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COMBUSTION OF HYDROGEN-AIR JETS

. IN LOCAL CHEMICAL EQUILIBRIUM

(A Guide to the CHARNAL Computer Program)

by

D. B. Spalding, B. E. Launder, A. P. Morse and G. Maples

of

Fluid Mechanics and Thermal Systems, Inc.
Route 2, Box 11

Waverly, Alabama 36879

1. Introduction

The computer program CHARNAL (Calculator of Hydrogen-Air Reactions
for NASA Langley) generates finite-difference predictions of turbulent,
coaxial hydrogen-air jets undergoing combustion. The jets may be free,
as indicated in Figure la (in which case the external stream is assumed
to extend to arbitrarily large radius from the symmetry axis) or enclosed
as in Figure Ib. At any point in the flow t;he mass fraction of the con-
stituents of combustion is found on the assumption that chemical equili-
brium prevails, the constituents being H2, 02, H20, 0, H, OH and N2.

The present report details the mathematical and physical basis of
CHARNAL, discusses some sample predictions and provides a guide to the
computer program itself. ( Section 2 is concerned with the first of these
aspects: the basic conservation equations of momentum, stagnation
enthalpy and chemical species are presented first and these are followed
by a description of the turbulence and combustion models employed. A
user's guide to the computer program appears in Section 3 while defini-
tions of FORTRAN symbols and a listing of the program itself are contained
in the Appendices. Thereafter, Section 4 presents and discusses the out-
come of some test cases and, finally, Section 5 .suggests some directions
that further developments to the CHARNAL program might take.



2• The Mathematical and Physical !*odel

2.1 The Mean Flow Conservation Equations

CHARNAL calculates the steady state distributions within the jet of
mean streamwise velocity, temperature and mass fraction of elemental hydro-
gen by reference to the conservation laws of momentum, energy and chemical
species. These laws are expressed in terms of the following set of para-
bolic partial differential equations expressing respectively the transport
of streamwise momentum, stagnation enthalpy and hydrogen mass fraction.
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The mass fraction of elemental hydrogen, f, is used as a variable for the
reason that, unlike H?, even during chemical reaction it remains a con-
served property. The method of determining the individual chemical
constituents of the flow is described in Section 2.3.

The set of partial differential equations is completed by the continu-
ity equation in which the streamwise and radial velocities are connected
by:

(2.1-1)



In fact CHARNAL solves the parabolic transport equations tast in a
Von Mises system of coordinates (i.e., x and stream function as independent
variables). This transformation has the effect of eliminating the radial
velocity v from the equations, and,' hence no explicit recourse needs to
be made to equation (2.1-4).

The temperature of the mixture, T, is obtained from known values of
h, u and the mass fractions of the chemical constituents of the mixture
from the expression:

[ h - u2/2 - k - Ej-mj JAnf -

EJmJCPJ
(2.1-5)
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2.2 The Turbulence Model

The effective turbulent transport coefficients y^, r, , r,, and r^ are
determined by means of the k^e model of turbulence which has been presented
and applied to numerous turbulent free shear flows in Reference [2].
According to.this model the magnitude of the viscosity depends only on the
local values of the turbulence kinetic energy, k the dissipation rate of
turbulence energy, e and the fluid density. They are connected by the
formula:

= Cppk
2/e (2.2-1)

The quantities k and e are found by way of the following pair of transport
equations which are both similar to (and solved simultaneously with) those
governing the mean flow:
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The quantities C , C-j, C^, o^ and ae are dimensionless and are given
the constant values belcw

c,
.09

Cl

1.43

C2

1.92

°k

1.0

°e

1.3

These values are the same as those recommended in [2]. Equations (2.2-2)
•and (2.2-3) do not provide a physi'cally exact prescription for finding
k and t. Such a prescription is not possible because the exact equations
for k and e contain correlations whose magnitude is not directly ascer-
tainable. These correlations are therefore approximated in terms of k,e
and the mean velocity field; the approximated terms in (2.2-2) and (2.2-3)
are the ones with the empirically determined coefficients. Models of the
above kind, while being sufficiently simple not to affect computer costs
significantly, have been found (see for example, references [2] and [3])
to possess considerable width of applicability, precisely the same model
predicting features of both wall and free turbulence. It is probably the
best model available at present for the kind of shear flows that CHARNAL is
designed to compute.

The transport coefficients in the hydrogen-element and; stagnation-
enthalpy equations are given by

m m (2.2-4)

In the free jets and in the confined jets (provided the jet has not spread
to the pipe v/all)

ou = (2.2-5)

Once the jet has filled the pipe the effective Prandtl/Schmidt number is
obtained from the formula:

o = om = 0.95 -.45 (y/R)
2 (2.2-6)



where y is distance in the radial direction measured from the pipe wall.
The above variation, proposed by Rotta [4] and used by several v/orkers
since, is generally in accord with experimental data of the turbulent
Prandtl number in fully-developed pipe flow. Note that because the same
numerical values are assigned to rn and rm, one of the source terms in
equation (2.1-2) vanishes.

2.3 The Combustion Model

The equilibrium composition of the hydrogen air mixture can be cal-
culated by reference to the set of reversible reactions:

H2Z=± H + H (2.3-1)

0 2 ^ 0 + 0 (2.3-2)

OH ^ 0 + H (2.3-3)

H 2 O^OH + H (2.3-4)

The relative mass fractions of the above constituents are found by presum-
ing that chemical equilibrium prevails at each point in the flow. Thus:

= K, (2.3-5)
i i'j 11 I

mO /mn = '^? (2.3-6)

mOI/mOmH = K3 (2.3-7)
nH 0^mHmOH = K4 (2.3-8)

where the K's are functions of temperature and pressure. In addition we
have by def in i t ion

(2-3-9)
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In the above equation set, the quantities f and X are to be considered
known: f is found from the conservation equation for total hydrogen
(equation 2.1-3} and X is simply OFAC (1-f) where OFAC is the mass.frac-
tion of oxygen in the external stream. The equilibrium constants
KI K« are functions of temperature and pressure. CMARNAL incor-
porates tne dependencies proposed by McBride [5].

Equations (2.3-5) - (2.3-10) thus provide a set of six equations in
the six unknov/ns m.. , mu, mu .., mnu, mn, mn . The equations are non-linear

H~ n HpU Un u vj«
(indeed, highly non linear for regions of flow where the fuel/air ratio
is nearly stoichicmetric); their solution must therefore proceed itera-
tively. The solution technique adopted is described in Section 3-4.

The mass fraction of P-L (which is considered to be entirely inert)
is simply (1-X-f). *

Because the flow is turbulent, the level of hydrogen and of other
variables will be continuously fluctuating about their mean values. The
magnitude of the mean square hydrogen fluctuations, g, is fcund from the
following transport equation developed and tested by Spalding [6]

pU l a + P V !&„!!_ [ V lal +c u ~\ -c ^
3x ar r ar ^°g 9r j Ql t ^r I g2 k (2.3-11)

where the constants a , C ., and C ~ are assigned the values of 0.7, 2.8

and 2.0 respectively. Solution of the g equation enables the region of the
flame over which stoichiometric conditons occur to be calculated. The l
inner boundary to this region occurs at a radius from the axis where f-g'5 =
f and the outer boundary vvhere f+gh = fstoich' The predicted path

of these two surfaces for a hydrogen jet burning in an air stream is shown
in Figure 10.

3.0 Details of the CHARMAL Computer Program

CHARMAL is 5 custom-developed version of the Patankar-Spalding PASSA
program which, in turn, is a newer, more economical and flexible version
of GEMI1IX published in Reference [1].

Section 3.1 below gives a brief summary of the general Patankar and
Spalding method of solving the boundary layer equations. .Section 3.2
lists the major differences betv;een CHARMAL and the original GEHMIX pro-
gram, while Section 3.3 discusses in detail the listing of the present
program (which is to be found in Appendix 2). Section 3.4 is devoted to



a discussion of subroutine LAi'iGLEY, which has been developed exclusively
for the current work. Finally Section 3.4 gives overall instructions for
the running of the program, in particular the input information that the
user must provide.

3.1 The Patankar-Spalding Boundary Layer Procedure

The main features of the computational method are as follows:

(i) The primary differential equations'(i.e., the transport equations for
A . • • '" ' .

u» lit f, g, k and e) are transformed so that the independent variables
are the longitudinal distance, x and. the dimensionless stream function,
u defined as: .

- *j) (3.1-1)

where y; itself is obtained from the relation,

' ^ -pur (3-1-2)c>y .

Subscripts I and E refer respectively to the "inner" and "cuter"
boundaries of the flow; for axisymmetric flows the inner surface is
alv/ays the one nearer the symmetry axis. The resulting differential
equations are all of the basic form,

l i U (a+b.) = - c d . 0.1-3)
3X ' Su 3u> \- 3

where the terms on the left-hand side represent convection by the mean
flow and those on the right-hand-side express respectively the dif-
fusion and source of the entity <j>. The coefficients, (a) and (h)
are functions of the entrainment rates, whilst (c) involves the ef-
fective diffusion coefficient.

(ii) The differential equations are expressed as finite-difference equa-
tions, connecting tiie values of the dependent variables which prevail
at the intersection points of a grid defined by lines of constant x
and to. These finite-difference equations are formed by integrating
the differential equations over small control volumes associated with
each grid node.



'(iii) The integration proceeds by "marching" downstream, the values of the
variables at grid points at the next downstream station being calcu-
lated from those at ti-,e upstream station and placed into the array
locations occupied by the latter. At each forward step, new values
are ascribed to >.!.•-: and $,, the stream functions at the grid boundaries.

These values, together with the continuity equation, determine the
geometrical location of the boundaries; and this determination is so
arranged that the boundaries enclose all the fluid having a signifi-
cant value of the shear stress (or other flux) without enclosing
appreciably more than this. This feature allows the method to achieve
good numerical accuracy without employing an excessively .fine grid.

(iv) The fi nits-difference equations are formulated in an implicit manner,
and solved by means of the well-known algorithm for tri-diagonal
matrices. This allows large forward steps to be made without insta-

_ bility. The equations are linearized, upstream values of the trans-
port properties being supposed to prevail over the whole of the
forward step.

(v) The source terms are usually (but not necessarily) expressed as linear
functions of the upstream and downstream values of the dependent vari-
ables. For example in the turbulent kinetic equation,

Source of (k) = M - tpe/k) k (3.1-4)

where the subscripts IJ and D. denote upstream and downstream values.
This practice allows large forward step sizes to be used without the
onset of inaccuracy or instability.

For further information on the general structure of the solution pro-
cedure the reader is referred to Reference [1].

3 . 2 New and Improved Features of the PASSA family of programs

PASSA programs retain the general width of applicability .of the basic
procedure, but are arranged to be more economical in terms of both execu-
tion time and storage capacity. The principal differences between the new
method and its predecessor may be summarized:

(i) In PASSA, the finite-difference equations are solved sequentially.
That is, for any variable, the coefficients of finite-difference
equations are formed and the equations solved before moving on to
the next differential equation. This contrasts with the former
procedure where the coefficient for all the differential equations
were stored simultaneously and then the matrix was inverted for each
equation in turn.

8



(ii) The PASSA program does not make use of "slip nodes" in the formulation
of the difference equations at the boundaries. In the earlier program,
these nodes were employed to obtain the correct gradients of the depen-
dent variables at the edge regions. PASSA treats the nodes near each
flow boundary in exactly the same way as the interior nodes.

(iii) In PASSA all diffusivities and gradients of the dependent variables,
such as the viscosity and the velocity gradient are evaluated at the
actual grid nodes, whereas in the earlier program these quantities
were evaluated at the edges of the control volumes (which by definition
were midway between individual nodes in terms of u). PASSA also con-
tains the option of using castellated profiles instead of linear vari-
ations of <j> between the grid nodes.

3.3 Details of the CHARNAL Program

A flow diagram for CHARNAL is provided in Table 1. The program con-
sists, of a MAIM program and a number of subroutines of which the most
important are AUX, STRIDE, OUTPUT and LANGLEY.

3.3-1 ThuMAIN Program

tiAIN contains the starting and stopping points of the computation and
communicates directly or indirectly with all the other subroutines. It
comprises twelve "chapters", each performing a specific function in the
computational procedure. The most important of the operations are men-
tioned below:

Chapter 1. Values are assigned to various indices which control aspects
of the computation throughout the program. The main categories
are:

(i) the specification of the number of grid nodes and
differential equations to be solved.

(ii) the nature of the flow boundaries (wall, free boundary
or axis of symmetry)

(iii) the control of input, and

(iv) the designation of the flow type (number of chemical
species, nature of initial conditions, etc.). This
topic is discussed in more detail in Section 3.4.

Chapter 2. This chapter selects the primary dependent variables and
auxilary quantities to be calculated in the program. Com-
ment cards have been included here for the user's benefit.

Chapter 3. Material constants such as molecular weights and the universal
gas constant, turbulence parameters and Prandtl/Schmidt
numbers are assigned values. The S.I. system of unit is
used throughout the program. Subroutine LANGL1

9



is called to provide data for the enthaplies of the chemical
species anci the equilibrium reaction constants.

Chapter 4. Specified here are the flow geometry (plane or axisymmetric),
inclination of the streamlines to the axis of symmetry and
the cross-stream distances for the initial profiles.

Chapter 5. The initial profiles are read in from data cards. Values
are assigned to the axial velocity, absolute temperature and
species concentrations at the grid nodes. ATI the data input
are in dimensionless form, having been normalized with the
largest value of each dependent variable at the initial
station. In developing CHARNAL, fifteen test cases (speci-
fied by NASA Langley) have been run which required two dif-
ferent types of initial-profile specification.

(i) Continuous profiles (Test Case nos. 1-10,13)

Figure 2a shows the initial—velocity-profile typical of
these test cases. The two streams are separated by a
wake region caused by the interaction of the boundary
layers on the dividing wall. Since the velocity is
uniform near the jet centreline, the computation starts
from a mixing-layer region with entrainment at the
inner flow boundary until this boundary grows to the
axis of the jet (i.e., the end of the potential core).

(ii) Step profiles (Tost Case nos. 11-12, 14-15)

In these four test cases, the boundary layers on the
dividing wall are ignored and a step-change in the
velocity profile is assumed (see Figure 2b). In these
cases, the computation starts from a very thin mixing
layer (with an assumed linear velocity profile) in the
iirr.ediate vicinity of the step-change.

The initial profiles of turbulent kinetic energy are
then evaluated by assuming a constant ratio with the
shear stress (as expressed by the mixing length hypo-
thesis), whence

k = 3.33 m (3.3-1)

The dissipation rates are then given by the Prandtl-
Kolmogorov relationship

(3.3-2)

10



Chapter 6.

Both the mixing length and dissipation length scale
are assumed to be proportional to a typical width of
the shaar region. The scheme adopted is shown in
Figure 2. .

The free-stream turbulent kinetic energy is taken as

4 x 10 .of the square of the free-stream velocity.
The same constant is used to determine the initial pro-
file of concentration fluctuations from the local con-
centrations of hydrogen element, i.e., g/f2 = 4 x 10"̂ .

A variable of major importance in the computational
procedure is OFAC, which is the ratio of oxygen element
to nitrogen in the outer stream, since this ratio is
assumed to be constant across the flow.

Chapter 5 also calls subroutine LANGL2. to evaluate the '
initial enthalpy profile.

The dimensionless stream function array is filled by inte- .
gration of the profiles of density and velocity according
to equations (3.1-1) and (3.1-2). The density is obtainable
from the ideal gas relationship,

P = pl-l/RT (3.3-3)

where the mean molecular weight of the mixture, H is given
by, '

1 miL = z —w w.J
(3.3-4)

Subroutine STRID1 is called to evaluate useful quantities
' relating the individual W's.

Chapter 7. This marks the starting point of the main computation; it
is the point to which control is returned after the execu-
tion of each forward step. The most important functions
of this chapter are,

(i) to call LAPIGL3, which employs the chemical reaction
constants relevant to the upstream conditions, (i.e.,
pressure and temperature) to determine the local mass
fractions,

(ii) to call LANGL4 to calculate the temperatures corres-
ponding to these concentrations (by way of the up-
stream specific heats) and •

11



Chapter 8.

Chapter 9.

Chapter 10.

Chapter 11,

(iii) to evaluate the density profile from the local temp-
eratures and mass concentrations

This chapter performs two m-iin tasks. First it fixes the size
the forward step and secondly it calls subroutine STRID2 to
calculate transverse distances. The fonvard step is usually
mr.de proportional to the width of the flow, with the constant
of proportionality small in the initial region to avoid in-
stabilities at the start of the calculation. For confined
flows, the streamwise pressure gradient, which is a source
term in the axial momentum equation, is not known a priori.
CHARNAL adopts the same non-iterative practice employed in
GEritllX, (see reference [1]). An estimate of the pressure
change to be experienced over a fonvard step is obtained by
reference to a 1-dimensional analysis. This usually results
ir. the area of the flow differing from the pipe cress
sectional area at the end of the forward step. However by
adjusting the level of dp/dx over the next step the differ-
ence in area can be kept negligible (typically 0.01% of the
pipe area).

This chapter fixes the conditions at the flow boundaries.
Only when a boundary is a wall must information (either the
value of <t> or its diffusional flux) be specified at this
point. (In .the case of a free boundary, the relevant infor-
mation is provided in STRID3 (based on the free-stream source
terms) while at an axis of symmetry, the zero gradient con-
dition usually applies).

The first chapter of AUX is called to determine the effective
viscosity (regarded as the sum of the turbulent and 1;.minar
viscosities) at each node and to formulate the source term
based on the axial pressure gradient. For a free boundary
the Tintrainment rate is calculated via the degenerate form
of the conservation equation for whichever of the dependent
variables shows the largest changes near the edge of the flow.
The entrainmont is subject to certain controls to prevent the
formation of 'tails' to the profiles and to prevent the onset
of instability.

This chapter deals with the output of information. At the
first step, subroutine OUTP 1 is called to print-out inform-
ation regarding the initial conditions. At certain axial
positions (designated in Chapter 1) OUTP 2 is called to
print-out such quantities as the entrainment rates, jet
spreading rate, centreline values of the velocity, tempera-
ture and species concentrations and the fluxes of the dep-
endent variables. Also OUTP 3 may be called (not necessarily
at the sanjs stations) to print-out the profiles of quantities
of interest (velocity, temperature, concentrations, etc.).

12



Chapter 12. The last chapter terminates the execution after a specific
axial distance has been covered. Otherwise, control is
returned to Chapter 7.

3.3-2 AUX, STRIDE and '.IF

Only brief description is provided of these general-purpose subrou-
tines as they are similar in structure and function to the correspondingly
named subroutines in GEPi'lIX (reference [1]). Subroutine AUX is called
initially from Chapter 10 of f'AIN to provide the effective viscosities at
the grid nodes. Chapter 2 is subdivided into five parts, one for each of
the dependent variables other than the velocity. Each section evaluates
the appropriate effective diffusivity and formulates the source arrays and
is called in turn from STRIP: 3 as the finite difference equations are
solved sequentially. The source terms for turbulent kinetic energy, dis-
sipation rate and mean square concentration fluctuations are linearized
according to equation (3.1-4), while that for stagnation enthalpy is
loaded entirely into the upstream array.

Subroutine STRIDE is divided into four parts, of which the first two
are largely preparatory, while the latter two contain the core of the
numerical method of the program. STRID 0 merely sets to zero arrays
such as those for the dependent variables and auxilary quantities. It
is here that the decision is made as to whether to employ linear
(KAST (J) = 0) or castellated (KAST (0) = 1) profiles between the grid
nodes. STRID 1 evaluates useful relationships between the values of w
at neighboring nodes, these of course remaining constant for the whole
of the calculation as the grid is always constrained to lie between limits
of 'jo=0 and (u=l. STRID2 calculates the cross-stream distances at each
axial station with but minor differences from the original program [1].
STRID3 contains the basic finite-difference formulation and technique
of solution of the differential equations. Although different in appear-
ance from the version published in reference [1], the differences are
largely only ones of arrangement. It is not proposed to dwell on points
of detail here, but suffice it to say that STRIDE is a subroutine which
the user has very seldom any need to change. STRID3 terminates by
determining conditions at the flow boundaries and by initiating the
forward step.

Subroutine HF provides wall-function relationships to relate the
fluxes (diffusional and convective) through the wall with the values of
the dependent variables at the near-wall nodes. As appropriate to the
high-Reynolds-number form of the turbulence model employed in this work,
the wall functions are based on the assumption of a log-law velocity
profile in the fully turbulent region of the flow.

3.3-3 OUTPUT and related Subroutines

Subroutine OUTPUT is divided into three parts, concerned respec-
tively with the print-out of initial values of interest and station and
profile variables. It communicates with PROFIL and thence with subroutine

13



PLOTS, which together may be used to provide non-dimensional plots of the
profiles. OUTPl reads alphanumeric information from data cards to provide
the headings for the print-out. The meaning of the quantities printed
from OUTP2 and CUTP3 is given in Appendix 1. Subroutine OUTP2 performs
the useful function of checking for the overall conservation of fluxes of
the dependent variables; in this analysis the concentration of hydrogen
element is a conserved property as are the axial momentum and stagnation
enthalpy (but for free flows only).

There is a large number of comment cards in OUTPUT, PROFIL and PLOTS
to assist the reader in understanding the interlinkage between these sub-
routines. PROFIL is used to normalize the profiles and communicates with
PLOTS which scales both the abscissa (transverse distance) and ordinate
(<j> values) of the dimensionless plots into the range 0 to 1, (with nega-
tive values printed as zero). Either the normalized (IPROF = 1) or the
full dimensional (IPROF = 2) values of the dependent and auxiliary vari-
ables may be printed out in OUTP3. If the former approach is adopted,
the full dimensional values are still printed at the first and last nodes
(designated 1 and HP1 respectively). The cross-stream distances Y(I) are
treated 1n this way, the first quantity printed being the rsdlus of the
internal flew boundary and the last the distance between the internal
and external boundaries.

Subroutine YINT may be called at any point in the program and is
merely an interpolation subroutine. It is useful in the determination
of such quantities as the half-width of the jet or locating the exact
position where the value of an entity $ is a linear combination of the
values of <j> at the inner and outer boundaries of the flow.

3.3-4 Subroutine LANGLEY

Subroutine LANGLEY has been developed exclusively for the present
work and is subdivided into four parts, whose purposes are respectively

(i) the loading of the individual species and the chemical
equilibrium constants for the stipulated reactions.

(ii) the evaluation of the initial enthalpies by simple
interpolation amongst the input data.

(iii) the calculation of the species mass fractions by solu-
tion of six simultaneous equations.

(iv) the evaluation of the cross-stream temperatures from
the enthalpies and the upstream specific heats.

Data for enthalpies and chemical-reaction constants are those pro-
posed by McBride [5]. The enthalpy of each species may be written in
the form

14



h - href = 7 CpdT * Ahf Tref (2'3^
Trof

where Ahf,T denotes the heat of formation of the species at the refer-
Vef

ence temperature. It is usual to take the datum of enthalpy as zero at
a reference temperature of 298.15°K, whence

T

. /

•/••
0°K

- (hono it-oi/~ nnoi/298.15°K 298.15°K 0°K

CpT + HQ (3.3-7)

where C (= I/ T J CQdT) denotes a mean specific heat and H is the
0°K

composite of the remaining terms. Values of h are read in at intervals
of 100°K for temperatures of up to GOOO°K, together with the value of H
for each species. The mean specific heats are then evaluated from equa-
tion (3.3-7) and stored (see Appendix 1 for array locations).

LANGL2 is called to obtain the initial enthalpy profile by linear
interpolation of the ln/T data. The enthalpy of the mixture is then
given by

h = 7. m.:h-
w J

= i mjCpfjT + E mjH0>j (3.3-8)
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LAMGL1 is also used to store data for the chemical equilibrium for
the four reactions involved in t!ie combustion process. These are again
taken from McBrids [5] and are in the form of constants relating the
partial pressures of the individual species, I.e., for the reaction

aX + bY = Z ...... ,

(implying .the formation of, 1 unit, of substance I from (a) units of X
and (b) units of Y), the partial pressures of -the species are linked by
a constant, K given by the relation

Kp = Pz/Px
apY (3.3-10)

[Because K (which is a function of temperature) varies markedly, numbers
on the data cards refer to log,,. 1C]. Kp's may be transformed into con-
stants relating the species mass fractions by use -of the ideal gas law,
whence

where W. denotes the individual molecular weights and W is the mean mole-

cular weight of the mixture. Values of (KpWz/Wx
aWy •.) are

stored for each reaction involved. In using Equation (3^3-11), it is to
be remembered that the total pressure, p must always be expressed in
atmospheres.

LANGL3 evaluates the concentrations of the individual species by
six simultaneous algebraic equations, viz.

(3.3-12)

(3-3-'4>



(3-3"15)

vjn

.
f = n)H + mH + 7^ mH?0

 + ;r~ "OH (3'3"17)2 H20 ^ OH

in which the equilibrium constants (which are functions of pressure, temper-
ature and concentrations) are based on the upstream conditions, since
the temperatures can only be calculated once the mass fractions have been
found.

The first function performed by LAMGL3 is to evaluate, the reaction
constants and mean specific heats by linear interpolation amongst the
input data. Equations (3.3-12) to (3.3-17) are then solved iteratively
until convergence to within "\% is obtained for all species present to
an extent of more than 10"^, or until the number of iterations exceeds
a certain li.mit. The actual iterative scheme is of necessity rather
elaborate since the relative concentrations of the species can vary
markedly. The following practices are adopted

(1) "the concentration of nitrogen is easily calculable
es (l-GFAC)O-f).

(ii) The concentrations !of the remaining speciies ati the
previous axial posiition are used'as a1 first estimate
of the downstream v(alues.

 :

i ,
(iii) The equations for f and X[= OFAC(l-f)] are examined to

determine the largest term on the right-hand side of

II
each. For example, suppose that —Q— • m.. and

u n U
H20

 i

m,, are the largest quantities.
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(iv) 'Jsinu the values of mu n and mu , equations (3.3-12)npU Up

to (3.3-15) can then be solved to determine the con-
centrations of the remaining four species.

(v) mu n and m can then be re-evaluated from Equations
rip1-' Ho

(3.3-16) and (3.3-17).

(vi) The right-hand sides of the X and f equations are then
re-examined and the next iteration cycle made to operate
on the two largest quantities.

(vii) I U ration is repeated until the convergence criteria
are satisfied or the number of iterations becomes
excessive.

Convergence is usually rapid (2 iterations), but instability occurs
whenever .two of the terms in either of the additive equations [(3.3-16)
and (3.3-17)] become of approximately equal magnitude. This happens
(a) at high temperatures (> 3000°K) where the concentration of atoms
approaches that of the molecules and (b) in the region of the stoichio-
metric point where the concentration of combustion products becomes-large.
In the flows under investigation, the maximum predicted temperature was
approximately 2600°K; (b) was therefore the main source of instability.
It often happened that on successive iterations different constituents
were the largest terms in Equations (3.3-16) and (3.3-17). Oscillatory
rather than convergent behavior would then result. However, under-
relaxation of the species concentrations between successive iteration
cycles generally achieved the required degree of convergence within 12
iterations. A warning message is printed out whenever the iteration
process fails to converge within this limit.

Hhen the species concentrations have been found, LANGL4 is called
to evaluate the cross-stream temperatures. These are obtained from
enthalpy profile via the relationship,

T = (IT - zm.H JMC'. , (3.3-18)

for which the mean specific heats are evaluated in LANGL3 on the basis
of the upstream temperatures. One could regard this value of temperature
as a first estimate of the actual value, since a more accurate estimate
could be obtained by re-evaluating the K-'s to obtain new values of the
constituent mass fractions, a new mean specific heat, and from (3.3-18)
a new T. LANGLEY does not^ incorporate such an iteration cycle (though it
would not be difficult'for a user to add). Instead, under-relaxation of
the temperature between upstream and downstream stations damps out any
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temperature spikes which would otherwise appear at positions close to
the stoichometric point.

3.4 Use of the Present Program

CHARNAL solves 6 simultaneous partial differential equations and
employs typically 25 nodes (although the storage blocks have been dimen-
sioned to allow for as many as 40). The program is written in basic CDC
Fortran language and requires approximately 12 seconds compilation time
On a CDC 6600 machine (FUN compiler). Linear profiles are assumed for
the variation of the dependent variables between the grid nodes and a
typical forward step size of 0.1 times the local shear layer width is
employed. Approximately 15 axial steps can be executed per second. Con-
servation of the individual fluxes is generally good to within + 0.1%.
In the present work, the profiles have been printed out in full dimen-
sional form and are plotted at only one axial position (corresponding to
the end of the potential core region). The program has a modest storage
requirement, needing only approximately 24000 decimal storage locations.

The remainder of this section is concerned with the information that
the user has to provide via data cards in subroutines MAIN and LANGLEY.
In Chapter 1 of MAIN, control indices which have to be set are:

(i) Details of the grid and nature of the flow

KASENO : Test case number

NEQ

M

KASE

KIN

KEX

KONFIN

IN2, 102, IH20

: number of differential equations

: number =ef grid nodes

^ type of flow;
flow)

1 {free jet), = 2 (confined

specification of internal flow boundary)
= 1 (wall)
= 2 (free)
specification of external flow boundary)
= 3 (axis of symmetry)

denotes presence of confining duct wall;
= (1 wall present), = 2 (no wall)

denote presence of individual species;
= 0 (not present), = 1 (present)

MR : number of reactions

NS : number of chemical species
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IflUF : nature of initial profiles = 0 (continuous)
= T (step-change)

X'J : initial axial distance (in nozzle diameters)

XiJLAST : last axial distance (in nozzle diameters)

Yllf : radius of internal flow boundary (in nozzle
diameters)

YOUT diameter of jet nozzle

RDUCT radius of confining duct

PRESS static pressure (in atmospheres)

. TA maximum temperature at initial station

i'UIN maximum velocity at initial station

YW1 extent of inner shear, region (in nozzle
diameters) i.e., distance-from axis of
symmetry.to .minimum in velocity profile

Ul:ll : velocity at position denoted by YW1

I'll : 'grid node corresponding to YW1 and UW1

• : " . - • ' • ' : . TDUCT : temperature of duct \vall (for confined
flows only)

1 ' (i i) •.Output, parameters^ . ;

ilSTAT, NPROF, NPLOT : number of axial stations
' : between print-out.of .(i) station variables, (ii)

: profile variables and (iii) non-dimensional plots
: XSTAT, XPROF, XPLOT .: the corresponding axial

distances (in nozzle diameters)

The next data cards are read in from LAMGL1 .and refer .to the chemical
equilibrium constants for the-4-(MR), reactions and the enthalpies for the
7 (NS) species; these must be in the same order as the auxiliary variables
are data-typed in Chapter 2 of UAIH. The data are read in at intervals
of 100°K for temperatures up to GOOO°K, so that for example, HT (2.35)
refers to the enthalpy of species 2 (oxygen) at 3500°K.

Further data cards provide the initial profiles in Chapters 4 and 5
of MAIN. .For those test CQJGS involving step profiles, only the cross-
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stream distances are required together with the values of velocity, temper-
ature and species concentrations in each free stream. Appropriate profiles
for the thin mixing layer under consideration are then generated internally.
For cases with continuous profiles, the cross stream distances, velocities,
temperatures and the concentrations (of those species whose presence has
been previously indicated) are read in and converted to full dimensional
form.

The remaining data cards contain alphanumeric data which are used to
provide headings for the print-out. These are read in from LANGL1 and
supply information on

(i) the test case number and description (2 cards)

(ii) the dependent variables of the calculation
(10 cards)

(iii) the chemical reactions assumed (NR cards)

(iv) the species present (NS cards) and

(y) their chemical symbols (1 card).

4. Discussion of Sample Predictions

To examine the general capabilities of CHARilAL, fifteen test cases,
prescribed by ilASA Langley, involving the mixing and combustion of a
hydrogen jet with various coaxial gas streams have been computed. The
computer outputs of these runs have been forwardc-d separately to the con-
tracting agency. In this section we examine various features of the num-
erical predictions, the main attention being given to test cases 1 and 4,
for which the prescribed initial profiles of velocity and temperature are
given in Table 2.

Jet velocity and temperature profiles for Case 1 at four downstream
stations are shown in Figures 3 and 4. The wake region of the profile
arises from the wall boundary layers that are present en wall of the
hydrogen pipe. As the shear flow develops downstream the jet spreads and
the velocity level falls. Notice that the jet region is still present at
x/D = 50*. From the temperature profiles shown in Figure 4 the region of

In this case there is a slight momentum deficit in the shear flow
far enough downstream, the velocity within the shear flow would be
everywhere less than the free stream velocity.
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combustion is clearly evident through the sharp peak in the temperature
level. It is seen that the n.aximum temperature retrains virtually constant
as the shear flew develops downstream.

The decay of mass fraction mu ; is shown in Figure 5. Comparison is
2

drawn between predictions for Case 1 and Case 3 in which initial conditions
are similar to Case 1 except that the surrounding gas is nitrogen (which
is non-reacting) rather than air. Also shown is a prediction from reference
[2] obtained, with the same model of turbulence as that used here, for a
non-reacting hydrogen air jet with velocity ratio similar to Case 1 but
where the total temperature of the external stream was only 300°K; the
density of the air is thus approximately 3 times that for Case 1. (The
prediction from [2] was in satisfactory agreement with the experimental
data of Eggers [7], which for clarity are omitted from Figure 5). Clearly,
because of the smaller density of the external stream, the rate of dilution
of the hydrogen jet is appreciably slower for the present test cases than
in the reference [2] computation. The decay rate is seen to be faster for
the hydrogen/nitrogen mixing than for the hydrogen/air jet. This behavior
is attributable to the fact 'that combustion .does not take place in Case 3,
hence temperatures within the jet are lower and density correspondingly
higher (if reaction is suppressed in test Case, 1 the rate of decay of m^
is nearly identical with that of Case 3). 2

Distributions of some of the important dependent variables affecting
the flow development are shown in Figures 6-9. The station selected is 20
jet diameters downstream from the exit (through the profile shapes vary only
slightly with streamwise position). It is seen from Figure 6 that the tur-
bulence energy k reaches its maximum value at the axis. This is generally
a feature .of axisymmetric jets and is in contrast with the behavior of
plane jets where the peak energy level occurs near the position of maxi-
mum shear stress. (The different behavior is attributable to the more. .
rapid axial decay that occurs in the round jet). Profiles of mean and mean-
sqi-are-fluctuation levels of hydrogen element are shown in Figure 7. It is ,
noted that the rapid decrease in the level of fluctuations .in the outer
part of the.jet is the reason that the f+ line in Figure 10 lies much
closer than does f to the stoichiometric line.

The calculated distributions of radicals and atomic species are shown
in Figure 9. Their level is very sensitive to temperature and this is why
a logarithmic scale is adopted for the ordinate. the peak-calculated con-
centration >f OH is approximately 1% by mass, about ten times as large as
the maximum1mass fractions of 0 and H. The corresponding distributions of
molecular concentrations (H^, N,,,.02 and H20) are shown in Figure 10. The

figure includes predictions for "case 8" as well as Case 1. Initial condi-
tions for the former differ from Case—I principally through the presence of
appreciable water vapor in the external stream. It is seen that, as a
result, the level of H20 is higher throughout the jet than in Case 1 and
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the level of t^ and (X, correspondingly lower. The hydrogen profiles for
the two cases are virtually identical.

Turning now to the confined flov.-s, it must be said at the outset
that, for the conditions prescribed in the test cases, the rate of spread
of the jet was so slow that in no case do the predictions show the jet

' having reached the pipe wall by the downstream end of the field of compu-
tation. There are, nevertheless some effects of the flow confinement .
thcojh these are mainly seen in the velocity development (Figure 5 shows
that the centreline mass fraction of ̂  is only slightly diminished by the
presence of the pipe wall). Because the flow is supersonic, the exothermic
reaction leads to a rise in static pressure with distance along the duct.
This adverse pressure gradient causes a reduction in the level of velocity
as the jet develops along the duct; velocity profiles at three stations are
shown in Figure 3. The variation of centre line velocity with x is shown
in Figure 11 fnr four test cases. Note that, for Case 6 in which confined
streams of hydrogen and nitrogen mix without chemical reaction, the varia-
tion ofU is virtually identical with the corresponding unconfined flow,
Case 3. -t

To convey an impression of the capabilities of .CHARI'AL for predicting
both free-and wall flows, Figure 12 shows predictions obtained for the mix-
ing of subsonic H2/air streams. In order to achieve a faster rate of
spread than in any of the prescribed test cases the initial core jet vel-
ocity is set to five times that of the surrounding stream; moreover the
diameter of the confining pipe has been reduced to 49mm. Figure 12 shows
the development of the velocity and temperature profiles along the duct.
The jet reaches the pipe wall about 33 jet diameters from the start and
by 40 diameters downstream the velocity profile looks generally like that
found in pipe flow. By 75 diameters combustion is virtually complete arid
the temperature is uniform except in the vicinity of the wall.

5. Suggestions for Further Extensions and Refinements of CHARNAL

CHARNAL provides numerical predictions of how combustion will proceed
in reacting hydrogen jets. It ought to be emphasized, however, that this
behavior will not necessarily coincide - nor, sometimes, even approximate
to - the actual development of the flow. Validation and comparison of
the predicted behavior with available experimental data ought therefore
to precede any use of the program for detailed design calculations. V.'ith-
out in any way preempting the outcome of such a series of comparisons, it
may be helpful to indicate briefly some areas where improvements to the
present version could be made. These are outlined briefly below.

(i) Combustion model

While the equilibrium combustion model embodied in CHARNAL may
be adequate in high temperature flows, it evidently leads to unrealistically
fast rates of combustion at low temperatures. The argument in favor of
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assuming chemical equilibrium is that the chemical constituents may then be
determined from solution of algebraic rather than/differential equations
with corresponding savings in computer time. The savings however are rela-
tively modest because the algebraic set of equations are significantly non-
linear and require iter&tioriat each node to solve.

A further important point is that only with a differential reaction
scheme can one take proper account of the role of/ipecies fluctuations on
the progress of the chemical reaction. It is thus recommended that in the
future CHARNAL he extended to include a finite-rate reaction model. At the
same time consideration should be given to the inclusion of a more elabo-
rate reaction model than that implied by equations (2.3-1 - 2.3-4). \

Turning now to the turbulence-model, it must be said that there are a
number of areas of uncertainty. The Proceedings of the Langley Conference
on Free/ Shear Flows (of which reference :[2] forms a small part) suggests
that th"e Mach number of the fluid may exert an influence on the shear flow
development-at any rate for flows, such as the mixing layer, where turbulence
levels are high. It is also known (see Reference [2]), tnat the quantity ,
C , although assumed constant in the present work, increases, appreciably
M ,.| .

when the average level of turbulence energy production at any station be-
comes small compared with the dissipation rate. Mow it happens that in
many of the test cases examined by CHARNAL the momentum excess due to the
hydrogen jet moving faster than the external stream iis just about balanced
by the momentum deficient of the boundary layers on the nozzle walls.
This situation leads to a rapid decrease in rate of energy production with
x.

If these circumstances are the ones that prevail in the majority of
tests to which CHARNAL is to be put it would therefore be desirable to
replace the present constant cy by the elaborate dependency on energy
production: dissipation rates presented in [2] (associated with the model
designated ke2 in that reference). Such a change would produce a somewhat
faster rate of spread of the jet than does- the present model from about
15 diameters downstream of the jet exit to the point at which the jet
reaches the pipe wall (if present). There is in addition the possibility
that combustion will affect in some way the turbulence transport. There
seems no conclusive evidence on this point yet but this perhaps mainly
reflects the lack of sufficiently well documented experimental data.

A separate, albeit related, point to those discussed in the above
paragraphs is the importance of accurate upstream profiles. An abiding
feature of weak shear flows such as those tested by CHARNAL is their in-
ability to 'forget1 the nature of their origin. For example the far field
behavior of axisymmetric wakes depends crucially on the shape of the wake-
generating object. It follows, therefore, that in order to obtain reliable
predictions of the present hydrogen/air jets it is necessary that the up-
stream values of the mean velocity and turbulence quantities be known
accurately. Hc\«cvcr, no Information *as provided en the profiles cf
turbulence quantities and so "best estimates" had to be made estimates,
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however, that may give the wrong levels of k or e by a factor of two or
three. It would certainly be helpful in clarifying the degree of realism
provided by the present model of turbulence if a few more experiments could
be performed for conditions.similar to those examined by Eggers [7] in
which especial attention was given to a full documentation of the upstream
flow conditions.
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7. Nomenclature

C , C-i, Co. Cai» Cq2 constant coefficients appearing ;in turbulence
w . 9 model.

F . mean specific heat of species j.
P«

D. diameter of jet nozzle.
J

f mass fraction of elemental hydrogen,

g mean square fluctuations in f.

h enthalpy.
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h stagnation enthalpy.

Ah . difference between enthalpy.of species at
298.15°k and 0°K.

Ahf heat of formation of species j.

k kinetic energy of turbulence.
3/27

£e dissipation length scale k /e

i mixing length.

m. mass fraction of species j.
J

p static pressure.

r radius (measured from.axis of jet).

R radius of pipe enclosing jets.

T temperature.

u local streamwise velocity.

u7 local turbulent shear stress.

v velocity normal to axis of jet.

W .: molecular weight of species j.
J

x distance along center axis
X mass fraction of elemental oxygen.

Y -j-i Y £ effective widths of shear flow, see Figure 2.

r effective turbulent flow transport coefficient
(subscript denotes diffused quantity).

e rate of turbulence energy dissipation,

p. turbulent viscosity.

p density of mixture.
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0 effective Prandtl/Schmidt (subscript denotes
diffused quantity).

* • • any of the primary dependent variables.

iji stream function defined by equations (3.1-2).

u dimensionless stream function defined by equation
(3.1-1).

Subscripts

t conditions on the jet axis.

D downstream.

E external edge of shear flow.

1 value of quantity at initial station.

I internal edge of shear flow.

ref reference value of quantity.

U upstream.

» conditions prevailing beyond the outer edge
of shear flow.
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Table 2 Initial Profiles for Crises 1 and 4
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Figure 1. The Flow Geometry Treated by CHARNAL
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Figure 10. Location of Flame Front and Jet Half-Width (Test
Case Number 1)
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Appendix 1. Listing of Fortran Variables

Listed below are seme of the most important Fortran variables used
in the computer program. To prevent an excessive list, attention has
been confined to those variables which are neither (a) self-evident in
meaning, (b) indicated by comment cards.in the program, (c) discussed
in Section 3.5 or (d) connected solely with the finite difference'"formu-
lation of the equations. Arrays are shown with the maximum numerical
values of their subscripts.

Fortran Symbol,

AK

ALMG

AMACH

CE1

CE2 ,

CFA

CFAC

CGI
CG2

CLINE

CMU

Significance

constant of proportionality in near-wall mixing length
<yG.formulation, ;-m =

constant of proportionality in free shear layer mixing
length formulation, £m = Ayg.

L

Mach number, u/(yRT) .

constants in the dissipation rate equation

conversion factor from calories/gram, mole to
joules/kg. ^

pressure x molecular weight of mixture

constants in nr.Gan sqaare concentration fluctuations
equation.

local centreline mass fraction of molecular
hydrogen * initial value.

constant in Prandtl-Kolmogorov viscosity formulation

CONST

CPBAR (7,60)

CPMN (10)

CSALFA

constant of proportionality, - uv (• y>
mean specific heats of chemical species at intervals
of 100°K.

mean specific heats of chemical species at upstream
temperatures.

cosine of angle of inclination of streamlines to
axis of symmetry.
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Fortran jymbpj

DPDX

DUDY (40)

OX

DXLIM

:DYHA

DDYMA

EMUL (40)

EilUT (40)

EMTH (40)

F (10,40)

FA1

f"A2

PACI

FACE

FACM

FRA

FS (10,40)

FSTOICH

GAM (40)

Significance

axial pressure gradient, Dp/3x

mean velocity gradient, 8u/3y

fonvard step size

limit of entrapment rates (bound to size of forward
step).

growth parameter of jet, dy'._ 5/dx (see also YHA)

d /,

: laminar viscosity, y

: turbulent viscosity, y

: static enthalpy, h

: dependent variables (see Chapter 2 of fiAIN)

: constant for determination of free-stream
turbulent kinetic energy and profile of mean
square conccntrc-ticn fluctuations

: constant of proportionality in a free shear layer
dissipation length scale formulation,

: location where f-g*5 = fstoich

u
: location where f+g'2 = fstoich

: location where f =

constant of proportionality between forward step size
and width of shear layer

auxiliary variables (see Chapter 2 of MAIN)

stoichioiTietric fuel composition

effective diffusion coefficient
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Fortran Symbols

GAMMA :

GASCON :

HO (10) :

IAX : :

IEND • :

INDE (10) :

INDI (UJ)

IPO :

IPROF :

ISTAR (40) :

ISTEP

Jl

J2

KRAD

N

NM1

NP1

or AC
OM (40)

P (40)

PEI

Significance

ratio of principal specific heats, Cp/Cv

universal gas constant .

the,quantities %,298..15T(h298.15°K" hQ'K)

(see Section 3.3-4)

axial step number corresponding to end of potential
core region .

axial step corresponding to, point where jet edge reaches
duct wall

indices denoting nature of boundary conditions

= 1 U stated), = 2x(gradient $ stated)

turbulence model parameter; = 3 (use of plane flow
constants), = 1 or 2 [see Launder et al (2)]

profile index; = 1 (normalized values), = 2 (full
dimensional values)

number of iteration cycles allowed for convergence at
each node

axial step number

'pccies with largest concentration in equation (3.3-16)

species with largest concentration in equation (3.3-17)

flow geometry index; = 1 (plane), = 2 (asixymmetric)

number of grid nodes, n

n-1

n+1 .

ratio of oxygen element/nitrogen in outer stream

non-dimensional stream function

static pressure

change in stream function across flow, i//r - «K
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Fortran Symbols

PR (10)

PRDRP

PRT (10)

PSJE

PSII

PSIR

QE

R (40)

RC (5,60)

RCON (10)

REXD •

RFLOH

RJE (10)

RJI (10)

RJTE (10)

ROTI (10)

RME

RMI

ROUBAR

RTW (40)

Significance

molici'lar Prandtl/Schmidt numbers

pressure drop, p^ - p

turbulent 'Prandtl/Schmidt numbers

value of stream function at external boundary ^

value of stream function at internal boundary ij/j

value of stream function at duct wall ^

wall heat transfer rate

distance from axis of symmetry (= r, + y cos a)

chemical equilibrium constants for each reaction at
intervals of 100°K
[N.B. RC (5,1) contains constants for the global
reaction, H,, + %02 = H20]

chemical equilibrium constants at upstream conditions

dimensionless excess radius in pressure gradient
formulation for confined flows

flow radius (see REXD)

diffusive flux at external boundary

diffusive flux at internal boundary

total flux (convective and diffusive) at external boundary
total flux (convective & diffusive) at internal boundary

mass entrainment rate (radius mass flow rate)

mass entrainment rate (radius mass flow rate)
at internal boundary

mass flux for confined flows ( = mass flow rate/
X-sectional area of duct)

turbulence frequency (dissipation rate/turbulent
kinetic energy), e/k
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Fortran Symbols

SCH (40)

SD (40)

SU (40)

TAUE

TBAR

•TLINE

UBAR

UEIN

ULIME

ULIMI

ULINE

VMIX

Hii (10)

X

XAX

XD

XU

XUD

Y (40)

YHA

Translation

: Prandtl/Schmidt number array for near-wall flows

: storage location for "downstream" source terms

: storage location for "upstream" source terms

: shear stress at wall

: bulk temperature ( / r UTdy / / r Udy)
duct duct

: local centreline temperature/initial value

: bulk velocity ( = / r U2dy / / r Udy)
duct duct

: initial centreline velocity excess (u^ - uK

: limit on entrainment at external boundary (to prevent
formation of profiles with 'long tails')

: limit on entrainment at external boundary
(to prevent formation of profiles with 'long tails')

: local centreline velocity excess (u, - u00)/(u^ - u).

reciprocal of molecular weight

molecular weight

concentration of oxygen element

length of potential core (in nozzle diameters)
i *

axial distance at downstream station i

axial distance at upstream station

upstream axial distance/jet nozzle diameter

transverse distance from internal flow boundary

jet half-width, yg 50



. PROGP4M CHA»<N«|_ MWPUT « OUTPUT , TAPf-:5= INPUT. TAPEt>=OljTPUT )
C <HHHKH» « <H> flit « <HH> <MMHH> •» 4HHMHHHJ « -1HH> •» « «r <t <> « <f tt « <> tt <* « <HH> # «<H* O (MUHUMHHJ •» %H> <M> •» O «• w %

C

c sP/u.niNG /\NO PAT^NKAK PASSA PROGRAMME pcm HOUNDAHY LAYER
C O'OPIFIEO BY A. MOWSt - FGK P l ' tO lCTlON OF COi-JF INr.D/r KF.h" K yoK
c MIXTURES FO« LANGLEY RFSF-IAHCH CENTER U.S.A. JUKE 1973
c

DIMENSION T H E T A ( ^ O )
C O M H o W / O E N R A L / A C C . C S A L F A , O P O X « O X . e N T I i ( 4 0 ) t F ( .1 0 , 4 a ) , FS ( \ 0 , 40 ) . G-V '1J

I, I FIN. I NOR (10 ) , INL).[ ( 1 0 ) , I STEP, IUTRAP ,-J TEST , KEA , K I< i ,
'J1 , 0" ( 4 0 ) »OMD ( 4 U ) ,BOl-i ( 4 0 ) »K AST ! 1 0 ) * HE I » KS I E ' pS 1 1 .
40) »RJE ( 1 * > ) ,PJI ( 10) tPMF. » W M J ,SD ( 4 0 ) , S U ( 4 0 ) , W M ( 1 0 ) ,

4 X D , X | i , Y ( 4 n ) » Y I ) I F ( 4 0 ) , Y E » Y I , R J T E ( 1 0 ) , R JT I ( 1 0 )

COMI-iOM/Cj«:/JlJ« JK» JO, JHS. JA, JG, JTF. JLF. , JUV, JB
COM.Mni\'/CFS/JMi?, JO^ , JOH, JH^O, JH, JO , JN2

/CTl ' iP-^ /AK, ALMG.C^U.CMUIN.CEl , C E 2 » C G l » C G ^ . C P I T « I H . J i ) Y ( 4 0 )
( 4 0 ) ,KMUL ( 4 0 ) , rMUT ( 4 0 ) , IPD,PR(10) »PKT ( lu) »KT'.'.' ( 4 0 )

1 K A S F > - ' 0 » X S T A T ( -M) ) . XPUTiF ( ? 0 ) ,XPLGT ( ? 0 ) .PHESS
(2) . tWAUL. »H
TPI.OT ( 40 ) , YT .AXES ( 1 0 ) , Y T P L O T ( 1 0 , 4 0 ) ,

( 10) , Y T S Y M P ( ! ( ) ) .OUT ( 4 0 ) ,

C « U W » « * « « <> « « * O « tt « tt *« « <> <> <t <> <r

CHAPTFR 1
C**«««P/«HAt 'FTKH«; ANO CONTP-OL

R K ' A O f S ? 1150) KASf - .N05N^ ! h :0 . i<ASE,NSTAT,NPROF ,NPLOT, IPl). K IN , K£* ,
IN, IO/>. 1M2', I i i iJO.NK.NS. IljNF

Pf: A u i f S » J 152) X l j , X I J L A S T , Y I N , Y O U T » W [ ) U C T » P R e S S t T A , U l N

R j r A O ( 5 , 5 0 0 ) TDUCT

XI. I=XIM»YOUT
X H I _ A S T = X U L A S T « Y O U T

( X P P - O F (I ) ,I = 1
( X P L O T (I) »I = l iNPLOT)

X P R O F f W P R o F + l > = X S T A T ( N S T A T + l ) e X P L O T (NPLOT+1)=1 .E+30
CALL < ;TRlDO
I A X = ] 0 U 0 0 0
T F N D s l O O O f l O
IF (Kpx .F .0 .1 ) IEND=O

KP=1
KS=1

UL I Mr*. 01

.
C «#«LARGFf» FOPWAHO STEP FOR TEST CASE NO. 16 TO COVER LONGER D

E0.16) FHA=.125
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On IA J=l fNE(J
.14 ! ' JOE(J )=1

I V C F = 2

C H A P T F R 2 -
c»**»»seLecTiON OF DEPENDENT VARIABLES

DATA JU,JK,JU.JHS»JA,JG»JTE,JLE»JUV,JB/1,2,3,4,5,6,7,8,9,10/
C
c - F(ju,i),...AXIAL VELOCITY ;

C F(JLF.D
C F(JUV. I )
C F(JB, I ) .

.KINETIC -ENERGY OF TURBULENCE
' R A T E

.STAGNATION ENTHALPY .
FRACTION OF HYCRQGtN SPECIES (H2, H , H20, OH)

C F(JK.T) .
C F(JO,i).
C F(JHS.I)
C F(JA,T)','
C F(JG,I) ...MEAN sCOij/iRE CONCENTRATION FLUCTUATIONS (OF H ELEMENT)
C F(JTE*I>...ABSOLUTE TEMPERATURE

.DISSIPATION LENGTH SCALE

.REYNOLDS STRESS CORRELATION <uv>
..MASS FRACTION OF SPECjES B

C
c «**AiixiLTARY VARIABLES
c
C . FS( JH?» I ) . .CONCENTRATION OF H2
C FS ('Jn, I) .. .CONCENTRATION OF H
C FS(JOH»I)..CONCENTRATION OF OH .
c FS (Jh'po,i) .CONCENTRATION OF H^O
c •FS(Jo?»I)..CONCENTRATION OF 02
c FS (Jn.i)...CONCENTRATION OF o
c FS (JN?,i>..CONCENTRATION OF N2
c .

DATA Jri2*JO^,JOH.,Jh20,JH,JO,JM2/l,2,3,4,5,6,7/
C «*<HiOLECULAR WEIGHTS (AND THEIR RATIOS)

DATA ( W[i ( j ) , j- i, 7 > /2 . o 16 , 32 . 0 , 17 . 008 ,18 . 0 16 ,1. 008 , 16. 0 » 2B . 0 16/
WF,O=HM (jo) /WM ( JOH)
i"TO=l .-i"r?n

! JO) /WMUH20)

C * u <t « « <<•
C H A P T F R 3

C <nn>M/\TEPTAL rONSTANTS (S.I. UNITS)

C <H»*KJHFMICAL FWULIHRIUM CONSTANTS AND ENTHALPIES
CALL LANGL1

C '*»#TURniiL,ENCF CONSTANTS
A K = . 4
A L M < 5 = . 1 1
CMU !(-'=« 09

CF'laJ .4.1

c «««sPe:cjFiCATiON OF PRANDTL/SCHMIOT NUMBERS
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PPT(JK)=1.0
priT(jn)=T.3'.
PKT(JHS)=.7
PNT(JA>=.7

PRT(jn)=.7
DO *ft 1 J=l

401 PR(J)=1.0
F/M=4.E-04
FA2=.8?5

Ha. 9

CMAPTFM 4
C«»***5PECIFICATION OF GEOMETRY

KPAUa?
rSALFA=l.

00 40 I=1.NH1

40 Y(I)"isY(I)«YOUT-YIN
lF(KpAU.Eo.2) GO TO 163
DO ip? Isl

1«2 H(I)sl •
GO TO 161

103 DO 2ft 1 = 1

CHAPTFR 5

101 DO 4^0 1 = 1, NH1
450 P(I)aPKFSS

iF(Ii.iMF.EO.l) GO TO 723
C »«'#r.ONTTNOOUS

(F(JU,I)
R F A O / 5 » 5 o n ) (F ( JTE, I ) » 1 = 1 »NP1 )
R F A O ' r 5 » S O n ) (F

IF(H'?.EQ.1) «EAn(5,«500) (FS (JN2,1>,1 = 1
TFdHPO.Ec'.l) REAQ(5,500) <FS(JH20»I)»1=1tNPl)

C «*«MASS FRACTION OF HYDROGEN ELEMENT
DO InS 1=1,NP1

105 FfJA'. !>=>F9 (JH?, I) *FS(JH» D *W«0«FS (JH^O» I) *WTO«FS (JOH , I)
C *ttoRATIO UF nXYGEN ELEMENT TO NITROGEN IN OUTER STREAM

OFAC=FS(jr2»NPl).

C »#*CONVF!?SION OF INITIAL PROFILES
DO 4=; I = 1JNH1
F {JLl', T. )=F(JH. I ) OHIN

C »»»TUH«iir.tNT KINFTIC ENFRGIFS BY MIXlNti LENGTH HYPOTMFSIS
no
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C <nx»Dt-FIr\'F. CHARACTERISTIC SHFAR LAYER WIDTHS
HP.EF=.'/<»F' '( JU.1 > «..l«U-.Ml
DO lP*2 I=1«NP1
IF(F'f JU, 7) .LT.URt'F) GO TO 1063

1063 yy? = Y<I-l ) + fYU)-Y(I-l) )<MOREF-F(JU,I-1) ) / (F ( JU, I J.-P" ( JU, 1-1 ) )

JF(K/iStNO.i:U.l6) GO TO 8702
lif?£F=..
DO lp^

. JF(Ff JU.I) ,GT.U«e;F) GO TO 1065
in iS 4 CONTTMUK
1065 YW3 = Y(1-D* (Y(I)-Y(I-l) )<>(UHEF-F(JU»I-1) ) / (F ( JU, I ) -F ( JU. 1-1 ) }

Dn
F(
Do

1067 F(
Do

F < J K , T ) = A M A A l (F (JK,I) »Ah
C

f)o
F{JD.T)=F'f jKf I )*50RT(F(JK»I)
DO loVO I=IW2.NP1
F( JO,D=Ff JK»I)«SQHT(F(JK»I)
f.O To '+17

.<nn»cf>NSTf-'>ucT LINEAR VELOCITY PROFILE
DO 11 1 = 1 '.NPI
vh;rtT=r < 1 1 /Y (NPI j
F { Jl),l>=UT*Yr<AT»UJh:-Ul)
rF(I.r,T.MPlU2) GO TO 454
F(JTr, I)=TI
FS(Jh-'?»I)=l.
FS ( JO-3* I ) =0.
FS{Jr:?« H=0.
Fs (JH?0, I ) =0.
fiO To 11
F(JTeTD=TE:

FS ( J02« I ) sO^C
Ff< ( JN2» I) =Al' l?K

11 F ( Jrt, I ) =FS ( JH2,I) +KS ( JH. I ) + WQI.WT; ( JH,-?0. I ) »NTO«FS ( JOH, I )
OFACcFS { jn2»NI'n +WSO»FS ( JHi?0,lMPl )
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»##TURtHiLtNT KINETIC ENERGIES
DO 472 1=2 *N

672 F(JK,l)
DO 473 I =

473 !F(F(jK,i) .LT.AKMIN) F ( JK, I) =AKMI_N. .

C »<>»DISSjPATlnN HATES
no 474 1 = 1, NPI

4.7A F|JD,
c *«*c;TAGrA'rioN! ENTHALPIES

• M7 DO 40 1 = 1 '.NPI
CALL LAMGL2

49
c- **«MEAN S^UARR: CUNCKNTRATION FLUCTUATIONS (OF H ELEMENT »

DO 12 1=1,
12 '

CHAPTFH 6
»nME
DO 5Q 1 = 1, NPI
V^lX=rt.
00 lf7 J=l ,NS

107
HHO ( f ) ap ( T ) /GASCON/VWIX/F (UTE, I )

DO 5oS I=2
•ZFTA=.b#{THErA(i)+THETA{I-l) ) » (Y { I ) -Y ( 1-1 ) )

B05 OM(I)=yM(i-l ).*ZfTA
PSIIsWHO(l)»F(JU»l)*YlN

PSlEsOM(l'JPl)*PSII

00
ft nH(I)=OM(j[)/PEl

TALL

CHAPTER 7 .
C«*»»«THER/L'OOYN/iMlC AND TURBULENCE PROPERTIES (START OF MAIN LOOP) ̂

100 CONTINUE
iFdsTt-P.pE.IAX) KJN=3
lF(I-sTEP.pt:.lF.ND) KEX = 1 . ,,'

C »**LIMITS O N SPECIES MASS FRACTION , . . .

FAMAX=!«
DO 4|55 .1 = 1,
Ff JA, T>=AC'IN1 (F(JA,I) ,F
F(JA.T)=AMAX1 (F(JA,1)

C **#(. IMlTS ON TUHH(/LK«CE PROPERTIES
.

FKMlh'sl.F-30
DO 600 I = 1,IJP1
F(JG', I ) B A ^ A X 1 ( F ( J G , I ) tFGHlN)
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F<JK,T)=AH'INl<F(JK,I)
F(JK,T>=AMAX1 (F(JK,I) »FKN"IN)
FDMlMaKCjK, I)»SOPT(F(JK»I) )/

O F(Jl>.I)=Al'AXl(F(JO,I) »FOMIN)
np=rjpnx#o'x
iFflSTtP.EQ.O) GO TO 425

«*«LOCAL MASS FRACTIONS
CALL LANGL3

«*«LOC^L PREcSUHES AND TEMPERATURES '
DO 601 1=1, NPl
P(I)=DU)+OP
FNTHn>=F(JHS»I)-,5»F(JU,I)*«2-F(JK,I)
CALL LANQL4
00 6n? 1=1, NP1
TFiF('jTE,T) •CJT.O.) GO TO 1083
WRlTFf6,27Q2) F { JTE » I) » I « ISTEP

VHIX=0.
00 109 J=l,WS

109 VMIX = V/MIX>FS(J, t ) / w M ( J )
^OJ> RHCMI)=P (f ) /GASCON/VMlX /F (JTE t I )
'»?5 CONTINUE

IF(lrTN.F.Q.l) GO TO 117

CHAPTRH R
PKOPtRTIES* PRESSURE GRADIENT AND FORWARD STEP
.2) 60 TO 5<?2

.iJ) GO TO 521
= PS l I / ( .RHO( l )#F{JUt l )

r,o Tn

HATE
5?2 CONTINUE

CALL YlNT/.5»YHA..JU>
IF ( ISTEP. rQ.O) GO TO 239
DYHAstYHA-YHALS)/(XU-PXU)
DDYHA=(OYHA-DYHAV)/DYHA

?39 YHALS=YHA
OYHAV=UYHfl
PXU=XH

•?38 CALL sT«in2
E.O) r,C TO 13JO
.iJ) GO TO 1370

c «#««;TREAM FUNCTION AT DUCT WALL

1370 I
GO Tn (7i ',72)

71 TFdSTtP.FQ.IEND) Ht)i.lCT = » (NP1 )
iF f lVCF.En^) GO TO 1338 •

c *»*PASSA VERSION OF PHESSUHE GRADIENT FOR CONFINED FLOWS
C «»«rALCML«TiriN OF Pr.'ESSURE ADJUSTMENT
C »..VKMSfoN W i T M (i«IH KILLING TMK DUCT

TF<I?TtP.ro.o) or TO I?.
H ( U »H ( 1) >
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ROUHARsPSTDlF/ADUCT

OO 73 1=2',N
73 Mtf ARallBAR* . 5«H(w ( I ) #F { JU , I )

P.OBAP=HOUBAH/UBAR
(RJE(JU)-RJI <JU) )«DX/ADUCT/UBAR)

C «««ADJUsTMENT OF VELOCITY, PRESSURE AND DENSITY
DO 7 A l = l',NPl
F(JU,I)=F(JU,I)<HjFAC
P(I)=P(I)*DP

74

C *>*»PECALCULATION OF DISTANCES .
CALL STHID2 :

rtO To ''2
c »»*GI:NMIX VERSION OF PRESSURE GRADIENT FOR CONFINED

DO 1340 I=?

TF( Ir-TtP.pE- H'NO) 60 TO 9719
(PSlR-PSIE) *F ( JTE,NP1 ) ) /P.SIR

JF(I?TEP.FO.O) r,0 TO 7?
E/TBAR-)

(RHQ (NP1 ) «F ( JU»NP1
9719 CONTINUE

DP = -ROUt3AR#UBAR# ( 1 .-STOHE/T8AR

DP=OP-3.*RJE{JU)/R(NP1)»#2»DX
DP=Op/(l.-ROUBAR«UBAR/P(l) )
DPDXsDP/DX ' .

C 4H»»FORWARi^ STEP
7? DX = FPA*Y(NP1)

. DX=DX«FLOAT(ISTEP+1)/50.
IF(ISTt.P.(5E.UlND.AKD.ISTEP*LE.IEND + 9) DX=, 1«DX#FLOAT ( I STEP- 1 END* 1 )
IF(ARS«REXD) .GT..005) DX = DX*. 005/ABS (REXO). . . "
DXsAMlN-1 (DX»XULAST-XU)
XDsXij + DX

#» »»»«#»#»«»####«###«*#»«#*##«<»#'###« «*»««#»#«»«#«##*#«««#»«# »»#»<>« «»««•
CHAPTFR 9 . •
C*###»anjUsTMENT OF BOUNDARY CONDITIONS
C »««FRE£ BOUNDARY VALUES ADJUSTED IN STRIDE (3) . :

TFjKJlxI.Eo.?) GO TO 95 •

YIN=0.
PSII=0.

95 IF(KFX.HE.1> RQ TO 106
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F(JU,NP1)=0.
WJF. (Jfl>=0.
F(JK;MP1 )=o.

T=NPl
CALL

CHAPTER 10
C»»«**TRANSPORT AND ENTRAPMENT PROPERTIES

19* CALL AUX(JU)
. . ir<I?Tt.'P.pE.IENm RMF=0.

C «««KWTKATNHENT CONTROL .
C -*«»rfFsTPjCr .iTTEf-JTlON TO VELOCITY AND TEMPERATURE CHANGES

.Mf-:.:?) GO TO 94

1) )/(F(JU.NPl)-F(JU,n +1.E-30) )
AMGi-l=4US(iF(JTE,2)-F(JTE»U )/ (F ( JTEiNPl ) -F ( JTE» 1 ) *1 .K-30) )

i) RwI=RMI«NAT/UL IMI
94 IK(Kh-X.NE.P) 1.̂ 0 TO 97 '

GAMN/(Y (NPl)-Y(NMl) )
< JA)

(F(JU,N,)-F(JIJ,NP1. ) } / ( F-( JU»NP1 ) -F ( JU t I ) * I .E-30 ) )
A(ir,/J=AMS-{ fFU7E.,N)-F{ JTEiNPl) ) / (F ( JTE , NP1 ) -F ( JTE , 1 ) * 1 . £-30 j )'

. I ME
97 TF< (r:t-U-R^E)'*HX.LT.PKl#DXLlM) GO TO 96

= I>XI..IM*PEI/(RMI-RMF.)

9-S CONTJMUF
IF(KASE.EO.l) GO TO 960

.. IFdSTEP.pE.IENO) Gf, TO
C «*»AOjUc;TMF.NT OF FORWARD STEP FOR JFT TO. REACH DUCT WALL

TF(«(MH1) aL_T..99<)*RDIjCT) GO TO 960

XfTNOsXU/YnUT .
MPJTF (t)»5n8) IF.NC,XEND
CONTINUE '

«*«AOJUSTMEMT OF FORWARD 'STEP TO REACH AXIS OF SYMMETRY
IF(KJM.NF.,2) GO TO 195
IF(PSII.GT.KMI*OX) GO TO 195

= XD/YOi'iT
Wt-?lTF(6,5n7> UX.XAX

CHAPTFR 11

195 TFdsTKP.NE.O) r,0 TO 193
CALL DUTPl
CALL OUTPp
CALL OUTP3
RO To 113
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193 XUD=XU/YOIjT
rF(Xiirj.LT.XST<\T(KS) ) GO T"

321 T F ( X | j r > . L T . X P R O F / K P ) ) GO TO 112
KP=Kr+l ,
CALL OUTP3

HP IFUSTtP.NE.IAX.ANO.lSTEP.NE.IENO) GO TO 113
117 CALL OUTP?

CALL OUTP3
IF(IFIN.EO.I) 60 TO 1001

<n>«fFoHM/iT S
Sno F ( ) R H / \ T ( 7 F 1 0 . 3 )
SOI F'OflM/»Tfi!F10.3tM)
507 F O R M A T ( / !HO» t t - -M lX lN3 L A Y E R REGION ENDS AT ISTEP=» , I5»3X , »L£NGTri 0

IF POTFNri'iL. Cf)RE =«,F7.?,» DIAMETERS*/ )
FORMAt( / lHO»# — JET REACHES DUCT WALL AT ISTEP = »» 15 ,3X ,#DOWNS'TREAH

l)5o
nri? FORMAT (1P7E11. 3)
2705 FoRMAT(/lHOt» --- NEGATIVE TEMPERATURE OF«» 1PE1 1 .3 t« - CALCULATED AT

lNof)E».13,» AT

1Z ,
NTiNUATTON'/ TERMINATION

113 iF(IsTtP.pE.LASTF.P.OR.XU.GE.XULAsT) GO TO 1001
CALL STRI03
oo Tn loo

1001 CONTINUE

END

COMP1LF.R SPACE
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Sl'RRnUTlNF AUX <j i
C O M M o N / G E N R A L / / \ C C » C S A L F A , O P D X t D X , E N T H ( 4 { ) ) ,F(10.,40) , F . S ( l O t 4 0 > t(3AM3

I f i / V M N y G A M u Q ) i I . IF lN t lNDEUO) ,'INDI (10) , I STEfMUTRAP , ITEST , KKA , K-IN ,
? K R A O . N » N f : o , N P l , W l » Q M U O ) ,OMr>( '»0) , O O M ( 4 0 ) » K AST ( 1 0 ) . PEI »PSIE» PSI I »
3 P < 4 0 ) ,KUri) f R n o ( A O ) t R j E ( ] 0 ) ,RJI ( 10 ) »RME,RMI ,SL> (40 ) , SU (40 ) , WM ( 1 0) ,
4 X D , X t l , Y ( 4 n ) » Y O I F ( 4 0 ) » Y E « Y I , R J T E ( 1 0 ) »RJTI ( 10 )

COM"ION/C Je;/ JU » JK , JO , Jhs , JA , JG » JTE » JUE » JUV » JB
JOH,'JH20,JH. JO

1DLIDYSO(40) ,EMl lL(40) » E M U T ( 4 0 ) t IPD ,PR(10 )
COMMoN/dUXST/TDA ( 4 0 ) »U1P
COMMnw/C l r -MA/SCH(40)

iKU.ME.Ju) GO TO 299
C .»«»UAMIr iAW V' f .SCOSlTY ( A P P R O X I M A T E POWER LAW RELATIONSHIPS)
c ---IGNORE ATOMIC AND RADICAL CONCENTRATIONS

' , . - ' , DO 60 Isl^NPl
< JH?»I ) *FS ( J02» I ) +FS ( JN2, I ) *FS
=0.
N (H2)

'Ef - ' 'UL(I )=FMUL(n *F
C - — OXYGF.M" ( O P )

Ff-ujL ( r ) =EMUL ( i j +FS ( Jo2i i > «i .92e-os# <F ( JTE» I ) /2/3. ) *»o. 735
C --- NITWoGtN ' (N2)

C --- '.'<ATEp
EMIJL(I)=EMUL(.[) +FS(JH2o»I)tt1.71E-05«(F(JTE»I)/500.)«<»l,050

*S9 . FMUL( T > =E>UL (T ) /SUM
c **»Di-:TepMiNATiON OF A C C E L E R A T I O N PARAMETER

CALL YlNT(.^9,YRS»JU)
)

F Q . O ) GO TO 74
C ^DEVALUATION UF INTEGRATED PRODUCTION/DISSIPATION R A T I O

lF(lpn.NE.2) Gb TO 73
T F ( I s T E P . L T . S ) GO TO 7^

. lFdsTcP.rO.!>) GO TO 152 '
IF (MQD( ISTE P »10) .NE.O) GO TO 123

15? TPErt
DO 5

T R s E M U T ( l ' ) # O U O Y ( . r ) # R ( I )
T R I = T R l * . 5 # < T H + T R P ) » ( Y { I ) - Y ( I - l »
TPERP=TV£R

TF ' f - ;R l=TPERl * .5 -» (TPER*TPERP)» (Y( I ) -Y ( I - l . ) )

l 'FdsTEP.NE.5)
l"=2.fl
ALPH^e. 55
/ iHoSlM(3.14lS^»(f 'nE-.5) >-l .

IK (I'PH.LK.. 1.) A|.h'HA=.55*.«:i3»AH

(PDt-1 .
« ( 1 . -ALPHA ) /'w

58



r,n To
73 CMu=.

.TF(lpn.H«.3) CMUs.09
r,o To

121

C «««AXIAL VELOCITY GRADIENTS
Dt.)DY(l) = 0 .
DUDY/NP1) = 0 .
DUDYsQ(l) = 0.
DUDYsn<NPl) = o.
YOlFp = Y < 3 ) - Y ( 3 ) '
OUDYP = A R S O F ( J U , 3 ) - F ( JU,2) > /YDIFP * l.E-30> .
GO To (1,?, 2) , KIN

1 D U D Y f ? ) a rO.S«YDIFP * Y. I>/YI « DUDYP
< ^ 0 T n 3 . : • - . - • . ,

P OUOY' (?) o Y I / ( 0 . 5 « Y O T F P * Y I J « D U D Y P , - • ,.
3 DUDY$0(2) = .ODOY (2)«*2

00 9 I = 3, Nl"U
' ' YDIFM « YDIFP • • • • : • • . - . , - > • ,

YOIFP = Y' ( I *1) - Y ( I )
Dl.iDYM a Ot'tOYP
DllDYp a A B S < (F(JIJ.I + 1) - F ( JU , I ) ) /YOIFP * l'.£-30)

9 DUOY ( I ) = ( v ( I *) ) -Y ( 1-1 ) )V CY|)IFP/-OUDYM*YOIFM/DUDY.P,J
SO TO (^ ,5»5 ) . KEX

I DUDY(M) a (0,5'ttYDlFP : •+ YE)/YE*DUDYP ,
no To 17 , .

5 DUDY'iN) ' '
17 f .MJDYSO(N) = UUOy

DO 1? I = l'

1.3
C «#«TIIHBULENT V ISCOSITY FORMULATION

DO 1030 I=5?»N
FÎ UJ '( T, ) aCMU*HHo ( I ) «F'|JK f I ) VHT« •< I )

1030 F<JUV»I>s-EMUT(n*0<JOY<I) /HHO{I)
,00 1033 I=2»NP1

1033 TF(F(JU,I ) ,LT.F(JU,I-1) ) F ( JljV* I ) =-F ( JUV » D
C i»<x>ADD I..AMINAR AND TURBULENT COMPONENTS

!F (Cn lT) 1050,10,50,1052 .
DO

GO TO 106' .
105? DO 10*S Is?,N

IF(L:MIIT (I)-EMUL(1)»CHIT) 1060»1060 , 1061"

GO To 106
r,

in/, r

a 0.
l, PWF.<isUHE Q O A O l f N T (SOURCE TEMPI) .
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00 1J1 l a l . N P l
S U ( I ) = - D P [ ) X

111 S O M ) a".
RFTUPN

KINETIC ENE
?99 lF(J.NE.jj<) (30 TO 399

00 201 I=?,N
r,AM(i)=tM|'iL (I)/PH(JK)
DO 2]? I = l.r'Pl
•>U(I) = F.MUT(I)#|.)UUYSQ(I)

IF(KJM.NE.I) (,0 TO 215

IF<KFX.NE.I)
J = RJE ( JU) / (1^ (NPl)

)=1 ,E3iM>FjKN .

Pr.TUKN
C •» «• <> * * * * tt « « U <> <

C»*nnn>DlsSlPATlnN K
399 iFfJ.Nt.jn) GO TO <»99

DO Hoi I=?,IM .
OAMUlsK.Mi'iL < I ) /PU(JO) *£MUT ( I ) / P R T ( J D )
00 '31 n I = 1,NP1 .

SU(I)aCt;i«EMUT(T)»HTw(I)«OUD.YSO(I)

TF(lpl1.L;o.2)
IF{IPO.EQ.3) CE?=1.

TF (KTN .NE. 1 ) GO TO 812

SO (2) = -l,r.3'.»
IF(KFX.NE.I) UF.TUHN
SM(N )=FJKN ##1.5/AKCOG/(Y(NP1)-Y(N ))#1.E30
SD(N) a -1.E30

- A99 TK(J.NE.JHS) fio TO 599
C .«*#PRAMnTU/SrHMinT MJMBF.rtS FOR NEAR-WALL REGION (ROTTA)
•c - — AX i SYMMETRIC FLOWS ONLY'
C --- N.H. SAME RELATIONSHIP FOR SPECIES DIFFUSION

iF(KRAD.Eo.l) GO TO 331
IF(KFV.ME.I) GO TO 331
DO 330 1=1, NP1

330 SCH ( J)s.95-«4b*YW*YW
r,n TO 332

331 00 333 I=l,NPi
333 SCH(I>=PRT(JHS)

DO 3nl I=p,N
r,AM ( I ) =K.Mi'iL ( I ) /P» (OHS) *EMUT ( I ) /SCH< I )
DO 3n? 1 = 1, IMP I

303 s 0(I)aF(JU»I)#«2
DO 303 I=9«NHi
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.
303 S D U ) a F A < - l * { S D

DO 307 I=?,NM1
F AC2= ( SCH < I J /PHTUK ) - ! . )»< GAM d )+GAtod* l ) ) / ( YDIF ( I ) * 1 . E-30)

307 S 0<n=S 0 ( I ) * F A C 2 < * ( F < J K , I + l)-F
sDd )»<> •
S D ( N ) = 0 .
00 3n/f Ic?,N

304 SUdJatSD' f l ' - 'S 'Dd- l ) > *2 . /TDAd)
DO 305 1 = 1 , NP1

305 <;Od)=U.
5U> d )=<>•
Sll (Npl ) sO .
R C T U t M

C**»»#MASS FRACTION QF HYDROGEN ELEMENT
RQ9 IF(J.NE.JM GO TO 699

DO 901 I=?,-N
- P01 fiAMII. )=t'Mi'iLd)/PK (JA)*EMUTd)/SCHd)

DO 90P 1 = 1, NP1

C «#»f.iF-;AM SQUARE CONCENTWATIOM FLUCTUATIONS (OF H ELEMENT)
IF (J. WE. Jr. ) GO TO 799
YDIFP=Y(3)-Y(?)

(f (JA,3)-F(JA»2) ) /YDIFp + 1 . E-30 )
I) GO TO 711

<H )

NO TO 712
711 ^?

71? DO 7j.f> I=3tNMl

( F ( J A , I + D-
D C D Y R O a ( (y ( I + \ ) - Y ( I - l ) ) / ( YOIFP/OCDYH+ YD IFM/DCDYP) )
SU( I )=CG l#DCDYSQ ' ->EMUT ( I )

71 0 SDdJs -CGj j t t r tTWf I) »HHf)(I)
I F ( K F X . E O . I ) GO TO 713

SIMM) =C6l»DCOYSQ«EMUT (N)
-C0
1=0

(NP l )<»RHO( f ;P l )

713 r,N=(PJt- <J)/H(N) /!
mi (N) =GN01 .t* .10
SO(N)»-3. ,

799 CONTINUE
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D I MEMS I ON AHL(4n) , HOMTSC'O) »OMS (40) »PBOM(40) ,PGOM(40) »T|1L(40)
DIMENSION A (40) ,M(40) »C(40) ,0(40) ; •
COMI'iON/GENUAL/ACCiCSALFA.DPDXfDX.FNTH ( 4 0 ) t F ( 1 0 » 40 ) , FS ( 1 0 , 40 > .GA.-13,

lr;AMN.r,AM(AO) -It ZFIN»IM)E ( 10) , INDI flu ) , I STEP, IUTRAP , I TEST, KEX,KIf,,
?KRAD,N»NE;o,NPl,rn.'l,OH(4()) ,QMn(40) , rtOM(40) . KAST ( 1 0 ) ,P£I . PS IE . PS 1 1 »
3P(40) «K (4n) »HHO(40) »RJE(1'1) iPJI (10) »KME»KMI,SD(40) fSU<40) tWM(10) .
4Xn,Xn,Y (40) »YI-IF (40) .YEtVl,RJTf. (10) ,RJTI (10)

K, JI)»J-HS»JA»J6»JTE.JLE:tJUV. JU
JO?,JOH» JH^O,JH, J0» JN2
(40) «U1P

TS (20 »2 ) ,BP ( 2)
COMMoN/CPROP/102, IN2, IH20 » OFACt Mft t NS , WQO , «RO» WSO , 'nJO , GASCON' GAMMA

STRIDE (0)
<n»«cONTROL INDICES

OM(MPl) = 1
GAM3.. = 0.

ISTEr=0

C <n»»ZFROTWG OF IMPORTANT ARRAYS
DO 3f>3 J=1,NE«
KAST(J)=0

353 RJE(J)=HJT (J)=0.
DO 354 1 = 1, 'MP1
DO 3^4 J=1,NS

354 F.S (J, I )=0.
DO 35r> I = l,MHl
DO. 35^ J=l ,10

355 F(J.T)=0.
DO 3f>r, I = 1
FNTH<T)=>0.

C <> # « <> « « « •» » « <* tt •!HM> «<» O <M> tt « « tt tt tt tt « « « « tt tt •» tt •» <> <t> tf tt O <M> « tt «»•»<> W tt •» •» « « tt O » «• # O O tt

•C«HHK* STRIHF (1)
Wt'LrtTlONSHIPS

DO lOO I = I, N
O M D ( T ) a O M ( I * l ) - Q W ( I )

100 O M S ( T ) = O f 1 f 1*1
DO Inl I = 3,
8 0 M ( T ) = O M ( I +

^) = p M ( 3 ) + O M ( 2 )
HOM(r ' ) = 7. - O M ( N ) - OM(NMl )
ni'2 a Of. (3) /O f 'Q (?)
Oli3 e l . -
OMS^ n OMJ
OMS3 a OM

OMS3 a 1 , -
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OMN = (l)Mp(N) + OND(NM1»**2

OMN = OMN/jOMN - OMNMl)
OMNH] = l. - OMN
Y(l)=0.
BP(1)=1.
RP (?)=!.
TNDE(JU>=1
INDI (JU>=1
RK.TUPM

sTRIpF

c *»«TEST FOR NEGATIVE VELOCITIES
1010 IF(II.ITKAP.EQ.O) GO TO 1011

00 1012 I s R, N
TF(F(JU,n .GT.n.) GO To KU2
i-iKlTfT(6,l?00) F(JU,I) »I»ISTEP

1700 FORM/\T(/1HO»« --- NEG/vTIVE VELOCITY OF», 1PE1 1 . 3 » » CALCUL.ATEO AT
lFT*tl3.* AT ISTEP = «,I5)
F(JUtT)=l.F.-3fi

GT.l) IFIN=1
GT.2) I.TEST=I

C »»«CKOSS-STRrAM DISTANCES ( Y # S AND RviS)
C »«OF-OGE Rfc-GloNS :
inil RHP ~ f<Mo' (?) * F ( J U » 2 )

RUl=RHO( l )»F (JiJ. l)
RURAT = Rul/KUP
RO TO (10l3»lni/ +,lol4) , KIM

ini A RO To (10ia»lOl9)t KRAO
Irtlfl BP(l) = 0.333333 * 0 . 666667»RUDAT

RO TO 1013
miQ RP( l ' ) = ( R { l ) » ( ! i . « H U R A T * l t ) *3 , «R ( 2) » ( HURAT + 1 . ) ) / ( r t ( l ) * R ( 2 ) )/6.
1013 YI = Ptl « OMfMD/CHMD^WUP)

RUNP] = RHO(NPl) o F(JU»NP1).
RUN = HHOfN) « F(JO»N)
RURAT c RilNPl/RUN
RO TO ( I'OiaO* 1021 » 1021 )» -K£X

iri?l no Tp (10?4»lw25), KHAD
10?^ HP{2) = 0.333333 + 0 .666667«RURAT

r;o Tp I02n
10Z5 PP(2) = (R(NPl|)#(5.«RURAT + l,) +3.*R (N) * (RURAT*! . ) )/{R(NPl) +R(M) )

R/S, TUA^S AND YD'IF^S
ye I F ( I ) =2 .# ( Y ( I * 1 ) -Y ( I ) ) /R ( I * 1 . 5 }

Y(2> = YI
YDIFM) = 3- * YI
00 101"' I = 2, N(-'l

( I )=P^I^^0^ 1n( r )» ( l . /H tJM* l . /RUP)
1017 Y(I.*1 ) = Y ( T ) *Yi'UF ( 1)^.5

TDA ( f ' ) = P E T « H O M (N) /HUP
Y ( N P ] ) = Y ( | X |> * YE
Y O I F ( N ) = 2. <» Yf:
tF(K i?Ai ) .Fn. i> RETURN

c *««>noniFiCATTOiMs FOU A X I A L S Y M M E T R Y
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1123 IF<C?/\LFA.F.«.0.) GO TO 1110
C *«»CSALFA .NF. ZF.HO

TF(R(D .NF.O.) GO TO 1105
C ##*R(1) .tQ. ZERO

DO 1106 I = 2- NP1
Y < I > =S(WT '( ABS ( Y ( I ) /GOSD2 ) )

110* R(I)eYU)«CSALFA
RO TO 1107

C *»»R(1> ,N£. ZERO
1105 PlD2a.S«R',l')

DO 110'+ I = 2» NP1

110/1 R(I)cP(l)+Y(I)*CSAUFA
1107 DO HOB I = 1. N '
110R YDlF(l)8YOlF(I)*4./(R(i)*R(I*l))«*2

riO TO 111^
C. w^^r.SALFA .Ep. ZKRO
11 10 DO Ull I = ?.t NP1

Y(D=YU) /RID
1111 R(H=RU)

00 110tJ I=2»N
ling YDjF(i)=YDlF(D/RlSQ
111? YI = Y(2)

YF. = Y(NP1) - Y(N)
RFTUPM

(3)
NUMERICAL METHOD

FNTRY STRJO'3
IF (KIN ,r(3. 1) CALL WF<1)
IF (KF.X ,FQ. 1) CALL WF(2)

3000 P=
PX=PFI/OX

.
THL» AHL, PGOM AND P80M

THL(J) = 0-
PO 3t)lO I = 2. N

THL( I) = ?.*HL
AHL (I) = ABS(ML)

3010
*#<»START OF J LOOP

DO 33?0 j=l»NEQ
iFfJ.Mt.Ji'i) CALL
TTP=C.

««osFTTjNO UP COEFFICIENTS
AKAST - FLOAT (1 -KAST(J))
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= KISSTM) * 1

T O A ( I )
T D A ( I )

* A K A S T

DO 3004 I=2»N
SU(I ) = St'ld)
Sl>d) a SDd>
PGOMM =
p(,OMP =
TTM=TTP
TP = ( < 3 A M < n + G A M j I + 1) ) /YOIFd>
TIP = TP * AHL( I ) * ABS(TP-AHUd) )
A ( I ) =TTP-THL ( I ) -PGOMP
B ( I ) sTTK + THL ( 1-1 ) -PGOMM
T N D 1 = ? / I

r,n TO
303 GO TO

.INDEX
, KAST1

-l} >*SU(I)

RO To 306
305 C ( I ) cPHOM ( I > *F ( J» I ) *SU ( I )
30̂ , OU>sPi»OM'(I>-SD(I)

C <»*ttMODlFlCATTONS F0» BOUNOAPIES

GO To (30M»300Pi*3Q02) , TNOEX
A (I)eb(l)

3009
3011

3003

300?

301?
3013

3005

3004

NO TO (30ny»3ii04.3004) » KIN
GO To (3011*3003) i INDEXI
TT=2.»TS(J,1>
B(I)cAMAXl (TT*0(I) .0.)
r(I)er(I)-TT«FDlFS(Jf 1)
GO To 30Q/«
B(I)=0.

C(I)cCH>+2»»«JTI(J)
r,o To 3oo A

A (
GO
GO

To
To

(3012»3U04» »
<3013»3005>» IND£X£

A d ) a A H A X l (TT + A J I ) ,0,)
C ( I ) = C < I ) - T T * F n i F S ( J . 2 )
GO TO 300A
A ( I ) a O .

Rill

(J)
(I) +A (!) *Bd)
FRpK-BOUNnA«Y VALUES

HHo'fD » F ( JU t l )
GO TO 3006

300ft
IK (KFX.NF.. 2
F(JtMPi> a

C «»<»«;OLVr FOR
3007 n(2)e{n(2

0U. RUNPl.EQ.O.) GO TO 3007

F?eS
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A(2)=A(2)/L>(2)
DO 3n?l I a 3. N
ToO(p-B(T)»A(I-l)
MI>=A<I)/T

3021 B<I)s<B<I)»8(I-l)+CUM/T
DO 3Q?2 IDASH=1,NM1

3d2? F(J»l)aA<T)»F<J,I«l)*B<I)
c »*»rtDjiJsT BOUNDARY VALUES

GO TO (3210*3220,3230), KIN
3?ln GO To (3oo,3211)r JNDEXI

RJI(J> = RJTI(J) - RMI«F(J»1)
IF (PMT .p'T. 0.) GO TO 307

307 F(J,1) = (RJTI(J) + TS(J,1)»(F(J,2) + FDIFS(J,1)))/RMT
GO To 3220

30A RJKJ) = TS(J»1) * (F(J,l)rF(J»2)-FDIFS(J,l))
RJTI(J) = RJI(J) + RMI»F(J,1)
GO To 32gn

3?30 IF(R(1>.Eo.O.) GO TO 309

GO To 322n
309 F(J»l)aF(J,2)»OM2+F(J»3)«OM3
3220 00 TO < 331 0, 3320* 3330 ), *<EX
3310 GO To (3ln,J311). jMOExE

RJE(J) = RJTE(J) - RME»F <J»NP'l)
TF (PMT ,pT. 0.) GO TO 317
F(J»MPl) B F(J,N)
GO TO 332n

317 F(JfNPl) a (-RJTE(J) * TS(J»2)»<F'(J»N-)+FOIFS(Jt2) ) )/RMT
GO Tp 332n

31f| RJE(J) ° -TS(Jf2)*(F(J,NP'l)-F(JtN)-FDIFS(J,2) )
RJTE(J) = RJE(J) + RME«F(J,NP1>
GO TO 332o

3330 F (JtNPl)=F(J,N)*OMN + F
3320 CONTINUE

XU=Xf)
ACC='(F(JU'.1)-'.'1P)/DX
PSII=PSII«RMI»DX

PEI=PSlE-PSH
ISTEPslSTFP*!
RETURN
END

SPACE
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0) tF(10t40)»FS(10»40) »GA'-i3
. J , I F IN , INQE ( 1 0 ) ,INDI (10) , I STEP , IUTRAP , 1 TtS'T , KEX , K IN,
PJ »Nf'l,OM<40) .OMQ{40) » BOM (40) , K AST ( 1 0 ) » PEI » PSIE» PS II .

3P(40) ,H (4n) »RHO{'»0) .RJE(IO) »RJI (10) »RM£ » RMI ,SD (40 ) , SU ( 40 ) , WM ( 1 0 ) »
*XD,Xu.V(4o) »YlJIF(40) . YE« Y I ,RJTE ( 1 0 ) ,f?JTI (10)
rOMMOM/CJc/JU,JK, JD»JH$.JA,JGf JTE»JLE,JUV»JB
COMMOM/CFj?/ JH2 , JO? , JOH , JH^O , JH , JO , JMP.

10UOYSQ<40) »EMUL (40) .^MUT^O) t IPO, PR (10) iPRT ( 1 0 ) »RTW (40)
COMMOM/CWwF/Y^(?) ,IRUF (2)'»EWALL»H
COMMON/WF«;T/FOJFS(20,2) »TS(20,2) tBP(2)
COMMpN/ClrsMA/SCH (40)

DATA SHALF/.04/
^0 TO (lOilD »K

10 jWsl

JN=2
RO TO 12

TN=N
]? CONTINUE

C *#«RfiFERF.NCE QUANTITIES

RPEF=R(IN)

.
AKa (PMl-(RMt-rtMI)«OM(I«) ) XRRUREF'

12? TF(«fT.I-T.l32.?5) GO -TO 110
c «««LOG LAW ASSUMPTION

121 CONTINUE

101 SHALF\=SHALF
YRP=RY«*SHALF

C *»*»<»CALCllL.ATloN OF E F0« ROUGHNESS

I F ( IPHF(K ) .EQ.O) GO TO 16
C <nt*SAND-GKAIN MOUQHNESS

IF(YRP.GT.3.3333) E=30./YHP

IF (S|. O C . G T . O . ) GO TO 104
5LOCsl.E-30

IfU B E E = S O R T ( c L O C / A K )
AR<5 = FW«(SHALF* (AM/ l l . +BEE) * .5<>EF) /SHALF)
JF(APR.GT.11. -»E) GO TO 106
r,0 TO 110

10*. S H A L F a A K / A L O G ( A M « )
T F ( A p S « S h A L F - S H A L F l ) .LT..0001.0H.NIT.GT.10) GO TO 102
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GO To 101
lo? SSSM/M.F**?

BP(K)=1./'|.1.*OEE)
on TO 103

C »#*LAMINAM
llri LAM = ]

JF.(APSUMRE) .l.T.,01) GO TO 111

GO TO 112
111 SRE= '(?. -FRE*<l.+AMRE/3. )•••)/( 2.

11? TF<Spe.GT.l.E-30) GO TO 113
SWFaJ. ,t-3h
nUTl=. 33333

113 .<? = SttFA<E
. ' RP(K)=OUT1

103 1)0 5000 j=l,NFQ

IF(J.FU.JHS)
TF(J,ME.j|'.) GO TO 200

GO TO 500<i
C ***5TAGM4TION tNTHALPY AND MASS FRACTION

' lF(Rr.LT.132.?5) GO TO 210
IFIUM.KQ.I) «o TO 210 •

?0l CONTINUE

Er«.2) P R f t A T = P R ( J ) / S C K ( N )
^g.** (PHHAT-l . )/pHRAT<K>.25

= S / ( P R T ( J ) * ( 1 . : + . P J A Y « S H A L F ) )

GO To
**#LAMlNAH FLOW

T F ( A p « ; ( A M R E ) .LT..01) GO TO 211

GO To 212
SF=1,/HR(J)/RE/(1.*.5»PR(J)*AMRE)

TS(J,K)=SF*KRUREF
bOOfi CONTINUE

RETURN
END

COMPTLF-R SPACE
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LANGLl :Y

DIMENSION C H M M ( 7 i 6 0 ) , P T f c M P ( 4 0 j , R C O N ( 1 0 ) , STORK (10) , HEM ( 1 0 )
( - O M M o N / r i f r N R A L / A C C » C S A L F A « D P D X . O X , E f U H ( 4 0 ) » F ( 1 0 t *0 ) t FS ( I 0 . 40 ) t GAH3 ,

] p A M N t G A M ( 4 0 ) » I , I K IN , I NDF. ( 1 0 ) , INU I ( 1 0 ) , ISTEP . IUTRAH , ITEST , K£X , N IN ,
r i<RAD,N.Wf:Q, l<JPl ,N^ l ,Of1(40| , O M O ( 4 0 ) » ROM ( 4 0 ) » K A S T ( 1 0 ) , PEI » PS If » PS I I ,
3 P ( 4 0 ) . ^ ( ^n ) f WHO ( 4 0 ) » P J E ( 1 'I) ,HJI ( 10) » «ME »RrtI » SO (40 ) » SU ( 40 ) , WM ( 1 0 ) .
4 X O , X ( i , Y ( 4 n ) i YD IF ( 4 0 ) » YE t Y I .RJTI£ ( 1 0) ,HJTI ( 1 0 )

C.nMMoM/Cjc;/JU, JK.JD» jHSt JA, JGf JTK»JLt, JUV,J9
jn^, JOH, JH20, JHf J(J»JNi?

HO (7) , C P B A R ( 7 , 6 0 ) »H f ( 7 * 6 0 ) tRC (5 t 60) » ISTAR ( 4 0 ) t KACM
, r t L H G , C N ! U , C M U I N » C E l » C t { 2 » C G l » C G 2 » C R I T » O U n Y ( 4 0 ) t

1 D H D Y O ( 4 0 ) » tnUL(40) t ( - ;MUT(40 ) , IPD,PR(10) ,PRT(10 ) , f ? T W - ( 4 Q )
OnMMoN/CPROP/ I02» IN2 . lH20 tOFAC.NR|NS, -JOO,WHO. lVSO,WTO.GASCON.GAMMA

1 ' • ' • • '
C<KxnK>LOADiwo OF tOUILIBHluM CONSTANTS, ENTHALPIES AND SPECIFIC Hfc-ATb

«**RjfFERFNCE ENTHALPIES
D A T A ( H O ( J ) »J=l,7)/-2023.>3,-2074.7,7205.6»-60l64.7,50616.5,b7949.1

««#rriE'MTCAL FQUII.IBRIUH CONSTANTS
00 2p J = l ' ,Nr t

' R E A n ' ( 5 , ] . O n O ) ( R C ( J , I > »I = l »60 )
DO 20 I = l',60
HC( J. T )=Ar ' I N l ( R C ( J , I) »100. )

#<n»CC'NSTANTS fr°K GLOBAL REACTION
DO 15 1 = 1 '.60

15 Rc:(5,D=Rr (4,I)#h'C(3,r)/(RC(l,I)»SQRT(HC(2tI) ) )
###cONVE-RSION INTO CONSTANTS FOR CONCENTRATION RATIOS

( J O H ) / W M ( J O ) / W M < J H )

bO = l-'M<JH?0)/WM(jH2>/SORT(WM(J02) )
00 571 I ='!»«»»
WC(l»r)=Rp(l» t)«AJO
RC(2,T>=Rp< 2» I)»A20
RC (3. I)=Rp(3,I)«A30 . .
RC (4,T)=Rp(/*» U*A40.

571 RC(5',I)=RO<S'I)*A50
C «*«f--NTHALPlF:« AND MEAN SPECIFIC HEATS

DO 3o J=l'.NS
CFA=A)U7./iVM(.J)
HO(J)=HO(J)»CFA
Rt'AD(5»20nO) (HT(J,I) .1 = 1.60)
DO 30 I = l',60
HT (J,I) =HT («J»I)*CFA

3o cP8Ap( j f i) = .o i * (HT( j , D-HO(j) ) / F L O A T < I )
C .
C «<n»jTERAT!ON PARAMETERS

rc=.oi
RPC=.^
RPD=l.-RPr

C
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FSTOiCH=2.»WM(JH?)/WM(JO;?)

N|-TUF?M . .
C##«««*#« #•»•»*»##****#*»#«#«*##»*»»#»«*###»# »#*#*«*#»*•»»»»»»«#««##»*»»*<'•:••

CHAPTER ?
C*««#».TNITIAI- ENTHALPIES • . .

FHTWY LANr.L2
FMfH(I)=0.

jFACXsFACX
FACSrFACX-FLOAT(IFACX)
00 115 J=1»NS
FNTLcHT(j'. II-"ACX)*FACStt(HT(JtIFACX+l)-HT (J»IFACX) )

115 FNTH(I)=ENTri(I)*FS(J,I)*ENTL .
RFTURN

C«#«'»»«###i#'#*««»**»#«»#«#«*##« **»#««*»»«»####*«#*<>«**««<***« ****»**•'**<***>
CHAPTF'H 3 .
C####»LOCAL

c »**LncATf:: POSITION WHERE HYDROGEN CONCENTRATION is STOICHIOMETKIC
X=I.-F(JA', 1)

IF<FTJ«»1)/«X*1.E-10) .LT.FSTOICH) GO TO 625
DO 6?] 1=1,NP1
X=1.-F(JA'.I)

PAR'AsRAT-l.t-10
RAT=F(JA,j)/(X+l.E-10)

GO TO 1060
.

TLOCM=I-1
ILOCP=I
F/\C^ = Y (I-1)*(Y(I)-Y(I-1))/ tHAT-PARA)* (FSTOICH-PARA)
r,o TO 636

Il.OCP=l
DO ^Ofl JDM = 1
T=NPl*l-IOM
JF(I.LT.ILOCP) GO TO 740
«0 TO 7-V2
I=ILOCP-I

74? TSMs/iMAXl fF (JTF,I) ,250.)
C «HK>CONCENTRATION3 OF OXYGEN ELEMENT AND NITROGEN

XN2Po=l--F(JA,I)

DO

«««FOUlLTBRlMM CONSTANTS AND MEAN SPECIFIC HEATS FOR UPSTREAM S T A T t i
FACX=.OUTSM

FACS=PACX-FLOAT(
DO 10^5 L = l»Nf"<P

1055 R C O N ( L J « H r (Lt I F A C X ) +FACS« (RC (L» IFACX* 1 ) -HC (Li IFACA) )
C F A C s 0 > i O { f ) t t < ' A S C O N » F (JT t« I )« l .E -OS
no inso L=
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RCi)N (NRP) «SQRT ( CFAC)
00 3] 7 L«1,HS

317 cPMiM{L»I)=C(iB4R(|_, jFftCX) *FACS<> (CnBAW (L t IFACX+1 ) -CP8AR ( L t

IFf.r.'OT. (T02.t:o.,).AND.Ih?O.EO.O) ) GO TO 175
C «««5CLUTtOU. OF QUADRATIC EOUATION FOR HYDROGEN-NITROGEN MIXTURES

FS ( JM f I ) =<;QH7 ( 1 . * 4 . »F < JA . J ) »RCON ( 1 ) )
FS{JM,I)=.iJ»(FS(JHt D-

r,0 Tn ^
175 CONTINUE

C **<*STA«T OF ?T£.RAT.I.ON CYCLE
C »»»nF.TEpMlME LARGEST Ttf fM IN EACH GROUP
C . — FOLIATION FOR OXYGEN

. Jl=Jf>? • • . •

!F(Fs( -JO f f) »LT.FS(J02,I) ) GO TO 210
J l = v J O '

I F ( F s ( J H j ? n t I > » " w s n . L T . F M l > GO TO i?

( JH?O» i>
GO TO 360

Jl=Jnn ,
FN1=FS< JOH» D#WRQ-

35fi CONTINUE
c — FO(.iAtt°'V< FOH HYOROGEN ELEMENT

jF(K?(JHtf).LT.FS(JH2tI)> GO TO

'. I) ...
?12 lF(F?(JH2n,I)<*WfJO.LT.FM2) GO TO 253

2 = FS (JH?0»I
?53 IF{F?(JOH'.I)*wTO.LE.Fi*<2) GO TO 3S3

353 CONTINUE
PRECAUTION IF H70 IS LARGEST OF BOTH GROUPS
TF(.roT. (Jl.EQ.JH?o.AKD.j2.EQ.JH20) > 50 TO 279
iFiHAT.GE.FSTfJICH) Go TO 356
J1=JO? • . : . . .

!F(F$(JO,f) -LT.FS(J02tI) ) GO TO 622
J1=JO
FM1=FS«JO'. I)

GO TO 379

FH1=FS(JOH,I)<»WRC
r,0 TO 379
J?=JH?

JF(F5(JH, f).UT.FS{JH?,l» GO TO 361
J2=JH

GO TO 37
J?nJoH
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GO TO 379
219 CONTINUE

PRECAUTION IF OH is LARGEST OF ^OTH GROUPS
IF ( .MOT. (Jl-.EO.JOH.AND.J?.EQ.Jii20) ) GO TO 379
IH ( R A T . G E . F S T O I C H ) Go TO 367 • -
Jl=Jr?
FM]=FS(J07,D
l F ( F s ( J O , r ) .Lr .FS(J02f I) ) GO TO 358
jl=Jn
FMlRFSUO*. I)

35k IK (Fs(JH2n. I )«WSO.LT.FMn GO TO 379
JI=JM?O . ,
FM1=FS ( JH20»
GO To 379

367 J?=JM?

l F { F c < J H , T > .LT.FS(JH;?iI» GO TO 381
J? = JH
FI-;?=F«?UH'. n
l F (F t ; ( JH j>h i I ) t t WQO.LT.FM2) GO TO-37.9

379 CONTJMI.JE
«#*oVFK-'?Jl.')rNf5

IF(F( , )A , I ) .oT.. 9-599) J1=JH?0 ' .
I F (F (JA , I ) .LT. .0001) J2 = JH2()' " ,

— ---------------------------- - — ̂ --- H? G« ;H AS J2
TF(J?.Nc. ' .JHi?.AND. J2.NE. JH) GO TO 240
I F ' ( J? . E 1 . JH2 ) F S ( JH » I > =SQW T < FS { JH2 « I ) /KCOiM ( 1 ) )
!F(0?.t«.JH) FS(JH2.-I)=FS{JH,I)«*2««CON(1.).
IF(Jl.tO.JH^O) GO TO 233
IF(J] .EQ.JOH) GQ TO ^^7
TFjJ'l.cO.JO) FS(J02tl)=FS(JO,I)»*2«KCON{2')
IF(J] .EQ.J02) FS(JO»D=SOHT ( FS { J02 . 1 ) /3CON (2) )
FS<JH?^»I)=FS(JH?»I)«SQRT (FS(J02,I)
FS(JOH»I)=FS(JO,I)»FS(JH.'I)«HCON(3)
r,0 To <?90 '

?33 FS(JO?»I) = (FS(JH20.I)/FS(JH2,I)/^CO
FS(JP» l>=«;aKT<FS(J02.I)/RCGN(2) )
FS(JOH»I)=FS(JO,I)*FS(JH,I)»RCON(3)
RO TO ^9Q . ,
FS ( JO . I ) =FS ( JOH , I ) /FS ( Jh . I ) /RCOfN (3 )
FS(JO?» I )=F^ ( JO. I)<n>^!«RCON(2)
FSUH20, l )sFS(JH, I )#FS(JOr i . , I ) # « C O N { * )
rtO TO ^^0
lF(J?.Nf;.JH20) <?Q TO 250

h20 AS J2
IF (Jl. HO. jo) FS(J02» J>=FS(JO, I )<n>2«RCO/v (2 )
IF(J1 .EQ.JO^) FS ( JO t I ) = S O ^ T ( F S ( J 0 2 » 1 ) . / K C O N { 2 ) )
T F ( J ] .NT. JOH) GO TO '>30
FS(Jn. I )=FS(Jf iH, T ) « » ? ! / F S ( J H 2 0 » I ) * W C O N ( < t ) / R C O N ( 3 )

I ) = F S ( JO,

IF(J] .to. JOH) GO TO ?90
F S ( J O H » I ) = F S ( J O . I
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r,o TO ^rjO
-------------------------------- ------ OH AS J2
?50 CONTINUE

TF(Jl.tG.JO> FS(J02tI)=FS(JO,I)*»2*RCON(2)
IF(J] ,tU.J02) FS(JO»I>=s;3MT(FS{J02tI)
IF<JJ .KO. JH201 GO TO 501
FS(JH.I)=FS(JOH, I)/FS<JO.i)/rtCON<3)
FSfJHPi I) = FS(JH,I)<n>2<*RC1iN (I)
FS(JH?0,i)=FS(JHf I)«FS(JOHtI)*RCON(4)
HO Tf) 2VQ .

•SOI FS(JH.D=FS(JH?o.I)/FS(JOH,I)/RCON(«)

?90 CONTINUE
*n»tt«E>EvALUATE LARGEST TERMS FROM ADDITIVE EQUATIONS

IF <U/\T.LE.FSTOICH) GO TO HIO
030 CONTINUE

FMl=FMl-FS(JOH,I )»WRO
FMlsFMl-FS<J02,I)

TF{J l ."'JE.JH2U) FN'l=FMl-FS(JH20,I)<* l.vSO

IF(J) .fcO.jMiU) FS(J l . I )=FS(J l , I ) /WSO
T F ( J J .t«.JOH> FS(J l» I )=FMl /WRO
lF(MnT«l.E.FSTOICH) GO TO 820

010 CONTINUE

FM?aFt1?-FS(JOH,I)»WTO
)

E. JH)

lF(J?.t(,>.jH20)

7F(H/iT*LE.FSTOICH) GO TO 830
H20 CONTINUE

IF(ITF!R.LT,IHFGIN) GO TO 6fl9
-KELAXATroN OF MASS FRACTIONS

DO hnfl L=1»NS
FS ( L , T ) =RPC*FS { L . I ) *RPD«STORE ( L)
rONTjNUE
DO 3?^ L=ltNS
RFM(L) = (F<i'(L.I).STO«E(L) ) / (FS

*o»LIMlT?; ON MASS FRACTIONS
DO 339 L=l»NS
FS(L,I)=AfI"U(Fs(L,I> ,1.)

339 FS(L,T)BAiv'AXl(FS(LtI) t O , » -
DO 3?(S !..= ! ,NS

DO 3?7 L=l ,NS
IF{F«;<L,I).LT.1.I>06) GO TO 327
RMAXcArtAXl (HMAX,ABS(HEM(L) ) >

3?7 CONTINUE
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C *»»CONVFfPi3t;i\icE
IF(lfF.H.fiT.ITMAX.OK.ABS(RMAX; - •' .CO GO TO 208
GO TO 1^5
CONTINUE
DO 3AS Jsl.NS
DO 345 I=1,NP1
FS(J.I)sAwAXl (FS(Jtl) iD.M

C ««»TFST FOR POOR CONVERGENCE
DO a??/ 1=1 WV3}
1F(I?TAH(T> .GT.ITWAX) WRITE (6,88'28) I ST AR ( I ) , I , ISTEP
FORM/\T(10Xf» --- POOR CONVERGENCE <<NI2,» ITERATIONS) AT NODE*,
£ND STEP NO. o,i4)

RETURN

CHAPTFR 4
C»«**«LOCAL TEMPERATURES

DO
9M3

DO "fOS 1 = 1, NP1

J=l fNS
I)-FS(J.I)
I)«CPMN( J,

405
C ##»UNDEP-HELAXATION OF TEMPERATURES IN REACTION ZONE

ILM=lLUCM-3
ILP=IlOCp+3
DO ]A9 Isl.NPi
lF(.r.'0". (T.l'E.ILV.AMD.I.LE.ILP) ) GO TO
F(JTF,I>=.b«(F<JTE,I)*PTEMP<I) >

149 CONTINUE
C »*«FORM/.T ST^TtiMENTS
inon FoRMflT(7F10.4)
2000 FQRMAT(7F10-1)

RFTUPN
END

COMPILER SPACE

75



OUTPUT
C v « « « « « <> « .»•»«<»•» «• « « * <» <> « « « « «> « « o tt « « <nn> « n ft « » <> « o « it <* « <> « tt <> « # « « •» « <!• tt « •»<>•><••!> <>

DIMENSION FUixnni ,ATITLI. ( i 3 > t / \ T i T L 2 ( i 3 > »AVHt j | . .E (6 . i o j . A S Y M H L C ^ J
r O M M n N / ( i E N r < A L / A C C « C S A L F A , l ) f ' D X » O X . E N r H ( 4 0 ) » F ( 1 0 t 40 > » FS ( 1 0 , 40 ) » GAfM

] ( ;AMN, f iAM( / ,0 ) tI,IFIN»Ii\DK; ( 1 0 ) , INU I ( 1 0 ) , I STEP , IUT«AP 1 1 TtST , K^X , K I N ,
'KkAO.MtUEOt ' - lH ] ,NM,OM(40» - O M I ) ( 4 0 ) , fH)M(«0) , K A S T ( 1 0 ) ,PEI , PSIE «PSI 1 »
3P ( 4 0 ) ,K (4r ) »«no (^0 ) »RJjr < 1 0) , Rv ) I ( lO ) « PHE » WM I , SO (40 ) »SU (40) » WM ( 1 0) ,-
4X0, XI i. Y( 4o) » Y I . ) I F ( 4 o ) <• YE » V I , RJTE ( 1 0 ) ,RJTI (10)

JK,JU» J H S « J A , JG« JTf:» JL^iJUV, JB
JO?,JOH,JH^O, JH» JO, JM2

Cf 'MMpM/CSTAK/c )0 (7 ) , C P O A R ( V , 6 0 > ,HT ( 7, 60) ,RC (5, 60) , J S T A R ( 4 0 ) ,KACM
rOMMpM/CTl'-H'-'/AK, ALMG.CN!U.CMUIH,CEl »CF.2»CGl »CGiJ,CMIT»DOl)Y (40 ) t

) D l ' D Y Q O ( 4 0 ) .EMUL ( 4 0 ) ,KMUT ( 4 I) ) , IPO , PR ( 1 0 ) ,Pf«T (KM ,RTrt ( 4 0 )
C O M i > I O M / O l . l T P T / l A X , I t N O » Y l N » Y O l j T , Y H A , D Y h A » l ) L l Y H A » i U ) U C T » K P t K S , K T ,

) . K / V S E r . ' r t , X S T A T ( ^ 0 ) , XPP. f )F(20) , X P L C T ( 2 0 ) , PRESS
C O M M n M / T P l . o r 8 / X T A X i S , X T P L O T ( / » 0 ) i Y T A X f - I S ( 1 0 ) ,YTPLOT (10 ,40 ) ,

l Y T M A X (10) . Y T S Y M F ' ( l O ) .OUT ( 4 0 ) , IPRQF
?? IN??. I H ^ O » O F A C » N R , N S » ^ G O , V » R O , W S O « W T O , GAS CON* GAMMA

C #«*INITI_AL VALUES OK INTEREST
OUTP1

F5TOlCMcFc:TOIf;H/(l.*FSTOICh)
' READ (^if H53) (ATITL1 (K) ,K=1,13)
KEAO(5»1153> (ATITL2(K) ,K=1,13) -
RP"AO(S, 1J54) ( (AVRHLfc.'fX'L) » K=l » 6 ) H. = l » 1 0 )
Hf Y = f- HO ( l ) «F ( Jij , l ) «2. « Y (NP1 ) /EKUL ( 1 )

DO 1 01 6 jsl,NS
*KS(J.,1
n,l) XSQRT(GAMMA#6ASCON*F(JTE,1)*VMIX)

MIN =
UP !N=F(Jull )-F(JU.NPl)

«»»niJTPl!T OF ALPHANUMERIC DATA
WRITF '(6, J o2l) (ATI fLl(K)»K= 1,)3). (ATI TL2(K),K =
WMiTp (6,io?2) (L, (AVRBLE(^'L) »K = 1,6) ,L=1»NF.Q)

CrUtCEl «CE/?»CG1 ,CG2,AK, ALMGtCRIT, IPO

(6,in33) NH.NS
RE AC) (S, 11 54) ( (AVR«LF(K,L) ,K= 1 ,6 ) ,L=1 ,NR )

K,L) , K = l , 6 ) , L=l ,
READ (S» H54) < (AVHBLE(K»D » K = i » 6 > ,L=I »NS)

( A V P B L E ( K , L ) »K=1 ,6) ,L = 1,NS)
1-iP.jTr (bt lo3M
HRITF"(b«ln?ii)
P K A D ( r i» 1153) (AS 'YMBL (K) ,K = 1 ,7)
Od 101/ J=l.NCn
V 'P ITF ( f J « l fli?") J .T-H ( J) ,PUT ( J) , K A S T ( J)
I'RlTr (6,1 n 3 V ) U F Y , A M A C H » Y 1 N , Y O U T , K I ) I I C T , P R K S S 1 »UIN«CIN,TIN
RF TUPM

o <t o
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ENTRY OUTP2
XUDayi l /Yoi lT

C tt<»«MFAN SQUARE FLUCTUATIONS (OF H ELEMF-'NO
j F ( I o ? « E G . O . A M D . IH20.EQ.O) GO TO 165

c <H»«LOCATF POSITION OF FLAME FRONT
C - — ASSUMING ^BATTLf^ENT* VARIATION. OF SPECIES CONCENTRATION

DO lf-1 I=1,NP1 /

JF<SFH2.LT.1.) GO TO 162
161 CONTJNUF.
16? FAClsY(I-l) + (Y(I)-Y(I-l) >«<1.-PARA)/(SFH2-PARA)

00 if, 3 Ia],NHl
RAT=FSTOlrH»U.-FS(JN2,I ) )

S F H 2 = ( F ( j A , I ) + S Q R T ( F | J G , l ) > ) / H A T
JF(SFH2.LT . i . ) GO TO 164

163 CONTINUE
164 FACE = Y(I-l)*(Y(n-Y-(I-m*(l.
)65 CONTINUE

CLlNrsFS(JH2, l j / (C lN> l .E -30 )
TL INF=K(JTE»1 ) /T IN

KIf>;tKt"X,YIN»YJNPl) , HUE t ACC » Cf-;U » CE2
PSIItPSlEtPEI»HMI >RHE »FACl .FACE

i-'PITf- (fe.loO1^) F (JU,1) ,F(JA,1) ,F (JTE»1) »
C o#*>rH£CK FOR FLUX CONSEKVATION

110 lO?.~T J=l »Nb"0
FLUX j J ) = ( F ( J t ? ) » O M { 2 ) * F ( J » N ) # ( l . - O M ( N ) )
DO 1-n? 7 Is2»N(-n

00 102H J=1»NI-.Q
IF(K/\ST(J)) I0p9,

1»?9 FLUX>J)spLUX(J)-.25*( (F(J.3J-F(J»2) ) « (QM (3) -QM (2) ) *
1. (Ft.NMD-FjJ.N) )#(OM(N)-OM(N^1) ) )

WRITF(6,in30) ( J .FLUX ( 0 ) , J = l ,NEQ)
IF (KASE.Eo.2) WHTTt(A»1155) RFLOW , RDUCT ,REXD ,P ( 1) ,DPDX

OF=WjF(JHc)/H(NPl )
TAUE=RJK tJU>/H(NPl)
»"RlTF(6tlnlO> INDE(JHS) ,F(OTE»NPl)
RFTUpW

OUTP3
C »»«PKOFH.E V/iRlAHLF.S

C/ INFORMATION f T E M P O R A R Y ) ON KEW OUTPUT KOUTINE.
C/ Sl'inHOUTlMt PROKIL A S S I G N S V A L U E S FOU PLOT* ANO ALSO W H I T E S
C/ PRrtFfU'j:. IT IS CrtLLf fO HY ...
C/ rAl.L PKOFTL ( J I 'RoF tT ITLE .FUVST .ADOt 01 V,F lN«L,«HLOTt SYMBOL)
C/ WH^'PF JpPUKeJ »<fc.FF.RS TO TuE F|J,I) A R R A Y
C/ JPROF.f iT.O uF.ANS USE F ( O P U O F » I ) A U H A Y AWQ W H I T E PROFILE.
r./ JPRnF.t .T.0 i /KAMS IISK OUT ( T )* A R R A Y AND URITL PROFILF..
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C/ JPROF=0 MEANS KiQ ACTION UNLESS KPLOT.LT.O
C N.1.1. OUT (I) ARRAY IS OVERWRITTEN RY PROFIL.
C/ TITLE JS TH'r NAME OF THE PROFILE* PLOTTED BY SYMBOL.
C/ FJPST flNO FINAL. ARE FIRST ANO LAST VARIABLES WRITTEN IN PROFILE
c/ Ann AND DIV MODIFY PROFILES FROM 1=2 TO I=N
C/ KPLOT.OT.O MEANS ASSIGN YTPLOT ( KPLOT , I ) ARRAY.
c/ «PLOT~(! f/Ê w.s wo PLOT ASSIGNMENTS.
C/ VPLOT.LT.O s-EANS ASSIGN THE Yd) ARRAY TO THE XTPLOTU) ARRAY.
C/ sYMHOL TS THE CHARACTER USED IN PLOT.

C-— --—------"-----------—-----------------—--------—------.------—-•----.C «n»*ZERO YTPLpT ARRAYS
IF (ISTEP .GT. 1) GO TO /»01
DO 40? lol.NPl

40? nUT(I)=0.
DO 4()3 K=i,lO

403 CALL PKOFTL<0»lH«tO.»0.,l.fO., K,1H«)
AOl rONTlNUF.

C «*K>DISTAWCES (Y)
CALL PKOFfL( »,6HY/Y(KP »R { 1 ) » 0 . , Y (NP1 ) , Y (NP1 ) ,-1 , 0 )

DIVaF(JU, l ) -F (JU»NP1) +1.E-30
CALL PR(>FTL(JU, f tMU Vr.LO»F(JU, l ) t-F(JU.NPl) »DIV,F { JU»NP1 ) 1 1 , 1HU)

C **OSTAG/"ATIO(V ENTHALPIES (JHS)
OjV = F(JHs'. 1>-F(JHS»NP1)
CALL Pf- 'OFrLtJHs^HH S T A G . F ( JriS 1 1 ) »-F ( JH-S»NP1 ) » O I V t F ( JHS.NP1 ) f 0 , 0 }

C *o»TliRBi!L£NT KlNCTIC ENERGIES (JK)
OIV=(F(JU' . l)-F{j i. i ,NPl)*l.E-30)«*2
CALL P«OF7L(JK,6HK.E.Tfj »F ( JKt 1 ) » 0 . , DI V,F ( JK ,NP1 ) , 5»1HK)

C ««*D]SSIPATloN RATES (JO)
CALL PROFTL(JO,6HP D t SS , F ( JD , 1 ) » 0 . t 1 . tF ( JD»NP1 ) , 6 » 1HO)

C *»«DISSiPATlrN LENGTH SCALES (JLE)
DO l?ol I=;>,N

1?01 F(JLF»I)=-i:OHT (F ( JK , I » / (RTW ( I ) * 1 .E-30 )
F(JLF,l)=n.
F(JLF,'''Pl')=0,

CALL P^OFfL(JLE,6HLENGTH,F(JLE,l) , 0. , 01 V , F { JLE ,NP1 ) , 10,1HL)
NT VISCOSITIES/ (EMUT)

f (bfftifi) (fMUT(I) >Isl,NPl)
*«»Dt'NSlTlES ' ^

wR!TF(f3»6r>y) (RHO ( I ) 1 1 = 1 «NP1 )
cTKESS CORRELATION (JUV)

OIVa'(F(Ju'. l)-F(Jij,NPl)*l.E-30)**2
CALL PKOFTL(J l 'V ,6Hi jV ' , F ( JljV, 1 ) , 0. , DI VtF ( JUV ,NP1 ) » 2 . 1HS)

M/;Ss FRACTIONS ( J A )

CALL PROF|LUA,7HF(JA,I) ,F <JA, 1) ,-F < JA.NP1) ,DIV,F (JA.NP1) ,3» 1HA)
M.5. CONCENTRATION FLUCTUATIONS (OF H ELEMENT)

OIV = FN'>,i)-F(JA,NPl)+l.E-30
CALL PHOFiL<J6,7HF(JP,I),F(JG,1),-F(JG,NP1),DIV,F(JG,NP1),9.1HG)

C ««»/\BSOLUTE TEMPERATURES (JTE)
niV = F(^TEl 1)-F(JTE,NP1)+1. .E-30
CALL PKOFtL(JTe,.»HTF.MP»F <JTK,U ,-F(JT.E»NPU ,01V , F (JTE.NP1) ,M,l'iV)

C «««nilTPHT OF INDIVIDUAL SPECIES CONCENTRATIONS
DO <•>?*'•> Ja\ , NS

'i?5 '-'RITK (^,^i?6) ASYI-'HL(J) ? (FS(J,I)
HKITFi [ f t t6 ;J7) ( IS T AH ( I) , 1 = 1 tNPl)

C »«n>PLOTT7l<"3 nF
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.FQ.lt) UFTURN
lF(I?TtP.f.-«.IAX.OR.ISTEP.EiJ.IEND) GO TO 435
iF<xi'n.LT.xPLOT(KT) ) RETURN
KT=KT*I
w&iTF<b.lp9l) Xu»lSTEP
CALL. PLOTS (ATPLOT,35.NPl,XTAXIS,YTPLOT,YTMAX,.iO,10,YTAXES,YTSY M s '

c ***FoRfiAT STATEMENTS
*?<% FORMATdH ,A6,1P11E11.3/(7X,1D11F11.3) )
W7 FORMAT (IH WHITER »iiin/(7x,inii) )
ftgfl F O R M A T d H .6HCMIJT , 1 P 1 IE 1 1 . 3/ ( VX , 1 PI 1 E 1 1 . 3 ) )
ft?9 F O R M A T d H ,OHRHO » 1P1 1E1 1 ,3X ( ?X » IP 1 IE 1 1 ,3 ) )

100 f,

1007
lF11.3«lX,«PUEa«, 1P£1 1.3,1 X,#ACC = #»1PE11. 3«lX,«CMUa*»l Ptll.3» IX
?p=»,1Ptllf3)

100A FORMy;.T(lX.«PSII=«,lPi£ll.
]»RMls»»lPFll.3> lX,«RME = «
?11.3,]X,#FACM = », 1PEH.3)

1009 FORMAT (] x>u i=*?iPEi 1.3, ix,*Mi=*,ipEn. 3, ix,«Tia»,iPEii.3,ix,»oi/i

2F.11..?)
1010

1021 FORMAT(lHl,'+X,13A6/5X,13A6///bX,« ----- ORDER OF DEPENDENT
K IS*/)

10?? FORMAT (6X', 12, «. «,6A6)
FORMAT (//IHO,#— CONSTANTS IN TURHULENCE MODEL*)

=^i 12)
FORMAT (/IHO»*— PRANDTL SCHMIDT NUMBERS

If.) 2 ft FORMAT (*X>J=», I ?,3X,«PR{J)=*,F9.3,3X,«PRT(J)=<SF^.3,3X,^K AST (J)=«
1.12)

in3n FORHAT<SH FLUX,, 7dH(,i2,2H)a,iPfio.3,2X) )
103? FORM.ATtlHr*,*— Q.VEGA DISTRIBUTION — «//" (4X ,1P1 1E11 .3) )
1033 F(.'RMAT(/1HO»*- NUMBER OF REACTIONS =<», 13, 1 OX, «- NUMBER OF

103~i FOR^'AT(/lHO»5Xf# — REACTIONS
1035 FORMAT</1HO,5X,# — CHEMICAL SPECIES ARE*)
103ft FORMAT (////)
1037 FORMAT(/1HO»*—- INITIAL VALUES — */SX,»REY =*, 1PE1 1 .3/5X ,*rtACH =<>

1 .IPEil .3/5X,*YlN =*,1PE11.3/5X,*YOUT =», 1PE1 1 .3/bX»«RDUCT = <>, l^t 1 1
?.3/5X,*PRFSSa*f ip£ii.3/5x,»u =*, 1PE1 1 ,3/5Xt*C s», 1PE1 1 .

1091 FORMAT(4HlXU=,lPEl0.3,8h, ISTEP=,I6)
1153 F O R M A T d 3 / \ 6 )
1154 FORMAT(6Aft)
1155 FORMAT dxi,*RFi..Ok'j=*, lPEii.3,ix,«unucT=*,iPEll.3, ix,*i<EXij=*.iPKH.:^

] 1X,*PWLSS=*»1PE1?.4»1X,*DPOX=*,1PE11.3)
c****** ***<»************ *********«***<>************** ******^***** **<>**•" *•>>*

END

COMPTI.'FP SPACF.
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l (JPKUF,TlTl.E|FlRST»Ai.)D,l)IV,H iNAL »KPLOT , SYMBOL)
COMMpN/Gf:NRAL//\CCtCSALFA,DPOX;DX;|-:NTH(40) ,F (10,40) i FS ( 1 0 , 40 ) , GAM3,
lr,AMN,r,AMuO) »I,lFIiM,lMDE (10) ,INDl(10) , I STEP , I UTRAP , I TEST » KE* ,klfd,
?KRAi:>,N»Nfc:g»WM,-NM). ,OM(40) ,OMD<40) ,UOM(40) , K AST { 1 0 ) , PE I , PS I E » PS I I r
3P(40') .»<(4n) »HHO(40) fRJE(lO) ,RJI (10) » RME » RMI , SO (40 ) , SU (40 } , WM ( 1 0 ) »
4X0, XI.!, Y (4o) »Yl.MF(40) , YE » Yl ,RJTE ( 1 0 ) ,|7JTI (10)
COMMOM/Cjc/JU. JK. JD»JHS»JA,JG. JTE» JLfc » JUV» JB
COMMON/CF<;/JH^. jn?, JOH, JH^O, JH, JO, JN^
COMMoH/TPLOTb/XT/\XlS,XTPLOT(40) »YTAXES(10) , YTPUOT ( 1 0 » 40) t

,YTSYf)H(10> »OUT<40) ,IPHOF . . . .

C <> » » •» i

700
IF
IF

(KPI.OT)
(JPROF)

F TO

500
200

WRI

,7on
»aoo

TE PROFILES AND ASSIGN TRANSVERSE PLOT ARRAYS

,700
tlOO

inn Do inl 1 = 1
101 OUT (I)BF(JPROF,I) .
?00 Y^'AX = ̂  .E-30

00 2M 1 = 1, NH1
YMAXsAMAX] (YMAX,QUT (I) )

?01 01.11(1) = (OUT (I) -f.AOQl/DIV
lF(JpPOr .N'E.O.AND.IPROF.FQ.I) WRITE (ft, 9 00) TITLE, FIRST, (OUT (I) >! = <:

l,W)tFTNAL
lF(Jpf?OF.NE.O.ANO.lPROF.Ei3.2) VjRlTE (6 ,900 ) TITLE, (F ( JPHOF, I ) ,I = l,is

JP1)
TF(KPI.OT) 500.600,400
DO 4PI I=l,NPi
YTPLOT(KPLOriI)=OUT (I)

Y T S Y ^ • f 1
Y T M A X ( K P | _ n T ) = Y M A X
RK'TUPN

SOfi DO Bnl 1 = 1, NP1
sol XTPLOT(I)=(Y( t) +ADDJ/DIV

XTAXIS=TITLE
HNITE(&»900) TITLE, FIRST, (XTPLOT ( I ), 1=2, N >, FINAL

*oo RETURN
900 FORMATdH ,A6, 1P1 1£1 1 ,3/ (7X, 1P11E11 .3»

COMPILER SPACF.
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PLOTS <X,IDlM»IMAX,XAX IS, Y,YMAX,JDIM,JMAX,YAXES, SYMBOL)
C-----------~-----------------------------------------_---------_-------C SUBROUTINF FOR PLOTTING J CURVES OF Y(J,I) AGAINST X(i)

C------------------------------- ----------------------------------------c
C X ANO Y ARE ASSUMED TO BE' IN ANY RANGE EXCEPT THAT NEGATIVE VALUES
C ARE PLOTTED AS 2FRO
C X ANp Y ARE SCALED to THE RANGE 0. TO I. BY DIVISION BY THE MAXIM/-
C WHICH ARE ALSO PRINTED
C IDIM IS THE VARIAPLE DIMENSION FOR X,
C TMAX IS THE NUMBER OF X VALUES
C XAXIS STORES THE NAME OF THE X-AXIS
C JDIM JS THE VARIABLE DIMENSION FOR Y.
C JMAX IS THE NUMBER OF CURVES TO at PLOTTED* (UP TO 10).
C THE ARKAY YAXES(J) STORES THE NAME OF THE CURVES.
C THE /\R*AY SYMBOL (J) STf)RES THE SINGLE CHARACTERS USED FOH PLOTTING
c .

DIMENSION X U O I M J ,Y<JDIM,IDIM) » Y M A X ( J D I M > .YAXESUOIM) .SYMBOLJJDIM)
1.M10J >

D A T A DOT,rROSS,nLANK/lH.. lH+, lH /
SCALING X ARRAY TO THE RANGE 0 TO 50

XMA*el.E-30
DO 1 I=1,TMAA
TF(X(I) .GT.XMAX) XMAX=X(I)
po 2 1 = 1 ,
X(I)aX (I)
TF(X(T) .LT.O.) X(I)=0.
SCALING Y ARRAY TO THE RANGE 0 TO 100

DO 3 JslfjMAX
AYMAX=1.E-30
00 4 1=1 , rMAX

A AYMAXsAMAXl (AYMAX»Y(J»I)>
DO 3 I=1,JMAX

3 Y(J»h BAM/*Xl{ (Y(JtI)/AYMAX)#100.,0.)
IDENTIFYING THf VARIOUS CURVES TO BE PLOTTED

WRITF(6iloO) (Y AXES (I) ilaltJMAX)
wH!TF(6»ln6> (SYMBOL ( I )» 1 = 1 tJMAX)
W«lTF<6tln2) ( YMAX ( I ) » 1 = 1 1 JMAX)
DO 5 1=1,11

5 A(i)=0.1«FLOAT(l-l)
'•JPlTF(6,lol) (A(I) ,1 = 1,11)

Ctt<n»«<» KAlM LOOP. EACH PASS PRODUCES AN X-CONSTANT LINE
DO 4o I, = l',51
iF'd.EW.l.OR.I.EG.Sl) GO TO 32
GO To ^3

C#«n»«« ALLOCATE . OR + AS MARKER ON THE Y-AXIS
3? DO 30 K = l', 101
30 A(K)t:DOT

DO 3\ K= 11, 10 1,10
31 A(K)=C«OS<:

C<n><n»<»ALLOrATE . OR * MARK ON THE X -AX lS , ALSO THE APPROPRIATE X VALUt
33 A ( l ) e n O T

A < i o ] >=DOT

K=K-5
IF (ho
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A (101 )=CKnSS

CHECK IF ANY Y( X(I) ) VALUE LIES ON THIS X-CONSTANT LINE
JF YES Gn TO 41, OTHERWISE GO TO 42

00 43 K=l'. IHAX
IF(IFI*(XK)+1,5)-I) 43*41.43

41 DO 44 J = l'.JMAX
NY = Y(J»K')*1.5
ft(NY)=SYMBOL(J)

44
00 To 4?

43 CONTINUE
PRINT X-rONSTANT LINE

4? '-/RlTr{6f In5) XL» ( A (K) »K=1 » 101 ) .XL
'C«#»»* PUTTING BLANKS INTO X-CONSTANT LINE

Oo 49 K=l'. 101
49

• 40
no 5n i = i'.H

50 A(I)a.l»FLOAT(i-l)
WRlTF(htl(i4) (A(J),I = 1,U)
RETUPM

100 FORMATdlH Y-AXES ARK » 5X , 1 0 ( 1 X , A 1 0 ) )
101 FOHrtAT(lHo»2X,HF10.1)
10^ FORMATU5H MAXIMUM VftLuES, 1P10E 1 1 .3 )
J.03 FORM/\T(11HOX-AXIS IS tA8,l?H .^AXIMUM VALUE =»1PE10.3)
10/1 FORHAT<3X'.11F10.1/1H1)
105 FORMAT<2H X.F6.2,3X,101A1.F6.3)
10*. FORMAT(7H SYMBOL, 11X, lo ( IX ,A10) )

FNO
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COMMoN/CF<!/Jh2, J02, JQH, OH20, JH, J0» JN2

C**»»*iNTEF''POLATlON SUBROUTINE

-FtJJ.l) >
1F(RFFUIF.NE.O.) QQ TO 10

6,1) YFPAC
1 FORMAT17H lST?:P= , 14 » AH XU= » 1PE10 ,3,52H IN SUBROUTINE YINT, H£FOiF =
lOt SO YFRflC=F»,lC<»Y(NPl)=,£10.3)
WRlTr(ft»2) FRAc,JJ,NPl»F(JJ»NPl> ,F(JJ,1)

? FORMAT(6H FRAC=,lPEln.3,4ri JJ=,I3,5H NPl=.l4,
1 11H F(JJ,NH1) = ,E10.3,9H F ( JJi 1 ) = » El 0 . 3 )
RETUPN

10 IF(FPAC.GT..5) GO TO 30
DO 20 1=2. N

20.21,21
?.\ T = ABs(F(Jj,I)-F(JJ,I-l) >

TF(T) 22.P3.22
?? T=(l>IF-REFDlF)/J
P3 YFRAC=Y(I)-T#(Y(I)-Y(I-1))

RfTURN
?.r\ CONTINUE
30 On 4n II5A«:H = 2,N

I=N*?-lDAcH
OIF=/\RS(F'fJJ»I)-F(JJ,l) )
iFtnjF-WEFOlF) 41,41,40

41 T = AHS(F(JJ,-I)-F(JJ,I*1') )
IF(T') 42

43 YFRACaY(I)--T#(Y(I
RFTUPM

4(i CONTINUE
RFTUPN
END

COMPILER SPACE
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