<td>OGEN-OXYGEN FUEL FEASIBILITY STUDIES OF HIGH PERFORMANCE HYDR</td>
<td>34200</td>
</tr>
<tr>
<td>T OF VARIOUS ALLOYS A STUDY OF HYDROGEN EMBRITTLEMENT</td>
<td>52034</td>
</tr>
<tr>
<td>Y THERMAL ENERGY SYSTEM STUDY OF HYDROGEN GENERATION B</td>
<td>20512</td>
</tr>
<tr>
<td>OMENA AFFECTING MEC AN X-RAY STUDY OF HYDROGEN INDUCED PHEN</td>
<td>52022</td>
</tr>
<tr>
<td>Y ELECTROLYS DESIGN STUDY OF HYDROGEN PRODUCTION B</td>
<td>20506</td>
</tr>
<tr>
<td>CAL POINT REGION VOLUME I A STUDY OF HYDROGEN SLUSH AND OR</td>
<td>41002</td>
</tr>
<tr>
<td>HASTRISTICS EXPERIMENTAL STUDY OF LOW-SPEED OPERATING C</td>
<td>40507</td>
</tr>
<tr>
<td>ROUS GAS DIF EXPERIMENTAL STUDY OF MODE OF OPERATION OF</td>
<td>34619</td>
</tr>
<tr>
<td>ROUS COMBUSTION POWER SOURCE STUDY OF MULTIPLE RESERVE ELEC</td>
<td>34805</td>
</tr>
<tr>
<td>ROCHEMICAL POWER SOURCE STUDY OF MULTIPLE RESERVE ELEC</td>
<td>23019</td>
</tr>
<tr>
<td>RED METAL IGNITI FEASIBILITY STUDY OF OXYGEN/HYDROGEN POWDE</td>
<td>33048</td>
</tr>
<tr>
<td>MARY OF THE CHARACTERIZATION STUDY OF SLUSH HYDROGEN A SU</td>
<td>41000</td>
</tr>
<tr>
<td>ATINUM BLACK FUEL CELL CAT A STUDY OF THE DEGRADATION OF PL</td>
<td>34627</td>
</tr>
<tr>
<td>ANALYTICAL CHEMICAL KINETIC STUDY OF THE EFFECT OF CARBON</td>
<td>30002</td>
</tr>
<tr>
<td>GASIFICATION THERMO dynamic STUDY OF THE INCOMPLETE COMBUS</td>
<td>22213</td>
</tr>
<tr>
<td>HYDROGEN OXYGEN Computational STUDY OF THE KINETICS OF THE H</td>
<td>33064</td>
</tr>
<tr>
<td>POROUS G AN EXPERIMENTAL STUDY OF THE MODE OF OPERATION</td>
<td>34637</td>
</tr>
<tr>
<td>NG SYSTE ELDO FUTURE PROGRAM STUDY 32 ON AN ELDO B LAUNCH</td>
<td>30023</td>
</tr>
<tr>
<td>IS OF LIQUID HYDROGEN PRODUC STUDY COST AND SYSTEM ANALYS</td>
<td>10012</td>
</tr>
<tr>
<td>GY DEPOT ELECTROLYS SYSTEMS STUDY</td>
<td>20501</td>
</tr>
<tr>
<td>REGENERATIVE FUEL CELL STUDY</td>
<td>20018</td>
</tr>
<tr>
<td>FLUORINE HYDROGEN PROPELLANT STUDY</td>
<td>30027</td>
</tr>
</tbody>
</table>
TITLE INDEX

30017 OPULSION SUBSYSTEM DEFINITION STUDY# / PRESSURE AUXILIARY PR
40604 C LIQUID DISTRIBUTION SYSTEM: STUDY# / NTROL SYSTEMS CRYOGENI
41008 R AND INTERPLANETAR/ SLUSH AND SUBCOOLED PROPELLANTS FOR LUNA
40210 DF HYDROGEN/ HEAT TRANSFER TO SUBLIMING SOLID-VAPOR MIXTURE
22161 ENERATOR FOR FUEL CELL USE IN SUBMARINES# HYDROGEN G
34639 YDROGEN ON MOVABLE, PARTIALLY SUBMERGED PLATINUM ANODES#/ H
34806 SSD HYDROGEN AND OXYGEN, AND SUBSEQUENT RECOMBINATION OF TH
30017 PRESSURE AUXILIARY PROPULSION SUBSYSTEM DEFINITION STUDY# /
40508 S FROM ZERO-TANK NET POSITIVE SUCTION HEAD OF THE
51011 # HYDROGEN HANDLING SUIT PROTECTS NASA TECHNICIANS
22189 NTAINING REFORMATE FEED STOCK SUITABLE FOR CONSUMPTION BY A
23606 TEROUS TO FERRIC IN AQUEOUS SULFURIC ACID AND THE ACCOMPAN
41000 N STUDY OF SLUSH HYDROGEN# A SUMMARY OF THE CHARACTERIZATI
34225 L TECHNOLOGY PROGRAM CONTRACT SUMMARY REPORT# FUEL CEL
30019 THE SPACE SHUTTLE, VOLUME 1: SUMMARY#/ LAIARY POWER UNIT FOR
10085 ENERGY ALTERNATIVES: SUN, WIND, EARTH, WATER#
23604 AVAILABLE IN S/ CONVERSION OF SUNLIGHT INTO CHEMICAL ENERGY
40207 D CONVECTION HEAT TRANSFER TO SUPER-CRITICAL CRYOGENIC HYDRO
34106 UEL CELL SYSTEM WITH REACTANT SUPERSATURATED ELECTROLYTE FEE
33056 D COMBUSTION OF HYDROGEN IN A SUPERSONIC AIRSTREAM# / XING AN
33043 MLPLE INJECTORS NORMAL TO A SUPERSONIC AIRSTREAM#/ FRO M
31012 D PROBLEMS OF HYDROGEN FUELED SUPERSONIC AND HYPERSONIC AIRC
33032 ING IN RAMJET COMBUSTORS# SUPERSONIC COMBUSTION AND BURN
33055 LEADING TO THE REALIZATION OF SUPERSONIC COMBUSTION IN PROPU
33063 ENS/ STUDIES OF HYDROGEN-AIR SUPERSONIC COMBUSTION AT LOW D
33049 XPERIMENTAL INVESTIGATIONS ON SUPERSONIC COMBUSTION IN THE F
33060 DIFFUSION FLAMES AND SUPERSONIC COMBUSTION#
33044 FUNDAMENTAL ASPECTS OF SUPERSONIC COMBUSTION#
33042 GEN I/ PROBLEMS OF MIXING AND SUPERSATURATED ELECTROLYTE FEE
33058 DROGEN COMB/ HEAT ADDITION IN SUPERSONIC FLOW BY MEANS OF HY
33061 N2 D/ AN ANALYSIS OF INTERNAL SUPERSONIC FLOWS WITH DIFFUSIO
33062 AND AIR NEA/ TWO-DIMENSIONAL, SUPERSONIC MIXING OF HYDROGEN
33054 AND AIR#, SUPERSONIC MIXING OF HYDROGEN
33003 OF DRAG OF A PROJECTILE IN A SUPERSONIC STREAM BY THE COMBU
31014 HE CASE FOR A HYDROGEN-FUELED SUPERSONIC TRANSPORT# T
31035 LIQUID HYDROGEN AS A SUPERSONIC TRANSPORT FUEL#
31007 ND METHANE FUEL IN A MACH 2.7 SUPERSONIC TRANSPORT# / ROGEN A
30053 ONCEPT# ANALYSIS OF A SUPERSONIC-COMBUSTION ROCKET C
10037 SWER TO THE PROBLEM OF ENERGY SUPPLY AND POLLUTION#/ ICAL AN
31013 ECONOMICS OF LIQUID HYDROGEN SUPPLY FOR AIR TRANSPORTATION#
22115 HYDROGEN SUPPLY FOR FUEL CELLS#
34245 CE OF HYDRO/ EFFECT OF OXYGEN-SUPPLY IMPURITIES ON PERFORMAN
34813 M2-AIR FUEL CELLS AS ELECTRIC SUPPLY ON STRATOSPHERIC AIRSHI
30059 A HYDROGEN-OXYGEN SPACE POWER SUPPLY SYSTEM# / DEVELOPMENT OF
34816 62 FUEL CELL ELECTRICAL POWER SUPPLY, OPERATIONS MANUAL#/ XS
34829 FOR IMPROVED ELECTRICAL POWER SUPPLY# FUEL CELLS
34810 INTENDED FOR EMERGENCY POWER SUPPLY# /N-HYDROGEN FUEL CELLS
34230 TD FUEL CELLS# PROCESS FOR SUPPLYING HYDROGEN AND OXYGEN
23007 TD FUEL CELLS# PROCESS FOR SUPPLYING HYDROGEN AND OXYGEN
23001 ELL WITH BOROHYD/ PROCESS OF SUPPLYING HYDROGEN TO A FUEL C
23004 NG FOR USE IN EMERGENCY LIFE SUPPORT SYSTEM DESIGN# / REFORM
34641 ERIZATION OF THE CATALYST AND SUPPORT# /N ANODES. 1% CHARACT
22638 TENE WITH STEAM OVER A SILICA-SUPPORTED NICKEL CATALYST IN T
<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE INDEX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>30002</td>
<td>IGATION OF ACOUSTIC LINERS TO SUPPRESS SCREECH IN HYDROGEN-O</td>
</tr>
<tr>
<td>30033</td>
<td>00- POU/ EVALUATION OF SPEECH</td>
</tr>
<tr>
<td>51010</td>
<td>T/ PREVENTION, DETECTION, AND</td>
</tr>
<tr>
<td>52049</td>
<td>ON THE EMBRIT/ THE EFFECT OF</td>
</tr>
<tr>
<td>52007</td>
<td>S ON THE EMBRIT/ INFLUENCE OF</td>
</tr>
<tr>
<td>40406</td>
<td>RYGENIC STORAGE ON THE LUNAR</td>
</tr>
<tr>
<td>34642</td>
<td>AL REQUIREMENTS OF THE CARBON</td>
</tr>
<tr>
<td>10077</td>
<td>EN FUTURE FUEL. (A LITERATURE</td>
</tr>
<tr>
<td>34034</td>
<td>S# FUEL CELL TECHNOLOGY - A</td>
</tr>
<tr>
<td>32009</td>
<td>AS A VEHICULAR FUEL#</td>
</tr>
<tr>
<td>51009</td>
<td>EN LEAK AND FIRE DETECTION: A</td>
</tr>
<tr>
<td>43207</td>
<td>HYDROGEN: PART 1. LITERATURE</td>
</tr>
<tr>
<td>51312</td>
<td>O Explosibility: A LITERATURE</td>
</tr>
<tr>
<td>52001</td>
<td>N AND TENSILE STRENGTH ON THE</td>
</tr>
<tr>
<td>52015</td>
<td>ION OF HYDROGEN EMBRITTLEMENT</td>
</tr>
<tr>
<td>23428</td>
<td>PRESSURE-SWING ADSORPTION#</td>
</tr>
<tr>
<td>31015</td>
<td>UELED AIRCRAFT# WORKING SYMPOSIUM ON LIQUID HYDROGEN-F</td>
</tr>
<tr>
<td>32010</td>
<td>D GAS MANUFACTURED FROM COAL (SYNTHANE)# /ED NATURAL GAS, AN</td>
</tr>
<tr>
<td>22163</td>
<td>IMUNATEOUS PRODUCTION OF OXC</td>
</tr>
<tr>
<td>22203</td>
<td>M LIQUID HYDROCARBONS#</td>
</tr>
<tr>
<td>22165</td>
<td>PRODUCING HYDROGEN OR AMMONIA</td>
</tr>
<tr>
<td>22635</td>
<td></td>
</tr>
<tr>
<td>22132</td>
<td>, IN TUBES, FOR PRODUCTION OF</td>
</tr>
<tr>
<td>22615</td>
<td>IEDUCING GAS#</td>
</tr>
<tr>
<td>22130</td>
<td>PRODUCTION OF HYDROGEN AND</td>
</tr>
<tr>
<td>22193</td>
<td></td>
</tr>
<tr>
<td>22645</td>
<td>AMMONIA SYNTHESIS GAS#</td>
</tr>
<tr>
<td>23423</td>
<td>VERY OF HYDROGEN FROM AMMONIA</td>
</tr>
<tr>
<td>22199</td>
<td>OXIDATION OF HYDROCARBONS FOR</td>
</tr>
<tr>
<td>22174</td>
<td>HYDROGEN-RICH SYNTHESIS GAS</td>
</tr>
<tr>
<td>22183</td>
<td>ONIA AND METHANOL#</td>
</tr>
<tr>
<td>22627</td>
<td>RCM NATURAL GAS BY PLASMA JET</td>
</tr>
<tr>
<td>10063</td>
<td>"HYDROGEN SYNTHETIC FUEL OF THE FUTURE"#</td>
</tr>
<tr>
<td>10034</td>
<td>HYDROGEN: SYNTHETIC FUEL OF THE FUTURE#</td>
</tr>
<tr>
<td>10033</td>
<td>"# "HYDROGEN AND SYNTHETIC FUELS FOR THE FUTURE</td>
</tr>
<tr>
<td>10064</td>
<td>TION AND NATIONAL ENERGY NEE/</td>
</tr>
<tr>
<td>12031</td>
<td>HYDROGEN AND OTHER SYNTHETIC FUELS#</td>
</tr>
</tbody>
</table>
TITLE INDEX

SECTION 'T'

34817 N# HYDROCARBON-AIR FUEL CELL SYSTEM FOR MILITARY APPLICATIONS

34815 OPEN CYCLE FUEL CELL SYSTEM FOR SPACE APPLICATIONS

40602 -GPM LIQUID HYDROGEN TRANSFER SYSTEM FOR THE SATURN APOLLO

23209 II: THE CONTRIBUTION OF PHOTO-SYSTEM II: IN SEVERAL ALGAE

34220 OF HYDROGENASE-METHYLENE BLUE SYSTEM IN A BIOCHEMICAL FUEL CELL

51013 ERTIES OF THE HYDROGEN-OXYGEN SYSTEM IN VENTED TANKS

23201 REGENERATION IN GESCHLOSSENE SYSTEM MIT HILFE VON ELEKTROLYT

33029 F TURBOJET COMBUSTOR AND FUEL-SYSTEM OPERATION WITH HYDROGEN

20512 ATION BY THERMAL ENERGY SYSTEM STUDEY OF HYDROGEN GENERATORS

23028 UM HYPOCHLORITE TO/ FUEL CELL SYSTEM USING LITHIUM AND LITHIUM

30023 DY 3,2 ON AN ELC-8 LAUNCHING SYSTEM WITH A STANDARD ENGINE

10009 A HYDROGEN-ELECTRIC UTILITY SYSTEM WITH PARTICULAR REFEREN

34106 RA/ HYDROGEN-OXYGEN FUEL CELL SYSTEM WITH REACTANT SUPERSATUR

40604 IB/ SHUTTLE: REACTION CONTROL SYSTEM: CRYOGENIC LIQUID DISTRIBUTION

34004 CRYOGENIC LIQUID DISTRIBUTION SYSTEM: STUDY/ CONTRO SYSTEM

41003 RDGEN-SLUSH DENSITY REFERENCE SYSTEM

34832 ATT HYDROCARBON AIR FUEL CELL SYSTEM

34826 GEMINI FUEL CELL SYSTEM

22176 SHIFT CONVERTER AND FUEL CELL SYSTEM

10011 HYDROGEN-ENERGY SYSTEM

10002 A HYDROGEN-ENERGY SYSTEM

23415 INTEGRATED HYDROGEN DIFFUSION SYSTEM

34247 50-WATT INDIRECT HYDROGEN SYSTEM

34249 APOLLO FUEL CELL SYSTEM

34804 METAL HYDRIDE/AIR FUEL CELL SYSTEM

34802 VEHICLE FUEL CELL SYSTEM

22623 HYDROGEN PRODUCING SYSTEM

34803 LLITE FUEL CELL/BATTERY POWER SYSTEM

34248 RBON REFORMER - AIR FUEL CELL SYSTEM

34837 ROUYE HYDROGEN-AIR FUEL CELL SYSTEM

33014 ON DELAYS IN THE HYDROGEN-AIR SYSTEM: CALCULATION OF IGNITION

34215 ED NATURAL GAS-ACID FUEL CELL SYSTEM

32005 GY-TRANSPORTATION-ENVIRONMENT SYSTEM IN THE EMERGING ENERGY

50015 A GASEOUS HYDROGEN PRESSURE SYSTEM: ASSEMBLING, AND OPERATING

30059 GEN-OXYGEN SPACE POWER SUPPLY SYSTEM: DEVELOPMENT OF A HYDROGEN

20016 TATIC FEED WATER ELECTROLYSIS SYSTEM: OF THE LIFE SYSTEM S

30073 COMBUSTION ENGINE SPACE POWER SYSTEM: GEN-OXYGEN INTERNAL

34242 RBONATE FUEL CELL AND BATTERY SYSTEM: MANCE OF A MOLTEN CA

52031 ERTIES OF PALLADIUM HYDROGEN SYSTEM: HYDROGEN ON TENSILE PROP

2016 TROLYSIS: STATUS OF THE LIFE SYSTEM: STATIC FEED WATER ELECTRIC

10061 AS A FUEL FOR TRANSPORTATION SYSTEMS AND FOR ELECTRICAL POW

10054 ON HYDROGEN ENERGY SYSTEMS AND VEHICULAR PROPULSION

42004 STANDARD FOR GASEOUS HYDROGEN SYSTEMS AT CONSUMER SITES

40411 SYST/ EXTERNAL PRESSURIZATION SYSTEMS FOR CRYOGENIC STORAGE

40412 SYST/ EXTERNAL PRESSURIZATION SYSTEMS FOR CRYOGENIC STORAGE

30052 NT/ ADVANCED PRESSURIZATION SYSTEMS FOR CRYOGENIC PROPELLA

10043 HYDROGEN SYSTEMS FOR ELECTRIC ENERG

42000 HOW TO DESIGN PIPING SYSTEMS FOR HYDROGEN SERVICE

20019 RAM OF TWO WATER ELECTROLYSIS SYSTEMS FOR SPACECRAFT CABIN O

50003 DESIGN OF FAIL-SAFE CONTROL SYSTEMS FOR STEAM REFORMING PLANT

20501 ENERGY DEPOT ELECTROLYSIS SYSTEMS STUDY

30069 YDROGEN) FOR REACTION CONTROL SYSTEMS: II: EXPERIMENTAL EVAL

30064 YDROGEN) FOR REACTION CONTROL SYSTEMS: VOLUME 2: EXPERIMENTAL
SECTION 'T'

30065 OR CRYOGENIC REACTION CONTROL SYSTEMS, VOLUME I
40412 SYSTEMS FOR CRYOGENIC STORAGE SYSTEMS: DESIGN REFERENCE MANU
43008 METAL HYDRIDE ENERGY STORAGE SYSTEMS
34843 ELECTRICAL START FOR JP-4-AIR SYSTEMS AUTOMATED
34019 ENERGETICS: FUEL-CELL SYSTEMS
34027 HYDROCARBON - AIR FUEL CELL SYSTEMS
34026 LOW-TEMPERATURE FUEL CELL SYSTEMS
34269 ADVANCED SPACECRAFT FUEL CELL SYSTEMS
34814 N FUEL CELLS: VARTA FUEL CELL SYSTEMS HYDROGEN-OXYGEN
33041 LYSIS OF COMPOSITE PROPULSION SYSTEMS PERFORMANCE ANAL
34503 OVAL UNIT FOR H2/O2 FUEL CELL SYSTEMS WATER- AND HEAT-REM
34260 XYGEN REGENERATIVE FUEL-CELL SYSTEMS PRESSURE HYDROGEN-OXYGEN
30411 HIGH-ENERGY ROCKET PROPULSION SYSTEMS /ICS OF CONTROLLABLE
40200 S IN TWO-PHASE CRYOGENIC FLOW SYSTEMS /ND RELATED PARAMETER
33007 IES OF FUEL-OXYGEN COMBUSTION SYSTEMS /ND TRANSPORT PROPERT
34608 DRICARBONS IN FUEL CELL POWER SYSTEMS RLBLEMS IN USE OF HY
40411 SYSTEMS FOR CRYOGENIC STORAGE SYSTEMS /NSAL PRESSURIZATION
32006 MOTIVE VEHICLE ADVANCED POWER SYSTEMS WATER (H2O*) IN AUTO
21011 HYDROGEN W/ PROCEEDINGS ROUND TABLE ON DIRECT PRODUCTION OF
40213 ENGINEERING UNITS FROM 36 D/ TABLES OF PARAHYDROGEN DATA IN
22114 HYDROGEN FROM HEAVY TAILINGS
23427 HYDROGEN RECOVERY TAKES ON NEW LUSTER IN SOME PL
22124 OPERATIONS HYDROGEN PLANTS TAKING NEW STATURE IN REFINING
10062 C & EN TALKS WITH.......
33058 COMBUSTION ON A FLAT PLATE IN TANGENTIAL FLOW OF HYDROGEN
31004 ADVOR OF LIQUID HYDROGEN IN A TANK DESIGNED AND INSULATEDFOR
52019 TLEMENT OF STEELS USED IN THE TANK FARM CYLINDERS N EMBRIT
40408 ER LIQUID HYDROGEN TANK INSULATION FOR S-11 BOOST
40598 PERIMENTAL FINDINGS FROM ZERO-TANK NET POSITIVE SUCTION HEAD
40417 RIZATION IN A LIQUID HYDROGEN TANK /ICATION AND SELF-PRESSU
40410 VEHICLES HYDROGEN TANKAGE FOR HYPERSONIC CRUISE
40422 VENTING OF LIQUID-HYDROGEN TANKAGE
40413 OF SPHERICAL LIQUID HYDROGEN TANKAGE SELF-PRESSURIZATION
40416 UME OF INSULATIONS FOR ROCKET TANKS FILLED WITH LIQUID HYDRO
40402 TION FOR LIQUID-HYDROGEN FUEL TANKS IN HIGH-SPEED, LONG-RAN
40418 ON SYSTEM FOR LIQUID-HYDROGEN TANKS OF HYPERSONIC AIRPLANES
31003 ON SYSTEM FOR LIQUID HYDROGEN TANKS OF HYPERSONIC AIRPLANES
40407 OR INSULATING LIQUID-HYDROGEN TANKS LOW-DENSITY FOAM F
51013 ROGEN-OXYGEN SYSTEM IN VENTED TANKS PROPERTIES OF THE HYDRO
40415 OR USE AS INSULATIONS FOR LH2 TANKS MATERIALS COMPOSITES F
52047 OF HYDROGEN EMBRITTLEMENT OF TANTALUM IN THE FRCTR F/ELMENT
52003 ETCH ANALYSIS OF HYDROGENATED TANTALUM SHEET P
51003 AND METHODS OF COMPUTATION OF TECHNICAL EXPLOSIVITY PARAMETE
22627 ACETYLENE, ITS HOMOLOGS, AND TECHNICAL HYDROGEN FROM NATURE
22614 FOR FERTILIZER INDUSTRY IN I TECHNICAL HYDROGEN PRODUCTION
34011 OVERSION OF CH PHYSICAL AND TECHNICAL PROBLEMS OF DIRECT C
51011 N HANDLEITG SUIT PROTECTS NASA TECHNICIANS HYDROGE
33026 ROGEN-OXYGEN ROCKET AND A NEW TECHNIQUE FOR DATA CORRELATION
40303 LIQUID HYDROGEN FLOW BY NMR TECHNIQUE
40200 RATE DENSITY AND RELATED PAR TECHNIQUES FOR DETERMINING AVE
22173 HYDROGEN ST/ NEW CONCEPTS AND TECHNIQUES FOR PREPARING PURE
22144 A REFORMING PROCESS AND OTHER TECHNIQUES C I STEAM NAPHTH
34034 CES AND PROBLEMS FUEL CELL TECHNOLOGY - A SURVEY OF ADVAN
TITLE INDEX

SECTION 'T'

30040 UTILIZATION OF LOX/HYDROGEN ENGINE TECHNOLOGY FOR ADVANCED MISSILES
31009 PERSONIC AIRCRAFT KEY TECHNOLOGY FOR AIRBREATHING HYDROGEN ENGINE TECHNOLOGY FOR ADVANCED MISSILES
21016 P/ THERMOCHEMICAL AND NUCLEAR TECHNOLOGY FOR NUCLEAR WATER SPLITTING
30024 TECHNOLOGY OF FUEL CELLS
34225 SUMMARY REPORT FUEL CELL TECHNOLOGY PROGRAM CONTRACT SUMMARY
34271 FUEL CELL TECHNOLOGY PROGRAM
34226 FUEL CELL TECHNOLOGY PROGRAM
34256 FUEL CELL TECHNOLOGY PROGRAM
34844 STATUS OF SHUTTLE FUEL CELL TECHNOLOGY PROGRAM
33015 SPACE SHUTTLE ACPS THRUSTER TECHNOLOGY REVIEW OXYGEN-OXYGEN COMPONENT TECHNOLOGY STATUS
30042 OXYGEN/HYDROGEN COMPONENT TECHNOLOGY STATUS
30054 INVESTIGATING OXYGEN/HYDROGEN COMPONENT TECHNOLOGY STATUS
30006 DUDLED RADIOISOTOPE PROPULSION TECHNOLOGY LIQUID HYDROGEN TECHNOLOGY
34202 LIQUID HYDROGEN TECHNOLOGY
34205 ADVANCED ELECTROCHEMICAL TECHNOLOGY
10065 CLEAN ENERGY VIA CRYOGENIC TECHNOLOGY
20014 MODERN ELECTROLYSER TECHNOLOGY
40002 & LOW-TEMPERATURE ENGINEERING TECHNOLOGY LIQUID HYDROGEN
34257 EMPOYING CONDUCTING- POROUS-TEFLON ELECTRODES AND LIQUID ELECTROLYTES
43009 QUINTITIES/ REVERSIBLE ROOM TEMPERATURE ABSORPTION OF LARGE AMOUNTS OF CARBON
22231 DROCARBONS TO HYDROGEN AT LOW TEMPERATURE AND HIGH PRESSURE
34105 GEN AND BASIC-ELECTROLYTE LOW-TEMPERATURE BATTERIES AT THE CENTER
50002 SAFETY REQUIREMENTS FOR HIGH-TEMPERATURE DESIGN
52036 OXYGEN AND VANADIUM / THE LOW-TEMPERATURE EMBRITTLEMENT OF NICKEL AND VANADIUM
40000 DMORROW, LIQUID HYDROGEN LOW-TEMPERATURE ENGINEERING TECHNOLOGY
22602 GEN FROM CO + H2O LOW TEMPERATURE FORMATION OF HYDROGEN
23020 GEN FROM CO + H2O LOW TEMPERATURE FORMATION OF HYDROGEN
34217 LOW TEMPERATURE FUEL BATTERIES
34509 TE MEMBRANES FOR INTERMEDIATE TEMPERATURE FUEL CELLS
34644 ES ON ANODIC REACTION OF HIGH TEMPERATURE FUEL CELL STUDY
34506 LOW TEMPERATURE FUEL CELLS
34611 NCE OF CARBON MONOXIDE IN LOW-TEMPERATURE FUEL CELLS CONTAINING CARBON
34624 CARBON-AIR ELECTRODES FOR LOW TEMPERATURE FUEL CELLS
34208 PHOSPHORIC ACID INTERMEDIATE-TEMPERATURE FUEL CELLS ILIZED
34212 ION ON DILUTE HYDROGEN INTERMEDIATE TEMPERATURE FUEL CELL - OPERATIONAL
34026 LOW-TEMPERATURE FUEL CELL SYSTEMS
23029 HYDROGEN GENERATORS AND MEAN TEMPERATURE FUEL CELLS OXYGEN
22640 ING FURNACE HIGH-TEMPERATURE HYDROCARBON REFORMING
34101 PROACH TO HIGH-TEMPERATURE, HIGH-TEMPERATURE HYDROGEN OXYGEN FUEL CELLS
34626 ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN/OXYGEN FUEL CELLS
34603 C E XISTING BATTERIES LOW TEMPERATURE HYDROGEN CELLS
34251 TICS OF HIGH-PRESSURE MEDIUM-TEMPERATURE HYDROGEN-OXYGEN REFORMING
40308 DUS/ DEVICE FOR MEASURING THE TEMPERATURE OF LIQUID AND GAS
51029 EN EXPLOSIONS ON THE INITIAL TEMPERATURE OF THE HYDROGEN Mixture
52055 THE EFFECT OF HYDROGEN AND TEMPERATURE ON MECHANICAL PROPERTIES
34203 ND ITS PERFORMANCE WITHIN THE TEMPERATURE RANGE -20 DEGREES
22638 PORTED NICKEL CATALYST IN THE TEMPERATURE RANGE 370-450 DEGREES
22122 ROUTE TO FUEL-CELL HYDROGEN REFORMING A GOOD
22112 OXYGEN LOW-TEMPERATURE REFORMING FOR HYDROGEN OXYGEN REFORMING
23440 DROGEN FROM INDUSTRIAL HYDROGEN LOW-TEMPERATURE REGENERATION OF HYDROGEN
21036 THE DECOMPOSITION OF A LOW TEMPERATURE THERMAL PROCESS FOR THE DECOMPOSITION OF A LOW TEMPERATURE THERMAL PROCESS FOR HYDROGEN
34270 DROGEN CROSS-LEAKAGE IN A LOW-TEMPERATURE, CONTAINED-ELECTRODE SYSTEM
40305 AT AND ABOVE LIQUID HYDROGEN TEMPERATURE: PRESENT AND FUTURE
TITLE INDEX

SECTION 'T'

52025 HYDROGEN ON METALS AT AMBIENT TEMPERATURE /F HIGH PRESSURE
52005 GENERATION OF HYDROGEN IN METALS AT HIGH TEMPERATURES AND LOW PRESSURES
33059 GENERATION OF HYDROGEN IN METALS AT HIGH TEMPERATURES BY PRECOMBUSTION
50048 THE IDEAL STATE AT STAGNATION TEMPERATURES UP TO 200,000 DEG
52009 LIQUIFIED GASES AT VERY LOW TEMPERATURES: PARTICULAR CASE
51005 RISING RATES, DILUTION LIMITS, TEMPERATURES, AND WIND EFFECTS
23421 HYDROGEN PURIFICATION AT LOW TEMPERATURES
23425 PURIFICATION OF HYDROGEN BY MEANS OF LOW TEMPERATURES
33066 PURIFICATION OF HYDROGEN AT HIGH PRESSURE AND LOW TEMPERATURES
33098 BURNING OF HYDROGEN ISOTOPES BELOW THEIR CRITICAL TEMPERATURES
40008 EN-CHLORINE FUEL CELL AT HIGH TEMPERATURES /M OF THE HYDROGEN
40100 NDI HELIUM, OBTAINING ULTRALOW TEMPERATURES /N OF HYDROGEN A
52018 LLOY WITH HYDROGEN GAS AT LOW TEMPERATURES /OF A TITANIUM A
52055 CRYOGENIC, ROOM, AND ELEVATED TEMPERATURES /RE HYDROGEN AT
10048 ECO-ENERGY STUDIES AT TEMPO
52031 M- HYD EFFECT OF HYDROGEN ON TENSILE PROPERTIES OF PALLADIUM
52001 THE EFFECT OF COMPOSITION AND TENSILE STRENGTH ON THE SUSCEPTIBILITY
20017 TOLYYSIS MODULE /LONG-TERM OPERATION OF A WATER ELECTROLYSIS MODULE
10146 CRITERIA FOR LIQUID HYDROGEN TEST FACILITIES /EXPLOSION
52017 ROG ELECTRODE IMPROVEMENT AND LIFE TESTING /L CELL ELECTRODES; E
20002 TOLYYSIS SYSTEMS FOR SIX-MONTH TEST PROGRAM OF TWO WATER ELECTROLYSIS SYSTEMS
30050 TOLYYSIS OF STAINS AT A BLATIVE CHAMBER TEST PROGRAM /LARGE HYDROGEN LABILITY
51008 OR OF NONMETAL/ FLASH AND FIRE TEST: EVALUATION OF THE BEHAVIOR
52020 MENT: PRIMARY AND SECONDARY /TESTING FOR HYDROGEN EMBRITTLEMENT
52015 OF HYD A NEW APPROACH TO BEND TESTING FOR THE DETERMINATION
30241 INE CONCEPT /NASA TESTING HYDROGEN INJECTION ENGINE
34264 N FUE/ RELIABILITY ASSESSMENT TESTING OF 2 KW HYDROGEN-OXYGEN
34634 ELECTRODE IMPROVEMENT AND LIFE TESTING /L CELL ELECTRODES; E
52019 NT OF STEELS USED IN THE TAN/ TESTS FOR HYDROGEN EMBRITTLEMENT
30051 ACOUTIC SCALE-MODEL TESTS OF HIGH-SPEED FLOWS
33039 SIMULATED UIDBURNER /TESTS WITH HYDROGEN FUEL IN A
52026 304 STAINLESS STEEL FROM LESS THAN 600 C TO NEAR 600 C /ND
43012 MAGNETS THAT ATTRACT HYDROGEN
10066 M/ POLLUTION-FREE CAR ENGINES THAT BURN A GASOLINE-HYDROGEN MIXTURE
30040 ANE OF RAMJET FUELS: HYDROGEN/ THEORETICAL COMBUSTION PERFORMANCE
30048 NET ENGINES USING GASEOUS HYDROGEN /THEORETICAL PERFORMANCE OF ROCKET ENGINE
30026 E TRIERGOLIC ROCKET FUEL SYSTEM /THEORETICAL PERFORMANCES OF THE ENGINE DESIGN
34009 FUEL CELLS: THEORY AND APPLICATION
41014 -PRESSURE HYD/ CORRELATION OF THEORY AND EXPERIMENT FOR HIGH
51003 APORS AND GASES WITH AIR /XI. THEORY OF EXPLOSIVE COMBUSTION
40214 NTS OF CRYOGENIC LIQUIDS /THEORY OF EXPLOSIVE COMBUSTION
31004 ANALYTICAL EVALUATION OF THE THERMAL BEHAVIOR OF LIQUID HYDROGEN
40206 HYDROGEN NEAR ITS CRITICAL FLOW AND THERMAL CHARACTERISTICS OF HYDROGEN
40416 IFFIC HEAT TRANSFER: THERMAL CONDUCTIVITY OF HYDROGEN
41012 AND LIQUID PARAHYDROGEN /THERMAL CONDUCTIVITY OF SOLID PARAHYDROGEN
22620 THERMAL IDEAS AND THERMAL CONTACT PROCESS FOR THICK MATERIALS
21013 THROUGH CHEMICAL CYCLES USING
20512 UDY OF HYDROGEN GENERATION BY THERMAL ENERGY /SYSTEM STABILITY
31038 ETHANE OR HYDROGEN FUEL FOR THERMAL FEASIBILITY OF USING MONOXIDE FUELS FOR C
10058 ONSERVING ENERGY AND REDUCING THERMAL POLLUTION /CELLS FOR C...
TITLE INDEX

SECTION "T"

21006 OSITION CF/ A LOW TEMPERATURE THERMAL PROCESS FOR THE DECOMP
41002 OGE/ HANDBOOK OF PHYSICAL AND THERMAL PROPERTY DATA FOR HYDR
40402 HYDROGEN FUEL TANKS IN HIGH-/ THERMAL PROTECTION FOR LIQUID-
40418 L/ A CARBON DIOXIDE PURGE AND THERMAL PROTECTION SYSTEM FOR
31003 L/ A CARBON DIOXIDE PURGE AND THERMAL PROTECTION SYSTEM FOR
33006 HYDROGEN PLUME# THERMAL RADIATION FROM BURNING
49417 ROGRAM FOR THE CALCULATION OF THERMAL STRATIFICATION AND SEL
22625 THEMATICAL DESCRIPTION OF THE THERMAL-CONTACT PREPARATION OF
30010 RED THERMIONIC GENERATORS AND THERMIONIC DIODES# /-OXYGEN FI
30010 MIONIC/ HYDROGEN-OXYGEN FIRED THERMIONIC GENERATORS AND THER
22211 RATION FROM HYDROCARBON FUEL/ THERMO-CATALYTIC HYDROGEN GEN
21016 HNOLGY FOR NUCLEAR WATER SP/ THERMOCHEMICAL AND NUCLEAR TEC
21008 ER# THERMOCHEMICAL CRACKING OF WAT
21014 SS# FUNDAMENTALS OF THERMOCHEMICAL CYCLIC PROCESSE
21002 TION# THERMOCHEMICAL HYDROGEN GENERA
21007 HYDROGEN SCUGHT VIA THERMOCHEMICAL MEANS#
40202 OPERTI/ COMPUTER PROGRAMS FOR THERMODYNAMIC AND TRANSPORT PR
40208 OPERITIES OF FLUIDS AND SELE/ THERMODYNAMIC AND TRANSPORT PR
33007 OPERITIES OF FUEL-OXYGEN COMB/ THERMODYNAMIC AND TRANSPORT PR
40108 E/ DEVELOPMENT OF A PRACTICAL THERMODYNAMIC CYCLE FOR A SPAC
40503 LIQUID HYDROGEN TURBOPUMPS# THERMODYNAMIC IMPROVEMENTS IN
41011 RHYDROGEN FROM 1 TO 22K/ THE THERMODYNAMIC PROPERTIES OF PA
22213 OMPLTE COMBUSTION (GASIFICA/ THERMODYNAMIC STUDY OF THE INC
21009 ATER DECOMPOSITION PROCESSES/ THERMODYNAMICS OF MULTI-STEP W
52005 TY AND PERMEATION OF HYDROGE/ THERMODYNAMICS OF THE SOLUBILI
41006 TING CHARACTERISTICS AND BULK THERMOPHYSICAL PROPERTIES OF S
41007 PARATUS# APPLICATION OF THERMOSIPHON FOR PREHEATING AP
34806 D SUBSEQUENT RECOMBINATION OF THESE GASES BY FUEL CELLS# /AN
34617 E# HYDROGEN-OXYGEN THIN ELECTRODE FUEL CELL MODUL
34647 E DIMENSIONS OF AIR-HYDROGEN THIN ELECTRODES# EXTENDING T
34633 THIN FUEL CELL ELECTRODES#
52044 EEL FROM HYDROGEN CRACKING BY THIN METALLIC COATINGS# /OF ST
40309 THIN-FILM HYDROGEN SENSOR#
40112 EN-HYDROCARBON GAS MI/ JOULES-THOMSON LIQUEFACTION OF HYDROG
10014 MY** "SECOND THOUGHTS ON THE HYDROGEN ECONO
52026 GAS-PHASE HYDROGEN PERMEATION THROUGH ALLHA IRON, 4130 STEEL
21013 THERMAL DECOMPOSITION OF WATER THROUGH CHEMICAL CYCLES USINGA
34216 CELLS IN WHICH GAS CIRCULATES THROUGH ELECTROLYTE# /02 FUEL
22210 ITY AND BE PIPED TO CONSUMERS THROUGH GRID SAY BIPM SPOKESMA
52030 E PERMEATION RATE OF HYDROGEN THROUGH METAL MEMBRANES# /F TH
52032 DIFFUSION OF GASES THROUGH METALS#
52045 TION OF ELECTROLYTIC HYDROGEN THROUGH PLATINUM# PERMEA
23408 ES OF CO AND H2 BY PERMEATION THROUGH POLYMERIC FILMS# /XTUR
30060 DEVELOPMENT OF A 1,500,000-LB-THRUST (NOMINAL VACUUM) LIQUID
30066 F COMBUSTOR EFFECTS ON ROCKET THRUST CHAMBER PERFORMANCE# /O
30056 MANUFACTURE OF LIQUID HYDROGEN THRUST CHAMBER# DESIGN AND M
30062 M FOR A REGENERATIVELY COOLED THRUST CHAMBER# /COATING SYSTE
30013 ON SCREECH IN A 20,000 POUND-THRUST HYDROGEN-OXYGEN ROCKET#
30033 N CONCEPTS IN A 20,000- POUND-THRUST HYDROGEN-OXYGEN ROCKET#
30049 E S E P R HM4 ENGINE: A 40 KN THRUST LIQUID OXYGEN AND HYDRO
30036 ON STABILITY CHARA/ EFFECT OF THRUST PER ELEMENT ON COMBUSTI
30045 / DYAMIC PERFORMANCE OF LOW-THRUST, COLD-GAS REACTION JETS
30061 ULSIVE UNIT WITH 300 N VACUUM THRUST# /LIQUID HYDROGEN PROP
TITLE INDEX

SECTION 'T'

30023 TANDARO ENGINE OF 6-8 TONS OF THRUST WITH A STANDARD ENGINE OF 6-8 TONS OF THRUST
30015 GEN-OXYGEN SPACE SHUTTLE ACPS THRUSTER TECHNOLOGY REVIEW FOR THE SPACE SHUTTLE ACPS
30065 ON CONTROL / INVESTIGATION OF THRUSTERS FOR CRYOGENIC REACTORS
52050 MECHANICAL PROPERTIES OF THE Ti-5Al-2.5Sn ELI ALLOY /
40510 LINES / COOLDOWN TIME FOR SIMPLE CRYOGENIC PIPE
33023 YDRO/ PHOTOCHEMICAL INDUCTION TIMES IN FLOWING MIXTURES OF HYDROGEN
52018 AS AT LOW / THE REACTION OF A TITANIUM ALLOY WITH HYDROGEN IN A THERMODYNAMIC SYSTEM
52054 DT-SALT STRESS-CORROSION OF A TITANIUM ALLOY / HYDROGEN IN A THERMODYNAMIC SYSTEM
43010 N, PROPERTIES, AND APPLICATIONS / IRON TITANIUM HYDRIDE: ITS FORMATION
52059 ESTIMATION OF THE REACTION OF TITANIUM WITH HYDROGEN INTO A THERMODYNAMIC SYSTEM

'NOT INDEXED'

34035 FUEL CELLS, TODAY AND TOMORROW
40000 -TEMPERATURE ENGINE / FUEL FOR TOMORROW, LIQUID HYDROGEN, LOW TEMPERATURE ENGINE / FUEL FOR TOMORROW
34035 FUEL CELLS, TODAY AND TOMORROW
10013 HYDROGEN: TOMORROW'S FUEL?
40106 RYOGIC EXPANSION ENGINE FOR TONNAGE HYDROGEN LIQUEFACTION
30023 WITH A STANDARD ENGINE OF 6-8 TONS OF THRUST WITH A STANDARD ENGINE OF 6-8 TONS OF THRUST
1002A VENT /
HYDROGEN GETS TOP BILLING AS FUTURE "CLEAN FUEL"
10089 OR /
A TOWER TOP FOCUS SOLAR ENERGY COLLECTOR
30007 ITS FOR HYDROGEN / ANALYSIS OF TOPPING AND BLEED TURBOPUMP UNITS
10089 OLLER /
A TOWER TOP FOCUS SOLAR ENERGY COLLECTOR
22191 USE OF HYDROGEN IN TOWN GAS PRODUCTION
10015 SOLUTION LI / "HYDROGEN-HEATED TOWNS PLACED ON ENERGY CRISIS"
23202 PHOTOSYNTHETIC UNITS, ENERGY TRANSFER AND LIGHT-INDUCED EV
40502 ID HYDROGEN TURBOPUMPS / HEAT TRANSFER COEFFICIENTS FOR LIQUID HYDROGEN TURBOPUMPS
30071 MBER BURN / COMBUSTION AND HEAT TRANSFER IN A SMALL ROCKET CHAMBER
34025 EL CELLS WITH ION EXCHANGE MASS TRANSFER IN ELECTROCHEMICAL FUEL CELLS
33031 CRET / AN INTRODUCTION TO HEAT TRANSFER IN HYDROGEN/OXYGEN REACTORS
33036 ER BURN / COMBUSTION AND HEAT TRANSFER IN SMALL ROCKET CHAMBERS
41004 STRUMENTATION FOR STORAGE AND TRANSFER OF HYDROGEN SLUSH / NUCLEAR EXPERIENCE IN HANDLING
33026 OXYGEN ROD / COOLANT-SIDE HEAT-TRANSFER RATES FOR A HYDROGEN ROD / COOLANT-SIDE HEAT-TRANSFER RATES
33025 TIGATION OF HOT-GAS SIDE HEAT-TRANSFER RATES FOR A HYDROGEN ROD / COOLANT-SIDE HEAT-TRANSFER RATES
33030 IATIONS OF HOT-GAS SIDE HEAT-TRANSFER RATES IN A HYDROGEN ROD / COOLANT-SIDE HEAT-TRANSFER RATES
40602 A 10,000-GPM LIQUID HYDROGEN TRANSFER SYSTEM FOR THE SATURN V
40209 FLOWING TURBULENTLY IN HEAT TRANSFER TO CRYOGENIC HYDROGEN
40210 POR MIXTURE OF HYDROGEN / HEAT TRANSFER TO SUBLIMING SOLID-VAPOR MIXTURES OF HYDROGEN
40207 OGENI / FORCED CONVECTION HEAT TRANSFER TO SUPER-CRITICAL CRYOGENIC FLUIDS
40605 IC PROPellant ACQUISITION AND TRANSFER / CRYOGENIC FLUIDS
33015 AIR MIXING LAYER / CHEMICAL TRANSFORMATIONS IN A HYDROGEN ROD / COOLANT-SIDE HEAT-TRANSFER RATES
52010 TAINL / HYDROGEN-INDUCED PHASE TRANSFORMATIONS IN TYPE 304L STAINLESS STEEL
33051 YGEN REACTOR / TRANSIENT MODEL OF HYDROGEN/OXYGEN REACTORS
40600 LTIPLE USE OF CRYOGENIC FLUID TRANSMISSION LINES / MULTIPLE USE OF CRYOGENIC FLUID TRANSMISSION LINES
10079 ENERGY TRANSMISSION VIA HYDROGEN
10004 A NEW CONCEPT IN ENERGY TRANSMISSION
31017 THE CASE FOR HYDROGEN FUELED TRANSPORT AIRCRAFT
40601 D HY/ EXPERIENCE IN HANDLING, TRANSPORT AND STORAGE OF LIQUID HYDROGEN AS A SUPERSONIC TRANSPORT FUEL LIQUID HYDROGEN AS A SUPERSONIC TRANSPORT FUEL
34607 DRICAL ANODES IN STIRRED ELECTROLYTE / TRANSPORT OF HYDROGEN TO CYLINDER WALLS / TRANSPORT OF HYDROGEN TO CYLINDER WALLS
33007 OXYGEN COMB / THERMODYNAMIC AND TRANSPORT PROPERTIES OF FUEL-OXYGEN COMB / THERMODYNAMIC AND TRANSPORT PROPERTIES OF FUEL-0XGENIC FLUID TRANSMISSION LINES / MULTIPLE USE OF CRYOGENIC FLUID TRANSMISSION LINES
40208 AND SELECT / THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS
31014 A HYDROGEN-FUELED SUPERSONIC TRANSPORT / THE CASE FOR HYDROGEN FUELED TRANSPORT AIRCRAFT
SECTION "T"

30048 TE AT STAGNATION TEMPERATURES UP TO 200,000 DEGREES R# / STA
23416 LOW PURITY HYDROGEN UPGRADE#
23402 S ADSORPTION# UPGRADING HYDROGEN VIA HEATLES
23406 HYDROGEN, CRYOGENIC UPGRADING#
23401 CRYOGENIC HYDROGEN UPGRADING#
52029 EFFECT OF PRESSURIZED HYDROGEN UPON INCONEL 718 AND 2219 ALUM
51001 HYDROGEN IN AIR, OXYGEN, AN/ UPPER LIMIT OF FLAMMABILITY OF
33008 HYDROGEN IN OXYGEN# UPPER SELF-IGNITION LIMIT OF H
30025 HIGH ENERGY UPPER STAGES FOR ELDO VEHICLES
30033 ROCKET STAGES WITH CHEMICAL HYDROGEN--A CLEAN FUEL FOR URBAN AREAS#
10032 HYDROGEN--A CLEAN FUEL FOR URBAN AREAS# USE CALLS FOR NEW SOURCE#
31004 ANK DESIGNED AND INSULATED FOR USE IN A HYPERSONIC VEHICLE#/
34244 OXIDATION OF HYDROCARBONS FOR USE IN ACID FUEL CELLS# /TIAL
23004 ABLE PROPPELLANT REFORMING FOR USE IN KEXIGENCY LIFE SUPPORT
34626 CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGE
22175 HYDROGEN FROM HYDROCARBONS AND USE IN MOLTEN CARBONATE FUEL C
22161 ROGEN GENERATOR FOR FUEL CELL USE IN SUBMARINES# HYD
34508 A HUMIDITY SENSOR FOR A HYD/ USE OF A FLUIDIC OSCILLATOR AS
22125 OBTAINING CHARGED MATERIAL BY USE OF AN ELECTROCHEMICAL PROC
40600 SSION LINES# MULTIPLE USE OF CRYOGENIC FLUID TRANSMI
30069 TION AND DEMONSTRATION OF THE USE OF CRYOGENIC PROPELLANTS (I
30064 TION AND DEMONSTRATION OF THE USE OF CRYOGENIC PROPELLANTS (I
34698 LL POWER SY/ SOME PRLBLES IN USE OF HYDROGEN IN FUEL CE
34801 USE OF HYDROGEN IN FUEL CELLS#
34022 USE OF HYDROGEN IN FUEL CELLS#
22191 ODUCITION# USE OF HYDROGEN IN TOWN GAS PR
34220 LUE SYSTEM IN A BIOCHEMI/ THE USE OF HYDROGENASE-METHYLENE B
50011 SAFETY IN THE USE OF LIQUID HYDROGEN#
50009 LOW TEMPERATU/ SAFETY IN THE USE OF LIQUIFIED GASES AT VERY
34600 ELECTRODE AND THE OXYGEN FUSE USE OF THE ADSORPTION HYDROGEN
40400 PRESSURE VESSEL FOR USE WITH HYDROGEN#
30046 C ROCKET ENGINE FOR LATE '70S USE# /PICKED TO BUILD CRYOGENI
23604 VAILABLE IN STORAGE FOR MAN'S USE# /T INTO CHEMICAL ENERGY A
22190 F HYD/ CATALYTIC COMPOSITIONS USED FOR THE STEAM REFORMING O
52019 ROGEN EMBRITTLEMENT OF STEELS USED IN THE TANK FARM CYLINDER
40420 INSULATION FOR LARGE VESSELS USED IN TRANSPORTING AND STORI
22618 CENTRIFUGAL COMPRESSORS USED#
40001 DUSTRY AND THE LABORATORY# USES OF CRYOGENIC FLUIDS IN IN
41009 ROGEN PUMPING CHARACTERISTICS USING A CENTRIFUGAL- TYPE PUMP
30021 ES FOR SPACE SHUTTLE VEHICLES USING A HYDROGEN OR A METHANE
23412 CESS# HYDROGEN PURIFICATION USING A MODIFIED FUEL CELL PRO
23000 PRODUCING HYDROGEN FROM WATER USING AN ALKALI METAL# /S FOR
22177 IFUGAL / HYDROGEN MANUFACTURE USING GAS TURBINE-DRIVEN CENTR
30048 PERFORMANCE OF ROCKET ENGINES USING GASEOUS HYDROGEN IN THE
23028 CHLORITE TO/ FUEL CELL SYSTEM USING LITHIUM AND LITHIUM HYPO
31008 FOR / THERMAL FEASIBILITY OF USING METHANE OR HYDROGEN FUEL
34231 SS# HYDROGEN PURIFICATION USING MODIFIED FUEL CELL PROCE
32010 MOTIVE FUEL: ENGINE EMISSIONS USING NATURAL GAS, HYDROGEN-EN
21009 AL PROCESS TO DECOMPOSE WATER USING NUCLEAR HEAT# CHEMIC
21012 YDROGEN PRODUCTION FROM WATER USING NUCLEAR HEAT# H
21005 HYDROGEN PRODUCTION FROM WATER USING NUCLEAR HEAT# .H
TITLE INDEX

SECTION 'T'

52012 HYDROGEN BEHAVIOR IN METALS USING NUCLEAR MAGNETIC RESONANCE
21013 WATER THROUGH CHEMICAL CYCLES USING A FE-CL2 FAMILY/ION OF
22210 ERS THIRD HYDROGEN MAY BECOME UTILITY AND BE PIPED TO CONSUM
10029 REFERENC/ A HYDROGEN-ELECTRIC UTILITY SYSTEM WITH PARTICULAR
23202 IA/ ENERGY GENERATION AND UTILIZATION IN HYDROGEN BACTER
23002 METHOD OF AND PLANT FOR THE UTILIZATION OF NUCLEAR ENERGY
10018 PRODUCTION FOR BETTER NUCLEAR UTILIZATION/ HYDROGEN
41002 GEN SLUSH AND/OR HYDROGEN GEL UTILIZATION/A STUDY OF HYDRO
33023 PERFORMANCE OF A 28-INCH RAMJET UTILIZING GASEOUS HYDROGEN AT
23015 E PRODUCTION OF H/ METHOD FOR UTILIZING NUCLEAR ENERGY IN TH
40414 HYDROGEN STAGES OF THE SATURN V VEHICLE/ SYSTEM FOR LIQUID-
33046 MENETSKY ANDMANSON EQUATIONS/ ADDITIONAL CALCULATIONS BY
4209 HYDROGEN-CHLORINE FUEL CELLS/ DISCHARGE MECHANISM OF THE
30061 EN PROPULSIVE UNIT WITH 300 N VACUUM THRUST/ LIQUID HYDROG
30060 1,500,000-LB-THRUST (NOMINAL VACUUM) LIQUIDHYDROGEN/LIQUID
39045 COLD-GAS REACTION JETS IN A VACUUM/ ORNANCE OF LOW-THRUST
43001 THE HIGHER HYDRIDES OF VANADIUM AND NIOBIUM
43005 TITIENTS ON THE PROPERTIES OF VANADIUM AND NIOBIUM HYDRIDES
52036 EMBRITTLEMENT OF NIOBIUM AND VANADIUM BY BOTH DISSOLVED AND
22168 RAFFINATE UNDER PRESSURE/ VAPOR CONVERSION OF A GASOLINE
40210 T TRANSFER TO SUBLIMING SOLID-VAPOR MIXTURE OF HYDROGEN-BELO
33002 T OF CARBON DIOXIDE AND WATER VAPOR ON HYDROGEN-AIR CONSTANT
51000 EFFECT OF WATER VAPOR ON H2-O2 DETONATIONS
23600 ORDINARY OR DEUTERATED WATER VAPOR/ ATOMS BY PHOTOLYSIS OF
51003 SIGN OF MIXTURES OF FLAMMABLE VAPORS AND GASES WITH AIR/ XI
30034 NAL INSTABILITY LIMITS WITH A VARIABLE LENGTH HYDROGEN OXYGE
23202 ENERGY TRANSFER AND LIGHT/ VARIABLE PHOTOSYNTHETIC UNITS
22112 IN LARGE-SCALE MANUFACTURING/ DESIGN VARIABLES AND PRODUCTION COSTS
33030 T/ AXIAL AND CIRCUMFERENTIAL VARIATIONS OF HOT-GAS-SIDE HEA
52034 OF HYDROGEN EMBRITTLEMENT OF VARIOUS ALLOYS/ A STUDY
22008 M LASER PYROLYSIS OF COALS OF VARIOUS RANKS/ PRODUCTS FROM
32017 TING HYDROGEN/ A COMPARISON OF VARIOUS TEST METHODS FOR DETECTION
43814 HYDROGEN-OXYGEN FUEL CELLS/ VARTA FUEL CELL SYSTEMS
10042 OR APP/ HYDROGEN AS AN ENERGY VECTOR: NEW FUTURE PROSPECTS F
32006 OF WATER (H20*) IN AUTOMOTIVE VEHICLE ADVANCED POWER SYSTEMS
34802 VEHICLE FUEL CELL SYSTEM
34824 FUEL-CELL UNIT IN ELECTRIC VEHICLE
51007 U TO HYDROGEN ABOARD A SPACE VEHICLE/ HAZARDS OF
31004 ULATED FOR USE IN A HYPersonic VEHICLE/ ANH DESIGNED AND INS
40403 E OF LIQUID HYDROGEN IN SPACE VEHICLE/ OPERATIONS FOR STORAG
40414 STAGES OF THE SATURN V VEHICLE/ SYSTEM FOR LIQUID-HYD
30039 GINES OF A SPACE-CRAFT LAUNCH VEHICLE/ THE AIR BREATHING EN
30021 T OF ESTIMATES FOR SPACE SHUTTLE VEHICLES USING A HYDROGEN OR A
30025 T OF UPPER STAGES FOR ELDO VEHICLES/ HIGH
40410 TANKAGE FOR HYPERSONIC CRUISE VEHICLES/ HYDROGEN
32016 PROSPECTS FOR HYDROGEN-FUELED VEHICLES
51010 HYDROGEN EXPLOSIONS IN AEROSPACE VEHICLES/ SUPPRESSION OF HYD
32009 OF HYDROGEN'S POTENTIAL AS A VEHICULAR FUEL/ SURVEY
43011 RIDE AS A SOURCE OF FUEL FOR VEHICULAR PROPULSION/ A STUDY
10054 HYDROGEN ENERGY SYSTEMS AND VEHICULAR PROPULSION
34510 LY DRIVEN HYDROGEN BLOWER FOR VEHICULAR FUEL CELL POWERPLANT
33046 E M/ CALCULATIONS OF BURNING VELOCITIES FOR HYDROGEN-BROMINE
33047 EFFECT OF DILUENTS ON BURNING VELOCITIES IN HYDROGEN-BROMINE

54
TITLE INDEX

SECTION 'T'

20016 THE LIFE SYSTEM: STATIC FEED WATER ELECTROLYSIS SYSTEMS /OF
20505 R THE FUTURE WATER ELECTROLYSIS-PROSPECT FOR
20510 BY SOLID POLYMER ELECTROLYTE WATER ELECTROLYSIS /GENERATION
34500 EVALUATION OF FUEL CELLS WATER FOR HUMAN CONSUMPTION
34507 S THE SEPARATION OF REACTION WATER FROM FUEL CELLS BY DIFFUSION
34516 FUEL CELL SYSTEMS WATER GAS SHIFT CONVERTER AND
23602 NERGY BY THE DECOMPOSITION OF WATER INTO HYDROGEN AND OXYGEN
23601 PRIMARY PRODUCTS OF LIQUID WATER PHOTOLYSIS AT 1236. 1470
34502 ESTIMATION OF THE DYNAMICS OF WATER REJECTION FROM A MATRIX
34501 ESTIMATION OF THE DYNAMICS OF WATER REJECTION FROM A HYDROGEN
21016 NUCLEAR TECHNOLOGY FOR NUCLEAR WATER SPLITTING /CHEMICAL AND N
21013 US/ THERMAL DECOMPOSITION OF WATER THROUGH CHEMICAL CYCLES
23606 THE ACCOMPANYING REDUCTION OF WATER TO GASEOUS HYDROGEN /IN
23000 S FOR PRODUCING HYDROGEN FROM WATER USING AN ALKALI METAL /N
21029 CHEMICAL PROCESS TO DECOMPOSE WATER USING NUCLEAR HEAT
21012 HYDROGEN PRODUCTION FROM WATER USING NUCLEAR HEAT
33002 EFFECT OF CARBON DIOXIDE AND WATER VAPOR ON HYDROGEN-ALKALI CO
51000 NS EFFECT OF WATER VAPOR ON H2-O2 DETONATION
23600 SIS OF ORDINARY OR DEUTERATED WATER VAPORS /ATOMS BY PHOTO-LYSIS
34503 OR H2/O2 FUEL CELL / IMPROVED WATER- AND HEAT-REMOVAL UNIT F
33000 STAGES W/ COMPARISON OF SMALL WATER-GRADEHTE NUCLEAR ROCKET
34606 EVALUATION OF THE DYNAMICS OF WATER REJECTION FROM A HYDROGEN
21015 NUCLEAR WATER-SPLITTING SYSTEMS
34800 500 WATT HYDROCARBON AIR FUEL CELL
34804 500-WATT HYDROGEN-AIR CELL
34804 TH METHANOL REFORMER A 520 WATT HYDROGEN-AIR FUEL CELL WITH
34247 EM 500-WATT INDIRECT HYDROCARBON SYSTEM
34804 LLS SYSTEM 30-WATT METAL HYDROGEN-HEAT STORAGE WELLS
34232 VE FUEL CELL 20 WATT-HEUR PER POUND REGENERATOR
36054 STUDIES OF ROTATING DETONATION WAVE ROCKETS MOTOR /SUSIBILITY S
33065 DETONATION OF INCIDENT SHOCK WAVES IN HYDROGEN-OXYGEN-ARSENIC
33064 JON BEHIND STEADY STATE SHOCK WAVES, APPLICATION TO THE COMPRESSOR
43605 ENIC HYDROGEN / LUBRICATION AND WEAR OF BALL BEARINGS IN CRYOGEN I
40416 ITY, THE SPECIFIC HEAT AND THE WEIGHT OF BALL BEARINGS IN CRYOGEN I
34631 - OXYGEN / HIGH-PERFORMANCE LIGHT-WEIGHT ELECTRODES FOR HYDROGEN
34605 1, 2 LIGHT-WEIGHT FUEL CELL ELECTRODES - L
33028 L-LEAN MIXTURES IN ADIABATIC, WELL- STIRRED REACTORS / SO FUEL
10058 D READING THERMOMETERS / HEAT- STORAGE WELLS FOR CONSERVING ENERGY AN
10059 VING ENERGY WITH HEAT STORAGE WELLS
10016 ANOTHER HYDROGEN CAR OUT WEST
22013 WHAT HYDROGEN FROM COAL COSTS
22102 GEN, STEAM REFORMING: FOSTER WHEELER CORPORATION /HYDR
50015 D OPERATING A/ CONSIDERATIONS WHEN DESIGNING, ASSEMBLING, AN
10007 D'S CHIEF FUEL / WHEN HYDROGEN BECOMES THE WORL
34013 THE FUEL CELL - WHEN
34216 MIXING IN H2/O2 FUEL CELLS IN WHICH GAS CIRCULATES THROUGH E
30046 NICE ROCKET ENGINE FOR PRATT & WHITNEY PICKED TO BUILD CRYOGENIC
TITLE INDEX

SECTION 'T'

19024 HYDROGEN FUEL ECONOMY: WIDE-RANGING CHANGES
51005 ION LIMITS, TEMPERATURES, AND WIND EFFECTS; FUELING RATES, DILO
10088 ENERGY ALTERNATIVES: SUN, WIND, EARTH, WATER

34203 FUEL CELL AND ITS PERFORMANCE WITHIN THE TEMPERATURE RANGE -20 DEGREES C TO +60 DEGREES C
13087 POWER WITHOUT POLLUTION
10082 THE WONDERFUL FUEL

34262 ION AND STORAGE: EXPERIMENTAL WORK TO DATE ON ENERGY CONVERSIONS
23018 PROCESS AND EQUIPMENT FOR THE WORKING OF NUCLEAR ENERGY
31015 HYDROGEN-FUELED AIRCRAFT WORKING SYMPOSIUM ON LIQUID HYDROGEN
34643 HYDROGEN ELECTRODE AND HOW IT WORKS: METAL Catalyst BASED

52022 PHENOMENA AFFECTING MECHANICS: AN X-RAY STUDY OF HYDROGEN INDUCE
51003 HYDROGEN AND GASES WITH AIR: X-RAY THEORY OF EXPLOSIVE COMBUSTION
34816 R SUPPLY: OPERATIONS FOR PC8B-4-K562 FUEL CELL ELECTRICAL POWER
50016 LIQUID HYDROGEN SAFETY: FIVE YEAR LOOK PROJECT ROVER
32026 R FUEL CELL/LEAD BATTERY (ONE YEAR OPERATING EXPERIENCES)

30059 INESAT CHAMBERS FROM 100 TO 300 POUNDS PER SQUARE IN
33013 AND PRESSURE ALTITUDES UP TO 12 DEGREES
30027 OF 3.6 ANGLES OF ATTACK UP TO 12 DEGREES AND PRESSURE ALTITUDES

23060 TO FER/ GROSS AND NET QUANTUM YIELDS AT 2537 A FOR FERROUS
23422 PALLADIUM DIFFUSION YIELDS HIGH-VOLUME HYDROGEN
20513 Y PRESSURE ELECTROLYSIS IN THE ZDANSKY-LONZA ELECTROLYTIC/ "B
22178 REFORMATION OF N-HExANE OVER ZEOLITE CATALYSTS IN BY STEAM
40508 / EXPERIMENTAL FINDINGS FROM ZERO-TANK NET POSITIVE SUCTION

22113 AHERN ZUR REINSTWASSERSTOFFE-FUELZUGUNG DURCH DAMPFREFORMIEREN
34265 SEALING OF SILVER OXIDE-ZINC STORAGE CELLS
34635 L-/ FUEL CELL WITH STABILIZED ZIRCONIA ELECTROLYTE AND NICKEL
34509 FOR INTERMEDIATE TEMPERATURE/ ZIRCONIUM PHOSPHATE MEMBRANES

22004 IDEALIZATION OF COKE TO THE REHEATING ZONE DURING HYDROGEN GENERATION
22113 G DURCH EIN NEUES VERFAHREN ZUR REINSTWASSERSTOFFE-ZUZUGUNG

34241 L ELECTRIC POWER PLANT DESIGNED FOR 20 WATT-HOUR PER POUND REGENERATION
30074 A/ NASA LEWIS RESEARCH CENTER, 1945-1960/ RESEARCH AT THE NACA
30075 ROCKETRY IN THE 1950'S
34237 VE FUEL CELLS, 1 JL TO AUGUST 1966/ ELECTROLYTIC REGENERATION

40211 S OF SOLID PARA-HYDROGEN AT 4.2K/ MECHANICAL PROPERTIES
34203 WITHIN THE TEMPERATURE RANGE -20 DEGREES C TO +60 DEGREES C
34232 ATOMIC FUEL CELL

30013 CONFOIGURATIONS ON SCREECH IN A 20,000 POUND-THRUST HYDROGEN-0
30033 ECH SUPPRESSION CONCEPTS IN A 20,000- POUND-THRUST HYDROGEN-0
30048 STAGNATION TEMPERATURES UP TO 200,000 DEGREES R/ STATE AT
SECTION 'T'

41011 IES OF PARAHYDROGEN FROM 1 TO 22K# /HE THERMODYNAMIC PROPERT
52029 HYDROGEN UPON INCONEL 718 AND 2219 ALUMINUM# /F PRESSURIZED
23556 OSS AND NET QUANTUM YIELDS AT 2537 A. FOR FERRUS TO FERRIC
33023 US HYDROGEN# PERFORMANCE OF A 28-INCH-RAJET UTILIZING GASEO
33038 ES IN A 35 DEGREE SECTOR OF A 28-INCH-DIAMETER RAMJET COMBUS
34804 CELLS SYSTEM# 30-WATT METAL HYDRIDE/AIR FUEL
30061 HYDROGEN PROPULSIVE UNIT WITH 300 N VACUUM THRUST# /LIQUID
30058 CHAMBER PressURES FROM 10C TO 300 POUNDS PER SQUARE INCH ABS
52026 M ALLHA IRON, 4130 STEEL, AND 304 STAINLESS STEEL FROM LESS
52037 YDROGEN EMBRITTLEMENT OF TYPE 304L STAINLESS STEEL# /G AND H
52016 PHASE TRANSFORMATIONS IN TYPE 304L STAINLESS STEEL# /DUCED
33038 YDROGEN AT LOW PRESSURES IN A 35 DEGREE SECTOR OF A 28-INCH-
52049 N UNDER PRESSURE: THE CASE OF 35 NICRMO 16 STEEL# /Y HYDROGE
52007 RGEN UNDER PRESSURE: CASE OF 35 NICRMO 16 STEEL# /LS BY HYD
40213 ATA IN ENGINEERING UNITS FROM 36 DEGREES TO 5000 DEGREES R A
22638 LYST IN THE TEMPERATURE RANGE 370-450# /UPPORTED NICKEL CATALY
48 NOT INDEXED
30049 OF THE S E P R HM4 ENGINE: A 40 KN THRUST LIQUID OXYGEN AND
33029 RATION WITH HYDROGEN FUEL AT -400 DEGREES F# /UEL-SYSTEM OPE
52052 AND HYDROGEN EMBRITTLEMENT IN 410 STAINLESS STEEL# /RACKING
52026 ERMETATION THROUGH ALLHA IRON, 4130 STEEL, AND 304 STAINLESS
22638 IN THE TEMPERATURE RANGE 370-450# /UPPORTED NICKEL CATALYST
52 NOT INDEXED
52050 HANICAL PROPERTIES OF THE TI-5AL-2Sn ELI ALLOY# /RE ON ME
52050 AL PROPERTIES OF THE TI-5AL-2Sn ELI ALLOY# /RE ON MECHANIC
34832 CELL SYSTEM# 500 WATT HYDROCARBON AIR FUEL
34840 L WITH METHANOL REFORMER# A 500 WATT HYDROGEN-AIR FUEL CEL
34504 500-WATT HYDROGEN-AIR CELL#
34247 SYSTEM# 500-WATT INDIRECT HYDROCARBON
40409 DEWAR# INITIAL WARMUP OF 500,000-GALLON LIQUID HYDROGEN
30060 UUM) LIQU/ DEVELOPMENT OF A 1,500,000-LB-THRUST (NOMINAL VAC
40213 RING UNITS FROM 36 DEGREES TO 5000 DEGREES R AT PRESSURES TO
40213 000 DEGREES R AT PRESSURES TO 5000 PSI# /OM 36 DEGREES TO 5
23021 ON OF A HYDROGEN GENERATOR ML-539/TM TO PRODUCE PURE HYDROGE
6 NOT INDEXED
52026 TAINLESS STEEL FROM LESS THAN 600 C TO NEAR 600 C# /NO 304 S
52026 FROM LESS THAN 600 C TO NEAR 600 C# /NO 304 STAINLESS STEEL
7 NOT INDEXED
30046 GENIC ROCKET ENGINE FOR LATE '70S USE# /PIED TO BUILD CRYO
52029 SURIZED HYDROGEN UPON INCONEL 718 AND 2219 ALUMINUM# /F PRES
8 NOT INDEXED
40105 CONVERSION FOR PRODUCTION OF 98% PARAHYDROGEN# /H TWO-STAGE

END OF SECTION 'T'
INDEX OF SUBJECT TERMS
(PERMUTED)

546
KEYWORD INDEX

SECTION 'K'

30050 ABLATION, TEST
23425 RATIO, CHEMICAL, CONDENSATION, ABSORPTION, ADSORPTION, REGENERATION
52035 IRON, STEEL, ABSORPTION, CATHODIC, DIFFUSION
23439 Palladium, PRESSURE, ABSORPTION, DESORPTION, AMMONIA
43009 HYDROGEN, TEMPERATURE, ABSORPTION, INTERMETALLIC
22613 S, ANALYSIS
34006 ACID, ALKALINE, MOLTEN SALT
20020 IRON, ABSORPTION, CATHODIC, DIFFUSION
34629 ELECTRODE, ACID, CARBONATE
34607 ELECTRODE, ACID, HYDROCARBON, OXIDATION
34639 ACID, TEMPERATURE
20013 HYDROGEN, OXYGEN, SULFURIC ACID, WATER, AMMONIA, ELECTROLYTE
34637 POLARIZATION, ANODE, ACID
34215 CELL, CATALYST, NATURAL GAS, ACID, FUEL
33011 BOND, ACTIVATION, KINETICS, HYDROCARBON
22152 AS, METHANE, WATER, CATALYST, ACTIVATOR, HYDROCARBON, G
23413 DN, PRESSURE, TEMPERATURE, ADSORPTION, AMMONIA, HYDROCARBON
23420 BRANE, METAL FILM, CATALYSIS, ADSORPTION, DIFFUSION, PERMEATION
23429 ADSORPTION, PROCESS
23425 AL, CONDENSATION, ABSORPTION, ADSORPTION, REGENERATION, REFRIGERATION
23424 CARBON, CONDENSATION, REGENERATION, ADSORPTION, SEPARATION, HYDRIFICATION
23436 PURIFICATION, ADSORPTION
34835 FUEL CELL, METHANOL, AMMONIA, ADSORPTION
34206 R, AEROSPACE, HEAT, REMOVAL, WATER
34634 E, AEROSPACE, TEMPERATURE, CATHODIC
43012 LANTHANIDE, AFFINITY, MAGNET, RARE EARTH
34630 AIR, ACID, COST
34630 AIR, ACID, COST
34227 FUEL CELL, AIR, FUEL
34248 FUEL CELL, AIR, HYDROCARBON
34848 AIR, MARKET, VEHICLES
51001 FLAMMABILITY, LIMIT, AIR, OXYGEN, PRESSURE
52002 EMBRITTLEMENT, METAL, CRACK, AIR, PURITY
34833 ELECTROLYTE, AIR, STEAM, ANODE
34832 FUEL CELL, HYDROCARBON, AIR
34817 FUEL CELL, HYDROCARBON, AIR
40410 TANK, HYPERSONIC, AIRCRAFT, DESIGN
31011 COST, AIRCRAFT, ECONOMIC, FUEL
31016 COST, AIRCRAFT, HYPERSONIC, CRYOGENIC
40418 TANK, AIRCRAFT, HYPERSONIC
31015 FUEL, HYPERSONIC
31017 OLEUM, PERFX, FUEL, TRANSPORT, AIRCRAFT, LIQUID, FUTURE, PETROLEUM
31013 COST, AIRCRAFT, PRODUCTION
31000 AIRCRAFT, PROPULSION, COST
40404 ICE, AIRCRAFT, STRUCTURAL, HYPERSONIC
40402 LIQUID, AIRCRAFT, THERMAL, PROTECTION
31014 MANUFACTURE, ENERGY, AIRCRAFT
31010 SPECIFIC IMPULSE, THRUST, AIRFLOW
31003 PURGE, AIRPLANE, HYPERSONIC
10070 ESTRIAL, SPACE, MARINE, HEAT, ALGAE, EFFICIENCY, WASTE, FUEL
34646 CURRENT DENSITY, ALKALINE, COST
34644 ALKALINE, ELECTRODE

547
KEYWORD INDEX

SECTION 'K'

<table>
<thead>
<tr>
<th>Keyword Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34246 ALKALINE</td>
<td>ELECTRODE#</td>
</tr>
<tr>
<td>34631 ALKALINE</td>
<td>MATRIX#</td>
</tr>
<tr>
<td>34006 ACID, ALKALINE, MOLTEN SALT#</td>
<td>ALKALINE, PORTABLE#</td>
</tr>
<tr>
<td>34604 ACID, ALKALINE, MOLTEN SALT#</td>
<td>ALKALINE, PORTABLE#</td>
</tr>
<tr>
<td>34632 ALKALINE PORTABLE</td>
<td>ALKALINE, PORTABLE#</td>
</tr>
<tr>
<td>34636 POROSITY</td>
<td>ALKALINE#</td>
</tr>
<tr>
<td>34224 ELECTROLYSIS</td>
<td>ALKALINE#</td>
</tr>
<tr>
<td>34264 ALKALINE</td>
<td>ALKALINE#</td>
</tr>
<tr>
<td>34106 ALKALINE</td>
<td>TEMPERATURE#</td>
</tr>
<tr>
<td>34628 ELECTRODE CARBON</td>
<td>ALKALINE, WATER#</td>
</tr>
<tr>
<td>34641 ELECTRODE</td>
<td>ALKALINE#</td>
</tr>
<tr>
<td>34639 POROSITY</td>
<td>ALKALINE#</td>
</tr>
<tr>
<td>20020 ELECTROLYTE, CELL, ACID, ALKALINE</td>
<td>ALLOY, DIFFUSION#</td>
</tr>
<tr>
<td>52012 EMBRITTLEMENT TITANIUM, ALLOY</td>
<td>DIFFUSION#</td>
</tr>
<tr>
<td>52018 GAS, REACTION TITANIUM, ALLOY</td>
<td>TEMPERATURE#</td>
</tr>
<tr>
<td>52025 ELEMENT, PRESSURE, GAS, METAL, ALLOY</td>
<td>EMBRITTLEMENT, ALLOY#</td>
</tr>
<tr>
<td>52050 PROPERTY, MECHANICAL, ALLOY</td>
<td>EMBRITTLEMENT, ALLOYS, HIGH STRENGTH, SUSCEPTIBILITY</td>
</tr>
<tr>
<td>10049 GY, ECOLOGY FOSSIL, STORAGE</td>
<td>ALTERNATIVE, ELECTRICITY# /NER</td>
</tr>
<tr>
<td>10088 RRIER, COAL ENERGY</td>
<td>ALTERNATIVE, SOLAR, ENERGY, CABIN</td>
</tr>
<tr>
<td>10046 TER, STUDY, ENERGY, ANALYSIS</td>
<td>ALTERNATIVE, NUCLEAR, SAFETY, TECHNOLOGY</td>
</tr>
<tr>
<td>10050 TY, ANALYSIS, FUTURE, SYSTEM</td>
<td>ALTERNATIVE, TECHNOLOGY, ELECTRICITY</td>
</tr>
<tr>
<td>52029 HIGH PRESSURE, INCONEL 718</td>
<td>ALUMINUM, GENERATOR#</td>
</tr>
<tr>
<td>23016 ALUMINUM, GENERATOR#</td>
<td></td>
</tr>
<tr>
<td>34835 FUEL CELL METHANOL</td>
<td>AMMONIA, ADSORPTION#</td>
</tr>
<tr>
<td>23440 RECYCLE, COST, FUEL, SEPARATION</td>
<td>AMMONIA, CATALYST, REFORMING</td>
</tr>
<tr>
<td>23405 DR COST, HYDROGEN</td>
<td>AMMONIA, CENTRIFUGAL, COMPRESS</td>
</tr>
<tr>
<td>23007 REFORM/ELECTROLYSIS, HEAT</td>
<td>AMMONIA, CRACKING, HYDROCARBON</td>
</tr>
<tr>
<td>23029 MING, CATALYST HYDROCARBONS</td>
<td>AMMONIA, CRACKING, STEAM REFORM</td>
</tr>
<tr>
<td>23415 STEAM REFORMING, HYDROCARBON</td>
<td>AMMONIA, DISSOCIATION, STORAGE</td>
</tr>
<tr>
<td>20503 ION, HYDROGEN, OXYGEN, WATER</td>
<td>AMMONIA, ELECTROLYSIS# PRODUCT</td>
</tr>
<tr>
<td>23010 ALUMINUM, GENERATOR#</td>
<td></td>
</tr>
<tr>
<td>34229 ALUMINUM, HYDRAZINE#</td>
<td></td>
</tr>
<tr>
<td>23413 TEMPERATURE ADSORPTION</td>
<td>AMMONIA, HYDROCARBON, PRESSURE</td>
</tr>
<tr>
<td>23023 HYDROCARBON, FUEL, WATER</td>
<td>AMMONIA, METHANOL, POWER#</td>
</tr>
<tr>
<td>23025 MING, HYDROCARBON CRACKING</td>
<td>AMMONIA, METHANOL, STEAM REFORM</td>
</tr>
</tbody>
</table>
|20014 GEN, ELECTROLYSIS, SYNTHETIC| AMMONIA, NITROGEN FERTILIZER# /
|23439 SURE, ADSORPTION, DESORPTION| AMMONIA, PALLADIUM# PRESSURE|
|22605 N, COST, NATURAL GAS, NAPHTHA| AMMONIA, PRODUCTION, SEPARATION|
|23403 OLEUM CRYOGENIC, SEPARATION| AMMONIA, PURIFICATION, COST# /
|23021 TURE, PRESSURE DISSOCIATION| AMMONIA, PURIFICATION, TEMPERATURE|
|23005 AMMONIA, REACTION#|
|23011 PURITY, CATALYSIS, OXIDATION| AMMONIA, REACTOR, DECOMPOSITION|
|23410 AL, PURITY#| AMMONIA, REFINERY, PETROCHEMICAL|
|22645 AMMONIA, REFORMING#|
|22635 OCARBON, CONVERSION, PARTIAL| AMMONIA, STEAM REFORMING, HYDROGEN|
|22165 AMMONIA, SYNTHESIS, GAS#|
|23435 PURIFICATION, NITROGEN| AMMONIA, WATER, METHANE#|
|23428 SION PURIFICATION, HYDROGEN| AMMONIA, WATER, METHANE, DIFFUSION|
|22007 N, COST, COAL, SYNTHESIS GAS| AMMONIA, HYDROGEN, PRODUCT|
|20013 OXYGEN, SULFURIC ACID, WATER| AMMONIA, ELECTROLYSIS, NUCLEAR|
|20006 ELECTROLYSIS, OFF-PEAK POWER| AMMONIA, OXYGEN# /N, HYDROGEN|

548
KEYWORD INDEX

SECTION "K"

<table>
<thead>
<tr>
<th>Number</th>
<th>Keyword(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20501</td>
<td>YZEFR. DESIGN, HYDROGEN, COST, AMMONIA#</td>
</tr>
<tr>
<td>34230</td>
<td>AMMONIA#</td>
</tr>
<tr>
<td>32011</td>
<td>LUTION, INTERNAL COMBUSTION, AMMONIA#</td>
</tr>
<tr>
<td>23206</td>
<td>TOR, MICRO-ORGANISM, METHANE, AMMONIA#</td>
</tr>
<tr>
<td>23207</td>
<td>MICRO-ORGANISM#</td>
</tr>
<tr>
<td>34508</td>
<td>ELL, TRANSIENT, STEADY-STATE, ANALOG#</td>
</tr>
<tr>
<td>10046</td>
<td>FUEL, WATER, STUDY, ENERGY, ANALYSIS, ALTERNATIVE, NUCLEAR,</td>
</tr>
<tr>
<td>33021</td>
<td>ANALYSIS, COMBUSTION#</td>
</tr>
<tr>
<td>31036</td>
<td>SUPersonic, FUEL, ANALYSIS, CONSUMPTION#</td>
</tr>
<tr>
<td>10050</td>
<td>ENERGY, ECOLOGY, ELECTRICITY, ANALYSIS, FUTURE, SYSTEM, ALTE</td>
</tr>
<tr>
<td>33000</td>
<td>JET, ANALYSIS#</td>
</tr>
<tr>
<td>40509</td>
<td>EJECTOR, PUMP, LIQUID, ANALYSIS#</td>
</tr>
<tr>
<td>40422</td>
<td>VENT, LIQUID, TANK, ANALYSIS#</td>
</tr>
<tr>
<td>10012</td>
<td>DUCTION, LIQUID, COST, SYSTEM ANALYSIS, HYDROGEN, STUDY, PRO</td>
</tr>
<tr>
<td></td>
<td>"AND" NOT INDEXED</td>
</tr>
<tr>
<td>34602</td>
<td>PULARIZATION, ANODE, ACID#</td>
</tr>
<tr>
<td>34637</td>
<td>TEMPERATURE, ANODE, CATHODE#</td>
</tr>
<tr>
<td>34629</td>
<td>ACID, ANODE, ELECTRODE#</td>
</tr>
<tr>
<td>23204</td>
<td>GEN, CURRENT#</td>
</tr>
<tr>
<td>34613</td>
<td>BACTERIA, ANODE, NITROGEN, OXYGEN, HYDRO</td>
</tr>
<tr>
<td>34619</td>
<td>FUEL CELL, ANODE, OPERATION#</td>
</tr>
<tr>
<td>34660</td>
<td>ELECTROCHEMICAL, CATALYST, ANODE, POLARIZATION, EFFICIENCY</td>
</tr>
<tr>
<td>34669</td>
<td>POLARIZATION, ANODE#</td>
</tr>
<tr>
<td>34853</td>
<td>ELECTROLYTE, AIR, STEAM, ANODE#</td>
</tr>
<tr>
<td>34642</td>
<td>FUEL CELL, CATALYST, ANODE#</td>
</tr>
<tr>
<td>23603</td>
<td>RADIATION, ENERGY, VOLTAGE, ANODE#</td>
</tr>
<tr>
<td>20003</td>
<td>ELECTROLYSIS, APPARATUS, GAS#</td>
</tr>
<tr>
<td>20004</td>
<td>ELECTROLYSIS, APPARATUS#</td>
</tr>
<tr>
<td>20009</td>
<td>ELECTROLYSIS, APPARATUS#</td>
</tr>
<tr>
<td>22197</td>
<td>HYDROCARBON, APPARATUS#</td>
</tr>
<tr>
<td>40110</td>
<td>THERMOSIPHON, COOLING, APPARATUS#</td>
</tr>
<tr>
<td>34023</td>
<td>HISTORY, APPLICATION, CATALYST#</td>
</tr>
<tr>
<td>34034</td>
<td>ELECTROLYTE, TEMPERATURE#</td>
</tr>
<tr>
<td>34031</td>
<td>ARBON, TEMPERATURE#</td>
</tr>
<tr>
<td>34032</td>
<td>ARBON, TEMPERATURE#</td>
</tr>
<tr>
<td>10042</td>
<td>GEN, ENERGY, FUTURE, NUCLEAR, APPLICATION, USE, PRODUCTION,</td>
</tr>
<tr>
<td>34030</td>
<td>TROLYTE, CATALYST, ELECTRODE, APPLICATION#</td>
</tr>
<tr>
<td>10077</td>
<td>TY, TRANSPORTATION, STANDARDS, APPLICATIONS#</td>
</tr>
<tr>
<td>30012</td>
<td>ELECTRIC, ARCJET#</td>
</tr>
<tr>
<td>50001</td>
<td>SAFETY, LIQUID, FIRE, ASPHYXIATION#</td>
</tr>
<tr>
<td>10033</td>
<td>OGEN, ENERGY, SYNTHETIC FUEL, ASSESSMENT, POLLUTION, PRODUCT</td>
</tr>
<tr>
<td>52022</td>
<td>STEEL, STAINLESS, AUSTENITE#</td>
</tr>
<tr>
<td>32017</td>
<td>ENVIRONMENT, AUTOMOBILE, EMISSION#</td>
</tr>
<tr>
<td>32018</td>
<td>AUTOMOBILE, EMISSION#</td>
</tr>
<tr>
<td>32016</td>
<td>AUTOMOBILE, ENERGY, POLLUTION#</td>
</tr>
<tr>
<td>32026</td>
<td>ANCE, POWER, BATTERY#</td>
</tr>
<tr>
<td>10082</td>
<td>LINE, POLLUTION#</td>
</tr>
<tr>
<td>32024</td>
<td>ON ENGINE#</td>
</tr>
<tr>
<td>32025</td>
<td>AUTOMOBILE, POLLUTION, INJECTI</td>
</tr>
<tr>
<td>10066</td>
<td>EN, GASOLINE, POLLUTION-FREE, AUTOMOBILE#</td>
</tr>
<tr>
<td>10044</td>
<td>HYDROGEN, FUEL, AUTOMOBILE#</td>
</tr>
<tr>
<td>KEYWORD INDEX</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>SECTION 'K'</td>
<td></td>
</tr>
<tr>
<td>23204 GEN, HYDROGEN, CURRENT#</td>
<td>BACTERIA, ANODE, NITROGEN, OXY</td>
</tr>
<tr>
<td>23201 GROWTH, CULTURE, ELECTROLYSIS,</td>
<td>BACTERIA# / OGEN, PRODUCTION: G</td>
</tr>
<tr>
<td>34511 FUEL CELL, WATER, HEAT,</td>
<td>BALANCE#</td>
</tr>
<tr>
<td>34818 BATTERY, TEMPERATURE, POWER#</td>
<td></td>
</tr>
<tr>
<td>34803 BATTERY#</td>
<td></td>
</tr>
<tr>
<td>34827 METHANOL, CATALYST,</td>
<td>BATTERY#</td>
</tr>
<tr>
<td>34809 FUEL CELL, POLLUTION,</td>
<td>BATTERY#</td>
</tr>
<tr>
<td>34636 STORAGE, CONTROL,</td>
<td>BATTERY#</td>
</tr>
<tr>
<td>34824 ELECTROLYTE, REFORMER,</td>
<td>BATTERY#</td>
</tr>
<tr>
<td>34018 FUEL CELL, BATTERY#</td>
<td></td>
</tr>
<tr>
<td>23205 MICRO-ORGANISM, FUEL CELL,</td>
<td>BATTERY#</td>
</tr>
<tr>
<td>32026 FUEL CELL, PERFORMANCE, POWER,</td>
<td>BATTERY#</td>
</tr>
<tr>
<td>40501 BEARING, PUMP, CRYOGENIC#</td>
<td></td>
</tr>
<tr>
<td>40505 PUMP, BEARING, WEAR, LUBRICATION#</td>
<td></td>
</tr>
<tr>
<td>22002 L, GAS, CHARCOAL, / FLUIDIZED BED, COAL, HYDROGEN, INDUSTRIAL</td>
<td></td>
</tr>
<tr>
<td>52000 EMENT, INTERGRANULAR, NICKEL, BEHAVIOR, MECHANICAL# / EMBRITTLE</td>
<td></td>
</tr>
<tr>
<td>52014 EMBRITTLEMENT, SHEET, BENDING#</td>
<td></td>
</tr>
<tr>
<td>23202 PHOTO-CHEMICAL, REACTION, BIOCHEMICAL, CHLOROPHYLL#</td>
<td></td>
</tr>
<tr>
<td>34220 FUEL CELL, BIOCHEMICAL#</td>
<td></td>
</tr>
<tr>
<td>40203 FLOW, TWO-PHASE, BOILING#</td>
<td></td>
</tr>
<tr>
<td>40500 FLOW, TWO-PHASE, BOILING#</td>
<td></td>
</tr>
<tr>
<td>40502 LIQUID, PUMP, HEAT TRANSFER, BOILING#</td>
<td></td>
</tr>
<tr>
<td>40206 POINT, PRESSURE, TEMPERATURE, BOILING#</td>
<td></td>
</tr>
<tr>
<td>33043 INJECTOR, BOUNDARY LAYER, CONCENTRATION#</td>
<td></td>
</tr>
<tr>
<td>10084 Y, HYDROGEN, T/ FOSSIL, FUEL, BREEDER, REACTOR, SOLAR, ENERGY</td>
<td></td>
</tr>
<tr>
<td>34010 MIGRATION, BUFFER#</td>
<td></td>
</tr>
<tr>
<td>22199 BURNER, OXIDATION, CATALYST#</td>
<td></td>
</tr>
<tr>
<td>33053 VELOCITY, BURNING#</td>
<td></td>
</tr>
<tr>
<td>22617 CATALYST, PRESSURE, BUTANE#</td>
<td></td>
</tr>
<tr>
<td>51003 EXPLOSION, LIMIT, CALCULATION, DIFFUSION#</td>
<td></td>
</tr>
<tr>
<td>40308 FLOW, CALIBRATION, DESIGN#</td>
<td></td>
</tr>
<tr>
<td>40307 VAPOR, CALIBRATION#</td>
<td></td>
</tr>
<tr>
<td>23203 CHANISM, SUGAR#</td>
<td></td>
</tr>
<tr>
<td>23015 NUCLEAR, ENERGY, CARBONATE#</td>
<td></td>
</tr>
<tr>
<td>10034 FUEL, FUTURE, ENERGY, NUCLEAR, CARRIER ECONOMY# / SYNTHETIC, F</td>
<td></td>
</tr>
<tr>
<td>10088 ALTERNATIVE, SOLAR, ENERGY, CARRIER, COAL#</td>
<td></td>
</tr>
<tr>
<td>10071 USE, ECONOMY, CARRIER, CONSERVATION#</td>
<td></td>
</tr>
<tr>
<td>10008 ROGEN, ENERGY, FUEL, ECONOMY, CARRIER, USE#</td>
<td></td>
</tr>
<tr>
<td>40100 LIQUEFACTION, CASCADE, HELIUM, HYDROGEN#</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 'K'

23420 CATION, MEMBRANE, METAL FILM, CATALYSIS, ADSORPTION, DIFFUSION
23027 ASSOCIATION, WATER, DIFFUSION, CATALYSIS, CHEMICAL, OXYGEN
22634 MEMBRANE, TEMPERATURE, PURITY, CATALYSIS, HYDROCARBON, WATER
23009, PALLADIUM, REFORMER, HEAT, CATALYSIS, METHANOL, DIFFUSION
23026, METHANOL, HYDROCARBON, CATALYSIS, NITROGEN, DIFFUSION
23011 REACTOR, DECOMPOSITION, PURITY, CATALYSIS, OXIDATION, AMMONIA
22102 ING, CONVERSION, METHANATION, CATALYSIS, POISONING, REFORM
22113 HYDROCARBON, CATALYSIS, PRESSURE, CRACKING
30069 CATALYSIS, THRUST, DESIGN
22152 OCARBON, GAS, METHANE, WATER, CATALYST, ACTIVATOR, HYDROCARBON
34604 EFFICIENCY, ELECTROCHEMICAL, CATALYST, ANODE, POLARIZATION
34642 FUEL CELL, CATALYST, ANODE
34827 METHANOL, CATALYST, BATTERY
22005 FLUIDIZED, COAL, CATALYST, CHAR, POWER
22194 BON, CATALYST, COMBUSTION, HYDROCARBON
33051 TRANSIENT, CATALYST, COMPUTER
22623 ING, METHANE, CATALYST, DECOMPOSITION, CRACK
21099 ROGEN, OXYGEN, CYCLE, MARK I, CATALYST, ECONOMY, DECOMPOSITION, HYDROCARBON
34003 CATALYST, ELECTRODE, REACTION
34030 ELECTROLYTE, CATALYST, ELECTRODE, APPLI CAT
34808 CATHODE, CATALYST, ELECTRODE
34839 WATER, REFORMING, CATALYST, ELECTROLYTE
34828 METHANOL, CATALYST, ENERGY
34620 CATALYST, FABRICATION
22648 CATALYST, GAS
22632 CATALYST, GAS
22128 CATALYST, HEAT
22643 CARBON, NATURAL GAS, NAPHTHA, CATALYST, HEAT, DECOMPOSITION, HYDROCARBON
23029 A, CRACKING, STEAM REFORMING, CATALYST, HEAT, BONDS, AMMONIA
22211 CATALYST, HYDROCARBON
22155 NG, CATALYST, HYDROCARBON, REFORMING
22201 CATALYST, HYDROCARBON
22135 CATALYST, HYDROCARBON
22184 CATALYST, HYDROCARBON
22179 CATALYST, HYDROCARBON
34837 DEU, CATALYST, HYDROPHOBIC, ELECTRODE
34605 #, CATALYST, MATRIX, POLARIZATION
34036 THERMODYNAMICS, ELECTRODE, CATALYST, MEMBRANE
22646 ON, CATALYST, METHANE, DECOMPOSITION
22622 Y, PRODUCTION, HYDROGEN, CATALYST, NATURAL GAS, REFINER
34215 FUEL CELL, CATALYST, NATURAL GAS, ACID
22160 CATALYST, NICKEL, STEAM
34618 #, CATALYST, NICKEL, STEAM, PALLADIUM, ELECTRODE
23021 TEMPERATURE, PRESSURE, DESIGN, CATALYST, PERFORMANCE, BON
23022 SION, OXIDATION, TEMPERATURE, CATALYST, PHOTOCHEMICAL, MECHA
22617 CATALYST, PRESSURE, BUTANE
22602 L, GAS, REFORMER, CONVERSION, CATALYST, PRODUCTION, FUEL CELL
23020 EFFICIENCY, REA, CONVERSION, CATALYST, PURITY, HYDROCARBON
33048 CATALYST, PYROPHORIC
23440 COST, FUEL, SEPARATION, AMMONIA, CATALYST, REFORMING, RECYCLE
22633 STEAM, CATALYST, REFORMING
22207 CATALYST, REFORMING
<table>
<thead>
<tr>
<th>KEYWORD INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 'K'</td>
</tr>
<tr>
<td>22209 CATALYST, REFORMING#</td>
</tr>
<tr>
<td>22644 CATALYST, REFORMING#</td>
</tr>
<tr>
<td>22193 PRESSURE, CATALYST, REFORMING#</td>
</tr>
<tr>
<td>34228 CATALYST, SEPARATION#</td>
</tr>
<tr>
<td>22190 CATALYST, STEAM, REFORMING#</td>
</tr>
<tr>
<td>22164 CATALYST, STEAM#</td>
</tr>
<tr>
<td>22209 COAL, HYDROGEN, PRODUCTION, CATALYST, SYNTHESIS GAS, METHA</td>
</tr>
<tr>
<td>21030 HYDROGEN, PRODUCTION, CATALYST, THERMAL#</td>
</tr>
<tr>
<td>22167 HYDROCARBON, CATALYST, WATER, HYDROCARBON#</td>
</tr>
<tr>
<td>22120 STEAM, REFORMING, CATALYST#</td>
</tr>
<tr>
<td>22147 STEAM, REFORMING, CATALYST#</td>
</tr>
<tr>
<td>22144 STEAM, REFORMING, CATALYST#</td>
</tr>
<tr>
<td>22198 STEAM, REFORMING, CATALYST#</td>
</tr>
<tr>
<td>22174 HYDROCARBON, STEAM CATALYST#</td>
</tr>
<tr>
<td>22173 STEAM, NAPHTHA, CATALYST#</td>
</tr>
<tr>
<td>22137 HYDROCARBON, CATALYST#</td>
</tr>
<tr>
<td>22178 HYDROGEN, REFORMING, CATALYST#</td>
</tr>
<tr>
<td>22199 BURNER, OXIDATION, CATALYST#</td>
</tr>
<tr>
<td>22183 STEAM, REFORMING, CATALYST#</td>
</tr>
<tr>
<td>22162 STEAM, REFORMING, CATALYST#</td>
</tr>
<tr>
<td>22157 STEAM, REFORMING, CATALYST#</td>
</tr>
<tr>
<td>22182 METHANATION, HYDROCARBON, CATALYST#</td>
</tr>
<tr>
<td>22159 PURIFICATION, CATALYST#</td>
</tr>
<tr>
<td>22121 HYDROCARBON, NUCLEAR, CATALYST#</td>
</tr>
<tr>
<td>34609 ELECTRODE, OXIDATION, CATALYST#</td>
</tr>
<tr>
<td>34623 ELECTRODE, CATALYST#</td>
</tr>
<tr>
<td>34622 CATALYST#</td>
</tr>
<tr>
<td>34222 CATALYST#</td>
</tr>
<tr>
<td>34023 HISTORY, APPLICATION, CATALYST#</td>
</tr>
<tr>
<td>34203 EFFICIENCY, POWER, CATALYST#</td>
</tr>
<tr>
<td>34867 CTROLYTE, CATHODE, REFORMING, CATALYST# ELE</td>
</tr>
<tr>
<td>34806 EFFICIENCY, NICKEL, SILVER, CATALYST#</td>
</tr>
<tr>
<td>22205 NAPHTHA, CATALYST#</td>
</tr>
<tr>
<td>22641 METHANE, CATALYST#</td>
</tr>
<tr>
<td>23019 HYDROAINE, OXYGEN, FUEL CELL, CATALYST# HYDROGEN,</td>
</tr>
<tr>
<td>22116 VERSION, REFORMER, OXIDATION, CATALYST# FUEL CELL, CON</td>
</tr>
<tr>
<td>22149 CARBONS, DESIGN, PURIFICATION, CATALYST# /L CELLS, GAS, HYDRO</td>
</tr>
<tr>
<td>34808 CATHODE, CATALYST, ELECTRODE#</td>
</tr>
<tr>
<td>34266 CATHODE, EFFICIENCY#</td>
</tr>
<tr>
<td>34847 ELECTROLYTE, CATHODE, REFORMING, CATALYST#</td>
</tr>
<tr>
<td>34634 AEROSPACE, TEMPERATURE, CATHODE#</td>
</tr>
<tr>
<td>34627 FUEL CELL, PLATINUM, CATHODE#</td>
</tr>
<tr>
<td>34214 TEMPERATURE, ANODE, CATHODE#</td>
</tr>
<tr>
<td>52035 IRON, STEEL, ABSORPTION, CATHODIC, DIFFUSION#</td>
</tr>
<tr>
<td>34210 CATION#</td>
</tr>
<tr>
<td>40201 TEMPERATURE# CAVITATION, VENTURI, PRESSURE,</td>
</tr>
<tr>
<td>20020 ELECTROLYTE, CELL, ACID, ALKALINE#</td>
</tr>
<tr>
<td>34244 TION# FUEL CELL, ACID, HYDROCARBON, OXIDE</td>
</tr>
<tr>
<td>34227 FUEL CELL, AIR, FUEL#</td>
</tr>
<tr>
<td>34248 FUEL CELL, AIR, HYDROCARBON#</td>
</tr>
<tr>
<td>34613 FUEL CELL, ANODE, OPERATION#</td>
</tr>
<tr>
<td>34018 FUEL CELL, BATTERY#</td>
</tr>
<tr>
<td>23205 MICRO-ORGANISM, FUEL CELL, BATTERY#</td>
</tr>
</tbody>
</table>

552
KEYWORD INDEX

SECTION 'K'

34220 FUEL CELL, BIOCHEMICAL#
34606 FUEL CELL, CARBON, ELECTRODE#
34648 FUEL CELL, CARBON, ELECTRODE#
34242 FUEL CELL, CARBONATE#
34253 FUEL CELL, CARBONATE#
22175 HYDROCARBON, FUEL CELL, CARBONATE#
34642 FUEL CELL, CATALYST, ANODE#
34215 CID#, FUEL CELL, CATALYST, NATURAL GAS, A
23019 OGEN, HYDROAINE, OXYGEN, FUEL CELL, CATALYST# HYDR
34800 FUEL CELL, CHLORINE#
22116 IDATION, CATALYST#
34016 FUEL CELL, CONVERSION, REFORMER, OX
34621 RSION# FUEL CELL, CURRENT DENSITY#
34209 FUEL CELL, DIFFUSION, ENERGY, CONVE
34617 FUEL CELL, ELECTRODE, MODULE#
34612 FUEL CELL, ELECTRODE, PAPER#
34017 FUEL CELL, ELECTRODE, REACTION#
34208 FUEL CELL, ELECTRODE, TEMPERATURE#
34635 FUEL CELL, ELECTRODE, ZIRCONIA#
34633 FUEL CELL, ELECTRODE#
34257 FUEL CELL, ELECTRODE#
10087 RGY# POLLUTION, POWER, FUEL CELL, ELECTROLYSIS, SOLAR, ENE
34645 FUEL CELL, ELECTROLYTE, INTERFACE#
34834 FUEL CELL, ELECTROLYTE, TEMPERATURE#
34216 FUEL CELL, ELECTROLYTE#
34252 FUEL CELL, ELECTROLYTE#
34202 FUEL CELL, ELECTROLYTE#
34039 ELECTROCATALYSIS, EN# FUEL CELL, ELECTROLYZER, CONVERSION
34001 FUEL CELL, ENERGY#
22602 N, CATALYST, PRODUCTION, FUEL CELL, GAS, REFORMER# CONVERSIO
23014 FUEL CELL, GENERATOR#
23003 FUEL CELL, HYDROIDE#
34817 FUEL CELL, HYDROCARBON, AIR#
34832 FUEL CELL, HYDROCARBON, AIR#
22105 FUEL CELL, HYDROCARBON, PROCESS#
22158 FUEL CELL, HYDROCARBON, REFORMING#
22166 FUEL CELL, HYDROCARBON#
34025 FUEL CELL, ION EXCHANGE#
34258 FUEL CELL, ION, MEMBRANE, MICROBE#
34267 E# FUEL CELL, LIGHTWEIGHT, RECHARGEABL
34835 PTION# FUEL CELL, METHANOL, AMMONIA, ADSOR
23013 FUEL CELL, METHANOL#
23012 FUEL CELL, METHANOL#
34505 FUEL CELL, MOISTURE, REMOVAL#
32026 ERY# AUTOMOBILE, FUEL CELL, PERFORMANCE, POWER, BATT
34245 FUEL CELL, PERFORMANCE#
34640 FUEL CELL, PLATINUM, ANODE#
34627 FUEL CELL, PLATINUM, CATHODE#
34638 FUEL CELL, PLATINUM, ELECTRODE#
34809 FUEL CELL, POLLUTION, BATTERY#
34849 FUEL CELL, POLLUTION#
34019 FUEL CELL, POWER#
34204 FUEL CELL, PRESSURE, PERFORMANCE#

553
<table>
<thead>
<tr>
<th>Code</th>
<th>Keyword</th>
<th>Section</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>34265</td>
<td>FUEL CELL, PRESSURE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22111</td>
<td>ISONING# FUEL CELL, PROCESS, METHANATION,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34231</td>
<td>FUEL CELL, PURIFICATION, ELECTRODE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22110</td>
<td>E# FUEL CELL, REGENERATION</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34237</td>
<td>FUEL CELL, REGENERATION#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34238</td>
<td>FUEL CELL, REGENERATION#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34240</td>
<td>FUEL CELL, REGENERATION#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>20018</td>
<td>FUEL CELL, REGENERATIVE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>23028</td>
<td>FUEL CELL, REGENERATIVE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34848</td>
<td>FUEL CELL, REGENERATOR, ELECTROLYS#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34012</td>
<td>FUEL CELL, REVIEW#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34038</td>
<td>FUEL CELL, REVIEW#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34844</td>
<td>FUEL CELL, SHUTTLE, POWER#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34841</td>
<td>FUEL CELL, SPACE, ENERGY#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34822</td>
<td>FUEL CELL, SPACECRAFT, DESIGN#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34826</td>
<td>FUEL CELL, SPACECRAFT#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34249</td>
<td>FUEL CELL, SPACECRAFT#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22115</td>
<td>HYDROCARBON, FUEL CELL, STEAM, REFORMING#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22175</td>
<td>HYDROCARBON, FUEL CELL, STORAGE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34271</td>
<td>FUEL CELL, TECHNOLOGY, SPACECRAFT#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34022</td>
<td>FUEL CELL, TECHNOLOGY#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34624</td>
<td>CTRODE# FUEL CELL, TEMPERATURE, CARBON,</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRODE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34217</td>
<td>FUEL CELL, TEMPERATURE, ELECTRODE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34212</td>
<td>FUEL CELL, TEMPERATURE, ELECTRODE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34203</td>
<td>FUEL CELL, TEMPERATURE, POWER#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34025</td>
<td>FUEL CELL, TEMPERATURE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34270</td>
<td>FUEL CELL, TEMPERATURE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34843</td>
<td>FUEL CELL, TEST, CONTROL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34508</td>
<td>ANALOG# FUEL CELL, TRANSIENT, STEADY-STATE,</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34802</td>
<td>FUEL CELL, VEHICLE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>20513</td>
<td>SIS, OXYGEN, POWER, PRESSURE, CELL, VOLTAGE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FUEL CELL, ELECTROLYS#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34511</td>
<td>FUEL CELL, WATER, HEAT, BALANCE#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34503</td>
<td>FUEL CELL, WATER, HEAT, REMOVAL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34500</td>
<td>FUEL CELL, WATER, HUMAN#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34507</td>
<td>FUEL CELL, WATER, REMOVAL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34252</td>
<td>ELECTROLYSIS, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34805</td>
<td>INE, HYDROGEN, PEROXIDE, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34107</td>
<td>PURGE, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34037</td>
<td>MODEL, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34102</td>
<td>DESIGN, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34101</td>
<td>PRESSURE, TEMPERATURE, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>34021</td>
<td>FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>20011</td>
<td>HYDROGEN, ELECTROLYSIS, STUART CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22141</td>
<td>PARTIAL OXIDATION, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22131</td>
<td>STEAM, REFORMING, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22161</td>
<td>HYDROCARBON, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22189</td>
<td>REFORMING, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22122</td>
<td>REFORMING, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22145</td>
<td>HYDROGEN, GENERATOR, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22216</td>
<td>HYDROCRACK, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>10024</td>
<td>GE, INTERNAL COMBUSTION, FUEL CELL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRANSPORTATION, STORA</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22136</td>
<td>SYSTEM, FUEL CELLS, GAS, FUEL#</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>22149</td>
<td>GN, PURIFICATION, SYSTEM, FUEL CELLS, GAS,</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HYDROCARBONS, DESIGN</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

554
<table>
<thead>
<tr>
<th>Section 'K'</th>
</tr>
</thead>
<tbody>
<tr>
<td>10026</td>
</tr>
<tr>
<td>23405</td>
</tr>
<tr>
<td>33009</td>
</tr>
<tr>
<td>22005</td>
</tr>
<tr>
<td>22010</td>
</tr>
<tr>
<td>22002</td>
</tr>
<tr>
<td>22107</td>
</tr>
<tr>
<td>23425</td>
</tr>
<tr>
<td>21005</td>
</tr>
<tr>
<td>21003</td>
</tr>
<tr>
<td>23027</td>
</tr>
<tr>
<td>23403</td>
</tr>
<tr>
<td>22112</td>
</tr>
<tr>
<td>22150</td>
</tr>
<tr>
<td>22661</td>
</tr>
<tr>
<td>23022</td>
</tr>
<tr>
<td>21013</td>
</tr>
<tr>
<td>21008</td>
</tr>
<tr>
<td>10067</td>
</tr>
<tr>
<td>21012</td>
</tr>
<tr>
<td>52004</td>
</tr>
<tr>
<td>21013</td>
</tr>
<tr>
<td>34209</td>
</tr>
<tr>
<td>34800</td>
</tr>
<tr>
<td>23022</td>
</tr>
<tr>
<td>21007</td>
</tr>
<tr>
<td>21008</td>
</tr>
<tr>
<td>22005</td>
</tr>
<tr>
<td>22010</td>
</tr>
<tr>
<td>10025</td>
</tr>
<tr>
<td>22100</td>
</tr>
<tr>
<td>10086</td>
</tr>
<tr>
<td>22630</td>
</tr>
<tr>
<td>22006</td>
</tr>
<tr>
<td>22002</td>
</tr>
<tr>
<td>22009</td>
</tr>
<tr>
<td>10057</td>
</tr>
<tr>
<td>22109</td>
</tr>
<tr>
<td>22007</td>
</tr>
<tr>
<td>22013</td>
</tr>
<tr>
<td>22008</td>
</tr>
<tr>
<td>10088</td>
</tr>
<tr>
<td>10055</td>
</tr>
<tr>
<td>52044</td>
</tr>
<tr>
<td>30062</td>
</tr>
<tr>
<td>52049</td>
</tr>
<tr>
<td>52007</td>
</tr>
<tr>
<td>30041</td>
</tr>
<tr>
<td>22004</td>
</tr>
<tr>
<td>22620</td>
</tr>
<tr>
<td>22614</td>
</tr>
<tr>
<td>30036</td>
</tr>
<tr>
<td>32011</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION "K"

32012 POWER, INTERNAL COMBUSTION, COMPUTER#
32021 HYDROGEN, INJECTION, INTERNAL COMBUSTION, ENGINE, EMISSION,
10774 HYDROCARBON# FUEL, INTERNAL-COMBUSTION, ENGINE, POLLUTION,
32015 UTION, EXHAUST# INTERNAL COMBUSTION, FOSSIL, FUEL, POLL-
10024 SPORTATION, STORAGE, INTERNAL COMBUSTION, FUEL CELL#, TRAN
22194 CATALYST, COMBUSTION, HYDROCARBON#
22156 PARTIAL, COMBUSTION, HYDROCARBON#
10058 STEAM, FUEL, ECONOMY# COMBUSTION, HYDROGEN, OXYGEN,
33038 COMBUSTION, JET#
33040 COMBUSTION, JET#
33024 COMBUSTION, JET#
33027 COMBUSTION, METHANE#
33036 COMBUSTION, OXYGEN#
32020 NCY, STORAGE# INTERNAL COMBUSTION, POLLUTION, EFFICIE
32003 CRYOGENIC, OXYGEN, INTERNAL COMBUSTION, POLLUTION#
32024 EMISSION, ENERGY, INTERNAL-COMBUSTION, POLLUTION#
32019 INTERNAL COMBUSTION, RESEARCH#
30071 COMBUSTION, ROCKET#
33037 COMBUSTION, ROCKET#
30037 COMBUSTION, STABILITY#
33016 COMBUSTION, STEAM#
33021 ANALYSIS, COMBUSTION#
33010 COMBUSTION#
33018 INJECTION, COMBUSTION#
33022 SUBSONIC, COMBUSTION#
33027 THERMODYNAMICS, COMBUSTION#
30044 ENGINE, OXYGEN, COMBUSTION#
32007 ENGINE, COMBUSTION#
22631 TEMPERATURE, COMBUSTION#
33058 SUPERSONIC, FLOW, COMBUSTION#
33059 GENERATION, COMBUSTION#
22213 THERMODYNAMICS, COMBUSTION#
30002 ROCKET, COMBUSTION#
33033 ROCKET, COMBUSTION#
33042 HYPERSONIC, COMBUSTION#
22154 CONTROL, PRESSURE, COMBUSTION#
10072 IS, OXYGEN, STORAGE, INTERNAL COMBUSTION, MAGNETOHYDRODYNAMIC,
33013 COMBUSTOR, EFFICIENCY#
33054 INJECTOR, COMBUSTOR, RAMJET#
50005 SAFETY, STANDARD, COMMERCIAL, LIQUID, HANDLING#
40038 M, PROPERTY, ENTHALPY, ENTROPY, COMPILATION, DENSITY, DEUTERIU
50008 SAFETY, CRYOGENIC, COMBUSTION, COMPRESSED, GAS, LIQUID#
22189 COMPRESSOR, HYDROCRACK#
30039 COMPRESSOR, SPACECRAFT#
40103 UFACTION, HELIUM, EXPANSION, COMPRESSOR#
30072 COMPRESSOR, RECUPERATOR, POWER
23405 DROGEN, AMMONIA, CENTRIFUGAL, COMPRESSOR#, COST, HY
33059 COMPUTER, CONCENTRATION#
40212 PROPERTY, PARAHYDROGEN, COMPUTER, FLUID#
33063 SOLUTION#, SIMULATION, COMPUTER, IGNITION, NUMERICAL
33061 COMPUTER, NOZZLE#
40202 THERMODYNAMICS, TRANSPORT, COMPUTER, PROPERTY#

556
<table>
<thead>
<tr>
<th>Page</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>33014</td>
<td>MODEL, COMPUTER, REACTION#</td>
</tr>
<tr>
<td>33015</td>
<td>COMPUTER, SELF-IGNITION#</td>
</tr>
<tr>
<td>32012</td>
<td>POWER, INTERNAL COMBUSTION, COMPUTER#</td>
</tr>
<tr>
<td>33066</td>
<td>IGNITION, DETONATION, COMPUTER#</td>
</tr>
<tr>
<td>33051</td>
<td>TRANSIENT, CATALYST, COMPUTER#</td>
</tr>
<tr>
<td>33055</td>
<td>MIXING, CONCENTRATION, SHOCK#</td>
</tr>
<tr>
<td>33050</td>
<td>COMPUTER, CONCENTRATION#</td>
</tr>
<tr>
<td>33034</td>
<td>STABILITY, CONCENTRATION#</td>
</tr>
<tr>
<td>33043</td>
<td>INJECTOR, BOUNDARY LAYER, CONCENTRATION#</td>
</tr>
<tr>
<td>23425</td>
<td>RPTION, REGENERATION/ CHEMICAL, CONDENSATION, ABSORPTION, ADSORPTION</td>
</tr>
<tr>
<td>23423</td>
<td>REFRIGERATION, SEPARATION, CONDENSATION, METHANE, RECYCLE</td>
</tr>
<tr>
<td>23424</td>
<td>ION, SEPARATION, HYDROCARBON, CONDENSATION, REGENERATION/ T</td>
</tr>
<tr>
<td>23421</td>
<td>SIS GAS, HELIUM, TEMPERATURE, CONDENSATION/ABSORPTION, NITROG</td>
</tr>
<tr>
<td>41012</td>
<td>ARAHYDROGEN#</td>
</tr>
<tr>
<td>41006</td>
<td>SOLID, PROPERTY, CONDUCTIVITY#</td>
</tr>
<tr>
<td>41016</td>
<td>METAL, CONDUCTOR#</td>
</tr>
<tr>
<td>10071</td>
<td>USE, ECONOMY, CARRIER, CONSERVATION#</td>
</tr>
<tr>
<td>10059</td>
<td>N, TURBINE, HYDROGEN, OXYGEN, CONSERVATION# /ENCY, POLLUTION</td>
</tr>
<tr>
<td>34004</td>
<td>REACTION, CONSTRUCTION#</td>
</tr>
<tr>
<td>34008</td>
<td>ELECTRODE, CONSTRUCTION#</td>
</tr>
<tr>
<td>42004</td>
<td>GAS, STANDARD, CONSUMER, SAFETY#</td>
</tr>
<tr>
<td>10078</td>
<td>ION, ENVIRONMENT, PRODUCTION, CONSUMPTION, POLICY# /TRANSMISS</td>
</tr>
<tr>
<td>31076</td>
<td>SUPERSONIC, FUEL, ANALYSIS, CONSUMPTION#</td>
</tr>
<tr>
<td>50013</td>
<td>ORAGE, PRESSURE, TEMPERATURE, CONTAMINANT# SAFETY, ST</td>
</tr>
<tr>
<td>52047</td>
<td>EMBRITTLEMENT, TANTALUM, CONTAMINATION#</td>
</tr>
<tr>
<td>34836</td>
<td>STORAGE, CONTROL, BATTERY#</td>
</tr>
<tr>
<td>22626</td>
<td>CONTROL, CONVERSION#</td>
</tr>
<tr>
<td>50000</td>
<td>LIQUID, SAFETY, CONTROL, DAMAGE#</td>
</tr>
<tr>
<td>10076</td>
<td>AR, ELECTROLYSIS, POLLUTION, CONTROL, HYDROGEN, FUEL, NUCLE</td>
</tr>
<tr>
<td>22154</td>
<td>CONTROL, PRESSURE, COMBUSTION#</td>
</tr>
<tr>
<td>50003</td>
<td>STEAM, REFORMING, CONTROL, SAFETY#</td>
</tr>
<tr>
<td>20012</td>
<td>ELECTROLYSIS, CONTROL#</td>
</tr>
<tr>
<td>34843</td>
<td>FUEL CELL, TEST, CONTROL#</td>
</tr>
<tr>
<td>34600</td>
<td>CONTROL#</td>
</tr>
<tr>
<td>40207</td>
<td>L POINT, HEAT TRANSFER# CONVECTION, CRYOGENIC, CRITICA</td>
</tr>
<tr>
<td>33031</td>
<td>TRANSPORT, CONVECTION, FLOW#</td>
</tr>
<tr>
<td>40203</td>
<td>BOILING, CONVECTION, NUCLEATE#</td>
</tr>
<tr>
<td>22602</td>
<td>ON, FUEL CELL, GAS, REFORMER/ CONVERSION, CATALYST, PRODUCTI</td>
</tr>
<tr>
<td>23020</td>
<td>HYDROCARBON, EFFICIENCY, REA/ CONVERSION, CATALYST, PURITY,</td>
</tr>
<tr>
<td>22151</td>
<td>OCESS, PRODUCTION, REFORMING, CONVERSION, DESULFURIZATION ME</td>
</tr>
<tr>
<td>34039</td>
<td>ENE/ FUEL CELL, ELECTROLYZER, CONTROL, ELECTROCATALYSIS,</td>
</tr>
<tr>
<td>10025</td>
<td>YDROGEN, FUEL, ECONOMY, COAL, CONVERSION, ELECTROLYSIS# H</td>
</tr>
<tr>
<td>23200</td>
<td>EFFICIENCY, GROWTH, CONVERSION, EUTROPHIC#</td>
</tr>
<tr>
<td>22191</td>
<td>STEAM, CONVERSION, GAS#</td>
</tr>
<tr>
<td>34100</td>
<td>OCESS, GENERATOR, EFFICIENCY, CONVERSION, HYDROCARBON# / PR</td>
</tr>
<tr>
<td>22102</td>
<td>DESULFURIZATION, REFORMING, CONVERSION, METHANATION, CATAL</td>
</tr>
<tr>
<td>23602</td>
<td>TURE, CATALYST, SENSITIZER, CONVERSION, OXIDATION, TEMPERA</td>
</tr>
<tr>
<td>22635</td>
<td>STEAM REFORMING, HYDROCARBON, CONVERSION, PARTIAL OXIDATION,</td>
</tr>
<tr>
<td>34821</td>
<td>ENERGY, CONVERSION, POWER#</td>
</tr>
<tr>
<td>22116</td>
<td>N, CATALYST# FUEL CELL, CONVERSION, REFORMER, OXIDATI</td>
</tr>
<tr>
<td>32013</td>
<td>ENGINE, CONVERSION#</td>
</tr>
<tr>
<td>34621</td>
<td>FUEL CELL, DIFFUSION, ENERGY, CONVERSION#</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

22626 CONTROL, CONVERSION
22636 STEAM REFORMING, CONVERSION
23409 DESULPHURIZATION, REFORMING, CONVERSION
22114 REFORMING, PRODUCTION, DESIGN, CONVERSION HYDROGEN, STEAM
10072 DYNAMIC, COST, SOLAR, ENERGY, CONVERSION /STIONMAGNETOHYDRO
22607 CKING, HYDRO-DESULFURIZATION, CONVERTER /ODUCTION, HYDROCRA
40110 THERMOSIPHON, COOLING, APPARATUS
31009 COOLING, OPTIMIZATION
31012 RANGE, PAYLOAD, COOLING, SLUSH, ECONOMIC
52052 STAINLESS, EMBRITTLEMENT, CORROSION, CRACK, STRESS
21005 THERMAL, DECOMPO/ CHEMICAL, CORROSION, ENERGY, CYCLE, COST
22604 E, STEAM REFORMING, REFORMER, CORROSION, PERFORMANCE /ESSUR
52054 EMBRITTLEMENT, TITANIUM, CORROSION
50012 STEAM, REFORMING, DESIGN, CORROSION
34811 NICKEL, ELECTRODE, CORROSION
52016 ACK, STEEL, STRENGTH, STRESS, CORROSION EMBRITTLEMENT, CR
31011 COST, AIRCRAFT, ECONOMIC, FUEL
31013 COST, AIRCRAFT, PRODUCTION
20501 ELECTROLYZER, DESIGN, HYDROGEN, COST, AMMONIA EL
22007 ONIA, HYDROGEN, PRODUCTION, COST, COAL, SYNTHESIS GAS, AMM
22600 COST, DESIGN, REFINING, GAS
34105 COST, DESIGN
23402 ACTION, HYDROCARBON, PRESSURE, COST, ECONOMY SEPAR
20511 Y, NUC HYDROGEN, PRODUCTION, COST, ELECTROLYSIS, ELECTRICIT
32000 IRONMET# MODIFICATION, COST, EMISSION, POLLUTION, ENV
23440 CATALYST, REFORMING, RECYCLE, COST, FUEL, SEAPRATION /NIA,
22124 HYDROCRACK, COST, FUEL
40101 LIQUEFACTION, COST, HEAT EXCHANGER
23405 IFUGAL, COMPRESSOR, COST, HYDROGEN, AMMONIA, CENTR
22605 ONIA, PRODUCTION, SEPARATION, COST, NATURAL GAS, NAPHTHA /M
31007 PAYLOAD, RANGE, COST, NDISE
10047 SPORTATION, HYDROGEN, COST, NUCLEAR, ECONOMICS, TRAN
40109 LIQUEFICATION, COST, PATENT
40600 COST, PIPELINE, ELECTRIC
13043 OLOGY, ENERGY, SYSTEM, STUDY, COST, POLLUTION, TRANSMISSION
32008 PRODUCTION, COST, POLLUTION
34825 HYDROCARBON, COST, POWER
22129 MANUFACTURE, PURITY, COST, PRESSURE, REFORMER
40400 VESSEL, COST, PRESSURE
22608 I/ REFINERY, STEAM REFORMING, COST, PROCESS, PURIFICATION, D
23400 IFICATION, HYDROCARBON, FUEL, COST, PRODUCTION /PUR
10072 OMBUSTIONMAGNETOHYDRODYNAMIC, COST, SOLAR, ENERGY, CONVERS
34256 COST, SPACECRAFT
20507 EN, PRODUCTION, ELECTROLYSIS, COST, STEAM REFORMING, PARTIAL
31005 PERFORMANCE, COST, STORAGE, SAFETY
10052 DROGEN, ENERGY, MARKET, FUEL, COST, STORAGE, TRANSMISSION,EL
10012 N, STUDY, PRODUCTION, LIQUID, COST, SYSTEM ANALYSIS /YDROGE
21005 AL, CORROSION, ENERGY, CYCLE, COST, THERMAL, DECOMPOSITION /E
34007 COST, THERMODYNAMICS, DESIGN
42003 PIPE, COST, TRANSPORT, STORAGE
34014 COST, VEHICLE
40415 LIQUID, INSULATION, SHUTTLE, COST
34639 LIQUID INSULATION, SHUTTLE, COST
KEYWORD INDEX

SECTION 'K'

<table>
<thead>
<tr>
<th>Code</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>34646</td>
<td>CURRENT DENSITY, ALKALINE, COST#</td>
</tr>
<tr>
<td>40102</td>
<td>TION, HEAT TRANSFER, STORAGE, COST#</td>
</tr>
<tr>
<td>40126</td>
<td>LIQUEFACTORY</td>
</tr>
<tr>
<td>22215</td>
<td>DESIGN, COST#</td>
</tr>
<tr>
<td>31016</td>
<td>IIRCRAFT, HYPERSONIC CRYOGENIC COST#</td>
</tr>
<tr>
<td>31000</td>
<td>AIRCRAFT, PROPULSION, COST#</td>
</tr>
<tr>
<td>23411</td>
<td>DIFFUSION, PALLADIUM, COST#</td>
</tr>
<tr>
<td>22133</td>
<td>OPERATION, REFORMER, REACTOR, COST#</td>
</tr>
<tr>
<td>20506</td>
<td>UCTION, ELECTROLYSIS, DESIGN, COST#</td>
</tr>
<tr>
<td>23438</td>
<td>ITY, REFINERY, PETROCHEMICAL, COST#</td>
</tr>
<tr>
<td>23025</td>
<td>G, HYDROCARBON, PURIFICATION, COST# /ETHANOL, STEAM REFORMING</td>
</tr>
<tr>
<td>10070</td>
<td>ENC, WASTE, FUEL, PYROLYSIS, COST# /NE, HEAT, ALGAE, EFFICI</td>
</tr>
<tr>
<td>10011</td>
<td>ON, TRANSMISSION STORAGE, USE, COST# /MONOXY, NUCLEAR, PRODUCTI</td>
</tr>
<tr>
<td>23403</td>
<td>ATION, AMMONIA, PURIFICATION, COST# /OLEUM, CRYOGENIC, SEPAR</td>
</tr>
<tr>
<td>20504</td>
<td>E, TRANSMISSION, PERFORMANCE, COST# /RGY, PRODUCTION, STORAG</td>
</tr>
<tr>
<td>22013</td>
<td>AL#</td>
</tr>
<tr>
<td>10069</td>
<td>OGEN, SYSTEMS, STUDY, ENERGY, COSTS, ECONOMICS# /EN, OXYGEN, MA</td>
</tr>
<tr>
<td>20005</td>
<td>NUFACTURING METHODS OPERATION, COSTS, SAFETY# /EN, OXYGEN, MA</td>
</tr>
<tr>
<td>52002</td>
<td>EMBRITTLEMENT, METAL, CRACK, AIR, PURITY#</td>
</tr>
<tr>
<td>52028</td>
<td>IRON, CRACK, FRACTURE#</td>
</tr>
<tr>
<td>52016</td>
<td>CORROSION# /EMBRITTLEMENT, CRACK, STEEL, STRENGTH, STRESS</td>
</tr>
<tr>
<td>52058</td>
<td>EMBRITTLEMENT, CRACK, STRENGTH#</td>
</tr>
<tr>
<td>52008</td>
<td>STEEL, STRENGTH, CRACK, STRESS, EMBRITTLEMENT#</td>
</tr>
<tr>
<td>52052</td>
<td>SS, EMBRITTLEMENT, CORROSION, CRACK, STRESS# STAINLE</td>
</tr>
<tr>
<td>23025</td>
<td>TEAM REFORMING, HYDROCARBON, CRACKING, AMMONIA, METHANOL, S</td>
</tr>
<tr>
<td>20504</td>
<td>E, TRANSMISSION, PERFORMANCE, COST# /RGY, PRODUCTION, STORAG</td>
</tr>
<tr>
<td>22013</td>
<td>AL#</td>
</tr>
<tr>
<td>10069</td>
<td>OGEN, SYSTEMS, STUDY, ENERGY, COSTS, ECONOMICS# /EN, OXYGEN, MA</td>
</tr>
<tr>
<td>20005</td>
<td>NUFACTURING METHODS OPERATION, COSTS, SAFETY# /EN, OXYGEN, MA</td>
</tr>
<tr>
<td>52002</td>
<td>EMBRITTLEMENT, METAL, CRACK, AIR, PURITY#</td>
</tr>
<tr>
<td>52028</td>
<td>IRON, CRACK, FRACTURE#</td>
</tr>
<tr>
<td>52016</td>
<td>CORROSION# /EMBRITTLEMENT, CRACK, STEEL, STRENGTH, STRESS</td>
</tr>
<tr>
<td>52058</td>
<td>EMBRITTLEMENT, CRACK, STRENGTH#</td>
</tr>
<tr>
<td>52008</td>
<td>STEEL, STRENGTH, CRACK, STRESS, EMBRITTLEMENT#</td>
</tr>
<tr>
<td>23029</td>
<td>ALYST/ HYDROCARBONS, AMMONIA, CRACKING, STEAM REFORMING, CAT</td>
</tr>
<tr>
<td>22138</td>
<td>ELECTRIC, CRACKING#</td>
</tr>
<tr>
<td>22113</td>
<td>OCARBON, CATALYSIS, PRESSURE, CRACKING#</td>
</tr>
<tr>
<td>10086</td>
<td>HYDROGEN, STORAGE, T/ ENERGY, CRISIS, SOLAR, COAL, FISSION</td>
</tr>
<tr>
<td>51014</td>
<td>SAFETY, EXPLOSION, LIQUID, CRITERIA#</td>
</tr>
<tr>
<td>40207</td>
<td>CONVECTION, CRYOGENIC, CRITICAL POINT, HEAT TRANSFER#</td>
</tr>
<tr>
<td>40206</td>
<td>ERATURE, BOILING# /FLOW, CRITICAL POINT, PRESSURE, TEMP</td>
</tr>
<tr>
<td>40102</td>
<td>LIQUEFACTORY</td>
</tr>
<tr>
<td>34823</td>
<td>ELECTRICITY, POWER, WATER, CRYOGENIC, LUNAR#</td>
</tr>
<tr>
<td>40300</td>
<td>FLOW, CRYOGENIC, MEASUREMENT, SLUSH#</td>
</tr>
<tr>
<td>32003</td>
<td>MBUSTION, POLLUTION, CRYOGENIC, OXYGEN, INTERNAL CO</td>
</tr>
<tr>
<td>23004</td>
<td>ION, STEAM REFORMING, PURITY, CRYOGENIC, OXYGEN# /N, PRODUCT</td>
</tr>
<tr>
<td>KEYWORD INDEX</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>49010</td>
<td>CRYOGENIC, PIPELINE#</td>
</tr>
<tr>
<td>30052</td>
<td>CRYOGENIC, PROPELLANT#</td>
</tr>
<tr>
<td>10077 RANSPO</td>
<td>CRYOGENIC, PROPERTY, SAFETY, T</td>
</tr>
<tr>
<td>10051 HYDROG</td>
<td>CRYOGENIC, SEPARATION, AMMONIA</td>
</tr>
<tr>
<td>203403 PURIF/</td>
<td>CRYOGENIC, SEPARATION#</td>
</tr>
<tr>
<td>203005 INSU</td>
<td>CRYOGENIC, SOLIDIFICATION#</td>
</tr>
<tr>
<td>40066 LIQUID,</td>
<td>CRYOGENIC, SPACECRAFT#</td>
</tr>
<tr>
<td>40055 INSTRUM</td>
<td>CRYOGENIC, TEMPERATURE#</td>
</tr>
<tr>
<td>40079 STORAG</td>
<td>CRYOGENIC, SAFETY# / TRANSMISSION</td>
</tr>
<tr>
<td>10065 ENERGY,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>40003 HYDROG</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>40004 PUBLICATION, THERMODYNAMICS, CRYOGENIC#</td>
<td></td>
</tr>
<tr>
<td>400306 TRANS</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>40011 STORAG</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>203300 Y, HYDROCARBON,CONDENSATION, CRYOGENIC#</td>
<td></td>
</tr>
<tr>
<td>30056 ROCKET,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>30005 THRUST,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>10031 THERMI</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>203201 HYDROG</td>
<td>CYCLE, ENERGY, CRYOGENIC#</td>
</tr>
<tr>
<td>30646 T#</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>34205 STEAM,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>20608 NITROG</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>20104 OXYGEN,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>20105 CYCLE,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>20112 STUDY,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>20111 WATER,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>22009 PROCUD</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>2019 NITROGEN</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>2019 OXYGEN,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>2019 CYCLE,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>50000 LIQUID,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>40007 STEEL,</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>20101 ECONOM</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>2010 HYDROG</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>50209 EMBRITT</td>
<td>CRYOGENIC#</td>
</tr>
<tr>
<td>34616 ELECTRO</td>
<td>ALKALINE, COS</td>
</tr>
<tr>
<td>34616 FUEL</td>
<td>ALKALINE, COS</td>
</tr>
<tr>
<td>20013 NITROGEN,</td>
<td>WATER, A</td>
</tr>
<tr>
<td>20020 NITROGEN,</td>
<td>CYCLE, BACTERIA, ANDDE</td>
</tr>
<tr>
<td>20104 OXYGEN,</td>
<td>CYCLE, CHEMICAL, REACTION, EFF</td>
</tr>
<tr>
<td>20105 CYCLE,</td>
<td>CYCLE, COST, THERMAL, DECOMPOS</td>
</tr>
<tr>
<td>20112 STUDY,</td>
<td>CYCLE, DECOMPOSITION, CHEMICAL</td>
</tr>
<tr>
<td>20111 WATER,</td>
<td>CYCLE, ENERGY, PROCESS, FUEL#</td>
</tr>
<tr>
<td>20109 PRODUCTION,</td>
<td>CYCLE, MARK I, CATALYST, ECONO</td>
</tr>
<tr>
<td>20104 WATER,</td>
<td>CYCLE, PROCESS, NUCLEAR, HEAT,</td>
</tr>
<tr>
<td>20105 CYCLE,</td>
<td>CYCLE, PROCESS, THERMOCHEMICAL</td>
</tr>
<tr>
<td>20106 CYCLE,</td>
<td>CYCLE, THERMAL, EFFICIENCY#</td>
</tr>
<tr>
<td>20104 CYCLE,</td>
<td>CYCLE, THERMOCHEMICAL</td>
</tr>
<tr>
<td>50000 LIQUID,</td>
<td>CYCLE, THERMAL, EFFICIENCY#</td>
</tr>
<tr>
<td>50000 STEEL,</td>
<td>CYCLE, THERMAL, EFFICIENCY#</td>
</tr>
<tr>
<td>20104 NUCLEAR,</td>
<td>CYCLE, THERMAL, EFFICIENCY#</td>
</tr>
<tr>
<td>20104 CYCLE,</td>
<td>CYCLE, THERMAL, EFFICIENCY#</td>
</tr>
<tr>
<td>52019 EMBRITT</td>
<td>CYCLE, THERMAL, EFFICIENCY#</td>
</tr>
<tr>
<td>34616 ELECTRO</td>
<td>DAMAGE#</td>
</tr>
<tr>
<td>34616 STEEL,</td>
<td>DAMAGE#</td>
</tr>
<tr>
<td>40007 CRYOGEN</td>
<td>DAMAGE#</td>
</tr>
<tr>
<td>20101 ECONOM</td>
<td>DAMAGE#</td>
</tr>
<tr>
<td>2010 HYDROG</td>
<td>DAMAGE#</td>
</tr>
<tr>
<td>52019 STEEL,</td>
<td>DAMAGE#</td>
</tr>
<tr>
<td>52019 STEEL,</td>
<td>DAMAGE#</td>
</tr>
<tr>
<td>40007 CRYOGEN</td>
<td>DAMAGE#</td>
</tr>
<tr>
<td>20108 REACTION,</td>
<td>CYCLE, THERMAL, EFFICIENCY#</td>
</tr>
<tr>
<td>20111 PROCESS,</td>
<td>CYCLE, THERMAL, EFFICIENCY#</td>
</tr>
</tbody>
</table>

560
KEYWORD INDEX

<table>
<thead>
<tr>
<th>Section 'K'</th>
</tr>
</thead>
<tbody>
<tr>
<td>22002 STRI, GAS, CHARCOAL, STEAM.</td>
</tr>
<tr>
<td>10057 GY, NUCLEAR, OXYGEN, REACTOR.</td>
</tr>
<tr>
<td>43002 GAS, PUMP.</td>
</tr>
<tr>
<td>22625 AT, REACTOR, EQUILIBRIUM, ME.</td>
</tr>
<tr>
<td>23011 OXIDATION, AMMONIA, REACTOR.</td>
</tr>
<tr>
<td>43000 RATURE, ENERGY/ DISSOCIATION.</td>
</tr>
<tr>
<td>23603 GY, VOLTAGE, ANODE.</td>
</tr>
<tr>
<td>10089 CIENCY/ ENERGY, SOLAR, WATER.</td>
</tr>
<tr>
<td>21001 REACTION, OXIDE, HALOGEN.</td>
</tr>
<tr>
<td>10049 OGEN, ENERGY, NUCLEAR, WATER.</td>
</tr>
<tr>
<td>22646 CATALYST, METHANE.</td>
</tr>
<tr>
<td>22651 MICS, HYDROGEN, GAS, THERMAL.</td>
</tr>
<tr>
<td>10042 USE, PRODUCTION, HEAT, WATER.</td>
</tr>
<tr>
<td>21005 ENERGY, CYCLE, COST, THERMAL.</td>
</tr>
<tr>
<td>10075 LYSIS, THERMOCHEMICAL, WATER.</td>
</tr>
<tr>
<td>10078 ITY, USE, GENERATION, SUPPLY.</td>
</tr>
<tr>
<td>34646 CURRENT DENSITY, ALKALINE, COST.</td>
</tr>
<tr>
<td>40008 ENTHALPY, ENTRPE/ COMPILATION.</td>
</tr>
<tr>
<td>40301 TANK, INSULATION.</td>
</tr>
<tr>
<td>41015 METAL.</td>
</tr>
<tr>
<td>40200 LOW, CYORGENIC.</td>
</tr>
</tbody>
</table>
K E Y WORD
SECTION

34838
30056
34033

34105
34822
40605
40410
40412
50002
40308
40512
34235
30059
30069
30040
34007
50014
20505
22112
22107
23439
2 2 15 1
22607

22102
23409
5 1009
51'310
520 17
51007
43309
33066
33064
51000
43008
23418
23027
23418
34621
52032
23026
2341 1
23428
23009
23420
52021
52048
51003
52045
52C26

52012

INDEX

'K*

DESIGN.
TEST.
REGENERATION*
DESIGN* THRUST#
DESIGN.
VEHICLE*
COST.
DESIGNY
F U E L C E L L . SPACECRAFT. D E S I G N #
SHUTTLE.
STORAGE.
DESIGN*
TANK.
HYPERSONICt AIRCRAFT.
DESIGN*
STgRAGE. CRYOGENIC.
DESIGN#
SAFETY,
FURNACE.
TEMPERATURE.
DESIGN#
FL3W. C A L I B R A T I O N .
DESIGN#
P U M P * FLOW. TWO-PHASE.
DESIGN*
ELECTROLYI S I
MATRIX* DESIGN*
S P A C E . POWER. D E S I G N #
CATALYSIS.
THRUST,
DESIGN#
ENGINE. OESIGNX
COST* THERMODYNAMICSI
DESIGN#
S A F E T Y * MANUAL. L E A K A G E . D E S I G N *
ON.
ELECTROLYSIS.
SPACECRAFT. D E S I G N *
OXYGEN.
PRODUCT I
ROCARSONS. C H E M I C A L .
PROCESS* D E S I G N *
STEAM REFORMING* HYD
ORMING. HYDROCARBON. C H E M I C A L D E S I G N * /RODUCTION.
STEAM. R E F
PRESSURE.
ABSORPTION.
D E S O R P T I O N . AMMONIA.
PALLADIUM
CONVERSION. DESULFUR I Z A T I O N METHANATIONX /
C T I O N * R E F O R M 1 NG.
N V E R S I O N . METHANATIONI
C A T A L / D E S U L F U R I Z A T I O N . REFORMING.
CO
ONVERSION#
D E S U L P H U R I Z A T I O N . REFORMING. C
SAFETY I LEAK I F I R E . DETECT I O N * REVIEW*
EXPLOSION.
SPACECRAFT* DETECTION.
SUPPRESSION*
EMBRITTLEMENT. DETECT ION* TEST#
S P A C E C R A F T * HAZARD.
LEAK. D E T E C T I O N *
SENSOR.
DETECT I O N #
I G N I T I O N . D E T O N A T I O N . COMPUTER*
RATE* DETONATIONI
INDUCTION#
N#
DETONATIONI
QUENCHING.
REACT10
ENTRQ/ CDMPILATION.
D E N S I T Y * D E U T E R I U M . PROPERTY.
ENTHALPY.
YTIC.
EFFICIENCY.
PROOUCTIONI
DEUTERIUM# /IFFUSION.
ELECTROL
IENCYI
EFFIC
OIFFUSIONI
ENERGY, C O N V E R S I O N #
F U E L CELL.
ATURE+ PRESSURE#
D I F F U S I O N * M E T A L * R A T E * TEMPER
CIATION.
CATALYSIS. NIT90GEN.
DIFFUSION.
METHANOL* HYDROCARB
DIFFUSION. PALLADIUM.
COST#
GEN.
A M M O N I A * WATER* METHANE* D I F F U S I O N .
P A L L A D I U M * /r HYDRO
t
HEAT#
C A T A L Y S I S + METHANOL. D I F F U S I O N I P A L L A D I U M . REFORMER
F I L M . C A T A L Y S I S * ADSORPTION.
DIFFUSION.
PERMEABILITY* /ETAL
ION#
STEEL.
DIFFUSION. SOLUBILITY
PERMEAT
LOAD.
EMBRITTLEMENT. D I F F U S I O N #
XPLOSION.
L I M I T * CALCULPTION.
DIFFUSION*
E
PERMEATION. PLATINUM.
DIFFUSION#
ATION.
I R O N . S T E E L . MEMBRANE.
DIFFUSION#
PERME
BRITTLEMENT.
TITANIUM.
ALLOY.
DIFFUSION*
EM

.

52035
S T E E L * ABSORPTION,
CATHODIC*
52040 A T I O N .
R A T E * MEMBRANE* METAL,
23422

SEPARATION.

DIFFUSION#
DIFFUSION#
DIFFUSION#

r'/ n

IRON.
PERME


KEYWORD INDEX

SECTION 'K'

23404 PURIFICATION, DIFFUSION#
33005 DROPLET, DIFFUSION#
52013 MECHANISM, STEELS, STRENGTH, DIFFUSION# EMBRITTLEMENT,
23203 SUGAR# CARBON DIOXIDE, METABOLISM, MECHANISM
34209 FUEL CELL, DISCHARGE, CHLORINE#
52037 EL, STAINLESS, EMBRITTLEMENT, DISLOCATION, MARTENSITE# STE
52010 TION# STAINLESS STEEL, DISLOCATION, PHASE, TRANSFORMA
23021 ATION, TEMPERATURE, PRESSURE/DISSOCIATION, AMMONIA, PURIFIC
23026 TATION* TEMPERATURE, PRESSURE/DISSOCIATION, AMMONIA, PURIFIC
23027, CATALYSIS, CHEMICAL, OXYGE/DISSOCIATION, WATER, DIFFUSION
52043 ION, CRACKING, DISOLUTION#
42002 GAS, DISTRIBUTION, PETROCHEMICAL#
22658 COST, PROCESS, PURIFICATION, DISTRIBUTION, SAFETY# FORMING,
22210 HYDROGEN, UTILITY, DISTRIBUTION#
40604 SHUTTLE, LIQUID, DISTRIBUTION#
22603 GENIC, LIQUEFACTION, STORAGE, DISTRIBUTION# IIFICATION, CRYO
33003 STABILITY, IGNITION, DRAG# TURBULENCE#
33005 DRAG, DROPLET, DIFFUSION#
52004 EEL, EMBRITTLEMENT, STRENGTH, DUCTILITY, CHEMISORPTION# ST
52005 TANTALUM, DUCTILITY, STRESS#
43012 ANIDE, AFFINITY, MAGNET, RARE EARTH# LANTH
10050 FUTURE, HYDROGEN, ENERGY, ECOLOGY, ELECTRICITY, ANALYSIS
10043 HYDROGEN, SYNTHETIC, FUEL, ECOLOGY, ENERGY, SYSTEM, STUDY
10048 RNA, HYDROGEN, STUDY, ENERGY, ECOLOGY, FOSSIL, STORAGE, ALTE
10055 ROGEN, FUEL, ECONOMY, ENERGY, ECOLOGY, SAFETY, NUCLEAR, COAL
10035 ROGEN, ENERGY, NUCLEAR, FOOD, ECOLOGY# HYD
10030 FUEL, ENVIRONMENT, NUCLEAR, ECOLOGY# HYDROGEN, ENERGY
31011 COST, AIRCRAFT, ECONOMIC, FUEL#
32009 STORAGE, IMPACT, ECONOMIC, HYDRIDE, ENGINE#
31012 NGE, PAYLOAD, COOLING, SLUSH, ECONOMIC# RA
10079 TRANSMISSION, STORAGE, LIQUID, ECONOMICS, CRYOGENIC, SAFETY# /
22013 COSTS, ECONOMICS, HYDROGEN, COAL#
22651 MAL, DECOMPOSITION# ECONOMICS, HYDROGEN, GAS, THER
21012 COMPOSITION, CHEMICAL, STUDY, ECONOMICS, KINETICS, THERMODYN
10075 TROLYSIS, THERMOCHEMICAL, WA/ECONOMICS, SOLAR, ENERGY, ELEC
22002 ARC, STEAM, DECOMPOSITION, ECONOMICS, STUDY# AL, GAS, CH
10047 HYDROGEN, COST, NUCLEAR, ECONOMICS, TRANSPORTATION#
10028 HYDROGEN, FOSSIL FUELS, ECONOMICS#
22214 PETROLEUM, ECONOMICS#
10069 SYSTEMS, STUDY, ENERGY, COSTS, ECONOMICS# HYDROGEN, S
21008 EMICAL, REACTION, EFFICIENCY, ECONOMICS# OPITION, CYCLE, CH
10071 USE, ECONOMY, CARRIER, CONSERVATION
10008 HYDROGEN, ENERGY, FUEL, ECONOMY, CARRIER, USE#
10025 TROLYSIS# HYDROGEN, FUEL, ECONOMY, COAL, CONVERSION, ELE
10055 TY, NUCLEAR, HYDROGEN, FUEL, ECONOMY, ENERGY, ECOLOGY, SAFE
10019 FUEL, VEHICLE OXY/HYDROGEN, ECONOMY, ENERGY, ELECTROLYSIS,
10002 TRANSMISSION, US HYDROGEN, ECONOMY, ENERGY, FUEL, STORAGE

563
SECTION 'K'

10085 CTION, TECHNOLOGY, HYDROGEN, ECONOMY, ENERGY, SOURCE, PRODU
10056 HYDROGEN, ECONOMY, ENERGY#
10014 HYDROGEN, ECONOMY, ENERGY#
10081 METHANOL, ECONOMY, ENGINE, FUEL, ENERGY#
10037 ELECTROLYSIS, POLL, HYDROGEN, ECONOMY, ENVIRONMENT, ENERGY,
10003 ISSION, US, HYDROGEN, ENERGY, ECONOMY, FUEL, STORAGE, TRANSM
10060 HYDROGEN, ECONOMY, MEETING#
10011 TRANSMISSI, HYDROGEN, ENERGY, ECONOMY, NUCLEAR, PRODUCTION,
22614 COKE, PROCESS, ECONOMY, COMBUSTION, WATER, GAS
10001 TRANSMISSI, HYDROGEN, ENERGY, ECONOMY, PRODUCTION, STORAGE,
10004 TRAN HYDROGEN, ENERGY, FUEL, ECONOMY, STORAGE, PRODUCTION,
10016 HYDROGEN, ENERGY, ECONOMY, TRANSPORTATION#
10024 STORAGE, INT HYDROGEN, FUEL, ECONOMY, USE, TRANSPORTATION,
10009 HYDROGEN, FUEL, ENERGY, ECONOMY, USE#
10022 HYDROGEN, POWER, ECONOMY#
10039 HYDROGEN, FUEL, HYDROCARBON, ECONOMY#
23402 HYDROCARBON, PRESSURE, COST, ECONOMY# SEPARATION,
10058 HYDROGEN, OXYGEN, STEAM, FUEL, ECONOMY# COMBUSTION, H
21009 GEN, CYCLE, MARK I, CATALYST, ECONOMY# /TION, HYDROGEN, OXY
22635 CONVERSION, PARTIAL OXIDATION, ECONOMY# /MING, HYDROCARBON, C
10034 URE, ENERGY, NUCLEAR, CARRIER ECONOMY# /SYNTHETIC, FUEL, FUT
34103 ENERGY, PROCESS, GENERATOR, EFFICIENCY, CONVERSION, HYDRO
21008 N, CYCLE, CHEMICAL, REACTION, EFFICIENCY, ECONOMICS# /OSITIO
23402 EUTROPHA# EFFICIENCY, GROWTH, CONVERSION
21016 WATER, SPLITTING, TECHNOLOGY, EFFICIENCY, HEAT, PROCESS# /,
34845 EFFICIENCY, HYDROCARBON#
34806 TALYST# EFFICIENCY, NICKEL, SILVER, CA
10059 HYDROGEN, OXYGEN/ ELECTRIC, EFFICIENCY, POLLUTION, TURBINE
32006 TURE# OXYGEN, EFFICIENCY, POLLUTION, TEMPERA
34200 EFFICIENCY, POWER, CATALYST#
23418 IU/DIFFUSION, ELECTROLYTIC, EFFICIENCY, PRODUCTION, DEUTER
23020 ATALYST, PURITY, HYDROCARBON, EFFICIENCY, REACTOR# /SION, C
32002 YDRIDE, EMISSION, POLLUTION/ EFFICIENCY, SAFETY, STORAGE, H
32020 TERNAL COMBUSTION, POLLUTION, EFFICIENCY, STORAGE# IN
10089 ER, DECOMPOSITION, RADIATION, EFFICIENCY, TEMPERATURE, SYSTE
33029 EFFICIENCY, VAPOR#
10070 SPACE, MARINE, HEAT, ALGAE, EFFICIENCY, WASTE, FUEL, PYRO
22143 ORMING, VOLTAGE, TEMPERATURE, EFFICIENCY, YIELD# /PLY, REF
33039 INJECTOR, EFFICIENCY#
21002 CLEAR, WATER, CYCLE, THERMAL, EFFICIENCY# NU
34213 EFFICIENCY#
33013 COMBUSTOR, EFFICIENCY#
40507 PUMP, LIQUID, TEST, EFFICIENCY#
34266 CATHODE, EFFICIENCY#
23412 ATALYST, ANODE, POLARIZATION, EFFICIENCY# /ELECTROCHEMICAL, C
20512 FREE ENERGY, ENTROPY, THERMAL EFFICIENCY# /N, ELECTROLYSIS,
21014 ER, SPLITTING, THERMOCHEMICAL EFFICIENCY# /CLEAR, HEAT, WAT
40509 S# EJECTOR, PUMP, LIQUID, ANALYSI
30053 BOPUMP# EJECTOR, SPECIFIC IMPULSE, TUR
30012 ELECTRIC, ARCJET#
22139 ELECTRIC, CRACKING#
10059 N, TURBINE, HYDROGEN, OXYGEN/ ELECTRIC, EFFICIENCY, POLLUTIO
10067 CHEMICAL, REFINING, UTILITY, ELECTRIC, RESEARCH, FOSSIL, FU
<table>
<thead>
<tr>
<th>KEYWORD INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 'K'</td>
</tr>
<tr>
<td>43600</td>
</tr>
<tr>
<td>43608</td>
</tr>
<tr>
<td>10050</td>
</tr>
<tr>
<td>10053</td>
</tr>
<tr>
<td>20511</td>
</tr>
<tr>
<td>34823</td>
</tr>
<tr>
<td>10078</td>
</tr>
<tr>
<td>20010</td>
</tr>
<tr>
<td>10052</td>
</tr>
<tr>
<td>10048</td>
</tr>
<tr>
<td>34039</td>
</tr>
<tr>
<td>23412</td>
</tr>
<tr>
<td>23500</td>
</tr>
<tr>
<td>34607</td>
</tr>
<tr>
<td>34641</td>
</tr>
<tr>
<td>34630</td>
</tr>
<tr>
<td>34628</td>
</tr>
<tr>
<td>34205</td>
</tr>
<tr>
<td>34036</td>
</tr>
<tr>
<td>34623</td>
</tr>
<tr>
<td>34008</td>
</tr>
<tr>
<td>34611</td>
</tr>
<tr>
<td>34616</td>
</tr>
<tr>
<td>34104</td>
</tr>
<tr>
<td>34603</td>
</tr>
<tr>
<td>34011</td>
</tr>
<tr>
<td>34236</td>
</tr>
<tr>
<td>34617</td>
</tr>
<tr>
<td>34609</td>
</tr>
<tr>
<td>34612</td>
</tr>
<tr>
<td>34259</td>
</tr>
<tr>
<td>34611</td>
</tr>
<tr>
<td>34017</td>
</tr>
<tr>
<td>34000</td>
</tr>
<tr>
<td>34034</td>
</tr>
<tr>
<td>34208</td>
</tr>
<tr>
<td>34024</td>
</tr>
<tr>
<td>34635</td>
</tr>
<tr>
<td>34601</td>
</tr>
<tr>
<td>34618</td>
</tr>
<tr>
<td>34629</td>
</tr>
<tr>
<td>34261</td>
</tr>
<tr>
<td>34257</td>
</tr>
<tr>
<td>34246</td>
</tr>
<tr>
<td>34626</td>
</tr>
<tr>
<td>34624</td>
</tr>
<tr>
<td>34606</td>
</tr>
<tr>
<td>34638</td>
</tr>
<tr>
<td>34218</td>
</tr>
<tr>
<td>34603</td>
</tr>
<tr>
<td>34231</td>
</tr>
<tr>
<td>34633</td>
</tr>
<tr>
<td>34217</td>
</tr>
<tr>
<td>Keyword</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>FUEL CELL, TEMPERATURE</td>
</tr>
<tr>
<td>ELECTRODE</td>
</tr>
<tr>
<td>FUEL CELL, CARBON</td>
</tr>
<tr>
<td>ELECTRODE</td>
</tr>
<tr>
<td>CATHODE, CATALYST</td>
</tr>
<tr>
<td>ELECTRODE</td>
</tr>
<tr>
<td>ALKALINE</td>
</tr>
<tr>
<td>ELECTRODE</td>
</tr>
<tr>
<td>CATALYST, HYDROPHOBIC</td>
</tr>
<tr>
<td>ELECTRODE</td>
</tr>
<tr>
<td>THERMODYNAMIC, GALVANIC</td>
</tr>
<tr>
<td>ELECTRODE</td>
</tr>
<tr>
<td>ELECTROLYSIS, MATRIX, DESIGN</td>
</tr>
<tr>
<td>ELECTROLYSIS, ALKALINE</td>
</tr>
<tr>
<td>ELECTROLYSIS, APPARATUS</td>
</tr>
<tr>
<td>ELECTROLYSIS, APPARATUS, GAS</td>
</tr>
<tr>
<td>ELECTROLYSIS, APPARATUS</td>
</tr>
<tr>
<td>ELECTROLYSIS, BACTERIA, OXGEN</td>
</tr>
<tr>
<td>ELECTROLYSIS, CONTROL</td>
</tr>
<tr>
<td>ELECTROLYSIS, COST, STEAM REF</td>
</tr>
<tr>
<td>ELECTROLYSIS, DECOMPOSITION, C</td>
</tr>
<tr>
<td>ELECTROLYSIS, DESIGN, COST</td>
</tr>
<tr>
<td>ELECTROLYSIS, ELECTRICITY</td>
</tr>
<tr>
<td>ELECTROLYSIS, ENERGY, FUEL, USE, SAFETY, ELECTROLYSIS, ENVIRONMENT, OXYGEN</td>
</tr>
<tr>
<td>ELECTROLYSIS, FREE ENERGY, ENT</td>
</tr>
<tr>
<td>ELECTROLOGY, FUEL CELL</td>
</tr>
<tr>
<td>ELECTROLOGY, FUEL, VEHICLE OX</td>
</tr>
<tr>
<td>ELECTROLOGY, HEAT, AMMONIA, C</td>
</tr>
<tr>
<td>ELECTROLOGY, HYDROGENATION, F</td>
</tr>
<tr>
<td>ELECTROLOGY, HYDROGEN, OXYGEN</td>
</tr>
<tr>
<td>ELECTROLOGY, NUCLEAR, CURRENT</td>
</tr>
<tr>
<td>ELECTROLOGY, NITROGEN, FERTILIZER, HYDROGEN</td>
</tr>
<tr>
<td>ELECTROLOGY, OXYGEN, PRODUCTION</td>
</tr>
<tr>
<td>ELECTROLOGY, OXYGEN, PRESSURE</td>
</tr>
<tr>
<td>ELECTROLOGY, OXYGEN, POWER, P</td>
</tr>
<tr>
<td>ELECTROLOGY, OXYGEN, STORAGE</td>
</tr>
<tr>
<td>ELECTROLOGY, POLLUTION, FUEL</td>
</tr>
<tr>
<td>ELECTROLOGY, POLYMER</td>
</tr>
<tr>
<td>ELECTROLOGY, POLYMER, FUEL, E</td>
</tr>
<tr>
<td>ELECTROLOGY, PRESSURE</td>
</tr>
<tr>
<td>ELECTROLOGY, PRODUCTION, PERF</td>
</tr>
<tr>
<td>ELECTROLOGY, PRODUCTION</td>
</tr>
<tr>
<td>ELECTROLOGY, SOLAR, ENERGY</td>
</tr>
<tr>
<td>ELECTROLOGY, SPACECRAFT, OXYG</td>
</tr>
<tr>
<td>ELECTROLOGY, SPACECRAFT, DESI</td>
</tr>
<tr>
<td>ELECTROLOGY, STUART CELL</td>
</tr>
<tr>
<td>ELECTROLOGY, SYNTHETIC, AMMON</td>
</tr>
<tr>
<td>ELECTROLOGY, THERMOCHEMICAL</td>
</tr>
<tr>
<td>ELECTROLOGY, TRANSPORT, EQUIP</td>
</tr>
<tr>
<td>ELECTROLOGY, WATER, STATIC</td>
</tr>
<tr>
<td>ELECTROLOGY, WATER, MODULE</td>
</tr>
<tr>
<td>ELECTROLYSIS, HYDROGEN</td>
</tr>
</tbody>
</table>
SECTION 'K'

10025 L, ECONOMY, COAL, CONVERSION, ELECTROLYSIS# HYDROGEN, FUEL
10032 , ENVIRONMENT, URBAN, ENERGY, ELECTROLYSIS# HYDROGEN, FUEL
10076 ROL, HYDROGEN, FUEL, NUCLEAR, ELECTROLYSIS# POLLUTION, CONT
23417 SSURE, TEMPERATURE, MEMBRANE, ELECTROLYSIS# PALLADIUM, PRE
10026 RGY, FUEL, FUEL CELLS, OXYGEN ELECTROLYSIS# N, NUCLEAR, ENE
10004 RODUCTION, TRANSMISSION, USE, ELECTROLYSIS# OXY, STORAGE, P
20503 RGEN, OXYGEN, WATER, AMMONIA, ELECTROLYSIS# REDUCTION, HYDR
10003 L, STORAGE, TRANSMISSION, USE, ELECTROLYSIS# SY, ECONOMY, FUE
34833 # ELECTROLYTE, AIR, STEAM, ANODE
34030 DE, APPLICATION# ELECTROLYTE, CATALYST, ELECTRO
34847 G, CATALYST# ELECTROLYTE, CELL, ACID, ALKAL
20020 INE# FUEL CELL, ELECTROLYTE, INTERFACE#
34845 STIC# ELECTROLYTE, ION-EXCHANGE, PLA
20508 ELECTROLYTE, NICKEL, MATRIX#
34020 SOLID-ELECTROLYTE, POWER#
34840 ELECTROLYTE, PRESSURE#
34824 # ELECTROLYTE, REFORMER, BATTERY
34035 ELECTROLYTE, SYSTEM#
34034 APPLICATION, ELECTRODE, SOLID-ELECTROLYTE, TEMPERATURE#
34834 FUEL CELL, ELECTROLYTE, TEMPERATURE#
34816 REACTION, ENERGY, ELECTROLYTE#
34839 WATER, REFORMING, CATALYST, ELECTROLYTE#
34812 POWER, ELECTROLYTE#
34103 WEIGHT, RELIABILITY, ELECTROLYTE#
34104 ELECTRODE, ELECTROLYTE#
34202 FUEL CELL, ELECTROLYTE#
34216 FUEL CELL, ELECTROLYTE#
34252 FUEL CELL, ELECTROLYTE#
34005 MEMBRANE, ELECTROLYTE#
23418 UCTION, DEUTERIUM/ DIFFUSION, ELECTROLYTIC, EFFICIENCY, PROD
34039 TROCATALYSIS, ENE/ FUEL CELL, ELECTROLYZER, CONVERSION, ELEC
20501 , COST, AMMONIA# ELECTROLYZER, DESIGN, HYDROGEN
34814 ELECTROLYZER, NICKEL#
52034 RENGTCH, SUSCEPTIBILITY# EMBRITTLEMENT, ALLOYS, HIGH ST
52014 INDEX# EMBRITTLEMENT, BIBLIOGRAPHY, I
52052 K, STRESS# STAINLESS, EMBRITTLEMENT, CORROSION, CRAC
52016 TRENCH, STRESS, CORROSION# EMBRITTLEMENT, CRACK, STEEL, S
52058 # EMBRITTLEMENT, CRACK, STRENGTH
52017 # EMBRITTLEMENT, DETECTION, TEST
52048 LOAD, EMBRITTLEMENT, DIFFUSION#
52037 RENGTCH, STEEL, STAINLESS, EMBRITTLEMENT, DISLOCATION, MA
52035 ACTION, REVERSIBLE# EMBRITTLEMENT, ENVIRONMENT, RE
52029 INCONEL 718, ALUMINUM 2219, EMBRITTLEMENT, HIGH PRESSURE,
52000 NICKEL, BEHAVIOR, MECHANICAL/ EMBRITTLEMENT, INTERGRANULAR,
52041 N# EMBRITTLEMENT, IRON, PERMEATIO
52013 LS, STRESS, DIFFUSION# EMBRITTLEMENT, MECHANISM, STEE
52032 # EMBRITTLEMENT, METAL, MECHANIS
52009 TY# PERMEATION, EMBRITTLEMENT, METAL, SOLUBILI
52002 IR, PURITY# EMBRITTLEMENT, METAL, CRACK, A
52011 US, STRUCTURE# EMBRITTLEMENT, METAL, NONFERRO
52024 , MECHANICAL# EMBRITTLEMENT, PRESSURE, STEEL
52025 METAL, ALLOY# EMBRITTLEMENT, PRESSURE, GAS,
<table>
<thead>
<tr>
<th>Section</th>
<th>Keyword Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>10019</td>
<td>HICLE, OXY, HYDROGEN, ECONOMY, ENERGY, ELECTROLYSIS, FUEL, VE</td>
</tr>
<tr>
<td>10032</td>
<td>EN, FUEL, ENVIRONMENT, URBAN, ENERGY, ELECTROLYSIS, HYDROGEN</td>
</tr>
<tr>
<td>10037</td>
<td>DROGEN, ECONOMY, ENVIRONMENT, ENERGY, ELECTROLYSIS, POLLUTION</td>
</tr>
<tr>
<td>34816</td>
<td>REACTION, ENERGY, ELECTROLYTE</td>
</tr>
<tr>
<td>20512</td>
<td>PRODUCTION, ELECTROLYSIS, FREE ENERGY, ENTROPY, THERMAL EFFIC</td>
</tr>
<tr>
<td>10059</td>
<td>LEGAL, HYDROGEN, ENERGY, ENVIRONMENT, SOCIETY</td>
</tr>
<tr>
<td>10008</td>
<td>USE, HYDROGEN, ENERGY, FUEL, ECONOMY, CARRIER</td>
</tr>
<tr>
<td>10004</td>
<td>PRODUCTION, TRAN, HYDROGEN, ENERGY, FUEL, ECONOMY, STORAGE</td>
</tr>
<tr>
<td>10030</td>
<td>LEAR, ECOLOGY, HYDROGEN, ENERGY, FUEL, ENVIRONMENT, NUC</td>
</tr>
<tr>
<td>10026</td>
<td>EN ELECTR, HYDROGEN, NUCLEAR, ENERGY, FUEL, FUEL CELLS, OXYG</td>
</tr>
<tr>
<td>10092</td>
<td>SSION, US, HYDROGEN, ECONOMY, ENERGY, FUEL, STORAGE, TRANSMI</td>
</tr>
<tr>
<td>10005</td>
<td>CTROLYSIS, ENVIROM, HYDROGEN, ENERGY, FUEL, USE, SAFETY, ELE</td>
</tr>
<tr>
<td>10042</td>
<td>CATION, USE, PRODU, HYDROGEN, ENERGY, FUTURE, NUCLEAR, APPLI</td>
</tr>
<tr>
<td>10041</td>
<td>YDROGEN, FUEL, FOSSIL, WATER, ENERGY, FUTURE, POLLUTION, ENV</td>
</tr>
<tr>
<td>10065</td>
<td>GENIC, ENERGY, HYDROGEN, LIQUID, CRYO</td>
</tr>
<tr>
<td>32004</td>
<td>OLLUTION, EMISION, ENERGY, INTERNAL-COMBUSTION, P</td>
</tr>
<tr>
<td>10036</td>
<td>HYDROGEN, ENERGY, MARKET, ENVIRONMENT</td>
</tr>
<tr>
<td>10052</td>
<td>ORAGE, TRANSMISSIO, HYDROGEN, ENERGY, MARKET, FUEL, COST, ST</td>
</tr>
<tr>
<td>10040</td>
<td>DIATE, HYDROGEN, ENERGY, MARKET, STUDY, INTERME</td>
</tr>
<tr>
<td>23207</td>
<td>NISM, ANAEROBIC, ENERGY, METABOLISM, MICRO-ORGA</td>
</tr>
<tr>
<td>10034</td>
<td>GEN, SYNTHETIC, FUEL, FUTURE, ENERGY, NUCLEAR, CARRIER ECONO</td>
</tr>
<tr>
<td>10035</td>
<td>HYDROGEN, ENERGY, NUCLEAR, FOOD, ECOLOGY</td>
</tr>
<tr>
<td>10057</td>
<td>DR, DECOMPOSITION, HEAT, GAS, ENERGY, NUCLEAR, OXYGEN, REACT</td>
</tr>
<tr>
<td>10049</td>
<td>OSITION, HYDROGEN, ENERGY, NUCLEAR, WATER, DECOMP</td>
</tr>
<tr>
<td>10083</td>
<td>WATER, THERMAL, PRODUCTION, ENERGY, PLASTICS, HYDROGEN</td>
</tr>
<tr>
<td>10062</td>
<td>HYDROGEN, FUEL, ENERGY, POLICY</td>
</tr>
<tr>
<td>32016</td>
<td>AUTOMOBILE, ENERGY, POLLUTION</td>
</tr>
<tr>
<td>21011</td>
<td>WATER, DECOMPOSITION, CYCLE, ENERGY, PROCESS, FUEL</td>
</tr>
<tr>
<td>34100</td>
<td>FICIENCY, CONVE/ UTILIZATION, ENERGY, PROCESS, GENERATOR, EF</td>
</tr>
<tr>
<td>20504</td>
<td>RANSMISSION, PERFORMANCE, CO, ENERGY, PRODUCTION, STORAGE, T</td>
</tr>
<tr>
<td>23600</td>
<td>PHOTODECOMPOSITION, ENERGY, RADIATION, PRESSURE</td>
</tr>
<tr>
<td>21015</td>
<td>SPLITTING, CYCLE, PROCESS, T, ENERGY, REACTOR, HEAT, WATER</td>
</tr>
<tr>
<td>10089</td>
<td>ION, RADIATION, EFFICIENCY, ENERGY, SOLAR, WATER, DECOMPOS</td>
</tr>
<tr>
<td>10078</td>
<td>SE, GENERATION, SUPPLY, DEMAND, ENERGY, SOURCE, ELECTRICITY, U</td>
</tr>
<tr>
<td>10085</td>
<td>CHNOLOGY, HYDROGEN, ECONOMY, ENERGY, SOURCE, PRODUCTION, TE</td>
</tr>
<tr>
<td>43098</td>
<td>HYDRIE, METAL, ENERGY, STORAGE, FUEL</td>
</tr>
<tr>
<td>10023</td>
<td>HYDROGEN, ENERGY, STORAGE, MEDIUM, SYSTE</td>
</tr>
<tr>
<td>43007</td>
<td>HYDRIE, METAL, ENERGY, STORAGE, STABILITY</td>
</tr>
<tr>
<td>10033</td>
<td>MENT, POLLUTION, P, HYDROGEN, ENERGY, SYNTHETIC FUEL, ASSESS</td>
</tr>
<tr>
<td>10031</td>
<td>M, SAFETY, CRYOGEN, HYDROGEN, ENERGY, SYNTHETIC, FUEL, SYSTE</td>
</tr>
<tr>
<td>10043</td>
<td>EN, SYNTHETIC, FUEL, ECOLOGY, ENERGY, SYSTEM, STUDY, COST, P</td>
</tr>
<tr>
<td>10000</td>
<td>USE, HYDROGEN, FUEL, ENERGY, TRANSMISSION, STORAGE</td>
</tr>
<tr>
<td>10079</td>
<td>LIQUID, ECONOMICS, CRYOGEN, ENERGY, TRANSMISSION, STORAGE</td>
</tr>
<tr>
<td>10006</td>
<td>HYDROGEN, PRODUCTION, FUEL, ENERGY, TRANSMISSION, USE, SAF</td>
</tr>
<tr>
<td>20510</td>
<td>ELECTROLYSIS, POLYMER, FUEL, ENERGY, TRANSMISSION, ENERGY S</td>
</tr>
<tr>
<td>10020</td>
<td>SYNTHETIC, HYDROGEN, ENERGY, USE, CRYOGENIC, FUEL</td>
</tr>
<tr>
<td>21003</td>
<td>SIS, DECOMPOSITION, CHEMICAL, ENERGY, USE, THERMAL, ELECTROLY</td>
</tr>
<tr>
<td>10038</td>
<td>HYDROGEN, ENERGY, VEHICLE, NUCLEAR</td>
</tr>
<tr>
<td>23603</td>
<td>DECOMPOSITION, RADIATION, ENERGY, VOLTAGE, ANODE</td>
</tr>
<tr>
<td>30042</td>
<td>OXYGEN, ENERGY</td>
</tr>
<tr>
<td>31004</td>
<td>SUPERSONIC, OPTIMUM, STUDY, ENERGY</td>
</tr>
<tr>
<td>34001</td>
<td>FUEL CELL, ENERGY</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

10081 METHANOL, ECONOMY, ENGINE, FUEL, ENERGY
10073 FUEL, SYNTHETIC, WATER, ENERGY
10053 ELECTRICITY, ENVIRONMENT, ENERGY
10056 HYDROGEN, ECONOMY, ENERGY
10014 HYDROGEN, ECONOMY, ENERGY
10015 HYDROGEN, ENERGY
10017 HYDROGEN, ENERGY
34828 METHANOL, CATALYST, ENERGY
34841 FUEL CELL, SPACE, ENERGY
23604 REDUCTION, OXYGEN, OXIDATION, ENERGY
10087 ELECTROLYZIS, SOLAR, ENERGY, POLLUTION, POWER, FUEL
34039 CONVERSION, ELECTROCATALYSIS, ENERGY, CELL, ELECTROLYZER
22109 OXIDATION, HYDROCARBONS, COAL, ENERGY, REFORMING, PARTIAL OXIDATION
43000 ION, PRESSURE, TEMPERATURE, ENERGY, ISSOCIATION, DECOMPOSITION
22000 AQUEOUS, METHANOL, SYNTHESIS GAS, ENERGY, NITROGEN, GASIFICATION, METHANOL
32007 ENGINE, COMBUSTION
32013 ENGINE, CONVERSION
30046 ROCKET, ENGINE, CRYOGENIC
30040 ENGINE, DESIGN
52038 GAS, PRESSURE, ENGINE, EMBRITTLEMENT
32021 INJECTION, INTERNAL COMBUSTION, ENGINE, EMISSION, FUEL, NITROGEN, INTERNAL COMBUSTION ENGINE
30030 ROCKET, ENGINE, FUEL
30048 ROCKET, ENGINE, PERFORMANCE
10074 FUEL, INTERNAL-COMBUSTION, ENGINE, POLLUTION, HYDROCARBON
10054 LEAR, STORAGE, SAFETY, FUEL, ENGINE, POLLUTION, OXYGEN, NUCLEAR
30073 ENGINE, SPACE, POWER
30000 LIQUID, ENGINE, SPACE
43011 HYDRIDE, METAL, FUEL, ENGINE, STORAGE
30023 ENGINE, THRUST
30024 ENGINE, THRUST
30075 ROCKET, LIQUID, HYDROGEN, ENGINE
30061 PROPULSION, ENGINE
30057 REVIEW, ROCKET, ENGINE
30058 THRUST, ROCKET, ENGINE
30055 DESIGN, ENGINE
30051 TEST, FLOW, ENGINE
30025 DESIGN, ENGINE
30028 INJECTION, ROCKET, ENGINE
32009 E, IMPACT, ECONOMIC, HYDRIDE, ENGINE
30067 DESIGN, ROCKET, ENGINE
30047 DESIGN, ROCKET, ENGINE
30060 THRUST, LOAD, ENGINE
30063 GENERATOR, ENGINE
30011 SPACE, ENGINE
30014 SHUTTLE, SPACE, ENGINE
30015 SPACE, SHUTTLE, ENGINE
43010 TITANIUM, HYDRIDE, STORAGE, ENGINE
32022 HISTORY, ENGINE
32024 AUTOMOBILE, POLLUTION, INJECTION ENGINE
32023 PERFORMANCE, NITRIC OXIDE, ENGINE
40008 DENSITY, DEUTERIUM, PROPERTY, ENTHALPY, ENTROPY, HYDROGEN, ENGINE
KEYWORD INDEX

SECTION 'K'

40008 EUTERIUM, PROPERTY, ENTHALPY, ENTROPY, HYDROGEN, ELECTRICAL
20512 N, ELECTROLYSIS, FREE ENERGY, ENTROPY, THERMAL EFFICIENCY
32017 ION, ENVIRONMENT, AUTOMOBILE, EMISSION, ELECTRICITY
10037 SIS, POLLUTION, HYDROGEN, ECONOMY, ELECTRONIC, ENVIRONMENT, ENERGY, ELECTROLYSIS
10036 HYDROGEN, ENERGY, MARKET, ENVIRONMENT
32000 N, COST, EMISSION, POLLUTION, ENVIRONMENT, MODIFICATION
32002 HYDROGEN, EMISSION, POLLUTION, ENVIRONMENT, SAFETY, STORAGE
10014 1, ENERGY, FUTURE, POLLUTION, ENVIRONMENT, N, FOSSIL, WATER
10005 L, USE, SAFETY, ELECTROLYSIS, ENVIRONMENT, GEN, ENERGY, FUEL
10045 L, TRANSPORTATION, POLLUTION, ENVIRONMENT, HYDROCARBON, FUEL
10006 Y, TRANSMISSION, USE, SAFETY, ENVIRONMENT, ION, FUEL, ENERGY
40204 STATE, EQUATION, PHASE
33046 VELOCITY, EQUATION
43004 PRESSURE, THERMODYNAMIC, TEMPERATURE, EQUILIBRIUM, DISSOCIATION
22625 HYDROCARBON, HEAT, REACTOR, EQUILIBRIUM, METHANE, TEMPERATURE
20007 GEN, ELECTROLYSIS, TRANSPORT, EQUIPMENT, PRODUCTION, HYDROCARBON
23200 FUEL, EFFICIENCY, GROWTH, CONVERSION, EUTROPHICATION
40205 TWO-PHASE, EVAPORATION, FLOW
34804 ION EXCHANGE, HYBRID, HYDROGEN
34801 ELECTROLYTE, ION-EXCHANGE, PLASTIC
34025 FUEL CELL, ION EXCHANGE
40104 LIQUEFACTION, HEAT EXCHANGER, NITROGEN
40101 LIQUEFACTION, COST, HEAT EXCHANGER
33009 CHAMBER, VENT, EXHAUST, NUMERICAL SOLUTION
33031 ROCKET, EXHAUST
32015 ION, FOSSIL, FUEL, POLLUTION, EXHAUST, INTERNAL COMBUSTION
40103 LIQUEFACTION, HELIUM, EXPANSION, COMPRESSION
33069 RATE, EXPANSION, REACTION
40106 LIQUEFACTION, EXPANSION
51014 SAFETY, EXPLOSION, LIQUID, CRITERIA
51003 DIFFUSION
51004 EXPLOSION, LIMIT, TEMPERATURE
51010 ON, SUPPRESSION
51012 REACTION, FLAMMABILITY, EXPLOSION, SURVEY, IGNITION, REACTION
51013 EXPLOSION, TANK, VENT
51006 RE-REACTION
51002 DRAGE, HANDLING, LIQUID, GAS, EXPLOSION, SAFETY, STI
10036 ROGEN, STORAGE, TRANSMISSION
40419 EXPLOSION, LIQUID, TEST
52042 L, IRON, EXTRACTION, MODEL, MATHEMATICA
23421 IUM, TEMPERATURE, CONDENSATION, EXTRACTION, SYNTHESIS GAS, HELIUM
34615 CATALYST, FABRICATION
34620 POROSITY, FABRICATION
52033 EMBRITTLEMENT, SPACECRAFT, FAILURE, PREVENTION, METAL
42021 S, PRESSURE, VESSEL, STORAGE, FAILURE
22192 GAS, FEED, PROCESS

571
SECTION 'K'

20014 SYNTHETIC, AMMONIA, NITROGEN FERTILIZER, EN, ELECTROLYSIS, FEUL CELL, HYDROCARBON, REFORMING,
20015 ELECTROLYSIS, HYDROGENATION, FERTILIZERS, METAL SEMICONDUCTOR,
22158 ING# FILM, CATALYSIS, ADSORPTION, DYES,
23420 PURIFICATION, MEMBRANE, METAL ELECTROLYSIS, HYDROGENATION, FERTILIZERS, METAL SEMICONDUCTOR,
50011 SAFETY, LIQUID, FIRE, ASPHYXIATION, DYES,
50018 SAFETY, LEAK, FIRE, DETECTION, REVIEW,
51008 FLASH, FIRE, IGNITION, NONMETALLIC,
51011 SAFETY, FIRE, PROTECTION,
50009 LIQUID, SAFETY, FIRE,
50017 SAFETY, PRESSURE, RUPTURE, FIRE,
10016 ENERGY, CRISIS, SOLAR, COAL, FISSION, HYDROGEN, STORAGE, TRAP.
51012 IGNITION, REACTION, FLAMMABILITY, EXPLOSION, SURVEY,
51001 EN, PRESSURE, FLAMMABILITY, LIMIT, AIR, OXYGEN,
51005 TY, PRESSURE, FLARE, FLOW, INSTABILITY, SAFE,
50007 FLARE, VENT, SAFETY,
51008 LIQUID, FLARE, FIRE, IGNITION, NONMETALLIC,
40308 CALIBRATION, DESIGN,
33058 SUPERCORNIC, FLOW, COMBUSTION,
40206 TEMPERATURE, BOILING, FLOW, CRITICAL POINT, PRESSURE,
40200 DENSITY, TWO-PHASE, QUALITY, FLOW, CRYOGENIC,
40300 SLUSH, TEST, FLOW, ENGINE,
51005 FLARE, FLOW, INSTABILITY, SAFETY,
40303 MEASUREMENT,
41001 LIQUID, SLUSH, FLOW, QUALITY, GENERATION,
30038 PRESSURE, FLOW, ROCKET,
40500 FLOW, TWO-PHASE, BOILING,
40512 PUMP, FLOW, TWO-PHASE, DESIGN,
40209 TRANSFER, STORAGE, FLOW, HEAT TRANSFER,
40205 TWO-PHASE, EVAPORATION, FLOW,
33031 TRANSPORT, CONVECTION, FLOW,
33017 OXYGEN, FLOW,
41004 MENTATION, TRANSFER, STORAGE, FLOW, SLUSH, INSTRUMENTATION,
40212 ERTY, PARAHYDROGEN, COMPUTER, FLUID, PROP,
40208 YNAMICS, TRANSPORT, PROPERTY, FLUID, THERMODYNAMICS,
22002 INDUSTRIAL, GAS, CHARCOAL, FLOW, FLUIDIZED BED, COAL, HYDROGEN,
22005 R, POWER, FLUIDIZED, COAL, CATALYST, CHARCOAL,
22004 ERATION, FLUIDIZED, HYDROGEN, GENERATION,
22172 PYROLYSIS, KINETICS, FLUIDIZED, PROPELLENT, FUEL, FOAM, POLYURETHANE, SPACECRAFT,
30074 ET, LIQUID, HYDROGEN, OXYGEN, FLUORIDE, POLYURETHANE, SPACECRAFT,
40407 HYDROGEN, ENERGY, NUCLEAR, FOOD, ECOLOGY,
10035 HYDROGEN, ENERGY, NUCLEAR, FOSSIL FUELS, ECONOMICS,
10028 HYDROGEN, FOSSIL FUELS, BREEDER, REACTOR,
10084 SOLAR, ENERGY, HYDROGEN, FOSSIL, FUEL, BREEDER, REACTOR,
22011 GASEIFICATION, FOSSIL, FUEL, MICROWAVE,
32015 INTERNAL COMBUSTION, FOSSIL, FUEL, POLLUTION, EXHAUST,
10067 UTILITY, ELECTRIC, RESEARCH, FOSSIL, FUEL, ICAI, REFINING,
10048 OGEN, STUDY, ENERGY, ECOLOGY, FOSSIL, STORAGE, ALTERNATIVE,
10041 POLLUTION, HYDROGEN, FUEL, FOSSIL, WATER, ENERGY, FUTURE,
23419 TROGEN, PRESSURE, SEPARATION, FRACTIONATION,
52051 EMBRITTLEMENT, STEEL, FRACTURE, MECHANISM,
52028 IRON, CRACK, FRACTURE,
20512 GEN PRODUCTION, ELECTROLYSIS, FREE ENERGY, ENTROPY, THERMAL
SECTION 'K'

<table>
<thead>
<tr>
<th>Keyword Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10066 HYDROGEN, GASOLINE, POLLUTION-FREE, AUTOMOBILE</td>
<td>Steel, friction, internal, damping, T</td>
</tr>
<tr>
<td>52026 TEMPERATURE</td>
<td>Fuel cell, acid, hydrocarbon,</td>
</tr>
<tr>
<td>34244 OXIDATION</td>
<td>Fuel cell, air, fuel</td>
</tr>
<tr>
<td>34248</td>
<td>Fuel cell, air, hydrocarbon</td>
</tr>
<tr>
<td>34613</td>
<td>Fuel cell, anode, operation</td>
</tr>
<tr>
<td>34018</td>
<td>Fuel cell, battery</td>
</tr>
<tr>
<td>23205 MICRO-ORGANISM</td>
<td>Fuel cell, battery</td>
</tr>
<tr>
<td>34220</td>
<td>Fuel cell, biochemical</td>
</tr>
<tr>
<td>34606</td>
<td>Fuel cell, carbon, electrode</td>
</tr>
<tr>
<td>34648</td>
<td>Fuel cell, carbon, electrode</td>
</tr>
<tr>
<td>34242</td>
<td>Fuel cell, carbonate</td>
</tr>
<tr>
<td>34253</td>
<td>Fuel cell, carbonate</td>
</tr>
<tr>
<td>22175</td>
<td>Hydrocarbon, fuel cell, carbonate</td>
</tr>
<tr>
<td>34642</td>
<td>Fuel cell, catalyst, anode</td>
</tr>
<tr>
<td>3425 AS, ACID</td>
<td>Fuel cell, catalyst, natural gas</td>
</tr>
<tr>
<td>23019 HYDROGEN, HYDROXIDE, OXYGEN, FUEL CELL</td>
<td>Catalyst</td>
</tr>
<tr>
<td>34800</td>
<td>Fuel cell, chlorine</td>
</tr>
<tr>
<td>22116 R, OXIDATION, CATALYST</td>
<td>Fuel cell, conversion, reformer</td>
</tr>
<tr>
<td>34016</td>
<td>Fuel cell, current density</td>
</tr>
<tr>
<td>34621 CONVERSION</td>
<td>Fuel cell, diffusion, energy</td>
</tr>
<tr>
<td>34209</td>
<td>Fuel cell, discharge, chlorine</td>
</tr>
<tr>
<td>34017</td>
<td>Fuel cell, electrode, reaction</td>
</tr>
<tr>
<td>34208 URE</td>
<td>Fuel cell, electrode, temperature</td>
</tr>
<tr>
<td>34257</td>
<td>Fuel cell, electrode</td>
</tr>
<tr>
<td>34635</td>
<td>Fuel cell, electrode, zirconia</td>
</tr>
<tr>
<td>34617</td>
<td>Fuel cell, electrode, module</td>
</tr>
<tr>
<td>34612</td>
<td>Fuel cell, electrode, paper</td>
</tr>
<tr>
<td>34633</td>
<td>Fuel cell, electrode</td>
</tr>
<tr>
<td>34252</td>
<td>Fuel cell, electrolyte</td>
</tr>
<tr>
<td>34202</td>
<td>Fuel cell, electrolyte</td>
</tr>
<tr>
<td>34216</td>
<td>Fuel cell, electrolyte</td>
</tr>
<tr>
<td>34039 RSION, ELECTROCATALYSIS, ENER</td>
<td>Fuel cell, electrolyzer, conversion</td>
</tr>
<tr>
<td>34834 ATURE</td>
<td>Fuel cell, electrolyte, temperature</td>
</tr>
<tr>
<td>34645 ACE</td>
<td>Fuel cell, electrolyte, intermediate</td>
</tr>
<tr>
<td>10087 ENERGY</td>
<td>Pollution, power, fuel cell, electrolysis, solar</td>
</tr>
<tr>
<td>34001</td>
<td>Fuel cell, energy</td>
</tr>
<tr>
<td>22602 ERSION, CATALYST, PRODUCTION</td>
<td>Fuel cell, gas, reformer, SOV</td>
</tr>
<tr>
<td>23014</td>
<td>Fuel cell, generator</td>
</tr>
<tr>
<td>3403</td>
<td>Fuel cell, hydride</td>
</tr>
<tr>
<td>22105 S</td>
<td>Fuel cell, hydrocarbon, process</td>
</tr>
<tr>
<td>22166</td>
<td>Fuel cell, hydrocarbon</td>
</tr>
<tr>
<td>34017</td>
<td>Fuel cell, hydrocarbon, air</td>
</tr>
<tr>
<td>34832</td>
<td>Fuel cell, hydrocarbon, air</td>
</tr>
<tr>
<td>34025</td>
<td>Fuel cell, ion exchange</td>
</tr>
<tr>
<td>34285 OBE</td>
<td>Fuel cell, ion, membrane, micron</td>
</tr>
<tr>
<td>34287 GEABLE</td>
<td>Fuel cell, lightweight, recharge</td>
</tr>
<tr>
<td>34835 ADSORPTION</td>
<td>Fuel cell, methanol, ammonia</td>
</tr>
<tr>
<td>23012</td>
<td>Fuel cell, methanol</td>
</tr>
<tr>
<td>23013</td>
<td>Fuel cell, methanol</td>
</tr>
<tr>
<td>34505</td>
<td>Fuel cell, moisture, removal</td>
</tr>
<tr>
<td>34245</td>
<td>Fuel cell, performance</td>
</tr>
<tr>
<td>32026 BATTERY</td>
<td>Automobile, fuel cell, performance, power</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

34627 FUEL CELL, PLATINUM, CATHODE
34640 FUEL CELL, PLATINUM, ANODE
34638 FUEL CELL, PLATINUM, ELECTRODE
34839 FUEL CELL, POLLUTION
34640 FUEL CELL, POLLUTION, BATTERY
34019 FUEL CELL, PRESSURE, PERFORM
34265 FUEL CELL, PRESSURE
22111 N2 POISONING HYDROCARBON
34231 NO2 FUEL CELL, PROCESS, METHANATIO
22103 NO2 FUEL CELL, PURIFICATION, ELECT
20018 FUEL CELL, REFORMER, CARBON MO
34239 FUEL CELL, REGENERATIVE
34240 FUEL CELL, REGENERATION
34237 FUEL CELL, REGENERATION
34012 FUEL CELL, REVIEW
34038 FUEL CELL, REVIEW
34844 FUEL CELL, SHUTTLE, POWER
34841 FUEL CELL, SPACE, ENERGY
34826 FUEL CELL, SPACECRAFT
34922 FUEL CELL, SPACECRAFT, DESIGN
34249 FUEL CELL, SPACECRAFT
22115 FUEL CELL, STEAM, REFORMING
22176 HYDROCARBON, FUEL CELL, STORAGE
34271 AFT FUEL CELL, TECHNOLOGY, SPACECR
34022 FUEL CELL, TECHNOLOGY
34026 FUEL CELL, TEMPERATURE
34203 FUEL CELL, TEMPERATURE, POWER
34242 ODE FUEL CELL, TEMPERATURE, ELECTR
34212 ODE FUEL CELL, TEMPERATURE, ELECTR
34203 FUEL CELL, TEMPERATURE
34624 ELECTRODE FUEL CELL, TEMPERATURE, CARBON
34843 FUEL CELL, TEST, CONTROL
34508 TATE ANALOG FUEL CELL, TRANSIENT, STEADY-S
34802 FUEL CELL, VEHICLE
34503 L FUEL CELL, WATER, HEAT, REMOVA
34511 E FUEL CELL, WATER, HEAT, BALANC
34500 FUEL CELL, WATER, HUMAN
34507 FUEL CELL, WATER, REMOVAL
34262 ELECTROLYSIS FUEL CELL
34805 HYDRAZINE, HYDROGEN, PEROXIDE, FUEL CELL
34107 PURGE FUEL CELL
34122 DESIGN FUEL CELL
34021 FUEL CELL
34101 PRESSURE, TEMPERATURE, FUEL CELL
34037 MODEL, FUEL CELL
22145 HYDROGEN, GENERATOR, FUEL CELL
22161 HYDROCARBON, FUEL CELL
22189 REFORMING, FUEL CELL
22141 PARTIAL OXIDATION, FUEL CELL
22131 STEAM, REFORMING, FUEL CELL

574
<table>
<thead>
<tr>
<th>KEYWORD INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 'K'</td>
</tr>
<tr>
<td>22122</td>
</tr>
<tr>
<td>22216</td>
</tr>
<tr>
<td>10024</td>
</tr>
<tr>
<td>22136</td>
</tr>
<tr>
<td>22149</td>
</tr>
<tr>
<td>10026</td>
</tr>
<tr>
<td>31006</td>
</tr>
<tr>
<td>10033</td>
</tr>
<tr>
<td>10044</td>
</tr>
<tr>
<td>10084</td>
</tr>
<tr>
<td>23400</td>
</tr>
<tr>
<td>10052</td>
</tr>
<tr>
<td>10077</td>
</tr>
<tr>
<td>10051</td>
</tr>
<tr>
<td>10043</td>
</tr>
<tr>
<td>10008</td>
</tr>
<tr>
<td>10025</td>
</tr>
<tr>
<td>10055</td>
</tr>
<tr>
<td>10004</td>
</tr>
<tr>
<td>10024</td>
</tr>
<tr>
<td>10058</td>
</tr>
<tr>
<td>10009</td>
</tr>
<tr>
<td>10062</td>
</tr>
<tr>
<td>10006</td>
</tr>
<tr>
<td>10009</td>
</tr>
<tr>
<td>20510</td>
</tr>
<tr>
<td>10081</td>
</tr>
<tr>
<td>10054</td>
</tr>
<tr>
<td>43011</td>
</tr>
<tr>
<td>10030</td>
</tr>
<tr>
<td>10032</td>
</tr>
<tr>
<td>10041</td>
</tr>
<tr>
<td>10026</td>
</tr>
<tr>
<td>10034</td>
</tr>
<tr>
<td>10032</td>
</tr>
<tr>
<td>10027</td>
</tr>
<tr>
<td>10063</td>
</tr>
<tr>
<td>10021</td>
</tr>
<tr>
<td>10039</td>
</tr>
<tr>
<td>31015</td>
</tr>
<tr>
<td>10074</td>
</tr>
<tr>
<td>40000</td>
</tr>
<tr>
<td>50006</td>
</tr>
<tr>
<td>22011</td>
</tr>
<tr>
<td>10076</td>
</tr>
<tr>
<td>21010</td>
</tr>
<tr>
<td>22606</td>
</tr>
<tr>
<td>32015</td>
</tr>
<tr>
<td>10070</td>
</tr>
<tr>
<td>22630</td>
</tr>
<tr>
<td>30022</td>
</tr>
<tr>
<td>23440</td>
</tr>
<tr>
<td>22148</td>
</tr>
</tbody>
</table>

575
KEYWORD INDEX

SECTION 'K'

<table>
<thead>
<tr>
<th>Code</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>10003</td>
<td>S/ HYDROGEN, ENERGY, ECONOMY, FUEL, STORAGE, TRANSMISSION, U</td>
</tr>
<tr>
<td>10002</td>
<td>S/ HYDROGEN, ECONOMY, ENERGY, FUEL, STORAGE, TRANSMISSION, U</td>
</tr>
<tr>
<td>10004</td>
<td>N/ HYDROGEN, FUEL, SYNTHETIC, TRANSPORTATION, U</td>
</tr>
<tr>
<td>10073</td>
<td>#</td>
</tr>
<tr>
<td>10020</td>
<td>OGEN, ENERGY, USE, CRYOGENIC, FUEL, SYNTHETIC, WATER, ENERGY</td>
</tr>
<tr>
<td>10031</td>
<td>HYDROGEN, ENERGY, SYNTHETIC, FUEL, SYSTEM, SAFETY, CRYOGENIC</td>
</tr>
<tr>
<td>31017</td>
<td>UTIL, FUTURE, PETROLEUM, PERF/ FUEL, TRANSPORT, AIRCRAFT, LIQ</td>
</tr>
<tr>
<td>10061</td>
<td>ENERATION, HYDROGEN, FUEL, TRANSPORTATION, POWER, G</td>
</tr>
<tr>
<td>10045</td>
<td>HYDROGEN, LIQUID, HYDROCARBON, FUEL, TRANSPORTATION, POLLUTION</td>
</tr>
<tr>
<td>10005</td>
<td>S, ENVIRON, HYDROGEN, ENERGY, FUEL, USE, SAFETY, ELECTROLYSIS</td>
</tr>
<tr>
<td>10019</td>
<td>CONOMY, ENERGY, ELECTROLYSIS, FUEL, VEHICLE OXYGEN, OGEN, E</td>
</tr>
<tr>
<td>23023</td>
<td>POWER, HYDROCARBON, FUEL, WATER, AMMONIA, METHANOL</td>
</tr>
<tr>
<td>10030</td>
<td>FUEL, WATER, STUDY, ENERGY, AN</td>
</tr>
<tr>
<td>10001</td>
<td>ALYSIS, ALTERNATIVE HYDROGEN, FUEL</td>
</tr>
<tr>
<td>10007</td>
<td>HYDROGEN, FUEL</td>
</tr>
<tr>
<td>22136</td>
<td>SYSTEM, FUEL CELLS, GAS, FUEL</td>
</tr>
<tr>
<td>22124</td>
<td>HYDROCRACK, COST, FUEL</td>
</tr>
<tr>
<td>31011</td>
<td>COST, AIRCRAFT, ECONOMIC, FUEL</td>
</tr>
<tr>
<td>30030</td>
<td>ROCKET, ENGINE, FUEL</td>
</tr>
<tr>
<td>30026</td>
<td>ROCKET, FUEL</td>
</tr>
<tr>
<td>43008</td>
<td>RIDE, METAL, ENERGY, STORAGE, FUEL, HYD</td>
</tr>
<tr>
<td>32025</td>
<td>AUTOMOBILE, RESEARCH, FUEL</td>
</tr>
<tr>
<td>34227</td>
<td>FUEL CELL, AIR, FUEL</td>
</tr>
<tr>
<td>21011</td>
<td>TION, CYCLE, ENERGY, PROCESS, FUEL, WATER, DECOMPOSITION</td>
</tr>
<tr>
<td>23401</td>
<td>PETROCHEMICAL, HYDROCARBON, FUEL, RECOVERY, REFINERY</td>
</tr>
<tr>
<td>23406</td>
<td>PETROCHEMICAL, HYDROCARBON, FUEL, RECOVERY, REFINERY</td>
</tr>
<tr>
<td>10067</td>
<td>ELECTRIC, RESEARCH, FOSSIL, FUEL, NAL, REFINING, UTILITY</td>
</tr>
<tr>
<td>30074</td>
<td>OXGEN, FLUORINE, PROPPELLANT, FUEL, /KET, LIQUID, HYDROGEN</td>
</tr>
<tr>
<td>32021</td>
<td>COMBUSTION, ENGINE, EMISSION, FUEL, /N, INJECTION, INTERNAL</td>
</tr>
<tr>
<td>10037</td>
<td>RGY, ELECTROLYSIS, POLLUTION, FUEL, FUTURE, NUCLEAR, APPLICATION</td>
</tr>
<tr>
<td>10028</td>
<td>HYDROGEN, FOSSIL, FUELS, ECONOMICS, SAFETY, FURNACE, TEMPERATURE, DESIGN</td>
</tr>
<tr>
<td>50002</td>
<td>E/ HYDROGEN, SYNTHETIC, FUEL, FUTURE, ENERGY, NUCLEAR, CARRIER</td>
</tr>
<tr>
<td>10034</td>
<td>AUTOMOBILE, FUEL, FUTURE, GASOLINE, POLLUTION</td>
</tr>
<tr>
<td>10042</td>
<td>USE, PRODUCTION HYDROGEN, ENERGY, FUTURE, NUCLEAR, APPLICATION</td>
</tr>
<tr>
<td>31017</td>
<td>TRANSPORT, AIRCRAFT, LIQUID, FUTURE, PETROLEUM, PERFORMANCE</td>
</tr>
<tr>
<td>10041</td>
<td>FUEL, FOSSIL, WATER, ENERGY, FUTURE, POLLUTION, ENVIRONMENT</td>
</tr>
<tr>
<td>10050</td>
<td>LOGY, ELECTRICITY, ANALYSIS, FUTURE, SYSTEM, ALTERNATIVE</td>
</tr>
<tr>
<td>10021</td>
<td>HYDROGEN, FUEL, FUTURE</td>
</tr>
<tr>
<td>10027</td>
<td>HYDROGEN, FUEL, FUTURE</td>
</tr>
<tr>
<td>10053</td>
<td>HYDROGEN, SYNTHETIC, FUEL, FUTURE</td>
</tr>
<tr>
<td>40000</td>
<td>HYDROGEN, FUEL, LIQUID, FUTURE</td>
</tr>
<tr>
<td>34009</td>
<td>THERMODYNAMIC, GALVANIC, ELECTRODE</td>
</tr>
<tr>
<td>31001</td>
<td>SUPERSONIC, GAS TURBINE, SPACE, SHUTTLE</td>
</tr>
<tr>
<td>31003</td>
<td>HEAT, TRANSFER, GAS TURBINE</td>
</tr>
<tr>
<td>34215</td>
<td>FUEL CELL, CATALYST, NATURAL GAS, ACID</td>
</tr>
<tr>
<td>22007</td>
<td>UCTION, COST, COAL, SYNTHESIS, GAS, AMMONIA, HYDROGEN, PROD</td>
</tr>
<tr>
<td>22002</td>
<td>COAL, HYDROGEN, INDUSTRIAL, GAS, CHARCOAL, STEAM, DECOMPOSITION</td>
</tr>
<tr>
<td>22614</td>
<td>ECONOMY, OXIDATION, WATER, GAS, COKE, PROCESS</td>
</tr>
<tr>
<td>42002</td>
<td>AL, GAS, DISTRIBUTION, PETROCHEMICAL</td>
</tr>
<tr>
<td>52056</td>
<td>PRESSURE, TEST</td>
</tr>
<tr>
<td>22000</td>
<td>METHANE, METHANOL, SYNTHESIS Gas, ENERGY, N, GASIFICATION</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

51002 Y, STORAGE, HANDLING, LIQUID, GAS, EXPLOSION# SAFETY
22192
22136 SYSTEM, FUEL CELLS, GAS, FUEL#
23421 ENSATI/EXTRACTION, SYNTHESIS GAS, HELIUM, TEMPERATURE, COND
22666 DROGEN, PRODUCTION, SYNTHESIS GAS, HYDROCARBON, FUEL, OIL#/ /
22149 IFCATION/ SYSTEM, FUEL CELLS, GAS, HYDROCARBONS, DESIGN, PUR
50008 SAFETY, CRYOGENIC, COMPRESSED, GAS, LIQUID#
52025 EMBRITTLEMENT, PRESSURE, GAS, METAL, ALLOY#
22152 ACTIVATOR# HYDROCARBON, GAS, METHANE, WATER, CATALYST,
22009 ODUCTION, CATALYST, SYNTHESIS GAS, METHANE# /L, HYDROGEN, PR
22643 IDATION, HYDROCARBON, NATURAL GAS, NAPTHA, CATALYST, HEAT# /
22619 PRODUCTION, PURITY, NATURAL GAS, NAPTHA, HYDROCARBONS#
22616 PURITY, NATURAL GAS, NAPTHA, PROCESS, PURITY#
22605 ON, SEPARATION, COST, NATURAL GAS, NAPTHA# /MONIA, PRODUCTI
30004 GAS, NUCLEAR, REACTOR#
30005 GAS, NUCLEAR, ROCKET#
42000 GAS, PIPE, DESIGN, SYSTEM#
22627 GAS, PLASMA, SYNTHESIS#
52038 LEMENT# GAS, PRESSURE, ENGINE, EMBRITT
42001 , FAILURE# GAS, PRESSURE, VESSEL, STORAGE
52019 BRITTLEMENT, STEEL, CYLINDER, GAS, PRESSURE# EM
22628 GAS, PROCESS, REFORMING#
22191 USE, GAS, PRODUCTION#
43002 IDE# GAS, PUMP, DECOMPOSITION, HYD
52018 , TEMPERATURE# GAS, REACTION, TITANIUM, ALLOY
22622 , HYDROGEN, CATALYST, NATURAL GAS, REFINERY# PRODUCTION
22125 GAS, REFINING#
22602 ALYST, PRODUCTION, FUEL CELLS, GAS, REFORMER# CONVERSION, CAT
42004 Y# POLLUTION, GAS, SYNTHESIS#
22123 GAS, SYNTHESIS#
22163 GAS, SYNTHESIS#
50015 GAS, SYSTEM, DESIGN, REVIEW#
22651 ECONOMICS, HYDROGEN, GAS, THERMAL, DECOMPOSITION#
22632 CATALYST, GAS#
22621 REFINING, GAS#
22600 COST, DESIGN, REFINING, GAS#
22648 CATALYST, GAS#
23427 RECOVERY, WASTE, GAS#
23407 SEPARATION, GAS#
22165 AMMONIA, SYNTHESIS, GAS#
22196 STEAM, CONVERSION, GAS#
22130 HYDROGEN, SYNTHESIS, GAS#
22132 STEAM, REFORMING, GAS#
20003 ELECTROLYSIS, APPARATUS, GAS#
52029 EMBRITTLEMENT, HIGH PRESSURE, GAS# /NEL 718, ALUMINUM 2219.
22010 GASIFICATION, COAL, CHAR#
10057 REACTOR, DECOMPOSITION, HEAT, GASIFICATION, COAL, POLLUTION,
22011 CROWN, GASIFICATION, FOSSIL, FUEL, MI
22148 GASIFICATION, FUEL, STEAM#
22006 TION, METHANE# COAL, GASIFICATION, HYDROGEN, PRODU
22009 L, SYNTHESIS GAS, REACTION, GASIFICATION, METHANE, METHANO
22001 REACTION, GASIFICATION, METHANE#

577
KEYWORD INDEX

SECTION 'K'

<table>
<thead>
<tr>
<th>Page Numbers</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>10066</td>
<td>MOBILE, HYDROGEN, GASOLINE, POLLUTION-FREE, AUTO</td>
</tr>
<tr>
<td>10082</td>
<td>AUTOMOBILE, FUEL, FUTURE, GASOLINE, POLLUTION</td>
</tr>
<tr>
<td>22168</td>
<td>STEAM, GASOLINE</td>
</tr>
<tr>
<td>33059</td>
<td>GENERATION, COMBUSTION</td>
</tr>
<tr>
<td>22143</td>
<td>VOLTAGE, TEMPER, PRODUCTION, GENERATION, SUPPLY, REFORMING</td>
</tr>
<tr>
<td>10078</td>
<td>CY, SOURCE, ELECTRICITY, USE, GENERATION, SUPPLY, DEMANDTRAN</td>
</tr>
<tr>
<td>10061</td>
<td>FUEL, TRANSPORTATION, POWER, GENERATION, HYDROGEN</td>
</tr>
<tr>
<td>22004</td>
<td>FLUIDIZED, COKE, HYDROGEN, GENERATION</td>
</tr>
<tr>
<td>41001</td>
<td>LIQUID, SLUSH, FLOW, QUALITY, GENERATION</td>
</tr>
<tr>
<td>34207</td>
<td>GENERATION</td>
</tr>
<tr>
<td>34211</td>
<td>MEMBRANE, GENERATION</td>
</tr>
<tr>
<td>34100</td>
<td>UTILIZATION, ENERGY, PROCESS, GENERATOR, EFFICIENCY, CONVERSION</td>
</tr>
<tr>
<td>30063</td>
<td>GENERATOR, ENGINE</td>
</tr>
<tr>
<td>22145</td>
<td>HYDROGEN, GENERATOR, FUEL CELL</td>
</tr>
<tr>
<td>23008</td>
<td>GENERATOR, HYDROGEN</td>
</tr>
<tr>
<td>22647</td>
<td>WATER, GENERATOR, HYDROCARBON</td>
</tr>
<tr>
<td>23024</td>
<td>GENERATOR, HYDROGEN</td>
</tr>
<tr>
<td>23206</td>
<td>HANE, AMMONIA, HYDROGEN, GENERATOR, MICRO-ORGANISM, MET</td>
</tr>
<tr>
<td>30010</td>
<td>GENERATOR, THERMIOMIC</td>
</tr>
<tr>
<td>23006</td>
<td>LIQUID, GENERATOR</td>
</tr>
<tr>
<td>23010</td>
<td>AMMONIA, GENERATOR</td>
</tr>
<tr>
<td>23017</td>
<td>ALUMINUM, GENERATOR</td>
</tr>
<tr>
<td>23016</td>
<td>ALUMINUM, GENERATOR</td>
</tr>
<tr>
<td>23014</td>
<td>FUEL CELL, GENERATOR</td>
</tr>
<tr>
<td>23200</td>
<td>EFFICIENCY, GROWTH, CONVERSION, EUTROPHAL</td>
</tr>
<tr>
<td>23201</td>
<td>BACTE, HYDROGEN, PRODUCTION, GROWTH, CULTURE, ELECTROLYSIS</td>
</tr>
<tr>
<td>21001</td>
<td>TER, CLOSED, REACTION, OXIDE, HALOGEN, DECOMPOSITION, WA</td>
</tr>
<tr>
<td>51002</td>
<td>CN#, SAFETY, STORAGE, HANDLING, LIQUID, GAS, EXPLOSI</td>
</tr>
<tr>
<td>50006</td>
<td>SPACECRAFT, FUEL, LIQUID, HANDLING, SAFETY</td>
</tr>
<tr>
<td>41010</td>
<td>SLUSH, PRODUCTION, HANDLING, TRANSFER</td>
</tr>
<tr>
<td>50005</td>
<td>STANDARD, COMMERCIAL, LIQUID, HANDLING, SAFETY</td>
</tr>
<tr>
<td>51007</td>
<td>SPACECRAFT, HAZARD, LEAK, DETECTION</td>
</tr>
<tr>
<td>40409</td>
<td>LIQUID, HAZARD</td>
</tr>
<tr>
<td>40104</td>
<td>LIQUEFACTION, HEAT EXCHANGER, NITROGEN</td>
</tr>
<tr>
<td>40101</td>
<td>LIQUEFACTION, COST, HEAT EXCHANGER</td>
</tr>
<tr>
<td>40502</td>
<td>LIQUID, PUMP, HEAT TRANSFER, BOILING</td>
</tr>
<tr>
<td>40102</td>
<td>LIQUEFACTION, HEAT TRANSFER, STORAGE, COST</td>
</tr>
<tr>
<td>40210</td>
<td>UBLIMATION</td>
</tr>
<tr>
<td>40209</td>
<td>OGENIC, FLOW</td>
</tr>
<tr>
<td>40207</td>
<td>N, CRYOGENIC, CRITICAL POINT, HEAT TRANSFER, CONVECTION</td>
</tr>
<tr>
<td>10070</td>
<td>TERRESTIAL, SPACE, MARINE, HEAT, ALGAE, EFFICIENCY, WASTE</td>
</tr>
<tr>
<td>23007</td>
<td>CARBON, REFORM, ELECTROLYSIS, HEAT, AMMONIA, CRACKING, HYDRO</td>
</tr>
<tr>
<td>34511</td>
<td>FUEL CELL, WATER, HEAT, BALANCE</td>
</tr>
<tr>
<td>10057</td>
<td>UGEN, REACTOR, DECOMPOSITION, HEAT, GASIFICATION, COAL, POLL</td>
</tr>
<tr>
<td>40503</td>
<td>PUMP, HEAT, LIQUID</td>
</tr>
<tr>
<td>21016</td>
<td>TING, TECHNOLOGY, EFFICIENCY, HEAT, PROCESS, WATER, SPLIT</td>
</tr>
<tr>
<td>22625</td>
<td>DECOMPOSITION, HYDROCARBON, HEAT, REACTOR, EQUILIBRIUM, ME</td>
</tr>
<tr>
<td>22639</td>
<td>NUCLEAR, HEAT, REFORMING</td>
</tr>
<tr>
<td>34504</td>
<td>E#, HEAT, REMOVAL, WATER, ENDURANC</td>
</tr>
<tr>
<td>34268</td>
<td>E#, HEAT, REMOVAL, WATER, ENDURANC</td>
</tr>
<tr>
<td>34506</td>
<td>HEAT, REMOVAL, WATER</td>
</tr>
<tr>
<td>34206</td>
<td>AEROSPACE, HEAT, REMOVAL, WATER</td>
</tr>
<tr>
<td>34503</td>
<td>FUEL CELL, WATER, HEAT, REMOVAL</td>
</tr>
</tbody>
</table>

578
<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33030</td>
<td>Heat, rocket, transfer</td>
</tr>
<tr>
<td>33006</td>
<td>Heat, temperature, emission</td>
</tr>
<tr>
<td>31008</td>
<td>Heat, transfer, gas turbine</td>
</tr>
<tr>
<td>33026</td>
<td>Rocket, heat, transfer</td>
</tr>
<tr>
<td>34255</td>
<td>Water, removal, heat, vibration</td>
</tr>
<tr>
<td>10042</td>
<td>Application, use, production</td>
</tr>
<tr>
<td>21014</td>
<td>Heat, water, decomposition</td>
</tr>
<tr>
<td>21015</td>
<td>Process, t/energy, reactor, heat, water, splitting, cycle</td>
</tr>
<tr>
<td>34815</td>
<td>Cryogenic, waste, heat, water</td>
</tr>
<tr>
<td>34820</td>
<td>Spacecraft, power reactor, heat</td>
</tr>
<tr>
<td>22181</td>
<td>Catalyst, heat</td>
</tr>
<tr>
<td>23022</td>
<td>N, regeneration, temperature, heat, water</td>
</tr>
<tr>
<td>23009</td>
<td>Fusion, palladium, reformer</td>
</tr>
<tr>
<td>22643</td>
<td>Natural gas, naphtha, catalyst, heat, /dation</td>
</tr>
<tr>
<td>23002</td>
<td>Ign, steam, reactor, process, heat, /rogen, production, des</td>
</tr>
<tr>
<td>23029</td>
<td>G, steam reforming, catalyst, heat, /bons, ammonia, cracking</td>
</tr>
<tr>
<td>40103</td>
<td>Liquefaction, helium, expansion, compression</td>
</tr>
<tr>
<td>40100</td>
<td>Liquefaction, cascade, helium, hydrogen</td>
</tr>
<tr>
<td>23421</td>
<td>/ extraction, synthesis gas, helium, temperature, condensat</td>
</tr>
<tr>
<td>52029</td>
<td>Aluminum 2219, embrittlement, high pressure, gas, nel 718,</td>
</tr>
<tr>
<td>30031</td>
<td>Pressures and high ratios</td>
</tr>
<tr>
<td>52007</td>
<td>E, embrittlement, steel, high strength, coating, surface</td>
</tr>
<tr>
<td>52034</td>
<td>Embrittlement, alloys, high strength, susceptibility</td>
</tr>
<tr>
<td>34023</td>
<td>History, application, catalyst</td>
</tr>
<tr>
<td>32022</td>
<td>History, engine</td>
</tr>
<tr>
<td>30974</td>
<td>Gen, oxygen, fluorine, prope/</td>
</tr>
<tr>
<td>40414</td>
<td>Insulation, humidity, transient, model</td>
</tr>
<tr>
<td>34500</td>
<td>Fuel cell, water, human</td>
</tr>
<tr>
<td>34502</td>
<td>Humidity, transient</td>
</tr>
<tr>
<td>34804</td>
<td>Humidity, transient</td>
</tr>
<tr>
<td>34031</td>
<td>Ature, application, hydrogen, hydrazine, hydrogen, temper</td>
</tr>
<tr>
<td>34029</td>
<td>Ature, hydrogen, hydrazine, hydrogen, peroxide</td>
</tr>
<tr>
<td>34229</td>
<td>Ammonia, hydrazine</td>
</tr>
<tr>
<td>43003</td>
<td>Ynam, pressure, temperature, hydride, dissociation, thermod</td>
</tr>
<tr>
<td>32002</td>
<td>Efficiency, safety, storage, hydride, emission, pollution,</td>
</tr>
<tr>
<td>32007</td>
<td>Iliy, hydride, energy, storage, stab</td>
</tr>
<tr>
<td>32009</td>
<td>Storage, impact, economic</td>
</tr>
<tr>
<td>43006</td>
<td>Hydride, intermetallic</td>
</tr>
<tr>
<td>43008</td>
<td>E, fuel</td>
</tr>
<tr>
<td>43011</td>
<td>Storage, hydride, metal, energy, storage</td>
</tr>
<tr>
<td>43012</td>
<td>Sure, vanadium, niobium, iron, titanium, hydride, storage, engine</td>
</tr>
<tr>
<td>43010</td>
<td>Iron, titanium, hydride, storage, engine</td>
</tr>
<tr>
<td>43009</td>
<td>On, intermetallic</td>
</tr>
<tr>
<td>43005</td>
<td>Ssociation, pressure, impurity, hydride</td>
</tr>
<tr>
<td>43002</td>
<td>Gas, pump, decomposition, hydride</td>
</tr>
<tr>
<td>34894</td>
<td>Ion exchange, hybrid, hydride</td>
</tr>
<tr>
<td>23003</td>
<td>Fuel cell, hydride</td>
</tr>
<tr>
<td>23001</td>
<td>Process, hydride</td>
</tr>
<tr>
<td>23008</td>
<td>Generator, hydride</td>
</tr>
<tr>
<td>22607</td>
<td>N, production, hydrocracking, hydride, desulfurization, convert</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

<table>
<thead>
<tr>
<th>Keyword Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23019 CATALYST#</td>
<td>HYDROGEN, HYDRAINE, OXYGEN, FUEL CELL</td>
</tr>
<tr>
<td>34817 FUEL CELL, HYDROCARBON, AIR#</td>
<td></td>
</tr>
<tr>
<td>34832 FUEL CELL, HYDROCARBON, AIR#</td>
<td></td>
</tr>
<tr>
<td>23415 M. MEMBRANE, STEAM REFORMING, HYDROCARBON, AMMONIA, DISSOCIA</td>
<td></td>
</tr>
<tr>
<td>22197 HYDROCARBON, APPARATUS#</td>
<td></td>
</tr>
<tr>
<td>22182 METHANATION, HYDROCARBON, CATALYST#</td>
<td></td>
</tr>
<tr>
<td>22137 HYDROCARBON, CATALYST#</td>
<td></td>
</tr>
<tr>
<td>22120 HYDROCARBON, CATALYST#</td>
<td></td>
</tr>
<tr>
<td>22113 RF, CRACKING#</td>
<td>HYDROCARBON, CATALYSIS, PRESSU</td>
</tr>
<tr>
<td>22107 PRODUCTION, STEAM, REFORMING, HYDROCARBON, CHEMICAL DESIGN#</td>
<td></td>
</tr>
<tr>
<td>23424 ENER/ ADSORPTION, SEPARATION, HYDROCARBON, CONDENSATION, REG</td>
<td></td>
</tr>
<tr>
<td>23433 GENIC#</td>
<td>PURITY, HYDROCARBON, CONDENSATION, CRY</td>
</tr>
<tr>
<td>22535 AL/ AMMONIA, STEAM REFORMING, HYDROCARBON, CONVERSION, PARTI</td>
<td></td>
</tr>
<tr>
<td>34325 HYDROCARBON, COST, POWER#</td>
<td></td>
</tr>
<tr>
<td>22620 KE, MODEL#</td>
<td>HYDROCARBON, DECOMPOSITION, CO</td>
</tr>
<tr>
<td>10039 HYDROGEN, FUEL, HYDROCARBON, ECONOMY#</td>
<td></td>
</tr>
<tr>
<td>23020 CONVERSION, CATALYST, PURITY, HYDROCARBON, EFFICIENCY, REACT</td>
<td></td>
</tr>
<tr>
<td>22111 S, METHANATION, POISONING#</td>
<td>HYDROCARBON, FUEL CELL, PROCES</td>
</tr>
<tr>
<td>22161 HYDROCARBON, FUEL CELL#</td>
<td></td>
</tr>
<tr>
<td>22176 E#</td>
<td>HYDROCARBON, FUEL CELL, STORAG</td>
</tr>
<tr>
<td>22175 ATE#</td>
<td>HYDROCARBON, FUEL CELL, CARBON</td>
</tr>
<tr>
<td>23400 CTION#</td>
<td>PURIFICATION, HYDROCARBON, FUEL, COST, PRODU</td>
</tr>
<tr>
<td>22606 N, PRODUCTION, SYNTHESIS GAS, HYDROCARBON, FUEL, OIL# /DROGE</td>
<td></td>
</tr>
<tr>
<td>10045 IDN, POLLU/ HYDROGEN, LIQUID, HYDROCARBON, FUEL, TRANSPORTAT</td>
<td></td>
</tr>
<tr>
<td>23023 NIA, METHANOL, POWER#</td>
<td>HYDROCARBON, FUEL, WATER, AMMO</td>
</tr>
<tr>
<td>23401 ERY, REFINERY, PETROCHEMICAL, HYDROCARBON, FUEL#</td>
<td>RECOV</td>
</tr>
<tr>
<td>23406 ERY, REFINERY, PETROCHEMICAL, HYDROCARBON, FUEL#</td>
<td>RECOV</td>
</tr>
<tr>
<td>22152 ER, CATALYST, ACTIVATOR#</td>
<td>HYDROCARBON, GAS, METHANE, WAT</td>
</tr>
<tr>
<td>22625 ULIBRIUM, ME/ DECOMPOSITION, HYDROCARBON, HEAT, REACTOR, EQ</td>
<td></td>
</tr>
<tr>
<td>22643 THA, CATA/ PARTIAL OXIDATION, HYDROCARBON, NATURAL GAS, NAPH</td>
<td></td>
</tr>
<tr>
<td>22121 #</td>
<td>HYDROCARBON, NUCLEAR, CATALYST</td>
</tr>
<tr>
<td>22153 ICAL, HYDROGEN P/ PRODUCTION, HYDROCARBON, OLEFIN, PETROCHEM</td>
<td></td>
</tr>
<tr>
<td>34244 FUEL CELL, ACID, HYDROCARBON, OXIDATION#</td>
<td></td>
</tr>
<tr>
<td>34316 RECOVERY, REFINERY, HYDROCARBON, PETROCHEMICAL#</td>
<td></td>
</tr>
<tr>
<td>23413 TURE#</td>
<td>ADSORPTION, AMMONIA, HYDROCARBON, PRESSURE, TEMPERA</td>
</tr>
<tr>
<td>23402 CONOMY#</td>
<td>SEPARATION, HYDROCARBON, PRESSURE, COST, E</td>
</tr>
<tr>
<td>22105 FUEL CELL, HYDROCARBON, PROCESS#</td>
<td></td>
</tr>
<tr>
<td>23025 A, METHANOL, STEAM REFORMING, HYDROCARBON, PURIFICATION, COS</td>
<td></td>
</tr>
<tr>
<td>22177 ORMING, OXIDA/ HYDROCRACKING, HYDROCARBON, PURIFICATION, REF</td>
<td></td>
</tr>
<tr>
<td>33012 KINETICS, HYDROCARBON, REACTION#</td>
<td></td>
</tr>
<tr>
<td>23007 SIS, HEAT, AMMONIA, CRACKING, HYDROCARBON, REFORMER#OXYGEN#</td>
<td></td>
</tr>
<tr>
<td>22650 HYDROCARBON, REFORMING#</td>
<td></td>
</tr>
<tr>
<td>22206 HYDROCARBON, REFORMING#</td>
<td></td>
</tr>
<tr>
<td>22155 CATALYST, HYDROCARBON, REFORMING#</td>
<td></td>
</tr>
<tr>
<td>22158 FEUL CELL, HYDROCARBON, REFORMING#</td>
<td></td>
</tr>
<tr>
<td>22174 HYDROCARBON, STEAM CATALYST#</td>
<td></td>
</tr>
<tr>
<td>22217 PARTIA/ HYDROGEN, PRODUCTION, HYDROCARBON, STEAM REFORMING,</td>
<td></td>
</tr>
<tr>
<td>22139 HYDROCARBON, STEAM, PRESSURE#</td>
<td></td>
</tr>
<tr>
<td>22134 HYDROCARBON, STEAM, REFORMING#</td>
<td></td>
</tr>
<tr>
<td>22177 HYDROCARBON, STEAM, PRESSURE#</td>
<td></td>
</tr>
<tr>
<td>22203 HYDROCARBON, STEAM#</td>
<td></td>
</tr>
<tr>
<td>22637 HYDROCARBON, STEAM#</td>
<td></td>
</tr>
</tbody>
</table>
| 34029 HYDROGEN, HYDRAZINE, HYDROCARBON, TEMPERATURE# | 1580
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLICATION</td>
<td>34031</td>
</tr>
<tr>
<td>HYDRAZINE</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>22634</td>
</tr>
<tr>
<td>PURITY</td>
<td>CATALYSIS</td>
</tr>
<tr>
<td>CATALYSIS</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>WATER</td>
<td>WATER</td>
</tr>
<tr>
<td>GENERATOR</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>STEAM</td>
<td>REFORMING</td>
</tr>
<tr>
<td>REFORMING</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>ACTIVATION</td>
<td>KINETICS</td>
</tr>
<tr>
<td>HYDROCARBON</td>
<td>TEMPERATURE</td>
</tr>
<tr>
<td>FUEL CELL</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>AIR</td>
<td>EFFICIENCY</td>
</tr>
<tr>
<td>LIQUEFICATION</td>
<td>HYDROGEN</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>22634</td>
</tr>
<tr>
<td>PURITY</td>
<td>CATALYSIS</td>
</tr>
<tr>
<td>HYDROCARBON</td>
<td>WATER</td>
</tr>
<tr>
<td>GENERATOR</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>FUEL CELL</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>REFORMING</td>
<td>STEAM</td>
</tr>
<tr>
<td>PARTIAL</td>
<td>COMBUSTION</td>
</tr>
<tr>
<td>CATALYST</td>
<td>WATER</td>
</tr>
<tr>
<td>PRESSURE</td>
<td>REFORMING</td>
</tr>
<tr>
<td>STEAM</td>
<td>REFORMING</td>
</tr>
<tr>
<td>CATALYST</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>STEAM</td>
<td>REFORMING</td>
</tr>
<tr>
<td>CATALYST</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>PARTIAL OXIDATION</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>STEAM</td>
<td>REFORMING</td>
</tr>
<tr>
<td>CATALYST</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>PURITY</td>
<td>NATURAL GAS</td>
</tr>
<tr>
<td>NAPHTHA</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>PURITY</td>
<td>PRODUCTION</td>
</tr>
<tr>
<td>NATURAL GAS</td>
<td>HYDROCARBON</td>
</tr>
<tr>
<td>NAPHTHA</td>
<td>PURITY</td>
</tr>
<tr>
<td>S, DESIGN</td>
<td>STEAM REFORMING</td>
</tr>
<tr>
<td>T, DESIGN</td>
<td>HYDROCARBONS</td>
</tr>
<tr>
<td>CHEMICAL</td>
<td>PROCES</td>
</tr>
<tr>
<td>REFORMING</td>
<td>HYDROCARBONS</td>
</tr>
<tr>
<td>PARTIAL OXIDATION</td>
<td>COAL, ENERGY</td>
</tr>
<tr>
<td>HYDROGEN</td>
<td>PRODUCTION</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>HYDROCARBONS</td>
</tr>
<tr>
<td>COAL, RESIDUE</td>
<td>HYDROCARBONS</td>
</tr>
<tr>
<td>FUEL CELLS</td>
<td>GAS</td>
</tr>
<tr>
<td>DESIGN, PURIFICATION</td>
<td>HYDROCARBONS</td>
</tr>
<tr>
<td>CRYOGENIC, LI</td>
<td>STEAM REFORMING</td>
</tr>
<tr>
<td>PURIFICATION</td>
<td>CRYOGENIC</td>
</tr>
<tr>
<td>CRYOGENIC, LI</td>
<td>HYDROCARBONS</td>
</tr>
<tr>
<td>STEAM REFORMING</td>
<td>SteAM</td>
</tr>
<tr>
<td>REFORMING</td>
<td>HYDROCARBONS</td>
</tr>
<tr>
<td>PARTIAL OXIDATION</td>
<td>HYDROCONVERSION</td>
</tr>
<tr>
<td>PRESSURE</td>
<td>CHEMICAL</td>
</tr>
<tr>
<td>PURITY</td>
<td>PRO</td>
</tr>
<tr>
<td>HYDROCRACK, COST</td>
<td>FUEL</td>
</tr>
<tr>
<td>HYDROCRACK</td>
<td>FUEL CELL</td>
</tr>
<tr>
<td>HYDROCRACK</td>
<td>HYDROCRACK</td>
</tr>
<tr>
<td>PARTIAL OXIDATION</td>
<td>HYDROCRACK</td>
</tr>
<tr>
<td>HYDROCRACK</td>
<td>PARTIAL OXIDATION</td>
</tr>
<tr>
<td>HYDROCRACK</td>
<td>PARTIAL OXIDATION</td>
</tr>
<tr>
<td>HYDROCRACK</td>
<td>REFORMING</td>
</tr>
<tr>
<td>REFINING, STEAM</td>
<td>HYDROCRACK</td>
</tr>
<tr>
<td>HYDROCRACK</td>
<td>ZATION</td>
</tr>
<tr>
<td>HYDROGEN</td>
<td>PRODUCTION</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>HYDROCRACKING</td>
</tr>
<tr>
<td>HYDROCRACKING</td>
<td>HYDRO-DESULFUR</td>
</tr>
<tr>
<td>REFINING, REFORMING</td>
<td>OXIDATION</td>
</tr>
<tr>
<td>REFORMING</td>
<td>HYDROCRACKING</td>
</tr>
<tr>
<td>HYDROCRACKING</td>
<td>HYDROCARBON, PU</td>
</tr>
<tr>
<td>REFINING, HYDRODESULFURIZATION</td>
<td>HYDROCRACKING</td>
</tr>
<tr>
<td>PETROCHEMICALS</td>
<td>HYDROCRACKING</td>
</tr>
<tr>
<td>CKING, PETROCHEMICALS</td>
<td>HYDRODESULFURIZATION, HYDROCRACK</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>HYDRODESULFURIZATION, PURITY</td>
</tr>
<tr>
<td>HYDROGEN PRODUCTION</td>
<td>ELECTROLY</td>
</tr>
<tr>
<td>SIS, FREE ENERGY, ENTROPY, T</td>
<td>HYDROGEN PRODUCTION</td>
</tr>
</tbody>
</table>

581
<table>
<thead>
<tr>
<th>KEYWORD INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 'K'</td>
</tr>
</tbody>
</table>

| 22153 ARBON, OLEFIN, PETROCHEMICAL, HYDROGEN PURIFICATION#/HYDROC |
| 23405 , COMPRESSOR#, COST, HYDROGEN, AMMONIA, CENTRIFUGAL |
| 23428 ANE, DIFFUSION/ PURIFICATION, HYDROGEN, AMMONIA, WATER, METH |
| 22101 CESS#, HYDROGEN, CARBON MONOXIDE, PRO |
| 22622 S, REFINERY#, PRODUCTION, HYDROGEN, CATALYST, NATURAL GA |
| 22013 COSTS, ECONOMICS, HYDROGEN, COAL# |
| 20501 ELECTROLYZER, DESIGN, HYDROGEN, COST, AMMONIA# |
| 10047 MICS, TRANSPORTATION#, LIQUID, HYDROGEN, CRYOGENIC, SPACECRAF |
| 23204 RIA, ANODE, NITROGEN, OXYGEN, HYDROGEN, CURRENT# BACTE |
| 20004 TION#, HYDROGEN, CYCLE, WATER, PRODUC |
| 10019 CTOOLYSIS, FUEL, VEHICLE OXY/ HYDROGEN, ECONOMY, ENERGY, ELE |
| 10037 , ENERGY, ELECTROLYSIS, POLL/ HYDROGEN, ECONOMY, ENVIRONMENT |
| 10085 RCE, PRODUCTION, TECHNOLOGY/, HYDROGEN, ECONOMY, ENERGY, SOU |
| 10002 L, STORAGE, TRANSMISSION, US/ HYDROGEN, ECONOMY, FUEL |
| 10056 HYDROGEN, ECONOMY, ENERGY# |
| 10014 HYDROGEN, ECONOMY, ENERGY# |
| 10060 HYDROGEN, ECONOMY, MEETING# |
| 40008 PROPERTY, ENTHALPY, ENTROPY, HYDROGEN, ELECTRICAL, MECHANIC |
| 20500 AM, PRODUCTION, ZIRCONIUM OX/ HYDROGEN, ELECTROCHEMICAL, STE |
| 20006 AK POWER, AMONI/ PRODUCTION, HYDROGEN, ELECTROLYSIS, OFF-PE |
| 20014 TIC, AMMONIA, NITROGEN FERTI/ HYDROGEN, ELECTROLYSIS, SYNTHE |
| 20007 DRT, EQUIPMENT# PRODUCTION, HYDROGEN, ELECTROLYSIS, TRANSP |
| 20011 CELL# HYDROGEN, ELECTROLYSIS, STUART |
| 20072 , STORAGE, INTERNAL COMBUSTI/ HYDROGEN, ELECTROLYSIS, OXYGEN |
| 10003 L, STORAGE, TRANSMISSION, US/ HYDROGEN, ENERGY, ECONOMY, FUE |
| 10001 DUTION, STORAGE, TRANSMISSION/ HYDROGEN, ENERGY, ECONOMY, PRO |
| 10016 NSPORTATION# HYDROGEN, ENERGY, ECONOMY, TRA |
| 10050 CTRICITY, ANALYSIS, FUTURE/, HYDROGEN, ENERGY, ECOLOGY, ELE |
| 10011 LEAR, PRODUCTION, TRANSMISSION/ HYDROGEN, ENERGY, ECONOMY, NUC |
| 10068 SOCIETY, LEGAL# HYDROGEN, ENERGY, ENVIRONMENT, |
| 10004 Y, STORAGE, PRODUCTION, TRAN/ HYDROGEN, ENERGY, FUEL, ECONOM |
| 10008 Y, CARRIER, USE# HYDROGEN, ENERGY, FUEL, ECONOM |
| 10005 AFETY, ELECTROLYSIS, ENVIRON/ HYDROGEN, ENERGY, FUEL, USE, S |
| 10042 EAR, APPLICATION, USE, PRODU/ HYDROGEN, ENERGY, FUTURE, NUCL |
| 10030 NMENT, NUCLEAR, ECOLOGY# HYDROGEN, ENERGY, MARKET, ENVI |
| 10040 Y, INTERMEDIATE# HYDROGEN, ENERGY, MARKET, FUEL |
| 10036 RONTMENT# HYDROGEN, ENERGY, MARKET, ENVI |
| 10052 , COST, STORAGE, TRANSMISSION/ HYDROGEN, ENERGY, MARKET, FUEL |
| 10035 D, ECOLOGY# HYDROGEN, ENERGY, NUCLEAR, FO0 |
| 10049 ER, DECOMPOSITION# HYDROGEN, ENERGY, NUCLEAR, WAT |
| 10023 IUM, SYSTEM, TRANSPORTATION# HYDROGEN, ENERGY, STORAGE, MED |
| 10031 UEL, SYSTEM, SAFETY, CRYOGEN/ HYDROGEN, ENERGY, SYNTHETIC, F |
| 10033 EL, ASSESSMENT, POLLUTION, P/ HYDROGEN, ENERGY, SYNTHETIC FU |
| 10020 IC, FUEL, SYNTHETIC# HYDROGEN, ENERGY, USE, CRYOGEN |
| 10038 LEAR# HYDROGEN, ENERGY, VEHICLE, NUC |
| 10015 HYDROGEN, ENERGY# |
| 10017 HYDROGEN, ENERGY# |
| 30075 ROCKET, LIQUID, HYDROGEN, ENGINE# |
| 10028 ICS# HYDROGEN, FOSSIL FUELS, ECONOM |
| 10044 HYDROGEN, FUEL, AUTOMOBILE# |
| 10077 PERTY, SAFETY, TRANSPORTATIO/ HYDROGEN, FUEL, CRYOGENIC, PRO |
KEYWORD INDEX

SECTION *K*

33065 IGNITION, VELOCITY#
33015 COMPUTER, SELF-IGNITION#
32009 INE# DECOCKING, IMPACT, ECONOMIC, HYDRIDE, ENG
31010 SPECIFIC IMPULSE, THRUST, AIRFLOW#
30053 EJECTOR, SPECIFIC IMPULSE, TURBOPUMP#
30070 NATION, PERFORMANCE, SPECIFIC IMPULSE# COMBUSTION, RECOMBINATION.
34608 ELECTRODE, IMPURITY#
43005 BIUM, DISSOCIATION, PRESSURE, IMPURITY#/RISE, VANADIUM, NIO
52029 BRITTLE, HIGH PRESSURE, INCONEL 718, ALUMINUM 2219, EM
52014 EMBRITTLEMENT, BIBLIOGRAPHY, INDEX#
33032 RATE, DETONATION, INJECTION#
33064 TRANSIENT, INDUCTION, SHOCK#
22002 LUIDIZED BED, COAL, HYDROGEN, INDUSTRIAL, GAS, CHARCOAL, STE
40001 CRYOGENIC, INDUSTRIAL, LABORATORY#
40006 CRYOGENIC, LIQUID, INDUSTRY#
40007 CRYOGENIC, DATA, INFORMATION#
32024 AUTOMOBILE, POLLUTION, INJECTION ENGINE#
33018 INJECTION, COMBUSTION#
32021 ENGINE, EMISSION/ HYDROGEN, INJECTION, INTERNAL COMBUSTION
30028 INJECTION, ROCKET, ENGINE#
30029 INJECTION, THRUST#
30013 ROCKET, INJECTION#
33043 ENTRANCE# INJECTOR, BOUNDARY LAYER, CONC
33054 INJECTOR, COMBUSTOR, RAMJET#
33039 INJECTOR, EFFICIENCY#
33056 SHOCK, INJECTOR, TURBULENCE#
30041 COAXIAL, INJECTOR, VARIABLE THRUST#
33044 TURBULENCE, INJECTOR, VORTEX#
33022 PERFORMANCE, INJECTOR#
51005 THRUST, INSTABILITY, SAFETY#
30034 FLARE, FLOW, INSTABILITY, SAFETY#
41003 SLUSH, INSTRUMENTATION, DENSITY#
41004 RAGE, FLOW# SLUSH, INSTRUMENTATION, TRANSFER, STO
34223 INSTRUMENTATION#
50010 SAFETY, STORAGE, TRANSFER, INSTRUMENTATION#
40305 TEMPERATURE# INSTRUMENTATION, CRYOGENIC, TE
40405 IICATION# INSULATION, CRYOGENIC, SOLIDIF
40416 TANK, INSULATION, DENSITY, LIQUID#
40414 INSULATION, HONEYCOMB#
40420 E# INSULATION, MULTILAYER, STORAG
40408 INSULATION, RELIABILITY#
40415 INSULATION, SHUTTLE, COST#
40403 LIQUID, SPACECRAFT# INSULATION, STRUCTURE, DESIGN,
34645 FUEL CELL, ELECTROLYTE, INTERFACE#
52000 MECHANICAL/ EMBRITTLEMENT, INTERGRANULAR, NICKEL, BEHAVIO
10040 ROGEN, ENERGY, MARKET, STUDY, INTERMEDIATE# HYD
43006 HYDRIDE, INTERMETALLIC#
43009 IDE, TEMPERATURE, ABSORPTION, INTERMETALLIC# HYD
10024 USE, TRANSPORTATION, STORAGE, INTERNAL COMBUSTION, FUEL CELL
32012 POWER, INTERNAL COMBUSTION, COMPUTER#
32019 INTERNAL COMBUSTION, RESEARCH#
32021 MISSION/ HYDROGEN, INJECTION, INTERNAL COMBUSTION, ENGINE, E
32020 EFFICIENCY, STORAGE# INTERNAL COMBUSTION, POLLUTION
SECTION 'K'

KEYWORD INDEX

51003 EXPLOSION, LIMIT, CALCULATION, DIFFUSION#
51004 EXPLOSION, LIMIT, TEMPERATURE#
40100 HYDROGEN# LIQUEFACTION, CASCADE, HELIUM,
40101 NGER# LIQUEFACTION, COST, HEAT EXCHANGER,
40106 LIQUEFACTION, EXPANSION#
40104 NITROGEN# LIQUEFACTION, HEAT EXCHANGER,
40102 TORAGE, COST# LIQUEFACTION, HEAT TRANSFER, S
40103 N, COMPRESSION# LIQUEFACTION, HELIUM, EXPANSION
22603 ING, PURIFICATION, CRYOGENIC, LIQUEFACTION, STORAGE, DISTRIB
40511 TRANSFER, PIPE, LIQUEFACTION#
40109 LIQUEFACTION, COST, PATENT#
40112 CARBON# LIQUEFACTION, HYDROGEN, HYDRO
40111 LIQUEFACTION, PARAHYDROGEN#
40105 LIQUEFACTION, PARAHYDROGEN#
40107 LIQUEFACTION, PROCESS#
40108 RMODYNAMICS# LIQUEFACTION, SPACECRAFT, THE
40113 ORTATION# LIQUEFACTION, STORAGE, TRANSP
40302 SENSOR, LIQUID-LEVEL#
40509 EJECTOR, PUMP, LIQUID, ANALYSIS#
10012 HYDROGEN, STUDY, PRODUCTION, LIQUID, COST, SYSTEM ANALYSIS#
31015 SONIC# AIRCRAFT, LIQUID, CRYOGENIC, FUEL, HYPER
10065 ENERGY, HYDROGEN, LIQUID, CRYOGENIC#
40003 HYDROGEN, LIQUID, CRYOGENIC#
40301 DENSITY, LIQUID, CRYOGENIC#
40604 SHUTTLE, LIQUID, DISTRIBUTION#
10079 NERGY, TRANSMISSION, STORAGE, LIQUID, ECONOMICS, CRYOGENIC,S
30000 LIQUID, ENGINE, SPACE#
50001 SAFETY, LIQUID, FIRE, ASPHYXIATION#
31017 F/ FUEL, TRANSPORT, AIRCRAFT, LIQUID, FUTURE, PETROLEUM, PER
40000 HYDROGEN+ FUEL, LIQUID, FUTURE#
51002 SAFETY, STORAGE, HANDLING, LIQUID, GAS, EXPLOSION#
23006 LIQUID, GENERATOR#
50006 SPACECRAFT, FUEL, LIQUID, HANDLING, SAFETY#
50005 SAFETY, STANDARD, COMMERCIAL, LIQUID, HANDLING#
40409 LIQUID, HAZARD#
10045 NSPORTATION, POLLU/ HYDROGEN, LIQUID, HYDROCARBON, FUEL, TRA
40005 PACES# LIQUID, HYDROGEN, CRYOGENIC, S
30075 ROCKET, LIQUID, HYDROGEN, ENGINE#
30074 RINE, PROPE/ HISTORY, ROCKET, LIQUID, HYDROGEN, OXYGEN, FLUO
40006 CRYOGENIC, LIQUID, INDUSTRY#
40105 OST# LIQUID, INSULATION, SHUTTLE, C
50011 SAFETY, LIQUID, LABORATORY#
40002 OGEN# CRYOGENIC, LIQUID, NITROGEN, OXYGEN, HYDR
41012 CONDUCTIVITY, SOLID, LIQUID, PARAHYDROGEN#
40502 OILING# LIQUID, PUMP, HEAT TRANSFER, B
50000 E# LIQUID, SAFETY, CONTROL, DAMAG
50009 LIQUID, SAFETY, FIRE#
41001 GENERATION# LIQUID, SLUSH, FLOW, QUALITY,
40504 CE# LIQUID, SLUSH, PUMP, PERFORMAN
40304 LIQUID, SOLID, PARAHYDROGEN#
40403 NSULATION, STRUCTURE, DESIGN, LIQUID, SPACECRAFT#
50016 LIQUID, SYSTEM, SAFETY#
40422 VENT, LIQUID, TANK, ANALYSIS#
<table>
<thead>
<tr>
<th>KEYWORD INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION "K"</td>
</tr>
<tr>
<td>40507 PUMP, LIQUID, TEST, EFFICIENCY#</td>
</tr>
<tr>
<td>40419 EXPULSION, LIQUID, TEST#</td>
</tr>
<tr>
<td>40602 LIQUID, TRANSFER, SYSTEM#</td>
</tr>
<tr>
<td>40416 TANK, INSULATION, DENSITY, LIQUID#</td>
</tr>
<tr>
<td>50008 CRYOGENIC, COMPRESSED, GAS, LIQUID# SAFETY</td>
</tr>
<tr>
<td>40601 TRANSPORTATION, STORAGE, LIQUID#</td>
</tr>
<tr>
<td>40417 STRATIFICATION, TANK, LIQUID#</td>
</tr>
<tr>
<td>40402 IRON, THERMAL, PROTECTION, LIQUID# A</td>
</tr>
<tr>
<td>40421 SPACECRAFT, STORAGE, LIQUID#</td>
</tr>
<tr>
<td>40503 PUMP, HEAT, LIQUID#</td>
</tr>
<tr>
<td>52048 LOAD, EMBRITTLEMENT, DIFFUSION</td>
</tr>
<tr>
<td>30050 THRUST, LOAD, ENGINE#</td>
</tr>
<tr>
<td>34829 DESIGN, MODULAR, LOAD#</td>
</tr>
<tr>
<td>40505 PUMP, BEARING, WEAR, LUBRICATION#</td>
</tr>
<tr>
<td>34823 ITY, POWER, WATER, CRYOGENIC, LUNAR# ELECTRIC</td>
</tr>
<tr>
<td>43012 LANTHANIDE, AFFINITY, MAGNET, RARE EARTH#</td>
</tr>
<tr>
<td>50014 SAFETY, MANUAL, LEAKAGE, DESIGN#</td>
</tr>
<tr>
<td>31014 MANUFACTURE, ENERGY, AIRCRAFT#</td>
</tr>
<tr>
<td>22129 SSURE, REFORMER#</td>
</tr>
<tr>
<td>34011 POWER, ELECTRODE, MANUFACTURE#</td>
</tr>
<tr>
<td>20005 ELECTROLYSIS, HYDROGEN, OXYGEN, MANUFACTURING METHODS OPERATION</td>
</tr>
<tr>
<td>10070 Y, WASTE/ TERRESTRIAL, SPACE, MARINE, HEAT, ALGAE, EFFICIENCY</td>
</tr>
<tr>
<td>21009 ION, HYDROGEN, OXYGEN, CYCLE, MARK I, CATALYST, ECONOMY# / DT</td>
</tr>
<tr>
<td>10607 ION, TRANSPORTATION, STORAGE, MARKET, CHEMICAL, REFINING, UT</td>
</tr>
<tr>
<td>10036 HYDROGEN, ENERGY, MARKET, ENVIRONMENT#</td>
</tr>
<tr>
<td>10052 TRANSMISSION/ HYDROGEN, ENERGY, MARKET, FUEL, COST, STORAGE, T</td>
</tr>
<tr>
<td>10040 HYDROGEN, ENERGY, MARKET, STUDY, INTERMEDIATE#</td>
</tr>
<tr>
<td>34848 AIR, MARKET, VEHICLES#</td>
</tr>
<tr>
<td>52037 EMBRITTLEMENT, DISLOCATION, MARTENSITE# STEEL, STAINLESS</td>
</tr>
<tr>
<td>52042 IRON, EXTRACTION, MODEL, MATHEMATICAL#</td>
</tr>
<tr>
<td>34235 ELECTROLYSIS, MATRIX, DESIGN#</td>
</tr>
<tr>
<td>34236 ELECTRODE, MATRIX, ELECTROLYSIS#</td>
</tr>
<tr>
<td>34605 CATALYST, MATRIX, POLARIZATION#</td>
</tr>
<tr>
<td>34233 LIFE, MATRIX#</td>
</tr>
<tr>
<td>34631 ALKALINE, MATRIX#</td>
</tr>
<tr>
<td>20508 ELECTROLYTE, NICKEL, MATRIX#</td>
</tr>
<tr>
<td>43000 FLOW, CRYOGENIC, MEASUREMENT, SLUSH#</td>
</tr>
<tr>
<td>40303 FLOW, MEASUREMENT#</td>
</tr>
<tr>
<td>40214 CRYOGENIC, THERMAL, MEASUREMENTS#</td>
</tr>
<tr>
<td>52050 PROPERTY, MECHANICAL, ALLOY#</td>
</tr>
<tr>
<td>40008 NTROPY, HYDROGEN, ELECTRICAL, MECHANICAL, OPTICAL, TRANSPORT</td>
</tr>
<tr>
<td>52055 PRESSURE, TEMPERATURE# MECHANICAL, PROPERTY, METAL, P</td>
</tr>
<tr>
<td>52024 BRITTLEMENT, PRESSURE, STEEL, MECHANICAL# EM</td>
</tr>
<tr>
<td>52000 ERGRANULAR, NICKEL, BEHAVIOR, MECHANICAL# / EMBRITTLEMENT, INT</td>
</tr>
<tr>
<td>23208 HYDROGEN, MECHANISM, PHOTOPRODUCTION#</td>
</tr>
<tr>
<td>52013 DIFFUSION# EMBRITTLEMENT, MECHANISM, STEELS, STRENGTH, D</td>
</tr>
<tr>
<td>23203 CARBON DIOXIDE, METABOLISM, MECHANISM# SUGAR#</td>
</tr>
<tr>
<td>23601 ROGEN, PRODUCTION, RADIATION, MECHANISM# HYD</td>
</tr>
<tr>
<td>52051 BRITTLEMENT, STEEL, FRACTURE, MECHANISM# EM</td>
</tr>
<tr>
<td>52039 EMBRITTLEMENT, METAL, MECHANISM#</td>
</tr>
<tr>
<td>23602 URE, CATALYST, PHOTOCHEMICAL, MECHANISM# / OXIDATION, TEMPERAT</td>
</tr>
<tr>
<td>10023 HYDROGEN, ENERGY, STORAGE, MEDIUM, SYSTEM, TRANSPORTATION</td>
</tr>
<tr>
<td>10060 HYDROGEN, ECONOMY, MEETING#</td>
</tr>
</tbody>
</table>

588
KEYWORD INDEX

SECTION "K"

52026 PERMEATION, IRON, STEEL, METABOLISM, MECHANISM, SUGAR#
23417 ADIAB, PRESSURE, TEMPERATURE, METABOLISM, MICRO-ORGANISM#
34005 52026 PERMEATION, IRON, STEEL, MEMBRANE, DIFFUSION#
34211 MEMBRANE, ELECTROLYSIS#/ PALL
23420 S, ADSORPTION, PURIFICATION, MEMBRANE, METAL FILM, CATALYSIS
52040 PERMEATION, RATE, MEMBRANE, METAL, DIFFUSION#
34258 FUEL CELL, ION, MEMBRANE, METAL, DIFFUSION#
34003 REACTION, MEMBRANE, NICKEL#
23415 ROCARBON, AMMONIA, PALLADIUM, MEMBRANE, STEAM REFORMING, HYD
22634 ATALYSIS, HYDROCARBON, WATER, MEMBRANE, TEMPERATURE#/ITY, C
34028 REACTION, MEMBRANE, WATER#
34201 MEMBRANE#
34036 YNAMICS, ELECTRODE, CATALYST, MEMBRANE, NICKEL#
34610 MEMBRANE, ELECTROLYTE#
23408 SEPARATION, MEMBRANE#
23203 CARBON DIOXIDE, METABOLISM, MECHANISM, SUGAR#
23207 ANAEROBIC, ENERGY, METABOLISM, MICRO-ORGANISM#
23420 ION, PURIFICATION, MEMBRANE, METAL FILM, CATALYSIS, ADSORPTION
20015 , HYDROGENATION, FERTILIZERS, METAL SEMICONDUCTOR#/ TROLYSIS
52025 EMBRITTLEMENT, PRESSURE, GAS, MEMBRANE#
41016 METAL, CONDUCTOR#
52002 EMBRITTLEMENT, METAL, CRACK, AIR, PURITY#
41015 MEMBRANE#
52040 PERMEATION, RATE, MEMBRANE, METAL, DIFFUSION#
43008 HYDRIDE, METAL, ENERGY, STORAGE, FUEL#
43011 HYDRIDE, METAL, FUEL, ENGINE, STORAGE#
52039 EMBRITTLEMENT, METAL, MECHANISM#
52011 EMBRITTLEMENT, METAL, NONFERROUS, STRUCTURE#
52005 THERMODYNAMICS#, METAL, PERMEATION, SOLUBILITY,
41013 METAL, PRESSURE, PLANET#
41017 METAL, PRESSURE, PROPERTY#
52055 MECHANICAL, PROPERTY, METAL, PRESSURE, TEMPERATURE#
43001 BIUM, HYDRIDE, REACTION, METAL, PRESSURE, VANADIUM, NIO
41014 METAL, PRESSURE#
52032 SURE, DIFFUSION, METAL, RATE, TEMPERATURE, PRESS
52009 PERMEATION, EMBRITTLEMENT, METAL, SOLUBILITY#
52057 RAFT, PERMEATION, PROPPELLANT, METAL#, SPACEC
52033 CECRAFT, FAILURE, PREVENTION, METAL#, EMBRITTLEMENT, SPA
22102 ATION, REFORMING, CONVERSION, METHANATION, CATALYSIS, POISON
22162 LYST#, METHANATION, HYDROCARBON, CATA
22111 ROCARBON, FUEL CELL, PROCESS, METHANATION, POISONING# HYD
22151, CONVERSION, DESULFURIZATION, METHANATION#/CTION, REFORMING
23206 N, GENERATOR, MICRO-ORGANISM, METHANE, AMMONIA#, HYDROGE
22641 METHANE, CATALYST#
22646 CATALYST, METHANE, DECOMPOSITION#
23428 ON, HYDROGEN, AMMONIA, WATER, METHANE, DIFFUSION, PALLADIUM#
22611 STEAM REFORMING, METHANE, KINETICS#
22000 AS, REACTION, GASIFICATION, METHANE, METHANOL, SYNTHESIS G
23423 ON, SEPARATION, CONDENSATION, METHANE, RECYCLE# REFRIGERATION
22625 HEAT, REACTOR, EQUILIBRIUM, METHANE, TEMPERATURE#/OCARBON
22152 VATOR, HYDROCARBON, GAS, METHANE, WATER, CATALYST, ACTI
22001 REACTION, GASIFICATION, METHANE#
22623 YST, DECOMPOSITION, CRACKING, METHANE# CATAL
KEYWORD INDEX

SECTION 'K'

<table>
<thead>
<tr>
<th>Code</th>
<th>Keywords</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23435</td>
<td>ON, NITROGEN, AMMONIA, WATER, METHANE#</td>
<td>PURIFICATION</td>
</tr>
<tr>
<td>33027</td>
<td>COMBUSTION, METHANE#</td>
<td></td>
</tr>
<tr>
<td>22006</td>
<td>CATION, HYDROGEN, PRODUCTION, METHANE#</td>
<td>COAL, GASIFICATION</td>
</tr>
<tr>
<td>22009</td>
<td>ION, CATALYST, SYNTHESIS GAS, METHANE# /L, HYDROGEN, PRODUCT</td>
<td></td>
</tr>
<tr>
<td>34835</td>
<td>FUEL CELL, METHANOL, AMMONIA, ADSORPTION#</td>
<td></td>
</tr>
<tr>
<td>34828</td>
<td>METHANOL, CATALYST, ENERGY#</td>
<td></td>
</tr>
<tr>
<td>34827</td>
<td>METHANOL, CATALYST, BATTERY#</td>
<td></td>
</tr>
<tr>
<td>23009</td>
<td>REFORMER, HEAT# CATALYSIS, METHANOL# DIFFUSION, PALLADIUM</td>
<td></td>
</tr>
<tr>
<td>10081</td>
<td>L, ENERGY#</td>
<td></td>
</tr>
<tr>
<td>23026</td>
<td>TALYSIS, NITROGEN, DIFFUSION, METHANOL# HYDROCARBON# /ON, CA</td>
<td></td>
</tr>
<tr>
<td>23023</td>
<td>CARBON, FUEL, WATER, AMMONIA, METHANOL# POWER#</td>
<td></td>
</tr>
<tr>
<td>23025</td>
<td>ROCARBON, CRACKING, AMMONIA, METHANOL# STEAM REFORMING, HYDROCARBON#</td>
<td></td>
</tr>
<tr>
<td>22000</td>
<td>CITION, GASIFICATION, METHANE, METHANOL# SYNTHESIS GAS, ENERGY</td>
<td></td>
</tr>
<tr>
<td>23013</td>
<td>FUEL CELL, METHANOL#</td>
<td></td>
</tr>
<tr>
<td>23012</td>
<td>FUEL CELL, METHANOL#</td>
<td></td>
</tr>
<tr>
<td>10033</td>
<td>LLUTION, PRODUCTION, STORAGE, METHANOL# FUEL, ASSESSMENT, PRO</td>
<td></td>
</tr>
<tr>
<td>20005</td>
<td>DROGEN, OXYGEN, MANUFACTURING METHODS OPERATION, COSTS, SAFETY</td>
<td></td>
</tr>
<tr>
<td>23205</td>
<td>TERY#</td>
<td></td>
</tr>
<tr>
<td>23206</td>
<td>IA# HYDROGEN, GENERATOR, MICRO-ORGANISM, METHANE, AMMON#</td>
<td></td>
</tr>
<tr>
<td>23207</td>
<td>NAEROBIC, ENERGY, METABOLISM, MICRO-ORGANISM# A</td>
<td></td>
</tr>
<tr>
<td>34258</td>
<td>FUEL CELL, ION, MEMBRANE, MICROBE#</td>
<td></td>
</tr>
<tr>
<td>22011</td>
<td>GASIFICATION, FOSSIL, FUEL, MICROWAVE#</td>
<td></td>
</tr>
<tr>
<td>34010</td>
<td>MIGRATION, BUFFER#</td>
<td></td>
</tr>
<tr>
<td>34819</td>
<td>DESIGN, POWER, MILITARY#</td>
<td></td>
</tr>
<tr>
<td>33055</td>
<td>MIXING, CONCENTRATION, SHOCK#</td>
<td></td>
</tr>
<tr>
<td>33041</td>
<td>MIXING, TRANSPORT, SUBSONIC#</td>
<td></td>
</tr>
<tr>
<td>33057</td>
<td>MIXING, VENTING, KINETICS#</td>
<td></td>
</tr>
<tr>
<td>32010</td>
<td>PERFORMANCE, MIXTURE, POLLUTION#</td>
<td></td>
</tr>
<tr>
<td>30032</td>
<td>IGNITION, MIXTURE#</td>
<td></td>
</tr>
<tr>
<td>33014</td>
<td>MODEL, COMPUTER, REACTION#</td>
<td></td>
</tr>
<tr>
<td>34037</td>
<td>MODEL, FUEL CELL#</td>
<td></td>
</tr>
<tr>
<td>52042</td>
<td>IRON, EXTRACTION, MODEL, MATHEMATICAL#</td>
<td></td>
</tr>
<tr>
<td>34501</td>
<td>HUMIDITY, TRANSIENT, MODEL#</td>
<td></td>
</tr>
<tr>
<td>22620</td>
<td>OCARBON, DECOMPOSITION, COKE, MODEL# HYDROCARBON#</td>
<td></td>
</tr>
<tr>
<td>32000</td>
<td>POLLUTION, ENVIRONMENT# MODIFICATION, COST, EMISSION</td>
<td></td>
</tr>
<tr>
<td>34829</td>
<td>DESIGN, MODULAR, LOAD#</td>
<td></td>
</tr>
<tr>
<td>34617</td>
<td>FUEL CELL, ELECTRODE, MODULE#</td>
<td></td>
</tr>
<tr>
<td>20017</td>
<td>ELECTROLYSIS, WATER, MODULE#</td>
<td></td>
</tr>
<tr>
<td>34830</td>
<td>TEMPERATURE, MOISTURE, REFORMER#</td>
<td></td>
</tr>
<tr>
<td>34505</td>
<td>FUEL CELL, MOISTURE, REMOVAL#</td>
<td></td>
</tr>
<tr>
<td>34006</td>
<td>ACID, ALKALINE, MOLTEN SALT#</td>
<td></td>
</tr>
<tr>
<td>22101</td>
<td>HYDROGEN, CARBON MONOXIDE, PROCESS#</td>
<td></td>
</tr>
<tr>
<td>22103</td>
<td>FUEL CELL, REFORMER, CARBON MONOXIDE#</td>
<td></td>
</tr>
<tr>
<td>30054</td>
<td>STUDY, ROCKET, MOTOR#</td>
<td></td>
</tr>
<tr>
<td>40420</td>
<td>INSULATION, MULTILAYER, STORAGE#</td>
<td></td>
</tr>
<tr>
<td>22643</td>
<td>ON, HYDROCARBON, NATURAL GAS, NAPHTHA, CATALYST, HEAT# /DATI</td>
<td></td>
</tr>
<tr>
<td>22205</td>
<td>NAPHTHA, CATALYST#</td>
<td></td>
</tr>
<tr>
<td>22173</td>
<td>STEAM, NAPHTHA, CATALYST#</td>
<td></td>
</tr>
<tr>
<td>22616</td>
<td>PURITY, NATURAL GAS, NAPHTHA, HYDROCARBONS#</td>
<td></td>
</tr>
<tr>
<td>22619</td>
<td>DUCTION, PURITY, NATURAL GAS, NAPHTHA, HYDROCARBON# PRO</td>
<td></td>
</tr>
<tr>
<td>22609</td>
<td>NATURAL GAS, NAPHTHA, PROCESS, PURITY#</td>
<td></td>
</tr>
<tr>
<td>22104</td>
<td>REFORMING, NAPHTHA#</td>
<td></td>
</tr>
<tr>
<td>22605</td>
<td>EPARATION, COST, NATURAL GAS, NAPHTHA# /MONIA, PRODUCTION, S</td>
<td></td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

50004 PRESSURE, SAFETY, NARCOTIC#
34215 FUEL CELL, CATALYST, NATURAL GAS, ACID#
22619 BON#, PRODUCTION, PURITY, NATURAL GAS, NAPHTHA, HYDROCAR
22609 PURITY#, NATURAL GAS, NAPHTHA, PROCESS#
22643 RTIAL OXIDATION, HYDROCARBON, NATURAL GAS, NAPHTHA, CATALYST
22616 BONS#, PURITY, NATURAL GAS, NAPHTHA, HYDROCAR
22605 PRODUCTION, SEPARATION, COST, NATURAL GAS, NAPHTHA# /MONIA#
22642 PRODUCTION, HYDROGEN, CATALYST, NATURAL GAS, REFINERY# PRO
52000 EMBRITTLEMENT, INTERGRANULAR, NICKEL, BEHAVIOR, MECHANICAL# /
34811 ELECTROLYTE, NICKEL, MATRIX#
34806 EFFICIENCY, NICKEL, SILVER, CATALYST#
22160 CATALYST, NICKEL, STEAM#
34814 ELECTROLYZER, NICKEL#
34614 NICKEL#
52044 RACKING, PROTECTION, COATING, NICKEL# STEEL, C
34003 REACTION, MEMBRANE, NICKEL#
52035 E, IMPURITY, HYDRIDE, VANADIUM, NIOBUM, DISSOCIATION, PRESSUR
52036 EMBRITTLEMENT, TEMPERATURE, NIOBUM, VANADIUM#
43001 N, METAL, PRESSURE, VANADIUM, NIOBUM# HYDRIDE, REACTIO
32023 PERFORMANCE, NITRIC OXIDE, ENGINE#
20014 TROLYSIS, SYNTHETIC, AMMONIA, NITROGEN FERTILIZER# /EN, ELEC
23435 ANE# PURIFICATION, NITROGEN, AMMONIA, WATER, METH
23426 HY/ DISSOCIATION, CATALYSIS, NITROGEN# DIFFUSION, METHANOL
23204 RENT#, BACTERIA, ANODE, NITROGEN, OXYGEN, HYDROGEN, CU
40002 CRYOGENIC LIQUID, NITROGEN, OXYGEN, HYDROGEN#
23419, FRACTIONATION#, NITROGEN, PRESSURE, SEPARATION
40104 LIQUEFACTION, HEAT EXCHANGER, NITROGEN#
23421 TURE, CONDENSATIONABSORPTION, NITROGEN# /AS, HELIUM, TEMPER
23011 ONIA, REACTOR, DECOMPOSITION, NITROGEN# /SIS, OXIDATION, AMM
31007 PAYLOAD, RANGE, COST, NOISE#
52011 EMBRITTLEMENT, METAL, NONFERROUS, STRUCTURE#
51008 FLASH, FIRE, IGNITION, NONMETALLIC#
33025 ROCKET, NOZZLE, TRANSIENT#
30033 COMPUTER, NOZZLE#
33061 KINETICS, NOZZLE#
33035 TOHYDROGEN, ENERGY, FUTURE, ENERGY, NUCLEAR, CARRIER ECONOMY# /SYN
20112 DU/ HYDROGEN, ENERGY, FUTURE, NUCLEAR, APPLICATION, USE, PRO
10034 THE Tierc, FUEL, FUTURE, ENERGY, NUCLEAR, CARRIER ECONOMY# /SYN
22121 HYDROCARBON, NUCLEAR, CATALYST#
10055 OMY, ENERGY, ECOLOGY, SAFETY, NUCLEAR, COAL# /EN, FUEL, ECON
20113 WATER, AMMONIA, ELECTROLYSIS, NUCLEAR, CURRENT DENSITY# /ID,
10030 N, ENERGY, FUEL, ENVIRONMENT, NUCLEAR, ECOLOGY# HYDROGE
10047 TION#, HYDROGEN, COST, NUCLEAR, ECONOMICS, TRANSPORTA
10076 TION, CONTROL, HYDROGEN, FUEL, NUCLEAR, ELECTROLYSIS# POLLUT
23015 NUCLEAR, ENERGY, CARBONATE#
10026 LLS, OXYGEN ELECTR/ HYDROGEN, NUCLEAR, ENERGY, FUEL, FUEL CE
10035 HYDROGEN, ENERGY, NUCLEAR, FOOD, ECOLOGY#
22639 NUCLEAR, HEAT, REFORMING#
21014 ERMODYNAMICS, CYCLE, PROCESS, NUCLEAR, HEAT, WATER, SPLITTING
10018 S# HYDROGEN, NUCLEAR, OFF-PEAK, ELECTROLYSI
10057 MPOSITION, HEAT, GAS/ ENERGY, NUCLEAR, OXYGEN, REACTOR, DECO
SECTION 'K'

10011 HYDROGEN, ENERGY, ECONOMY, NUCLEAR, PRODUCTION, TRANSMISS
10046 ENERGY, ANALYSIS, ALTERNATIVE, NUCLEAR, SAFETY, TRANSPORTATION
10054 L, ENGINE, POLLUTION, OXYGEN, NUCLEAR, STORAGE, SAFETY, FUEL
21016 SPLITTING, TECHNOLOGY, EFF, NUCLEAR, THERMOCHEMICAL, WATER
21002 EFFICIENCY, HYDROGEN, NUCLEAR, WATER, DECOMPOSITION
10049 HYDROGEN, ELECTROLYSIS, OFF-PEAK POWER, AMMONIA, OXYGEN
10018 HYDROGEN, NUCLEAR, OFF-PEAK, ELECTROLYSIS
34807 STORAGE, POWER, OFF-PEAK
22606 HETEROGENEITY, GAS, HYDROCARBON, FUEL, OIL, HYDROGEN, PRODUCTION, SYNT
22153 N/P, PRODUCTION, HYDROCARBON, OLEFIN, PETROCHEMICAL, HYDROGEN
22133 DESIGN, OPERATION, REFORMER, REACTOR
34613 FUEL CELL, ANODE, OPERATION
40002 OXYGEN, ELECTRICAL, MECHANICAL, OPTICAL, TRANSPORT, ELECTROLYSIS
31009 PERFORMANCE, OPTIMIZATION, WEIGHT
23205 MICRO-ORGANISM, FUEL CELL, BATTERY
23307 IC, ENERGY, METABOLISM, MICRO-ORGANISM, ANAEROB
30043 TANK, SLOSHING, OSCILLATION
23011 ECOMPOSIT/ PURITY, CATALYSIS, AMMONIA, REACTOR, D
34609 ELECTRODE, OXIDATION, CATALYST
22116 L CELL, CONVERSION, REFORMER, OXIDATION, CATALYST, FUEL
22199 BURNER, OXIDATION, CATALYST
22635 ROGON, CONVERSION, PARTIAL OXIDATION, ECONOMY, MIG, HYDROGEN
23604 HYDROGEN, PRODUCTION, OXYGEN, OXIDATION, ENERGY
22141 PARTIAL OXIDATION, FUEL CELL
22204 PARTIAL OXIDATION, HYDROCARBON
22210 EN/ STEAM REFORMING, PARTIAL OXIDATION, HYDROCARBONS, COAL
22110 STEAM REFORMING, PARTIAL OXIDATION, HYDROCARBONS
22119 PARTIAL OXIDATION, HYDROCARBON
22643 L GAS, NAPHTHA, CATALYSIS, PARTIAL OXIDATION, RESIDUE, STEAM, REFORMING
22219 PARTIAL OXIDATION, POLLUTION, PROCESS
22618 PRESSURE, OXIDATION, REFORMING
34027 OXIDATION, RESEARCH
22218 OXIDATION, RESEARCH, PARTIAL OXIDATION, RESIDUE, STEAM, REFORMING
KEYWORD INDEX

SECTION 'K'

22615 OXIDATION, SYNTHESIS#
23602 ST., / SENSITIZER, CONVERSION, OXIDATION, TEMPERATURE, CATALY
22614 ROCESS#, ECONOMY, OXIDATION, WATER, GAS, COKE, P
34243 OXIDATION#
34250 REFORMING, OXIDATION#
34244 FUEL CELL, ACID, HYDROCARBON, OXIDATION#
22117 PETROLEUM, PARTIAL OXIDATION#
22118 HYDROCRACK, PARTIAL OXIDATION#
22146 HYDROCRACK, PARTIAL OXIDATION#
22200 HYCROCARBON, OXIDATION#
22217 BDN, PURIFICATION, REFORMING, OXIDATION# / CRACKING, HYDROCAR
20507 OST, STEAM REFORMING, PARTIAL OXIDATION# / N, ELECTROLYSIS, C
22212 BDN, STEAM REFORMING, PARTIAL OXIDATION# / ODUCTION, HYDROCAR
32023 PERFORMANCE, NITRIC OXIDE, ENGINE#
21001 ION, WATER, CLOSED, REACTION, OXIDE, HALOGEN, DECOMPOSIT
23500 STEAM, PRODUCTION, ZIRCONIUM OXIDE# / OGEN, ELECTROCHEMICAL
10026 AR, ENERGY, FUEL, FUEL CELLS, OXYGEN ELECTROLYSIS# / N, NUCLE
30044 ENGINE, OXYGEN, COMBUSTION#
10059 POLLUTION, TURBINE, HYDROGEN, OXYGEN, CONSERVATION/ / ICY,
21009 T, ECO/ PRODUCTION, HYDROGEN, OXYGEN, CYCLE, MARK I, CATALYS
21008 CHEMICAL, REACTION/ HYDROGEN, OXYGEN, DECOMPOSITION, CYCLE,
32006 TEMPERATURE#, OXYGEN, EFFICIENCY, POLLUTION,
20015 ATION, FERTILIZERS, METAL SE/
30042 OXYGEN, ENERGY#
33017 OXYGEN, FLOW#
30074 RY, ROCKET, LIQUID, HYDROGEN, OXYGEN, FLUORINE, PROPPELLANT,
23019 HYDROGEN, HYDROAINE, OXYGEN, FUEL CELL, CATALYST#
23204 BACTERIA, ANODE, NITROGEN, OXYGEN, HYDROGEN, CURRENT#
40002 CRYOGENIC, LIQUID, NITROGEN, OXYGEN, HYDROGEN#
32003 DOLLUTION# CRYOGENIC, OXYGEN, INTERNAL COMBUSTION, P
20005 ATER, ELECTROLYSIS, HYDROGEN, OXYGEN, MANUFACTURING METHODS
10054 TY# FUEL, ENGINE, POLLUTION, OXYGEN, NUCLEAR, STORAGE, SAFE
23604 HYDROGEN, PRODUCTION, OXYGEN, OXIDATION, ENERGY#
20513 VOLTAGE# ELECTROLYSIS, OXYGEN, POWER, PRESSURE, CELL,
51001 FLAMMABILITY, LIMIT, AIR, OXYGEN, PRESSURE#
20505 IS, SPACECRAFT, DESIGN#, OXYGEN, PRODUCTION, ELECTROLYS
20507 IS, SPACECRAFT, DESIGN#, OXYGEN, PRODUCTION, ELECTROLYS
21006 CTION#, HYDROGEN, OXYGEN, PRODUCTION, CYCLE, REA
10057 , HEAT, GAS/ ENERGY, NUCLEAR, OXYGEN, REACTOR, DECOMPOSITION
10058 COMBUSTION, HYDROGEN, OXYGEN, STEAM, FUEL, ECONOMY#
10072 USTI/ HYDROGEN, ELECTROLYSIS, OXYGEN, STORAGE, INTERNAL COMB
20013 AMMONI/ PRODUCTION, HYDROGEN, OXYGEN, SULFURIC ACID, WATER,
20503 OLYSIS/ PRODUCTION, HYDROGEN, OXYGEN, WATER, AMMONIA, ELECTR
20019 ELECTROLYSIS, SPACECRAFT, OXYGEN#
20008 ELECTROLYSIS, OXYGEN#
20002 ELECTROLYSIS, OXYGEN#
33036 COMBUSTION, OXYGEN#
22642 STEAM, OXYGEN#
20006 YSIS, OFF-PEAK POWER, AMMONIA, OXYGEN# / N, HYDROGEN, ELECTROL
23004 REFORMING, PURITY, CRYOGENIC, OXYGEN# / N, PRODUCTION, STEAM
10019 ELECTROLYSIS, FUEL, VEHICLE OXYGEN# / OGEN, ECONOMY, ENERGY
23027 FFUSION, CATALYSIS, CHEMICAL, OXYGEN# /SSOCIATION, WATER, DI
23411 DIFFUSION, PALLADIUM, COST#
<table>
<thead>
<tr>
<th>Section 'K'</th>
<th>Keyword Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>34618</td>
<td>CATALYST* PALLADIUM, ELECTRODE*</td>
</tr>
<tr>
<td>23415</td>
<td>ORMING, HYDROCARBON, AMMONIA/ PALLADIUM, MEMBRANE, STEAM REF</td>
</tr>
<tr>
<td>23417</td>
<td>RE, MEMBRANE, EL/ SEPARATION, PALLADIUM, PRESSURE, TEMPERATU</td>
</tr>
<tr>
<td>52031</td>
<td>PALLADIUM, PROPERTY, TENSILE#</td>
</tr>
<tr>
<td>23009</td>
<td>TALYSIS, METHANOL, DIFFUSION, PALLADIUM, REFORMER, HEAT# CA</td>
</tr>
<tr>
<td>23430</td>
<td>SEPARATION, PALLADIUM#</td>
</tr>
<tr>
<td>23439</td>
<td>ORPTION, DESORPTION, AMMONIA, PALLADIUM# PRESSURE, ABS</td>
</tr>
<tr>
<td>23428</td>
<td>WATER, METHANE, DIFFUSION, PALLADIUM#/ HYDROGEN, AMMONI</td>
</tr>
<tr>
<td>34612</td>
<td>FUEL CELL, ELECTRODE, PAPER#</td>
</tr>
<tr>
<td>40212</td>
<td>PROPERTY, PARAHYDROGEN, COMPUTER, FLUID#</td>
</tr>
<tr>
<td>40211</td>
<td>SOLID, PARAHYDROGEN, PROPERTY#</td>
</tr>
<tr>
<td>40213</td>
<td>TABLE, PARAHYDROGEN, THERMODYNAMICS#</td>
</tr>
<tr>
<td>40105</td>
<td>LIQUEFICATION, PARAHYDROGEN#</td>
</tr>
<tr>
<td>40111</td>
<td>LIQUEFICATION, PARAHYDROGEN#</td>
</tr>
<tr>
<td>40304</td>
<td>LIQUID, SOLID, PARAHYDROGEN#</td>
</tr>
<tr>
<td>41012</td>
<td>CONDUCTIVITY, SOLID, LIQUID, PARAHYDROGEN#</td>
</tr>
<tr>
<td>41011</td>
<td>PROPERTIES, THERMODYNAMICS, PARAHYDROGEN#</td>
</tr>
<tr>
<td>41007</td>
<td>SLUSH, QUALITY, PARAHYDROGEN#</td>
</tr>
<tr>
<td>22635</td>
<td>ING, HYDROCARBON, CONVERSION, PARTIAL OXIDATION, ECONOMY# /M</td>
</tr>
<tr>
<td>22141</td>
<td>PARTIAL OXIDATION, FUEL CELL#</td>
</tr>
<tr>
<td>22100</td>
<td>S, COAL, EN/ STEAM REFORMING, PARTIAL OXIDATION, HYDROCARB</td>
</tr>
<tr>
<td>22119</td>
<td># PARTIAL OXIDATION, HYDROCARB</td>
</tr>
<tr>
<td>22110</td>
<td>STEAM REFORMING, PARTIAL OXIDATION, HYDROCARB</td>
</tr>
<tr>
<td>22643</td>
<td>NATURAL GAS, NAPHTHA, CAT/ PARTIAL OXIDATION, HYDROCARB</td>
</tr>
<tr>
<td>22219</td>
<td>PROCESS# PARTIAL OXIDATION, POLLUTION,</td>
</tr>
<tr>
<td>22218</td>
<td>EAM, REFORMING, PRODUCTION, / PARTIAL OXIDATION, RESIDUE, ST</td>
</tr>
<tr>
<td>22117</td>
<td>PETROLEUM, PARTIAL OXIDATION#</td>
</tr>
<tr>
<td>22118</td>
<td>HYDROCRACK, PARTIAL OXIDATION#</td>
</tr>
<tr>
<td>22146</td>
<td>HYDROCRACK, PARTIAL OXIDATION#</td>
</tr>
<tr>
<td>20507</td>
<td>LYSIS, COST, STEAM REFORMING, PARTIAL OXIDATION# /N, ELECTRO</td>
</tr>
<tr>
<td>22212</td>
<td>HYDROCARBON, STEAM REFORMING, PARTIAL OXIDATION# /ODUCTION,</td>
</tr>
<tr>
<td>22156</td>
<td>ON# PARTIAL, COMBUSTION, HYDROCARB</td>
</tr>
<tr>
<td>40109</td>
<td>LIQUEFICATION, COST, PATENT#</td>
</tr>
<tr>
<td>31012</td>
<td>MIC# RANGE, PAYLOAD, COOLING, SLUSH, ECONO</td>
</tr>
<tr>
<td>31007</td>
<td>PAYLOAD, RANGE, COST, NOISE#</td>
</tr>
<tr>
<td>20006</td>
<td>HYDROGEN, ELECTROLYSIS, OFF-PEAK POWER, AMMONIA, OXYGEN# /N</td>
</tr>
<tr>
<td>10018</td>
<td>HYDROGEN, NUCLEAR, OFF-PEAK, ELECTROLYSIS#</td>
</tr>
<tr>
<td>34807</td>
<td>STORAGE, POWER, OFF-PEAK#</td>
</tr>
<tr>
<td>31005</td>
<td>FETY# PERFORMANCE, COST, STORAGE, SA</td>
</tr>
<tr>
<td>20504</td>
<td>CTION, STORAGE, TRANSMISSION, PERFORMANCE, COST# /RGY, PRODU</td>
</tr>
<tr>
<td>32001</td>
<td>PERFORMANCE, EMISSION#</td>
</tr>
<tr>
<td>33022</td>
<td>PERFORMANCE, INJECTOR#</td>
</tr>
<tr>
<td>30045</td>
<td>PERFORMANCE, JET, SPACECRAFT#</td>
</tr>
<tr>
<td>32010</td>
<td>N# PERFORMANCE, MIXTURE, POLLUTIO</td>
</tr>
<tr>
<td>32023</td>
<td>INE# PERFORMANCE, NITRIC OXIDE, ENG</td>
</tr>
<tr>
<td>30068</td>
<td>GHT# PERFORMANCE, OPTIMIZATION, WE</td>
</tr>
<tr>
<td>31017</td>
<td>T, LIQUID, FUTURE, PETROLEUM, PERFORMANCE, POLLUTION# /RCRAF</td>
</tr>
<tr>
<td>32026</td>
<td>AUTOMOBILE, FUEL CELL, PERFORMANCE, POWER, BATTERY#</td>
</tr>
<tr>
<td>30035</td>
<td>PERFORMANCE, ROCKET#</td>
</tr>
<tr>
<td>30070</td>
<td>RECOMBINATION, PERFORMANCE, SPECIFIC IMPULSE#</td>
</tr>
<tr>
<td>30048</td>
<td>ROCKET, ENGINE, PERFORMANCE#</td>
</tr>
<tr>
<td>30001</td>
<td>JET, PERFORMANCE#</td>
</tr>
<tr>
<td>34204</td>
<td>FUEL CELL, PRESSURE, PERFORMANCE#</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Performance</th>
<th>Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN, Electrolysis,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump, Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid, Slush, Pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forming, Reformer,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrosion,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure, Design, Catalyst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al, Solubility,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffusion,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery, Refinery,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrochemical, Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production, Purity,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refinery, Petrochemical,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocarbon, Fu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery, Refinery,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrochemical, Hydrocarbon,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocarbon, Olefin,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia, Refinery,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrochemical, Purify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over, Refinery, Hydrocarbon,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrochemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas, Distribution,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrochemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfurization, Hydrocracking,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrochemicals, Refining,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Purify</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum, Cryogenic, Separation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum, Economics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum, Partial Oxidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft, Liquid,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future, Petroleum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design, Production,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow, Two-phase, Boiling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump, Flow, Two-phase,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-phase, Evaporation,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density, Two-phase,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality, Flow, Cryogenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stainless Steel,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dislocation, Phase,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State, Equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical, Chlorophyll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo-chemical, Reaction,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aton, Temperature,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalyst, Photochemical,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanism, Xid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum, Yield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemistry, Oxidation,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diatanton, Pressure,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photochemistry, Oxidation,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy, Ra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen, Mechanism,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoproduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen, Photoproduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas, Pipe, Cost, Transport, Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas, Pipe, Design, System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer, Pipe,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquefaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost, Pipeline, Electric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryogenic, Pipeline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metall, Pressure, Planet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tics, Thermodynamics,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design, Plant, Study,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics, Kine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas, Plasma, Synthesis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

34801 ELECTROLYTE, ION-EXCHANGE, PLASTIC#
10083 THERMAL, PRODUCTION, ENERGY, PLASTICS# HYDROGEN, WATER,
34640 FUEL CELL, PLATINUM, ANODE#
34627 FUEL CELL, PLATINUM, CATHODE#
52045 PERMEATION, PLATINUM, DIFFUSION#
34638 FUEL CELL, PLATINUM, ELECTRODE#
41002 Y, SLUSH# TRIPLE POINT, CRITICAL POINT, PROPERTY
40297 NVOLUTION, CRYOGENIC, CRITICAL POINT, HEAT TRANSFER# CO
40296 BOILING# FLOW, CRITICAL POINT, PRESSURE, TEMPERATURE,
41002 TRIPLE POINT, CRITICAL POINT, PROPERTY, SLUSH#
41005 SLUSH, TRIPLE POINT, PROPERTY#
40210 HEAT TRANSFER, TRIPLE POINT, SUBLIMATION#
22111 I CELL, PROCESS, METHANATION, POISONING# HYDROCARBON, FUE
22102 SION, METHANATION, CATALYSIS, POISONING# / REFORMING, CONVER
34251 POLARIZATION, ALKALINE#
34637 POLARIZATION.
34619 POLARIZATION.
23412 TROCHEMICAL, CATALYST, ANODE, POLARIZATION, EFFICIENCY# /EC
34259 ELECTRODE, POLARIZATION,
34611 ELECTRODE, POLARIZATION#
34605 CATALYST, MATRIX, POLARIZATION#
34667 PERMEABILITY, POROSITY, POLARIZATION#
34221 POLARIZATION#
10062 HYDROGEN, FUEL, ENERGY, POLICY#
10078 ENT, PRODUCTION, CONSUMPTION, POLICY# /TRANSMISSION, ENVIRONM
10066 HYDROGEN, GASOLINE, POLLUTION-FREE, AUTOMOBILE#
34809 FUEL CELL, POLLUTION, BATTERY#
10076 FUEL, NUCLEAR, ELECTROLYSIS# POLLUTION, CONTROL, HYDROGEN,
32020 # INTERNAL COMBUSTION, POLLUTION, EFFICIENCY, STORAGE
32005 POLLUTION, EMISSIO#
32002 STORAGE, HYDRIDE, EMISSION, POLLUTION, ENVIRONMENT# /SAFETY
32000 MODIFICATION, COST, EMISSION; POLLUTION, ENVIRONMENT#
10041 OSSIL, WATER, ENERGY, FUTURE, POLLUTION, ENVIRONMENT# /EL. F
10045 CARBON, FUEL, TRANSPORTATION, POLLUTION, ENVIRONMENT#/HYDRO
32015 NAL COMBUSTION, FOSSIL, FUEL, POLLUTION, EXHAUST# INTER
10037 ONMENT, ENERGY, ELECTROLYSIS, POLLUTION, FUEL# /ONOMY, ENVIR
22123 POLLUTION, GAS, SYNTHESIS#
10074 INTERNAL-COMBUSTION, ENGINE, POLLUTION, HYDROCARBON# FUEL,
32024 AUTOMOBILE, POLLUTION, INJECTION ENGINE#
32011 AMMONIA# POLLUTION, INTERNAL COMBUSTION
10054 DRAGE, SAFETY# FUEL, ENGINE, POLLUTION, OXYGEN, NUCLEAR, ST
10087 ELECTROLYSIS, SOLAR, ENERGY# POLLUTION, POWER, FUEL CELL, E
22219 PARTIAL OXIDATION, POLLUTION, PROCESS#
10033 SYNTHETIC FUEL, ASSESSMENT, POLLUTION, PRODUCTION, STORAGE
32006 OXYGEN, EFFICIENCY, POLLUTION, TEMPERATURE#
10043 ENERGY, SYSTEM, STUDY, COST, POLLUTION, TRANSMISSION# OXY,
10059 OXYGEN/ ELECTRIC, EFFICIENCY, POLLUTION, TURBINE, HYDROGEN,
10057 ON, HEAT, GASIFICATION, COAL, POLLUTION, USE#/ /DECOMPOSITION
10082 BILE, FUEL, FUTURE, GASOLINE, POLLUTION# AUTOMO
32008 PRODUCTION, COST, POLLUTION#
32014 POWER, STANDARD, POLLUTION#
32010 PERFORMANCE, MIXTURE, POLLUTION#
32003 OXYGEN, INTERNAL COMBUSTION, POLLUTION# CRYOGENIC.

596
KEYWORD INDEX

SECTION 'K'

22617 CATALYST, PRESSURE, BUTANE#
22193 PRESSURE, CATALYST, REFORMING#
20513 ELECTROLYSIS, OXYGEN, POWER, PRESSURE, CELL, VOLTAGE#
22154 CONTROL, PRESSURE, COMBUSTION#
23402 SEPARATION, HYDROCARBON, PRESSURE, COST, ECONOMY#
22113 HYDROCARBON, CATALYSIS, PRESSURE, CRACKING#
23021 A, PURIFICATION, TEMPERATURE, PRESSURE, DESIGN, CATALYST, PE
34261 PRESSURE, ELECTRODE#
52038 T# GAS, PRESSURE, ENGINE, EMBRITTLEMENT
30038 PRESSURE, FLOW, ROCKET#
52025 EMBRITTLEMENT, PRESSURE, GAS, METAL, ALLOY#
52029 NUM 2219, EMBRITTLEMENT, HIGH PRESSURE, GAS# NEL 718, ALUMI
43005 ADIUM, NIOBium, DISSOCIATION, PRESSURE, IMPURITY# RIDE, VAN
22618 # PRESSURE, OXIDATION, REFORMING
34204 FUEL CELL, PRESSURE, PERFORMANCE#
41013 METAL, PRESSURE, PLANET#
34260 TEMPERATURE, PRESSURE, POROSITY#
41017 METAL, PRESSURE, PROPERTY#
22150 ION, CHEMICAL, PROCESS# PRESSURE, PURITY, HYDROCONVERS
51006 EXPLOSION, TEMPERATURE, PRESSURE, REACTION#
22129 MANUFACTURE, PURITY, COST, PRESSURE, REFORMER#
22170 ON# PRESSURE, REFORMING, HYDROCARB
22202 PRESSURE, REFORMING#
50017 SAFETY, PRESSURE, RUPTURE, FIRE#
50004 PRESSURE, SAFETY, NARCOTIC#
23419 ATION# NITROGEN, PRESSURE, SEPARATION, FRACTION
22604 ORMER, CORROSION, PERFORMANCE# PRESSURE, STEAM REFORMING, REF
52024 EMBRITTLEMENT, PRESSURE, STEEL, MECHANICAL#
52058 MECHANICAL, PROPERTY, METAL, PRESSURE, TEMPERATURE#
43003 / DISSOCIATION, THERMODYNAMI/ PRESSURE, TEMPERATURE, HYDRIDE
50013 NANT# SAFETY, STORAGE, PRESSURE, TEMPERATURE, CONTAM
43000 DISSOCIATION, DECOMPOSITION, PRESSURE, TEMPERATURE, ENERGY#
23417 E, EL/ SEPARATION, PALLADIUM, PRESSURE, TEMPERATURE, MEMBRAN
23413 RPTION, AMMONIA, HYDROCARBON, PRESSURE, TEMPERATURE# ADSO
34101 LL# PRESSURE, TEMPERATURE, FUEL CE
40206 # FLOW, CRITICAL POINT, PRESSURE, TEMPERATURE, BOILING
40201 CAVITATION, VENTURI, PRESSURE, TEMPERATURE#
52056 GAS, EMBRITTLEMENT, TENSILE, PRESSURE, TEST#
43004 R/ EQUILIBRIUM, DISSOCIATION, PRESSURE, THERMODYNAMIC, TEMPE
33062 URE# PRESSURE, TURBULENCE, TEMPERATURE
43001 HYDRIDE, REACTION, METAL, PRESSURE, VANADIUM, NIOBium#
42001 LURE# GAS, PRESSURE, VESSEL, STORAGE, FAI
40401 VESSEL, LAMINATED, PRESSURE, WELD#
41014 METAL, PRESSURE#
52059 REACTION, TITANIUM, SURFACE, PRESSURE#
51001 MABILITY, LIMIT, AIR, OXYGEN, PRESSURE#
52032 ON, METAL, RATE, TEMPERATURE, PRESSURE#
52019 LEMENT, STEEL, CYLINDER, GAS, PRESSURE#
22177 HYDROCARBON, STEAM, PRESSURE#
22139 HYDROCARBON, STEAM, PRESSURE#
40400 VESSEL, COST, PRESSURE#
34810 ELECTROLYSIS, PRESSURE#
34840 ELECTROLYTE, PRESSURE#

598
10083 HYDROGEN, WATER, THERMAL, PRODUCTION, ENERGY, PLASTICS
22602 FORMER, CONVERSION, CATALYST, PRODUCTION, FUEL CELL, GAS, RE
10066 SMISION, USE, SAF, HYDROGEN, PRODUCTION, FUEL, ENERGY, TRAN
21010 HYDROGEN, PRODUCTION, FUEL, NUCLEAR
22143 REFORMING, VOLTAGE, TEMPER/ PRODUCTION, GENERATION, SUPPLY
23201 ELECTROLYSIS, BACTE, HYDROGEN, PRODUCTION, GROWTH, CULTURE, E
41010 # SLUSH, PRODUCTION, HANDLING, TRANSFER
10062 E, NUCLEAR, APPLICATION, USE, PRODUCTION, HEAT, WATER, DECOM
22109 HYDROGEN, PRODUCTION, HYDROCARBONS, COAL
22153 N, PETROCHEMICAL, HYDROGEN, PRODUCTION, HYDROCARBON, OLEFI
22212 REFORMING, PARTIA, HYDROGEN, PRODUCTION, HYDROCARBON, STEAM
22607 RD-DESULFURIZATION, HYDROGEN, PRODUCTION, HYDROCRACKING, HYD
22622 * NATURAL GAS, REFINERY# PRODUCTION, HYDROGEN, CATALYST
22127 RODESULFURIZATION, PURITY# PRODUCTION, HYDROGENATION, HYD
20533 WATER, AMMONIA, ELECTROLYSIS/ PRODUCTION, HYDROGEN, OXYGEN
20013 SULFURIC ACID, WATER, AMMONI/ PRODUCTION, HYDROGEN, OXYGEN
20007 YSIS, TRANSPORT, EQUIPMENT# PRODUCTION, HYDROGEN, ELECTROL
20006 YSIS, OFF-PEAK POWER, AMMONI/ PRODUCTION, HYDROGEN, ELECTROL
10012 EM ANALYSIS, HYDROGEN, STUDY, PRODUCTION, LIQUID, COST, SYST
22006 COAL, GASIFICATION, HYDROGEN, PRODUCTION, METHANE
23604 ENERGY# HYDROGEN, PRODUCTION, OXYGEN, OXIDATION
20001 HYDROGEN, ELECTROLYSIS, PRODUCTION, PERFORMANCE
22215 DESIGN, PRODUCTION, PETROLEUM
2218 N, RESIDUE, STEAM, REFORMING, PRODUCTION, PROCESS# /OXIDATIO
22612 HYDROGEN, PRODUCTION, PROCESS
22619 S, NAPHTHA, HYDROCARBON# PRODUCTION, PURITY, NATURAL GA
23438 PETROCHEMICAL, COST# PRODUCTION, PURITY, REFINERY
23601 SM# HYDROGEN, PRODUCTION, RADIATION, MECHANI
22151 ION, DESULFURIZATION/ PROCESS, PRODUCTION, REFORMING, CONVERS
22605 NATURAL GAS, NAPHTHA, AMMONIA, PRODUCTION, SEPARATION, COST
23004 URITY, CRYOGENIC, HYDROGEN, PRODUCTION, STEAM REFORMING, P
22107 HYDROCARBON, CHEMICAL DESIGN/ PRODUCTION, STEAM, REFORMING
20504 ION, PERFORMANCE, CO/ ENERGY, PRODUCTION, STORAGE, TRANSMISS
10033 FUEL, ASSESSMENT, POLLUTION, PRODUCTION, STORAGE, METHANOL
1001 I/ HYDROGEN, ENERGY, ECONOMY, PRODUCTION, STORAGE, TRANSMISS
22606 ROCARBON, FUEL, DI/ HYDROGEN, PRODUCTION, SYNTHESIS GAS, HYD
10095 GEN, ECONOMY, ENERGY, SOURCE, PRODUCTION, TECHNOLOGY, WATER
10034 ERY, FUEL, ECONOMY, STORAGE, PRODUCTION, TRANSMISSION, USE
10011 EN, ENERGY, ECONOMY, NUCLEAR, PRODUCTION, TRANSMISSIONSTORAG
10067 ORAGE, MARKET, CHEMICAL, REF/ PRODUCTION, TRANSPORTATION, ST
20500 OGEN, ELECTROCHEMICAL, STEAM, PRODUCTION, ZIRCONIUM OXIDE# /
20502 ELECTROLYSIS, PRODUCTION#
21004 HYDROGEN, CYCLE, WATER, PRODUCTION#
22191 USE, GAS, PRODUCTION# PURIFICAT
23400 ION, HYDROCARBON, FUEL, COST, PRODUCTION# THERMAL, WAT
30103 COST, AIRCRAFT, PRODUCTION# METAL
21007 ER, CLOSED, SYSTEM, REACTION, PRODUCTION# PROPELLANT, FUEL# /KET, LIQUID
30074 HYDROGEN, OXYGEN, FLUORINE PROPELLANT, METAL
52057 SPACECRAFT, PERMEATION, PROPELLANT, PROPELLANT
30052 CRYOGENIC, PROPELLANT#
20000 HYDROGEN, WATER, SPACECRAFT, PROPELLANT#
KEYWORD INDEX

SECTION 'K'

41011 RAHYDROGEN#
41006 SOLID, PROPERTY, CONDUCTIVITY#
40008 PILATION, DENSITY, DEUTERIUM, PROPERTY, ENTHALPY, ENTROPY, H
40208 THERMODYNAMICS, TRANSPORT, PROPERTY, FLUID#
52050 PROPERTY, MECHANICAL, ALLOY#
52058 PERATURE#, MECHANICAL, PROPERTY, METAL, PRESSURE, TEM
40212 ER, FLUID#
10077 O HYDROGEN, FUEL, CRYOGENIC, PROPERTY, SAFETY, TRANSPORTATI
41002 TRIPLE POINT, CRITICAL POINT, PROPERTY,
52031 PALLADIUM, PROPERTY, TENSILE#
41017 METAL, PRESSURE, PROPERTY#
41005 SLUSH, TRIPLE POINT, PROPERTY#
40202 YNAMICS, TRANSPORT, COMPUTER, PROPERTY,
40211 SOLID, PARAHYDROGEN, PROPERTY#
31000 AIRCRAFT, PROPULSION, COST#
30061 PROPULSION, ENGINE#
30016 SPACE, SHUTTLE, PROPULSION#
30017 SPACE, SHUTTLE, PROPULSION#
52044 STEEL, CRACKING, PROTECTION, COATING, NICKEL#
40402 AIRCRAFT, THERMAL, PROTECTION, LIQUID#
30062 COATING, PROTECTION, THRUST#
51011 SAFETY, FIRE, PROTECTION#
40004 RYOGENIC#
40505 ON#
40501 BEARING, PUMP, CRYOGENIC#
43002 GAS, PUMP, DECOMPOSITION, HYDRIDE#
40506 PUMP, DESIGN, PERFORMANCE#
40512 PUMP, FLOW, TWO-PHASE, DESIGN#
40502 LIQUID, PUMP, HEAT TRANSFER, BOILING#
40503 PUMP, HEAT, LIQUID#
40509 EJECTOR, PUMP, LIQUID, ANALYSIS#
40507 EJECTOR, PUMP, LIQUID, TEST, EFFICIENCY
40504 LIQUID, SLUSH, PUMP, PERFORMANCE#
40508 TEST, PUMP, SUCTION#
41009 SLUSH, PUMP#
41000 SEPARATION, STORAGE, TRANSFER, PUMP#,
31003 PURGE, AIRPLANE, HYPERSONIC#
34107 PURGE, FUEL CELL#
23436 PURIFICATION, ADSORPTION#
22159 PURIFICATION, CATALYST#
22601 HYDROGEN, PURIFICATION, CHEMICAL, PROCES
23025 STEAM REFORMING, HYDROCARBON, PURIFICATION, CRYOGENIC, LIQUE
23403 YDGENIC, SEPARATION, AMMONIA, PURIFICATION, CYTOGENIC, LIQUE
22603 YDROCARBONS, STEAM REFORMING, PURIFICATION, DIFFUSION#
23404 PURIFICATION, DISTRIBUTION, SA
22608 EAM REFORMING, COST, PROCESS, PURIFICATION, ELECTRODE#
34231 FUEL CELL, PURIFICATION, HYDROCARBON, FUE
23400 L, COST, PRODUCTION# PURIFICATION, HYDROGEN, AMMONI
23428 A, WATER, METHANE, DIFFUSION/ PURIFICATION, HYDROGEN, AMMONI
23420 FILM, CATALYSIS, ADSORPTION/
23430 WATER, CATALYSIS, ADSORPTION/
23435 A, WATER, METHANE# PURIFICATION, NITROGEN, AMMONI
23426 PURIFICATION, PERMEATION#
2217 HYDROCRACKING, HYDROCARBON, PURIFICATION, REFORMING, OXIDA

601
<table>
<thead>
<tr>
<th>KEYWORD INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 'K'</td>
</tr>
<tr>
<td>22180</td>
</tr>
<tr>
<td>23021</td>
</tr>
<tr>
<td>22149</td>
</tr>
<tr>
<td>23437</td>
</tr>
<tr>
<td>23432</td>
</tr>
<tr>
<td>22153</td>
</tr>
<tr>
<td>22634</td>
</tr>
<tr>
<td>23011</td>
</tr>
<tr>
<td>22129</td>
</tr>
<tr>
<td>23004</td>
</tr>
<tr>
<td>23020</td>
</tr>
<tr>
<td>23433</td>
</tr>
<tr>
<td>22150</td>
</tr>
<tr>
<td>22619</td>
</tr>
<tr>
<td>22616</td>
</tr>
<tr>
<td>23438</td>
</tr>
<tr>
<td>23410</td>
</tr>
<tr>
<td>22609</td>
</tr>
<tr>
<td>52002</td>
</tr>
<tr>
<td>22127</td>
</tr>
<tr>
<td>22008</td>
</tr>
<tr>
<td>10070</td>
</tr>
<tr>
<td>22172</td>
</tr>
<tr>
<td>22012</td>
</tr>
<tr>
<td>22649</td>
</tr>
<tr>
<td>23434</td>
</tr>
<tr>
<td>33048</td>
</tr>
<tr>
<td>40200</td>
</tr>
<tr>
<td>41001</td>
</tr>
<tr>
<td>41007</td>
</tr>
<tr>
<td>23605</td>
</tr>
<tr>
<td>23606</td>
</tr>
<tr>
<td>51000</td>
</tr>
<tr>
<td>10089</td>
</tr>
<tr>
<td>23603</td>
</tr>
<tr>
<td>23601</td>
</tr>
<tr>
<td>23600</td>
</tr>
<tr>
<td>33054</td>
</tr>
<tr>
<td>31007</td>
</tr>
<tr>
<td>31012</td>
</tr>
<tr>
<td>43012</td>
</tr>
<tr>
<td>33064</td>
</tr>
<tr>
<td>33050</td>
</tr>
<tr>
<td>52040</td>
</tr>
<tr>
<td>52032</td>
</tr>
<tr>
<td>30031</td>
</tr>
<tr>
<td>23202</td>
</tr>
<tr>
<td>34004</td>
</tr>
<tr>
<td>21008</td>
</tr>
<tr>
<td>34024</td>
</tr>
<tr>
<td>34816</td>
</tr>
<tr>
<td>22000</td>
</tr>
</tbody>
</table>
SECTION 'K'

22001 E#
21013 E#, THERMODYNAMICS, CHEMICAL,
34028
34003
43001 ADIUM, NIOBMIUM, HYDRIDE,
21001 DECOMPOSITION, WATER, CLOSED,
34002
21007 ERMAL, WATER, CLOSED, SYSTEM,
52030 EMBRITTLEMENT, ENVIRONMENT,
22638
33002 AL SOLUTION,
33003
52059 ERESSURE,
52018 PEARATURE
51006 OSSION, TEMPERATURE, PRESSURE,
51007 DETONATION, QUENCHING,
34017 FUEL CELL, ELECTRODE,
33014 MODEL, COMPUTER,
33012 KINETICS, HYDROCARBON,
23005 AMMONIA,
21006 N, OXYGEN, PRODUCTION, CYCLE,
33060 RATE, EXPANSION,
34000 CATALYST, ELECTRODE,
51012 EXPLOSION, SURVEY, IGNITION,
22133 DESIGN, OPERATION, REFORMER,
10057 GAS/ ENERGY, NUCLEAR, OXYGEN,
23011 ANALYSIS, OXIDATION, AMMONIA,
22625 IPOSITION, HYDROCARBON, HEAT,
21015 G, CYCLE, PROCESS, T/ ENERGY,
34820 SPACECRAFT, POWER,
23002 N, PRODUCTION, DESIGN, STEAM,
10084 EN, T/ FOSSIL, FUEL, BREEDER,
33004 GAS, NUCLEAR,
33028 COMBUSTION,
23020 ITY, HYDROCARBON, EFFICIENCY,
34627 FUEL CELL, LIGHTWEIGHT,
30070 ECIFIC IMPULSE
23414 N
23416 N, PETROCHEMICAL#
23406 CAL, HYDROCARBON, FUEL#
23401 CAL, HYDROCARBON, FUEL#
23427
30072 COMPRESSOR,
23440 AMMONIA, CATALYST, REFORMING,
23000 REDUCTION, REGENERATION,
23423 ATION, CONDENSATION, METHANE,
23000 CLE,
23022 RATURE, HEAT
23606 QUANTUM, YIELD,
23607 OCHEMISTRY, OXIDATION, SOLAR,
23416 EMICAL,
23401 CARBON, FUEL
23406 CARBON, FUEL
22001 E# REACTION, GASIFICATION, METHAN
21013 E#, THERMODYNAMICS, CHEMICAL, REACTION, KINETICS /N CHLOID
34028 REACTION, MEMBRANE, WATER,
34003 REACTION, MEMBRANE, NICKEL,
43001 ADIUM, NIOBMIUM, HYDRIDE, REACTION, METAL, PRESSURE, VAN
21001 DECOMPOSITION, WATER, CLOSED, REACTION, OXIDE, HALOGEN,
34002 REACTION, POWER,
21007 ERMAL, WATER, CLOSED, SYSTEM, REACTION, PRODUCTION# TH
52030 EMBRITTLEMENT, ENVIRONMENT, REACTION, REVERSIBLE,
22638 REACTION, STEAM, REFORMING,
33002 AL SOLUTION, REACTION, TEMPERATURE, NUMERIC
33003 REACTION, THERMODYNAMICS,
52059 ERESSURE, REACTION, TITANIUM, SURFACE, P
52018 PEARATURE, REACTION, TITANIUM, ALLOY, TEM
51006 OSSION, TEMPERATURE, PRESSURE,
51007 DETONATION, QUENCHING,
34017 FUEL CELL, ELECTRODE,
33014 MODEL, COMPUTER,
33012 KINETICS, HYDROCARBON,
23005 AMMONIA,
21006 N, OXYGEN, PRODUCTION, CYCLE,
33060 RATE, EXPANSION,
51012 EXPLOSION, SURVEY, IGNITION,
22133 DESIGN, OPERATION, REFORMER,
10057 GAS/ ENERGY, NUCLEAR, OXYGEN,
23011 ANALYSIS, OXIDATION, AMMONIA,
22625 IPOSITION, HYDROCARBON, HEAT,
21015 G, CYCLE, PROCESS, T/ ENERGY,
34820 SPACECRAFT, POWER,
23002 N, PRODUCTION, DESIGN, STEAM,
10084 EN, T/ FOSSIL, FUEL, BREEDER,
33004 GAS, NUCLEAR,
33028 COMBUSTION,
23020 ITY, HYDROCARBON, EFFICIENCY,
34627 FUEL CELL, LIGHTWEIGHT,
30070 ECIFIC IMPULSE
23414 N
23416 N, PETROCHEMICAL#
23406 CAL, HYDROCARBON, FUEL#
23401 CAL, HYDROCARBON, FUEL#
23427
30072 COMPRESSOR,
23440 AMMONIA, CATALYST, REFORMING,
23000 REDUCTION, REGENERATION,
23423 ATION, CONDENSATION, METHANE,
23000 CLE,
23022 RATURE, HEAT
23606 QUANTUM, YIELD,
23607 OCHEMISTRY, OXIDATION, SOLAR,
23416 EMICAL,
23401 CARBON, FUEL
23406 CARBON, FUEL
22001 E# REACTION, GASIFICATION, METHAN
21013 E#, THERMODYNAMICS, CHEMICAL, REACTION, KINETICS /N CHLOID
34028 REACTION, MEMBRANE, WATER,
34003 REACTION, MEMBRANE, NICKEL,
43001 ADIUM, NIOBMIUM, HYDRIDE, REACTION, METAL, PRESSURE, VAN
21001 DECOMPOSITION, WATER, CLOSED, REACTION, OXIDE, HALOGEN,
34002 REACTION, POWER,
21007 ERMAL, WATER, CLOSED, SYSTEM, REACTION, PRODUCTION# TH
52030 EMBRITTLEMENT, ENVIRONMENT, REACTION, REVERSIBLE,
22638 REACTION, STEAM, REFORMING,
33002 AL SOLUTION, REACTION, TEMPERATURE, NUMERIC
33003 REACTION, THERMODYNAMICS,
52059 ERESSURE, REACTION, TITANIUM, SURFACE, P
52018 PEARATURE, REACTION, TITANIUM, ALLOY, TEM
KEYWORD INDEX

SECTION 'K'

23410 YE AMMONIA, REFINERY, PETROCHEMICAL, PURITY
23438 PRODUCTION, PURITY, REFINERY, PETROCHEMICAL, COST
22608 T, PROCESS, PURIFICATION, DI/ REFINERY, STEAM REFORMING, COS
22622 ROG, CATALYST, NATURAL GAS, REFINERY# PRODUCTION, HYD
22621 REFINING, GAS#
22600 COST, DESIGN, REFINING, GAS#
21187 REFINING, STEAM, HYDROCRACK#
10067 N, STORAGE, MARKET, CHEMICAL, REFINING, UTILITY, ELECTRIC, R
22125 GAS, REFINING#
22128 HYDROCRACKING, PETROCHEMICALS, REFINING# DESULFURIZATION, H
34824 ELECTROLYTE, REFORMER, BATTERY#
22103 FUEL CELL, REFORMER, CARBON MONOXIDE#
22604 C/ PRESSURE, STEAM REFORMING, REFORMER, CORROSION, PERFORMAN
23009 THANOL, DIFFUSION, PALLADIUM, REFORMER, HEAT# CATALYSIS, ME
22116 FUEL CELL, CONVERSION, REFORMER, OXIDATION, CATALYST#
22133 DESIGN, OPERATION, REFORMER, REACTOR, COST#
22129 TUNE, PURITY, COST, PRESSURE, REFORMER# MANUFAC
34830 TEMPERATURE, MOISTURE, REFORMER#
22602 PRODUCTION, FUEL CELL, GAS, REFORMER# CONVERSION, CATALYST
23007 AMMONIA, CRACKING, HYDROCARBON, REFORMEROXYGEN# SIS, HEAT, AM
23029 ONS, AMMONIA, CRACKING, STEAM REFORMING, CATALYST, HEAT# /RB
34839 TE ELECTROLYTE, CATHODE, REFORMING, CATALYST#
22147 STEAM, REFORMING, CATALYST#
22144 STEAM, REFORMING, CATALYST#
22178 HYDROGEN, REFORMING, CATALYST#
22183 STEAM, REFORMING, CATALYST#
22162 STEAM, REFORMING, CATALYST#
22198 STEAM, REFORMING, CATALYST#
22157 STEAM, REFORMING, CATALYST#
50003 STEAM, REFORMING, CONTROL, SAFETY#
22151 RIZATION, PROCESS, PRODUCTION, REFORMING, CONVERSION, DESULFU
22102 TION, CATAL/ DESULFURIZATION, REFORMING, CONVERSION, METHANA
22636 STEAM REFORMING, CONVERSION#
23409 DESULPHURIZATION, REFORMING, CONVERSION#
22606 FICATION, DI/ REFINERY, STEAM REFORMING, COST, PROCESS, PURI
50012 STEAM, REFORMING, DESIGN, CORROSION#
22131 STEAM, REFORMING, FUEL CELL#
22122 REFORMING, FUEL CELL#
22189 REFORMING, FUEL CELL#
22132 STEAM, REFORMING, GAS#
22112 CAL, PROCESS, DESIGN#, STEAM REFORMING, HYDROCARBONS, CHEMI
22126 STEAM, REFORMING, HYDROCARBON#
22108 STEAM, REFORMING, HYDROCARBON#
22107 AL DESIGN, PRODUCTION+, STEAM, REFORMING, HYDROCARBON, CHEMIC
22142 STEAM, REFORMING, HYDROCARBON#
22185 STEAM, REFORMING, HYDROCARBON#
22169 STEAM, REFORMING, HYDROCARBON#
22170 PRESSURE, REFORMING, HYDROCARBON#
22629 STEAM, REFORMING, HYDROCARBON#
22208 REFORMING, HYDROCARBON#
23025 ING, AMMONIA, METHANOL, STEAM REFORMING, HYDROCARBON, PURIFI
22635 SION, PARTIAL/ AMMONIA, STEAM REFORMING, HYDROCARBON, CONVER
<table>
<thead>
<tr>
<th>Keyword Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYWORD INDEX</td>
<td>SECTION 'K'</td>
</tr>
<tr>
<td>23415 A/ PALLADIUM, MEMBRANE, STEAM REFORMING, HYDROCARBON, AMMONIA</td>
<td></td>
</tr>
<tr>
<td>22611 STEAM REFORMING, METHANE, KINETICS</td>
<td></td>
</tr>
<tr>
<td>22104 REFORMING, NAPHTHA</td>
<td></td>
</tr>
<tr>
<td>22217 G, HYDROCARBON, PURIFICATION, REFORMING, OXIDATION, CRACKING</td>
<td></td>
</tr>
<tr>
<td>34250 REFORMING, OXIDATION</td>
<td></td>
</tr>
<tr>
<td>22122 PRODUCTION, HYDROCARBON, STEAM REFORMING, PARTIAL OXIDATION</td>
<td></td>
</tr>
<tr>
<td>22100 HYDROCARBONS, COAL, EN/ STEAM REFORMING, PARTIAL OXIDATION</td>
<td></td>
</tr>
<tr>
<td>20507 ON, ELECTROLYSIS, COST, STEAM REFORMING, PARTIAL OXIDATION</td>
<td></td>
</tr>
<tr>
<td>22110 HYDROCARBONS STEAM REFORMING, PRODUCTION, DESIGN</td>
<td></td>
</tr>
<tr>
<td>22218 AL OXIDATION, RESIDUE, STEAM REFORMING, PRODUCTION, PROCESS</td>
<td></td>
</tr>
<tr>
<td>22603 ENIC, LI/ HYDROCARBONS, STEAM REFORMING, PURIFICATION, CRYOG</td>
<td></td>
</tr>
<tr>
<td>23004 HYDROGEN, PRODUCTION, STEAM REFORMING, PURITY, CRYOGENIC</td>
<td></td>
</tr>
<tr>
<td>23440, SEPARATOR, AMMONIA, CATALYST, REFORMING, RECYCLE, COST, FUEL</td>
<td></td>
</tr>
<tr>
<td>22604, PERFORMANCE, PRESSURE, STEAM REFORMING, REFORMER, CORROSION</td>
<td></td>
</tr>
<tr>
<td>22140 REFORMING, STEAM, HYDROCARBON</td>
<td></td>
</tr>
<tr>
<td>22106 HYDROCRACK, REFORMING, STEAM</td>
<td></td>
</tr>
<tr>
<td>22171 REFORMING, STEAM</td>
<td></td>
</tr>
<tr>
<td>22143 PRODUCTION, GENERATION, SUPPLY, REFORMING, VOLTAGE, TEMPERATURE</td>
<td></td>
</tr>
<tr>
<td>22134 HYDROCARBON, STEAM REFORMING</td>
<td></td>
</tr>
<tr>
<td>22115 FUEL CELL, STEAM REFORMING</td>
<td></td>
</tr>
<tr>
<td>22190 CATALYST, STEAM REFORMING</td>
<td></td>
</tr>
<tr>
<td>22202 PRESSURE, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22193 PRESSURE, CATALYST, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22155 CATALYST, HYDROCARBON, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22158 FUEL CELL, HYDROCARBON, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22180 STEAM, PURIFICATION, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22618 PRESSURE, OXIDATION, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22660 TEMPERATURE, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22645 AMMONIA, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22633 STEAM, CATALYST, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22266 HYDROCARBON, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22630 COAL, FUEL REFORMING</td>
<td></td>
</tr>
<tr>
<td>22209 CATALYST, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22628 GAS, PROCESS, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22207 CATALYST, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22644 CATALYST, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22638 REACTION, STEAM, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22639 NUCLEAR, HEAT, REFORMING</td>
<td></td>
</tr>
<tr>
<td>22650 HYDROCARBON, REFORMING</td>
<td></td>
</tr>
<tr>
<td>34247 REFORMING</td>
<td></td>
</tr>
<tr>
<td>23423 DENSATION, METHANE, RECYCLE, REFRIGERATION, SEPARATION, CON</td>
<td></td>
</tr>
<tr>
<td>23000 REDUCTION, REGENERATION, RECYCLE</td>
<td></td>
</tr>
<tr>
<td>23022 T, WATER, REDUCTION, REGENERATION, TEMPERATURE, HEAT</td>
<td></td>
</tr>
<tr>
<td>34237 FUEL CELL, REGENERATION</td>
<td></td>
</tr>
<tr>
<td>34238 FUEL CELL, REGENERATION</td>
<td></td>
</tr>
<tr>
<td>34240 FUEL CELL, REGENERATION</td>
<td></td>
</tr>
<tr>
<td>34838 DESIGN, TEST, REGENERATION</td>
<td></td>
</tr>
<tr>
<td>23424 N, HYDROCARBON, CONDENSATION, REGENERATION, SEPARATION</td>
<td></td>
</tr>
<tr>
<td>23425 TION, ABSORPTION, ADSORPTION, REGENERATION, REFRIGERATION</td>
<td></td>
</tr>
<tr>
<td>23028 FUEL CELL, REGENERATIVE</td>
<td></td>
</tr>
<tr>
<td>20018 FUEL CELL, REGENERATIVE</td>
<td></td>
</tr>
<tr>
<td>34846 FUEL CELL, REGENERATOR, ELECTROLYSIS</td>
<td></td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

34103 WEIGHT, RELIABILITY, ELECTROLYTE

40408 INSULATION, RELIABILITY

34255 WATER, REMOVAL, HEAT, VIBRATION

34504 HEAT, REMOVAL, WATER, ENDURANCE

34268 HEAT, REMOVAL, WATER

34506 HEAT, REMOVAL, WATER

34206 AEROSPACE, HEAT, REMOVAL, WATER

34503 FUEL CELL, WATER, HEAT, REMOVAL

34507 FUEL CELL, WATER, REMOVAL

34509 WATER, REMOVAL

34510 WATER, REMOVAL

34505 FUEL CELL, MOISTURE, REMOVAL

34254 WATER, REMOVAL

10067 REFINING, UTILITY, ELECTRIC, RESEARCH, FOSSIL, FUEL, ICAL

32025 AUTOMOBILE, RESEARCH, FUEL

30019 INTERNAL COMBUSTION, RESEARCH

34013 DESIGN, RESEARCH

34027 OXIDATION, RESEARCH

22218 DUCTION, PARTIAL OXIDATION, RESIDUE, STEAM, REFORMING, PRO

22109 ODUCTION, HYDROCARBONS, COAL, RESIDUE, HYDROGEN, PR

52030 EMENT, ENVIRONMENT, REACTION, REVERSIBLE, EMBRITTLE

52053 TY, EMBRITTLEMENT, REVIEW, STRENGTH, SUSCEPTIBILITY

51009 SAFETY, LEAK, FIRE, DETECTION, REVIEW

50015 GAS, SYSTEM, DESIGN, REVIEW

34033 FUEL CELL, REVIEW

34012 FUEL CELL, REVIEW

10086 STORAGE, TRANSMISSION, EXPORT, REVIEW, FISSION, HYDROGEN, S

33033 ROCKET, COMBUSTION

30002 ROCKET, COMBUSTION

30046 ROCKET, ENGINE, CRYOGENIC

30030 ROCKET, ENGINE, FUEL

30048 ROCKET, ENGINE, PERFORMANCE

30058 THRUST, ROCKET, ENGINE

30067 DESIGN, ROCKET, ENGINE

30047 DESIGN, ROCKET, ENGINE

30057 REVIEW, ROCKET, ENGINE

30028 INJECTION, ROCKET, ENGINE

30031 ROCKET, EXHAUST

30026 ROCKET, FUEL

33026 ROCKET, HEAT, TRANSFER

30013 ROCKET, INJECTION

30075 NE, ROCKET, LIQUID, HYDROGEN, ENGINE

30074 EN, FLUORINE, PROPE, HISTORY, ROCKET, LIQUID, HYDROGEN, OXYG

30054 STUDY, ROCKET, MOTOR

30033 ROCKET, NOZZLE

30006 ROCKET, TEMPERATURE

30066 ROCKET, THRUST

33030 HEAT, ROCKET, TRANSFER

30035 PERFORMANCE, ROCKET

30049 THRUST, ROCKET

30038 PRESSURE, FLOW, ROCKET

606
KEYWORD INDEX

SECTION 'K'

30071 COMBUSTION, ROCKET#
30005 GAS, NUCLEAR, ROCKET#
30009 TURBINE, NUCLEAR, ROCKET#
30007 NUCLEAR, ROCKET#
30022 FUEL, ROCKET#
30003 NUCLEAR, ROCKET#
30008 TURBINE, NUCLEAR, ROCKET#
33037 COMBUSTION, ROCKET#
50017 SAFETY, PRESSURE, RUPTURE, FIRE# EMBRITTLEM
52049 ENT, STEEL, COATING, SURFACE, RUPTURE#
50000 LIQUID, SAFETY, CONTROL, DAMAGE#
50008 GAS, LIQUID# SAFETY, CRYOGENIC, COMPRESSED,
10031 RGY, SYNTHETIC, FUEL, SYSTEM, SAFETY, CRYOGENICELECTROLYSIS#
10005 HYDROGEN, ENERGY, FUEL, USE, SAFETY, ELECTROLYSIS, ENVIRONMENT#
10006 L, ENERGY, TRANSMISSION, USE, SAFETY, ENVIRONMENT# /ION, FUE
51014 TERIA#
51011 SAFETY, EXPLOSION, LIQUID, CRI
50009 LIQUID, SAFETY, FIRE#
50002 DESIGN# SAFETY, FURNACE, TEMPERATURE,
51009 REVIEW# SAFETY, LEAK, FIRE, DETECTION,
50001 TION# SAFETY, LIQUID, FIRE, ASPHYXIA
50011 SAFETY, LIQUID, LABORATORY#
50014 N# SAFETY, MANUAL, LEAKAGE, DESIG
50004 PRESSURE, SAFETY, NARCOTIC#
10055 EL, ECONOMY, ENERGY, ECOLOGY, SAFETY, NUCLEAR, COAL# /EN, FU
50017 E# SAFETY, PRESSURE, RUPTURE, FIR
50005 LIQUID, HANDLING# SAFETY, STANDARD, COMMERCIAL,
51002 UID, GAS, EXPLOSION# SAFETY, STORAGE, HANDLING, LIQ
32002 SION, POLLUTION, / EFFICIENCY, SAFETY, STORAGE, HYDRIE, EMIS
50013 PERATURE, CONTAMINANT# SAFETY, STORAGE, PRESSURE, TEM
50010 TRUMETATION# SAFETY, STORAGE, TRANSFER, INS
10046 NALYSIS, ALTERNATIVE,NUCLEAR, SAFETY, TRANSPORTATION# /GY, A
10077 N, FUEL, CRYOGENIC, PROPERTY, SAFETY, TRANSPORTATION,STANDAR
10010 HYDROGEN, SAFETY#
10051 , SYNTHETIC, FUEL, CRYOGENIC, SAFETY# HYDROGEN
50003 STEAM, REFORMING, CONTROL, SAFETY#
42004 GAS, STANDARD, CONSUMER, SAFETY#
50016 LIQUID, SYSTEM, SAFETY#
50007 FLARE, VENT, SAFETY#
50006 RAFT, FUEL, LIQUID, HANDLING, SAFETY# SPACEC
51005 FLARE, FLOW, INSTABILITY, SAFETY#
31005 PERFORMANCE, COST, STORAGE, SAFETY#
30054 ON, OXYGEN, NUCLEAR, STORAGE, SAFETY# FUEL, ENGINE, POLLUTI
20005 RING METHODSOPERATION, COSTS, SAFETY# /EN, OXYGEN, MANUFACTU
22608 , PURIFICATION, DISTRIBUTION, SAFETY# FORMING, COST, PROCESS
10079 LIQUID, ECONOMICS, CRYOGENIC, SAFETY# TRANSMISSION, STORAGE,
34006 ACID, ALKALINE, MOLTEN SALT#
23440 FORMING, RECYCLE, COST, FUEL, SEAPRATION# /NIA, CATALYST, RE
33015 COMPUTER, SELF-IGNITION#
20015 OGENATION, FERTILIZERS, METAL SEMICONDUCTOR# /TROLYSIS, HYDR
23602 ION, TEMPERATURE, CATALYST, / SENSITIZER, CONVERSION, OXIDAT
40309 SENSOR, DETECTION#
40302 SENSOR, LIQUID-LEVEL#
KEYWORD INDEX

<table>
<thead>
<tr>
<th>Section 'K'</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>23403 EMICAL, PETROLEUM, CRYOGENIC,</td>
<td>SEPARATION, AMMONIA, PURIFICATION</td>
</tr>
<tr>
<td>23423 ABE, RECYCLE# REFRIGERATION,</td>
<td>SEPARATION, CONDENSATION, METH</td>
</tr>
<tr>
<td>22605 NAPHTHA, AMMONIA, PRODUCTION,</td>
<td>SEPARATION, COST, NATURAL GAS,</td>
</tr>
<tr>
<td>23422 NITROGEN, PRESSURE,</td>
<td>SEPARATION, DIFFUSION#</td>
</tr>
<tr>
<td>23419 NSATION, REGENERATION, ADSORPTION,</td>
<td>SEPARATION, HYDROCARBON, CONDENSATION</td>
</tr>
<tr>
<td>23402 URE, COST, ECONOMY#,</td>
<td>SEPARATION, HYDROCARBON, PRESS</td>
</tr>
<tr>
<td>23407 SEPARATION, GAS#</td>
<td></td>
</tr>
<tr>
<td>23424 SEPARATION, PALLADIUM, PRESS</td>
<td></td>
</tr>
<tr>
<td>23430 SEPARATION, PERMEATION#</td>
<td></td>
</tr>
<tr>
<td>22613 ABSORPTION, SEPARATION, PROCESS, ANALYSIS#</td>
<td></td>
</tr>
<tr>
<td>22624 SEPARATION, PROCESS#</td>
<td></td>
</tr>
<tr>
<td>23434 SEPARATION, PYROLYSIS#</td>
<td></td>
</tr>
<tr>
<td>23417 E, TEMPERATURE, MEMBRANE, EL/</td>
<td>SEPARATION, PALLADIUM, PRESS</td>
</tr>
<tr>
<td>23430 SEPARATION, PALLADIUM#</td>
<td></td>
</tr>
<tr>
<td>23431 SEPARATION, PERMEATION#</td>
<td></td>
</tr>
<tr>
<td>34225 DESIGN, RECOVERY, CRYOGENIC,</td>
<td>SEPARATION#</td>
</tr>
<tr>
<td>34228 CATALYST, SEPARATION#</td>
<td></td>
</tr>
<tr>
<td>52015 EMBRITTLEMENT, SHEET, BENDING#</td>
<td></td>
</tr>
<tr>
<td>33056 SHOCK, INJECTOR, TURBULENCE#</td>
<td></td>
</tr>
<tr>
<td>33055 MIXING, CONCENTRATION, SHOCK#</td>
<td></td>
</tr>
<tr>
<td>33032 TRANSIENT, INDUCTION, SHOCK#</td>
<td></td>
</tr>
<tr>
<td>40415 LIQUID, INSULATION, SHUTTLE, COST#</td>
<td></td>
</tr>
<tr>
<td>30015 SPACE, SHUTTLE, ENGINE#</td>
<td></td>
</tr>
<tr>
<td>30021 SPACE, SHUTTLE, JET#</td>
<td></td>
</tr>
<tr>
<td>40604 SPACE, SHUTTLE, LIQUID, DISTRIBUTION#</td>
<td></td>
</tr>
<tr>
<td>30018 SPACE, SHUTTLE, POWER#</td>
<td></td>
</tr>
<tr>
<td>34844 FUEL CELL, SHUTTLE, POWER#</td>
<td></td>
</tr>
<tr>
<td>30017 SPACE, SHUTTLE, PROPULSION#</td>
<td></td>
</tr>
<tr>
<td>30016 SPACE, SHUTTLE, PROPULSION#</td>
<td></td>
</tr>
<tr>
<td>30014 SHUTTLE, SPACE, ENGINE#</td>
<td></td>
</tr>
<tr>
<td>40605 SHUTTLE, STORAGE, DESIGN#</td>
<td></td>
</tr>
<tr>
<td>33019 DESIGN, POWER, SHUTTLE#</td>
<td></td>
</tr>
<tr>
<td>30020 POWER, SPACE, SHUTTLE#</td>
<td></td>
</tr>
<tr>
<td>31001 PERSONIC, GAS TURBINE, SPACE, SHUTTLE#</td>
<td></td>
</tr>
<tr>
<td>34225 SHUTTLE#</td>
<td></td>
</tr>
<tr>
<td>34226 TEMPERATURE, SHUTTLE#</td>
<td></td>
</tr>
<tr>
<td>34806 EFFICIENCY, NICKEL, SILVER, CATALYST#</td>
<td></td>
</tr>
<tr>
<td>33063 NUMERICAL SOLUTION#</td>
<td>SIMULATION, COMPUTER, IGNITION</td>
</tr>
<tr>
<td>30043 TANK, SLOSHING, OSCILLATION#</td>
<td></td>
</tr>
<tr>
<td>31012 RANGE, PAYLOAD, COOLING, SLUSH, ECONOMY#</td>
<td></td>
</tr>
<tr>
<td>41011 ON#</td>
<td>LIQUID, SLUSH, FLOW, QUALITY, GENERATION</td>
</tr>
<tr>
<td>41004 ER, STORAGE, FLOW#</td>
<td>SLUSH, INSTRUMENTATION, TRANSFER</td>
</tr>
<tr>
<td>41003 Y#</td>
<td>SLUSH, INSTRUMENTATION, DENSITY</td>
</tr>
<tr>
<td>41000 RANSFER, PUMP#</td>
<td>SLUSH, PREPARATION, STORAGE, T</td>
</tr>
<tr>
<td>41010 RANSFER#</td>
<td>SLUSH, PRODUCTION, HANDLING, T</td>
</tr>
<tr>
<td>40504 LIQUID, SLUSH, PUMP, PERFORMANCE#</td>
<td></td>
</tr>
<tr>
<td>41009 SLUSH, PUMP#</td>
<td></td>
</tr>
<tr>
<td>41007 SLUSH, QUALITY, PARAHYDROGEN#</td>
<td></td>
</tr>
<tr>
<td>41018 AFT#</td>
<td>SLUSH, SOLID, STORAGE, SPACECRAFT</td>
</tr>
<tr>
<td>41008 SLUSH, SPACECRAFT#</td>
<td></td>
</tr>
<tr>
<td>41005 SLUSH, TRIPLE POINT, PROPERTY#</td>
<td></td>
</tr>
<tr>
<td>41002 NT, CRITICAL POINT, PROPERTY, SLUSH#</td>
<td>TRIPLE POINT, PROPERTY#</td>
</tr>
<tr>
<td>40300 FLOW, CRYOGENIC, MEASUREMENT, SLUSH#</td>
<td></td>
</tr>
</tbody>
</table>

608
<table>
<thead>
<tr>
<th>Index</th>
<th>Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>10068</td>
<td>YDROGEN, ENERGY, ENVIRONMENT, SOCIETY, LEGAL#</td>
</tr>
<tr>
<td>10086</td>
<td>STORAGE, T/ ENERGY, CRISIS, SOLAR, COAL, FISSION, HYDROGEN</td>
</tr>
<tr>
<td>10088</td>
<td>ENERGY, ALTERNATIVE, SOLAR, ENERGY, CARRIER, COAL#</td>
</tr>
<tr>
<td>10072</td>
<td>IONMAGNETOHYDRODYNAMIC, COST, SOLAR, ENERGY, CONVERSION# /ST</td>
</tr>
<tr>
<td>10075</td>
<td>HERMOCHEMICAL, WA/ ECONOMICS, SOLAR, ENERGY, ELECTROLYSIS, T</td>
</tr>
<tr>
<td>10084</td>
<td>SSIL, FUEL, BREEDER, REACTOR, SOLAR, ENERGY, HYDROGEN, TRANS</td>
</tr>
<tr>
<td>10087</td>
<td>WER, FUEL CELL, ELECTROLYSIS, SOLAR, ENERGY# POLLUTION, POO</td>
</tr>
<tr>
<td>23607</td>
<td>PHOTOCHEMISTRY, OXIDATION, SOLAR, REDUCTION, WATER#</td>
</tr>
<tr>
<td>10089</td>
<td>ADIATION, EFFICIENCY/ ENERGY, SOLAR, WATER, DECOMPOSITION, R</td>
</tr>
<tr>
<td>34020</td>
<td>APPLICATION, ELECTRODE, SOLID-ELECTROLYTE, TEMPERATURE</td>
</tr>
<tr>
<td>40112</td>
<td>CONDUCTIVITY, SOLID, LIQUID, PARAHYDROGEN#</td>
</tr>
<tr>
<td>40211</td>
<td>LIQUID, SOLID, PARAHYDROGEN#</td>
</tr>
<tr>
<td>41006</td>
<td>SOLID, PROPERTY, CONDUCTIVITY#</td>
</tr>
<tr>
<td>41018</td>
<td>SLUSH, SOLID, STORAGE, SPACECRAFT#</td>
</tr>
<tr>
<td>40406</td>
<td>STORAGE, CRYOGENIC, SOLIDIFICATION#</td>
</tr>
<tr>
<td>40405</td>
<td>INSULATION, CRYOGENIC, SOLIDIFICATION#</td>
</tr>
<tr>
<td>52021</td>
<td>STEEL, DIFFUSION, SOLUBILITY, PERMEATION#</td>
</tr>
<tr>
<td>52005</td>
<td>METAL, PERMEATION, SOLUBILITY, THERMODYNAMICS#</td>
</tr>
<tr>
<td>52009</td>
<td>EATION, EMBRITTLEMENT, METAL, SOLUBILITY#, PERM</td>
</tr>
<tr>
<td>33009</td>
<td>BER, VENT, EXHAUST, NUMERICAL SOLUTION#</td>
</tr>
<tr>
<td>33001</td>
<td>NUMERICAL SOLUTION#</td>
</tr>
<tr>
<td>33002</td>
<td>CTION, TEMPERATURE, NUMERICAL SOLUTION#</td>
</tr>
<tr>
<td>33003</td>
<td>COMPUTER, IGNITION, NUMERICAL SOLUTION#</td>
</tr>
<tr>
<td>10078</td>
<td>RATION, SUPPLY, DEMAN/ ENERGY, SOURCE, ELECTRICITY, USE, GENE</td>
</tr>
<tr>
<td>10085</td>
<td>/ HYDROGEN, ECONOMY, ENERGY, SOURCE, PRODUCTION, TECHNOLOGY</td>
</tr>
<tr>
<td>34841</td>
<td>FUEL CELL, SPACE, ENERGY#</td>
</tr>
<tr>
<td>30014</td>
<td>SHUTTLE, SPACE, ENGINE#</td>
</tr>
<tr>
<td>30011</td>
<td>SPACE, ENGINE#</td>
</tr>
<tr>
<td>30070</td>
<td>FICIENCY, WASTE/ TERRESTRIAL, SPACE, MARINE, HEAT, ALGAE, EF</td>
</tr>
<tr>
<td>30059</td>
<td>ENGINE, SPACE, POWER#</td>
</tr>
<tr>
<td>30015</td>
<td>SPACE, SHUTTLE, ENGINE#</td>
</tr>
<tr>
<td>30021</td>
<td>SPACE, SHUTTLE, JET#</td>
</tr>
<tr>
<td>30018</td>
<td>SPACE, SHUTTLE, POWER#</td>
</tr>
<tr>
<td>30016</td>
<td>SPACE, SHUTTLE, PROPULSION#</td>
</tr>
<tr>
<td>30017</td>
<td>SPACE, SHUTTLE, PROPULSION#</td>
</tr>
<tr>
<td>30020</td>
<td>POWER, SPACE, SHUTTLE#</td>
</tr>
<tr>
<td>31001</td>
<td>SUPersonic, GAS TURBINE, SPACE, SHUTTLE#</td>
</tr>
<tr>
<td>30000</td>
<td>LIQUID, ENGINE, SPACE#</td>
</tr>
<tr>
<td>20505</td>
<td>EN, PRODUCTION, ELECTROLYSIS, SPACECRAFT, DESIGN# OXYG</td>
</tr>
<tr>
<td>34822</td>
<td>FUEL CELL, SPACECRAFT, DESIGN#</td>
</tr>
<tr>
<td>51010</td>
<td>SIDN# EXPLOSION, SPACECRAFT, DETECTION, SUPPRESS#</td>
</tr>
<tr>
<td>52033</td>
<td>N, METAL# EMBRITTLEMENT, SPACECRAFT, FAILURE, PREVENTIO</td>
</tr>
<tr>
<td>50006</td>
<td>LING, SAFETY#</td>
</tr>
<tr>
<td>51007</td>
<td>CTION#</td>
</tr>
<tr>
<td>20019</td>
<td>ELECTROLYSIS, SPACECRAFT, OXYGEN#</td>
</tr>
<tr>
<td>52057</td>
<td>LANT, METAL#</td>
</tr>
<tr>
<td>34820</td>
<td>T# HYDROGEN, WATER, SPACECRAFT, PROPPELLANT#</td>
</tr>
<tr>
<td>20000</td>
<td>HYDROGEN, WATER, SPACECRAFT, PROPPELLANT#</td>
</tr>
<tr>
<td>40410</td>
<td>LIQUEFICATION, SPACECRAFT, THERMODYNAMICS#</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

34826 FUEL CELL, SPACECRAFT
40005 LIQUID, HYDROGEN, CRYOGENIC, SPACECRAFT
34263 FUEL CELL, SPACECRAFT
34249LIQUID, SOLID, STORAGE, SPACECRAFT
40028 FUEL CELL, SPACECRAFT
34271 FUEL CELL, TECHNOLOGY, SPACECRAFT
40403 N, STRUCTURE, DESIGN, LIQUID, SPACECRAFT
41018 SLUSH, SOLID, STORAGE, SPACECRAFT
40407 FOAM, POLYURETHANE, SPACECRAFT
41008 SLUSH, SPACECRAFT
30045 PERFORMANCE, JET, SPACECRAFT
30039 COMPRESSION, SPACECRAFT
31010 LOW, SPACECRAFT
30053 EJECTOR, SPECIFIC IMPULSE, THRUST, AIRF
30070 RECOMBINATION, PERFORMANCE, SPECIFIC IMPULSE
21015 ENERGY, REACTOR, HEAT, WATER, SPLITTING, CYCLE, PROCESS, THE
21016 CLEAR, THERMOCHEMICAL, WATER, SPLITTING, TECHNOLOGY, EFFICIENCY
21014 PROCESS, NUCLEAR, HEAT, WATER, SPLITTING, THERMOCHEMICAL EFFICIENCY
33034 STABILITY, CONCENTRATION
33049 STABILITY, IGNITION, DRAG
33052 STABILITY, TEMPERATURE
33054 STABILITY
30037 COMBUSTION, STABILITY
43007 HYDRIDE, ENERGY, STORAGE, STABILITY
52010 PHASE, TRANSFORMATION
52022 STEEL, STAINLESS, AUSTENITE
52037 OCATION, MARTENSITE, STEEL, STAINLESS, EMBRITTLEMENT, DISLOCATION
52052 OSION, CRACK, STRESS, STAINLESS, EMBRITTLEMENT, CORROSION
50005 HANDLING, SAFETY, STANDARD, COMMERCIAL, LIQUID
42004 GAS, STANDARD, CONSUMER, SAFETY
32014 POWER, STANDARD, POLLUTION
10977 PROPERTY, SAFETY, TRANSPORTATION, STANDARDS, APPLICATIONS, SAFETY
34508 FUEL CELL, TRANSIENT, STEADY-STATE, ANALOG
40204 STATE, EQUATION, PHASE
20016 ELECTROLYSIS, WATER, STATIC
34508 FUEL CELL, TRANSIENT, STEADY-STATE, ANALOG
22174 HYDROCARBON, STEAM CATALYST
23029 ROCARBONS, AMMONIA, CRACKING, STEAM REFORMING, CATALYST, METHANE
22636 STEAM REFORMING, CONVERSION
22608 PURIFICATION, DI/ REFINERY, STEAM REFORMING, COST, PROCESS
22635 CONVERSION, PARTIAL/ AMMONIA, STEAM REFORMING, HYDROCARBON
23025 CRACKING, AMMONIA, METHANOL, STEAM REFORMING, HYDROCARBON
23415 AMMONIA/ PALLADIUM, MEMBRANE, STEAM REFORMING, HYDROCARBON
22112 CHEMICAL, PROCESS, DESIGN, STEAM REFORMING, HYDROCARBONS
22611 TICS, STEAM REFORMING, METHANE, KINE
22212 GEN, PRODUCTION, HYDROCARBON, STEAM REFORMING, PARTIAL OXIDATION
20507 OXIDATION, ELECTROLYSIS, COST, STEAM REFORMING, PARTIAL OXIDATION
22100 TION, HYDROCARBONS, COAL, EN/ STEAM REFORMING, PARTIAL OXIDATION
22110 TION, HYDROCARBONS, STEAM REFORMING, PARTIAL OXIDATION
22114 DESIGN, CONVERSION, HYDROGEN, STEAM REFORMING, PRODUCTION, D
23004 ENIC, HYDROGEN, PRODUCTION, STEAM REFORMING, PURIFICATION, CRYOGENIC
22603 CRYOGENIC, LI/ HYDROCARBONS, STEAM REFORMING, PURIFICATION
22604 COMPRESSION, PERFORMANCE, PRESSURE, STEAM REFORMING, REFORMER, CRYOGENIC
KEYWORD INDEX

SECTION 'K'

34833 ELECTROLYTE, AIR, STEAM, ANODE#
22633 STEAM, CATALYST, REFORMING#
22196 STEAM, CONVERSION, GAS#
22002 N, INDUSTRIAL, GAS, CHARCOAL, STEAM, DECOMPOSITION, ECONOMIC
10058 COMBUSTION, HYDROGEN, OXYGEN, STEAM, FUEL, ECONOMY#
22168 STEAM, GASOLINE#
22140 REFORMING, STEAM, HYDROCARBON#
22187 REFINING, STEAM, HYDROCRACK#
22003 STEAM, IRON, CYCLE, HYDROGEN#
22173 STEAM, NAPHTHA, CATALYST#
22462 STEAM, OXYGEN#
22177 HYDROCARBON, STEAM, PRESSURE#
22139 HYDROCARBON, STEAM, PRESSURE#
20500 X/ HYDROGEN, ELECTROCHEMICAL, STEAM, PRODUCTION, ZIRCONIUM O
22180 # STEAM, PURIFICATION, REFORMING
23002 HYDROGEN, PRODUCTION, DESIGN, STEAM, REACTOR, PROCESS, HEAT#
22157 STEAM, REFORMING, CATALYST#
22183 STEAM, REFORMING, CATALYST#
22162 STEAM, REFORMING, CATALYST#
22144 STEAM, REFORMING, CATALYST#
22147 STEAM, REFORMING, CATALYST#
50003 ETY# STEAM, REFORMING, CONTROL, SAF
50012 OSION# STEAM, REFORMING, DESIGN, CORR
22131 STEAM, REFORMING, FUEL CELL#
22132 STEAM, REFORMING, GAS#
22107 CHEMICAL DESIGN/ PRODUCTION, STEAM, REFORMING, HYDROCARBON,
22126 STEAM, REFORMING, HYDROCARBON#
22108 STEAM, REFORMING, HYDROCARBON#
22142 STEAM, REFORMING, HYDROCARBON#
22185 STEAM, REFORMING, HYDROCARBON#
22629 STEAM, REFORMING, HYDROCARBON#
22218 PARTIAL OXIDATION, RESIDUE, STEAM, REFORMING, PRODUCTION,
22638 REACTION, STEAM, REFORMING#
22190 CATALYST, STEAM, REFORMING#
22134 HYDROCARBON, STEAM, REFORMING#
22115 FUEL CELL, STEAM, REFORMING#
22148 GASIFICATION, FUEL, STEAM#
22106 HYDROCRACK, REFORMING, STEAM#
22164 CATALYST, STEAM#
22171 REFORMING, STEAM#
22160 CATALYST, NICKEL, STEAM#
22203 HYDROCARBON, STEAM#
22637 HYDROCARBON, STEAM#
33016 COMBUSTION, STEAM#
52035 IFFUSION# IRON, STEEL, ABSORPTION, CATHODIC, D
52049 RE# EMBRITTLEMENT, STEEL, COATING, SURFACE, RUPTU
52044 OATING, NICKEL# STEEL, CRACKING, PROTECTION, C
52019 # EMBRITTLEMENT, STEEL, CYLINDER, GAS, PRESSURE
52021 PERMEATION# STEEL, DIFFUSION, SOLUBILITY,
52010 NSFORMATION# STAINLESS STEEL, DISLOCATION, PHASE, TRA
52004 , DUCTILITY, CHEMISORPTION# STEEL, EMBRITTLEMENT, STRENGTH
52001 # STEEL, EMBRITTLEMENT, STRENGTH
52051 EMBRITTLEMENT, STEEL, FRACTURE, MECHANISM#
| Page 612 |
KEYWORD INDEX

SECTION 'K'

<table>
<thead>
<tr>
<th>Key Word Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>FUEL, ENERGY, TRANSMISSION, STORAGE, USE</td>
</tr>
<tr>
<td>22176</td>
<td>HYDROCARBON, FUEL CELL, STORAGE</td>
</tr>
<tr>
<td>42003</td>
<td>PIPE, COST, TRANSPORT, STORAGE</td>
</tr>
<tr>
<td>40420</td>
<td>INSULATION, MULTILAYER, STORAGE</td>
</tr>
<tr>
<td>43011</td>
<td>HYDRIE, METAL, FUEL, ENGINE, STORAGE</td>
</tr>
<tr>
<td>32020</td>
<td>STION, POLLUTION, EFFICIENCY, STORAGE</td>
</tr>
<tr>
<td>23415</td>
<td>ARBON, AMMONIA, DISSOCIATION, STORAGE /AM REFORMING, HYDROC</td>
</tr>
<tr>
<td>20510</td>
<td>ENERGY, TRANSMISSION, ENERGY STORAGE /YSIS, POLYMER, FUEL,</td>
</tr>
<tr>
<td>40417</td>
<td>STRATIFICATION, TANK, LIQUID</td>
</tr>
<tr>
<td>52007</td>
<td>EMBRITTLEMENT, STEEL, HIGH STRENGTH, COATING, SURFACE</td>
</tr>
<tr>
<td>52008</td>
<td>EMBRITTLEMENT, STEEL, STRENGTH, CRACK, STRESS, EMBR</td>
</tr>
<tr>
<td>52013</td>
<td>EMBRITTLEMENT, MECHANISM, STEELS, STRENGTH, DIFFUSION</td>
</tr>
<tr>
<td>52004</td>
<td>TION, STEEL, EMBRITTLEMENT, STRENGTH, DUCTILITY, CHEMISORP</td>
</tr>
<tr>
<td>52016</td>
<td>EMBRITTLEMENT, CRACK, STEEL, STRENGTH, STRESS, CORROSION</td>
</tr>
<tr>
<td>52053</td>
<td>EMBRITTLEMENT, REVIEW, STRENGTH, SUSCEPTIBILITY</td>
</tr>
<tr>
<td>52034</td>
<td>EMBRITTLEMENT, ALLOYS, HIGH STRENGTH, SUSCEPTIBILITY</td>
</tr>
<tr>
<td>52027</td>
<td>EMBRITTLEMENT, STEEL, STRENGTH, TENSILE</td>
</tr>
<tr>
<td>52058</td>
<td>EMBRITTLEMENT, CRACK, STRENGTH</td>
</tr>
<tr>
<td>52001</td>
<td>STEEL, EMBRITTLEMENT, STRENGTH</td>
</tr>
<tr>
<td>52016</td>
<td>MENT, CRACK, STEEL, STRENGTH, STRESS, CORROSION, EMBRITTLE</td>
</tr>
<tr>
<td>52008</td>
<td>STEEL, STRENGTH, CRACK, STRESS, EMBRITTLEMENT</td>
</tr>
<tr>
<td>52003</td>
<td>TANTALUM, DUCTILITY, STRESS</td>
</tr>
<tr>
<td>52052</td>
<td>RITTLEMENT, CORROSION, CRACK, STRESS</td>
</tr>
<tr>
<td>40404</td>
<td>AIRCRAFT, STRUCTURAL, HYPERSONIC</td>
</tr>
<tr>
<td>40403</td>
<td>CECRAFT, INSULATION, STRUCTURE, DESIGN, LIQUID, SPA</td>
</tr>
<tr>
<td>52011</td>
<td>EMBRITTLEMENT, METAL, NONFERROUS, STRUCTURE</td>
</tr>
<tr>
<td>20011</td>
<td>HYDROGEN, ELECTROLYSIS, STUART CELL</td>
</tr>
<tr>
<td>10043</td>
<td>UEL, ECOLOGY, ENERGY, SYSTEM, STUDY, COST, POLLUTION, TRANSM</td>
</tr>
<tr>
<td>21012</td>
<td>CLE, DECOMPOSITION, CHEMICAL, STUDY, ECONOMICS, KINETICS, TH</td>
</tr>
<tr>
<td>10046</td>
<td>NATIV/ HYDROGEN, FUEL, WATER, STUDY, ENERGY, ANALYSIS, ALTER</td>
</tr>
<tr>
<td>10069</td>
<td>S# HYDROGEN, SYSTEMS, STUDY, ENERGY, COSTS, ECONOMIC</td>
</tr>
<tr>
<td>10048</td>
<td>STORAGE, ALTERNATE/ HYDROGEN, STUDY, ENERGY, ECOLOGY, FOSSIL</td>
</tr>
<tr>
<td>31004</td>
<td>SUPERSONIC, OPTIMUM, STUDY, ENERGY</td>
</tr>
<tr>
<td>10040</td>
<td>HYDROGEN, ENERGY, MARKET, STUDY, INTERMEDIATE</td>
</tr>
<tr>
<td>10012</td>
<td>T, SYSTEM ANALYSIS/ HYDROGEN, STUDY, PRODUCTION, LIQUID, COS</td>
</tr>
<tr>
<td>30054</td>
<td>STUDY, ROCKET, MOTOR</td>
</tr>
<tr>
<td>31002</td>
<td>STUDY, SUBSONIC, SUPERSONIC</td>
</tr>
<tr>
<td>30027</td>
<td>PROPELLANT, STUDY</td>
</tr>
<tr>
<td>22002</td>
<td>AM, DECOMPOSITION, ECONOMICS, STUDY /AL, GAS, CHARCOAL, STE</td>
</tr>
<tr>
<td>40210</td>
<td>HEAT TRANSFER, TRIPLE POINT, SUBLIMATION</td>
</tr>
<tr>
<td>33020</td>
<td>SUBSONIC, COMBUSTION</td>
</tr>
<tr>
<td>31002</td>
<td>STUDY, SUBSONIC, SUPERSONIC</td>
</tr>
<tr>
<td>33041</td>
<td>MIXING, TRANSPORT, SUBSONIC</td>
</tr>
<tr>
<td>40508</td>
<td>TEST, PUMP, SUCTION</td>
</tr>
<tr>
<td>23203</td>
<td>OXIDE, METABOLISM, MECHANISM, SUGAR, CARBON DI</td>
</tr>
<tr>
<td>20013</td>
<td>PRODUCTION, HYDROGEN, OXYGEN, SULFURIC ACID, WATER, AMMONIA,</td>
</tr>
<tr>
<td>41015</td>
<td>METAL, DENSITY, SUPERCONDUCTOR</td>
</tr>
<tr>
<td>33058</td>
<td>SUBSONIC, FLOW, COMBUSTION</td>
</tr>
<tr>
<td>31006</td>
<td>NSUMPTION</td>
</tr>
<tr>
<td>31001</td>
<td>SHUTTLE</td>
</tr>
<tr>
<td>31004</td>
<td>EHRG</td>
</tr>
<tr>
<td>31002</td>
<td>STUDY, SUBSONIC, SUPERSONIC</td>
</tr>
<tr>
<td>10078</td>
<td>ELECTRICITY, USE, GENERATION, SUPPLY, DEMAND, TRANSMISSION, EN</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

<table>
<thead>
<tr>
<th>Code</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>22143</td>
<td>MPER, PRODUCTION, GENERATION, SUPPLY, REFORMING, VOLTAGE, TE</td>
</tr>
<tr>
<td>51010</td>
<td>OSION, SPACECRAFT, DETECTION, SUPPRESSION#</td>
</tr>
<tr>
<td>52059</td>
<td>REACTION, TITANIUM, SURFACE, PRESSURE#</td>
</tr>
<tr>
<td>52049</td>
<td>MBRITTLEMENT, STEEL, COATING, SURFACE, RUPTURE#</td>
</tr>
<tr>
<td>52007</td>
<td>TEEL, HIGH STRENGTH, COATING, SURFACE#</td>
</tr>
<tr>
<td>51012</td>
<td>FLAMMABILITY, EXPLOSION, SURVEY, IGNITION, REACTION#</td>
</tr>
<tr>
<td>52023</td>
<td>STEEL, SUSCEPTIBILITY, EMBRITTLEMENT#</td>
</tr>
<tr>
<td>52034</td>
<td>EMENT, ALLOYS, HIGH STRENGTH, SUSCEPTIBILITY#</td>
</tr>
<tr>
<td>52053</td>
<td>RITTLEMENT, REVIEW, STRENGTH, SUSCEPTIBILITY#</td>
</tr>
<tr>
<td>22007</td>
<td>OGEN, PRODUCTION, COST, COAL, SYNTHESIS GAS, AMMONIA#</td>
</tr>
<tr>
<td>22000</td>
<td>IFICATION, METHANE, METHANOL, SYNTHESIS GAS, ENERGY#</td>
</tr>
<tr>
<td>23421</td>
<td>TURE, CONDENSATI/ EXTRACTION, SYNTHESIS GAS, HELIUM, TEMPERA</td>
</tr>
<tr>
<td>22006</td>
<td>EL, OI/ HYDROGEN, PRODUCTION, SYNTHESIS GAS, HYDROCARBON, FU</td>
</tr>
<tr>
<td>22009</td>
<td>DROGEN, PRODUCTION, CATALYST, SYNTHESIS GAS, METHANE#</td>
</tr>
<tr>
<td>22130</td>
<td>HYDROGEN, SYNTHESIS, GAS#</td>
</tr>
<tr>
<td>22165</td>
<td>AMMONIA, SYNTHESIS, GAS#</td>
</tr>
<tr>
<td>22610</td>
<td>ELD#</td>
</tr>
<tr>
<td>22627</td>
<td>GAS, PLASMA, SYNTHESIS#</td>
</tr>
<tr>
<td>22615</td>
<td>OXIDATION, SYNTHESIS#</td>
</tr>
<tr>
<td>22163</td>
<td>GAS, SYNTHESIS#</td>
</tr>
<tr>
<td>22123</td>
<td>POLLUTION, GAS, SYNTHESIS#</td>
</tr>
<tr>
<td>10033</td>
<td>LLUTION, P/ HYDROGEN, ENERGY, SYNTHETIC FUEL, ASSESSMENT, PO</td>
</tr>
<tr>
<td>20014</td>
<td>ERTI/ HYDROGEN, ELECTROLYSIS, SYNTHETIC, AMMONIA, NITROGEN F</td>
</tr>
<tr>
<td>10051</td>
<td>FETY#</td>
</tr>
<tr>
<td>10043</td>
<td>GY, SYSTEM, STUDY, HYDROGEN, SYNTHETIC, FUEL, CRYOGENIC, SA</td>
</tr>
<tr>
<td>10034</td>
<td>Y, NUCLEAR, CARRIE/ HYDROGEN, SYNTHETIC, FUEL, FUTURE, ENERG</td>
</tr>
<tr>
<td>10063</td>
<td>HYDROGEN, SYNTHETIC, FUEL, FUTURE#</td>
</tr>
<tr>
<td>10031</td>
<td>Y, CRYOGEN/ HYDROGEN, ENERGY, SYNTHETIC, FUEL, SYSTEM, SAFET</td>
</tr>
<tr>
<td>10064</td>
<td>HYDROGEN, FUEL, SYNTHETIC, TRANSPORTATION#</td>
</tr>
<tr>
<td>10073</td>
<td>FUEL, SYNTHETIC, WATER, ENERGY#</td>
</tr>
<tr>
<td>10022</td>
<td>ENERGY, USE, CRYOGENIC, FUEL, SYNTHETIC#</td>
</tr>
<tr>
<td>10012</td>
<td>DY, PRODUCTION, LIQUID, COST, SYSTEM ANALYSIS#</td>
</tr>
<tr>
<td>10050</td>
<td>ELECTRICITY, ANALYSIS, FUTURE, SYSTEM, ALTERNATIVE#</td>
</tr>
<tr>
<td>50015</td>
<td>GAS, SYSTEM, DESIGN, REVIEW#</td>
</tr>
<tr>
<td>22149</td>
<td>CARBONS, DESIGN, PURIFICATI/</td>
</tr>
<tr>
<td>22136</td>
<td>SYSTEM, FUEL CELLS, GAS, HYDRO</td>
</tr>
<tr>
<td>21007</td>
<td>THERMAL, WATER, CLOSED, SYSTEM, REACTION, PRODUCTION#</td>
</tr>
<tr>
<td>10031</td>
<td>GEN, ENERGY, SYNTHETIC, FUEL, SYSTEM, SAFETY, CRYOGENICELECT</td>
</tr>
<tr>
<td>50016</td>
<td>LIQUID, SYSTEM, SAFETY#</td>
</tr>
<tr>
<td>10043</td>
<td>HETIC, FUEL, ECOLOGY, ENERGY, SYSTEM, STUDY, COST, POLLUTION</td>
</tr>
<tr>
<td>10023</td>
<td>GEN, ENERGY, STORAGE, MEDIUM, SYSTEM, TRANSPORTATION#</td>
</tr>
<tr>
<td>40692</td>
<td>LIQUID, TRANSFER, SYSTEM#</td>
</tr>
<tr>
<td>42000</td>
<td>GAS, PIPE, DESIGN, SYSTEM#</td>
</tr>
<tr>
<td>34035</td>
<td>ELECTROLYTE, SYSTEM#</td>
</tr>
<tr>
<td>1089</td>
<td>ION, EFFICIENCY, TEMPERATURE, SYSTEM#</td>
</tr>
<tr>
<td>10069</td>
<td>ECONOMICS#</td>
</tr>
<tr>
<td>40213</td>
<td>AMICS#</td>
</tr>
<tr>
<td>40418</td>
<td>TABLE, PARAHYDROGEN, THERMODYN</td>
</tr>
<tr>
<td>40412</td>
<td>HYDRO, TANK, AIRCRAFT, HYPERSONIC#</td>
</tr>
<tr>
<td>40422</td>
<td>VENT, LIQUID, TANK, ANALYSIS#</td>
</tr>
<tr>
<td>40410</td>
<td>SIGN#</td>
</tr>
<tr>
<td>40416</td>
<td>UID#</td>
</tr>
<tr>
<td>40417</td>
<td>STRATIFICATION, TANK, LIQUID#</td>
</tr>
<tr>
<td>30043</td>
<td>TANK, SLOSHING, OSCILLATION#</td>
</tr>
</tbody>
</table>
SECTION 'K'

KEYWORD INDEX

40305 INSTRUMENTATION, CRYOGENIC, TEMPERATURE#
40201 AVITATION, VENTURI, PRESSURE, TEMPERATURE#
30006 ROCKET, TEMPERATURE#
32006 OXYGEN, EFFICIENCY, POLLUTION, TEMPERATURE#
51004 EXPLOSION, LIMIT, TEMPERATURE#
50206 S, REACTION, TITANIUM, ALLOY, TEMPERATURE#
50206 FRICTION, INTERNAL, DAMPING, TEMPERATURE#
52055 L, PROPERTY, METAL, PRESSURE, TEMPERATURE# STEEL,
34034 ELECTRODE, SOLID-ELECTROLYTE, TEMPERATURE# APPLICATION,
23413 MONIA, HYDROCARBON, PRESSURE, TEMPERATURE# ADSORPTION, AM
43034 ION, PRESSURE, THERMODYNAMIC, TEMPERATURE# BRUUM, DISSOCIATION
22634 HYDROCARBON, WATER, MEMBRANE, TEMPERATURE# CATALYSIS,
22625 FACTOR, EQUILIBRIUM, METHANE, TEMPERATURE# CARBON, HEAT, R
52056 GAS, EMBRITTLEMENT, TENSILE, PRESSURE, TEST#
52027 EMBRITTLEMENT, STEEL, STRENGTH, TENSILE# EM
52031 PALLADIUM, PROPERTY, TENSILE#
10070 AT, ALGAE, EFFICIENCY, WASTE, TERRESTRIAL, SPACE, MARINE, HE
34843 FUEL CELL, TEST, CONTROL#
40507 PUMP, LIQUID, TEST, EFFICIENCY#
30051 TEST, FLOW, ENGINE#
40508 TEST, PUMP, SUCTION#
34838 DESIGN, TEST, REGENERATION#
40419 EXPULSION, LIQUID, TEST# GAS, EMBR
52056 EMBRITTLEMENT, TENSILE, PRESSURE, TEST# GAS, EMBR
52017 EMBRITTLEMENT, DETECTION, TEST#
30050 ABLATION, TEST#
20512 OXY, FREE ENERGY, ENTROPY, THERMAL EFFICIENCY# N, ELECTR
21005 PRODUCTION, ENERGY, CYCLE, COST, THERMAL, DECOMPOSITION# L, CO
22651 ECONOMICS, HYDROGEN, GAS, THERMAL, DECOMPOSITION#
21002 NUCLEAR, WATER, CYCLE, THERMAL, EFFICIENCY#
40214 CRYOGENIC, THERMAL, MEASUREMENTS#
10083 LASTICS# HYDROGEN, WATER, THERMAL, PRODUCTION, ENERGY, P
40402 AIRCRAFT, THERMAL, PROTECTION, LIQUID#
21007 REACTION, PRODUCTION#, THERMAL, WATER, CLOSED, SYSTEM
21000 PRODUCTION, CATALYST, THERMAL, HY
21003 ION, CHEMICAL, ENERGY, USE, THERMAL# ELECTROLYSIS, DECOMPOSITION#
30010 GENERATOR, THERMIONIC#
21014 LEAR, HEAT, WATER, SPLITTING, THERMOCHEMICAL EFFICIENCY# UC
21016 NG, TECHNOLOGY, EFF/NUCLEAR, THERMOCHEMICAL, WATER, SPLITTING
10075 SOLAR, ENERGY, ELECTROLYSIS, THERMOCHEMICAL, WATER, DECOMPOSITION#
21015 R, SPLITTING, CYCLE, PROCESS, THERMOCHEMICAL# R, HEAT, WATER
34009 ROODE, THERMODYNAMIC, GALVANIC, ELECTRIC
43004 RHY, DISSOCIATION, PRESSURE, THERMODYNAMIC, TEMPERATURE# B
43003 ATURE, HYDRIDE, DISSOCIATION, THERMODYNAMIC# ESSURE, TEMPER
21013 TION, KINETIC/IRON CHLORIDES, THERMODYNAMICS, CHEMICAL, REACTION
22213 THERMODYNAMICS, COMBUSTION#
33007 THERMODYNAMICS, COMBUSTION#
40004 PUBLICATION, THERMODYNAMICS, CRYOGENIC#
21014 NUCLEAR, HEAT, WATER, SPLIT, THERMODYNAMICS, CYCLE, PROCESS
21012 STUDY, ECONOMICS, KINETICS, THERMODYNAMICS, DESIGN, PLANT#
34007 COST, THERMODYNAMICS, DESIGN#
34036 ALYST, MEMBRANE# THERMODYNAMICS, ELECTRODE, CAT
<table>
<thead>
<tr>
<th>Keyword Index</th>
<th>Properties, Thermodynamics, Parahydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>41011</td>
<td>Perty, Fluid</td>
</tr>
<tr>
<td>40208</td>
<td>Thermodynamics, Transport, Prop</td>
</tr>
<tr>
<td>40202</td>
<td>Thermodynamics, Transport, Com</td>
</tr>
<tr>
<td>40108</td>
<td>Liquefaction, Spacecraft, Thermodynamics</td>
</tr>
<tr>
<td>40213</td>
<td>Table, Parahydrogen, Thermodynamics</td>
</tr>
<tr>
<td>33008</td>
<td>Reaction, Thermodynamics</td>
</tr>
<tr>
<td>52005</td>
<td>etal, Permeation, Solubility, Thermodynamics</td>
</tr>
<tr>
<td>Section</td>
<td>Keywords</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>K</td>
<td>HYDROGEN, USE, STORAGE, TRANSMISSION, ELECTROLYSIS#</td>
</tr>
<tr>
<td></td>
<td>LYSIS, POLYMER, FUEL, ENERGY, TRANSMISSION, ENERGY STORAGE#/</td>
</tr>
<tr>
<td></td>
<td>FISSION, HYDROGEN, STORAGE, TRANSMISSION, EXPORT, REVIEW#/</td>
</tr>
<tr>
<td></td>
<td>ENERGY, PRODUCTION, STORAGE, TRANSMISSION, PERFORMANCE, CDS</td>
</tr>
<tr>
<td></td>
<td>HYDROGEN, FUEL, ENERGY, TRANSMISSION, STORAGE, USE#</td>
</tr>
<tr>
<td></td>
<td>ECONOMICS, CRYOGENIC/ ENERGY, TRANSMISSION, STORAGE, LIQUID,</td>
</tr>
<tr>
<td></td>
<td>ECONOMY, STORAGE, PRODUCTION, TRANSMISSION, USE, ELECTROLYSIS</td>
</tr>
<tr>
<td></td>
<td>EN, PRODUCTION, FUEL, ENERGY, TRANSMISSION, USE, SAFETY, ENV</td>
</tr>
<tr>
<td></td>
<td>ECONOMY, ENERGY, FUEL, STORAGE, TRANSMISSION, USE, ELECTROLYSIS</td>
</tr>
<tr>
<td></td>
<td>ECONOMY, PRODUCTION, STORAGE, TRANSMISSION, USE#/, ENERGY,</td>
</tr>
<tr>
<td></td>
<td>ONOMY, ENERGY, FUEL, STORAGE, TRANSMISSION, USE#/, BREEDER, REAC</td>
</tr>
<tr>
<td></td>
<td>TDR, SOLAR, ENERGY, HYDROGEN, TRANSMISSION#//, BREEDER, REAC</td>
</tr>
<tr>
<td></td>
<td>MARKET, FUEL, COST, STORAGE, TRANSMISSION, ELECTRICITY#/GY,</td>
</tr>
<tr>
<td></td>
<td>TDR, SOLAR, ENERGY, HYDROGEN, TRANSMISSION#//, BREEDER, REAC</td>
</tr>
<tr>
<td></td>
<td>STEM, STUDY, COST, POLLUTION, TRANSMISSION#/GY, ENERGY, SY</td>
</tr>
<tr>
<td></td>
<td>ECONOMY, NUCLEAR, PRODUCTION, TRANSMISSION/STORAGE, USE, COST</td>
</tr>
<tr>
<td></td>
<td>UTILITY, PETROLEUM, PERF/ FUEL, TRANSPORT, AIRCRAFT, LIQUID, F</td>
</tr>
<tr>
<td></td>
<td>THERMODYNAMICS, TRANSPORT, COMPUTER, PROPERTY#</td>
</tr>
<tr>
<td></td>
<td>PIPE, COST, TRANSPORT, STORAGE#</td>
</tr>
<tr>
<td></td>
<td>MIXING, TRANSPORT, SUBSONIC#</td>
</tr>
<tr>
<td></td>
<td>CRITICAL, MECHANICAL, OPTICAL, TRANSPORT#/OPY, HYDROGEN, ELE</td>
</tr>
<tr>
<td></td>
<td>N, LIQUID, HYDROCARBON, FUEL, TRANSPORTATION, POLLUTION, ENV</td>
</tr>
<tr>
<td></td>
<td>HYDROGEN, FUEL, TRANSPORTATION, POWER, GENERAT</td>
</tr>
<tr>
<td></td>
<td>HYDROGEN, FUEL, ECONOMY, USE, TRANSPORTATION, STORAGE, INTER</td>
</tr>
<tr>
<td></td>
<td>CHEMICAL, REF/ PRODUCTION, TRANSPORTATION, STORAGE, MARKET</td>
</tr>
<tr>
<td></td>
<td>TRANSPORTATION, STORAGE, LIQUID</td>
</tr>
<tr>
<td></td>
<td>CRYOGENIC, PROPERTY, SAFETY, TRANSPORTATION# STANDARDS, APPL</td>
</tr>
<tr>
<td></td>
<td>HYDROGEN, FUEL, SYNTHETIC, TRANSPORTATION#</td>
</tr>
<tr>
<td></td>
<td>EN, COST, NUCLEAR, ECONOMICS, TRANSPORTATION#</td>
</tr>
<tr>
<td></td>
<td>HYDROGEN, ENERGY, ECONOMY, TRANSPORTATION#</td>
</tr>
<tr>
<td></td>
<td>STORAGE, TRANSPORTATION#</td>
</tr>
<tr>
<td></td>
<td>LIQUEFICATION, STORAGE, TRANSPORTATION#</td>
</tr>
<tr>
<td></td>
<td>RGY, STORAGE, MEDIUM, SYSTEM, TRANSPORTATION#/ HYDROGEN, ENE</td>
</tr>
<tr>
<td></td>
<td>ALTERNATIVE, NUCLEAR, SAFETY, TRANSPORTATION#/GY, ANALYSIS,</td>
</tr>
<tr>
<td></td>
<td>PROPERTY, SLUSH#</td>
</tr>
<tr>
<td></td>
<td>SLUSH, TRIPLE POINT, PROPERTY#</td>
</tr>
<tr>
<td></td>
<td>HEAT TRANSFER, TRIPLE POINT, SUBLIMATION#</td>
</tr>
<tr>
<td></td>
<td>WIND TUNNEL, TRANSIENT#</td>
</tr>
<tr>
<td></td>
<td>CTRIC, EFFICIENCY, POLLUTION, TURBINE, HYDROGEN, OXYGEN, CON</td>
</tr>
<tr>
<td></td>
<td>PUBER, NUCLEAR, ROCKET#</td>
</tr>
<tr>
<td></td>
<td>TURBINE, NUCLEAR, ROCKET#</td>
</tr>
<tr>
<td></td>
<td>SUPersonic, GAS TURBINE, SPACE, SHUTTLE#</td>
</tr>
<tr>
<td></td>
<td>HEAT TRANSFER, GAS TURBINE#</td>
</tr>
<tr>
<td></td>
<td>EJECTOR, SPECIFIC IMPULSE, TURBOPUMP#</td>
</tr>
<tr>
<td></td>
<td>HEAT TRANSFER, TURBULENCE, CRYOGENIC, FLOW#</td>
</tr>
<tr>
<td></td>
<td>TURBULENCE, INJECTOR, VORTEX#</td>
</tr>
<tr>
<td></td>
<td>PRESSURE, TURBULENCE, TEMPERATURE#</td>
</tr>
<tr>
<td></td>
<td>SHOCK, INJECTOR, TURBULENCE#</td>
</tr>
<tr>
<td></td>
<td>DRAG, TURBULENCE#</td>
</tr>
<tr>
<td></td>
<td>FLOW, TWO-PHASE, BOILING#</td>
</tr>
<tr>
<td></td>
<td>PUMP, FLOW, TWO-PHASE, DESIGN#</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

SECTION 'K'

40205 TWO-PHASE. EVAPORATION. FLOW
40200 ENIC# DENSITY. TWO-PHASE. QUALITY. FLOW. CRYG
10032 HYDROGEN. FUEL. ENVIRONMENT. URBAN. ENERGY. ELECTROLYSIS
10011 DUCTION. TRANSMISSION. STORAGE. USE. COST# /OMY. NUCLEAR. PRO
10020 C# HYDROGEN. ENERGY. USE. CRYOGENIC. FUEL. SYNTHETI
10071 ATION# USE. ECONOMY. CARRIER. CONSERV
10004 GE. PRODUCTION. TRANSMISSION. USE. ELECTROLYSIS# /OMY. STORA
22191 USE. GAS. PRODUCTION
10078 ENERGY. SOURCE. ELECTRICITY. USE. GENERATION. SUPPLY. DEMAN
10042 FUTURE. NUCLEAR. APPLICATION. USE. PRODUCTION. HEAT. WATER.
10005 IRON/ HYDROGEN. ENERGY. FUEL. USE. SAFETY. ELECTROLYSIS. ENV
10006 FUEL. ENERGY. TRANSMISSION. USE. SAFETY. ENVIRONMENT# COST
10029 ELECTROLYSIS# HYDROGEN. USE. STORAGE. TRANSMISSION. EL
21003 OMPOSITION. CHEMICAL. ENERGY. USE. THERMAL# ELECTROLYSIS. DEC
10024 INT/ HYDROGEN. FUEL. ECONOMY. USE. TRANSPORTATION. STORAGE
10003 FUEL. STORAGE. TRANSMISSION. USE. ELECTROLYSIS# /Y. ECONOMY
10009 ROGEN. FUEL. ENERGY. ECONOMY. USE# HYDROGEN. E N
10008 ERG. FUEL. ECONOMY. CARRIER. USE# HYDROGEN. EN
10000 NERGY. TRANSMISSION. STORAGE. USE# HYDROGEN. FUEL. E
10057 ASIFICATION. COAL. POLLUTION. USE# DECOMPOSITION. HEAT. G
10001 CTION. STORAGE. TRANSMISSION. USE# ENERGY. ECONOMY. PRODU
10002 FUEL. STORAGE. TRANSMISSION. USE# HYDROGEN. ECONOMY. ENERGY.
10085 RODUCTION. TECHNOLOGY. WATER. USE# HYDROGEN. ENERGY. SOURCE. P
22210 HYDROGEN. UTILITY. DISTRIBUTION
10067 MARKET. CHEMICAL. REFINING. UTILITY. ELECTRIC. RESEARCH. F
34100 GENERATOR. EFFICIENCY. CONVE/ UTILIZATION. ENERGY. PROCESS
43005 N. PRESSURE. IMPURI/ HYDRIDE. VANADIUM. NI Cobium. DISSOCIATI
43001 E. REACTION. METAL. PRESSURE. VANADIUM. NI Cobium. HYDRID
52036 LEMENT. TEMPERATURE. NI Cobium. VANADIUM# EMBRITT
40307 VAPOR. CALIBRATION
33029 EFFICIENCY. VAPOR
30041 COAXIAL. INJECTOR. VARIABLE THRUST
10019 ENERGY. ELECTROLYSIS. FUEL. VEHICLE OXYGEN# OGEN. ECONOMY
10038 HYDROGEN. ENERGY. VEHICLE. NUCLEAR
34033 DESIGN. VEHICLE
34014 COST. VEHICLE
34015 POWER. VEHICLE
34802 FUEL CELL. VEHICLE
34848 AIR. MARKET. VEHICLES
33053 VELOCITY. BURNING
33046 VELOCITY. EQUATION
33045 VELOCITY
33065 IGNITION. VELOCITY
33009 IDN# CHAMBER. VENT. EXHAUST. NUMERICAL SOLUT
40422 VELOCITY. BURNING
50007 FLARE. VENT. SAFETY
51013 EXPLOSION. TANK. VENT
33057 MIXING. VENTING. KINETICS
40201 CAVITATION. VENTURI. PRESSURE. TEMPERATURE
40400 VESSEL. COST. PRESSURE
40401 ELD# VESSEL. LAMINATED. PRESSURE
42001 GAS. PRESSURE. VESSEL. STORAGE. FAILURE
34255 WATER. REMOVAL. HEAT. VIBRATION

6/19
KEYWORD INDEX

SECTION *K*

23603 MPOSITION, RADIATION, ENERGY, VOLTAGE, ANODE# DECO
22143 ENERATION, SUPPLY, REFORMING, VOLTAGE, TEMPERATURE, EFFICIEN
20513 XYGEN, POWER, PRESSURE, CELL, VOLTAGE# ELECTROLYSIS, O
40413 TANK, VOLUME#
33044 TURBULENCE, INJECTOR, VORTEX#
10070 INE, HEAT, ALGAE, EFFICIENCY, WASTE, FUEL, PYROLYSIS, COST#/.
23427 RECOVERY, WASTE, GAS#
34815 CRYOGENIC, WASTE, HEAT, WATER#
20503 PRODUCTION, HYDROGEN, OXYGEN, WATER, AMMONIA, ELECTROLYSIS#/.
23023 R#, HYDROCARBON, FUEL, WATER, AMMONIA, METHANOL, POWE
20013 ROGEN, OXYGEN, SULFURIC ACID, WATER, AMMONIA, ELECTROLYSIS, N
22152 HYDROCARBON, GAS, METHANE, WATER, CATALYST, ACTIVATOR#
21001 HALOGEN# DECOMPOSITION, WATER, CLOSED, REACTION, OXIDE
21007 N, PRODUCTION# THERMAL, WATER, CLOSED, SYSTEM, REACTIO
34823 ELECTRICITY, POWER, WATER, CRYOGENIC, LUNAR#
21002 NUCY# NUCLEAR, WATER, CYCLE, THERMAL, EFFICIE
21011 NERGY, PROCESS, FUEL# WATER, DECOMPOSITION, CYCLE, E
10089 N, EFFICIENCY/ENERGY, SOLAR, WATER, DECOMPOSITION, RADIATIO
10042 ATION, USE, PRODUCTION, HEAT, WATER, DECOMPOSITION#/APPLIC
10049 HYDROGEN, ENERGY, NUCLEAR, WATER, DECOMPOSITION#
10075 ELECTROLYSIS, THERMOCHEMICAL, WATER, DECOMPOSITION#/ENERGY,
23027 HEMICAL, OXYGE/ DISSOCIATION, WATER, DIFFUSION, CATALYSIS, C
20005 OXYGEN, MANUFACTURING METHOD# ELECTROLYSIS, HYDROGEN,
34504 HEAT, REMOVAL, WATER, ENDURANCE#
34268 HEAT, REMOVAL, WATER, ENDURANCE#
10041 ON, / HYDROGEN, FUEL, FOSSIL, WATER, ENERGY, FUTURE, POLLUTI
10073 FUEL, SYNTHETIC, WATER, ENERGY#
10013 HYDROGEN, WATER, FUEL#
22614 ECONOMY, OXIDATION, WATER, GAS, COKE, PROCESS#
22647 WATER, GENERATOR, HYDROCARBON#
34511 FUEL CELL, WATER, HEAT, BALANCE#
34503 FUEL CELL, WATER, HEAT, REMOVAL#
34500 FUEL CELL, WATER, HUMAN#
22167 CATALYST, WATER, HYDROCARBON#
22634 RITY, CATALYSIS, HYDROCARBON, WATER, MEMBRANE, TEMPERATURE#/.
23428 IFICATION, HYDROGEN, AMMONIA, WATER, METHANE, DIFFUSION, PAL
23435 IFICATION, NITROGEN, AMMONIA, WATER, METHANE#PUR
20017 ELECTROLYSIS, WATER, MODULE#
10080 FUEL, WATER, NUCLEAR#
21004 HYDROGEN, CYCLE, WATER, PRODUCTION#
23022 TEMPERATURE, HEAT# WATER, REDUCTION, REGENERATION
34839 ELECTROLYTE# WATER, REFORMING, CATALYST, EL
34255 N# WATER, REMOVAL, HEAT, VIBRATIO
34510 WATER, REMOVAL#
34509 WATER, REMOVAL#
34507 FUEL CELL, WATER, REMOVAL#
34254 WATER, REMOVAL#
20000 HYDROGEN, WATER, SPACECRAFT, PROPELLANT#
21015 S$, T/ENERGY, REACTOR, HEAT, WATER, SPLITTING, CYCLE, PROCE
21016 EFF/NUCLEAR, THERMOCHEMICAL, WATER, SPLITTING, TECHNOLOGY,
21014 CYCLE, PROCESS, NUCLEAR, HEAT, WATER, SPLITTING, THERMOCHEMI
20016 ELECTROLYSIS, WATER, STATIC#
10046 ALTERNATIV HYDROGEN, FUEL, WATER, STUDY, ENERGY, ANALYSIS

620
KEYWORD INDEX

SECTION 'K'

10083 ENERGY, PLASTICS, HYDROGEN, WATER, THERMAL, PRODUCTION, EN
10085 URCE, PRODUCTION, TECHNOLOGY, WATER, USE, E/NOMY, ENERGY, SO
34506 HEAT, REMOVAL, WATER#
34628 ELECTRODE, CARBON, ALKALINE, WATER#
34815 CRYOGENIC, WASTE, HEAT, WATER#
33019 POLYMER, WATER#
34028 REACTION, MEMBRANE, WATER#
34206 AEROSPACE, HEAT, REMOVAL, WATER#
23606 QUANTUM, YIELD, REDUCTION, WATER#
23607 OXIDATION, SOLAR, REDUCTION, WATER# PHOTOCHEMISTRY,
40505 PUMP, BEARING, WEAR, LUBRICATION#
34239 WEIGHT, CURRENT DENSITY#
34103 TEMPERATURE, WEIGHT, RELIABILITY, ELECTROLY
34813 POWER, CRYOGENIC, WEIGHT#
30068 PERFORMANCE, OPTIMIZATION, WEIGHT#
40401 VESSEL, LAMINATED, PRESSURE, WELD#
33023 WIND TUNNEL, TRANSIENT#
23605 QUANTUM, YIELD, PHOTOCHEMISTRY, LIGHT#
23606 QUANTUM, YIELD, REDUCTION, WATER#
22610 SYNTHESIS, PURITY, PROCESS, YIELD#
22143 AGE, TEMPERATURE, EFFICIENCY, YIELD# SUPPLY, REFORMING, VOLT
34635 FUEL CELL, ELECTRODE, ZIRCONIA#
20500 CHEMICAL, STEAM, PRODUCTION, ZIRCONIUM OXIDE# OXGEN, ELECTR
52029 SURE, INCONEL 718, ALUMINUM 2219, EMBRITTLEMENT, HIGH PRES
52029 ENT, HIGH PRESSURE, INCONEL 718, ALUMINUM 2219, EMBRITTLEMENT

END OF SECTION 'K'