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CHAPTER 1

Introduction

1. 1 Outline of the Prcolem

For many applications, especially those in which a computer
is controlling a real-time process (e. g., telephone switching,
flight control of an aircraft or spacecraft, control of traffic in a
transportation system, etc.), reliability is a major factor in the
design of the system. The need for high reliability arises because
of the serious consequences errors may have in terms of danger to
human lives, loss of costly equipment, or-disruption of business or
manufacturing operations. For example, it is economically unsound
to shut down a steel mill for even a short time in order to repair
a comparatively inexpensive controlling computer. The seriousness
of the consequences,of course depends upon the application and must
be weighed against the cost of improving the reliability.

A number of techniques exist for improving computer reliability.
One of the more obvious is the use of more reliabie components.
While the use of reliable compounents is clearly very important, it
has been recognized tuat this technique alone is not sufficient to meet

the requirements for modern ultrareliable computing systems [34].



Another general technique which is useful in some applications
is the use of masking redundancy such as Triple Modular Redundancy
or Quadded Logic [35]. One major drawback to masking redundancy
is that if failed components are not replaced and the mission time
is long, then the reliability of a system which uses masking redun-
dancy can actually be less than that of the corresponding simplex
system [25].

A third means of increasing system reliability and availability
is through fault diagnosis and subsequent system reconfiguration or
repair. For example, a computer designed to control telephone
switching, the No. 1 Electronic Switching System (ESS) contains
duplicates of each module and fault diagnosis is achieved primarily
by dynamically comparing the outputs of both modules [11]. Once
the faulty module is identified, it is repaired manually with diagnos-
tic help from the fault -free computer. Another ultra-reliable
computer, the Jet Propulsion Laboratory Self-Testing and Repair-
ing (STAR) computer, also makes use of modularity and standby
sparing [ 4 ].

One means of performing fault diagnosis is to continuously
monitor the performance of the system, as it is being used, to deter-
mine whether its actual behavior is tolerably close to the intended
behavior. It is this sort of monitoring which we mean by the term
"on-line diagnosis. " Others have used the term "error detection"

to refer to this sort of monitoring ([22],[23 ]).



Implementation of on-line diagnosis may be external to the
system, both internal and external, or completely internal. In the
last extreme, on-line diagnosis is sometimes referred to as "'self-
diagnosis" or "self-checking" (( 8 ],[ 9 }).

There are two essential requirements for on-line diagnosis.

The first is redundancy; more than the minimum amount of informa-
tion must be processed. The second is verifiability; the redundant
information must be checked for consistency.

The c.gnals generated by a monitoring device can be used in
many ways. For example, the IBM System/360 utilizes checking
circuits to detect errors [ 6 ]. The signals generated by these
circuits are used in some models to freeze the computer so that the
instruction which was currently executing may be retried if possible,
and to assist in the checkout and repair of the computer if the auto-
matic retry attempt fails. Ultra-reliable computers typically use
the signals generated by the monitoring device to provide the computer
system with the information it needs to automatically reconfigure
itself so as to avoid using any fault circuits. One other use for such
signals is to simply inform the system user that the system is not
operating properly and that there may be errors in his daia.

In general, on-line diagnosis is used to verify that the system
is operating properly; or conversely, to signal that it is in need of
repair. In most computer systems this task is also performed in

some part by "off-line diagnosis.' By off-line diagnosis we are
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referring to the process of removing the system from its normal
operation and applying a series of prearranged tests to determine
whether any faults are present in the system. There are major
differences between on-line and off-line diagnosis and it is important
to be aware of the capabilities and the limitations of each.

One basic difference is that on-line diagnosis is a continuous
process whereas off-line diagnosis has a periodic nature. Transient
faults are difficult to diagnose with off-line diagnosis because if a
fault is transient in nature it may not be in the system when it is
tested. On the other hand, since on-line diagnosis is a continuous
monitoring process both permanent and txjansient faults can be
diagnosed. It has been recognized by Ball and Hardie [5] and
others that intermittents do occur frequently, and that finding an
orderly means to diagnose them is an important unsolved problem.
Thus the inability of off-line diagnosis to deal satisfactorily with tran-
sients is a severe limitation.

Another basic difference is that the delay between the occurrence
of a fault and its subsequent detection is generally‘greater for off-
line than on-line diagnosis. Recovery after a fault has been diagnosed
may sometimes be achieved by reconfiguration ard restarting.
However, in a real-time application irrepeatable or nonreversable
events may take place if an error occurs and is nct immediately
detected. In any application, if there is a delay between the occurrence

of an error and the subsequent diagnosis of a fault, then



contamination of data bases may occur thus making restarting
difficult. For these reasons, the inherent delay associated with
off-line diagnosis can be a serious limitation.

One further difference between on-line and off-line diagnosis
is that with off-line diagnosis the system must be removed from its
normal operation to apply the tests. This also may not be acceptable
in a real-time application.

The cost of either form of diagnosis depends on the nature of
the system to be diagnosed, the technology to be used in building
the system, and the degree of protection against faulty operation
that is required. With on-line diagnosis the cost is almost totally
in the design, construction, and maintenance of extra hardware.
With off-line diagnosis the cost is the initial generation of the tests
and in the subsequent storage and running of these tests.

In general, off-line diagnosis is useful for factory testing and
for applications where immediate knowledge of any faulty behavior
is not essential. Off-line diagnosis is also useful for locating the
source of trouble once such trouble is indicated by. on-line diagnosis.
For example, as stated earlier Bell System's No. 1 ESS uses dupli-
cation and ccmparison as its primary error detection scheme. But
once an error has been detected, off-line diagnosis is used to deter-
mine which processer exhibited the erroneous behavior and to locate

the faulty module in that processer.
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In the Design Techniques for Modular Architecture for Reliable
Computing Systems (MARCS) study a more integrated use of on-
line diagnosis is proposed whereby a number of checking circuits
observe the performance of various parts of the computer [ 8 ].
With a scheme such as this, information about the location of a
fault can be obtained from knowledge of which checking circuit
indicated the trouble.

Both on-line and off-line diagnosis have been used to check
the operation of computers from the very first machines until the
present time. In a shori paper published in 1957 Eckert [ 12] informs
us that off -line diagnosis was relied upon for the ENIAC computer,
that the BINAC system had duplicate processors, and that the UNIVAC
used a more economical on-line diagnosis scheme involving 35 check-
ing circuits. During the past decade, however, the development of
theory and techniques for fault diagnosis in digital systems and
circuits have focused mainly on problems of off-line diagnosis (see
[9 ] and [14] for example). X

An alternative means of performing diagnosis has been investi-
gated by White [ 36]. His novel scheme is similar to on-line diagnosis
in that it involves redundant processing of information and subsequent
checking for consistency. However, with his scheme the redundancy
is in time rather than in space. After every operation is performed,

a related operation is initiated which uses the same circuitry but



with different signals. The results of these two operations are then
checked for consistency.

One other approach to diagnosis is simply to have human users
or observers of the system watch for obvious misbehavior. Since
faults often give rise to behaviors which are clearly erroneous, many
faults can be detected in this manner. The effectiveness of this
method is highly dependent upon the individual system and program,
and is exceedingly difficult to evaluate. It seems reasonable to
assume, however, that this method is less effective than any of the
methods previously discussed. Certainly, this method is unacceptable

for many applications.



1.2 Brief Survey of the Literature

The work that has been done on on-line diagnosis is mainly in
the area of techniques. One early paper is Kautz's study [21] of
fault detection techniques for combinational circuits. In this paper
he investigated a number of techniques including the use of codes
and the possibility of greater economy if immediate detection of
errors was not necessary. Many of the more common on-line
diagnosis techniques have been gathered together and published in
a book by Sellers, Hsiao, and Bearnson [ 33]. Much of what is in
this book and a large portion of the techniques that can be found
elsewhere in the literature are concerned with special circuits
such as adders and counters. For example, see the work of Avizienis
[ 3], Rao [32], Dorr [10], and Wadia [37].

Relatively little work can be found on the theory of on-line
diagnosis. As with the work on on-line diagnosis techniques, much
of the theory of on-line diagnosis focuses on arithmetic units.

In one of the earliest works of a theoretical nature,Peterson
[29 ] showed that an adder can be checked using a completely indep-
endent circuit which adds the residue, module some base, of the
operands. He went on to show that any independent check of this
type was a residue class check. Further theoretical work concern-
ing the diagnosis of arithmetic units using residue codes can be

found in Massey [24 ] and Peterson [31].



An early theoretical result of a more general nature was published
by Peterson and Rabin [30]. They showed that combinational circuits
can differ greatly in their inherent diagnosability and that in some
cases virtual duplication is necessary.

A later and very important paper is that of Carter and Schneider
[7]. They propose a model for on-line diagnosis which involves a
system and external checker. The input and ouput alphabets of
the system are encoded and the checker detects faults by indicating
the appearance of a non-code output. A system is self-checking
if for every fault in some prescribed set, (i) the system produces
a non-code output for at least one code space input, and (ii) the
system never produces incorrect code space outputs for code space
inputs. Thus, (i) insuresthatevery fault canbe detected duringnormal
usage, and (ii) insuresthat if nofault has been detected thenne output
canbe reliedupontobe correct. The checkers that they consiuer are
alsoself-checking. Using this modelthey prove that any system canbe
designedtobe self-checking for the class of single stuck-at faults.

Anderson [ 1 ] has named property (i) "self-tésting" and property
{ii) "fault-secure, " and he has investigated these properties for
combinational networks. In Chapter IIl it is shown that the notion
of diagnosis considered in this study is a generalization of the fault-

secure property.



10

1.3 Synopsis of the Report

This report describes an investigation of theory and techniques
applicable to the on-line diagnosis of sequential systems.

With decreasing cost of logic and the increasing use of computers
in real-time applications where erroneous operation can result in
the loss of human life and/or large sums of money the use of on-line
diagnosis can be expected to increase greatly in the near future.

The importance of this area along with the relative lack of theoreti-
cal results is ov~ motivation for initiating this study of on-line
diagnosis.

The purpose of this investigation is to further the currently
insufficient store of information on the subject of on-line diagnosis.
The formal approach taken in this report leads to a fuller under -
standing of current on-line diagnosis practices and suggests
reneralizations of known techniques. 1t also provides a framework
for evaluating the advantages and limitations of the various on-line
diagnosis schemes.

In Chapterll; a complete model for the study of on-line diagnosis
is developed. First an appropriate class of system models is
formulated which can serve as a basis for a theoretical study of
on-line diagnosis. Then notions of realization, fault, fault-iolerance
and diagnosability are formalized which have meaningful interpreta-
tions in the context of on-line diagnosis. The following chapters are

all concerned with the properties of the notion of diagnosis which is
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introduced in this chapter.

Chapter III contains some elementary properties of diagnosis
which are independent of the particular class of faults under considera-
tion. The results of this chapter help to give a basic understanding
of on-line diagnosis and are used in the later chapters.

Chapter IV is concerned with the diagnosis of the set of unre-.
stricted fauits. This set of faults is simply the set of all faults of
the system under consideration. The major result of this chapter
gives a lower bound on the amount of redundancy that must be employed
by any technique which can be used for unrestricted fault diagnosis.

In Chapter V, the use of inverse systems for the diagnosis
of unrestricted faults is considered. Inverse systems are formally
introduced, and a partial characterization of those inverse systems
which can be used for unrestricted fault diagnosis is obtained. Since
not every system has an inverse system, let alone one which is
suitable for unrestricted fault diagnosis, it is not always possible
to apply this technigue directly. However, it is shown that every
system has a realization upon which this techniqué can be success-
fully applied.

In Chapter VI, the diagnosis of systems which are structurally
decomposed and are represented as a network of smaller systems
is studied. The fault set considered here is the set of faults which

only affect one component system in the network. A characterization
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of those networks which can be diagnosed using a purely combina-
tional detector is achieved. A technique is given which can be
used to realize any network by a network which is diagnosable in
the above sense. Limits are found on the amount of redundancy

involved in any such technique.



CHAPTER II

A Model for tlie Study of On-Line Diagnosis

In this chapter we develop the model which we will be using in
this theoretical study of on-line diagnosis.

We begin by introducing a new class of system models, called
"resettable discrete-time systems, ' which will serve as the basis of
our study. Within this model we will consider a fault of a system S to
be a transformation of S into another system S' at some time 7. The
resulting faulty system is taken to be the system which looks like S up
to time T and like S' thereafter.

Next the companion notions of fault tolerance and error are
defined in terms of the resulting system being able to mimic some de-
sired behavior.

Finally, our notion of on-line diagnosed is introduced. This
notion involves an external detector and a maximum time delay within
which every error caused by a fault in some prescribed set must be

detected.

13
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2.1 Resettable Discrete-Time Systems

On-line diagnosis is inherently a more complex process than off-
line diagnosis because of two complicating factors: i) it has to deal with
input over which it has no control and ii) faults can occur as the system
is being diagnosed. We would like to build a theory of on-line diagnosis
using conventional models of time -invariant (stationary, fixed) systems
(e. g., sequential machines, sequential networks, etc.). However,
due to the second factor mentioned above these conventional models
can no longer be used to represent the dynamics of the system as it is
being diagnosed. A system which is designed and built to behave in a
time -invariant manner becomes a time -varying system as faults occur
while it is in use. Therefore, a more general representation based
on time -varying systems is required. Based on this fundamental obser -
vation we have developed what we believe to be an appropriate model

for the study of on-line diagnosis.

Definition 2. 1: Relative to the time-base T = { .., -1,0,1,, .}, a

discrete-time system (with finite input and output alphabets) is a system

§ = (L,Q2Z,6,2)

where I is a finite nonempty set, the input alphabet

Q is a nonempty set, the state set

Z is a finite nonempty set, the output alphabet

0: QXIXT — Q, the transition function
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A: QXIXT —> Z, the output function,

The interpretation of a discrete-time system is a system which,
if at time t is in state q and receives input a, will at time t emit cit-
put symbol A(q, a,t) and at time t + 1 be in state 6(q,a,t). In the special
case where the functions 6 and A are independent of time (i.e., are
time -invariant), the definition reduces to that of a (Mealy) sequential
machine. In the discussion that follows we will assume, unless other-
wise qualified, that S is a finite-state (i.e., |Q| < ).

To describe the behavior of a system, we first extend the transi-
tion and output functions to input sequences in the following natural way.
If I* is the set of all finite -length.sequences over I (including the null

sequence A) then:

5: QXI*XT = Q

where, forallqe Q, ael, te T:

5(g,A,t) = g

8(q,a,t) = 8(q,a,t)

5(q, a,a,. .. an,t) = 6(5(q, aa9...2 1 t), a,t+n- 1).
Similarly, if I' = I -{A}:

X QxXI'xT—>2
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where forallqe Q, ae I, te T:
x(Q) a’t) = A-(Qr a, t)

A(q,a1a2...an,t) = A(E(q,alaz. . .an_l,t),an,t +n-1).

Henceforth § and X will be denoted simply as 6 and A.

Relative to these extended functions, the behavior of S in state q

is the function

B: 'xT—>2

where

Bq(x,t) = Aq,x,t) .

Thus, if the state of the system is q and it receives input sequence x
starting at time t, then Bq(x,t) is the output emitted when the last
symbol in x is received (i. e., the output at time t + lx] -1 (Ix, =
length (x))).

Many investigations of on-line diagnosis and fault tolerance have
studied redundancy schemes such as duplication and triplication.
Typically they have not dealt with the problem of starting each copy of
a machine in the same state. In this study we will be examining these
schemes and others for which the same problem arises. Since many
existing systems have reset capabilities, and since this feature solves
the above synchronizing problem we will use a special type of system

for which the reset capabilities are explicitly specified. This explicit
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specification of the reset capability is essential since it is an important

part of the total system and it may be subject to failure.

Definition 2.2: A resettable discrete-time system (resettable system)

is a system
S = (1,Q %,6,)R,p)

where (I,Q, Z, 5. 1) is a discrete-time system

R is a finite nonempty set, tl e reset alphabet

p: RXT — Q, the reset function.

A resettable system is resettable in the sense that if reset r is
applied at time t - 1 then p(r,t) is the state at time t. This method of
specifying reset capability is a matter of convenience. This feature
could just as well have been incorporated as a restriction on the transi-
tion function relative to a distinguished subset of input symbols called
the reset alphabet. Thus a resettable discrete -time system can indeed
be regarded as a special type of discrete-time system. If 6, A, andp
are all independent of time the definition reduces to that of a resettable

sequential machine. Thus a resettable machine can be viewed as a

resettable system which is invariant under time-translations.
Given a resettable system we can view it as a system organized

as in Fig. 2. 1.
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re¢R ————-—qp -

ael S AEmm

6 ™ qeQ | AT zc¢Z

Fig. 2.1. Schematic Diagram for S = ([,Q, Z, 6, \,R,p)

In many discussions we will not be directly concerned with the
output function of a system, but rather we will want to focus our
attention upon the state transitions. This motivates the following

definition.

Definition 2.3: A resettable discrete-time system S = (1,Q, Z,6, A, R,p)

is a resettable state system if Z = Q and x(q.a,t) =q for all q € Q,

ael andteT.

Since the output alphabet and output function of a resettable state
system need not be explicitly specified, a resettable state system
S =(1,Q, Z, 5, A, R, p) will be denoted by the 5-tuple (I,Q, 5,R,p).

This formulation of resettable state systems as special types of
resettable systems allows us to directly apply the following theory of

on-line diagnosis to state machines.
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Notation: Resettable systems will be denoted hy S, S', Sl’ 82, etc.,
and resettable machines will be denoted by M, M', Ml’ Mz, etc.
Unless otherwise specified, M will denote the resettable machine
(1,Q, Z, 5, A, R,p); M' will denote the resettable machine (I',Q', 2', 8",
A, R, p'); and so forth, e}‘(l, Z, R) will denote the set of systeras with

input alphabet I, output alphabet Z, and reset alphabet R. That is,
S, Z,R) = {8'|s' = (1,Q",Z,5",A",R,p")} .
U1, Z, R) will denote the corresponding set of resettable machines.

Definition 2. 4: A resettable sequential machine M = (I, Q, Z, 6, A, R, p)

is memoryless or combinational if |Q| = L.

The triple (1, Z, ) where A: I—> Z will be used to denote any
memoryless machine with input alphabet I, output alphabet Z, and
output function A. The memoryless machine M = (I, Z, A) is said to
realize the function A: I — Z.

We will represent sequential machines in the usual manner,
i.e., via transition tables or state graphs. Resettable machines are
represented by minor extensions of these two methods. The transition
table of a resettable machine is identical to that of a machine with
addition of one column on the right to accommodate the reset function.
If p(r) = q then r will appear in this additional column in the row
corresponding to state q. Similarly, the state graph of a resettable

machine is identical to that of a machine with the addition of one short
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arrow for each r ¢ R. This arrow will be labeled r and will point

to state p(r).

Example 2. 1: Let M1 be the sequence generator with reset alphabet

{0} and input alphabet {1} which has been implemented by the circuit

in Fig. 2.2.

LR

_(_:E}_’ 4,

— !

[ “""f:zg::}___,. d,

Fig. 2.2. Circuit for M

1

The transition table and the state graph for M1 are shown in

Figs. 2.3 and 2. 4.

1
1 1
Q Ry
00 01/0 0
01 11/1
10 00/1
11 10/1

Fig. 2.3. Transition Table for M,



21

Fig. 2.4. State Graph for M1

The circuit in Fig. 2.2 is also an implementation of a similar machine
M, with input alphabet {0, 1}. The state graph for M, is shown in
Fig. 2. 5.

Fig. 2.5. State Graph for M2

Thus, in M2 the input symbol 0" can be interpreted as an input or as
areset. In M2 the outputs for input 0 are explicitly specified whereas

in M1 they may be regarded as classical "don't cares. "
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We can view a particular discrete -time system as a system which
looks like some machine Mi in one time {nterval, like Mi+1 in another

interval, and so on. This is also a good means of specifying a system.

M - f -
{+2 " I
] ]
amipey .‘; L X X
Mi+1 :
!
Mi -b..-—-_—-—l

Time e—>ap»
Fig. 2.6. A Discrete-Time System

Example 2.2: Suppose that M1 was implemented as in Fig. 2.2 and

that this circuit operated correct.ly up to time 100 when gate 2 became
stuck-at-0. What actually existed was not a resettable machine but a
(time-varying) resettable system S which looks like M, up to time 100
and like a different machine, say M'1 thereafter. The graph for Ml' is

shown in Fig. 2.7,

Fig. 2.7. Resettable Machine M'1
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We can represent S as follows:

{ Ml for t < 100
8 =

M} for t> 100,

By this we mean that I =1, = I'1 and likewise for Q, Z, and R, and that

61(q,a) for t < 100
ﬁ(q, a, t) =

6'1(q,a) for t > 100

and similarly for A and p.

For resettable systems we take the definitions of §, X, and Bq
to be the same as those for svstems. It is also convenient in the case
of resettable systems to specify behavior relative to a reset input r

that is released at time t, that is, the behavior of S for condition (r,t)

(reR, t eT)isthe function

‘gr,t I -2
where
B &) = By ).

Ift=0, p’r 0 is referred to as the behavior of S for initial reset r
?

and is denoted simply as ﬁr.
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It is useful to extend the behavior function ﬁr t in a natural
’
manner to represent the sequence to sequence behavior of S. For

reRandteT

where for all a...a € I
A
Br,t(al' .. an) = Br, t(al). .. Br,t(alaZ‘ .. an) .

We will now introduce a few properties of resettable machines
which will be important to our developing model of on-line diagnosis.
A more complete treatment of the properties of resettable machines
can be found in the appendix.

We define these properties for resettable machines rather than
for resettable systems because we will be applying them to "fault -free"
systems, which in this study will always be time -invariant.

We begin with some concepts of "'reachability.” Let M be a

resettable machine. The reachable part of M, denoted by P, is the

set

P = {6(o(r),x)[reR, x e I*} .

M is reachable if P = Q. M is £-reachable if

P = {6(o(r),x)|r ¢ R, x € I* and Ix| <2},
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An elementary result of graph theory states that in a directed
graph with n points, if a point v can be reached from a point u then
there is a path of length n -1 or less from u to v. An immediate con-
sequence of this is that any machine M is (/P | - 1)-reachable.

Let M, M' ¢ M(I, Z,R). M is equivalent to M' (written M= M')
if Br = ﬁ'r forallr ¢ R.. Two states q € Q and q' € Q' are equivalent
(q=q") if Bq = Bf'l' . It is easily verified that these are both equivalence
relations, the first on M(I, Z, R) and the second on the states of machines
on M(I, Z, R).

A resettable machine M is reduced if for allq, q' ¢ P, q = q'
implies q = q'. A basic result of sejuential machine theory states that
for every machine there is an equivalent reduced machine and that this
machine is unique up to isomorphism. Thé corresponding result for
resettable machines is given in the appendix.

A concept which is central to sequential machine theory is that of
a ""realization. " The corresponding resettable machine concept will
be very important to our theory of on-line diagnosis. We will intro-
duce it by first stating Meyer and Zeigler's definition of realization for

sequential machines [27].

Definition 2.5: If Mand M are sequential machines then M realizes

M if there i3 a triple of functions (ol, 02,_03) where 0 : (f -1 s
a semigroup homomorphism such that al(f) CL oy 6 — Q,

05 Z' = E where Z' C Z, such that for all a € é
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It has been shown by Leake [23] that this strictly behavioral
definition of realication is equivalent to the structurally oriented
definition of Hartmanis and Stearns [16].

If Mand M are resettable machines then our definition of
realization is somewhat different. Inherent in this definition is our

presupposition that a resettable system will be reset before every use.

Definition 2. 6: If M and f’[ are two resettable machines then M realizes
M if there is a triple of functions (01, Ty 03) where 0y (i')+ T is
a semigroup homomorphism such that ol(f) <, 02: ﬁ — R, 03:

Z' C Z, such that for all Te R,

~

B = 3°ﬂ02(;)°°1

This concept can be viewed pictorally as in Fig. 2.8.

R

3 y

| z
- % I 02! |
R . )

| L ‘ 0'3 |

| | -
. Iog

Fig. 2.8. M Realizes M under (01, g 03)
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Example 2.3: Let I\E3 and M3 be the resettable machines shown in

Fig. 2.9 and Fig. 2. 10.

0/0 0/0

Fig. 2.10. Resettable Machine M3
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i v ; R~ +
Then M, realizes M, under the triple (0'1, T 03) where 0, : (13) =5
is the identity, 0y §3 - R3 is defined by oz(r) =ry, and

2, = 53 is the identity. To verify this claim we need only

O3° 43

observe that Es(x) = Bs (x) for allx € (f )*.
r r1 3

Notice that the definition of realization for resettable machines
is less restrictive than that for sequential machines in the sense that
for resettable machines we only require the realizing system to
mimic the behavior of the reset states of the realized machine; while
in the sequential machine case the realizing system must mimic the be-
havior of every state of the realized system. On the other hand, the
definition in the resettable case is more restrictive in the sense that
for each reset state in the realized machine not only does there exist
a state in the realizing machine which mimics its behavior, but we also
know how to get to that state.

Before proceeding with our model of on-line diagnosis we must
introduce a few notational conventions. The identity function on a
set A will be denoted by e Al When it is clearly understood which
set is being mapped the subscript will be deleted.

If Al’ oo ,An is a sequence of n sets, its cartesian product is

n
the setAIX ><An = & Ai= {(xl,...,xn)[xie Ai’ i=1,,..,n}.

The cartesian product of an empty sequence of sets is taken to the any

singleton set.
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: n
Given a cartesian product A = &1 Ai’ a coordinate projection of A

is a function P, A - Ai defined by P, (xl, cee ,xn) =X
It flz A— Bl’ cen ,t‘n: A—> Bu is a sequence of functions, the

3 n M n s
cross-product function iX fi' A= 1 Bi is defined by

n

=1 fi(a) = (f 1(a), R § u(a)). The cross-product function can be used

to extend coordinate projections to project on to any subset of coordin-
.« 3 . X s .

ates: if C<{1,...,n} then Po:A—=> X A, is defined by

P Pi‘ In particular P, is a constant function with domain A.

= X
C ieC ¢
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2.2 Resettable Systems with Faults

Our model of a "resettable system with faults' is a specialization

of Meyer's general model of a ""system with faults" [28].

Informally, a "system with faults" is a system, along with
a set of potential faults of the system and description of what
happens to the original system as the result of each fault.
The original system and the systems resulting from faults
are members of one of two prescribed classes of (formal)
systems, a ''specification’’ class for the original system and
a "'realization' class for the resulting systems. More pre-
cisely, we say that a triple (&, ®,p) is a (system) representa-
tion scheme if

i) & is a class of systems, the specification class,
ii) ® is a class of systems, the realization class,
‘iii) p: ® — & where, if R € &, R realizes p(R).

By a class of systems, in this context, we mean a class of

formal systems, i.e.. a set of formally specified structures

of the same type, each having an associated behavior that is

determined by the structure [28].

In this study we are concerned with the reliable use of a system.
That is, we are concerned with degradations in structure which Meyer
calls "life defects. " This is contrasted with reliable design in which
case we would be concerned with "birth defects. " Thus, in our case,
a specification is a realization and we choose a representation scheme
® = (], ®, p) where p is the identity function on ®.

Assuming that a faulty resettable system has the same input,

output, and reset alphabets as the fault-free system S, the following

class of resettable systems will suffice as a realization class:

S(I,2Z,R) = {s'|s'=(1,Q",2,6X\',R,p")} .
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In summary, the representation scheme that we are choosing for
our study of on-line diagnosis is the scheme ( ®, ®,p) where
® =S(I, Z,R) and p is the identity function on ®.

In such a scheme the seemingly difficult problem of describing
faults and their results becomes relatively straightforward. Before
we state our particular aotion of a fault and its results we will repeat
here Meyer's general notion of a "system with faults” (28].

A system with faults in a representation scheme
(S, R, p) is a structure (S, F,0) where

i) Se S
ii) F is a set, the faults of S
iii) ¢: F — ® suchthat, for some fe¢ F,
p(e(f)) = S.

If f ¢ F, the system Sf = ¢(f) is the result of f. pr(Sf) =8

then f is improper {by iii), F contains at least one improper

fault); otherwise it is proper. A realization 3f is fault-free

if f is improper; otherwise sf is faulty [28].

In applying this notion to our study we must first define what we
mean by a fault of a resettable system. Given a resettable system
S € $(1,Z,R), a fault f of S can be regarded as a transformation of
S into another system S' € (I, Z,R) at some time 7. Accordingly,
the resulting faulty system looks like S up to time 7 and like S'
thereafter. Since S may be in operation at time 7 we must also be
concerned with the question of what happens to the state of S as this
transformation takes place. We handle this with a function 6 from
the state set of S to that of S'. The interpretation of 8 is that if S is

in state q immediately before time 7 then S' is in state 6(q) at time

7. More precisely,



32

Definition 2.7: I S e &(I, Z,R), a fault of S is a triple

f = (S" T, 6)
where S' e S(I,Z,R), 7€ T, and 8: Q —> Q'.

A fault f = (S',7,6) of S is a permanent fault if S' is time invariant

We view the occurrence of a fault f = (S', 7,6) ofa system S as

shown in Fig. 2, 11.

SI
 §
i
0 5
|
el ® 1 b 1 2 ' 2 A cee
e 4 L ) 1 jT LB A
Time ———d=

Fig. 2.11. A Fault f=(5',7,8)of S
Given this formal representation of a fault of S, the resulting

faulty system is defined as follows.

Definition 2. 8: The result of f = (S', 7, 8) is the system

f! A'f’ R’ pf)

Sf = (I) Qf7 z,48

where Qf =Q uQ'
8(q,a,t)ifqe Qandt <7-1

f 6(6(q,a,t) )ifqe Qandt=7-1

61q,a,t)

6'(q,a,t)ifqe Q" andt > 7
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Alg,a,t)ifqe Qandt <t

Af(Qsapt) =
AMq,a,t)ifqe Q andt > 7
pir,t)ift <7

f

p(r,t) = ( 6(p(r,t))ift=1

p(r,t)ift > 71,

(Arguments not specified in the above definitions may be assigned arbi-

trary values. )

In justifying this representation of the resulting faulty system one

should regard a fault f = (S',7,6) as actually occurring between time

f

.7 -1and 7. Note that, for any fault f of S, S" ¢ &(I, Z, R).

Example 2.4: Recall that in Example 2, 2 M1 was transformed into

M; at time 100. We would say now that f = (M', 100, e) is a permanent

fault of M, and that S is the result of f (i.e., § = Mfl).

1

Example 2.5: Again consider Ml as implemented by the circuit in

Fig. 2.2 and let g be the fault which is caused by d1 becoming stuck-at-1
at time 50. Then g = (MY, 50, 6) is a permanent fault of M1 where M'l'
is the machine shown in Fig. 2.12 and 6: Q1 — Q'l' is defined by the

table
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| q 6(q)

00 10
01 11
10 10
11 11

()

Fig. 2.12. Resettable Machine M’l'

M% will behave as M1 up to time 50 and thereafter it will produce a

constant sequence of 1's.

To complete the model, a resettable system with faults, in this

representation scheme, is a structure
(S, F, ¢)

where S € &(I, Z,R), F is a set of faults of S including at least one
improper fault (e.g., f =(S,0,e)), and ¢: F — &(I, Z,R) where ¢(f) =
Sf,' for all f ¢ F. Given this definition, we can drop the explicit refer-
ence to ¢ in denoting a resettable system with faults, i.e., (S, F) will

mean (S, F, ¢) where ¢ is as defined above.
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In the remainder of this study we will be dealing exclusively with
resettable systems. Thus we will refer to resettable systems simply
as systems and to resettable machines as machines.

A word is in order about our definition of faults. The interpreta-
tion here is one of effect, not cause, e.g., we don;t talk of stuck-at-1
OR gates but rather of the system which is created due to some presumed
physical cause. We will refer to these physical causes as component
failures or simply as failures. A fault, by our definition, consists of
precisely that information which is needed to define the system which
~ results from the fault. This allows us to treat faults in the abstract;
independent of specific network realizations of the system and without
reference to the technology employed in this realization and the types
of failures which are possible with this technology. We are insured,
however, that for each fault we have enough information to assess the
structural and behavioral effects of the fault; in particular as these
effects relate to fault diagnosis and tolerance.

There are limits, however, to how much can be done with a purely
effect oriented concept of faults. When a system is sufficiently structured
to allow a reasonable notion of what may cause a fault we certainly will
want to make use of this notion. When this is the case we may, through
an abuse in language, refer to a specific failure at time 7 as a fauvlt,
What we will mean is that we have stated a cause of fault and that there

is a unique fault which is the result of this failure at time 7.
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It is interesting to see what the scope of our definition of fault is
in terms of the types of failures which will result in faults. Recall that
a fault f of a system S is a triple, f = (S',7,8), where S' € &(I, Z, R).
Thus S' is a (resettable) system with the same input, output, and reset
alphabets as S. The previous sentence contains, implicifly, every
restriction that we have put on faults. First of all, S' is (resettable)-
system. Thus it remains within our universe of discourse. In parti-
cular, its reset inputs still act like reset inputs. That is, they cause
S' to go into a particular state regardless of the state it was in when the
reset input was applied. The restrictions on the input, output, and re-
set alphabets are reasonable since after a fdault occurs the system
presumably will have the same input and output terminals as it had be-
fore the fault occurred.

Let f = (8',7,0) be a fault., Because S' may vary with time we have
considerable latitude in the types of failures which we may consider.

In particular, we may consider simultaneous permanent failures in one
or more components, simultaneous intermittent failu_z s in one or more
componeuts, or any combination of the above occurring at the same or
varying tirics. For example, a fault f may be caused by an AND gate
becoming stuck-at-1 at time Ty followed by an OR gate becoming stuck-
at-0 at time Ty

Let us now compute the behavior of Sf in state q. Let x = ay...a

n

+

el . Then
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ﬁ;m, t) = A, x,t)
=Af(6f( a a t),a ,t +n-1)
q’ 1"‘ n_l’ 1 n) .
There are three cases which must be considered.

Casei) qe Qandt+n-1<7, Then

ﬂ;(x,t) = A(6(q, a;... an_l,t),an,t +n-1)

B bxst) .
Caseii) qeQ, t+n-1>7 andt<7. Sayt+n-m =7 Then

B t) = N(E'6(saay. .. 8 ,0),a a

n-m+1°"°* “n-1’

t+n-m),an,t+n-1)

- 2! ) )
= [59(5((1, agee.a t))(an-m+1"'an’t+n m)

= A =
= Be(é(q,y,t))(z’f) where y aj...a.

n = ] . 80 L]
and z 2 -m+1 an

Case iii) q € Q" andt >7. Then

Bz(x,t) A'(G'(q,al...an_l,t),an,t+n-1)

B&(x, t).

Thus we have proved:
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Theorem 2.1: Let S be a system and f = (S', 7,0) a fault of S. Then for

eacht e Tandx e I+

( qu,t) ifgeQandt+ |x|< 7

Bb(b(q,y,t))(z’ T) if qeQ, t+ ,xl > 7T, and

"
e

& &x,t)

q t <7 wherex =yzand |y| =7 -t

B&(x,t) ifqe Q and t > 7.

(As in the definitions of Gf and )\f arguments not specified may be

assigned arbitrary values. )

Corollary 2.1,1: Let S be a system and f = (S', 7, 6) a fault of S. Then

foreachre R, te¢ T, andx € I

.
%J&)ﬁ‘trhjg T

B'G(b(p(r,t),y,t))(z’ 7)ift + [x| > 7 and

’

'it(xh <

t <7 where X =yz and

ly| =7 -t

[ B ) ift >

Proof: By its definition

dow=J3 &v.
Tt ﬂf(r,t)x

Again we have three cases to consider.
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Casei) t+ ]xl < 7. Thent <7 and pf(r,t) =p(r,t) € Q.
Therefore by Theorem 2.1

oy

FAPLE R

= (x) .

B X

Caseii) t+ |x| >7Tandt<7. Ht<Tthen pf(r,t) =p(r,t) € Q
and Case ii) of Theorem 2. 1 applies with p(r,t) in place of q. If
t =7 then pf(r, t) = 0(p(r,t)) € Q' and case iii) of the theorem

applies giving us

g, &t =g (x,t)
pf(r’ t) - e‘l)(r’ t)) X

= Be e, 0,400

Case iii) t > 7. In this case pf(r,t) =p'(r,t) € Q. Therefore

g, &t = B, &)
pf(l',t) p'(r,t)

r e &) -

We have noted that we will often be interested in the physical cause
of 2 fault. For example, in a network realization of a machine we may
be interested in faults which are caused by a specific NAND gate be -

coming stuck-at-1. Since this gate failure results in different faults
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as we cousider it occurring at different times it seems natural to give
a name to this family of faults. More generally, we will define an equi-
valence relation on a set of faults such that a family of faults such as
we have just mentioned will be an equivalence class.

First we must define an equivalence relation on (I, Z, R) such
that two systems S, S' € &(I, Z,R) are equivalent if they are identical

except for a shift in time.

Definition 2.9: Let S, S' ¢ &(I, Z,R). S'is a T-translation of S if

Q=Q andforalla€el, reR, andt e T
i) 6(q,a,t) = 6'(q, a,t+7)
ii) A(g,a,t) = A"(q, a,t+7)

iii) p(r,t) =p'(r, t+7) .

If S' is a T-translation of S then it can be shown that for all q € Q,

reR,er+, andt ¢ T

Bq(x, t) = Bq(x, t+7)
and

x) =g . ().

r,t+7

B

Tt

Definition 2. 10: Let (F, S) be a system with faults and let fl = (Sl’ T 91)

and f2 = (Sz,'rz, 92) be in F. Then fl is equivalent to f2 (f1 = f2) if S1

is a (‘r1 - 12)-translation of 82 and 91 = 92.
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Theorem 2. 2: The above relations are equivalence relations.

Proof: The relation of ""T-translation' is an equivalence relation on

(I, Z, R) because ""=" is an equivalence relation. The relation =" on
a set of faults of a system is an equivaleuce relation because '"'7-trans-

lation' and "'="' are both equivalence relations.

Notation: We denote then equivalence class of F which contains the
fault f = (S, 7,0) by [f] p- When the class of faults is clear we will drop
the F. Generally if F is not mentioned we take it to be the set of all
possible faults of a system S. We let fi = (Si’ i, 8) denote the fault in

f

[f] which occurs at time i. When dealing with behaviors 3 ' will denote

f. .
the behavior of S ', and ' will deriote the behavior of 8-

Let fi = (Si, i,9) and fj = (Sj’ j, 8) be equivalent faults of a machine
M. Since M is a (i-j)-translation of itself, it can be verified directly

£ £
from Definition 2. 8 that M ! is a (i-j)-translation of MJ. Hence,

Theorem 2.3: Let f be a fault of M and let fi’ f]. € [f]. Then for all

qu,er+,reR andteT

f. f.
Bq‘ (x,t+i) = Bql(x,tﬂ')

and
f, f].
B (i) = Br, t+j &) .
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In this section we nave defined and studied the notion of a fault
of a system. In the remainder of this study we shall limit our investi-
gations to the case in which the fault-free system is time -invariant.
That is, we shall be studying faults of machines. If f=(8",71,0)is a

fault of a machine M we will allow S' to vary with time.
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2.3 Fault Tolerance and Errors

Given a system with faults (S, F) and a proper fault f ¢ F, an
immediate question is whether the faulty system Sf is usable in the
sense that its behavior resembles, within acceptal?le limits, that of the
fault-free system S. We will use the general notion of a "tolerance
relation” [ 28] to make 'more precise what is meant by "'acceptable

limits. " A tolerance relation for a representation scheme (S,%,p) is

a relation 7 between ® and &(r C ® X&) such that, for all R ¢ |,
(R,p(R)) € 7 {i.e., p S 7). In this section we will develop the particu-
lar notions of "acceptable limits' that we will be using in this study of
on-line diagnosis.

Given a machine M it will be understood that M realizes a specific

reduced and reachable machine M under the triple (ol, g 03). Under
the intended interpretation, M serves as the specification of some
desired behavior and M serves as the fault-free realization of this
behavior. This relationship between M and M will underline our basic
notions of fault tolerance, error and on-line diagnosis.

In this study we will only be concerned with the behavior of M
under those resets and inputs which correspond via % and Tq to resets
and inputs of M. No requirements will ever be put on B, x) or 35, ’ t(X)’
where f is a fault of M, if r ¢ oz(ﬁ) or x ¢ 01(f+) because these are
considered to be ""non-code space resets' and ''non-cocde space inputs."

For this reason we will always assume that oy and 0y are onto. In

actually dealing with machines for which g4 Or o, is not onto, occurrences
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of "non-code space resets' and "non-code space inputs'' could be
ignored or they could be treated as errors which must be detected.
These two options corfespond to Carter and Schuneider's [ 7 ] Don't
Care Assignments 1 and 2.

We will be using two basic notions of fault tolerance. The first,
and weaker, correspouds to the preservation of the behavior of M

only insofar as its mimicing of M is concerned.

Definition 2.11: Let f be a fault of a machine M. Then f is 1-tolerated

by M for resets at time t if for all reR

By =05° 3oz(f),t ° 0y

Alternatively, since 01 and 02 are onto and since BT' =

03 0302(?) ° 0y f is 1-tolerated by M for resets at time t if for

allre R

In the special case where f is 1-tolerated by M for resets at time

0, we will simply say that f is 1-tolerated by M.

The second, and stronger, notion of tolerance does not allow for

the tolerance of any change in behavior.

Definition 2. 12: Let f be a fault of 2 machine M. Then f is 2-tolerated

by M for resets at time t if for allr € R
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Again, f is 2-tolerated by M if it is 2-tolerated by M for resets

at time 0.

Our definition of 1-tolerated induces a relation T, On ® where
Mf T M if ard only if f is 1-tolerated by M. K { is improper then Mf =
M and thus f is 1-tolerated by M. Hence M T M, and therefore L8 is
a tolerance relation. Likewise 2-tolerated induces a tolerance relation
Ty If f is 2-tolerated by M then we can see that f is 1-tolerated by M.

Hence, as sets, Ty C AT Finally, note that if Og is 1-1 and f is

1-tolerated by M then f is 2-tolerated by M.

Example 2.6: Let M be the realization of M which consists of 3 copies

of i’[, a voter, and a disagreement detector as shown in Fig. 2.13. Then
any fault f which affects only one copy of M is 1-tolerated but may not
be 2-tolerated, and its presence may be detected by the disagreement

detector.
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Machine M

Fig. 2.13. Triple Modular Redundancy with Voting
and Disagreement Detecting

Our definitions of 1 and 2-tolerated by M for resets at time t
are refined notions of fault tolerance. Coarser notions, and ones more
in keeping withthe literature, would be behavioral equivalence for
resets at any time. We prefer our finer definitions for with them the
effects of time can be more naturally analyzed. One question which
we will study later is: For resets at how many (and which) times must
a fault be tolerated for it to be tolerated for resets at any time?

When a discussion or theorem applies equally well to 1-tolerated
and to Z2-tolerated we will just use the general term '"tolerated. "' We

also do this latter in this section when we discuss "errcrs. "
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Theorem 2. 4: Letf = (S',7, 6) be a fault of machine M. Then f is toler-

ated by M for resets at time t if and only if f'r-t is tolerated by M.

f f f f
. T _,Tt T _ o nT-t
Proof: By Theoren; 2.3, 3r,t =f r,0 Hence, Og ° 'Br ¢ = %3 ﬁr’o s
- T . . —w onT-t
and Og © ‘Br =0q © Br, t if and only if 0q ° Br = 0q Br 0" This

’

’

establishes the result.

Thus, fi, fj,f are tolerated by M for resets at times tl, t2’t3‘“

RERE

respectively if and only if fi-tl’fj -tz’fk-t3’ cee

by F is tolerated by M we mean that each f € F is tolerated by M. Due

are tolerated by M where

to this we will always consider resets to be released at time 0 when
dealing with fault tolerance of machines and no generality will be lost.
Clearly, due to Theorem 2.3, this same sort of time translation can be

applied to any other behavioral attribute.

Example 2.7: Let M4 be the sequence generator shown in Fig. 2. 14,

This machine could be implemented by the circuit shown in Fig, 2. 15.

Fig. 2.14. Machine M

4
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b——.Do—-qD—_. d

Fig. 2.15. Circuit for M4

Let f be a fault of M 4 which is caused by dy becoming stuck-at-1 at
time 7. Then f = (M, 7, ) where MZ} is the machine represented by

the graph in Fig. 2. 16 and @ is as indicated below.

q 6(a)
00 10
01 11
10 10
11 11

0==0
- ™
1/0

Fig. 2.16. Machine M{'1
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t
Constder f_,, i.e., the fault (Mj, -1,6), and rote that g™ (11) = 1

whereas [30(11) =0, Thus f_y is not 2-tolerated by M4. On the other
hand both M 4 and M;l will produce the sequence 00010101... when
reset at -10. Thus f_, is 2-tolerated by M, for resets at -10, By
applying Theorem 2.4 we can learn that fi is not 2 -tolerated by M 4

for resets at time i + 1 and that fg is 2-tolerated by M4.

Corresponding to our two types of fault tolerance we can define

two types of errors,

Definition 2. 13: Let M be a machine, r ¢ R, x ¢ I+, andy € Z* where

|'x] = ]y] The triple (r,x,y) is called a 1-error (2-error) of M if

oy ) £o50) B &) £y).

If (r,x,y) is an error of M and f is a fault of M for which
/[}f‘(x) =y then we say that the fault f causes the error (r,x,y). Note
that any given error could be caused by many ..fferent faults.
The relation between fault tolerance and errors is very simple.
A fault f is tolerated if and only if it causes no errors. The relation
between l-errors and 2-errors is also straightforward. Namely,
every l-error is a 2-error, and if Oq is 1-1 then every 2-error is a
l-error. Errors are very important in any study of fault diagnosis
because a fault can never be detected until it causes an error. The general

goal of on-line diagnoses is protection against undesirable behavioral
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manifestations of faults, i.e., for protection against errors.

An error (r,ua, vb) where a€ Iand b € Z is a minimal error if

(r,u,v) is not an error. I (r,x,y) is a minimal 1-error then it is :
2-error but not necessarily a minimal 2-error. This notion of minimal
(or first) errors will be central to our notion of diagnosis. A minimal
error (r,x,y) is said to occur at time |x| - 1. This is the time at
which the last symbol in y is emitted.

Often we will be in a situation where we are concerned with a
machine M tolerating a set of faults which are all caused oy the same
phenomenon but which may occur ot any time. More specifically, let
f o a fault of M. We would like results which assured us that if some
finite subset of [f] was tolerated by M then all of [f] was tolerated oy
M. Later we will be interested in the same problem with regard to
diagnosis.

Our first result of this nature hinges on the fact that any reachable

state of an £-reachable machine is reachable by time £.

Theorem 2. 5: Let f be a fault of an f-reachable machine M and suppose
fi is tolerated by M for 0 < i < £. Then fi is tolerated by M for all

>0

Proof: Assume, to the contrary, that fi is not tolerated by M for some

i > £. Then there exists an error (r,x,y) which is caused by fi.

f
Al .
Hence S (x) =y. Letx= X Xy andy =y,y, where ]xll = [yll = i,
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By Corollary 2. 1.1 we know that
M) = B (x,, 1) =
e &) = BB, x )2V 172 -

Let q = 6(p(r),x1). Since M is £-reachable, there exists s ¢ R and
u € I" such that lu] =j <L and 8(p(s),u) =q. By Theorem 2.3

f.
A 3 A

_ . , . _ N | -
9(q)(x2’ i) = @e(q)(xz.]). Therefore if %s (u) = v then ’35 (uxz)
%S(u)ge(ﬁ(o(s), u)) (x2’ j) = V%B(q)<x2’ j)= VY2° Clearly, (s, ux2’ VYZ)
is an error and it is caused by fj. Therefore fj is not tolerated.

Contradiction. This establishes the resuit.

The following general example shows that Theorem 2. 5 is the
strongest result possible, in the sense that if the hypothesis is at all
weakered then there exists a fault f and a machine M for which the

conclusion is invalid.

Example 2. 8: Consider the {-reachable autonomous machine Mﬁ shown

in Fig. 2.17. Let m be an integer between 0 und £, and let

Fig. 2.17. Machine M

£
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f= (MI’T’ 8) be a fault of Ml where

[ if j #m

8(q.) =
] \ 6(qj,0) ifj=m

Consider M£ to be realizing itself. That is, take M = Ml.
The occurrence of { = ’,MQ, 7, 6) has an effect on the behavior of
Mi if and only if Mﬂ could be in state ., at time r. Therefore, fi =
(Mi’ i, ) is tolerated by M, if and orly if i ¥ m (mod £ + 1). Hence
fi is tolerated by M,,; fori=0,...,m-1,m+1,..., ¢ does not imply fi

is tolerated by M, for ali i > 0. Since both.m and £ were arbitrarily

£
chosen, this general example shows that the hypothesis of Theorem 2.5
cannot be weakened.

Let us now look at faults which occur before time 0. In the
previous result we have not mentioned this case because if fi and fj
are equivalent faults and i or j is less than O then there is, in general,
no relation between the behaviors of Mfi and ij for resets re 2ased at
time 0. Hcwever, in the important special case where f = (M', 7,0)

is a permanent fault, any fi ¢ [f] with i < 0 will, with respect to resets

released at time 0, canse identical behavior.

Lemma 2.6: Letf = (M', 7,0) be a permanent fault of M. Then

f.

f.
B, = B) forallreRandij<0.
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Proof: Leti,j < 0. Because f is permanent, fi = (M",1,0) and
f

f.
fj = (M'"j,8). By Corollary 2.1.1, [3ri = ﬂ; and 31]' = ﬁl: for allr € R.

This establishes the result.

Theorem 2. 7: Let f be a permanent fault of an £-reachable machine M.

if fi is tolerated by M for -1 < i< (¢ then fi is tolerated by M for all
ieT.

f.
Proof: By Lemma 2. 6, ;31_1 = pr'l for all i < 0. Hence, f_1 is tolerated

by M implies that fi is tolerated by M for all i < 0. By Theorem 2.5,

fi is tolerated by M for all 1 > 0. This establishes the result.

Before leaving this line of development we will make some final
observations. Note that a machine M is O-reachable if and only if
p(R) = P. In particular, every memoryless machine is O-reachable. By
Theorem 2. 5, if M is O-reachable and fo is tolerated by M then fi is
tolerated by M for alli > 0.

If f = (M',7,60) is a fault of M we think of {f as affecting the reset
mechanism of M if p'(r) # 6(p(r)) for some r € R. If this is not the case
then a further result, similar to Lemma 2.6 can be obtained.

Lemma 2.8: Let f = (M',7,6) be a permanent fault of M and suppose
that p'(r) = 8(o(r)) for allr ¢ R. Then ﬁii= pi_j for allr e Randi,j <0,

f
Proof: Since p'(r) = 6(o(r)), by Corollary 2. 1.1, pr° = B! forallr ¢ R.

The result now follows just as in the proof of Lemma 2. 6.
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Putting the above observations together yields:

Theorem 2.9: Let f = (M', T,8) be a permanent fault of M. Suppose

that p'(r) = 0(p(r)) for allr ¢ R and that p(R) = P. If fi is tolerated by

M for any i< 0 then f, is tolerated by M for all i e T.

Proof: By Lemma 2.8 , is tolerated by M for all i < 0. Since p(R) =
P, M is O-reachable. Therefore, by Theorem 2.5 fi is tolerated by M

for all i 2 0. This establishes the result.
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2.4 On-line Diagnosis

Our notion of on-line diagnosis of a system involves an external
detector (assumed to be fault-free) which observes the input and the
output of the system and makes a decision as to whether the behavior
of the system is within "acceptable limits’ as set forth by our notions
of fault tolerance. Initial synchronization of the systein with its
detector is achieved by using the same reset to initialize both systems.

The formal relation between a system and its detector is that of

a "cascade connection. "

Definition 2. 14: The cascade connection of two systems S1 and 82 for
which R1 = R2 and I2 = Z1 X I1 is the system
* =
Sl 82 (Il7Q’ ZZ’G’A,Rl’p)
Q=Q,xQ,
where

6(((!1’ qz), a, t) = (51(q1, a, t)y 62(q2) (Al(qu a, t)y a)’ t))
A-((‘11’ qz), a, t) = AZ(Q2v (Al (qu a, t), a), t)

plr,t) = (p,(r,t),p,(r,t)).
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Schematically, S1 * 82 can be pictured as in Fig. 2.18.

Rl L
yA I..
I _1__:. Zo
———) S1 S2 Ly
.}

Fig. 2.18. The Cascade Connection of S, and S

1 2

. _ + _ + .
Notation: If u = 2425 ..2 € Z andv = ajag...a € I' then the pair

. +
[u, v] will denote the sequence (4 al)(ZZ’ az). .. (zn, an) e (Zx1).

Let S1 * 82 be the cascade connection of S1 with 52' Let Bl, pz,

and B3* denote the behavior functions of Sl’ SZ’ and S1 * S2 respectively. »
It can be shown directly from the definition of a cascade connection that

forallerI, qleQ, qzeQz, reRl, andt € T,

2 Al
Blapany™? - pqz([%ql(x,t),x],t)
and

r 0 = 2 (B 60,x]).
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We can now formally define our notion of on-line diagnosis.

Definition 2. 15: Let (M, F) be a machine with faults, let D be a machine

for which M * D is defined, and let k be a nonnegative integer. (M, F) is

(D, k)-1-diagnosable (2-diagnosable) if

i) 8; =0for allr ¢ R, and
ii) if (r, x, w) is a minimal 1l-error (2-error) caused by some f ¢ F

then

%?([/L\?:‘(xy),xy]) £ 0lxyl for ally € I* with |y| =k .

Thus, the detector D observes the operation of Mf and must mak~
a decision based on this observation as to whether an error has occurred.
Note that the fault-free realization M and the detector are both time-
invariant (i. e., machines), and that the detector takes no part in the

computation of M's output.

Fig. 2.19. Diagnosis of (M, F) using the Detector D
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The two conditions of Definition 2. 15 can be paraphrased as:

i) D responds negatively if no fault occurs; i.e., D gives no
false alarms, and

ii) for all f ¢ F, D responds positively within k time steps of the
occurrence of the first error caused by f.

Condition i) implies O € Z,y the output alphabet of D. Each

z € Z, other than 0 is called a fault -detection signal. The choice of the

D
symbol ""0" to indicate that the machine M is operating properly is

purely for notational convenience. In general we could let any subset
of ZD indicate proper operation and let the complement of this set in

ZD be the set of fault-detection signals. In a practical application this
choice would depend on the design constraints on the detector.

As we have done with fault tolerance and with errors, if a theorem
or remark applies to both ""1-diagnosable” and '"2-diagnosable’ we will
just state it once using the general term '"diagnosable. "

Let D be a detector for M. Then ID = ZX 1. There will be times
when the observation of M's input by D will be unnecessary or undesired.

I forall ze Z and a,b € I (z,a) and (z,b) are equivalent inputs of D

the n we will say that D is independent of M's input. In this case the

behavior of D does not depend on the second coordinate of D's input and

we will take I to be simply Z.

D
Recall that with this concept of diagnosis that we are only con-

sidering faults of M. Faults of D must be analyzed separately. In
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finding a realization M of M and a detector D there is some leeway in
how much of the added complexity required for diagnosis should go
into the detector and how much should go into the realization. If it all
goes into the realization then D will serve only to select out certain
coordinates of M's output to be used as the output of D. That is, D
will be memoryless and realize a projection. In this case we will

say that (M, F) is k-self-diagnosable. In general, it is desirable for

the desirable for the detector to be self-diagnosable for some suitable
set of faults.

The basic on-line diagnosis problem can be stated as follows:

Given a machine M, a class of faults F, a class of detectors

g) and a delay k find an (economical) realization M of M and a

detector D € % such that (M, F) is (D, k)-diagnosable.

In this chapter we have developed a model for the study of on-
line diagnosis of resettable machines, and we have stated the basic
on-line diagnosis problem. We end this chapter by stating some funda-
mental questions, the answers to which will help solve this basic pro-
blem. We will begin to answer these questions in the following chapters.

I. Given id, M, and F, does there exist a defector D and a
delay k such that (M, F) is (D, k)-diagnosable ?

II. If such a D and k exist, how does one construct an optimal or
near-optimal detector ? What might be criteria for optimality ?

III. What time -space tradeoffs are possible between the added

complexity needed for diagnosis and the maximum allowable delay ?

We expect that there will be situations where if the detector is given
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additional time in which to indicate an error then diagnosis may be
simplified.

IV. What are good on-line diagnosis techniques? When is each
technique applicable? How does one compare techniques?

V. What relationships exist between faults and errors? Given
M and F, what errors are possible? Given IVI and ¥, how can one find
a realization M of M such that the machine with faults (M, F) gives rise
only to errors of a given type? These are important questions
because given a diagnosis technique or a particular type of detector,
it will often be easy to determine just what types of errors are
detectable. The faults that are diagnosable will then have to be inferred
from this information. Converseiy, we will want to find realizations
such that the faults we are concerned with will cause errors that we
can detect.

V1. What properties of system structure and system behavior are
conducive to on-line diagnosability? Structural properties are
important for it is expected that they will relate directly to diagnosis
techniques. Behavioral properties could be used to measure the
inherent diagnosability of a given behavior in terms of the minimum
added complexity which would be required to obtain a given level of

on-line diagnosis.



CHAPTER III

General Properties of Diagnosis

In this short chapter we will present a few results on diagnosis
per se. That is, they are general results which tell us some things
about diagnosis, independent of the particular fault set being diagnosed
or of any particular diagnosis technique. In the following chapters
we look at the diagnosis of specific sets of faults and investigate
the capabilities and limitations of on-line diagnosis techniques.

It is interesting to see how our concept of on-line diagnosis
compares with a similar concept introduced by Carter and Schneider
[ 7] and called "fault-secure’ by Anderson [ 1 ]. As stated by

Anderson, "A circuit is fault-secure if, for every fault in a pre-

scribed set, the circuit never produces incorrect code space outpuis
for code space inputs. "

Before making a formal comparison we must translate this
notion into our framework. In doing so we will strive to be faithful

to Anderson's intent.

Definition 3. 1: A machine with faults, (M, F), is fault-sccure if

(r,x,ya), where a € Z, is a minimal 2-error caused by some f ¢ F

implies a ¢ {Br(x)!r €eR, xeI'}.

61
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Thus if (M, F) is fault-secure then a combinational detector which
ounly observes the output of M can detect all minimal 2-errors. More

formally,

Theorem 3. 1: (M, F) is fanlt-secure if and only if (M, F) i3 (D, 0)-2-

diagnosable where D is memoryless and independent of M's input.

Proof: (Necessity) Assume that M is fault-secure. Define

\p: T {0, 1} by

AD(z) _ [ Oifze{Br(x)]reR,er+}

\L 1 otherwise

Let D be the memoryless detector which realizes AD' Then D is
independent of M's input and it can easily be verified that (M, F) is
(D, 0)-2-diagnosable.

(Sufficiency) Assume that (M, F) is (D, 0)-2-diagnosable where D is
memoryless and independent of M's input. Let )\D: z - {0, 1}
denote the function realized by D and let Z' = {ﬂr(x) reR, xe 1'}.
Then AD(z) = 0 for all z ¢ Z' for otherwise a false alarm could occur.
Let (r,x,yu) where a € Z be a minimal 2-error. If a€ Z'then
AD(a) = 0 and f is not detected without delay. Therefore a ¢ Z'.

Hence (M, F) is fault-secure.

Thus the concept of (D, k)-diagnosable is a generalization of the
concept of fault-secure. In particular, (D,k)-diagnosis allows for

(i) different tolerance relations, (ii) nonzero delay in diagnosis,
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(iit) detectors with memory, and (iv) explicit ~hservation by the
detector of the input to the system being monitored.
The following result is a consequence of the fact that every

l-error is a <~error but not conversely.

Theorem §.2: If M,F) is (D, k)-2-diagnosable then (M, F) is (D, k)-1-

diagnosable, but not conversely.

Proof: Let (M, F) be (D, k)-2-ciagnosable. Then - » false alarms will
occur and every minimal 2-error will be detected within k time steps
of its occurrence. Let (r,X,y) be a minimal l-error. Then ca(ﬁr(x),-i
03(y) and hence é\r(x) #y. Thus (r,xl,yl) is a minimal 2-error for
some X, and Yy such that x = XX,y andy = Y¥or Since this minimal
2-error is detected within k time steps of its occurrence the minimal
l-error (r,x,y) must also be detected within k time steps of its
occurrence. Hence (M, F) is (D, k)-1-diagnosable.

The counterexample which shows that the converse does not

hold is given in the next chapter in the proof of Theorem 4. 4.

Due to this result, in stating theorems ''1-diagnosable’’ is a
weaker hypothesis than ''2-diagnosable. "
Although the converse of Theorem 3. 2 does not hold in general,

the following partial converse can be obtained.
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Theorem 3.3: 1If (M, F) is (D, k)-1-diagnosable and g is 1-1 then

(M, F) is (D, k)-2-diagnosable.

Proof: We observed in Section 2. 3 that if Og is 1-1 then every

2-error is a 1-error. The result is an immediate consequence of

this fact.

The next result will help us to see the relationship will help us

to see the relationship between fault diagnosis and fault tolerance.

Theorem 3.4: Let (M, F) be a machine with faults. If F is tolerated

by M then (M, F) is (Do, 0)-diagnosable where D, is a trivial memory-

less machine which realizes the constant O function.

Proof: Condition i) is clearly satisfied, and condition ii) is satis-

fied because if F is tolerated by M then no f ¢ F will cause any errors.

The decision in this case can be trivially made since no errors
are ever produced. The situation for tolerated faults is not so simple
as this result may seem to indicate for it must be remembered that
1-tolerated does not imply 2-tolerated and thus a i-tolerated fault
could be detected through a Z-error.

| We will now develop some results concerning diagnosis which are
analogous to Theorems 2. 5, 2.7 and 2. 9. Recall that these theorems
allowed us to infer the tolerance of an infinite set of equivalent faults

from knowledge that a specific finite subset of them is tolerated.
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Theorem 3.5: Let M be a machine and let D be a detector for M.

Suppose that the cascade connection M * D is £-reachable, and that
fisafault of M. If M,{f;}) is (D,k)-diagnosable for 0 i< £ then

™, {1.}) is (D, k)-diagnosable for all i > 0.

Proof: Assume that (M, {fi}) is (D, k)-diagnosable for 0 <i < L.
Then condition i) of Definition 2. 15 is immediately satisfied. Let
(r,x, w) be a minimal error caused by f. where i > £, and let u e I”
with [u] = k. To show that (M {1,}) is (D, k)-diagnosable for 0 < i
we need only show that ;3 ([ ﬁ (xu),xu]) £ leul.

Let x = X,z where ,xl' =i, and let 6*(p*(r),x1) = (q,q'). Since
M * D is £-reachable there exists s ¢ R and yel  with0< |y| <t
such that 6*(p*(s),y) = (q, q') Say ly] =j. Since (M, {f })is
(D, k)-diagnosable, ﬁ ( ,5 J(yzu),yzu] # Olyzul’ and since the fault

detection signal must occur after the fault occurs,

f.
B Bglgy (eu ) 2u]) £ o=l

f. f;
2.3, 5 (aw,i) =3, '
N:w by Theorem , pe(q)(zu i) ﬁe(q)(zu,]) and hence
pD([ S@tq) (zu, i), zu]) # O]zu]. Therefore

ﬁf([fg‘ii (x,2u), x,20]) = AP 3 (x)%,] )[?D 3 )(zu , 1), zu])
. olxul

Hence (M, {fi}) is (D, k)-diagnosable for all i > 0.
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Example 2.8, which shows that the hypothesis cf Theorem 2. 5
cannot be weakened, works likewise for Theorem 3.4. This example
works for both fault tolerance and fault diagnosis becuase, as was
poiu.ed out by Theorem 2.3, tolerated faults are trivially diagnos-

able.

Theorem 3.6: Let M be a machine and let D be a detector for M

such that M * D is £-reachable. If f is a permanent fault of M and
(M,{fi}) is (D, k)-diagnosable for -1 < i< £ then (M, {fi}) is

(D, k) -diagnosable for all i € T.

Proof: Assume that f is a permanent fault and that (M, _{fi}) is
(D, k)-diagnosable for -1 <i < £. By Theorem 3.4, o, {£}) is
(D, k)-diagnosable for all i > 0. By Lemma 2.6, ,3? = Bfr-l

for allr € Rand i < 0. Henceev ry f.1 with i < 0 will cause
exactly the same errors. Since (M,{f_l}) is (D, k)-diagnosable it

follows that (M, {fi}) is (D, k)-diagnosable for all i < 0. This

establishes the result.

Let D be a detector for a machine M. It will often be the case
that the second coordinate of the state of M * D can be uniquely
determined from the first coordinate. In particular, this is always
the case when IQDI =1, More formally, the casce 7> connection of

M, with M

1 9 18 synchronized if there exists a function h: Q1 — Q2
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such that for each (q,,q,) in the reachable part of M, * M,,
172 1 2

h(ql) =qy- Such a function is called thc synchronizing function of

Ml * M2 and it must satisfy h(ol(r)) =p2(r) for eachr € R.

If M * D is synchronized and M is £-reachable then M * D is
also £-reachable. We have observed in Chapter II that M is
0-reachable if and only ifp(R) = P, and that, in particular, every
memoryless machine is 0-reachable. Heunce if p(R) =Pand M * D
is synchronized then M * D is O-reachable. In this case we know
that if fo is diagnosable then fi is diagnosable for 0 <i.

We terminate this line cf development by stating the strongest

result of this nature.

Theorem 3.7: Let M be a machine for which p(R) = P. Let Dbe

a detector for M such that M * D is synchronized. Let f = (M', 7, 3)
be a permanent fault for which p'(r) = 6((r)) for allr ¢ R. If
(M,{fi}) is (D, k)-diagnosable for any i < 0 then (M, {fi}) is (D, k)-
diagnosable for all i ¢ T.

Proof: Assume that (M, {fﬂ}) is (D, k)-diagnosable where ¢ < 0.

f f;
By Lemma 2. §, ar‘ = Br] for all i, j < 0. Therefore (M,{f.}) is

(D, k)-diagnosable for all i < 0. Sincep(R)=Pand M * D is syn-
chronized, M * D is O-reachable. Thus by Theorem .4, (M, {fi})

is (D, k)-diagnosable for all i > 0. This establishes the result.



CHAPTER IV

Diagnosis of Unrestricted Faults

With rapidly changing technology it is risky to rely too heavily
on the classical stuck-at model of circuit failures. Other failure
modes such as bridging failures have been proposed and studied
(see {26] and [15] for example) but little is known about the diag-
nosis of such failures. Intermittant and multiple failures are also
possible. Adequate failure mode analysis often exists only for out-
dated teclinology.

There are other problems in obtaining a suitably restricted set
of faults which are peculiar to on-line diagnosis. For a given
failure it may be impossible to determine the 8 function of the fault
caused by this failure. Thus fault sets which do not restrict the
fault mapping 6 are advantageous.

In this chapter we will develop some basic results concerning
the diagnosis of "unrestricted faults. " This set of faults is truely
unrestricted for it is precisely the set of all faults of the machine
being diagnosed.

Unrestricted faults are typically diagnosed using the technique
of duplication. One of the aims of this chapter is to take a deeper

look at duplication and ... a generalization of this scherue.
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An alternative to using duplication for the diagnosis of
unrestricted faults is> investigated in Chapter V.

The main result in this chapter states that to achieve 1-diagnosis
of the unrestricted faults of a inachine M, the detector must have as
many states as K/I, the behavioral specification for M. Furthermore,
to achieve 2-diagnosis, the detector must have as many states as
MR’ the reduction of M. These bounds on the state set size of the

detector are independent of the delay allowed for the diagnosis.
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4.1 Unrestricted Faults

As stated above, the set of unrestricted faults of a machine

is simply the set of all faults of that machine. More formally,

Definition 4. 1: The set of unrestricted fauits of machine M, denoted

by Uy, is the set Uy = {t|f is a fault of M}. That is,

Uy = {(S',T,G)l S'e SU,Z,R), TeT, and 0: Q = Q'} .

When it is clear what machine is under consideration, the
identifying subscript will be dropped.

One important property of the set of unrestricted faults is the
relation between this fault set and the set of errors that may be
caused by faults in this set. Given any r € R, x¢€ I andy € z" with
lx] = {y[, there is a fault f € U such that %:_(x) =y. Therefore
faults in U can cause any possible erroneous behavior, and for
(M, U) to be (D, k)-diagnosable all of these possible erroneous
behaviors will have to be detected by D.

Due to the above observation it is clear that the output of Mf
(the system actually being observed by the detector) can give no
information about what the correct output should be. Ther :ore,
for the diagnosis of unrestricted faults, the ability of D to observe
M's input directly is crucial. This observation is made explicit

in the following resulit.
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Theorem 4. 1: If (M, U) is (D, k)-1-diagnosable, D is independent of

M's input, and M is transition distinct then M is autonomous.

Proof: Suppose that (M, U) is (D, k)-1-diagnosable. D is independent
of M's input, and M is transition distinct. Assume, to the contrary,
that M is not autonomous. Then there exists r ¢ R and x,y ¢ I

such that |x| = |y| and GS(Br(x)) # 03(',’§r(y)). Let v e I* with |v| = k.

fxv[ and

For no false alarms to occur we must have %?(sr(xv)) =0
fi\l[‘)(Br(yv)) = Oval. Let f € U be a fault for which ;/3\:;(xv) = ﬁi(yv).
Since (r,x, @i_(v)) is a l-error it must be detected within k time
steps of its occurrence. But ﬁf(é\i(xv)) = 3?(3r(yv)) = Olyv]‘

Contradiction. Hence M must be autonomous.
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4.2 Diagnosis Via Independent Computation and Comparison

It is a well-known and obvious fact that if a system is dupli-
cated and both copies are run in parallel withthe same inputs then by
dynamically comparing the outputs of the two copies any error
which does not appear simultaneously in both copies will be immed-
iately detected.

Our view of duplication is shown in Fig. 4. 1. In this figure

—I——T_. m 2! XOR , E
' |
R 3 | |
l l—j—j |
| | |
L -1

Fig. 4. 1. Diagnosis via Duplication in the Detector

the detector D consists of a copy of M along with a generalized
Exclusive-OR gate where output is 0 if and only if its inputs are
identical. Given such a detector D, it is immediately clear that
(M, U) is (D, 0)-2-diagnosable.

Duplicaticn is an expensive technique, involving somewhat
mcre than twice the circuitry required for the unchecked system
alone, but it has a number of positive attributes. In addition to

being capable of diagnosing the unrestricted set of faults,
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synthesis is easy and self -testing and self-diagnosable comparators

are known to exist [ 1 ].

The basic configuration shown in Fig. 4.1 can be generalized

to the configuration shown in Fig. 4.2. In this figure the detector

Q- - = 1
1 z | ! E
——-——?—-.M I
R [} | '
|
| Y |
l$ M!' l
[ |
- - - _ -
D

Fig. 4.2. A Generalization of Duplication in the Detector

consists of a machine M' which runs in parallel with M and a
combinational comparator C which dynamically compares the out-
puts of M and M'. Note that for the cascade connéction M * D to be
defined we must have I' =1 and R' = R,

With this scheme M' may be much less complex than M. How-
ever, we will show that there is a relationship between the size of

the state set of M' and the level of diagnosis which may be possible

using M'.
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In the following result we give a necessary and sufficient
condition for (M, U) to be (D, 0)-diagnosable where D is structured
as in Fig. 4.2. The basic intuition for this result is that (M, U)
is (D, 0)-1-diagnosable if and only if it is possible to perfectly pre-

dict the behavior of f’[ from that of M'.

Theorem 4.2: Let M realize M under (01,02,03). Let [M',C] de-

note a detector for M constructed from M' and C as shown in Fig.
4.2, There exists oé such that M' realizes M under (01,02,053)
if and only if there exists C such that (M, U) is ([M', C], 0)-1-
diagnosable. Similarly there exists oé su_ch that M' realizes M
under (e,e,oé) if and only if there exists a C such that (M, U) is

({Mm*, C], 0)-2-diagnosable.

Proof: (Necessity) Assume that M' realizes M under (ol,oz,aé).
' r o~ = % ~ 3 . . -~
Then 03 ° Boz(r) 9y BY' for allr € R. Since M realizes M
under (01,02,03), Og © {302(?) ° Uy =BF for allre R. Hence
t 5 t -, O = ~. © ec
o3 Boz(r) % Oq o Boz(r) 04 Recall that oy and 0, are
assumed to be onto. Because of this assumption, it follows that

oé oB;. =0gq :Br for all re R. Let C be the comparator shown in Fig. 4. 3.
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Fig. 4.3. The Comparatbr Used in the Proof of Theorem 4. 2

Since o4 ° B =04 ° B the detector [M’', C] will give no false
alarms. Let (r,x,y) be a minimal l-error caused by f €¢ U Then
os(ﬁr(x)) F 03(B£(x)). Hence, oé(ﬁ;(x)) # 03(B£(x)), and this will
cause the Exclusive -OR gate to emit a 1. Therefore the minimal
l-error (r,x,y) is detected with no delay. Hence (M, U) is

(M, C],0)-1-diagnosable.

Similarly, if M' realizes M under (e,e,o'3) then Br =o:'3 0 B;
and a comparator as shown in Fig. 4.3, but without the Og function.
can be used to achieve ([ M', C], 0)-2-diagnosis of (M, U).
(Sufficiency) Assume that (M, U) is ([ M', C], 0)-1-diagnosable. To
f)rove that there exists a oé such that M' realizes M under (0’1,0’2,0"3)
we must exhibit a function 0'3 and show that gg 2 ﬁr = oé ° B;_. This

is sufficient because M realizes M under (01, o) 03)
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and oy and 0y are assumed to be onto.

Since no false alarms may vccur we know that C(Br(X), ﬁ;,(X)) =0
forallr e Randx € I'. Define o as follows: aé(ﬁ;(x)) = 03([3r(x)).
Since 0'3 has the desired property we must simply verify that it is
indeed a function.

It is clear that every z € {ﬁ;‘(x)lr € R, x € I'} has an image
under oé. To see that this image is unique suppose that ,3;(x) =
B;(y). We must show that 03(3r(X)) = 03(Bs(v)). Let B;(x) = a,
03(Br(x)) = b, and 03(38(37)) =¢. Then C(b,a) =C(c,a) =9, Assume
to the contrary that b # c. Let f € U be a fault which causes the
output of M to be c at time lxl - 1 and which has no other affect.

Let x = uv where v e I. Then (r,x, Sr(u)c) is a minimal l-error

and since C(c,a) = 0, it is not detected vhen it occurs. This contra-
dicts the assumption that (M, U) is ([M',C], 0)-1-diagnosable. Hence
oé is a function and M' realizes M under (01, oz,oé).

The proof that (M, U) is ((M', C], 0)-2-diagnosable implies that
there exists a function g such that M' realizes M under (e, e,oé)
is essentially the same as the above proof.

From Theorem 4. 2 we know that if M realizes M' and M' is
reduced and reachable then |Q] > |Q'|. Hence Theorem 4. 2 tells
us that if we use the scheme shown in Fig. 4.2 for tte diagnosis of
unrestricted faults then we must have |Q'] > [6] in order to achieve
1-diagnosis, and | Q'| > ]QR] in order to achieve 2-diagnosis,

where M_ is the reduction of .

R
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4.3 Diagnosis with Zero Delay

The question we will answer next is whether it is possible to
achieve (D, 0)-1-diagnosis of (M, U) with a detector which is less
complex, in terms of state set size, than the reduced and reachable
specification M. One reason to believe that this may be possible
is the observation that if M has an inverse then this inverse may
have fewer states than f\?[, and yet a detector constructed using this
inverse may be capable of diagnosing all of U. Examples of such

inverses are given in the following chapter.

Theorem 4. 3: If (M, U) is (D, 0)-1-diagnosable then ,QDI > ]é l.

Proof: Let (M, U) be (D, 0)-1-diagnosable, and assume, to the

contrary, that [QDI < ]6] Without loss of generality, assume
that M is reachable.
Claim: There exists q, q' € Qand s ¢ QD such that (q, s), (@', s)
€ P*, the reachable part of M * D, and Ty ° Bq £ gg ﬁt'f

Let g: Q = Q(QD) - ¢ (where g(QD) = {X]X - QD}) be
defined by g(q) = {sl(q, s) € P*}. Assume that the claim is not
true. Then 04 ° Bq # Tg© Bq' implies g(q) N glg) = ¢. We know
from the proof of Theorem A. 2 that for each q ¢ Q there is a state
f(q) for which Ea = 0g0 Bf(fl) >0, and that f is necessarily 1-1.
Since M is reduced and reachable there must exist lé] = £ unique

states {ql, e ,qﬂ} C Q such that i # j implies g(qi) n g(qj) = ¢,
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andtherefore ]QD[ > Ié l Contradiction. This establishes the
claim,

Letq,q' ¢ Qand s ¢ Qp such that (g, s), (@', s) ¢ P* and
Og ° Bq # 0g° Bq,. Then there exists a sequence ua where u € I*
and a € I such that 03(Bq(ua)) £ 03([3q, (ua)) and if u,éAthenoa(ﬁq(u)) =
os(ﬁ\q,(u)). Since (q, s) € P* thereexistsr e Randy € I* suchthat
6*(p*(r)),y) = (,s).

Recallthat givenanyr e R, xe¢ I andy € Z*with [‘c[ = ]y], there is a
fault f € Usuchthat é\f,(x) =y. Letf e Ube a fault for which/B:_(yua) =
é\r()')é\q.(ua). Since it is known that 03([§\q(u)) = 03(§q,(u)), it follows
that (r,yua,éf(yua)) is a minimal 1-error. Now (M, U) is (D, 0)-1-
diagnosable implies @?([@i(yua),yua]) £ Olyua l Since no false
alarms may occur, ;/J\?([ S‘r(y),y]) = Oly,. Also, since (q', s) € P*,
fi\;)([ @q,(ua),ua]) = Olual. Mow

TAS

By (3, 6)3  wa), yual)

BP( 8 (yua), yua))

BB, yDBD (B, wa), ua))

= olvlolual

_ olyual

This contradicts the assumption that (M, U) is (D, 0)-1-diagnos-
able. Therefore IQDI > ]é]
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Corollary 4.8.1: If (M, U) is (D, 0)-2-diagnosable then |Qp| > |Qg ],

where MR is the reduction of M.

Proof: Assume that (M, U) is (D, 0)-2-diagnosable, and consider

M to be realizing M.,. By Theorem 3.2, (M, U) is (D, 0)-1-diagnos-

n
able, and hence, by Theorem 4. 3, IQD, > [QRI.
Let us now consider the set of faults of M which are caused by

the output of M becoming stuck-at-v, where v € Z, at some time 7.

More formally, the set of permanent output faults of M is the set

F = {t=M",7,e)|M' = (1,Q, Z,5,1", R, p) where

A'(g,a) = A'(s,b) for allq,s € Qand a,b e I}

Because the set of permanent faults causes the same minimal
2-errors as the set of unrestricted faults if (M, Fo) is (D, 0)-2-diag-
nosable then (M, U) is (D, 0)-2-diagnosable. However, U and F0 do
not cause the same minimal 1-error, anii, in fact, (M, FO) is
(D, 0) -1-diagnosable does not imply that (M, U) is (D, 0)-1-diagnos-

able, These statements are proved in the following result.

Theorem %.4: (M, FO) is (D, 0)-2-diagnosable if and only if (M, U)

is (D, 0)-2-diagnosable. However, (M, Fo) is (D, 0)-1-diagnosable

does not imply that (M, U) is (D, 0)-1-diagnosable.
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Proof: Let (M, Fo) be (D, 0)-2-diagnosable. Let (r,ya, w) where a
a € I, be a minimal 2-error which is caused by f ¢ U. To show that
(M, U) is (D, 0)-2-diagnosable it suffices to show that {3?([ ;:Xi(ya),ya]) ¥
0. Since (r,ya, w) is a minimal error, 3r(y) = @f‘(y) and Br(ya) #
ﬂ:_(ya). Say 43:_(ya) = b, and consider the fault f' ¢ Fo which is caused
by the output of M becoming stuck-at-b at time |y|. Then f)'\i(ya) =
fi\rzya), and f' also causes the minimal 2-error (r,ya,w). Since
(M, FO) is (D, 0)-2-diagnosable ws *now that Bll,) { é\rf,'(va),ya]) # 0.
Hence p?([ fi\i_(ya),ya]) # 0 and (M, U) is (D, 0)-2-diagnosable.

Now assume that (M, U) is (D, 0)-~iagnosable. Since Fo cvu,
it follows immediately that (M, Fo) is (D, 0)-diagnosable,

We prove that (M, Fo) is (D, 0) -1-diagnosable does not imply
(M, U) is (D, 0)-1-diagnosable by supplying a counter-example. Let
ﬂ[l’ Ml’ Dl’ and Og° Z -7 be specified by the tables in Fig. 4. 4.

Then IT/I1 is reduced and reachable, and Ml realizes IT/I1 under

(e,e,os).
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; 1l 1 R My | 1 0 1
1 1
a b/2 c/3 r a b/2 c/3
b d/0 d/0 b d/0 d/o
c e/0 e/0 c e/l e/l
d d/2 a/3 d d/2 a/3
e e/3 a/2 e e/3 a2
0,0{ 0,1} 1,0} 1,1 | 2,0} 2,1} 3,0} 3,1
A BC/1 | BC/1 {BC/1 |BC/L | BC/O {BC/1 |BC/1 |BC/O
BC p/o| p/o}| E/O] E/O} E/1)] E£/1) E/1} E/L
D p/1] o/r}| p/1| p/1| p/0] D/1| D/1{ A/C
E E/L} E/1 | E/1 )] E/1 ] E/1 ] A/0)] E/O] B/
z 03(2)
0 0
0
2
3 3

Fig. 4.4. Machines M

1’

Ml’ and D1 and 03: AR/
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Since IQDII < léll we know from Theorem 4.3 * at (Ml’ U) is not
(Dl’ 0)-1-diagnosable. To see that (Ml’ Fo) is (D, 0)-1-diagnosable
takes a bit of analysis. Briefly, states A, D, and E duplicate states
a, d and e and any error which occurs when M1 is in one of these
states is immediately detected. If M1 is in b or ¢ then D1 will be

in BC and if the output becomes stuck-at 2 or 3 at this time it will
be immediately detected. If M1 is in b cr ¢ and a stuck-at-0 or

stuck-at-1 fault occurs then it will be tolerated for one time step

and detected the next. This establishes the result.

In the above counter-example it is clear that (Ml’ Fo) is not
(Dl’ 0)-2-diagnosable because a stuck-at-i fault which occurs when
M1 is in b causes a 2-error which is not unmediately detected.
Therefore this example also proves that, in general, (M, F) is
(D, k)-1-diagnosable does rot imply that (M, F) is (D, k)-2-diagnos-
able. Also, if (M, Fo) was (D, 0)-2-diagnosable for some D then by
Theorem 4.4 (M, U) would be (D, 0)-2-diagnosable and from Theorem
4. 3 it would follow that [QD! > ICS |. Hence this is also an example
of how 1-diagrosis may be achieved with a detector which is less
complex than the least complex detector which is sufficient for

2-diagnosis.
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4.4 Diagnosis with Nonzero Delay

Suppose now that we allow some arbitrary, but fixed, k > 0
in the detection process. Can this additional time be traded off for
less detector complexity? Unfortunately, for the unrestricted case,
the answer is no. In fact, if (M,U)is (D', k)-1-diagnosable then we
can construct a detector -D, essentially by e..ninating unnecessary
states of D', such that (M, U) is (D, 0)-1-diagnosable.

Before stating-this result formally, we will establish an import-

ant lemma.

Lemma 4.5: If (M, U) is (D', k)-1-diagnosable then there exists a
detector D such that ]QD] < ]'QD, |, (M, U) is (D,k)-1-diagnosable,

and for eachq ¢ QD’ AD(q, (z,u)) =0 for some (z,a) e Z < 1.

Proof: Assume that (M, U) is (D', k)-1-diagnosable and construct

D from D' as follows:
1) Delete from the state table of D' any row corresponding to

a state q for which

0¢ {rp(a, (2,2))[(z,2) ¢ 2 %1} .

2) Ia the resulting table, replace every reference to the
deleted state with a reference to an arbitrary remaining state, and set
the corresponding output to 1.

3) Repeat steps 1) and 2) until no further deletions are possible.
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Since lQD,I < o the above algorithm will terminate in a finite
number of iterations.
From the nature of the above construction it is clear that
_IQD IS IQDJ and for eachq e Qp,, )‘D(q’ (z,a)) = 0 for some (z,a)
€ Zx L It only remaiuns to be shown that (M, U) is (D, k)-1-diagnosable.
If the detector D' is .in a state q for which 0 ¢ {AD,(q, (z,2)) |

(z,a) € Z x I}, then an error must have occurred because if D' is in q

then an error detection signal will be emitted regardless of the input
to D'. Hence this error could be signaled whenever a transition to

q is indicated, and there would be no loss in diagnosis and no possi-
bility for a false alarm. Since all minimal errors which q signaled
would then be signaled before ﬁ' got to state q , q could be eliminated.
This is the essence of what is accomplished in steps 1) and 2).

This elimination process is necessarily iterative because step 2)

may introduce new states to be deleted.

Since thi construction is aiagnosis preserving, (M, U) is

(D, k)-1-diagnosable.

Theorem 4.6: If (M,U) is (D', k)-1-diagnosable then there exists

a detector D with ]QD} < IQD,I such that (M, U) is (D, 0)-1-diagnos-

able.

Proof: Assume that (M, U) is (D',k)-l-diagnosable. From Lemma
4.5 there exists a detector D such that [QD[ < [QD, [, M,U) is

(D, k)-1-diagnosable, and for each q ¢ QD’ AD(q, (z,a)) = 0 for some
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(z,a) € Z X1
Claim: (M, U) is (D, 0)-1-diagnosable.

Assume, to the coatrary, that (M, U) is not (D, 0)-1-diagnosable.
Using induction on the delay of the diagnosis, we will deduce that
(M, U) is not (D,m)-1-diagnosable for all m > 0. This will establish
the result for it contradi;:ts the hypothesis that (M, U) is (D, k)-1-
diagnosable.

Having assumed that the basis step for our induction is true,
we assume that (M, U) is not (D, m)-1-diagnosable for some m> 0, and
we must show that this implies (M, U) is not (D, m+1)-1-diagnosable.

Since (M, U) is not (D, m)-1-diagnosable, there exists a minimal
l-error (r,x,y) caused by f ¢ Uanda sequence V € 1" with ]vf =m
such that /}3) ( 3: (xv), xv]) = lev I Let GD(pD(r), [ :3\: (xv),xv]) =s.
Let (z,a) € Z X I such that AD(s, (z,a)) = 0. By Lemma 4.5 we know
that such a (z, a) exists. Let f' be a fault for which 9:' (xva) =
;/3\: (xv)z. Then (r,x, ,’3\:'(}()) is 2 minimal l-error but
B\:)([ ﬁi'(xva),xva]) = leva]. Heuce (M, U) is not (D, m+1)-1-diag-
nosable. Therefore, (M, U) is not (D, 0)-1-diagnosable implies (M, U)
is not (D, m)-1-diagnosable for all m > 0.

But we know that (M, U) is (D, k)-1-diagnosable. Hence (M, U)

is (D, 0)-1-diagnosable. This establishes the result.
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Corollary 4.6.1: If (M, U) is (D, k)-1-diagnosable then ]QDI > Q.

Proof: This is an immediate consequence of Theorem 4.6 and

Theorem 4. 3.

Corollary 4.6.2: If (M, U) is (D,k)-2-diagnosable +hen Q| > [Qg],

where MR is the reduction of M.

Proof: Assume that (M, U) is (D, k)-2-diagnosable, and consider M

to be realizing M From Theorem 3. 2, it follows that (M, U) is

R
(D, k)-1-diagnosable. The result now follows immediately from

Corollary 4.6. 1,

We know from Theorem 4, 4 and Corollary 4, 3.1 that (M, Fo)
is (D, 0)-2-diagnosable implies ]QDI > !QRf. Can this result be
gen:ralized as was done for unrestricted faults by the previous
corollary ? The foilowing example shows that the answer is no.
This example serves as a good example of when a space-time trade -

off is possible.

Exar.ple 4. 1: Consider machines M2 and D2 of Fig. 4.5. Since

M, is reduced and reachable, |Q,| = |Q l, where M, is the
2 2 2R 2R

reduction of M2'
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I
M,: 2 0 1| ® b, 1 |2 [r
Q
)
a b/0 ¢/0| r A B/0|C/0]lr
b a/2 | d4/2 B |Aa/0|B/1|c/0
c d/2 | a/2 C A/0]B/0|C/1
d e/0 c/0
e d/1 a/1

Fig. 4.5. Machines M, and D

2 2

Note that no output symbol can appear next to itself in any output
sequence produced by M2. Since D2 will produce an error detection
signal precisely when two consecutive inputs to it are identical, it
can detect all permanent output faults of M2 with a delay of a most one.

Therefore (M,, Fo) is (Dy, 1)-2-diagnosable, yet ]QzRf > IQDz l.



CHAPTER V

Diagnosis Using Inverse Machines

It is well known that many circuits can be diagnosed by what is
commonly called a "loop check.' This involves regenerating the
input to the circuit from the output and then comparing the regner-
ated input with the actual input. Often the "inverse' circuit is easier
to implement than the original circuit, thus providing a savings over
duplication. For example, division can be checked using multiplica-
tion. It is also possible to have greater confidence in a loop check
than in duplication, especially if the checking circuit is less complex
than the original circuit.

In this chapter we will investigate the use of "inverse machines"
for diagnosis using a loop check. Informally, machine M is an
inverse of machine M if M can reconstruct the input to M from its
output with at most a finite delay.

Machines which have inverses can be characterized as being
those machines which are "information lossless.'" Information loss-
less machines are machines whose behavior functions satisfy a
condition which is similar to, but weaker than, the condition which
a 1-1 function must satisfy.

Information lossless machines and inverse machines were first
introduced by Huffman [18]. Huffman devised a test for information

losslessness and for the existence of inverses. It should be pointed

88



89

out that our definitions of these notions are slightly less general
than Huffman's. The definitions in this paper are directed towards
the use of inverse machines for diagnosis.

Even [13] later devised a better means of determining information
losslessness, and he presented two means for obtaining inverse
machines.

Information lossless machines and inverse machines are dis-
cussed in textbooks by Kohavi [20 ] and Hennie [ 17]. Kohavi provides
a fuller description of Even's techniques for obtaining inverse
machines, and Huffman describes a different means of obtaining
inverse machines.

The questions about the use of inverse machines for diagnosis
which we seek to answer in this chapter are: When can an inverse
be used for the diagnosis of unrestricted faults? Given a machine
M and an inverse M of M, what will be the delay in diagnosis if M
is used to diagnose M using a loop check? How can an arbitrary
machine be realized so that unrestricted fault diagnosis is pcssible
using a loop check?

We concentrate on unrestricted fault diagnosis in this chapter
because this is the most natural and important fault class which can
be diagnosed using a loop check. Inverse machines can be used for
the diagnosis of more restricted sets of faults but synthesis and
analysis for more general levels of diagnosis seems to be very

difficult.
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5.1 Inverses of Machines

Befor:: we can formally define the inverse of a machine we need

to introduce one preliminary notion.

Definition 5.1: An (I, n)-delay machine (delay machine) is a machine

n

M = (I,In,I,G,)\,R,p) such that if a, € I, 1<i<n+1, then

6((a1,...,an),a ) = (a2,...,a )

n+l n+1

and

A((al,...,an),aml) = a;.

An (I, n)-delay machine simply delays its input for n time steps.

Stated more precisely, if M" is an (I, n)-delay machine then

Br(l ) = a

ag.-. ,an)(aml' “qh+m m’

Definition 5. 2: Let M and M be two machines such that R = R and

Z = 1. TEds an (n-delayed) inverse of M if there exists an (I,n)-

delay machine M" with reset alphabet R such that for all r € R and

+
xel

BB &) = dlkx).

Note that if M is an inverse of M then IC 7 . However, it is
not necessary to have I = Z. Symbols which are in Z but not in I
can be useful for diagnosis. Since they will never appear while M

is receiving its input from M, the appearance of one immediately
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signifies that an error has occurred.

M might more properly have been dubbed a "right inverse" of
M for if M is an inverse of M it is not necessarily .rue that M is an
inverse of M. This is illustrated in Example 5. 1. This example
is a counter -example to the ¢laims of Kohavi [20 ] and Even [13 ]

that if M is an inverse of M then M is an inverse of M .

Example 5.1: Consider machines M, and Nfl of Fig. 5. 1. K/TI is

a O-delayed inverse of M1 but M1 is not an inverse of M_l .

M, : x o | 1|r| W: % of 1| 2| 3
U N Q
a b/0 | d/3 _ A | B/C|B/1|B/0|B/1
b c/11a/0 B | A/1]A/0|A/1]A/0
c da/2 | b/1
d a/3 | c/2

Fig. 5.1. Machines M, and ﬁl

In fact, there is no machine which is
an inverse of —1. This is because the input symbkols 0 and 2 are

equivalent and so there is no way in which they can be distinguished

once they have been applied.

Definition 5.3: A machine M 1s information lossless of delay n if

+ . -
for allr € R and ajag. .., blbz...bmel (ai,biel, 1<i<m)
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A
B@ag..a ) = B (bb,..b )
implies a, =b, for 1 <1< m-n,

M is said to be lossless if it is information lossless of delay

n for some nonnegative integer n. M is lossy if it is not lossless.

Example 5. 2: Machine M1 of Fig. 5.1 is information lossless of

delay 0 and machine Ml of Fig. 5.1 is lossy.

Z
—_—» M s M >

Fig. 5.2. Machine M in Series with an Inverse M of M

Referring to Fig. 5.2, if M is lossless and M is an inverse of
M tben intuitively no information is lost as sequences from I are
transformed into sequences from z* by M. The same is true for
the entire process which consists of transforming sequences from It
into sequences from Z* and then back again. Therefore it is somewhat
surprising to see, as we have in Example 5.2, that M may be lossy.
This may occur because while M must lose no information in trans-

forming the sequences it observes at the output of M, M may not be
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capable of producing all possible output sequences. Thus while M
must be lossless with respect to a subset of AR may be lossy with
respect to all of Al

Even [13] gives an algorithm for determining if a given machine
is lossless, and if so, of what delay. It is particularly easy to
determine whether a givén machine is lossless of delay 0. This is
because a machine M is lossless of delay O if and only if the output
symbols in every row which corresponds to a state q ¢ P are all
distinct.

Machines for which inverse machines exist can be characterized
as being precisely those machines which are lossless. More pre-

cisely,

Theorem 5.1: M has » n-delayed inverse if and only if M is

information lossless of delay n.

Proof: (Necessity) Assume that M is a n-delayed inverse of M.

‘ +
Letr ¢ R and ay...a_, bl...bmel (ai,b.le I 1< i < m) such
hté\(a a)=f3\(b b_). We must show that 2, =5 for
ta r 1--- m r 1.-. mo S W a ui_ul 0

alli, 1< 1 < m-n.
Since M is a n-delayed inverse of M there exists an (I, n)-delay

) n - A _n s - A _
machine M~ such that dr ﬂr = Br. In particular, ,3r(,3 (al...aﬁ))-

r

_ = (A _ h _
[3nr(a1.. .aﬁ) =a, and ﬁr(ﬁr(bl,... ,bﬁ)) = lﬁr(bl. . .bﬂ) =b, .

for all £, n<£§m.
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Now ﬁr(al. . .am) = "3\;-("1- . .bm) implies B(ﬁr(él. ..ay)) =

B(IB\r(bl. .- bl)) for all £, 1< £ < m. Therefore for

2 n=Ppoa

allg, n <2 <m. Thatis. a, = bi for alli, 1 <i <m-n. Hence,

i
M is lossless of delay n.
(Sufficiency) Civen a machine M which is lossless of delay n, we
can show that M has a n-delayed inverse by constructing one. Tech-
niques for consiructing inverses of lossless sequential machines can
be found in Hennie [17] and Kohavi [20]. With minor modifications

to insure the existance of suitable starting states, these techniques

can be used to construct inverses of resettable machines.
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5.2 Diagnosis Using Lossless Inverses

If M is an n-delayed inverse of M then, by definition, there
exists an (I, n)-delay machine M"” such that Br ° ;’3\ - B: . Diagnosis
using inverses can be performed by implementing M, M, and M" and
dynamically checking to see if the above relationship holds. The

basic configuration for diagnosis using inverses is showu in Fig. 5. 3.

r——-——--- i

1 z | . I

——— M | M I
R 'y ' ) I E

: ' 3 I

, ] i

i_—Mn‘ |

e e =

D

Fig. 5.3. On-line Diagnosis Using Inverse Machines

Since an (I, 0)-delay machine is simply a combinational machine
which realizes the identity function on I, a detector which uses a

O-delayed inverse will have the form shown in Fig. 5.4.

R r— - = !
| Y 'E
Z | — |
— " |
| |
S
D

Fig. 5.4. A Detector which Uses a 0-delayed Inverse



96

We now state the basic result relating the use of lossless

inverses with the diagnosis of unrestricted faults.

Theorem 5.2: Let M be a lossless machine and let M be an n-delayed

inverse of M. Let D be constructed from M, the (I, n)-delay machine
which demonstrates that M is an n-delayed inverse of M, and an
Exclusive-OR gate as shown in Fig. 5.3. I M is lossless of delay

d then (M, U) is (D, d)-2-diagnosable.

Proof: Since Er(gr(x)) = B:(::), there will be no false alarms.

Let (r,x, w) be a minimal 2-error caused by a fault f € U.
Then B:.(x) F B_(x). Lety e I* with ly| =d. Since M is lossless
of delay d, %r(/g‘\:(xy)) # ,B'\-(ﬁ\r(xy)). The Exclusive -OR gate will
detect this inequality, and hence the minimal 2-error will be detected
within d time steps of its occurrence. Therefore (M, U) is (D,d)-2-

diagnosable.

It is worth noting that the delay in diagnosis is not the delay of
losslessness of M but rather of its inverse M. Thus an n-delayed
inverse can be used to achieve diagnosis without delay if it is loss-
Ess of delay 0.

Example 5. 6, which appears later in this chapter, shows that
the converse of Theorem 5. 2 does not hold. Namely, it is possible
to diagnose the unrestricted fault set of a machine using an inverse

which is not lossless. However, not all inverses can be used for
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the diagnosis of unrestricted faults. Example 5. 5 shows how a lossy
inverse can be useless for diagnosis. The complete characteriza-
tion of inverses which can be used for unrestricted fault diagnosis

is still an open problem.

Given Theorem 5. 2 and the observation that an inverse machine
may be lossy, an important question is whether every lossless
machine has a lossless inverse. This question is presently unan-
swered. However, it can be shown that if M is lossless of delay

0 then there exists a lossless inverse of M.

Example 5.3: Consider machines M, and 1\712 of Fig. 5.5. M2 is
lossless of delay 2 and ﬁz is a 2-delayed inverse. Since Mz is
I _ 1,
M: 0 1 R M |= 0 1 R
a a/0 b/0 r A A/0 | B/1 r
b ¢,/0 d/0 B D/1 | C/0
c d/1 c/1 C D/0 | C/1
d b/1 a/1 D | A/1 ] B/O
Fig. 5.5. Machines M, and -Mz

is lossless of delay O it can be used to form a detector D2 such that

(MZ’ U) is (D2, 0)-2-diagnosable.
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The following example shows that it is possible to diagnose the
unrestricted fault set of a machine using a lossless inverse which

has fewer states than the reduction of the machine being diagnosed.

Example 5.4: Consider machines Mgy and m3 of Fig. 5.6. M, is

a 2-delayed inverse of M3, and W& is itself lossless of delay 2.

I 1
M,: 0 1 Rl M,: [ 0 1 || R
R \J Qg
a e/0 | £/0 A c/olp/1]| r
b a/1 b/1 B D/0 | C/1
c a/0 | b/0 C A/0 ]| B/0
d e/1 | /1 D Cc/1|D/1
e a/0 c/1
f d/1 b/0

Fig. 5.6. Machines Mg and 1\713

Therefore a detector D3 can be constructed from 'M_3 and the

(I, 2) -delay machine Mz3 of Fig. 5.7 such that (M3, U) will be (D3, 2)-
2-diagnosable. Notice that M3 is reduced and reachable and that
'Q3, > ,§3I. However, because Mg is also in the detector ]QDsl =
|Q,11Q5] = 16. Therefore |Q,] < IQD3]. This is in keeping with

what we know from Corollary 4. 6. 2,
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o Ty 1 R
00 00/0 | 01/0 r
01 10/0 | 11/0
10 00/1 | 01/1
11 10/1 | 11/1

Fig. 5. 7. Machine Mg

From Corollary 4. 6. 2 we know that if (M, U) is (D, k)-2-diagnos-

able then ]QDI > ]QR], where M., is the reduction of M. Using this

R
corollary ana Theorem 5. 2 we can derive a lower bound on the state
set size of a lossless inverse M of M. This bound is stated in terms

of the input alphabet size of M, the delay of losslessness of M, and

the state set size of MR-

Theorem 5.3 : Let M be lossless of delay n, let M, be the reduction

R
of M, and let M be a lossless n-delayed inverse of M. Then
Qg |
Bl > —
1]

Proof: Consider Mtobe realizingitsreduction MR’ andconsider Mand M
inthe configurationusedfor diagnosis shown in Fig. 5. 3. Since Mis
lossless by Theorem 5.2 (M, U) is (D, d)-2-diagnosable where d is

the delay of losslessness of M. Now by Corollary 4. 6. 1 IQDI >
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|Qg |- since Qp =Q x r, IQp! = 1@ [1]". Thus |Q|]1]" > IQg |+

or

Qg |
R
Rl > —%

Jx
If one has a lossless machine M of unknown delay and an inverse

M of M then a lower bound on the delay n of M can be found using the

following inequality:

1og|Qg | - log Q]

log [1]

This inequality was obtained directly from the one in Theorem 5. 3.
Given a machine M = (1,Q, Z, 6, A\, R,p) let Z' denote the subset
of Z which may actually appear in an output sequence of M. That is,
let Z' = {Br(x)]r €R, xeI'}.
The following result gives a very simple necessary condition

which all lossless machines must satisfy.

Theorem 5.4: If M is lossless then |I| < |Z'].

Proof: Assume that M is lossless of order n. Let fr: I =>z*x Q

be defined by f_(x) = (8_(x),660(r), x)).

Claim: f_is 1-1. Let x,y € 1" where x#y. If |x| # |y| then l@r(x)t,é lé;(y)]
and hence fr(x);éfr(y). Let |x| = |y| andassume, tothe contrary, .that f.&)=
fr(y). Thené;(x) =é;(y) and 6(p(r) x)=05(o(r),y). This impliesthat é;(xz) =

é;_(yz) for allz e I* andfor some z of lengthn. Since M is lossless ofdelayn
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this implies that x =y. Contradiction. Hence if |x|=|y| andx £y
then f_(x) #{_(y). Since either |x| = |y| or |x] # |y|, the claim
is established.

Since f : I' = 2" x Qis 1-1and [x| = [§_(x)] it follows that
1™ < [2*|™|Q] for all m > 0. Hence |1|™/|2'|™|Q] < 1for
allm > 0. Since ]Q] is a fixed positive integer, this implies that

1z <1 or 1l < 2]

This result has some immediate corollaries concerning inverses

of lossless machines.

Corollary 5.4.1: Let M be a lossless machine with [1| < |2'].

Then any inverse M of M with Z' = I is lossy.

Proof: Let M be an inverse of M with Z' = 1. Since M is an inverse
of M, 2' C T, and we know that |I| < |Z'|. Hence |Z'| = |I| <

|2'| < |T|. By Theorem 5.4, M must be lossy.

This corollary says that if M is lossless and [I]| < [Z2'] then
for an inverse M of M to be lossless M must have output symbols
which would never appear while M is receiving its input from M.
However, if a fault occurs to M and causes an error then M could
emit one of these symbols. The appearance of one of these symbols
in M's output would immediately cause an error detection signal
because this same symbol cannot appear in the output of an (I,n)-

delay machine.
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Corollary 5.4.2: Let M be a lossless machine with a lossless

inverse M. If Z' = I'then |I| = |2'].
Proof: This follows immediately from Corollary 5. 4. 1.

Given the above result, an immediate question is whether M is
lossless and [1] = [Z'[ implies that any inverse M of M is lossless.

As Example 5.5 shows, the answer is no.

Example 5. 5: Consider machine —1\71"15 of Fig. 5.8. M é is an inverse

of machine M, of Fig. 5.6 and Iy = Z,, but K'/I‘ls is not lossless.

I
NG 0 1 R
3
A B/0 B/0 r
B c/0 | D/o
C E/0 F/1
D F/0 E/1
E c/0 D/0
F E/1 F/1

. Fig. 5.8. Machine 'l\_/Ié
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5.3 Applicability of Inverses for Unrestricted Fault Diagnosis

The use of inverses as a technique for performing diagnosis
applies directly only to those machines which have suitable inverses.
In the following development we will show that given an arbitrary
machite M', we can always construct a realization M of M' such that
M has an inverse which can be used for diagnosis. The realizations
will be obtained simply by augmenting the output of the original
machine. Thus we will show that diagnosis using inverAses isa

universally applicable technique.

Definition 5.4: M is an output-augmented realization of M' if M =

1, Q',Z'%<A,8"',\,R",p") and A = X' X A, for some X,

QY xT'—= A,
If M is an output-augmented realization of M' then M realizes

M' under (e,e, P where PZ' is the projection of Z' X A onto Z'.

ZI)
Kohavi and Lavallée [ 19] have given a construction which

proves the following results.

Theorem 5. 5: Given any machine M', there exists an output-

augmented realization M of M' which is lossless of delay n for

some n, and in particular, for n = 0,

Theorem 5.6: If M' is lossless of delay n, then for every m,

0 <m <n, there exists an output-augmented realization M of M'

which is lossless of delay m.
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The method that Kohavi and Lavallee use to achieve the above
results employs a "'testing graph' which is used to determine if the
given machine M' is lossless, and if so of what delay. Output aug-
mentation which will yield the desired property is determined by a
method of cutting branches in this graph. Minimal augmen.ation
for losslessness of a desired delay is not guaranteed.

A lower bound on the amount of output-augmentation necessary
to make a particular machine lossless is given by Theorem 5. 4.
This result tells us that for the output-augmented realization to be
lossless, then the size of its output alphabet must be at least as
great as the size of its input alphabet.

Any machine can be made lossless of delay 0 simply by aug-
menting its output with a copy of the input. This gives an upper
bound on the amount of output augmentation which is necessary to
make a given machine lossless of delay 0.

It is tempting to use the Kohavi and Lavallee technique to aug-
ment the inverse of a machine in the hope of achieving a lossless
inverse. However, this is impossible because an output-augmented

realization of an inverse M of M is not necessarily an inverse of M.

Example 5.6: Consider the configuration shown in Fig. 5.9. Here

M' is any machine, and M is the output-augmented realization of M
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which was formed simply by augmenting the output of M' with a

copy of its input. The inverse M' of M shown in this figure is

R [C——=—- B r—-1
| ' !
| l : I l
I | ' , & | |
-—-—-.—.l M } | - '
| | | |

| IR ' .
L J -

M M

Fig. 5.9. A Lossless Machine with a Lossy Inverse

simply the combinational machine which realizes the projection of
Z X1 ontoI. This inverse is lossy and is clearly useless for
diagnosis.

Now augment the output of M' to form the machine M shown

in Fig. 5.10. This machine is lossless but it is not an inverse of

Fig. 5.10. An Output-augmented Realization of M' of Fig. 5.9
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M and it too is useless for diagnosis.

Although Kohavi and Lavallee's technique cannot be used to
constru:t lossless inverses, it is an important technique because
it can be used to construct lossless of delay 0 realizations of any
given machine. The following result shows that given a machine
which is lossless of delay 0, an inverse of that machine can be
constructed which can be used for the diagnosis of unrestricted

faults.

Theorem 5.7: Let M be lossless of delay 0. Then there exists

an inverse M of M such that (M, U) i\s (D, 0)-2-diagnosable where

D is formed from M and an Exclusive-OR gate as shown in Fig. 5.4.

Proof: LetM =(Z,P,1U{e},5, ,R,p) where e £ I and for all

qePandae Z

6(q,b) if b ¢ I and A(q,b) = a

F(qv a) = {
arbitrary if a £ A(q,I)

_ b ifbeIandXq,b)=a
Mg, a) = {
e ifaf arg,I)

Thus M is basically the same as M but with the roles of the

input and output interchanged.
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The functions § and X are well-defined for if M is lossless
of delay 0 and q € P then A(q, a) = Alg,b) implies a =b.

If |1| < |Z| then every symbol in Z cannot appear in every
row of the state *able of M. This is what gives }*ise to the transi-
tions of M which may be arbitrarily specified.

Consider M and M to be operating in series as shown in Fig.
5.2. Since M and M have the same reset function, they will initially
be in the same state. Now if M and M are both in some state q € P
and the input symbol b € I is applied to M then M will emit A(q, b)
and go to state 5(g,b). M will emit X(g, A(q,b)) = b and will go to
state §(g, A(q,b)) = 6(q,b). Thus M and M will make the same
state transitions and the present output of M will always be the
nresent input to M. Hence M is a 0O-delayed inverse of M.

It remains to be shown that (M, U) is (D, 0)-2-diagnosable This
must be shown directly because M is not necessarily lossless.

Since M is a O-delayed inverse of M there will be no false alarms.
Let (r,xa, wb) where a € Iand b € Z be a minimal 2-error. Since
any input sequence applied to M will cause M and M to experience
the same state trajectories, 6(p(r),x) =6 (o(r),w). Say 6((r),x) =
q. Since (r,xa, wb) is 2 minimal 2-error, Br(xa) #b. Now
X(q,Br(xa)) = a and therefore X(q,b) # a. This inequality will be
detected by the Exclusive-OR gate which will emit a fault detection

signal. Hence (M, U) is (D, 0)-2-diagnosable.
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It should be noted that the inverse constructed in the proof of
the above theorem is not necessarily lossless. By using [Z ] - ] Il
new symbols, instead of just one, M could have been constructed to

be lossless of delay 0.

Example 5.7: Consider machine ﬁ'l of Fig. 5.11. This machine

is an inverse of machine M1 of Fig. 5.1. It was constructed as

described in the proof of Theorem 5. 7. The transitions of H’l which

Fig. 5.11, Machine T/I'l

may be arbitrarily chosen are indicated by a '"-"". This inverse of

M1 is not lossless, but it can be used for the diagnosis of unrestricted

faults of M;.
A lossless inverse '1\71'1' of M, can be obtained from 1\71'1 simply

by changing one of the "'e'' outputs in each row of the state table of

'171'1 to e'. ﬁ’l' so constructed would be lossless of delay 0 because

the output symbols would be distinct in every row of the state table

R
of Ml’
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CHAPTER VI

Diagnosis of Networks of Resettable Systems

In this chapter we will consider the problem of diagnosing a
machine which has been structurally decomposed and is represented
as a network of resettable state machines. The networks that we
will be using are very general and they will allow us to work within
a wide range of structural detail.

The fault set which we will be applying to these networks is the
set of "unrestricted component faults.' Informally, an unrestricted
component fault is a fault which only affects one compounent machine
but which may affect that component ia an unrestricted manner.

This fault set is a natural restriction of the set of unrestricted
faults. We will show that it is possible to diagnose the set of unres-
tricted component faults of a network with relatively little redund-
ancy.

This chapter focuses on the diagnosis of ''state networks. '

A state network is simply a network in which the external output is

the state of the network, i.e., a vector consisting of the state of each
component machine in the network. Since the state of a state network
is directly observable at its output, state networks are easier to

diagnose than arbitrary networks.
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The results in this chapter characterize state networks which are
diagnosable using combinational detectors. A general construction
is given which can be used to augment a given state network such
that the resulting state network is diagnosable in the above sense.
Upper and lower bounds on the amount of redundancy required by

such an augr _.ntation are derived.
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6. 1 Networks of Resettable Systems

The field of study known as "algebraic structure theory of
sequential machines" is concerned with the synthesis and decompo-
sition of sequertial machines into networks of smaller component
machines. The networks considered in this chapter are very
similar to the ""abstract networks' introduced by Hartmanis and
Stearns [16]. The majof differences are in our use of resettable
state systems for the components and in our system connection rules
which force all computation to be done in the component Systems or
in the external output function. Hartmanis and Stearns use sequential
state machines for their components and they allow for a combina-

tional function fi: (x Qi) XI—= Ii to proceed each component.

Definition 6. 1: A network of resettable systems is a 6-tuple

N=(LR,(@Ey...,S) Kyp,...,K) Z 2 where

I is a finite nonempty set, the external input alphabet

R .is a finite nonempty set, the external reset alphabet

Si = (Ii’Qi’ Gi, R,pi) for each i, 1 <1i< n, is a resettable

state system, a component system

K, for eachi, 1 <i<n, is a subset of {Ql,. .. ,Qn,I},

a system connection rule

Z is a finite nonempty set, the external output alphabet

r (% Qi) X IX T = Z, the external output function
i=1

such that for eachi, 1 <i< n, if




K ={A A} thenI = % A.

PP ot j

i

Uunder the intended interpretation, the system connection rule
Ki specifies from which parts of the network component i receives
its input.

By the convention we introduced in Section 2.1, if Ki = ¢ then

Ii is any singleton set. Therefore if Mi has no connections then it

is an autonomous machine.

Example 6. 1: The 6-tuple described in Fig. 6.1 specifies network
N 1 This network has two component machines M1 ami M2 with
state sets {pl,pz} and {ql,qz} respectively. M, is connected to
the external input and the output (state) uf M, and M, is connected
to the external input and the output (state) of Ml‘ Network N, can

be viewed pictorally as shown in Fig. 6. 2.
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Nl = (I|R9 (M1:M2)9(K1,K2)zn)‘)
I = 2z = {0.1}, R = {r}

(k,K) = ({q,,1},{q,1hH

. 1 '
M Q, (q;,0) | (a;,1) | (q,,0) | (q,,1)
P Py P Py Py
M,: (py-® (pl,l) (py»0) (pz,l)
q [
9 1 LY 94 9
9, 9, 9, 1 9
(p,q,a) A(p,q,a)
pl q1 0 1
pl ql 1 0
Py 4, 0 0
P, 4, 0 0
p2 q1 1 1
p2 q2 0 0
p2 q2 1 0

Fig. 6.1. Network N

1
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Yy

Fig. 6.2. Diagram of Network N,

Since any machine may be viewed as a one component network
we see that a network may convey little or no structural information.
On the other hand the structural description given by the network
may be very detailed. For example, each component may be a two-
state state machine which represents only one flip-flop and one

coordinate of the global transition function.

Definition 6.2: A network N = (I, R, (Sl’ ey Sn), (Kl’ cee Kn)’ Z,\)

defines the system S,. = (I,Q, Z, 5, \,R, p) where

N
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6@@,a,t) = 8(@;»...,q)at)
n
= ’f 6i[qi, PK (ql’ o0 ,qnv a),t]
i=1 i
- n
plr,t) = x p.lr,t)
i=1

A network of resettabie machines is a network in which the

component systems and the external output function are all time-
invariant. For example, network N1 of Fig. 6.1 is a network of
machines. The system defined by a network of machines N is also

time -invariant, and it will be denoted by M A network of machines

N'

N realizes a machine M if M., realizes M. Likewise the defini-

N
tions of reduced machines, reachable machines, and so forth can

be extended to apply to networks of machines.

Example 6. 2: Consider network N1 of Fig. 6.1. This network

defines machine MNl of Fig. 6.3 and it realizes ;/11 of Fig. 6.4

because MNl realizes Ml'
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MNI: Q 0 1
(pyray) | ®pa)/1 | (gay)/0
Ppay) | (pay))/0 | (5 a,.)/0
Pyay) | @gq./0 | (pyrq,)/0
Pyay) | (0yqy)/0 (pyray)/1

Fig. 6.3. Machine My

My [ NS 0 1 R
a a/1 b/0 r
b /0 ¢/0
c c/0 - d/0
d d/n a/1

Fig. 6.4. Machine ffll

A network N = (L R, (Sl, cen ’Sn)’ (Kl’ cees Kn)’ A, Z) is a state

n n
network if Z = X Qi and A(q,a) =q for allq € x Qi and
i=1 i=1
If N is a state network then SN is a state system.

tietworks it is unnecessary to explicitly specify the external output

ael For state
alphabet and the external output function.
Since the fault set which we will be considering does not allow

for faults which affect the external output function, we will focus on
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the diagnosis of state networks which realize state machines. The
diagnosis of the output function will be taken care of separately,
possibly by duplication.

Performing diagnosis on state networks ies easier, in general,
than for arbitrary networks because with state networks the output
function does not mask the internal operation of the network.

Decomposing a network intu a state network and an output function
and then diagnosing each separately has the effect of applying a
tighter tolerance relation to the diagnosis of the original‘network.
This is also due to the lack of any masking of the state by the out-

put function.
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6. 2 Unrestricted Component Faults

Suppose that N and N' are networks. Thenf = (N',7,0) is a

fault of N if f' = (SN,, 7,0) is a fault of S Thus a fault of N can be

N
considered to be a transformation of N into another network N' at
some time 7. The notions of fault tolerance, error, and diagnosis
are extended in a similar manner to apply to networks.

Given a network N, a natural set of faults to consider are those
which are caused by failures in one component of N. If f = (N', 7,8)
is caused by failures which are restricted to one component of N then
N' will differ from N only in that one component. Likewise 6: in
- X Q{ will act as the identity on each coordinate except possibly

the one affect by f. These faults are described formally in the

following definition.

Definition 6.3: Let N = (I, R, (Ml’ ..y M ) (K Kn)’ Z, ) be

1,...,

a network of machines. A fault f = (N', 7,0) of N is an unrestricted

componeu! fault if for some j, 1<j<n

i) N' = (R, (Ml,...,SJ!,...,Mn), (Kl""’Kn)’ Z, 1) where
SJ? € eS’(I.,Q.,R) and
n
ii) for all @009 ) € ix1 Q 6@@y,+e0r0y, ) = (q'l"“’qt'l)
implies q = q for all i #j.

The set of all unrestricted component faults of a network will

be denoted by UC’
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Note that since N' is a network, Sj' is required to be a 'state
system. Because the output alphabets of Mj and Sj' are identical
and they are both state systems their state sets must also be identi-
cal. Thus, unrestricted component faults do not permit state blowup
or collapse.

The fault set UC is sufficiently restricted to make possible its
diagnosis with relatively little redundancy. On the other hand, UC
is not unduly restricted for it allows for any number and type of
physical failures to occur to any one component; subject, of course,
to the general restrictions on faults outlined in Section 2.3. Thus
using UC as the fault class greatly reduces the amount of failure

analysis which is necessary within the components.
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6.3 Characterization of Combinationally Diagnosable Networks

How can state networks for which a combinational detector can
diagnose the set of unrestricted component faults be characterized?
We shall show that one means of doing this is in terms of the amount
of network redundancy.

Given a network of machines N we will assume, as we have
earlier, that N realizes some reduced and reachable machine M.
Since the relation between the state set of N and the state set of M
will be of interest to us we wiil use the structurally oriented char-
acterization of a realizatior. given by Theorem A. 1, and will assume
that N realizes M under (nl, UPYRIY n4). ‘We will assume as before
that n 1 and ny are onto. The natural extensions of ny and ng to
sequence to sequence mappings will also be denoted by " and e
The reachable part of N will be denoted by P.

Since M is reachable the domain of 1 4 is 52 Since M is reduced
and M and n, are onto it can be shown that: i) q, q' € é andq #q'

implies n,(q) N n4(q') = ¢ and ii) U_ n4(q) =P. Let ny: P—>Q
Q£Q

where "A(q) =q' if and only if q € n4(q'). Because n, induces a
partition of P, n"l is a well-defined function. Thru an abuse in
hotation, r;"1 will be referred to more suggestively as nil. This
function will play an important role in the following results.

If N is a state network which realizes a state machine M under

("1’ Mgy Nas n4) then by Theorem A. 1 n3(q) = n4'1 (q) for allq € P.
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In this case we will take 14 to be identical to 7 ;1.

Notation: Given a network N let C € {1, ceny n} denote a subset of
the set of components. Let Ci denote the particular subset {1, ceey
i-1,i+1,...,n}. Letq = @...,q) and s = (s,,...,s ) be states
of N.

Each C induces a partition 7 c o0 Q=X Qi where q = s(7 C) if
and only if q; =S; for allie C.

A cover of a set L is a set of subsets of L. whose union is L.
Thus every partition of L is also a cover of L. A cover J of L is

a singleton cover if B € L implies ]B] <1. IfJisacover let

#|J| denote the cardinality of the largest element in J.
Let C C {1,...,n} and let To = {Bl,-. . o Bﬂ}. C induces the

4 1 ’ ! 4 1

where if B C P then n;I(B) = {n;l(q) |q € B}. In particular,
-1,
Tl4 (¢) - ¢o
Each set of states which the components in C can take on
c Thus 7 C

represents the information about the current state of N which is

corresponds directly to a block of the partition 7

given by the current states of components in C. C represents the
corresponding information as to the state of M which N is currently

mimicing. If Cisa singleton cover then the current state of each
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component in C completely determines the corresponding state of M.

Note that {1,...,n} is always a singleton cover.

Definition 6.4: Component Mi of a network N is redundant if Ei

is a singleton cover. N is totally redundant if every component of

N is redundant.

If N is totally redundant then knowledge of the state of any n-1
components is sufficient to determine the corresponding state of M
although it may not be sufficient to determine the state of the remain-

ing component.

Example 6.3: Consider network N1 of Example 6. 1, N1 realizes

machine 1011 of Fig. 6.4 under (e, e,e,n,) where n, is defined by

the table:
q ns@)
a (g0 qy)
b (pyray)
c Py a,)
d by q,)

Now 7o =75 = 1 By By )i By ay) By ay)} and so

Q
i

y = gy a,) g b m o, a) @y ap1

{{a, d},{b,c}} .
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Therefore C i is not a singleton cover, M1 is not a redundant

component, and N, is not totally redundant.
P 1

If 7 is a partition of L, let fzr : L = 7 denote the natural mapping
induced by 7. Let §.: Q >C be defined as ¢ @ = n-l(f (q)
C C 4 V7 C
N P). The interpretation of { o is as follows: given the state of
each component in C, take any q € Q which agrees with this informa-

tion, and ¢ C(Q) is the set of states of M to which the current state of

N may correspond.

Lemma 6.1: Let N be a totally redundant state network of machines,
—_— v _ 1 ]
and let q = (ql,. L L ,qn) and q = (ql’ TENT PR ,qn) be states

of N. Ifq, q' € P then nil Q) = n‘;l(q').

Proof: Letq, q'¢ PandletC = {1,...,n}. Then

ng (€. (@) N P)

¢ (q)
¢ o

- n4'1(fﬂ @ NP)

¢

N

¢c @)
1

~

Since N is totally redundant, C i is a singleton cover. There-

fore l!’ (q)l < 1, and hence ¢ (q) = ¢ ori.lq) =%, (@) Now
i
qeP 1mpl1es 3 (q) = n4 (q) # ¢ and thus § (q) s (). Like-
i
. 1 ] -— 1 ]
wise, LC(q ) = Cci(q ). Now
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¢, @ = ', @nPp)

i Cl

-1
ny (f” Q') nP)
¢

= !C-(q') .
i

Therefore § .(g) = ¢ c(a"), and hence n‘;l(q) = n;I(q').

Suppose that an unrestricted component fault f occurs to a
totally redundant network of machines N and causes a minimal
2-error (r,x,y). Say that ﬂr(x) =q = (ql,. .. ,qn). Due to the
nature of f, namely that it affects only one component, ,{ x) =
q' = (ql,. .. ,q;, - ,qn). If ' ¢ P then Lemma 6. 1 tells us that

this 2-error is not a 1-error because n;I(q) = n;I(q').

Theorem 6.2: Let N be a state network which realizes a state

Y _ -1
machine M under (nl, Y n3,n4) where ng =My Then (N, UC)
is (D, 0)-1-diagnosable for some combinational detector D if and

only if N is totally redundant.

Proof: (Necessity) Suppose that (N, UC) is (D, 0)-1-diagnosable
where D is combinational, and let D realize the function AD’ Assume,

to the contrary, that N is not totally redundant. Then for some i,

~

C. is not a singleton cover. Hence there exists q = (ql, veer Gy ...,q')

i
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andq = (@q;..., Q... ,q,) such that q, q' € P and n;l(q) # n;l(q').
Since q, q' € P, AD(q) = LD(q') = 0 for otherwise a false alarm could

occur. Letf e U, be a fault caused by the output of Mi becoming

C
stuck-at-q; at a time when M could be in q. This fault can cause

a l-error which is not (D, 0)-1-diagnosable. Contradiction. There-
fore if (N, UC) is (D, 0)-1-diagnosable where D is combinational then
N must be tbtally redundant.

(Sufficiency) Assume that N is totally redundant. Let D be the

detector which realizes the function A,: Q = {0, 1} where

0 if qgeP
A5 =
1 if qf P
Clearly, D will give no false alarms.
Let (r,x,y) be a minimal 1-error caused by f ¢ Up. Let x =uab
where a,b ¢ 1.
-1 _ -1 ¢ -1 -1
Then n, (8, (ua)) =n, (8 (sa))and ng (3, (uab) #n " ({(uab)). Say
H:(ua) = q. Then B:(uab) = éf(q,a,t) wheret = |u|. Because f ¢ Ucs
f can affect at most one component of N. Therefore 6(q,a) will

differ in at most one coordinate from 6f(q, a,t). Let 6(q,a) =s =

(sl,...,sj,... ’Sn) and let éf(q,a,t) = g'= (sl,... ,s.',...,sn).
Since n,;l(q) = n‘;l(ﬁr(ua)), by Theorem A. 1, n;I(G(q,a))=n;1(6r(uab)).
Therefore s ¢ P, and nal(s) # n;I(s') because n;I(Br(uab))#H;I(A{,f(\lab))-
Applying Lemma 6. 1 we deduce that s' ¢ P. Therefore AD(s') =1,

the 1-error (r,x,y) is detected without delay, and (N, UC) is
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(D, 0)-1-diagnosable.

Given C C {1, ...,0}, let o= _{Bl’ e, Bl}' Then C induces
a partition }?C on P where FC = _{Bl NP,...,By N P} - ¢.

If a partition 7 of a set L is a singleton cover then we will denote
this by writing 7 = 0. This notation is derived from the observation

that this partition is the least element of the lattice of all partitions

of L.

Corollary 6.2.1: Let N be a state network of machines. Then

(N, UC) is (D, 0)-2-diagnosable for some combinational detector D

if and only if -ﬁc =0foralli, 1<i<n.
i

Proof: Consider N to be realizing the reduction of MN‘ Then

ng is 1-1. By Theorems 3. 2 and 3. 3 (N, UC) is (D, 0)-2-diagnos-

able for some combinational D if and only if (N, UC) is (D, 0)-1-
diagnosable for some combinational D.
Now since n, is 1-1, so is n;I . Therefore Ei is a singleton

cover if and only if ;C = 0. Hence N is totally redundant if and
i
only if?c =0foralli, 1<i<n
i
The result now follows immediately from Theorem 6. 2.

Example 6.4: Again consider network N1 of Example 6. 1. Let
N'1 be the associated state network which is obtained from N1 by

changing the external output function and alphabet. Let IT/I'1 be the
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state machine corresponding to machine l.\'fl1 of Fig. 6.4. Then

N'1 realizes fd'l and El is the same in this case as in Example 6. 2,
Heuce N'1
that (Ng, UC) is not (D, 0)-1-diagnosable for any combinational

is not totolly redundant and from Theorem 6. 2 we know

detector D.
Now construct a new network N'l' from N'1 by adding a new

component M3 as shown in Fig. 6. 5.
r
Nl d (I!R’ (M1’ hlz) M3)y (Kl’ K2, K3))

LR, Ml’ M2, K1 and K2 are identical to those
of network N1 of Fig. 6.2,

K, = {1}
M,: I3 0 1 R
Q
3
Sl Sl Sz r
Sy So St

Fig. 6.5. Network N'l'

Network N'l' realizes machine fd'l of this example under

(e,e,ng,ny) where nj = (na)'l and where 1 is given by the table:
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q ng@)

a (1 ayr8y)
b ®4, 9y Sg)
c ®y a9 S5)
d Py ay)85)

For network N '1'

TTCI = 11’{2, 3} = {(pl, qu Sl)’ (pz, qu Sl); (plv q]_’ sz)’ (pqussz);

(plyqzy S 1)’ (132, qzy 51); (pl’ Q29 52)’ (pza Q2’ 52)}

and 61 = { {a}, {d}, {c}, {b} } . Thus 61 is a singleton cover and
component M1 is redundant. Similarly one can show that M2 and
M3 are redundant. Hence N '1' is totally redundant, and (N'l', UC) is

(D, 0)-1-diagnosable for some combination of detector D,
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6.4 Construction of Combinationally Diagnosable Networks

In Example 6.4 we showed that a totally redundant network could
be constructed from network N'1 through the addition of one compon-
ent machine. In this section we will show that this can be done for
any network. In addition, we derive upper and lower bounds on the
minimum number of statés that such an additional component must

have.

Theorem 6.3: Let N be a state network of machines. Let m, = ]Qi],
and let m =max m,. A network N' where N' realizes N and

15isn
(N’,UC) is (D, 0)-2-diagnosable for some combinational detector D

can be constructed from N by the addition of an m state component.

- Proof: Without loss of generality take Q, = {0,..., mi}. Let
- | -
N = (I, R, (Ml’ e Mn)’ (Kl’ cees Kn)) and let N' = ([, R, (Ml,...,Mn,

M ), (Kl’ ey Kn’ Kn+1)) where Km1 = {Ql, cens Qn’ 1} and where

n+l
. — ]
Mn+1 is constructed suclh that for allq = (ql, - ,qn+1) € P', the
n+
reachable part of N', .2‘.1 q; = 0 (mod m). A machine Mn+1 with
l:

m states which satisfies the above propexty is described below:

Mn+1 = (In+1’Qn+1’ 6n+1’R’pn+1)
where
n
In+1 - i’-sl Qi x1
Q = {0,...,!‘[1-1}

n+l1
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pm_l(r) = '21 pi(r) (mod m) for all r ¢ R

6n+1(‘qn+1’ (ql, ceer Qs a)) = -igl qi (mod m) for all

qieQi, 1<i<n+1, and alla € I where

@...-rqy) = 8y, ....q ) 2).

It is clear that N' realizes N. Therefore, it remains only to

be shown that (N', UC): is (D, 0)-2-diagnosable for some combinational

D.
Let D be the combinatiunal machine which realizes the function
n+l

A\p: X Qi — {0,1} where

. i=1
Ap@gseeeaay,q)
1 otherwise

n+l
Since (ql, veo ,qml) € P' implies iEI q = 0 (mod m) no false alarms

will occur.

Let (r,x,y) be a minimal 2-error caused by f ¢ U.. Since

c
(r,x,y) is a minimal error and f only affects one component of N,

ﬂr(x) and /{ (x) will differ in exactly one coordinate. Say #r(x) =

f,\_ '
(ql,...,qn)andﬁr\x)-(ql,...,qi,...,qml). Now(ql,...,q )

n+1

n+l
€ P implies 'El q = 0 (mod m). Since qi#qi and IQi[ < m,
1=
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qQ #qi (mod m). Therefore Qg+t qi teaatq g # 0 (mod m).
Hence, the error (r,x,y) is detected without delay, and (N', UC) is

(D, 0)-2-diagnosable.

In the proof of Theorem 6. 3 we have given a counstruction wi-ch
can be used to form a totally redundant network from any network
of machines. This construction simply iavolves the addition of one
component to N. This theorem also gives an upper bound on the
amount of additional redundancy required to make a given network
totally redundant. This upper bound is stated in terms of the size of
the state set of the additional component.

The detector used in the proof of Thec;rem 6. 3 simply checked
to see if the states of the components always summed to 0 (mod m).
By using a more complex detector, namily one which can determine
if the present state is in the reachable part, the number of states
which the additional component must have can be reduced.

Let mi be the number of states that Mi’ 1< i< n, can actually

enter while Mi is a component of network N, and let m' =max m].

ISiSn

That is, let m' =max ]Pi(P)l, where Pi(P) is the projection onto
I<i<n

coordinate i of the reachable part of N. Then m’' < m because Pi(P)
< Q 1 <1< n, and Theorem 6. 3 holds with m replaced by m'.

This claim is established in the following theorem.
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Theorem 6.4: Let N be a state network of machines. Let

m, = ,Pi(P)l, and let m' =max m;. A network N'can be con-
1<i<n

structed from N by the addition of an m’ state component such that

N' realizes N and (N’, UC) is (D, 0)-2-diagnosable.

Proof: Without loss of generality take P.(P) = {o,..., m;} and

Q. = {0, cens m.} . Construct N' by adding component M where
i | i n+l

N' and Mn+1 are exactly as in the proof of Theorem 6. 3 except for

m being replaced by m'.

We will show that (N',UC) is (D, 0)-2-diagnosable by showing

C.
i

6. 2. 1.

that =0 for alli, 1 <i<n, and then appealing to Corollary

Assume, to the contrary, that 'EC # 0 for some i, say for i = 1.
i
Let 7, ={Bl,...,B£}. Then for some j, 1<j <4, [Bj np|>1.
! >
This implies the existence of two states q = (ql, CPYRRRY qn) and

q' = (q'l,qz,. .. ,qn) such that q, q' € P' and q; #q'l. Nowq,q' ¢ P'

1

impliesq1+q2+...+q 0 (mod m')andq'l+q2+... +q = 0

n
(mod m'). Hence, qq = q'1 (mod m') and since 0 < qq q; < m’,
q = q'l. Contradiction. Therefore }'-C =0 for alli, 1<1i<n,
i
and the result follows immediately from Corollary 6. 2, 1.
A technique similar to the one used in the proof of Theorem 6. 3

could be used for the diagnosis of n Mealy machines which operate

in parallel with the same inputs and resets. In this case one
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additional Mealy machine would be required which had as many out-
put symbols as the machine with the largest output alphabet. There
is no guaranty, however, that this technique will result in a savings
over duplication for the additional machine may need as many states
as the product of the number of states of the original n machines.
We have shown that given a network N, a totally redundant
network N' can be constructed thru the addition of a component with
no more than m' states where m' = max | P,(P) |. This amount of
additional redundancy is not always necessary for N may already
be totally redundant. The following example shows that this amount
of additional redundancy is not necessary even if no component of

the network is redundant.

Example 6. 5: Consider state network N, of Fig. 6.6.

2
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N2 = (I’ R’ (MI, Mz)’ (Kl’ Kz))
I=1{0,1234} R={r}

1
M g 1 0 1 2 3 4 R
1
Py Py | Py P3 P3 Py r
p2 pl p2 p4 P4 pl
p3 p3 p4 pz pl p4
Py Py Py Py Py B3
I
My: |q 21t 9 1 2 3 4 R
2
9y a4 94 a3 9 9 r
Lp) Q9 LP) 93 a3 q
93 93 93 £P) LP) Qg
LP LY 94 9 93 Q3

Fig. 6.6. Network N,

N2 realizes state machine f’[z of Fig. 6. 7 under (e, e, UEY n4) where

ng = nzl and where 0,4 is given by the following table:
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P q N5, q)
PP 4 a

Py 9 d

P b

P 9% ¢

P 93 €

P a4 h

Py 94 f

Pq a4 g

0 1 2 3
b a e h
a b f g
d c f f
c d e e
e f c d
f e d c
g h d b
h g c a

Fig. 6.7. Machine i/[z
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Since |Q,| =8 and |Q, X Q, | = 16 it should be clear that while N,
is not totally redundant there is some redundancy in this network
realization of i/!z. Thus if we were to add a compounent M3 to N2
in an attempt to form a totally redundant network N'2 we should not
be too surprised if we succeeded with a component M3 with fewer
than m' states, where for network N2 m' = 4. In fact, if the 2-state
machine M, = (Q1 X Qg %1, {sl, sz}, 63) where added to N, where
A63 is such that M3 is in s, whenever M1 and M2 are in (pl’ql)’
(pz,qz), (p3,q3) or (p4,q4) and in s, whenever M, and M2 are in
(pl,qz), (pz,n‘j {p3,q4) or (p4,q3) then the network N:‘Z so formed
would be totally redundant.

An intuitively satisfying means to verify this claim is as follows.

Component Mi computes the information 6 { i} about the correspond-

ing state of M. In this case the C {i} are the following partitions of

~

Q,.

Ciyy = {a,d;b,c;e,m; g }

6{2} = { a,b; c,d; e, f; gxh}

{7,c,e,g b, 4,1,h}

{3}
Since C . C = C . C = C . C =0
in {1} {2} {2} C{ 3} C{ 1} C{3} any two
components taken together provide total information as to the corres-

ponding state of 62. Hence the remaining one will always be

redundant.
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The following result gives a lower bound on the number of states
that an additional component must have in order for the resulting
augmented network to be totally redundant. If the network under
consideration is already totally redundant then the lower bound given
by this result is one. Since the behavior of a state machine with one
state is always a constant function, the actual addition of such a com-

ponent is unnecessary.

Theorem 6.5: Let N be an n component state network and let N'

be the state network formed from N by the addition of a component

with £ states. If N' is totally redundant then £ > max # C. .
Ki<n !

Proof: Without loss of generality take #!61[ =max #léif, and
R 1<i<n

letd = #]Ell. Then for some q = (@;.--,9,) ¢ Q ]nil(fﬁ (@ nP)|
=d. That is, if it is known that M2 is in Qy; that M3 is in 531, and
so forth up to Mu being in q, then there is still a d state uncertainty
as to which state of lT/I the state of M currently corresponds. 1t is

necessary for Mn+1 to have at least d states to resolve this

uncertainty.

The above result provides a good lower bound on the amount
of additional redundancy required to form a totally redundant network,
and it does so by taking into 4ccount the redundancy which already

exists in the network. This level of redundancy, however, is not
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always sufficient because it may be impossible to find a component
with d states which will simultaneously resolve the uncertainties

~

represented by C 1’ 62, ...,and En’ The following describes just

such a situation.

Example 6. 6: Consider the state network N3 of Fig. 6. 8.

Ny = (LR, (4)24,,4,) 4 (R LK, LK,))
1 = {o,1,2}, R = {r}

®.Kyk) = 1} {t}{e.q,.1h

I I,
M,: 0 1 2 R M o1 ]2 |ir
o Y 20 1
r
P b P21 Py q, Q9] uilr
p P P P
2 2 3 2 4 Qlagly
P3 PZ P1 Pz
M,: R R R I R R S
3 13~HH+—-HHNNNNNNg~uuuuu
HQ D o & A b 2 a8 8 A n na n ar an n n
3 R N N R N e TN NN
S M NO FEFNO P NOFERNOKRENOOLRRN

Fig. 6.8. Network N3
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This network realizes machine IT/I3 of Fig. 6.9.

]ﬁ3: &[70 1 2 R
a e b f r
b g c h
c g c g
d} h d h
e e b a
f f b a
gl g c b
h h d b

Fig. 6.9. Machine 1\~_/I3

For N3 realizing ltll3 we have

61 = { {a) 0}7 {b, d}: {e, g}’ {f’ h} }
62 = { {a: 9}7{b’ h}, {C}, {d}, {f}v {g} }
63 = { {3}7{b}’{c1d}9{e’f}v{g’h} }

Therefore m = max {Qi[ =3andd = max #léil =2.
1<i<s 1<i<3

Suppose that it is desired to add a component M4 to N3 in order
to form a totally redundant network. Theorem 6. 5 tells us that M4
must have at least 2 states, and Theorem 6. 3 tells us that there is
a 3-state component which will work. We will show that in this case

it is not sufficient for M4 to have 2 states.
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Let M4 be a 2-state component which when added to N3 forms

Nj. Let c{4} = {Bl, 132}. Since C{4} is a cover of Q;, B, U B, =

63. If [B,| >50r [By| > 5 then 6’1 would not be a singleton cover

because M2 and M3 have only 2 states each and together they could

not resolve a 5-state uncertainty. Therefore if N'2 is to be

totally redundant we must have ]Bl [, | le < 4 and thus C {4} will
be a partition of 63.
For N.

3
pairs of states: {a, e}, {b,d},{e,g},{f, b}, {b,n},{c,d},{e,f}, and

to be totally redundant M4 must resolve the following

{g,b}. It can resolve a pair only if the pair is split between By
and BZ' But this is easily seen to be impossible. Therefore
there is no 2-state component which when added to N3 will form

a totally redundant network.



CHAPTER VII

Conclusion

In this report a fresh look at on-line diagnosis was taken
from a system theoretic point of view. The approach used in this
investigation was systerﬁ theoretic in the sense that resettable dis-
crete-time systems were used as a basis for a well-developed
formal model of on-line diagnosis, and formal methods were used
to investigate this model. As evidenced by the results in Chapters
IIT through VI this approach has proved to be very fruitful. One
advantage of this approach is that the results developed in this
report are independent of any particular technology and may be
applied to any system which can be modeied as a resettable machine.

In Chapter Il a complete model for the study of on-line
diagnosis was developed, and a number of fundamental questions
concerning on-line diagnosis were stated. Subsequent chapters
provided some answers to these questions for the unrestricted fault
case and the unrestricted component fault case. However, much
more work remains to be done which could be carried out
along the lines presented below.

Except for some of the examples and for the networks considered
in Chapter VI we have been dealing with abstract (i. e., totally
unstructured) systems. Such an approach is good for developing

formally the concepts involved in our theory and for studying the

141
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diagnosis of unrestricted faults, but some of the questions raised
can best be studied in a more structured environment. One reason
for this is that with a structured system we can consider the causes
of faults. For example, given an abstract system it makes no sense
to speak of the set of faults caused by component failures of a cer-
tain type or by bridging failures. However, given a structured
representation of a system (e.g., a circuit diagram) we can discuss
these and other types of failures (causes) and determine the result-
ing faults (eifects).

There are many different structural levels that could prove
useful to a further investigation into the theory of on-line diagnosis.
Two levels which we believe will be important are: the binary state-
assigned level and the logical circuit level. These levels and the
basis for their potential usefulness are explained below.

A machine M is said to be binary state-assigned if Q = {o, l}n

for some positive integer n. Given such a machine we can speak
of stuck-at-0 and stuck-at-1 and any other type of memory failure.
The faults correspounding to these failures can be énumerated and
comparisons can be made between various schemes for diagnosing
these faults. Memory faults have been studied before in other con-
texts and they are an important class of faults for a number of
reasons. As we have seen, only a limited amount of structure is
needed to discuss them. Thus memory faults can be analyzed

before the circuit design of the machine is complete. Also, it is
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memory which distinguishes truly sequentiai systems from purely
combinational (one-state) systems. Combinational systems are
inherently easier than sequential systems to analyze and a number
of techniques for the on-line diagnosis of such systems are known
(see [21] and [ 33] for example).

A system possesses structure at the logical circui* level if

a representation of the system is given in terms of a logical circuit
composed of primitive logical elements. These may be of the AND-
OR variety, threshold elements, or any similar elements of a "build-
ing block" nature depending upon the technology being considered.
This level is useful for investigating failures in the primitive
components. The circuit in Fig. 2.2 is an example of a structural
representation at this level and the failure of this circuit discussed
in Example 2. 2 is a simple example of the analysis that can be
conducted at this level.

Further work could also be performed at the network level
of structural detail which was introduced in Chapter VI. At this
level one could study the problem of implementing on-line diagnosis
on a whole computer whereas with the other levels the emphasis
would be on diagnosing one module. Note that in our definition of
diagnosis the detector is not constrained to give simply a yes-no
response. It could also provide extra information for use in

automatic fault location. Thus, at this level, the problem of which
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subsystenis must be explicitly observed by the deteétor to achieve
some desired fault location property could be studied.

One problem that requires extension of our present model
(at any structural level) is the problem of automatic recofiguration
of the system under the control of the detector. To study this
problem, the model use& would have to allow for feedback from the
detector to the system it is observing. The question of how such
an extension should be made is an interesting one and, if answered
satisfactorily, could serve as a basis for a systematic investigation

of reconfiguration techniques.
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APPENDIX

Resettable Machine Theory

Our goal in the appendix is not to study the theory of resettable
machines per se but rather to cover that part of it which is used in
this study of on-line diagﬁosis. The theory of resettable machines
follows closely the theory of sequential machines. The main
differences in the d¢ “initions stem from the presupposition that a
resettable machine is reset before every use. One ccusequence of
this is that the "unreachable' states of a resettable machine are
always ignored.

We begin by repeating here the basic machine notions introduced
in Chapter II |

Let M be a resettable machine. The reachable part of M,

denoted by P, is the set
P = {6(p(r),x)|reR, xeI*}.

M is reachable if P = Q. M is f£-reachable if

P = {6(p(r),x)|r e R, x e I*and [x| < £} .

Let M, M' e M(, Z,R). M is equivalent to M' (written M = M")
if ﬁr = B; for allr € R. Two states q € Q and q' € Q' are
equivalent (q = q') if ‘Gq = B('l,. It is easily verified that these are

both equivalence relations, the first on M(I, Z, R) and the second on
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the states of machines in M(I, Z,R). M is reduced if for all
q,q' € P, q = q'impliesq =q".

If M and M' are two resettable machines then M realizes M’ if
there is a triple of functions (0'1,02,03) where 0, M —>r1isa
semigroup homomorphism such that ¢ 1(I') C1, 0y R' — R,

0'32

2" — Z' where 2" C Z, such that for all r' ¢ R' ;3;, =
93 ° Baz(r') ° 0y

The following result is analogous to the result due to Leake [23]
which was cited in Section 2. 2. It supplies us with an alternative,

and structurally oriented, definition of realization.

Theorem A.1: Let M and M' be two resettable machines with reach-

able parts P and P'. M realizes M' if and ouly if there exists a

4 -tuple of functions (nl, NgsTgs T 4) where

- 1 4
ny: I'—>1
. ]
Ny R'— R
ng: VAR VA

ng: P'=>P @) - ¢ (PP)={X[X EAP})
such that
i) 6(ny(pt),n @) C ny(6'(p",2)) for all p' ¢ P* anda e I'
ii) n3(A(p, nl(a))) = A(p',a)forallp'e P', ael', andpe n4(p')

iii) p(nz(r')) € n4(p'(r')) for allr' ¢ R".
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Proof: (Necessity) Assume that M realizes M'. Then there exists
an appropriate triple of functions (01,02,03) such that B;_.(x) =

03(302(1")(01(")))‘ Therefore

B",.(r.)(uV) = 03(3p .))(Ol(uV)))

(02(r
for eachr' ¢ R', u e (I''* and v € (I')*. Hence,

oo, = %5Cepe,a),0, @)1 0
Thus for each p' € P' there is a p € P such that

B = 03(pp(01(V))5.
Counsider n,: P' — FP(P) - ¢ defined by
@) = {pePg, =058, 204}
and consider R I = I defined by
nl(a) = ol(a).

Claim: The 4-tuple (n1’°2’°:'3’ n4) where oé is an arbitrary extension
of g to Z satisfies i), ii), and iii).

i) Let p € ny(p'). We musi show &(p, n,(@)) € ny (6" (p', a)).
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ﬁ'b'(p',a)(x) = P;)'(xa)

03(Bp(01(xa)))
= 03 (Bﬁ (p’ o 1(3)) (0 l(x)))

= 0'3(35(p’ nl(a))(ol(x») .
Hence 6(p, nl(a)) € n4(5'(p',a))-

ii) Letp ¢ n4(p'). We must show
0g(x(p,n,@)) = A'(p',a) .

A(p',a) = Bb.(a)

04(3,(n,@))

Gs(h(p,nl(a))) .
iii) Let r' € R'. We must show p(oz(r')) € n4(p'(r')).
BLx) = 03(302(r.)(01(x)))

implies

P(Oz(r')) €nyfp'") .
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(Sufficiency) Suppose there exists functions (nl, Ngs Ny n4) as in the
statement of the theorem. Let 0y (ﬁi)+ — 1" be the natural exten-
sion of n, to sequences. That is, ol(al. .. an) = nl(al). .. nl(an).
Claim: M realizes M' under (01’n2’ n3). Consider ¢{: P'—>P
where

§ (') = some p € n,(p') such that

p(nz(r')) = ¢ (p'(r')) for all r' € R".
Let x =ya where a € I. Then

n3 (B

e 10N = Mgl o)) @1600)

(ny(r
- TJ3(3§ (pt(rl))(ol(x)))

= ng(A(o(¢ (p'(r')),ol(y)),ol(a)))

= n3(A(p,crl(a))) where p € 7,(8'(0'(r), y))
= A'(6'p'(r'),y),a)

= B",.(r,)(va)

= ,B;,r(x)

This completes the proof of Theorem A, 1.
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Theorem A. 2: If M realizes M' and M' is reduced and reachable then

Q] >Q'[.

Proof: Assume that M realizes M' under (01,02,03) and that M'

) —_
is reduced and reachable. Then Br = 0g° 302(r) ° 0y for all r € R'.
Let q' ¢ Q'. Then there exists r € R and x € (I')* such that

q' =6'(p'(r),x). Now

B&!(Y) = pé'(p'(r),x)(Y)

BLxy)
= 03 (Boz(r)(ol(xy)))

= %3500, r)),0,6) 016D

Hence there exists a function f: Q' — Q such that for each q' € Q',

B('l' = 03 ° Bf(q') ° 01-

To prove that [Qf > [Q' I, it suffices to show that f is 1-1. Let

, _ v o o =
dy,dy € Q' and assume that f(q,) = f(gy). Then Bql =% Bf(ql) %

° o - ' . - M' - - . -
Og ﬁf(qz) %y qu Since is reduced and reachable this implies
that q; =qy. Hence f is 1-1. This establishes the result.

Theorem A.2: The relation '"realizes' istransitive. That is, Mrealizes M'

and M' realizes M'" implies M realizes M'".
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Proof: (Sketch) Assume that M realizes M' under (01,02,03) and
' 3 1t t t ' 1 t =
that M' realizes M" under (01,02, 03). hen Br, gg ° ‘602(1") °0,
for all r' € R' and B;',, = oé o B(',,z(r,,) o 0‘1 for all r'"" € R". It follows
1A — 1 o ° ] : .
that Br" = 0g 03 ;302 (o'z(r")) 0 01 0 01. Tha}t is, M realizes

M'" under (cr1 ° a'l, gy ° 0'2, oé ° 03).

If M and M' are resettable machines then M is isomorphic to M'

if there exist four 1-1 and onto functions

w,* I-T
Wy R —- R’
wg' AN A
w: P—=>P

such that forallre R, a€l, andqe P

1) wy(8(g,a)) = 0'(w,(a),w,(a))
il) wa(Ag,a)) = Aw,(),w; (@)
iii) wyp(r)) = p'(wy(r)).

The 4-tuple (wl, Wgy Wa, w4) is called an isomorphism of M onto M'.

IfM,M'e M(I, Z,R) and (e,e,e,w4) is an isomorphism of M onto M',

then M is strongly isomorphic to M'. A basic result of sequential

machine theory states that for every machine there is an equivalent

reduced machine and that this machine is unique up to strong
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isomorphism. The corresponding result for resettable machines is

given by Theorem A. 4 and Corollary A. 6. 1.

Theorem A.4: For every resett able machine M there is a reduced

and reacaable machine MR equivalent to M.

Proof: LetM =(1,Q, Z, 6,1, R,p) and let MR = (I, QR’ Z, GR’ )\R, R,pR)
where

Qg = flallae P} (al={a'la" = q})

GR([q;” a) [G(q’ a)]

A(g, a)

Aglal 2)
pgr) = [p(r)]

To prove this result we must verify (1) that 6R and '\R are well-

defined, (2) that M_ is reduced and reachable, and (3) that M = M

R
The details of this proof are very similar to the details of the

R’

corresponding result in sequential machine theory. They may be

found in mauny textbooks which cover this theory (e. g., see Arbib

[2].

MR as defined above is called the reduction of M. M'is a

reduced form of M if M' is reduced and M = M".

. = t 3 H -— ]
Lemma A.5: M = M' implies ﬁé(p(r),x) = BG'(p'(r),x) for allr € R

and x € I*.
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Proof: Letael,x,ye I*andr ¢ R. Then

M= M= Br(xyz) = B;_(xya)
= AMbp(r),xy),a) = A'(6'('(r),xy),a)
= A6(6(o(r),x),y),a) = A'(6"(6'('(r),x),y),a)

= Potoe), 05 = Horpr), 00 -

Theorem A.6: If M and M' are both reduced and M = M' then M

is strongly isomorphic to M'.

Proof: Assume that M and M' are reduced and that M = M'. We

know that each q € P is representable in the form 6(o(r),x). Define

wyt P—=> P' by
wy (8 (r),x)) = 8'('(r),x) .

Claim: M is strongly isomorphic to M' under (e, e, e,w4). We must
show that Wy is well-defined, 1-1 and onto and that for all r € R,
aelandqe P

i) w,(6(q,2)) = 6'(w,(q),a)
il) Mq,a) = A'(w,(q),a)

iii) wylo(r)) = p'(r).
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In the following we denote w, @) by q'.

Well-defined: Let p = 6(po(r),x) and q = 6(p(s),y), and suppose that

p =q. Then Bé(p(r),x) = Bb(p(s),y) and thus by Lemma A. 5, BIS'(p'(r),x) =
325'(p'(s),y)‘ That is, B;), = B('],. Since M' is reduced and p', q' € P' it
follows that p' = q'. Hence v, is well -defined.

1-1: Again letp = 5(0(1‘),.}{) and q = 6(o(s),y) but now suppose that

p # q. Then by reapplying the above arguement p' # q'. Hence,

wy is 1-1.

Onto: Since every q' € P' is representable in the form &'(p'(r), x)

w 4 is onto.

That i), ii), and iii) are satisfied is straightforward to verify.

Corollary A.6.1: The reduced form of M-is unique up to strong

isomorphism. That is, if M' and M" are reduced forms of M then

M' is strongly isomorphic to M".

Proof: If M' and M'" are reduced forms of M then M = M' aud
M = M". Hence M' = M'". Since M' and M" are both reduced, by

Theorem A. 6, M' is strongly isomorphic to M",

Theorem A.7: If M = M' then M realizes M'.

Proof: M = M' implies Br = [3;. for all r ¢ R. Hence M realizes M'

under (e, e,e).
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A resettable machine M is autonomous if ! I,' = 1,
Given a resettable machine M, two input symbols a,b € I are
equivalent (a = b) if A(q,a) = A(q,b) and 6(q,a) = &(q,b) for allq € P.

M is transition distinct if no two of its input symbols are equivalent.

Any machine which has equivalent inputs is redundant in the sense
that the inputs in an equi\;alence class can b¢ represented by any one
of its members without affecting the capabilities of the machine. The
following results give an alternative characterization of equivalent

inputs.

Theorem A. 8: Let M be a resettable machine, and let a,b € I. Then

a = b if and only if for all X,y e I*and r € R,Br(xay) = Br(xby).

Proof: (Necessity) Suppose a = b and assume, to the contrary,

that Br(xay) # Br(xby) for some r ¢ R and x,y € I*. Let q = 6(p(r), x).
Now, ﬁr(xay) # Br(xby) implies ﬁq(ay) # Bq(by). Ify = A then

AMa,a) # Ag,b). Ify e I* then Bd(q,a)(v) # ﬁﬁ(q,b)(y) and hence
6(q,a) # 6(g,b). Therefore a ¥ b. Contradiction. Hencea=b
implies Br(xay) = ﬁr(xby) for all x,y e I*and r € R.

(Sufficiency) Assume thata #b. Then for some q € P, A(g,a) #
Xq,b) or 86(q,a) ¥ 6(q,b). Letq = 6(p(r),x). Then A6((r),x),a) ¥
A(6((r),x),b) or 6(p(r),xa) # 6((r),xb). Hence Br(xa) # Br(xb) or
for somey € I, Br(xay) # Br(xby). Therefore if Br(xay) = Br(xby)

forallr e R, and X,y € I* thena = b,



