U.S. Department of Commerce
National Technical Information Service

A

N74 29769

PRELIMINARY FLIGHT PROTOTYPE‘ISILVER ION
MONITORING SYSTEM

BECKMAN INSTRUMENTS, INC.
ANAHEIM, CA

JUN 74




FR-2656-101

DRL No. T868

Line Item No. 4

DRD MA-183T

Contract No. NAS9-1338:

NASA CR—/3¥Z¢.

FINAL REPORT

PRELIMINARY FLIGHT PROTOTYPE SILVER ION MONITORING SYSTEM

(NASA-CR-13“361) PRELIMINARY FLIGHT

ggc?OTYPE S;LVER ION MONITORING SYSTEM W74-29769
1§91.ReporF‘gBeckmah Instruments Inc
Anaheim, Calif.) 214 p HC $13.75’ o Uncl
nclas
CSCL 14B G3/14 44761
June, 1974

Prepared for:

National Aeronautics and Space Administration

Johnson Spacecraft Center
Houston, Texas 77058

Beckman®| instrumenTs, INC.

ADVANCED TECHNOLOGY OPERATIONS s

ANAHEIM, CALIFORNIA 92806



FR-2656-101

DRL No. T868

Line Item No. 4

DRD MA-183T

Contract No. NAS9-13387

FINAL REPORT

PRELIMINARY FLIGHT PROTOTYPE SILVER ION MONITORING SYSTEM

June, 1974

A-45f77l

Date

Prepared by:

& ~28-7 4

ogram Manager Date

Approved by: Mﬂ,\/w—\ é—Zi-7g

Co racts A{;}nistratlon ' Date

Approved by:

Approved by:

Date

Approved by:

Date

la



FR-2656-101

ABSTRACT

This report describes the design, fabrication,
and testing of a preliminary flight prototype
silver ion monitoring system developed under
Contract NAS9-13387. The monitoring system is
based on potentiometric principles and utilizes
a solid-state silver sulfide electrode paired
with a pressurized double-junction reference

-electrode housing a replaceable electrolyte

reservoir. The design provides automatic elec-
tronic calibration utilizing saturated silver
bromide solution as a silver ion standard.

This report describes the design and fabri-
cation of the system, the problem of loss of
silver ion from recirculating fluid, its
cause, and corrective procedures. The
instability of the silver sulfide electrode
is discussed as well as difficulties met in
implementing the autocalibration procedure.
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1.0 SUMMARY

Under contract NAS9-13387 Beckman Instruments was to design, fabricate and
perform verification tests on a Preliminary Flight Prototype Silver Ion

Monitoring system with zero-gravity capability.

The program was divided into five tasks:

. Preliminary Flight Prototype Design

e Fabrication of Preliminary Flight Prototype
. Design Verification Testing

® Delivery of Preliminary Flight Prototype

] Data and Program Management.

For the purpose of efficiency, the design and fabrication efforts were divided
between a fluid handling unit and an electronics unit. The fluid handling unit
contained the sensor chamber and electrodes, pump/motor, components of the
calibration loop such as ion exchange and silver bromide columns as well as

solenoid valves and necessary connecting tubing and miscellaneous hardware.

The electronics unit consisted of the preamplifiers, amplifiers, readout circuit
and meter, timing circuit and digital calibration loop for automatic calibration

as well as thermocompensating circuits plus power supply and actuators for the

solenoid valves.
The design of the fluid handling unit provided for two operating modes:

1. A monitoring mode in which a porﬁion of the water in the potable
water system, upstream of the heaters and chillers, would be routed
into the silver ion monitor and pumped through a sensor chamber, at
a constant rate, where a pair of potentiometric electrodes would

contact the solution and measure the concentration of the silver
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ion. -The measuring electrode was a silver sulfide ion-selective
electrode while the reference was a very low flowing pressurized
double-junction reference having a replaceable rolling diaphragm
electrolyte reservoir. The signal generated by the electrode pair
would be processed and the silver ion concentration presented on a
two-inch diameter meter. Temperature compensation for electrode

thermal characteristics would be provided.

2. A calibration mode was provided in which a pair of solenoid valves
actuated by the electronics closed and formed a closed '"calibration"
loop consisting of the sensor chamber, pump/motor, solenoid valves,
ion exchange column and silver bromide column. The basis for the
calibration was that water would be pumped through the ion exchange
column where all anions and cations would be removed. The water
would then pass through the silver bromide column where it would
become saturated with silver ions and bromide ions. Since the
saturation of the water with silver bromide is a function of the
temperature, a '"known" concentration would be produced which would
be pumped through the sensor chamber where the concentration would

be sensed by the electrode pair.

The electronics unit would process the signal(s) from the electrodes
and during the calibration mode would compare the electrode signal

with a known signal and automatically adjust the readout accordingly.

The electronics unit would contain the timer and sequencer as well as
solenoid valve drivers which would automatically put the system in
the calibration mode once every twenty-four hours. The electronics

would ‘also contain the power supply for the monitoring system.

The detailed design phase also included a Failure Mode and Effect Analysis
(FMEA) .

In general, the design and fabrication of the Preliminary Flight Prototype
Silver Ion Monitor System followed the Instrument Package Definition of the

previous contract, NAS9-12733. However, several changes were made to reduce
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significantly size and/or weight and increase reliability. Readily available
of f-the~shelf hardware was used for the fluid handling unit, with the exception

of the sensor chamber and columns, for the purpose of cost reduction.

Also, the electronic unit utilized off-the-shelf components and circuit boards
so that the program was not burdened with flight configuration electronic

packaging.

The total Preliminary Flight Prototype Silver Ion Monitor System with a pre-
liminary case measures 35.56 centimeters (14 in.) wide, 40.6 centimetrs (16 in.)

high, and 22.2 centimeters (8.75 in.) deep and weighs 8.734 kilograms (19.2 1bs).

Preliminary testing of the fluid handling unit revealed a very rapid loss of
silver ion during recirculation of 50 and 500 ppb silver ion solutions. The

loss of silver ions was not observed with a single pass of silver ion solution.

Radioisotope tests revealed that the silver was being adsorbed on the surfaces
of the system, in particular, the surface of the 316 stainless steel. A subse-
quent radioisotope test showed that the lower the fluid to metal surface ratio
the faster the silver was adsorbed. Also, static vs. agitated tests showed that

agitated or stirred tests revealed more rapid adsorption than static tests.

Replacement of as much stainless steel as feasible with non-metallics, e.g.,
Teflon, nylon, produced a reduction in the rate of depletion and an improvement

of 12.5 to 1 in the rate of depletion.

Concurrently with the loss of silver ion from solution, loss of sensitivity

or degradation of the silver sulfide electrode was observed during recirculation
tests, but not when the silver ion solutions were pumped through in a single
pass. A cause and effect relationship of this phenomenon is not being postulated

although there may be a relationship.

Numerous attempts were made to rejuvenate the degraded electrodes, but none of

the methods produced 100 percent rejuvenation. Polishing the exposed surface
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as one might polish a lens was the most satisfactory, indicating that the degra-

dation was probably a surface phenomenon.

At one point in the study of the loss of silver ion from solution, an attempt
was made to use the silver bromide column as a constant source of silver ioms.
However, after checking the silver bromide column with é single pass of water
and realizing theoretical saturation or silver ion content from the column
effluent, recirculation of the fluid produced a lower than theoretical concen-
tration of silver ion--50 instead of 73 ppb at 24°C (75°F). The concentration,
measured by system electrodes as well as an independent electrode system, ex-
hibited a‘random up-down variation of about 10 to 15 ppb. Extensive flushing
of the silver bromide column with distilled water would rejuvenate it, but the

cause of the lowering and variation of the output has not been resolved.

The silver ion monitoring system was modified to substitute non-metallic mater-
ials to as great an extent as possible for 316 stainless steel material. This
included all fluid lines and most surfaces within the sensor chamber. Following
this, the system was integrated with the electronics and system tests begun.
Testing proceeded in a stepwise fashion to insure that all subsystems were
functioning properly before final system integration and test. The first of

these tests confirmed that the materials substitution had achieved their intended
purpose in that significant depletion rates were not occurring. These tests were
conducted in a flow-through mode, Following this, recirculation tests were accomp-
lished for relatively short time intervals (less than one day). The electronic
integration was next accomplished, exclusive of the calibration loop, and finally,

attempts were made to integrate the calibration loop into the system.

While completely trouble-free operation was not achieved, positive indications

of concept validity were obtained.

Thus, it appears that silver ion can be measured in a flowing or recirculating
system employing specific ion electrodes. It also appears that satisfactory
accuracy and precision is achievable. However, all program objectives have

not been achieved in two major areas.
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a. We have not identified factors which equate to stable, long-term,
electrode performance. Using identical fabrication techniques and
homogenous material, inter- and intra-lot success is completely

unpredictable.

b. Another area deals with the reliability of operation. A flight
prototype system should be at the stage of foolproof operation.
The system as it currently exists requires too much attention to
be considered operational. Many of the more troublesome artifacts
can be associated with the test system, e.g., excessive bubble for-
mation, noise pickup, flow irregularities, etc. Nevertheless, it is
only proper that a continuous monitoring system should function in
such an environment for such will be the real world. Other artifacts
result from long~term quality of the electrode itself. While good
runs have been obtained, they have been too infrequent to be-
encouraging. Even these have not been long enough in duration to

satisfy minimum mission requirements.

FR-2656-101 1-5



2.0 INTRODUCTION

Actual experience and tests have proven that spacecraft potable water systems
require sterilization to ensure crew safety and mission success. Although the
potable water may be pure when delivered, it may become contaminated at use
points. CbnSequently, a bactericide must be added to the water, and continuous
monitoring of the bactericide concentration is advisable to ensure effectiveness

of the microbial control.

One approach to the problem has been the use of silver ions as the bactericide.
During NASA MSC Contract NAS9-12733, the feasibility of using an ion selective
electrode technique for monitoring the concentration of the silver ion in the
potable water system was demonstrated. Under that contract, an Instrument
Package Definition was derived for a preliminary flight prototype Silver Ion

Monitor System with zero-gravity capability.

The effort under Contract NAS9-12733 was continued under Contract NAS9-13387,
during which a preliminary flight prototype Silver Ion Monitoring System was

designed, fabricated, and subjected to preliminary testing.

The design, fabrication, and testing of the preliminary flight prototype unit
was intended to provide data to contributé to the design and fabrication of a
qualifiable flight unit. This final report summarizes the results of this

program.
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3.0 CONCLUSIONS

1. It has been demonstrated that silver ions rapidly deplete from
aqueous solution. The rate of depletion is strongly influenced
by the materials to which it is exposed and the relative ratio of
volume to surface area. Rapid depletion was observed in stainless
steel systems and the depletion rate was increased when the fluids
‘were circulating, Less depletion was observed when stainless steel
components of the system were replaced with selected non-metallics.
Depletion rates of 25 x 10-6 grams/liter/hour (0.40 x 10-6 0z/1b/hr)
of silver were observed when circulating in stainless steel systems
as opposed to 2 x 10-6 grams/liter/hour (0.03 x 10-6 oz/1b/hr) when

the stainless steel was largely substituted with Teflon and nylon.

2. Silver sulfide sensing electrodes, as fabricated under this program,
have proved to be unreliable and do not meet minimum mission

requirements.

3. The double junction reference electrode has been successfully oper-

ated for 40 days.

4. While the feasibility of performing automatic calibration has been
demonstrated, the use of a silver bromide column to provide standard
solutions has yet to be demonstrated. Further design optimization

is required in this area.

While the design of the individual components of the silver ion monitoring sys-
tem have been validated, reliable operatiop has not been achieved. Major effort
will be required in the optimization of sensing electrode design and minor engi-
neering optimization in the electronics and calibration loop to provide long-term,

stable, trouble-free operation.
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4.0 RECOMMENDATIONS

In view of the stand-by nature of the silver ion monitor at the present time,
it is not recommended that NASA invest substantially more funds in the opti-
mization of prototype hardware at this point in time. However, in order to
carry this program through to a logical stopping point, it is recommended
that consideration be given to the sensor development program to determine
the characteristics of materials and methods that will produce an electrode
meeting at least minimum mission requirements. Several questions that must

be addressed in such a program would be:

Failure Mode

- Why do electrodes fail?
~ What conditions accelerate failure?

- What conditions are stabilizing?

Fabrication

~ What are the key determinants in the manufacturing process?
~ What produces a good electrode?

~ Are other materials more satisfactory?

This program should be a low-level effort until it is certain that these
parameters are completely understood and an adequate test history, considering

the design constraints uncovered during this program, are obtained.
If these questions are resolved, a reasonable holding position would result.

Further development efforts could take place or, alternatively, the tech-

nology could be set aside to await a demand for this measurement.
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5.0 TECHNICAL DISCUSSION

5.1 Review of Preliminary Testing Data

Solid-state silvgr sulfide electrodes were developed by Beckman under NASA
Contract NAS9-12733. The solid-state configurations were developed because
of the requirement for zero gravity (g) and 36 g exposure. Preliminary eval-
uation by both laboratory and test fixture tests to simulate spacecraft use
conditions demonstrated the suitability of such electrodes for use in zero g,

and analysis indicates the feasibility of use in a 46 £ exposure.

5.1.1 Sensitivity

The sensitivity of the solid-state silver sulfide electrode was measured in
dilutions of an atomic absorption standard (AgN03) at concentrations between

10 and 10,000 ppb silver ion and found to conform to the theoretical Nernstian
response. When plotted on semilog paper with the concentration on the log axis
and response in millivolts on the linear numerical axis, a straight line re-
sulted. Test fixture tests at 10, 25, and 45°C (50, 77, and 113°F) resulted

in a straight-line plot over the concentration range of 25 to 100 ppb of silver

ion.

5.1.2 Precision (Coefficient of Variation)

During the technique-selection phase of Contract NAS9-12733, both commercial

silver sulfide and solid-state silver sulfide electrodes were evaluated. The
precision for the solid-state electrode fo; various silver ion concentrations
varied between 0.23 and 0,97 at silver ion concentrations of 500 and 50 ppb,

respectively, and in all cases was better than any of the commercial elec-

trodes tested.
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5.1.3 Stability

The stability of the solid-state silver sulfide was determined in the test
fixture at 25°C (77°F). The electronics and recorder were first evaluated and
found to have drifted less than the equivalent of 1 ppb over an 18-hour period.
The stability of the electrode was then measured and found to drift less than
+0.6 ppb silver ion over a one-hour period using a 50 ppb silver ion solution.
The poor stability of the silver ion solution prevented longer stability time
evaluation. The use of a column of silver bromide/glass beads would provide a
suitable, stable, silver ion solution for long-term stability evaluation of

the Preliminary Flight Prototype Silver Ion Monitoring System.

5.1.4 Behavior in Response to Pressure Changes

The solid-state silver sulfide electrode is not generally sensitive to such
physical changes as pressure and flow because of the electrochemical mechanism
by which it develops a millivolt output in response to changes in silver ion
concentration. The reference electrode, however, due to its sensitive liquid-
liquid junction with the sample, is sensitive to pressure and flow changes.
Proper design of the reference and measuring cell for a particular application

can minimize the effects of both pressure and flow.

The solid-state silver sulfide in combination with the quartz fiber junction
pressure-equalizing reference was tested in a test fixture at temperatures of
10, 25, and 45°C (50, 77, and 113°F). The flow was held constant at 100 ml/min.
(13 1b/hr) and the pressure varied between 6.89 x 104 and 3.10 x 10° N/m2 (10
and 45 psig). The maximum apparent offset observed was 12 percent of the true
silver ion concentration. The offset was attributed primarily to the response
of the reference electrode and small artifacts introduced by the pressure
equalizing loop. This apparent offset can undoubtedly be minimized through

optimized pressure equalization design.

5.1.5 Behavior in Response to Flow Changes

Sudden or large changes in the flow rate of liquid passing the liquid junction
f of the reference electrode will disturb the junction and result in a change in

the millivolt output of the electrode pair. The solid-state silver sulfide

FR-2656~101 5-2



electrode in combination with the quartz fiber junction pressure-equalizing
reference was evaluated in the test fixture at 10, 25, and 45°C (50, 77, and
113°F). The effects of flow were determined by holding the pressure constant
at 1.72 x 105 N/m2 (25 psig) while varying the flow between 150 and 450 ml per
minute (19.8 and 59.5 1b/hr). The maximum apparent offset due to flow changes
was found to be 12 percent of the true silver ion concentration at 10 and 45°C.

The maximum offset at 25°C (77°F) was 8 percent, or approximately 2 ppb.

5.1.6 Behavior in Response to Temperature Changes

The electrode pair, consisting of a solid-state silver sulfide electrode and
quartz fiber junction pressure-equalizing reference electrode, was tested at
10, 25, 45, and 65°C (50, 77 113, and 149°F) in a test fixture with silver
ion concentrations between 25 and 125 ppb. With the exception of the 65°C
(149°F) test, the response was linear. The poor response at 65°C was found
to be the result of a failure of the adhesive/sealant used to hold the silver

sensitive silver sulfide pellet in the electrode body.
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6.0 MONITORING SYSTEM DESIGN AND FABRICATION

6.1 General

The detailed design of the Preliminary Flight Prototype Silver Ion Monitoring
System generally followed the Instrument Package Definition Report¥* derived
under the previous contract, NAS9-12733. However, several changes were made
to reduce significantly size and/or weight and increase reliability. 1In
addition, a substitution was made for the qualifiable fluid pump/motor for

cost reduction.

6.2 System Design Philosophy

The basic philosophy of the approach to the instrument design was to approximate
as close as practical a flight configuration using off-the-shelf components
where possible. The individual components chosen were as close as practical to
available space-qualified component fit and function, yet did not burden

the development program with the high cost of the qualified components. The

constraints of low weight and volume were given prime consideration during the

design stage.

6.3 Monitoring System General Description
6.3.1 General

The monitoring system consists of two inter-related subsystems--a silver ion
monitoring subsystem and an automatic calibration subsystem. A number of
components such as the electronics package, pump and sensor chamber, and
solenoid valves are necessarily common to both subsystems. Figure 6-1 shows
a flow diagram of the silver ion monitoring system. The two modes of opera-

tion can be followed by means of the arrows.

*Beckman Report COR-2639-1 dated 23 March 1972
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In the monitoring mode, the sample flows from the potable water system of the
Shuttle through the system isolating valve V1, through valve V2, then through
the pump and sensor chamber. The pump provides a constant flow 100 ml/min.

(13.2 1b/hr) of ‘sample to the sensor chamber. The effluent from the sensor
chamber returns to the water system through valves V3 and V1. As the water
sample passes through the sensor chamber, the concentration of the silver ion

in the water is detected by the potentiometric electrodes. The system design
provides for the processing of the signal from the electrodes by the electronics
package and the concentration of the silver ion in the water to be indicated on
the front panel meter. During periods in which water in the main water line
would not be flowing, the pump would circulate the water through the monitoring
system and through a portion of the main water line, thus providing a continuous
indication of the silver ion content of the water in that section of the main ‘
water line connected to and/or adjacent to the monitoring system. A pressure
relief valve is included in the system to protect the components of the sensor
chamber from excessive pressure which could develop as a result of solenoid valve

malfunction.

The design of the silver ion monitoring system includes automatic calibration.
In the automatic calibration mode, a timer circuit in the electronics package
initiates the calibration sequence approximately once every 24 hours. Solenoid
valves V2 and V3 are activated, placing the pump and sensor chamber in a closed
loop with the two columns, thus forming the calibration loop. The pump circu-
lates the water in the line through valve V3 and into the deionizer column

where the ion exchange resins remove all of the silver and bromide ions. The
deionized water is then routed to the silver bromide column. The silver bromide
column is filled with a mixture of glass beads and granular silver bromide, AgBr.
Water passing through the silver bromide column becomes saturated with silver
bromide at a concentration defined by the solubility coefficient of the AgBr at
the ambient temperature of the system. This is the calibration fluid which is
passed through valve V2 and pumped to the sensor chamber where the concentration
of the silver ions would be detected. The automatic calibration electronics
compare the output of the electrodes with a known value and adjust the readout

accordingly.
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6.3.2 Systém Size and Weight

Physically, the silver jion monitoring system consists of two sub-units, a
fluid handling unit, and an electronic unit. These are mounted in a single
package measuring 35.56 centimeters (14 in.) wide, 40.6 centimeters (16 in.)
high, and 22.2 centimeters (8.75 in.) deep. The system is shown in Figure 6-2.

The packaging of the monitoring system as shown in Figure 6-2 was intended
only to serve as a temporary housing to permit early integfation of fluid
handling components with the electronic unit and to provide spatial relation-

ship data for a final packaging design.

The total weight of the monitoring system is 8.734 kilograms (19.2 1b). The
fluid handling unit weighs 5.110 kilograms (11.24 1b) while the electronics
and preliminary case weigh 3.624 kilograms (8.0 1b).

Table 6-1 lists the weights of the individual components of the fluid handling

unit and the weight of the total electronics unit.

The preliminary packaging attempt of placing both the fluid handling components
and the electronic components in one package is a departure from the Instrument
Package Definition concept and was intended to reduce the overall size and
weight of the monitor and to aid in the integration of the electronic and

fluid components.

6.4 The Fluid Handling Unit

The fluid handling unit is shown in Figure 6-3. The major components of this
unit are the sensor chamber which houses the electrodes, the pump which cir-
culates the water sample calibrating fluid, the two column assemblies which
would contain the ion exchange resins and the silver bromide, and the valves.
The components are mounted as shown on a supporting frame. All components
are mounted to the frame directly or by brackets. Ample space is provided to
service the sensors and replaéeable electrolyte cartridge. Replacement of

the cartridge does not require any other mechanical or electrical disassembly.
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Figure 6-2. Preliminary Prototype Silver Ion Monitor--Test Packaging
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Table 6-1. System Weight and Weight of Individual Components

35.56 x 40.6 x 22.2 cm (14 x 16 x 8.7 in.)

TOTAL SYSTEM WEIGHT

Weight
Component grams 0z.

Fluid Handling Unit
Ion Exchange Column 165 5.82
Silver Bromide Column 182 6.42
Calibration Loop Tubing & Fittings 323 11.39
Pump-motof Combination with Bracket 1472 51.9
Solenoid Qalve + AN Fittings (2) 940 33.16
Sensihg Electrode 65 2.29
Primary Reference 43 1.52
Teflon Isolation Valve, V1 + Bracket 114 4.0
Measuring Loop Tubing & Fittings 467 16.47
Pressure Relief Valve 66 2.33
Sensor Chamber 898 31.67
Support (estimated) 375 13.23

Electronics Unit
Electronics + Preliminary Case 3624 128.0

8.734 kg 19.2 1b
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Figure 6-3. Fluid Handling Unit of Silver Ion Monitor
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The two-column assemblies are replaced by loosening the appropriate AN nuts on
the column connecting fitting then unscrewing the columns from the system.
After replacement of the columns, the water would have to be replenished and
all the air introduced during replacement would have to be removed from the
calibration loop. A fill-and-bleed valve is provided for this purpose. The
entire assembly is enclosed with an aluminum cover which contains the elec-

tronic components.

Within the fluid handling unit the water sample is exposed to a variety of
components and material surfaces. Table 6-2 lists the materials and surface
area of each component exposed to the water sample. The surface areas were
calculated from shop drawing dimensions or dimensions taken from components.
In a few cases where actual dimensions could not be readily obtained,
approximations were used. Errors due to approximations are expected to

be less than 10 percent.

6.4.1 Components

6.4.1.1 Manual Valve

The system uses a Teflon, manual, 4-way, 2-position valve that would be used
only when the sensor chamber, silver bromide column, or deionizer is to be
serviced. The valve chosen for this purpose is 5.4 centimeters (2-1/8 in.)
high, and the body is a 2.54-centimeter (l-in.) cube, plus fittings for the
0.635-centimeter (1/4~in.) diameter, stainless steel tubing. This is a
commercial valve manufactured by Fluorocarbon Company of Anaheim, California,

P/N SC P2-24-4C.

6.4.1.2 Fluid Pump

The fluid pump is a fixed-displacement, motor-driven gear pump. Its purpose

is to provide a constant flow of sample water to the sensor cell during sensing
and calibration. The gear pump is a magnetically coupled gear pump with a

316 stainless steel housing and Teflon gears on 316 stainess steel shafts.
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Table 6-2. Surface Areas of Materials Exposed to Water Sample
Exposed Surface
Component Material cm? in2
System Isolation Valve Teflon
Recirculating 3.27 0.5
Normal use 6.54 1.0
Solenoid Valves (2) Anodized Aluminum 3.9 ea 0.6 ea
Tubing, 1/4" OD 316 Stainless Steel(SS)
Monitoring loop 157.0 24.0
Calibration loop 107.9 16.5
Common to both loops 53.6 8.2
Tubing Fittings 316 Stainless Steel
Monitoring loop 62.8 9.6
Calibration loop 82.4 12.6
Common to both loops 49.0 7.5
Pump Teflon 52.3
316 Stainless Steel 30.0
-Electrode Cell Rubber 21.6 3.3
316 Stainless Steel 94.9 14.5
KEL-F 170.1 26.0
Epoxy 1.96 0.3
Polypropylene 5.9 .9
Columns
Ion Exchange 316 Stainless Steel 78.5 12.0
Silver Bromide 316 Stainless Steel 78.5 12.0
TOTALS 316 Stainless Steel 589.4 90.9
Rubber 21.6 3.3
KEL-F 170.1 26.0
Epoxy 19.6 3.0
Anodized Aluminum 7.8 1.2
Teflon 58.9 9.0
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The internal b&pass is set to 25 psid. The model 12-50-316 gear pump is a
motor-pump combination weighing approximately 1.587 kilograms (3.5 1b). The
motor that drives the pump is a shaded pale induction motor, 115 Vac, 50/60
cycle, 350.7 rad/sec (3350 rpm), 0.98 amp, with a thermal protector. The
pump-motor is 9.36 centimeters (3.69 in.) high, 8.58 centimeters (3.38 in.)
wide, and 19.3 centimeters (7.59 in.) long, and is manufactured by Micropump

Corp. of Concord, California.
The above pump was substituted for the high cost, qualified, flight-approved
Hydro-Aire component defined in the Instrument Package Definition, and was

purchased at approximately one-tenth the cost of the Hydro-Aire component.

6.4.1.3 Sensor Chamber

The sensor chamber provides a flow path by which the active parts of the
sensing electrodes are brought in contact with the water sample (Figure 6-4

and Table 6-3, and Figure 6-4A and Table 6-4).

The sensor chamber has been designed to be cylindrical in shape and contains
the silver ion sensing electrode, the reference electrode, the electrolyte
chamber, quartz fiber junction, and the replaceable electrolyte cartridge.

A thermocompensator is also mounted in the chamber.

Within the sensor chamber there are two flow paths:

o Water Sample. As the sample flows through the chamber, it passes
between the sensing electrode and the quartz junction of the
reference, then past the thermocompensator. The water sample
then flows through the cavity occupied by the rolling diaphragm
and to the chamber exit port, thus applying system pressure via
the diaphragm on the electrolyte reservoir in addition to the
spring pressure. Equalizing the pressure on both sides of the
quartz junction with system pressure is required to minimize
sensitivity of the reference to pressure changes (Figure 6-4
and Table 6-3).
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Table 6-3. Components--Sensor Chamber Cross Section (Figure 6-4)

1. Cap, Preamplifier, Sensing Electrode
2. Silver Wire to Preamplifier

3. Silver Sulfide Pellet

4. Sensor/Liquid Interface

5. Water Flow Path

6. Water Entrance Port

7. Quartz Fiber Junction

8. Quartz Fiber Junction Mount

9. Needle Mount

10. Vent

11. ©Nut, Septum Retainer

12. Septum, Silicone Rubber

13. Needle, Huber Bevel

14. Top, Electrode Reservoir

15, Piston, Diaphragm

16. Spring, Rolling Diaphragm

17. Electrical Connector, Sensing Electrode
18. Housing, Sensing Electrode

19. Chamber Body - Top
20. Thermocompensator (Thermistor)
21 Thermocompensator Housing

22. Electrical Connector Reference Electrode
23. Chamber Body
24, Water Flow Path, Downward
25. Electrolyte Chamber
26. Cap, Chamber, Lower
27. Water Flow Path - Lower

28. Nut, Retaining, Reservoir Top
29. 1M Potassium Nitrate
30. Bottom, Electrolyte Reservoir
31. Rolling Diaphragm

-FR-2656-101 6-12
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Figure 6-4A. Sensor Chamber Cross Section Through Reference Electrode
View A-A
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Table 6-4. Components--Sensor Chamber Cross Section Through

Reference Electrode.

View A-A (Figure 6-4A)

Drawing or

No. Part P/N Material
1 Cover, Preamplifier AGO044 Aluminum, nickel plated
Reference Electrode
2 Preamplifier "AG0043 Mixed-Ag0044
3 Housing, Reference Ag0045 Polypropylene (PP)
Electrode
4 Sensor Chamber Body -— KEL-F
5 Quartz Fiber Junction - Polypropylene
Mount
6 Electrolyte Chamber - Contains electrolyte
IM Potassium Nitrate
7 Diffusion Junction - Ceramic thread in glass tube
8 Electrolyte Gel - 0.1M Potassium Chloride (KC1)
1.0M Potassium Nitrate (KNOj)
3% Carboxy Methyl Cellulose
(CMC)
9 Silver Wire Coated with - Silver wire-silver chloride
Silver Chloride
10 Cap, Sealing - Silicone rubber
11 Silver Wire Direct from - Silver wire
Electrode to Preamplifier
12 Electrical Connector, PT1H-8-4-PW Ceramic and nickel plated
Bendix copper
FR-2656-101 6-14




e Electrolyte. The 1M KNO3 electrolyte which is stored in the rolling
diaphragm reservoir flows through the interconnecting needle into
the electrolyte chamber, then through the quartz fiber junction into
the sample flow path. The flow is estimated to be about 50 micro-
liters (1.69 x 10-3 f£1. oz) per day. The concept of a replaceable
rolling diaphragm reservoir is proposed to simplify maintenance and
increase reliability. The replaceable reservoir is described in

paragraph 6.4.1.5.4.

The sensor chamber differs from the chamber described in the Instrument Package
Definition in that the flow path of the water sample and the pressure-equalizing
sample paths have been combined to eliminate a blind path which could present
filling problems, and electrode noise due to air pockets oscillating against the
rolling diaphragm. The site of the thermocompensator has been changed and the
top of the chamber modified to accept a larger modified sensing electrode

(described in paragraph 6.4.1.4).

The sensor chamber is connected to the monitoring system as shown in Figures
6-1 and 6-3. All tubing parts are AN 10050-4. The electrical connections
between the sensor chamber and electronics subassembly utilize Bendix or other
approved electrical disconnects. The component parts of the sensor chamber

are shown in Figure 6-5, with materials and weights given in Table 6-5.

The sensor chamber measures 5 centimeters (2 in.) in diameter and 12.7 centi-

meters (5 in.) in length. Its weight is 907.5 grams (1.99 1b).

6.4.1.3.1 Sensor Chamber Interface

The sensor chamber is connected to the water system via V1 and to the cali-
bration loop when the two electrically-operated solenoid valves, V2 and V3,
are activated (Figure 6-1). These valves will be activated automatically
during the short calibration sequence which will be controlled by the

" calibration electronics.
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Figure 6-5. Sensor Chamber Component Parts and Tools
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Table 6~-5 (Sheet 1 of 2).

Component Parts and Tools-—-Sensor
Chamber (Figure 6-5)

Weight
No. Part Drawing or P/N Material Grams _oz.
1 | Sensing Electrode Ass'y AGOO See Table 6-2 | 65.5 2.3
2 | Quartz Fiber Junction AG0041 Lead Glass 0.5 0.02
Quartz Fiber
3 Speedserts, Tridair Industries SPB-1032S (4) Stainless 2.8 0.1
4 Quartz Fiber Junction Mount AGO030 Poi;;:ipylene 1.3 0.05
5 | O-Ring, Parker 3;904 N674-7 Nitrile| 0.1 ea
6 | Mounting Screws Pan Head 10-32X.37 (3) Steel 7.8 0.28
7 | Bracket, Cell Mount AG0056 12.5 0.44
8 | Needle Ass'y AG0022 316 SS 9.3 0.33
9 Spanner Wrench (required for AG0032 SS ———— c———
assembly)
10 | Nut, Septum Retaining AG0021 316 sS 6.1 0.22
11 Nut, Retaining Upper Diaphragm AG0024 316 SS 33.9 1.2
Support
12 | Top, Electrolyte Reservoir AG0025 KEL-F 47.4 1.67
13 | Bottom, Electrolyte Reservoir AGO026 KEL-F 49.9 1.76
14 Spring, Rolling Diaphragm AGO035 302 CRES 2.0 0.07
Cond 13
15 | 0-Ring, Parker 2-111 N674-7 Nitrile] 1.2 0.04
16 | Speedsert SPB-1032-S SS 1.0 0.04
17 | 0-Ring, Parker 2-111 N674-7 Nitrile] 0.9 0.04
18 | Chamber Body AG0027 KEL-F 378.0 13.33
19 Thermocompensator Ass'y AG0023 316 SS Epoxy | 20.2 0.71
19A| 0-Ring, Parker 3-904 N674-7 Nitrilel 0.1 ----
20 | Union ANB15-4K (2) 316 ss 38.8 1.37
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Table 6-5 (Sheet 2 of 2).

Component Parts and Tools--Sensor
Chamber (Figure 6-5)

Weight
No. Part Drawing or P/N Material Grams 0z .
21 | Reference Electrode Ass'y Mixed 43.0 1.52
(Primary)
22 | O0-Ring, Parker 2-111 N674-7 Nitrile| 0.8 0.04
23 | Retainer Ring N-5000-62-H 316 sS 0.5 0.02
24 | Wrench, Septum Retainer (req'd AGO033 SS “——= mees
for assembly)
25| Septum, Hamilton Silicone 1.0 0.04
Rubber
26 | 0-Ring, Parker 2-117 N674-7 Nitrilef 0.45 0.02
27 | O-Ring, Parker 2-134 N674-7 Nitrile| 1.0 0.04
28 Diaphragm, Rolling (Bellophram) 3-112-94-CBJ BUNA-N 2.6 0.09
29 Piston, Diaphragm AG0020 KEL-F 4.7 0.17
30 | Cap, Chamber, Lower AG0029 316 sS 174.0 6.17
TOTAL 907.5 (1.99 1b)
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6.4.1.3.2 Materials and Subsystem Compatibility

All items in contact with the potable water are 316 stainless steel, KEL-F,
Teflon, or epoxy with the exception of the sensors and solenoid valves. Materials
in contact with the potable water (see paragraph 6.3.3 and Table 6-~2) were not
expected to affect or be affected by the system water. However, during testing,

a rapid depletion of silver ion from the water was observed and was traced to
adsorption of silver on the surfaces of the system, especially the 316 stainless

steel. This adsorption is described in paragraphs 8.4 through 8.7.

6.4.1.4 Prototype Silver Ion Sensing Electrode

The prototype silver ion sensor is a solid-state silver sulfide electrode which
was shown to exhibit Nernstian response to lower than 10 ppb of silver ion.
The active element of the electrode consists of a dense silver sulfide pellet

or membrane fabricated with a silver wire as an integral part of the pellet.

The silver sulfide pellet and integral silver wire were cemented in a poly-
propylene housing which also contained a preamplifier located as close as
possible to the sensing element and connected to the element by the silver
wire. The electrode develops a millivolt (potential) output as a result of
exchange or transport of silver ions from a sample solution through the pellet
or membrane. The electrode exhibits Nernstian response to changes in silver
ion activity, that is, 59 millivolts per decade change in silver ion activity

at 25°C (77°F).

The inclusion of the preamplifier in the electrode housing was recommended by
the design review board to reduce interference and background noise. The
configuration of the prototype silver ion sensing electrode is shown in Figure

6-6 and the component parts in Figure 6-7 and Table 6-6.

6.4.1.4.1 Adhesives and Fabrication Techniques for Wide Temperature Use
Sensing Electrodes

In parallel with the prototype electrode design effort, several epoxies and
RTVs and varied fabrication techniques were investigated for sealing the
silver sulfide pellets in the polypropylene bodies to produce a sensing

(silver sulfide) electrode with wide temperature use--in particular, use at

65°C (149°F).
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Figure 6-6. Configuration of Prototype Silver Sulfide Electrode
with Preamplifier and Cap
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Figure 6-7. Prototype Sensing (Silver Sulfide) Electrode--
Component Parts
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Table 6-6. Component Parts - Prototype Sensing (Silver Sulfide)
Electrode (see Figures 6-6 and 6-7)
Weight
No. Part Drawing or P/N Material (Grams) (o0z.)
1 | Connector, Electrical | PT1H-8-4PW Brass-Nickel 5.8 0.2
: Bendix Plated
2 Screws, Cap Retaining | 4-40X.31 (4)° SS 1.95 0.7
3 | Preamplifier AGO038 Mixed, see 6.7 0.24
AGO039
4 Speedserts, Tridair SPA-0440-S (4) | SS 0.5 0.02
Industries
5 | Electrode Body, Polypropylene 24.1 0.84
Bottom View
6 | O-Ring, Outside, 2-121 N674-7 Nitrile 0.6 0.02
Parker
7 | silver Sulfide Pellet Ag,S/Ag 0.5 0.02
with Silver Wire
8 | Cap, Sensing AG0034 Aluminum 15.8 0.56
Electrode Nickel Plated
9 Screws, Electrode 10-32X.63 (4) SS 9.4 0.33
Retaining Pan Head
10 Electrode Body, Top -- - --
View
11 Water Flow Path -- -—- -
12 | 0-Ring, Inside, . 2-022 N674-7 Nitrile 0.25 0.01
Parker
TOTAL WEIGHT | 65.5 2.3
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A wide temperature range sensing electrode was needed since the silver ion
monitors were originally intended to be placed downstream of the water heaters
and chillers in the water system. This presented numerous other problems in
addition to those associated with the electrodes; therefore, the location of
the silver ion monitor(s) was changed to upstream of the heaters and chillers.
Consequently, all effort was terminated toward developing a higher use tempera-
ture electrode. Since the test data is no longer relevant to the present

program, it is presented in condensed form in Appendix A.

6.4.1.5 Reference Electrode

A variety of reference electrode designs were evaluated during the technique
testing phase of the previous contract. The final configuration that was used
to obtain concept verification data was based on an earlier Beckman effort for
NASA in the preliminary design of a water pH monitoring system for Apollo.
This design appeared to meet all the system requirements. The prototype
design is shown as part of Figures 6-4 and 6-4A, and is described in the
following paragraphs. Figure 6-8 and Table 6-7 show the component parts of

the primary reference.

The reference electrode subsystem consists of the following components, all

contained within or attached to the sensor chamber.

@ A silver-silver chloride primary reference containing a diffusion
junction and a saturated solution of potassium chloride as the

electrolyte;

° A bridging or secondary electrolyte chamber containing one molar

potassium nitrate;

® A quartz fiber junction having a flow of approximately 50 micro-

liters (1.69 x 10-3 f£1 oz) per day of electrolyte;
e A replaceable electrolyte cartridge;

e A needle to connect the secondary electrolyte chamber with the

reservoir.
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Figure 6-8. Reference Electrode (Primary)--Component Parts
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Table 6-7. Component Parts - Reference Electrode (Primary) Figure 6-8
Drawing or Weight
No. Part P/N Material (Grams) (0z.)
1 Connector, Electrical | PT1H-8-4PW Brass-Nickel 5.8 0.2
Bendix Plated
2 Screw, Preamplifier 2-56 x .31 SS 0.5 0.02
Retainer
3 Speedserts, Tridair SP-0256-5S SS 0.1 0.004
Industries
4 Screws, Cap Mounting 4-40 x .31 SS 1.45 0.05
Pan Head(3)
5 Wire, Silver 0.025 dia Ag 0.15 0.004
6 Ceramic Thread 0.040 dia <0.1 <0.004
(Diffusion Junction)
7 Cap, Preamplifier AGO044 Aluminum 15.2 0.54
Reference Electrode Nickel Plated
8 Preamplifier, AG0043 Mixed 6.5 0.23
Reference Electrode See AG0044
9 0-Ring, Cap 2-020 N674-7 Nitrile 0.2 0.007
Sealing, Parker
10 Housing, Reference AGO045 Polypropylene 6.9 0.24
Electrode
11 Electrode, Glass Body Glass 4.2 0.15
12 Electrolyte Gel 0.01M KC1 2.0 0.07
1.0M KNO4
3% CMC
Water
TOTAL WEIGHT 43.0 1.5
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6.4.1.5.1 Silver-Silver Chloride Electrode

The silver-silver chloride primary reference has an inner glass body mounted

in a plastic housing, the top of which also contains a preamplifier connected
directly to the internal silver wire. The internal silver wire is coated with
silver chloride and surrounded by a gel containing 0.0l molar potassium chloride
and 1 molar potassium nitrate. A porous ceramic rod provides a diffusing liquid

junction with the 1M KNO, electrolyte in the electrolyte chamber.

3

6.4.1.5.2 Quartz Fiber Junction

The quartz fiber junction consists of quartz fiber(s) heat sealed in the end
of a glass tube which is cemented in a polypropylene disc. The disc is held
in place opposite the active element of the sensing electrode (silver sulfide
pellet) by a portion of the lower section of the sensing electrode housing.
The periphery is sealed by means of an O-ring. The quartz fiber junction may

be replaced after removal of the sensing electrode from the sensor chamber.

6.4.1.5.3 Secondary Electrolyte Chamber

The secondary (1M KNO3) electrolyte chamber forms a part of the sensor chamber
body. The body of the silver-silver chloride reference electrode extends into
the electrolyte chamber. The 1M KNO3 electrolyte connects the quartz fiber
junction to the diffusion junction of the silver-silver chloride electrode,

thus establishing a double-junction reference.

6.4.1.5.4 Electrolyte Cartridge

The replaceable electrolyte cartridge contains approximately 5 ml of 1M KNO3,
which would be expended in approximately 100 days when installed in the sensing
unit. The cartridge body is KEL-F and contains a rolling rubber diaphragm. A
spring is provided to press on the diaphragm and produce a constant electrolyte
pressure on the quartz fiber junction. The water from the sample stream is
routed to the outside of the rolling diaphragm to balance the sample pressure
seen by the quartz fiber junction. Thus, the actual pressure differential
across the quartz fiber junction is that supplied by the spring. The cartridge

would be prefilled, and have an estimated shelf life of greater than 2 years.
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The cartridge has been designed to be sealed by a silicon rubber septum. When
installed in the sensor chamber, a hypodermic-type needle pierces the septum,
allowing the electrolyte to enter the secondary electrolyte chamber. The
electrolyte cartridge is not intended for in-flight replacement but for

ground replacement.

6.4.1.5.5 Electrolyte Needle

The hypodermic-type needle which connects the electrolyte reservoir with the
secondary electrolyte chamber is stainless steel and is soldered to a 316
stainless steel mount. The periphery of the needle mount, when in place, is
sealed with an O-ring. A retaining ring holds the needle mount in place in

the body of the sensor chamber.

6.4.1.6 Chamber Cap

The lower section of the sensor chamber which contains the electrolyte cartridge
is covered with a 316 stainless steel screw-on cap. The cap provides a chamber
in which the water sample applies system pressure to the rolling diaphragm of
the electrolyte cartridge. An O-ring provides a seal between the cap and

sensor chamber body.

6.4.1.7 Thermocompensator

The thermocompensator consists of a specially chosen thermistor pair having
electrical characteristics that vary with temperature in such a manner as to
compensate electrically for response changes of the sensing electrode temper-
ature variation. The thermocompensator is located in the main flow path of

the water sample within the sensor chamber (see Figure 6-4).

The thermocompensator is mounted in the sensor chamber via a threaded con-

nection and is readily replaceable.

6.4.2 Calibration System

6.4.2.1 Theoretical Design

The approach for accurate calibration is based on the principle of ob-

taining a known concentration of silver ions by saturating deionized water
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with silver bromide. At a given temperature, the concentration of the silver
ions in the saturated solution would be accurately known. A closed-loop cali-
bration system circulates water through an ion exchange column where all silver
ions are removed, then through a silver bromide/glass bead column where the
water becomes saturated with silver ions. The saturated solution passes through
the pump, then through the sensor chamber where the silver ions are detected by
the electrodes. The automatic calibration electronics compares the output of
the electrodes with the known value and performs an electronic compensation
accordingly. Since the solubility of the silver bromide in water varies sig-
nificantly with small changes in temperature, a means of compensating for the
change in solubility is required. A thermocompensator, located at the silver
bromide column exit and connected to the calibrating electronic circuitry, should
provide the necessary correction. However, such correction has not been demon-
strated due to malfunction of the thermocompensator. In addition, the water
recirculating through the calibration loop has not become saturated to the
correct level of silver ion as it passes through the silver bromide column.

The cause of this has not yet been determined. The calibration loop is shown

as part of Figure 6-1 and in Figure 6-3.

6.4.2.2 Mechanical Design

During the calibration mode, both 3-way, 2-position solenoid valves are ener-
gized, providing a closed loop of fluid for circulation through the silver ion
sensor chamber. The water first goes through an ion exchange column where the
anions and cations are removed. The fluid then enters the silver bromide column

where the silver bromide saturates the fluid with 70-80 ppb [Ag+] at 25°C (77°F).

The use of individual columns for the ion exchange resin mix and the silver bro-
mide is a departure from the Instrument Package Definition. The estimated weight
of the dual-column assembly is 1360 grams (3 1b), while the actual weight of the
two packed columns with fittings and thermocompensator is 398 grams (14 oz)--a
savings of almost 1000 grams (2.2 1b). In addition, the use of two columns in
place of the originally proposed dual-column assembly provides for easier re-
placement, and facilitates smaller packaging of the mounting system. The

configuration of both columns is identical, while the packing of each is
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different. Figure 6-9 shows the configuration of the ion exchange column. The
overall dimensions of the column are 2.54 centimeters (1.0 in.) diameter by

14.2 centimeters (5.6 in.) long.

6.4.2.3 Ion Exchange Column

The column contains 15.2 grams (0.5 oz) of a 50-50 mixture of Amberlite anionic
type IR-45 and cationic type IR-120 ion exchange resins. These resins remove
silver and bromide ions as well as other ions from the calibration fluid. The

deionized water is then routed to the silver bromide column.

6.4.2.3.1 Preparation Procedure

The preparation procedure described in the Chemtric Inc. Final Report 3097,
dated July 1972 (NASA CR 115595) was used as a guide.

Resin IRA-402 was not available either locally or from the manufacturer, Rohn &
Haas. Since it is a strong basic resin used only to control pH, a substitute
was not used because our test system fluids did not contain any strong acids

such as HC1l and HF--thus, did not require pH adjustment.

Analytical grade amberlite resins IR-120 and IR-45 were washed separately by
placing a 50 cm3 quantity in a 2.54-cm diameter by 38 cm Pyrex glass chroma-
tography column and percolating 6 to 7 liters of boiling deionized water
through the column over a period of one hour, at which time the effluent of

the column was clear and odorless.

The stainless steel column (or canister) and fittings were prepared as follows:

Hot water detergent solution wash

Rinsed 5 times with deionized water
Soaked 18 hours in 30% nitric acid

Rinsed 5 times with deionized water
Soaked 18 hours in 20% ammonium hydroxide

Rinsed 5 times with deionized water

Rinsed 5 times with distilled water
Dried at 75°C (167°F) in oven for 18 hours

0o N o &~ LN =
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The resins were mixed 50-50 by volume and the column packed as described in
the Chemtric report. As a departure from the recommended procedure, however,

the packed column was not sterilized for the following reasons:

b fE% Cleaning and baking of the stainless steel ports should have
effected sterilization of these ports.

2. Washing of the analytical grade resins with boiling water should

have sterilized the resins.

3. Input to the column was to be distilled water containing 50 ppb or

greater of silver ion which should not contain any live organisms.

4. Circulation or recirculation through the system of distilled water
containing a bactericidal level of silver ion should keep the other

non-sterilized components of the system free of live organisms.

The departures from recommended procedures may have resulted in the inability

to obtain theoretical responses when the calibration loop was placed into the
system. The relationship of the departures to the observed effects, however,

are not readily apparent.

6.4.2.4 Silver Bromide Column

The silver bromide column contains 35.5 grams (1.25 oz) of a silver bromide/
glass beads mixture. As the calibration water passes through the bed of silver
bromide/glass beads, it becomes saturated with silver bromide.* The 50-micron
glass beads are mixed with the silver bromide to increase the surface area of
the silver bromide. The ratio by weight of the glass beads to silver bromide
is 1/0.8. There are suitable screens and filtration material at the inlet and

outlet to prevent loss of the glass beads/silver bromide granules.

The glass beads/silver bromide mixture used was that supplied by Chemtric, Inc.

*Demonstrated to be true for flow-through tests (see Section 7.2.4.4), but fluid
recirculating in calibration loop failed to reach theoretical level of 78 ppb
at 25°C.
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The stainless steel column and fittings were prepared the same as the ion

exchange column and fittings described in Section 6.4.2.3.

6.4.2.5 Fill and Bleed Valve

Provision to add water and bleed any trapped air when the deionizer column or
silver bromide column is replaced is provided by the fill and bleed valve
located in the AN938 TEE which connects the deionizer column to the output of

of solenoid valve V3.

6.4.2.6 Interface Design

During the calibration mode, the point of interface is at the solenoid valves.
The normally closed solenoids open when energized, isolating the calibration

loop. Energizing the two solenoids requires approximately 55 watts.

6.4.2.7 Solenoid Valves

The selected solenoid valves are 3-way, 2-position, normally closed valves that
are flight-qualified, off-the-shelf components.* The power required is 18 to
28 Vdc. The coil has a resistance of 39 #2 ohms at 21°C (70°F). The body is
fabricated from 2014-T6 aluminum with a stainless steel spindle. All parts

are AND10050-4. The valve has passed a 250,000-cycle endurance test conducted

by the manufacturer.

6.4.3 Pressure Relief Valve

A small relief valve is included to reduce the pressure from the fluid pump to
the sensor chamber. If the relief valve opens, the excessive flow would be
routed to the main flow line. The valve is an in-line relief valve with 316
stainless steel body and fittings, 302 stainless steel spring, Buna "N" O-ring,
and Teflon gasket--model SS-4CA-3 manufactured by Nupro Company, Cleveland,
Ohio.

*Manufactured by Futurecraft, P/N 20950, and qualified by North American
Rockwell Corporation.
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6.5 Monitor Electronics

6.5.1 General
The monitor electronics were designed to perform the following basic functions:

a. Amplify and condition the signal from the electrode system to give a

readout in parts per billion of silver ion:

b. Compensate automatically for temperature variations in the solution

and system;

Cs Generate an automatic timing sequence that would periodically cali-

brate the unit;

d. Allow a calibration sequence to be manually initiated at any time,

but without affecting the automatic sequencer;

e. Give an indication if calibration is not achieved by the end of the
calibration period; indicator would be automatically reset at the

start of each calibration sequence;

f. Store the last output just prior to a calibration interval so that

it could be manually recalled during a calibration period.

Although the original design concept was modifed somewhat later in the program,
the original rationale will be discussed first. The modifications are described

in Section 9.0.
Figure 6-10 shows the indicators and controls that are required for the sensor

electronics. The original general block diagram for the electronics is shown

in Figure 6-11.
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Figure 6-10. Electronic Controls and Indicators
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6.5.2 Electrical Design

The electronics may be broken down into the following basic funétions:

° Logic and Valve Actuation

a. Sequencer
b. Logic
Valve driver

Valves

® Calibration Electronics

a. Comparators

b. Analog-to-digital and digital-to-analog converters

¢c. Counter logic

° Signal Processing and Readout

a. Electrode preamplifiers
b. Buffers
Instrumentation amplifier

c
d. Thermocompensation circuits

m

Sample-and-hold circuit

a1

Readout meter

® Electronic Integration Components

a. Power conditioning
b. Wiring harness

c. Front panel

6.5.2.1 Logic and Valve Actuation

A detailed block diagram of the logic and sequencer system is shown in Figure
6-12. The unit consists of a clock oscillator, base divider, divider chain,

logic, and drivers. The logic is positive.

The clock oscillator consists of a pair of operational amplifiers (74ls) con-

nected as discriminator and integrator circuits in a loop. The output of the
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oscillator loop is a 25 Hz square wave. After level buffering, the 25 Hz

square wave is divided down by means of three CD4024AK's (each is a 7 flip/flop
divider chain). Several of these divider outputs are used to operate additional
logic which generates the signals to operate valves and places the unit in

calibration.

Approximately every 24 hours, a reset signal, which acts as a '"hang-up'" counter,
is generated by the sequencer and divider. The "hang-up" counter counts up to
seven, which takes about 10 minutes. When it reaches seven, it "hangs-up'", and

stays in this state until 24 hours later, when the next reset pulse arrives.

The outputs of the "hang-up'" counter generate all calibration signals. The
10 minute period in which the '"hang-up'" counter operates coincides with the

calibration interval.

A reset signal (and hence an additional calibration interval) may also be
initiated manually at any non-calibration time by the manual initiation of

a calibration switch.

6.5.2.2 Automatic Calibration Electronics

The calibration electronics responds to the signal from the logic every 24
hours, or whenever the calibration sequence is manually initiated. The
"gtabilize system" signal is on for seven count periods. This amounts to

about 10 minutes.

In the Instrument Package Definition (Report COR-2639-1, 23 March 1972), the
calibration electronics contain a motor-driven potentiometer to adjust or
calibrate the system. The prototype monitor, however, utilizes analog and
digital logic circuits to accomplish calibration. This change was recommended
as part of the findings of the preliminary Failure Mode and Effects Analysis

(FMEA) to reduce weight, size, and power requirements and to increase

reliability.

Figure 6-13 shows a block diagram of the calibration electronics.
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During the calibration period, the sequencer actuates the solenoid valves and
places the fluid system in a calibration configuration. Also, the amplifier
output is fed to an analog-to-digital converter. The digital output is logi-
cally examined to see if it is in a desired "dead zone." If it is, nothing
happens. If not, pulses (derived from the sequencer) are allowed to operate a
counter and digital-to-analog converter. As the counter counts up, the digital
output is converted to a bias correction voltage which is fed back to the ampli-
fier. The dead zone corresponds to the correct output for the calibration silver
concentration. When the dead zone is reached, no more pulses are allowed to pass.
The counter/digital-to-analog converter (DAC) stays in that state, generating

that bias correction voltage until the next calibration interval,

During the start of calibration, the dead zone may be below the voltage at which
the calibration system starts. If so, the counter gets up to its maximum count
and resets, then continues counting up to where it finds the dead zero zone

(Figure 6-14).

After the calibration is supposedly finished (but before the end of the cali-
bration interval), the logic checks to see if the amplifier is in the dead zone.
If it isn't, the NO-CALIBRATION light comes on (and stays on until the next cal-

ibration interval) to alert the operator that the system is not in calibration.

6.5.2.3 Signal Processing and Readout

Figure 6-15 is a block diagram of the original signal processing and readout
system. Each system electrode has a preamplifier within the electrode body.

These preamplifiers are FET-input types with an input impedance of 1015 ohms.

The difference between the two electrode preamplifier outputs is further ampli-
fied by two differential amplifiers whose outputs are referenced to solution
ground. The first differential amplifier has an input for the calibration bias
signal and has its feedback resistor value modified appropriately by the elec-
trode chamber's dual thermocompensator, so that the temperature effect on
electrode characteristics are cancelled out. The thermocompensator also responds

to temperature changes more quickly than the system temperature will ever change.
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The second differential amplifier feeds a temperature cprrecting network (used
only in calibration) and two analog switches, controlled by analog switch H.
During normal operation, both analog switches are shorted out, so the signal
is fed to the meter, which is referenced to a voltage equivalent to 15 ppb of

silver.

A thermocompensator in the silver bromide bed compensates for variations in the
degree of saturation solubility with temperature. If this compensator has in-
correct characteristics, the system calibrates with an error that is dependent
on temperature. This compensator has a temperature response that is much
shorter than the initial stabilization period that occurs at the start of the

calibration cycle.
During calibration, the two analog switches from the second amplifier are open
and a third analog switch closes to connect the calibration temperature compen-

sation network.

The signal is now corrected for any temperature variations in the calibration

fluid concentration.

If the sample/hold switch 1s pressed, the meter should read out the value of

the last reading prior to calibration (stored in the storage capacitor).

6.5.2.4 Electronic Integration

° Power Conditioning. The following voltages are required to operate

the electronics:

110 Vac, 50/60 Hz - Pump

+28 Vdc - Valves '

+15 Vdc ~ Preamp, Amplifier, and Sequencer
+ 5 Vdc - Logic

-15 Vde - Preamp, Amplifier, and Sequencer

Power at 110 Vac, 50/60 Hz would be obtained from the spacecraft
supply, as would +28 Vdc from which the remaining dc voltages
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would be derived. Figure 6-16 shows the power distribution and

conditioning system.

EMI/RFI filters, protective zeners, resistors, and circuit breakers

were not used -on the prototype.

° Packaging and Interconnections. The preamp buffers are in a shielded

section of each electrode housing. The balance of the electronics,
less the pump-motor and valves, is on printed circuit boards.

Shielded wires are used to interconnect the following items:

Indicators and controls on panel
Electronics PC Board

Vlaves

Pump~motor

Input power lines

Electrodes

Thermistors in system

6.6 Material

In addition to the materials used in the sensor chamber, the following materials

were originally used in the system:

) Supporting frame and cover--aluminum

I Tubing--0.64 cm (1/4 in.) 316 stainless steel

. Solenoid valves--aluminum

. Manual valve--Teflon

] Electronic housing--aluminum

® All MS fittings--316 stainless steel

. Two-column assemblies-~316 stainless steel
6.7 Finishes

All aluminum parts in contact with the water have been anodized per MIL-A-3625,

and all stainless steel parts passivated per MIL-S-5002 or electropolished.
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6.8 Interface Requirements

The silver ion monitoring system requires the following interface requirements

with the Space Shuttle vehicle:

° An electrical connection is required for 28 Vdc and 110 Vac, 50/60
Hz, spacecraft power. The power requirements are estimated to be
approximately 30 watts during the silver ion concentration monitoring

mode, and approximately 85 watts during the calibration mode.

° Two liquid connections at each monitoring site are required. The
interface connections would be made to thé main water line via two
stainless steel, double-ended, shutoff, quick disconnects. The use
of double-ended shutoffs would eliminate leakage whenever the silver
ion detector assembly is removed from the main line. The suggested

quick disconnect is a commercial component--Swagelok P/N 400QC-6.

6.9 Preliminary FMEA

The detailed design phase included a preliminary Failure Mode and Effect Analysis
(FMEA). Each system component (electrical and mechanical) was studied for
possible failure modes. Each failure mode was considered as to its effect

on system performance. Any nonfail-safe situation was rectified by design

or component changes. Quality assurance, reliability, and safety were

included in the preliminary FMEA (Appendix B).
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7.0 PRELIMINARY TESTING

7.1 General

The preliminary testing program was designed to test independently each major
component under as many simulated use conditions as practical to determine
performance characteristics, i.e., response of sensing electrode, to determine
mechanical stability with particular attention to pressure, flow, and tempera-
ture effects, and to determine if the purchased or fabricated parts met design

specifications and were suitable for the intended application.

The preliminary testing program was intended to encompass all testing, including
integration and troubleshooting, prior to verification testing. However, during
the early stages of testing the fluid handling unit and the potentiometric
electrodes, a rapid loss of silver ion was observed from the recirculating
water. In addition, a degradation of the silver sulfide electrode was noted.
Following the modifications deséribed in Section 9.0, the electronics were

integrated with the remainder of the system. This is described in Section 10.3.5.

The rationale used for choosing the test conditions was based on the character-
istics of the Space Shuttle Potable Water System. However, since the silver
ion monitor will be upstream of both the water chiller and heater, the proposed

test temperature range was limited to ambient--23.9 +8.3°C (75 +15°F).

Prior to assembly, each component was separately tested under simulated use
conditions. However, since the function(s) and performance(s) of the éomponents
or subsystems vary widely, they were divided into two subsections. Paragraph 7.2
describes the Criteria and Preliminary Testing of Components--Fluid Handling

Unit, which includes the following components:

. Sensing electrode

° Reference electrode
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Ion exchange column
Silver bromide column
Solenoid valves
Motor-pump combination
Sensor chamber

Manual valve

Pressure relief valve

Paragraph 7.3 describes the Criteria and Preliminary Testing of Components-—-

Electronic Section. - The preliminary testing was such that unacceptable per-

formance characteristics, design weaknesses, or other problems could be

detected and corrected prior to final assembly or verification testing.

7.2

7.2.1

7.2.1.1

Criteria and Preliminary Testing of Components--Fluid Handling Unit

Sensing Electrode (Solid State, Silver Sulfide)

Criteria--Design Goals

The sensing electrode must exhibilL typical Nernstian response--
59 mV/decade +2 mvV--at 25°C (77°F) from 15 ppb to 150 ppb silver

ion concentration;

The sensing electrode must not exhibit a noise factor in excess of
10 percent full-scale of meter reading, or 1.5 ppb, whichever is

greater;

The sensing electrode must be physically stable and show less than
15 percent apparent offset from known concentrations of silver ion

due to pressure and flow changes, as defined for the system;

The sensing electrode must not exhibit a thermal degradation due to
exposure over the temperature range of 15.6 to 32.2°C (60 to 90°F).
Instability, excess noise, or change in Nernstian response outside
the range of 59 mV/decade *+2 mV with temperature compensation will

be cause for rejectionj

The sensing electrode must have a temperature coefficient that can
be readily compensated for electronically (thermocompensator, i.e.,

resistor or thermistor in the measuring circuit).
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7.2.1.2 Test Procedure

Due to the inclusion of a preamplifier in the sensing electrode housing, the
configuration of the electrode was such that pressure, flow, and thermal char-
acteristic tests required the use of the sensor chamber. These tests, however,
were never performed since they were precluded by the effort expended toward the

problem of loss of silver ion from solution.

The response tests were made following conditioning in 10 ppm silver ion solution
at 40°C (104°F) for 72 hours. The tests were made prior to installing the pre-

amplifier and shielding cap as shown in Figure 7-1.

The tests were performed at ambient temperature--25°C (77°F)--utilizing the beaker
test setup shown in Figure 7-2. The components are identified in Table 7-1. The
electrode was supported by a test frame and support bar as shown in Figure 7-1.
Only that portion of the electrode containing the silver sulfide pellet or mem-
brane was immersed in the test solution. Test solutions of 50 and 500 ppb silver
ion were used. Between changing of test soldtions, the beaker and electrodes were
dip-rinsed in a portion of the new test solution which was discarded. The milli-
volt response readings were taken after the strip chart recording indicated a

stable reading.

7.2.1.3 Test Results

The prototype silver ion sensing electrodes were identified with the letters PR
Plus a number. Table 7-2 gives the preliminary test data on the first batch of
seven electrodes. Of the seven electrodes, two exhibited theoretical Nernstian
response with low noise and no drift, while two exhibited borderline response
but were usable. Later, two other batches were made of a modified sensor con-

figuration. Data on these are given in Section 10.

FR-2656-101 7-3



SUPPORT ROD

PREL IMINARY
TEST FRAME

ELECTRODE
BODY

(POLYPROPYLENE) \K \[

ABNC__ SILVER WIRE

\\\\\\\___SILVER SULFIDE

PELLET

\___ SAMPLE FLOW PATH

SECTION THROUGH A-A

Figure 7-1. Prototype Sensing Eiectrode (Silver Sulfide)
Configuration (Series PR) without Cap and Preamplifier
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Table 7-1. Component Identification--Beaker Test Setup

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

316 Stainless-steel rod or tube for solution ground
Glass beaker, 106 or 600 ml, shielded with item &4
Liquid sample, 80 or 500 ml

Aluminum foil shield connection to solution ground
Ground or frame connection on stirrer

Magnetic stirrer

Magnetic stirrer power connection - no ground
Teflon coated stirring bar

Salt bridge with ceramic junction containing 1M KNO3 solution
Aluminum foil shield on beaker

Silver sulfide electrode, any configuration
Reference electrode - Beckman Perma Probe No. 39407
Glass electrode connection

Reference electrode connection

Solution ground

pH meter, Beckman Century SS-1 No. 76009 or Beckman 940 pH Analyzer
pH meter power connection - no ground connection
Positive output from pH ﬁetet

Negative output from pH meter

Positive input to strip chart recorder

Guard connection with jumper to positive input
Negative input to strip chart recorder

Recorder power connection - with ground connection

10-inch strip chart recorder, Beckman 100 mV range, No. 100500
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Table 7-2. Preliminary Test Data--Sensing Electrodes

Response at

. 25°C (77°F) Noise

Identification mV/decade _mv__ Drift
PR-1 59 *1 None
PR-2 <20 +1.75 Continuous

after 2nd conditioning 44 Upward
PR-3 60 +2 None
PR-4 after 2nd conditioning 60 £1.75 Slow Downward
PR-5 after 2nd conditioning 56 1 None
PR-6 42 +1 None
PR-7 64 £2 None
NOTE: Electrodes PR-1 and -3 Nernstian response, acceptable

Electrodes PR-5 and -7 borderline but usable

FR-2656-101
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7.2.2 Reference Electrode

7.2.2.1 General

The reference electrode is composed of more than fifteen components, most of
which have no active function other than support, sealing,‘etc.; therefore,
there are no meaningful tests for most of these parts. Since such components
account for about 80 percent of the sensor chamber, the reference electrode
could only be tested when the sensor chamber was completely assembled,
containing a sensing electrode. Two components, however, did lend themselves
to preliminary screening tests--the primary silver-silver chloride reference,

and the quartz fiber junction.

7.2.2.2 Quartz Fiber Junction

The quartz fiber junction must provide a liquid-liquid junction with the sample

and must have the following characteristics:

o Flow rate of electrolyte, one molar potassium nitrate (1M KNO3),
through the junction must be very low--between 50 to 150 ul per

day under a force of 6.89 x 10° +1.72 x 10° N/m? (1 psig +0.25 psig);

° The electrical resistance across the junction must be less than 40

kilohms when measured in 1M KNO3 at ambient temperature.

7.2.2.2.1 Test Procedure

The quartz fiber junction is formed at the end of a 15-cm (6-inch) length of
glass tubing and is tested in this configuration prior to final assembly. The
quartz fiber junction was connected to a 0.1 ml glass pipette (graduated in
0.01 ml) with an adapter. The pipette and junction were filled with 1M KNO3
solution. The pipette and junction were held vertically and air pressure at
6.89 x 103 N/m2 (1 psig) applied to the top of the pipette. The movement

of the meniscus past the graduations was observed over a period of hours. The

24-hour flow was then calculated.
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The electrical resistance of the junction was measured by filling it with 1M
KNO3 solution, immersing the tip in the same solution; then a pair of silver
wires placed in the fluids on both sides of the junction and connected to a
conductivity meter. The resistance across the junction was measured at 1000 Hz

to prevent polarization.

7.2.2.2.2 Test Results

Since the fabrication of a quartz fiber junction having the required character-
istics is not an exact science, a large number of junctions were made and

tested. The data on those few which were acceptable are shown in Table 7-3.

Table 7-3. Quartz Fiber Junction Test Results

Flow ul/day at Resistance
6.89 x 103 N/m2 K ohms
No. (1 psig) at 1000 Hz
13 100 5.55
25 200 5.0
28 250 7.9
8 350 6.5
NOTE: Nos. 25 and 28 are usable if spring
pressure reduced to 227 grams (0.5 1lb).

7.2.2.3 Primary Silver-Silver Chloride Reference

® The primary reference must not exhibit noise in excess of 1.5 mV,

or drift in excess of +1.5 mV in 20 hours;

[ The primary reference should exhibit theoretical output of ~-173 mV 420

at 25°C (77°F) against a silver-silver chloride electrode with saturated

KC1 electrolyte;
® The electrical resistance must not be greater than 20K ohms;

® When paired with a sensing electrode (Paragraph 2.2.1), the
response shall be 59 *2 mV/decade at 25°C (77°F).
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7.2.2.3.1 Test Procedure

The noise, drift, and response were determined by connecting the test reference
and a known stable silver-silver chloride reference to a pH meter which was
connected to a 10-inch recorder. Both electrodes were placed in a constantly
stirred 1M KNO3 solution. The pH meter was operated in the expanded millivolt
mode and the recorder adjusted for one chart division to equal 1 mV. The test

was performed for 20 hours continously, and the output of the pH meter recorded.

The 20-hour response of the reference paired with a silver ion sensing electrode
was not performed due to the rapid loss of silver ion from solution during

recirculation.

7.2.2.3.2 Test Results

The prototype primary reference is a silver-silver chloride electrode with 0.01
molar potassium chloride electrolyte. The PERMA-PROBE is a silver-silver
chloride electrode with saturated potassium chloride electrolyte. Theoretical
difference then, when tested as a pair, should be -173 mV at 25°C (77°F).*

Plus or minus 20 mV from theoretical is acceptable since adequate system cali-
bration is provided and absolute mV are not measured or required. The results

are given in Table 7-4.

*Potassium chloride solubility 1 gm in 2.8 ml HZO at 25°C (77°F) (Merck Manual,
Eighth Ed., 1968) '

Molar concentration (or moles per liter) of saturated potassium chloride
solution at 25°C (77°F)

1000 ml .
then 2.8 ol =" 4.79 molar

74.55 gm/mole

The PERMA-PROBE and prototype reference form a concentration cell of
potassium chloride. Therefore, the Nernst equation can be used to cal-
culate the theoretical potential difference between the two electrodes.

AE = 2.3 BT, IKcL 0.01 M]

F ~°8 "[kcl sat]

(footnote continued on page 7-11)
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Table 7-4. Prototype Reference Electrode Characteristics’
(Tested Without Preamplifier) . \

Vs.
Perma Probe Reference Vs. :
Silver Sulfide Electrode
Response | Noise | 20 Hr Drift | mV/decade at 25°C (77°F)
Reference mV mV mV 50 to 500 ppb [Agt]
R-1 -136 —--- --—- - Rejected

R-2 -155 <0.2 +1.5, -0.5 58 x1

R-3 -156 <0.2 +0.5, -1 59 +1

R-4 -152 <0.2 | +1, -0.5 59 *1

7.2.3 Ion Exchange Column

7.2.3.1 General

The ion exchange column is located upstream of the silver bromide column in the
calibrating loop. It is packed with a mixture of anion and cation exchange
resins, and its purpose is to remove the anions and cations from the circulating

liquid prior to passage of that liquid into the silver bromide column. The

at 25°C (77°F) becomes

0.059 log [KC1 0.01 M]

8B = [KC1 4.79 M]
_ 2.000

AE = 0.059 log 0.68034
= 0.059 x 2.9397 = 0.173 V
= 173 mV

The sign is dependent upon which electrode is made the reference with respect
to the pH meter.

FR-2656-101 7-11



anticipated maximum concentration of silver ion in the calibrating loop will be

115 ppb silver, and will only reach that level when the ambient temperature to

which the silver bromide column is exposed reaches 32.2°C (90°F).

7.2.3.2

7.2.3.3

Criteria

The ion exchange column must reduce the concentration of silver and

bromide ions and other interfering ions to below 10 ppb;

The column must effect the removal of the ions in one pass through
at flow rates up to 150 ml/min (20 1b/hr) at 25°C (77°F);

The column must operate at pressures up to 1.65 x 105 +6.89 x 104 N/m2

(24 +10 psig), and pass a test pressure of double the possible maximum
3.31 x 10° N/m® (48 psig);

The ion exchange resin mixture must have a sufficient ion removal
capacity for a 30-day mission during which the automatic calibration

cycle is one 10-minute calibration every 24 hours.

Test Procedure and Results

The following components were connected in series: sample reservoir,
pump, ion exchange column, pressure gage, and flowmeter. A silver
ion solution of 300 ppb was pumped through the system at 150 ml/min
(20 1b/hr), 1.72 x 105 N/m2 (25 psig) at ambient temperature. The
effluent from the system was collected and measured for silver ion

content and found to be below 2 ppb.

The ion exchange column was pressure-tested for double the operating
pressure by plugging one end of the column and pressurizing the
column with nitrogen gas up to 3.44 x 105 N/m2 (50 psig). No leaks

were observed.

The capacity of the ion exchange resins was tested by pumping through
the column the equivalent of 0.0174 gram of silver bromide, AgBr,
which would be three times the calculated maximum amount of AgBr
dissolved in the calibrating fluid for a mission duration of 30 days.
A solution containing 115 ppb silver ion was then pumped through the
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column at 150 ml/min (20 1b/hr) and the effluent of the column
measured for silver ion content, using a silver sulfide sensing
electrode. An indication of below 10 ppb silver ion was found,

indicating acceptable capacity.

7.2.4 Silver Bromide Column

7.2.4.1 General

The silver bromide column contains 35.5 grams of a 0.8 to 1 mixture of silver
bromide powder and very small (about 500-micron-diameter) glass beads. The
column is located downstream from the ion exchange column and receives the
deionized water from that column. Its purpose is to saturate the water flowing
through it with silver bromide; more specifically, silver ions [Ag+] and bromide
ions [Br~]. The level of saturation is temperature dependent. The quantity of
silver bromide is much greater than the calculated requirement, but the excess

is needed to effect saturation at a fast flow-through rate.

7.2.4.2 Criteria

. The silver bromide column must saturate the deionized water passing
through it in one pass at flow rates up to 150 ml/min (20 1b/hr) at
25°C (77°F). The silver ion concentration must be within 5 ppb of
published data--75 ppb at 25°C (77°F).

> N/m? (25 +10 psig)

° The column must operate at pressures up to 1.72 x 10
and pass a test pressure of double the possible maximum, or 3.44 x 105 N/m2

(50 psig).

o The silver bromide column must have a sufficient capacity to saturate
the deionized water of the calibration loop for a 30-day mission during
which the automatic calibration cycle is one 10-minute calibration

every 24 hours.

7.2.4.3 Test Procedure and Results

1. The saturation capability of the silver bromide column was tested

using the components described in Paragraph 7.2.3.3. The silver
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bromide column was placed downstream of the ion exchange column. A
silver ion solution having a concentration of 300 ppb silver ion was
pumped from the reservoir through the test setup to waste at 150 ml/min
(20 1b/hr) at 1.72 x 10° N/m®> (25 psig) and ambient temperature. The
effluent from the system was collected and measured for silver ion
concentration and found to be 73 ppb which is in good agreement with
handbook data of 75 ppb at the test temperature. Preliminary testing
of the silver bromide column did not include recirculating through

the test setup.

2. .The silver bromide column was pressure tested for double the oper-
ating pressure by plugging one end of the column, filling with water,

5

and then pressurizing to 3.44 x 10 N/mz (50 psig) with nitrogen gas.

No leaks were observed.

3. The capacity of the silver bromide column to saturate the deionized
water was tested by pumping through the column sufficient deionized
water at 65°C (150°F) to remove approximately 0.0174 gram (6.1 x
10-4 0z) of silver bromide, which is the maximum calculated amount
of AgBr required for a 30-day mission, plus a safety factor of 2X,
during which the automatic calibration cycle is one 10-minute cali-
bration every 24 hours. Following this procedure, the column was
cooled to ambient and deionized water passed through the column at
150 m1/min (20 1lb/hr). The effluent of the column was collected and
measured for silver ion using a silver sulfide sensing electrode.

Silver ion concentration was within +5 ppb of published saturation

values of 75 ppb and was considered acceptable.

7.2.4.4 Silver Bromide/Ion Exchange Columns Combined

The ion exchange column and silver bromide column are used in combination to
supply a stable calibrating fluid, containing 75 ppb 13 ppb of silver ion,

After testing each of the individual columns separately they were combined

and tested again.
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The ion exchange column was placed upstream of the silver bromide column and the

combination subjected to the various tests as given in Table 7-5. The test fluids

were pumped through to waste or collected for analysis.

Table 7-5. Combined Ion Exchange/Silver Bromide Columns Tests

Ef fluent

Flow Concentration
Test Fluid} ml/min (1b/hr) ppb [Ag*] 2
Distilled Water 100 (13.23) 75
Distilled Water 450 (59.5) 73
Deionized Water 100 (13.23) 75
Deionized Water 450 (59.5) 74
50 ppb [Ag*] 100 (13.23) 75
50 ppb [Agt] 450 (59.5) 74
150 ppb [Ag*] 450 (59.5) 73
300 ppb [Agt) 100 (13.23) 74
lPumped through to waste
2Determined in beaker test setup

7.2.5 Solenoid Valves

7.2.5.1 General

The solenoid valves are flight-qualified standard components manufactured by
Futurecraft of California. They are 3-way, 2-position, normally closed valves
which operate on 18 to 28 Vdc. Both valves in the system operate together when
the calibration system is in operation. The valves are designed for 4.13 x

106 N/m2 (0 to 6000 psig) operation pressure and have been cycled over 250,000

times without failure by the vendor, prior to shipment.

7.2.5.2 Criteria

The following are the required parameters to be tested:

) Operation at low voltage (18 Vdc)
* Operation at low and high pressure 6894 to 6.89 x 105 N/m2 (1 to
100 psig)
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° Proof pressure test of 13.79 x 105 N/m2 (200 psig)
® Dielectric test of 100 Vac (rms) for 5 minutes

° Leakage-~zero external, 1 drop per minute internal.

7.3.5.3 Acceptance Tests

The following tests were conducted by the manufacturer prior to acceptance of

the valve:
1. Proof pressure test of 13.79 x 105 N/m2 (200 psig) for 5 minutes.

2. Dielectric test of the solenoid. The solenoid shall withstand 100 Vac

(rms) for one minute. Leakage current shall not exceed 2 milliamps.

3. Leakage shall not exceed one drop per minute after current is removed

with 3.44 x 105 N/m2 (50 psig) water applied to the inlet.

4, Standard pressure and dielectric test procedures shall be used.

In addition to the above tests, the hysteresis characteristics of the valve
were determined. This information was compared to the valve driver parameters

to make certain that:

a. Minimum current supplied by driver is greater than minimum current

required to actuate the valve.

b. Maximum leakage current from the driver in the normally open position
of the valve is far below minimum current required to actuate the

valve.

7.2.5.4 Test Results

Futurecraft, the manufacturer of the valves, performed the acceptance tests and
provided a certified test data sheet. The valves were found to meet or exceed

the specifications.

The valves were operated with the valve drivers of the electronic section and

found compatible.
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Due to the heat generated by the solenoids when operated at 28 volts dc, it was
found necessary to operate the valves at 18 volts dc to prevent unnecessary
heating of the ion exchange and silver bromide column since each column is

in close proximity to one of the valves. At 18 volts the heating effect of

the columns is minimized. In the low or no convection of zero g, the heating
effects would be less, but flight hardware design might require thermal shield-

ing of the columns.

7.2.6 Motor/Pump Combination

7.2.6.1 General

A motor/pump is used to drive the water at a constant flow rate through the
silver ion monitor. The motor/pump is intended for continuous operation

including calibration. The motor operates on 115 Vac.

7.2.6.2 Criteria

The following were the required parameters to be tested:

° Operation at various inlet pressures--6894 to 3.10 x 105 N/m2 (1 to
45 psig)
] Leakage--zero external

. Flow rate test--100 +20 ml/min. (13.5 1b/hr)

7.2.6.3 Acceptance Test Procedure and Results

The following tests were conducted prior to acceptance of the motor/pump;

1. The motor/pump operated satisfactorily with the inlet pressures varied

between 6894 to 3.10 x 10° N/m> (1 to 45 psig).

2. The pump was tested for external leakage up to maximum operating

pressure of 3.10 x 105 N/m2 (45 psig). No leakage was observed.

3. The motor/pump was tested and found to provide a flow rate of 100
+20 ml/min. (13.5 1lb/hr) with a minimum output pressure of 1.39 x
10° N/m?® (20 psig).
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Note:
1) It was found necessary to fill the system with water using gravity

flow or gas pressure to initiate pumping action.

2) The output pressure of the pump varied +3447 N/m2 from 3.45 x 104 N/m2
(0.5 psig from 5 to 45 psig).

3) The output volume varied +25 ml/min. in a random manner.

7.2.7 Sensor Chamber

7.2.7.1 General

The sensor chamber provides a flow path by which the active parts of the sensing

electrodes are brought in contact with the water sample.

The sensor chamber was designed to be cylindrical in shape and contain the
silver ion sensing electrode, reference electrode, electrolyte chamber, quartz
fiber junction, and replaceable electrolyte cartridge. A thermocompensator is
mounted in the chamber. 1In order to perform a preliminary test of the sensor
chamber, the assembly of the chamber must be complete with the exception of the

thermocompensator.

One of the most significant changes in the observed respodse characteristics of
an electrode pair (sensing and reference) when placed in a housing for continuous
contact with a flowing sample is the increase in noise and an offset or error due
to pressure and flow. The design of the flow path and placement of electrodes is
a critical factor. The evaluation and testing of the sensor chamber, then,
considered the effect(s) of the cell on the electrode response as well as

operating and proof-pressure tests.

The effect of pressure on an electrode pair, especially the reference electrode,
can only be evaluated when the electrodes are mounted in a cell. However, the
observed sensitivity to pressure changes is generally a characteristic of the

electrodes and not due to cell configuration.
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The reference electrode, with the exception of the primary silver-silver
chloride reference, is an integral part of the sensor chamber and could not

be tested unless completely assembled and tested as part of the sensor chamber.
The following criteria and test procedures are based on these characteristics.
Also, the primary reference and sensing electrode were previously tested and

this test data used as a basis for the evaluation of the sensor chamber tests.

7.2.7.2 Criteria

° The effect(s) of the flow within the test chamber upon the response
of the electrode pair shall not cause an increase in noise or drift

in excess of that originally observed for that electrode pair.

° The expected flow rate through the sensor cell of 100 ml/min. $20 ml
(13.5 1b/hr) shall not cause an offset of greater than 10 percent

from the known concentration of the test solution.

° The sensor chamber must show no leakage at double the expected

maximum pressure or 3.45 x 10° N/m? (50 psig).

7.2.7.3 Test Procedure and Results

1. The sensor chamber was connected in series with a 1 liter reservoir,
pump, flowmeter, and pressure gage and fitted with stable sensing
(PR-11) and reference (R4) electrodes. The preamplifiers were
bypassed and the electrodes connected directly to a Beckman Century
SS pH meter and the response recorded on a Beckman 10-inch Recorder.
The sample fluid was pumped through to waste at approximately 120
ml/min. Typical response showed no noise and a 99 percent response
time of 3.25 minutes from 500 to 50 ppb and 4 minutes from 50 to 500
ppb, which included flushing of the reservoir with the new solution.
Drift at 50 ppb silver ion concentration for 60 minutes was less

than #3 ppb or within instrument error.
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2. Sensing electrode PR~16 and reference electrode R4 were installed in
the sensor chamber and connected directly to a Beckman Century SS pH
Meter, bypassing the preamplifier. A 500 ppb silver ion solution
was pumped through the system at approximately 120 ml/minute from
reservoir to waste--the recorded output was 325 millivolts. Sensing
electrode PR-16 was removed from the sensor chamber and tested in a
beaker setup with PERMA-PROBE reference and the same 500 ppb solution--
the output was 476 millivolts or a differential of 151 millivolts.
Since the testing of the prototype reference R4 against the PERMA-
PROBE reference was shown to be 152 millivolts (Paragraph 7.2.2.3.2),
this demonstrated that a flow rate of approximately 120 ml/minute
through the sensor chamber caused an offset of the indicated silver
ion concentration of 1 mV or 20 ppb at 500 ppb or 2 ppb at 50 ppb,

which is 4 percent and well within the instrumental error.

3. The sensor chamber was filled with water and the exit port closed
with an AN 929 cap. The sample entrance port was connected to a
nitrogen gas source and pressurized 3.45 x 105 N/m2 (50 psig). No

leakage was observed.

7.2.8 Manual Valve

The manual valve ié a 4-way, 2-position Teflon valve. It is a standard pur-
chased item with one function~-to isolate the preliminary flight prototype
silver ion monitor from the main water system. It is expected that the valve
will be used only during routine maintenance. The valve was checked for ease
of manual operation, and pressure checked for leaks at double the maximum oper-
ating pressure, or 3.45 x 105 N/m2 (50 psig). The valve is of sufficient size

that any flow restriction will be insignificant.

7.2.9 Pressure Relief Valve

7.2.9.1 General

The relief valve protects the system from excessive pressure only during the

closed loop calibration mode.

FR-2656-101 7-20



7.2.9.2 Criteria
The following are the required parameters to be tested:
™ Crack pressure: 9.65 x 104 to 1.93 x 105 N/m2 (14 to 28 psig),
inlet-zero outlet.

'y Flow at 2.07 x 105 N/m2 (30 psig) or less: 100 ml/min. minimum.

° Proof pressure of 2.45 x 105 N/m2 (50 psig).

7.2.9.3 Test Procedure and Results

1. The relief valve was subjected to an increasing pressure. The valve
cracked (began to flow) at 1.93 x 105 N/m2 (28 psig). Crack flow is

defined as 1 drop per second.

2. The flow was measured at 21°C (70°F) with 2.07 x 105 N/m2 (30 psig)

applied to the inlet. The flow was greater than 100 ml per minute.

3. The relief valve was pressurized to 6.98 x 105 N/m2 (100 psig) with

the outlet plugged. The valve did not leak externally.

P

7.3 Criteria and Preliminary Testing of Components--Electronic Section

7.3.1 Introduction
The prototype testing program was broken down into several broad categories:

1. Tests on characteristics of unique components in the system;

2. Troubleshooting and functional testing of subsections following

prototype fabrication;

3. Functional testing of entire system as a working unit,

(Categories 1 and 2 are explained in the following sections. Category

3 was performed as part of design verification testing.)
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7.3.2 Unique Component Tests

7.3.2.1 Thermocompensators

The thermocompensators were tested with the remainder of the system as part of

the integration of the electronics.

7.3.2.2 Power Supply Modules

These are purchased items, and were given simple functional tests, under rated

load, to verify that the manufacturer's specifications were met on the following

parameters:
a. Input regulation: 0.5% or better
b. 1Load regulation: 0.5% or better
c. Percent ripple: 0.5% Vrms or better
d. Efficiency: 407% or better at full load
e. Temperature rise: 42.2°C (108°F) maximum at full load
f. Current limiting: 150% maximum load.

The specifications were met or exceeded by the power supply modules.

7.3.2.3 Preamplifier Test

The preamplifiers were designed to be mounted in a shielded section of each
electrode housing. The shielded section or cap of each electrode contained the

cable connector for amplifier/power connections and a solution ground connection.

After fabrication, a set of preamplifiers (one reference electrode preamplifier
AGOO44 and one sensing or silver sulfide electrode preamplifier AG0038) were

tested as a pair as follows:

The inputs to the preamplifiers were connected to an electrode simulator box,
Figure 7-3. The outputs were connected to-the input of the breakout box of the
test setup of Figure 7-4. Operating power for the preamplifiers was also
obtained from the breakout box. The simulator was adjusted to simulate typical

outputs of an electrode pair in silver ion solutions between 15 and 150 ppb
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Figure 7-3. Electrode Simulator Box Circuit

silver ion while system output was monitored with a digital volt meter (DVM).
When simulated Nernstian electrode response into the preamplifiers resulted in
Nernstian output as monitored by the DVM, the preamplifiers were considered

acceptable. All four sets of preamplifiers fabricated tested satisfactorily.

Care was taken in the grounding of the digital voltmeter, the preamplifier, and
solution ground. Solution ground, power supply chassis, and DVM chassis all

went to a common point, which was also connected to the preamplifier's shield.

After this test, the preamplifiers were installed in the electrode assemblies.
Testing of each of the electrode assemblies was not accomplished due to redesign
of the electronics and sensing electrodes. A functional test of the fluid
handling unit was performed with the preamplifiers bypassed and the output of

the electrodes connected to a pH meter.
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Figure 7-4. Amplifier ard Readout Test Setup

7.3.3 Troubleshooting and Functional Testing of Subsection

7.3.3.1 General

The majority of the electronics were located on four large circuit boards. The
electronics were tested by plugging into breakout boxes during tests of indi-
vidual boards. For larger scale tests, the boards were actually plugged into

the system wiring harness.

7.3.3.2 Amplifier and Readout

This subsystem consisted of the amplifier, sample/hold circuit, meter scale
controls, and the readout meter-—all operating independently of any actual
control or calibration circuitry, except by simulation. The test procedures

and results are shown below:
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d. The amplifiers and readout worked correctly, giving the correct

meter readout in ppb corresponding to the equivalent voltage inputs.
e. The sample and hold circuits worked correctly in both modes.

f. A "decay" test was run on the sample and hold circuit. A reading
(full scale) was stored for ten minutes and then read. It was
supposed to drop less than 1 percent in the ten minute period. 1In
the test, the actual decay was so much smaller than 1 percent as to

be negligible (see Figure 7-5).

ouTPUT

A<< 1%

b —

—» TIME

10 MIN

Figure 7-5. Sample/Hold Circuit Qutput vs. Time

7.3.3.3 Electrode Assembly, Preamplifier, Amplifier, and Readout

This test was to ensure that the entire data chain (electrodes, preamplifiers,

amplifier, and readout) operated together. The test procedures and results are
shown below:
a. Setup (see Figure 7-6).
b. The bias was left at the same setting as in the previous section.
c. Tests were run with various concentrations of silver ion (i.e., 50,
100, and 150 ppb) at room temperature.
d. Two difficulties were noted:

1. While the meter gave the correct reading, the reading also fluc-
tuated randomly about the correct value. This occurred whether

or not the solution was being stirred. The rate of this variation
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(S IMULATES EQUIVALENT
INPUT FROM THERMAL COMP
CALIBRATION (SET EQUALTO
LOOP) NOMINAL VALUE)
REFERENCE SAMPLE
ELECTRODE ELECTRODE
AND PREAMP AND PREAMP
ASSEMBLY ASSEMBLY

Ag ION TEST SOLUTION

Figure 7-6. Electrode Assembly, Preamplifier,
Amplifier, and Readout Test Setup

was very low, on the order. of 0.1 to 1.0 Hz. Such a variation was
not observed when the clectrodes were replaced by simulated inputs
(from batteries), so it was concluded that the cause was related to
the solution and/or the electrodes, rather than the electronics.

The variation could be reduced by adding rolloff capacitors (approx-
imately 100 microfarads) across the feedback resistors in the two

amplifier stages.

2. Any concentration of silver solution rapidly dropped off. A decay

of 50 percent in 20 to 30 minutes was usually noted.

7.3.3.4 Sequencer

The sequencer is essentially a timer that produces the sequence shown in Figure

7-7.

During the calibration time, the system is switched into the calibration

mode, and automatic calibration effected.
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. CALIB
CALIB TIME
TIME 10 MIN.

10 MIN. CALIBRATION
INTERVAL = 24 HOURS

Figure 7-7. Timing Sequence

The sequencer, located in the main circuit board, is capable of being tested

independently of the rest of the system.

Due to the long duration between calibration sequences, the sequencer tends to
be time-consuming to test. This was easily overcome, however, by speeding up
the rate at which the sequencer operates. Sequencer speed is controlled by a
master clock pulse whose rate is determined by a resistor and capacitor on the
main circuit board. By bridging this time constant resistor with a 50th of its
value (through a switch), the entire cycle of the sequencer can be speeded up
about 50 times, The calibration interval becomes about 29 minutes, and the
calibration time 12 seconds. The scquencer functions may now be checked in a

reasonable time. The test procedure and results are shown below:

a. Test Setup (see Figure 7-8).

b. The sequencer was checked for correct operation by monitoring the
points of interest with a recorder. The accuracy of the timing
intervals was not critical, so it was required to fall only within

$20 percent. The following parameters were measured:

Calibration interval--29 minutes
Calibration time--12 seconds.
Clock interval--1.7 seconds.

Stabilize signal--12 seconds.

v W N

Verify calibration signal--1.7 seconds.
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Figure 7-8. Sequencer Test Setup

c. Final verification was conducted at true sequencer rates. After the
operation of the sequencer was verified, the speed was switched back
to normal. The unit was allowed to run overnight, while being moni-
tored by a recorder. The time intervals obtained were 50 times those
obtained in the above section. All sequencer intervals fell well within

+20 percent of values required.

7.3.3.5 Driver

The driver turns on the solenoid valves. The test procedure and results are

shown below:
a. Test setup (see Figure 7-9).

b. Worst case conditions were simulated: maximum load (1.5X the current
for 2 valves), minimum driver input signal 3 Vdc at minimum supply

voltage (24 Vdc) and maximum supply voltage (32 Vdc).
c. The driver was tested for the following:

1. Complete turn-on. Verify that output transistor did indeed turn

on fully.
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Figure 7-9. Driver Test Setup

2. Leakage current in OFF mode was much smaller than valve's minimum

turn-on current.

3. Driver transistor power dissipation--unit was left on for much
longer than the 10-minute actuation period in system (30 min.).
The temperature of the case on the last driver transistor still

stayed well within its safe 1limit of 55°C (131°F).

7.3.3.6 Calibration System

The system consists of an analog-to-digital (A-D) converter, a counter, digital-

to-analog converter (D-A), and logic.

During the calibration time, power is applied to the solenoid valves, which
energize and cause a known concentration of silver ion to pass through the
system. The calibration A-D converter changes the amplifier output to a digital
code and examines it with logic to determine if it falls within the dead zone
(allowable amplifier output during calibration). If not, the logic allows a
counter to count. The counter's outputs go to a D-A converter, which generates
a bias correction signal for the amplifier. This causes the amplifier output

to change. When the amplifier output reaches the dead zone, the logic shuts

off the counter, and the bias correction signal stays at that value. At the
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end of the calibration sequence, the system checks itself to verify that the
amplifier output is in the dead zone. If not, a NO-CAL light is turned on until

the next calibration sequence.

In this test, the calibration fluid was simulated by inputting an equivalent
voltage into the amplifier input. Power was applied externally to simulate its
application by the sequencer during a calibration time. The test procedures and

results are shown below:

a. Test setup (see Figure 7-10).

28 vdc
- +
? 9 v e
CIRCUIT - >
BOARDS CALIBRATE SIGNAL
BREAKOUT BOX DVM
110 Vac
60 Hz AMPLITUDE
J | A — QUTPUT
INPUT SIMULATED
VOLTAGE TEMPERATURE
VARIABLE COMPENSAT | ON
(S IMULATED (SILVER BROMIDE BED)
PREAMP SIGNALS)
Figure 7-10. Calibration Test Setup
b. The calibration system's bias line was connected to the amplifier.
c. Upon application of the calibration signal, the calibration D-A

started counting (the amplifier output was set out of the cali-
bration deadband). This test was repeated a number of times, with
the input voltage (simulated signal) started out at various values
(in band, out of band high, out of band low, etc.) to verify

correct operation.
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d. Although the system did operate correctly, some problems were noted.

These are listed below:

1. During calibration, the meter would go through a wide range,
"pegging" at both extremes before coming up to the calibration
value. This was due to setting the system to give too wide a
range of correction. Having the meter '"pegged" during calibra-
tion is probably not desirable (even though it does come back
to the correct value). A suggested solution would be to dras-
tically reduce the automatic correction range. Gross correction
required (when changing electrodes) could be achieved with a
trimpot. Fine correction to offset effects of aging in elec-
trodes, etc., could then be done by the automatic calibration,
which would cover no more than perhaps +20 ppb of the calibra-

tion value.

2. Unless the solution fluctuation problem (reported in Section
7.3.3.3) is corrected, the present calibration system will not
work. As soon as the dead zone (Figure 7-11) is acquired, a
fluctuation in the solution would cause the system to leave fhe
dead zone and start "hunting' again. Either the fluctuations
must be eliminated or a "catch" circuit must be added to the
calibration loop. A "catch" circuit would "lock” the system
into the dead zone once it was acquired. Subsequent solution
fluctuations would have no effect. A "lock" circuit would be
relatively simple to implement--an additional flip/flop and a
few logic changes. Even if the fluctuation problem is solved,
a "lock" circuit would be highly desirable, as it would make

calibration more certain.

The problems noted in d., above, were corrected by redesign of the

electronics (see Section 9.0).
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7.3.3.7 Thermocompensator for Silver Bromide Column

The system was run in the calibration mode, with a simulated eiectrode signal
fed to the amplifier. The thermal compensator was simulated by means of an
external resistor, and correct gain adjustment of the amplifier over the
simulated temperature range was verified. It was found that a thermal
compensator with a somewhat wider range of change should be used instead of

the one specified.

7.3.3.8 NO CALIBRATE Lamp Driver and Ilatch Circuit Test

This circuit is actuated by a signal from the logic toward the end of the cali-
bration time. If the calibration has been completed successfully prior to this
signal, the system will be in the dead zone and the latch circuit will not be
actuated. If, however, proper calibration has not taken place and the DAC is
outside the dead zone, the logic will trigger the latch circuit which will
operate the driver and hold the NO CALIBRATE (see Figure 6-10) lamp on until
the next calibration time (24 hours later, or until a manual calibration
occurs). At the next calibration time, the circuit will be unlatched and
calibration will again be attempted. Test procedures and results are shown

below:
a. Teét setup (see Figure 7-12).

b. The simulated bias was set to an extreme, out of the calibration

dead zone.
c. The STABILIZE signal was applied.

d. The CHECK signal was applied. The NO CALIBRATE indicator should

have come on, but did not.

The abové problem was corrected as part of the electronics redesign (see

Section 9.0).
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Figure 7-12. Test Setup for NO CALIBRATE Lamp Driver and
Latch Circuit Test

FR-2656-101 7-34



8.0 FUNCTIONAL TESTING OF THE FLUID HANDLING UNIT AND LOSS OF SILVER ION

8.1 Preliminary Functional Testing

A pressure gage and flowmeter were tempofarily installed downstream of the
sensor chamber and the fluid handling system filled with water. The system

3 N/m2 (50 psig) with nitrogen, and no leaks were

was pressurized to 3.45 x 10
observed in the measuring loop. The two solenoids were opened using a separate
power supply and the calibration loop was observed for leaks—--none was found.
The pump/motor was energized and found to give approximately 100 +20 ml/min.

(13.5 1b/hr) at external pressures from 0 to 3.45 x 105 N/m2 (0 to 50 psig).

The prototype fluid handling unit was connected to the environmental test
fixture as shown in Figure 9-1 and the water in the test fixture pumped through
at rates from 0 to 150 ml/min. (O to 19.8 1b/hr) at 1.72 x 105 N/m2 (25 psig).
The pump/motor unit in the fluid handling unit maintained the 100 +20 ml/min.

(13.5 1b/hr) flow through the sensing chamber.

8.2 Monitoring Mode Tests

The reference and silver sulfide prototype (PR) electrodes, having been pre-
viously tested using a beaker test setup and pH meter, were installed in the
sensor chamber. Calibrating solutions of 50 and 500 ppb silver ion were pumped
through to waste to calibrate the system. The PR-1 electrode exhibited a

response of 59 mV/decade (50 to 500 ppb) as it did in the previous beaker test.

These tests utilized a Béckman 940 pH Analyzer instead of the prototype elec-
tronics and readout, since the intention was to check each section of the
prototype with a known working system. Later, a Beckman Century SS pH Meter
was substituted for the 940 Analyzer to provide greater range and range

switching convenience, and direct millivolt readout.
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Initial recirculation tests in prototype systems in the monitoring mode showed
abnormal response of silver sulfide electrode PR-1 such as wave-like, up-down
drift of +15 mV (35 ppb) and being very noisy. Also, recirculating a 75 ppb
silver ion solution showed an immediate drop in indicated silver ion concen-

tration of 26 mV or 47 ppb in 10 minutes.

The electrode was then allowed to remain in contact with a 50 ppb silver ion
solutioq (approximately 50 ml) in the prototype system over the ﬁeekend. After
72 hours, the response was checked by pumping through the system to waste 50
and 500 ppb silver ion solutions. The response was 52 mV/decade--a drop of

7 mV/decade or slight loss of sensitivity.

Recycling an initially 50 ppb silver ion solution through the prototype system
with continuous monitoring showed a complete loss of silver ion in 2 hours.
Retesting the electrode with fresh 50 and 500 ppb silver ion solutions indicated
a loss of sensitivity estimated to be greater than 15 mV/decade, but this could

not be measured because of the erratic response of the electrode.

Short time exposure of other silver sulfide electrodes of the PR configuration
to recirculating 50 ppb solution showed a loss of sensitivity of 50 to 54 mV/
decade, and recycling always indicated an immediate lowering of the silver ion

concentration.

Removal of these PR electrodes from the prototype system and testing in a

beaker set up with a pH meter always showed 54 mV/decade or less.

The above described problems caused the monitoring mode tests to be discontinued
in favor of tests designed to determine the cause of the loss of silver ion from
solution and the degradation or loss of sensitivity of the silver sulfide

sensing electrode.

8.3 Degradation or loss of Sensitivity of Sensing Electrodes and loss of
Silver Ion from Solution

Silver sulfide electrodes may undergo degradation for a number of reasons, such
as, poisoning or surface contamination, aging, thermal degradation, or by a

change in composition of the silver sulfide.
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The rapid degradation or partial loss of sensitivity described in Paragraph 8.2

was unexpected.

Since the PR eléctrode tested in the prototype system had previously exhibited

a 57 to 60 mV/decade sensitivity in a beaker test(s), it was thought that the
lower sensitivity exhibited by these electrodes after a short time (up to 2
hours) testing in the prototype system was due to (1) contamination of distilled
water used to dilute the Atomic Absorption Standard (A.A. Std), (2) contamination

of the glassware, (3) degradation of the A.A. Std., (4) inadequate conditioning

of the electrode resulting in poor stability. Tests showed that these supposi-

tions were not correct.

It was also postulated that an exposure of the silver sulfide electrode to low
(50 ppb) concentrations of silver ion degraded the electrode, causing a loss of

sensitivity.

V Static exposure tests of silver sulfide electrodes, both PR configuration and
on older electrodes, to 50 and 500 ppb silver ion solutions for 48 to 72 hours
were inconclusive since some electrodes showed a loss of sensitivity in the 500
ppb concentration while others showed no loss when exposed to 50 ppb silver ion

solutions for the same period.

A number of exposure tests of the electrodes to both recirculating fluid and
fluid that was pumped through to waste (single pass) were performed. These are

described below.

Fifty ml of a 500 ppb silver ion solution was recirculated in the prototype system
for 48 minutes, at which time the indicated concentration was less than 2 ppb
silver ion. The sensitivity of the electrode had changed from 56 to 37 mv/

decade.
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The test was repeated, but recording the output of the pH meter using silver

sulfide electrode PR-16.

Time [Ag+] Conc

Minutes ppb

0 500

25 72

44 18
100 5.2 Noisy and up-down drift

256 less than
2

The electrode was removed from the prototype system and retested in a beaker

setup. It gave 56 mV/decade or no change,.

To determine if simple exposure to silver ion solution was responsible for the
occasionally observed loss of sensitivity of the electrodes, the following test
was performed. The PR-16 electrode and another silver sulfide electrode were
exposed to 50 and 500 ppb silver ion solutions for 91 hours. There. was no
electrical connection made to the solutions or the electrodes. Following

exposure, the electrodes were tested for response. Results were as follows:

Solution Conc. Electrode Response
ppb [Agt) mV/decade
Electrode Before After=* Before After*
PR-16 50 <1 56 +1 58 +1
EP-2 500 420 58 46

These results indicate that some silver sulfide electrodes are more resistant
to degradation in low silver ion concentrations while others exhibit lowering

of sensitivity when exposed to low ppb silver ion solutions.

Since there were a number of electrical components in the fluid handling unit
other than the electrodes it was thought that parasitic currents in the system
could be responsible for the degradation of the electrodes. This postulate

was tested as follows:

*9] hours at room temperature--static beaker test--no electrical connections
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Silver sulfide electrode PR-16, which had previously shown no loss of sensitivity
when exposed to 50 ppb silver ion solutions, was installed in the prototype sys-
tem. 500 ppb silver ion solution was recirculated for 90 minutes. The electrode
was connected to the pH meter only during the periodic measurements. The silver

ion loss was as follows:

Indicated
Time (min) [Agt] Conc (ppb)
0 500
2 500
12 210
22 110

The solution was removed from the system and the silver ion concentration measured

in an independent beaker test showed less than 5 ppb silver,

PR-16 electrode was removed from the system and tested for response. It showed a
loss of sensitivity during the test of from 53 mV/decade at start to 39 mV/decade

at completion of test.

The recirculation test was repeated with another silver sulfide electrode PR-12.
However, this time all electrodes (sensing [PR-12], reference, and solution
ground) were only connected to the pH meter during periodic measurements.

Data are as follows:

Time Indicated
(minutes) |Ag+| Conc_(ppb)

0 500

10 500
20 28
30 28
40 12
50 21
60 - 20

Actual analysis of the fluid in a separate beaker test showed 170 ppb at the end
of 60 minutes. Electrode PR-12 was in error by 150 ppb due to loss of sensitivity,
“At the time it was thought that the limiting of the time the electrodes were con-

nected to the pH meter (about 8 minutes out of 60) resulted in a reduced loss of
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silver from the recirculating fluid, indicating that a parasitic current might

be flowing in the system.

If the adsorption and a chemical reactivity process were in competition with the
electrolysis process, the electrolysis process could be more rapid. If this is
the case, then the removal of silver from 50 ml of a 500 ppb silver ion solution

in 30 minutes would require a leakage current of 12.4 microamps.

Probable electrical causes of loss of silver ion from the solution recirculating
in the Silver Ion Monitoring System were investigated. The following is the

result of that study.

The prototype of the silver ion instrument for the Space Shuttle is experiencing
a decay in silver ion concentration which may be associated with the electronics.
If this is the case, a reduction of [Agt] ion to Ag must be occurring due to a

parasitic current flow. The reaction taking place may be characterized as:
[AgT] + e =——>Ag

To assess the parasitic current(s) involved, one may determine the magnitude of

charge transfer involved as follows:

Silver's molecular weight--107.87 g/mole
6.02 x 10°3 mole™?
6.24 x 10'8

Weight of solution in the loop--50 g

electroncs/ampere~second
. . -8
Weight of silver to produce 1 ppb change--5 x 10 g

5 x 10 55 Ag x 6.02 x 10°2[Ag 1/mole Ag
107.87 g Ag/mole Ag x 6.24 x 1018 [Agt]/amp-sec
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Since changes of approximately 500 ppb have been observed in 30 minutes time, a
value of

4.46 x 1072 amp-sec

-5
7800 sec 1.24 x 1077 A

x 500 ppb change

12.4 pA leakage current
may be assumed. This is approximately 10® times the value of the bias current
To establish the source of the fault, the following procedures were performed:

1. wWith 500 ppb solution circulating in the loop, the pH meter was
connected to the solution ground, reference electrode, and signal
electrode with a microammeter in each lead. If currents sufficient
to produce the observed effects were present, they would be readily
observed. If currents greater than 1 yuA were observed, corrective
action would have to be taken to restore the electronics to speci-
fication. However, no measurable currents were detected in the
reference, sensing, or solution ground lines when connected to a

Beckman Century SS pH Meter.

2. Since no significant currents were observed in step 1, the loop was
run to see if the silver ion concentration decayed. A 500 ppb silver
ion solution was recirculated for 60 minutes at which time the silver
ion concentration was 44 ppb. All three electrodes were connected to
the pH meter. Since no electrical paths were found, the loss of silver

ion must be a chemical phenomenon.

3. With the system configured as in Figure 8-1, and with the solution
ground, reference electrode, and signal electrode open circuited,
solution decay in the loop could only be the result of galvanic
effects due to dissimilar metals or chemical phenomenon. Leaving
solution in the loop with the pump running and not running should
distinguish between the differences of loss of silver concentration

that has not been determined by steps 1 or 2.

4, A 500 ppb silver ion solution was recirculated for 60 minutes. All
three electrodes were open circuited (not connected to pH meter).

The same results as in 2, above, were observed.
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5. The system was flushed with a 500 ppb silver ion solution and then
filled with fresh solution and the pump turned off. After 60
minutes, the fluid in the system was removed by pressurizing

with.nitrogen and then analyzed for silver:

Start: 500 ppb [Agt]
Finish: 270 ppb [Agt]

Conclusions from above tests:

1. Loss of silver is not due to parasitic currents.

2. Loss of silver probably is due to adsorption of chemical reaction of
silver ion solution with surface(s) of exposed materials forming non-

ionizable compounds.

3. Calvanic action due to dissimilar metals is not likely since the only

known metal is 316 stainless steel.

To duplicate our findings of the previous contract, the Teflon cell and original
electrodes of the breadboard system were substituted for the new prototype elec-
trodes and the KEL-F electrode cell. After recirculating a 500 ppb silver ion

solution for 60 minutes, the silver ion concentration had dropped to 80 ppb [Ag+].

The prototype cell and electrodes were replaced in the system and a series of
tests was performed in which a 500 ppb silver ion solution was pumped from a
reservoir through the system and then to waste. The system consisted of the
pump, Teflon valve, 316 SS tubing, prototype KEL-F electrode cell and electrodes,
and a 316 SS glass flowmeter. The flow was 125 ml/minute for 60 and 120 minutes.
In one series the electrodes were connected to a pH meter, while in the second
series the electrodes were open circuited. In all tests the silver sulfide

electrodes showed very little change in sensitivity.

The results of one flow-through test using a 500 ppb silver ion solution at 24°C
(75°F) (thermostated) 125 ml/min. at 1.93 x 10° N/m® (28 psig) showed a loss of
only 20 ppb silver ion after 30 minutes flow-through, but surprisingly showed a
loss of 100 ppb silver ion after 60 and 120 minutes with no essential change in

electrode sensitivity.
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The test was repeated and after two hours of passing a 500 ppb silver ion
solution through the system to waste, the effluent from the system was still

at the 500 ppb level.

The flow-through test was repeated using a 50 ppb silver ion solution and the

same conditions as the 500 ppb test. The following results were observed:

@ Initial concentration - 50 ppb [Ag*]

+
® System effluent after 20 minutes - 35 ppb [Ag ]
® System effluent after 120 minutes - 44 ppb [Ag¥)

The silver sulfide electrode exhibited no significant change in sensitivity.

The above test was repeated but the flow was reduced to 80 ml/minute. The
initial concentration of silver ion in the effluent from the system was down
from 50 ppb to 40 ppb with an up-down response, but after 60 minutes and

through to 120 minutes the effluent level was steady at 50 ppb.

A total of 22 recirculation tests and 18 flow-through tests was performed. Of
these, all recirculation tests showed a rapid loss of silver ion while

only one of the flow-through tests showed any significant (greater than 5
percent) loss of silver ion. Also, in these same tests only two out of 18
different silver sulfide electrodes showed any significant loss of sensitivity
when exposed to the flow-through liquid, but 20 out of 22 different electrodes
showed a loss of sensitivity of from 5 to 20 mV/decade over the 50 to 500 ppb

silver ion range when exposed to the recirculating fluid.

The static exposure tests of the electrodes to 50 and 500 ppb silver ion
solutions showed that a few electrodes were more resistant to degradation

than others.

The significance of the above is that it appears to show a connection between
the degradation of the silver sulfide electrodes and the recirculated fluid

which has been shown to lose silver ion rapidly.

Several methods were investigated to rejuvenate those electrodes which had

exhibited a loss of sensitivity. The methods were: (1) cleaning the surface

FR-2656-101 8-10



of the silver sulfide with 600 grit carbide paper, (2) chemically cleaning the
surface with nitric acid followed by ammonium hydroxide, (3) removal of

7.6 x 10—3 cm (0.003 in.) or 2.5 x 10.2 cm (0.010 in.) from the silver sulfide
surface, (4) electrolysis. These rejuvenation methods were either less than 25
percent successful and/or resulted in unstable response. Polishing the surface
of the pellet, as one would an optical lens, was the most successful. However,
the majority of the new configuration silver sulfide electrodes used in the

recirculating tests could not be rejuvenated by any procedure.

It has been postuiated that the degradation of the silver sulfide electrodes

in the recirculating fluid, which was losing silver ions rapidly, was due to
an attempt by the system to attain an equilibrium condition by some process(es)
which caused the transfer of silver ions from the silver sulfide pellet into
the solution. Since the movement of silver ions in the solid pellet would,
according to the theory of solid state physics, move slower than in the
recirculating fluid, the surface of the pellet would become depleted or
partially depleted of silver ions, thus resulting in a partial loss of sensi-

tivity or degradation.
The above postulate does not appear to be true because of the following facts:

® Removal of three to ten-thousandths of an inch from the ex-
posed surface of the silver sulfide pellet was only successful in

rejuvenating a small percentage of the electrodes so treated.

® Polishing the exposed surface of the silver sulfide pellet of a
degraded electrode was successful in about 60 percent of the

attempts to rejuvenate such electrodes.

® The radioisotope test showed that silver was being deposited or
exchanged on the surface of the silver sulfide pellet from the

silver ion (silver nitrate) solution.

The conclusion from the above tests to determine the cause and/or manner in
which the silver ion is lost from the recirculating solutions and the studies

on the degradation of the silver sulfide electrode can be simply stated as--
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the loss of silver ion from the solution and the degradation of the electrodes

are a result of the instability of the silver ion and some of its compounds.

The instability of the silver ion in the presence of light is well known since
it forms the basis for photography. Silver is very readily reduced from its
ionic form to metallic form by many substances. Indeed, the handbook oxidation

potential for silver gives the following half-reaction:

[Ag*] (Ag) + e= - 0.7995

Ag + )(Hzo

The large negative potential indicates that the simple silver ion is capable of
oxidizing not only many common anions but water as well and is, therefore, very

unstable and prefers the lower free energy state of metallic silver.

It is not surprising, therefore, to find numerous journal articles dealing with
the adsorption of trace silver ion on a variety of surfaces and/or materials by
such recognized experts as R. A. Durst and associates of the National Bureau of

Standards* and others.

Durst et al claims that the use of a silver ion selective electrode for
monitoring silver ion losses in investigations of trace silver adsorption on
container surfaces offers the advantage of less complex and costly equipment,
simplified procedure, and improved precision over the radiometric method. For
a 0.2 ppm silver solution the adsorption levels at the end of 30 days increased
in the order: Vycor < polyethylene = Teflon < Desiccated Pyrex < Pyrex. Metal

surfaces were not tested.

In support of the use of silver ion as a bactericide, NASA and contractors have
also made studies on the depletion of silver ion from solution under various

conditions.

It was not surprising, therefore, to observe a loss of silver ion from solution
during the monitoring test (paragraph 8.2). What was difficult to comprehend

was the rate and quantity of silver lost or adsorbed By the system.

* R. A. Durst and B. T. Duhart, Anal. Chem., 42, No. 9 (1970).
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The next step in determining the rapid loss of silver ion from the solution was

the effect of materials in the prototype system.

The static, recirculating and flow-through tests did not help to account for the
rapid loss of silver ion from the recirculating silver ion solutions in the
prototype system. Material incompatibility was suspected, thus the following

tests were performed.

1. Test of individual components exposed to 500 ppb silver ion solution.
Exposure conditions: Static - at room temperature - in dark

Storage - four days duration - in glass beakers.

[Agt] Concentration

Fluid Volume ppb

Component ml Before After
None (control) 500 500 500
SS-316 Cap (bottom of cell) 500 500 240
KEL-F (cell body) 500 500 <1
Electrolyte Reservoir Assy 500 500 70
(KEL-F, 316-S8SS, Buna N

rubber, silicone rubbcer) _

Thermistor Sensor Assy 100 500 3.5

(316-SS, epoxy, thermistor)

The small area of the epoxy, approximately 0.1 square inch, should
not affect the loss of silver ion from the solution in the amount

indicated. Therefore, a second test was performed.

2. A modified prototype system consisting of pump (SS-316), S$S-316 tubing
and fittings and a 1-liter glass beaker containing 800 ml of 500 ppb
silver ion solution was tested. The solution was continuously recircu-
lated and at 10-minute intervals a 50 ml sample was removed for silver
ion measurement, then returned to the system. Periodically, different
materials were added to or removed from the beaker. A summary of the

results is given on the following page:
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Exposure Change in

Material or Component Time (min.) {Ag*] Conc. ppb
None (system only) 30 -90
Epoxy, Kenics 78-05-083, 25 grams 30 -60
(2.45" dia. x 0.5")

Electrode Body, 23.7 grams 30 =40
(Polypropylene)

KEL-F 2" dia. x 4.2" long 30 -40
(unused)

The above losses in silver ion were not significant when compared to
previous recirculating tests showing 500 ppb loss in 25 minutes, and

therefore the tests were inconclusive.

The conclusions which may be made from the above data and previous test data are

as follows:

1. Material(s) within the system reacts with the silver ion of the
recirculating 50 to 500 ppb Ag NO3 solution in such a manner as to

either complex the silver ion or take the ion out of the solution.

2. There may be only an apparent loss of silver since the silver

sulfide sensing electrodes detect only silver ions.

3. The loss of sensitivity of the silver sulfide electrode may be, in
some manner, directly related to the apparent loss of silver ion

from the recirculating solution.

4. The reaction or mechanism which is responsible for the loss of the
silver ion appears to be time dependent since pumping the silver ion
fluid through the system to waste does not show much loss of silver
ion but, while recirculating the fluid in the system, a rapid and

continuous loss of silver ion is observed.
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5. Under the present conditions the recirculating of a small quantity
of Space Shuttle potable water through the Silver Ion Monitoring
System and through a short link of the water system during periods
of non-use would result in rapid loss of silver ion from the water

and a loss of sensitivity of the silver ion sensing electrode.

In view of the above conclusions, Beckman suggested that a possible solution to
the problem would be a minor modification of the originally conceived placement
of the monitor in the potable water system. The proposed modified system is
shown in the block diagram, Figure 8-2. Theoretically, recirculating of the
water through the silver ion source should continuously replenish any silver
ions lost from the water due to adsorption or chemical reaction(s). Thus,
based on the results of the previously described tests, the silver sulfide
electrode should continuously monitor the level of silver ion in the major
portion of the water system without being subjected to those conditions which

are suspected to cause loss of sensitivity.

In order to determine characteristics and stability of such a proposed systenm,
the original test breadboard and prototype system were modified to simulate a
system such as that shown in Figure 8-2. A block diagram of the test setup is
shown in Figure 8-3. All components with the exception of the electrodes and
electrode cell, the glass tube of the flowmeter, and the Teflon valve and pump

gear were of 316 stainless steel.

The silver bromide, AgBr, column used was the canister prepared for the previous
contract which had yielded theoretical saturation of AgBr or 73 ppb silver ion

at flow rates up to 450 ml/minute.

Four liters of water were recirculated through the system at 150 ml/min. at 1.93 x
i105 N/m2 (28 psig) and at 23.9°C (75°F). The fluid in the system was sampled per-
iodically for 28 hours and the silver ion concentration determined in an independent

: electrode system. The silver ion level remained below 50 ppb the entire time.

The silver bromide column was removed from the system and flushed with 20 ml
distilled water by gravity flow. The output of the column was still below

50 ppb silver ion.
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CONSTANT TEMP BATH
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Figure 8-3. Breadboard and Prototype Modification
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The test setup including the prototype system with electrode cell and electrodes

was cleaned as follows:
w

The system was flushed with 1.89 x 10-2 w3 (5 gallons) of distilled water, and
the last 100 ml was sampled at the waste connection (see Figure 8-3). Silver
ion level in effluent from the system was 63 ppb. This test was repeated with
-2 3
m

an additional 1.89 x 10 (5 gallons) of water, and the effluent still

remained at the 63 ppb level.

Four liters of water were recirculated in the system for 19 hours, at which time
the silver ion level was found to be 25 ppb. The system was emptied and cleaned

as follows:

1. Recirculated a one-liter dilute ammonium hydroxide solution for one hour.
2. Flushed 30 minutes with deionized water.
3. Recirculated a one~liter dilute nitric acid solution for one hour.

4. Flushed one hour with deionized water, followed by eight liters

distilled water.

5. Removed the electrode cell from the system and checked the sensing and
reference electrodes for proper response. Flushed the electrolyte
reservoir and filled with fresh electrolyte and checked the quartz

fiber junction for proper electrical resistance.

An additional 150 grams of silver bromide and 260 grams of glass beads were
added to the silver bromide column which was then flushed with deionized water
and distilled water until the theoretical 73 ppb level of silver ion was found
in the column effluent. The electrode cell, electrodes, and silver bromide
column were connected into the system, and 50 and 500 ppb silver ion solutions
were pumped through the system. Unstable up-down response was observed, but no

loss of sensitivity of the silver sulfide electrode was seen.

Four liters of water were then recirculated through the system for 19 hours at
25°C (77°F), 75 ml/min. at 1.93 x 105 N/m2 (28 psig). The indicated silver ion
level at the end of the period was 22 ppb. The silver bromide column was removed

from the system and flushed 1.5 hours with deionized water at approximately 100 ml
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per minute, followed by 12 liters of distilled water which finally produced a
column effluent of 66 ppb silver ion at 22°C (71.6°F)--almost theoretical.

The system was further modified as of October 17, 1973, by adding an ion

exchange column immediately upstream of the silver bromide column (Figure 8-4)

to determine if the interfering materials were ionic in nature. The ion

exchange column contained approximately 130 grams of a 50/50 mixture of

Amberlite IR-120 and Amberlite IR-45. Four liters of water were recirculated
through ﬁhe system for 19 hours at 75 ml/min. and - 1.99 x 105 N/m2 (29 psig) at
25°C (77°F) and the fluid in the system at the output of the silver bromide column

(V2 in Figure 8-4) was sampled at various times. The silver ion level was as

follows:
Time Silver Ion Level (ppb)
20 min. 42
90 min. 42
19 hours 58
25 hours 50
44 hours 45

The pump was removed from the system and 4 liters of distilled water were passed
through the system 3 times by pressurizing the reservoir with 3.45 x 104 N/m2
(5 psig) nitrogen, collecting the effluent at the output of the silver bromide

column (V2 of Figure 8-4), and returning some to the reservoir.

After three passes through the system at approximately 75 ml per minute at 25°C

(77°F), the silver ion level was found to be 60 ppb.
The conclusions from these last tests are as follows:
1. The 316 stainless steel pump with Teflon gears appears to contribute

to the loss of silver ion but is not the sole cause of the loss.

2. Some material(s) within the system may react with the silver ions of
the circulating liquid to form a non-ionized compound since the silver
ions are observed to decrease during recirculation and the addition of

an ion exchange column upstream of the silver bromide column does not
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Figure 8-4. Modified System as of 17 October 1973
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8.4

8.4.1

result in a theoretical silver ion level in the effluent of the

silver bromide column.

The central issue was still unresolved. Independent reference checks
showed that the electrodes were indeed measuring silver loss but it
could not be resolved from these data whether the loss was real or
only apparent, i.e., whether the silver was actually leaving the
solution or being converted to a form that could not be measured

by potentiometric methods.

An attempt was made to resolve this issue by comparing total silver
concentration as determined by atomic absorption spectroscopy to
ionic activity as measured by electrode but the results were incon-

clusive at these low levels.

It was considered essential to resolve this issue. If the silver was
being converted to a non-ionized form, it might still be bacterio-
static, but it would mean that another monitoring technique would have
to be employed. If on the other hand, the silver was leaving solution,
the problem became one of material compatibility, not only in the mon-
itor but elsewhere in the system, since silver depletion would

compromise the bacteriostatic effectivity of the approach,

To arrive at this answer, it was decided to employ a radioactive
tracer technique in conjunction with electrode analyses as described

in the following section.

Radioisotope Tracer Test to Determine Areas of Adsorption of Silver Ion

Purpose

In an attempt to obtain a very sensitive reference method for measuring total

silver, a radioactivity approach was selected. A given level of radioactive

silver will provide the same level of activity whether it is present in ionic

form or in a complex form. Thus, observing the behavior of the radioactivity

level of a circulating silver solution over time and comparing that level to a
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measured ionic silver activity would yield information on the chemical state of
the silver. That is, if the radioactivity level of the circulating solution
remains constant while the ionic activity falls, it can be inferred that the
silver remains in solution but in a form unavailable for measurement by the
electrode. I1f, on the other hand, the radioactivity of the solution falls in
conjunction with the ionic activity, it can be inferred that silver is leaving
solution and that the electrode is actually measuring all of the silver in that
solution. If silver was being depleted from the solution, it would have to be
deposited on some surface(s) of the system and it should be possible to deter-
mine relative deposition by scanning component parts for radioactivity. A

tracer level of Ag-110m was used for this study.

8.4.2 Method

A 500 ml (16.9 f1 oz) solution of 500 ppb silver ion [Agt] containing 250
micrograms of silver was prepared with approximately 29 uCi (microcuries)
of Ag-110m added as a radioactive tracer. The quantity of silver added to

-11 mole/ml

the 500 ppb solution by the addition of the tracer was 3.189 x 10
or 0.689 percent, which was insignificant when the overall error was determined.
The tracer was introduced into the system as shown in Figure 8-5 and recircu-

lated for .two hours.

Prior to introduction of the fluid into the system, a one ml sample was taken
as a control sample. Also, the fluid was measured for silver ion concentration

with a silver sulfide electrode test setup.

During the recirculation period, fluid samples were taken every 10 minutes.
These samples, consisting of a one-ml aliquot, were measured for radioisotope
activity by "counting'" the disintegrations per minute (dpm) in a Beckman
Biogamma well counter. Simultaneously, a measurement of silver ion concen-
tration in the recirculating fluid was madg with the system's electrodes. At
thirty-minute intervals, a 50 ml sample of the fluid was removed and analyzed
for silver ion concentration with an external electrode system. The 50 ml

sample was returned to the system within five minutes.
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M - Beckman Century~SS pH Meter _
V1 - Selection valve, sample-waste or reservoir return
R - L4-liter 316 stainless-steel reservoir
V2 - Teflon valve-system isolation
P - Gear Pump, 316 stainless steel-with Teflon gears
SC - Electrode cell-~Kel-F, polypropylene, Buna N, stainless-steel and epoxy
S - Sensing electrode
RE Reference electrode
SG Solution ground connection
C - Collection point for liquid passed through system
V3 - Vent and filling connection and valve.

Figure 8-5. Prototype System Setup for Radioisotope Silver Tracer Test
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At the end of the two-hour recirculation test, the system was dismantled and
each of the parts rinsed well with distilled water. The parts were then soaked
(silver extracted) in a solution of approximately 25-percent nitric acid for
one hour to remove any silver that had been adsorbed or deposited on the part.
A one-ml aliquot of each solution was then counted to determine the quantity of
silver that had been removed from the part. At that time, the total recovery
of silver was approximately 42.9 percent. The remaining silver that was not

recovered was not removed from the parts in this first wash. -

A second soaking of the parts in nitric acid recovered more silver. The total
silver recovered from the parts was 163.6 x 10_6 grams (5.8 x 10-6 0z) and that
remaining in the solution (as determined by the radioisotope activity) was
53.5 x 10_6 grams (1.89 x 10—6 oz) or a total of 217.1 x 10-6 grams (7.65 x

6 6

10 ° oz) accounted for out of 250 x 10—6 grams (8.8 x 10 ° oz) of starting

silver or 86.8 percent recovery.

8.4.3 Results

Table 8-1 gives the decrease of silver with time as measured by the three

separate methods.
Figure 8-6 is a plot of the decrease of silver with time.

Table 8-2 gives the data on the part and material, and the amount of silver

recovered from each part.

8.4.4 Conclusions

The conclusion of this experiment is that the silver ion that was circulating
in the system was adsorbed onto the parts of the system, in particular the
stainless steel parts (tubing, fittings, and internal parts of the pump). The
sources of error in the measurement of the radioactive material are estimated
to be less than 0.2 percent. The other errors that may enter into the final
determinations are those that normally occur in pipetting techniques and those

associated with the electronic systems.

FR-2656~101 8-24



Table 8-1. Decrease

of Silver Ion with Time

Time
min

10

20

30

40

50

60

70

80

90

100

110

120

(Agt]ppb
System Reference Ag-110M
Electrodes Electrodes Tracer
500 500 500
400 349
340 263
290 250 249
250 218
230 196
190 210 179
180 159
150 148
150 185 136
150
125 114
135 170 107

FR-2656-101

8-25




¥3Jdvul wo|| By
IALIVoIAVY O

300412373 3NN O
300817313 WIALSAS

dwi] Yiim uolledluaduo) uo| by jo Iseasddq -9-§ o;:m_u

{*NiW) 3WIl
ozl 001 08 09 o4 0z o
001
/1
1. N
. —
- —{ooz
[.5v]
Au qdd
00§
004
005

8-26

FR-2656-101



Table 8-2. Amount of Silver Removed from the
System Parts by Nitric Acid

Area Exposed Silver Removedl
to Solution g X 10-6
Part Description Material in.2 cm? A B Total
Electrolyte 316 SS 1.5 9.63 2.6 3.9 6.5
Reservoir Rubber 0.63 4.04
Kel-F 17.49 112.3
pum Teflon 8.0 51.4 1.12 1.89 3.01
P 316 _Ss 4.6 29.5 15.57 | 26.28 | 41.85
I&;ia“” valve Teflon 0.98 6.29 1.3 5.96 7.26
Selector Valve V1 316 8S 0.98 6.29 1.0 1.03 2.03
Sensor Chamber Kel-F 8.8 56.5 3.2 2.34 5.54
Sensor Cap 316 SS 4.15 26.6 2.4 3.9 6.3
Fittings & Tubing 316 SS 33.6 215.8 22.1 53.7 75.8
Silver
Sensor Electrode Sulfide 0.09 0.58 - 4.3 4.3
4 liter Reservoir 316 sS 19.6 125.9 5.5 ‘5.5 11.0
TOTAL 101 648.6 163.6
Summary
Ag Recovered Surface Area
Material g X 1078 | oz x 1076 | % Recovered| cm? in,2 %
Stainless Steel 137.52 4.85 55.0 64 .4 398.6 63.7
Non-metals 26.08 '0.919 10.4 36.6 250 36.3
Remaining in 53.5 1.886 21.4 -- --- --
Solution
Sub Total 217.1 7.657 86.8 101 648.6 100
Silver in
Starting 250 8.8 100
Solution

lRemoval of silver by soaking parts in diluﬁe (approximately 30%) nitric acid.
Concentration of silver determined by counting dpm's of a cne-mil aliquot of
the acid.

A - First silver recovery effort

B - Second silver recovery effort
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This conclusion was in conflict with earlier studies showing minimal depletion

of silver on stainless steel surfaces over extended periods of time. Accordingly,
the conditions of these earlier experiments were studied to determine which, if
any, were sufficiently different to account for the results of this study. Two
conditions were determined as potential variables that could have accounted for
the discrepancy. These were the exposed volume/surface area relationship and

the condition of the water during the test. The earlier studies had employed

a stagnant system in a tank providing a volume ratio/stainless steel of approxi-
mately 6 cc/em? while the test system we employed had a ratio of approximately

1 cc/cm2 which was effectively increased by circulation of the test solution.

The effect of these variables on the rate of silver depletion was examined as

described in the following section.

8.5 Radioisotope Test to Determine Rate of Adsorption of Silver on
Stainless Steel and the Effect of Agitation

8.5.1 Purpose

The purpose of the second radioisotope test was to determine the rate at which
silver was adsorbed on 316 stainless steel in comparison to the ratio of the

metal surface to the silver ion solution in stirred and non-stirred samples.

8.5.2 Method

Five identical sets of 2 beakers each were set up with each beaker containing
500 ml (16.9 fl oz) of a 500 ppb silver ion solution to which had been added
29 pCi of Ag-110m as in the previous test (Paragraph 8.5).

Into each set of beakers were placed different quantities of 316 stainless steel
test coupons to achieve different ratios of liquid-to-metal surface. The

liquid-to-metal surface ratios are given in Table 8-3.

One series of beakers was a static test while in the other series the test

coupons were hung from a support and rotated at approximately 12.56 rad/s (120 rpm).
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Table 8-3. Liquid-to-Metal Surface Ratio for
the Second Radioisotope Test

Ratio ml fluid/cm?
Beaker Metal Surface Control
1 0
2 0.701
3 1.449
4 2.87
5 5.757

In each set of test coupons, a small coupon was selected which was removed
periodically for determination of the deposited silver by measuring the

activity of the isotope on its surface.

At specific intervals, a 0.5 ml aliquot was removed from each beaker for
"counting'". At other intervals, a 50 ml sample from each beaker was removed
for silver ion determination by an electrode test setup, then returned to the

beaker.
The sampling schedule is given in Table 8-4.

The test was run for 10 days with additional measurements made on the 24th

day.

Series A was stirred while series B was static. Thus, Beaker 1A was stirred

with no metal exposed to the fluid.
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Table 8-4. Radioisotope Test Sampling Schedule

Liquid 50 ml Metal
Counting [Agt]Measuring Coupon
Day Time Sample Sample Count
1 0 X X X
15 min X
30 min X
60 min X X
2 hr X
4 hr X X
8 hr X X X
2 24 hr X X X
3 X X X
4 X X X
X X X
7 X X X
8 X X X
9 X X X
10 X X X
24 X X X

During the test, a black substance had fallen into three of the test solutions,
1A, 4A and 5A, from the Delrin bearings of the stirring mechanism. This caused
a very rapid loss of silver ion from the solutions and such beaker tests were

then discontinued.

The test data is presented in Tables 8-5 through 8-9 and shown graphically in
Figures 8-7.
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Table 8-5. Silver 110m--Liquid Volume/Metal Surface
Adsorption Study (Control) (Glass Slides
in Place of Metal Coupons)
Stirred Unstirred

Time Ag-110m [Ag+] Ag-110m [Ag+]
Min/Days cpm % Orig. Act. ppb cpm % Orig. Act.| ppb
Om 67227 100.0 500 71407 100.0 500

15 m 66994 99.6 440 71063 99.5

30m 65813 97.9 70830 99.2
60 m 66008 98,2 69407 97.2 440

120 m 67593 100.5 71864 100.6
240 m 66438 98.8 420 72236 101.1 420

360 m 64089 95.3 70324 98.5
480 m 60586 90.1 420 68622 96.1 420
57270 85.2 420 65649 91.9 422
1 day 60997 90.6 400 69679 97.6 400
2 days 57121 85.0 390 63480 88.9 400
3 days 34904 51.9 12 64809 90.1 385
4 days Contaminated from stirrer 65056 91.1 390
5 days Contaminated from stirrer 60244 84 .4 370
6 days Contaminated from stirrer 61419 400
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Table 8-6. Silver 110m--Liquid Volume/Metal Surface
' Adsorption Study (Liquid Volume/Metal
Surface Ratio--0.701 ml/cm?)
Stirred Unstirred
Time Ag-110m [Agt] Ag-110m (Ag+]
Min/Days cpm % Orig. Act. ppb cpm - % Orig. Act. PPb
Om 71404 100.0 500 72402 100.0 500
15 m 55927 78.3 69219 95.5
30m 48442 67.8 63741 88.0
60 m 24336 34.1 140 62053 85.6 340
120 m 2924 4.1 54067 74.6
240 m 911 1.3 225 47704 65.8 260
360 m 760 1.1 41171 56.8
480 m 616 .1 15 35087 48.4 200
1 day 4,06 0.1 8 19930 27.5 120
2 days Discontinued 10730 14.8 62
3 days 4253 5.9 26
6 days 687 0.1 7.8
7 days 994 1.3 9.8
8 days 782 1.0 9.6
9 days Discontinued
FR-2656~101
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Table 8-~7. Silver 110m--Liquid Volume/Metal Surface
Adsorption Study (Liquid Volume/Metal
Surface Ratio--1.449 ml/cmz)
Stirred Unstirred

Time Ag-110m [Ag+) Ag-110m [Ag+]
Min/Days cpm % Orig. Act. PPb cpm % Orig. Act. ppb
Om 67267 100.0 500 68744 100.0 500

15 m 63338 94 .4 65798 95.4

30 m 68257 101.7 65419 94.9
60 m 61740 92.0 385 65382 94.8 400

120 m 56619 84.4 63529 92.1
240 m 49308 73.5 270 61855 89.9 355

360 m 41137 61.3 56888 82.5
480 m 30785 45.9 190 52033 75.4 325
1 day 9213 13.7 58 43400 62.9 270
2 days 3279 4.9 17 38415 55.9 220
3 days 929 1.4 9.2 29811 43.4 185
6 days 959 1.4 3.3 14229 20.6 79
7 days Discontinued due to low 11911 17.3 68

activity
8 days ' 8892 12.9 56
9 days 5943 8.6 50
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Table 8-8. Silver 110m--Liquid Volume/Metal Surface
Adsorption Study (Liquid Volume/Metal
Surface Ratio--2.87 ml/cm?)
Stirred Unstirred
Time Ag-110m [AgH] Ag-110m [Ag+]
Min[Daxs_ cpm % Orig. Act. ppb cpm % Orig. Act. ppb
Om 75964 100 500 76695 100 500
15 m 74802 98.1 | 74453 96.8
30 m 74234 98.0 72643 94.4
60 m 71412 9.3 400 71724 93.2 440
120 m 68826 90.9 70305 91.4
240 m 63747 84.2 355 68606 89.2 370
360 m 62428 82 .4 63797 82.9
480 m 56593 74.7 325 59041 76.8 350
1 day 44676 60.0 270 53979 70.1 320
2 days 39952 52.6 220 51987 67.8 315
3 days 24348 3‘.2 185 45007 58.7 270
6 days 14545 19.1 76 35318 40.0 210
7 days 8981 11.8 40 34627 45.1 195
8 days 1521 2.0 8.8 | 29505 38.5 175
9 days Discontinued 27328 35.6 170
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Table 8-9. Silver 110m--Liquid Volume/Metal Surface.
Adsorption Study (Liquid Volume/Metal
Surface Ratio--5.747 ml/cm?)

Stirred Unstirred
Time Ag-110m [Ag+] Ag-110m [Ag+)
Min/Days cpm % Orig. Act. ppb cpm % Orig. Act. ppb
Om 72930 100.0 500 | 74216 100.0 500
15 m 72247 99.0 74834 101
30 m 72378 99.2 72835 98.3
60 m 70750 96.9 440 73312 99.0 440
120 m 71737 98.3 73117 98.7
240 m 69177 9.8 420 73102 98.7 400
360 m 68848 94.3 71137 96.0
480 m 63153 86.5 400 66294 89.5 400
1 day 17882 24.5 9.5 | 63955 86.3 385
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8.5.3 Conclusions

] The lower the ratio of liquid-to-metal surface, the faster the

adsorption of silver on the metal surface.

] Agitation or stirring more than doubles the rate of adsorption of

silver on the metal surface.

. Af ter approximately two days, loss of silver ion in beakers con-

taining only glass decreases at a very slow rate.

o It appears feasible to minimize silver loss to the system by
minimizing exposure of the fluid to stainless steel surfaces.
The closer one can approach the 6 cc/cm2 level, the less will
be the effect. Similar studies should be conducted, however,

on materials considered substitutes for the stainless steel.

8.6 Radioisotope Test to Determine Rate of Adsorption of Silver on
Teflon and the Effect of Agitation

8.6.1 Purpose

The purpose of the third radioisotope test was to determine the rate at which
silver was adsorbed on Teflon for comparison with the rate of adsorption on

316 stainless steel in stirred and non~stirred samples.

8.6.2 Method

Four identical sets of 2 beakers each were set up with each beaker containing
500 ml1 (16.9 f1 oz) of a 500 ppb silver ion solution to which had been added
29 uCi of Ag-110m as in the previous test (Paragraph 8.5.2).

Into each of the beakers were placed different quantities of Teflon test éoupons

to achieve different ratios of liquid-to-Teflon surface.
One series of beakers was a static test, whil in the other series the test

coupons were hung from a support and rotated at approximately 12.56 rad/s

(120 rpm).
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At specific intervals a 0.5-ml aliquot was removed from each beaker for counting.
At the same time, a 50-ml sample was removed from each beaker for silver ion
determination by an electrode test setup. The 50-ml samples were returned to

the beakers after the determination. The sampling schedule is given in Table 8-10.

Table 8-10. Radioisotope Test Sampling Schedule (Teflon)

Liquid 50-ml1
Counting [Agt] Measuring
Day Time Sample Sample
1 0 X X
1 hr X X
2 hrs X X
4 hrs X X
8 hrs X X
2 24 hrs X X
3 X X
4
4 X
6

The test was run for 6 days with a repeat of the stirred control (1€) and the
stirred 5.747 cc/cm2 sample (4C) for 19 hours because of contamination encountered

during initial testing.

Series C was stirred while series D was static. Beakers 1C and 1D (controls)

contained glass slides in place of the Teflon couponms.

The test data are presented in Table 8-11 and shown graphically in Figure 8-8.

FR-2656-101 8-38




Table 8-11. Silver 110m~-Liquid Volume/Teflon Surface Adsorption Study
(Liquid Volume/Teflon Surface Ratio [L/T])

0 1 2 & 8 1 2 L H

2 cpo 2 cpm 2 cpm 4 cpm L ] cpa L 4 cpa 2 cpa 2 <ps 2 cpm

Beaker 1C (stirred) 100 66 641 100 67 447 | 100 68 113 | 100 67 182 | 100 68 306 | 100 6B 588 100 67 271 100 68 185|100 70 071
Ag 110 cpm/0.5 @l
fluid (Control)

L/T Ratfo = “0”

Repeat Test 100 66 376 | 99 65899 | 99 66 096 | 95 €3 342 | - - 95 63 495 (19 hrs) - - - - -

1A8*) ppb 100 500 96 480 96 480 96 480 92 460 84 420 84 420 | 88 440 | 84 420

50 ml sanple

(Control)

L/T Ratio = "0"

Repeat Test 100 500 | 96 480 | 96 480 | 96 480 | - - 92 460 (19 hrs) - - - -
Beaker 1D (static) 100 70 971 95 67327 | 96 66995 | 94 66 786 | 95 67 536 | 90 63 959| 92 65035 | 89 63 281 | 96 68 50

Ag l1Um cpm/0.5 ml
fluid (Control)
L/T Ratfo = “0"
tAg*] ppb 100 500 96 480 96 480 96 480 88 440 84 420 88 440 92 460 | 88 440
50 ml samplie

Beaker 2C (stirred) 100 62 737 90 57 021 83 51 773 63 39 405 42 26 376 € 3611 2.3 1450 1 688 | - -
Ag 1100 cpa/0.5 ml
fluid
L/T Ratjo = 2

0.701 cc/enm

iAg*] ppb 100 500 80 400 70 350 54 270 32 160 | 3.2 16| 1.6 8 [1.2 6 - -
50 vl sample

Beaker 2D (static) 100 66 211 92 61 136 96 63 485 95 63 192 97 64 434 90 60 204 91 60 13 96 63 683 | 93 61 307
Ag 110m cpn/0.5 ml
fluid

L/T Ratio =
0.701 cc/em

{ag*) ppb 100 500 92 460 94 470 88 440 84 420 76 380 82 . 410 82 410 | 78 390

2

Beaker 3C (stirred) 100 65 221 100 65 987 95 61 806 98 64 170 97 63 274 90 58 871 90 58 563 84 55 078 | 83 54 287
Ag 110m cpn/0.5 ol
fluid
L/T Ratio =

1.449 cc/cm
1ag*] ppb 100 500 92 460 92 460 B8 440 86 430 76 380 78 390 80 400 | 72 360
50 @) sample

Beaker JD (static) 100 66 019 98 64 410 96 63 545 97 64 023 97 64 117 100 68 Bl4 93 61 405 93 61 226 92 61 025
Ag 110z cpm/0.5 ml
fluid
L/T Ratio ~ 2
1.449 cc/cm
1ag*1 pPb 100 500 96 480 96 480 92 460 88 440 76 380 82 410 84 420 78 390
Beaker 4C (stirred) 100 67 103 { 100 66 874 98 66 024 90 60 528 85 57 312 62 42 144 37 26 962 20 13 314 [Discontinued
Ag 1100 cpn/0.5 ml
fluid
L/T Ratio ~
5.747 ec/em
Repeat Test 100 66 360 98 64 838 97 64 466 94 62 047 - - 96 63 559 (19 hrs} - - - -
|A§’I (143 100 500 96 480 92 460 84 420 75 175 52 260 0 150 }0.6 53 [Discont inued
Repeat Test 100 500 96 480 96 480 9% 480 - - 9 455 (19 hrs) - - - -
beaker 4D (sratic) 100 67 096 98 65 851 94 63 186 99 66 424 94 62 963 90 60 371 97 65 197 92 61 832 92 61 929
Ag 1108 cpn/0.5 ol
tluid
L/T Ratdo = 2
5.%47 cc/em
1A8*] ppb 100 500 92 460 92 460 92 460 84 420 80 400 8¢ 400 84 420 | 80 400

$0 ol sample

(pm * counts per sinute
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8.6.3

Conclusions

No significant depletion rates were observed with Teflon except
at low volume/area ratios and even then, only when the fluid was

agitated.

The worst case condition, i.e., stirred at .701 cc/cmz, exhibited
only a l7-percent loss of silver in two hours, compared with a

96-percent loss with stainless steel under identical conditionms.

It is important to note that the 1.449 cc/cm2 stirred test with
Teflon, which was approximately the liquid-to-surface ratio of the
silver ion monitor test setup, showed essentially the same

adsorption characteristics of silver as the control.
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9.0 SYSTEM MODIFICATIONS

9.1 General

The fluid handling unit of the monitoring system was modified to reduce the rate
of depletion of silver ion from the recirculating solution. This was accomplished
by substituting, where possible, Teflon or nylon components for the stainless

steel components.
The silver sulfide sensing electrode was modified to provide a configuration that
facilitated easier handling and testing. In addition, the modification elim-

inated the need for a separate preamplifier for each electrode.

An overall redesign of the electronics was performed to correct several circuit

design deficiencies and reduce complexity as well as size and weight.

9,2 Modifications

9.2.1 Fluid Handling Unit

Modifications to the fluid handling unit were made as follows:

® The stainless steel tubing and fittings were changed to Teflon tubing

and nylon fittings.

° The stainless steel pressure relief valve was removed from the system.
° The lower chamber cap (Figure 6-5, No. 30) was refabricated from KEL-F.
) The stainless steel pump head was replaced by a Teflon head.

It was observed that the pump did not develop a sufficiently high pressure to
damage the sensor chamber components. Therefore, no substitution was made for
the pressure relief valve since a suitable plastic valve was not readily avail-

able. A flow diagram of the modified system is shown in Figure 9-1.
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Checkout tests showed that the system, as assembled, was prone to pick up electro-
static interference from the external environment including body capacitance.

Such interference was not observed with the all stainless steel system, because
the stainless steel provided the shielding. The external interference was re-
duced to an insignificant level by encasing the plastic fluid lines in metallic

shielding braid which was connected to the solution ground.
Figure 9-2 shows the modified fluid handling unit.

The two Teflon pump heads functioned properly for less than one week, at which
time their output pressure and flow fell to less than 6.89 x 104 N/m2 (10 psig)
and 40 ml/min. (5.4 1b/hr) resulting in erratic, noisy, and non-reproducible
electrode response with continual drift. The cause of failure of the Teflon
pump heads was probably due to cold flow or wear. The original stainless steel

pump head was reinstalled in the system.

The modification of the fluid system by substituting Teflon and nylon for stain-
less steel has significantly changed the surface areas of materials exposed to
the water sample.

Table 9-1 gives the various surface areas exposed to the water sample.

9.2.2 Sensing Electrode Modifications

During earlier phases of the current effort, difficulty was experienced with the
PR-type sensing electrodes in that irreversible deterioration occurred following
recirculation of silver solutions. A particular problem arose since the electrode
pellets were cemented into an electrode housing which was also the top of the
sensor chamber (see Figures 6-4, 6-5, and 6-6). As a result, failure of an elec-
trode dictated discarding this relatively expensive part. While the deterioration
problem has never been resolved, it was noted that a few electrodes of an earlier
configuration were still useable (see Figure A-1). Thus the prototype sensing
electrode housing was modified to permit the use of these electrodes (see Figure

9-3), and the designation changed to Sensor Chamber Cap.
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TEFLON "'T"
ISOLATION VALVE

ION EXCHANGE COLUMN

SHIELDING
-~ BRAID

AgBr

COLUMN

SOLENOID
VALVE—=§

SENSING
ELECTRODE

TEFLON
CONNECTOR
REFERENCE
ELECTRODE AgBr
SOLUTA R SBAUND-OND THERMOCOMPENSATOR

THERMOCOMPENSATOR

Figure 9-2. Modified Fluid Handling Unit--Silver Ion Monitor
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Table 9-1. Surface Areas of Materials Exposed to Water Sample
for Modified System

Exposed Surface
Component Material cm? in.2
System Isolation Valve Teflon
Recirculating 3.27 0.5
Normal Use 6.54 1.0
Solenoid Valves (2) Anodized Aluminum 3.9 ea 0.6 ea
Tubing, 1/4" OD Teflon
Monitoring Loop 157.0 24.0
Calibration Loop 107.9 16.5
Common to Both Loops 53.6 8.2
Tubing Fittings Nylon
Monitoring Loops 62.8 9.6
Calibration Loop 82.4 12.6
Common to Both Loops 49.0 1.5
Pump Teflon 5273 8.0
316 Stainless Steel 30.0 4.6
Electrode Cell Rubber 21.6 3.3
316 Stainless Steel 4.9 0.76
KEL-F 260.0 40.3
Epoxy 1.96 0.3
Polypropylene 5.9 0.9
Columns
Ion Exchange 316 Stainless Steel 78.5 12.0
Silver Bromide 316 Stainless Steel 78.5 12.0
TOTALS 316 Stainless Steel 187.0 28.9
Rubber 21.6 3.3
KEL-F 260.0 40.3
Epoxy 19.6 3.0
Anodized Aluminum 7.8 1.2
Teflon 323.7 50.2
Nylon 145.2 22.5
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THREADED PORT
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ELECTRODE

0-RING GROOVE
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Ag,S PELLET

Figure 9-3. Sensor Chamber Cap--Cross Section
(Modified Sensing Electrode Housing)
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The modified housing does not contain a preamplifier, cap, or electrical con-
nector. These are mounted in the electronics assembly and connected to the
electrode via a shielded cable. Therefore, one preamplifier can be matched

with the input circuits and used with many sensing electrodes.

A new electrode configuration suitable for use with the new chamber cap was
designed. This configuration employs the same silver sulfide pellet diameter,
0.546 cm (0.215 in.) as was used in the sensing electrode for the flow cell

setup of the initial development program, NAS9-12733. The integral PR-type
sensing electrodes used a silver sulfide pellet of 0.86 cm (0.34 in.) diameter.
Since the function of the silver sulfide pellet is not area dependent, the change
in size of the pellet of the sensing electrode did not compromise any functional

characteristic. The size change was required for the new electrode configuration.

The new configuration is threaded to permit it to be readily mounted in the Sensor
Chamber Cap. In addition, the new configuration permits unrestricted access to
the exposed surface of the silver sulfide pellet for cleaning and polishing.
Testing and calibration of the electrode in a beaker is facilitated by its

smaller size. The new electrode configuration is shown in Figure 9-4. Twelve

of these electrodes have been fabricated and tested. The electrode data are

reported in Section 10.3.4.

9.2.3 Sensor Chamber

As a result of the modification of the sensing electrode and substitution of

plastic parts for stainless steel parts, the sensor chamber was modified.

The modified sensor chamber component parts are shown in Figure 9-5, and listed

in Table 9-2.

9.2.4 Electronics

Previous testing indicated that there were several deficiencies in the silver
ion monitor electronic design, It was determined that substantial reduction

in complexity could be achieved by overall design.
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Table 9-2 (Sheet 1 of 2).

Chamber (Figure 9-5)

Component Parts--Modified Sensor

Weight
No. Drawing Material Grams 0z
Sensor Chamber Cap¥* Ag0070 Polypropylene 35.0 1.2
Quartz Fiber Junction | Ag0041 Lead Glass 0.5 0.02
Quartz Fiber
3 Speedserts, Tridair SPB-10328 (4) Stainless Steel 2.8 0.1
Industries
4 Quartz Fiber Junction | Ag0030 Polypropvlene 1.3 0.05
Mount
O-Ring, Parker 3-904 N674-7 Nitrile 0.1 ea
Mounting Screws Pan 10-32X.37 (3) Steel 7.8 0.28
Head
Bracket, Cell Mount AGO0056 12.5 0.44
8 Needle Assembly AG0022 316 Stainless 9.3 0.33
Steel
9 Spanner Wrench AG0032 Stainless Steel - -
10 Nut, Septum Retaining | AG0021 316 Stainless 6.1 0.22
Steel
11 Nut, Retaining Upper AG0024 316 Stainless 33.9 1.2
Diaphragm Support Steel
12 Top, Electrolyte AG0025 KEL-F 47.4 1.67
Reservoir
13 Bottom, Electrolyte AG0026 KEL-F 49.9 1.76
Reservoir
14 Spring, Rolling AG0048 302 CRES 2.0 0.07
Diaphragm Cond 13
15 O-Ring, Parker 2-111 N674-7 Nitrile 1.2 0.04
16 Speedsert SPB-1032-S Stainless Steel 1.0 0.04
17 0-Ring, Parker 2-111 N674-7 Nitrile 0.9 0.04
18 Chamber Body AG0027 KEL-F 378.0 13.33
19 Thermocompensator AG0037 316 Stainless 20.2 0.71
Assembly Steel Epoxy
*Modified Components
FR-2656~101 9-10




Table 9-2 (Sheet 2 of 2).

Chamber (Figure 9-5)

Component Parts--Modified Sensor

Weight
No. Part Drawing Material Grams 0z
19A | O-Ring, Parker 3-904 N674-7 Nitrile 0.1 =
20 Union--Swagelok to AN* | NY400-6-4AN Nylon 4.5 0.16
: (2)
21 Reference Electrode Mixed 43.0 1.52
Assembly (Primary)
22 0-Ring, Parker 2-111 N674-7 Nitrile 0.8 0.04
23 Retainer Ring N-5000-62-H 316 Stainless 0.5 0.02
Steel
24 Wrench, Septum AG0033 Stainless Steel - -
Retainer Nut
25 Septum, Hamilton Silicone Rubber
26 O0-Ring, Parker 2-117 N674-7 Nitrile 0.45 0.02
27 O-Ring, Parker 2-134 N674-7 Nitrile 1.0 0.04
28 Diaphragm, Rolling 3-112-94-CBJ BUNA-N 2.6 0.09
(Bellophram)
29 Piston, Diaphragm AG0020 KEL-F 4.7 0.17
30 Cap, Chamber, Lower¥* AG0029 KEL-F 25.9 0.9
TOTAL: 694.6 (1.53 1b)
*Modified Components
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Figure 9-6 is a schematic of the redesigned silver ion monitor electronics. The

following features are incorporated to improve performance and reduce complexity.

9.2.4.1 Common Mode Range Increased

Tests using the original silver ion electronics indicated that large common mode
potentials (~200 mV) were occurring between the solution ground and the sensing
and reference electrodes. This resulted in substantial drift as the common mode
rejection of the original electronics was very low. Also, the high gain of the
original preamplifiers resulted in saturation of the preamplifiers at high common

mode conditions.

A fully differential amplifier consisting of Z1 and the associated resistors was
added in the redesigned electronics package. The preamplifier gain was also
reduced to 4X from 40X. This change has resulted in greatly reduced electronic

drift.

9.2.4.1.1 Common Mode Rejection Ratio

Differential amplifiers with a single output, such as used in pH meters and also
in the silver ion monitor, have two inputs which share a common ground. Ideally,
no signal that is common to both inputs should appear in the output. That is, if
the same signal were applied to both inputs, there shculd be no output signal.
The ability of an amplifier to achieve this is called its "common-mode-rejection-

ratio." This is defined as:

Gain of Amplifier to Difference Signal
Gain of Amplifier to Common Signal

CMRR =

In the silver ion monitor the two inputs are the reference electrode input and
the sensing electrode input which share the solution ground connection at a

common ground.

9.2.4.2 Calibration Accuracy

The original digital-to-analog converter circuit (DAC) which was implemented

with a discrete resistor adder network was found to lack monotonicity. This

FR-2656~101 9-12




SOTIBWAYIG-—SOTUOIJOATY I10ITUOK UO] IDATLS poudisapay

*9-6 21n814

9-13

FR-2656-101




resulted in the system occasionally "over-running" a calibration point. A fully
monotonic 10-bit integrated circuit DAC was used in the redesigned monitor elec-
tronics (Z5). Up/down counters (Z6, Z7, 28) were used for the calibration
register instead of up only counters used in the original. This scheme allows
the calibration bias voltage to be adjusted up or down and is particularly

insensitive to electrode noise.
The ADC and associated logic used to sense the calibration point were replaced
by a single hysteresis comparator (Z3A and Ql). This greatly reduced the size

and power consumption of the silver ion monitor.

9.2.4.3 Revised Silver Ion Monitor Electronics Functional Description

The silver ion monitor electronics amplify and condition the electrode output
for display on meter or chart recorder and control the calibration sequence and

interval, adjusting for electrode asymmetry at each calibration.

Signals from the preamplifier modules enter at pins 1 and 2, Amplifier Z1A
rejects the electrode common mode potential and presents the electrode differ-
ential voltage, multiplied by the preamplifier gain, to the temperature com-
pensation amplifier Z1B. Resistor Rl 1is trimmed to set overall system gain.
Electrode asymmetry potential is adjusted by amplifier Z2B. The signal then
passes through the sample and hold.switch consisting of Q7 and Q8 to sample
and hold amplifier Z4.

In the calibrate mode, Q7 and Q8 are off and Z4 provides an output signal to
the meter and chart recorder indicating the voltage concentration of the fluid
just prior to calibration. The droop of this sample and hold circuit is less

than 1 percent during an ll-minute calibration period,

The calibration time base is generated by the clock oscillator consisting of
inverters Z15Z, b, and counters Z14 and Z13. Flip-flops Z12a and b initialize
calibration whenever the Caltime line (Z13 pin 1) goes high, the manual cali-
brate button is pushed, or power is turned on. Flip-flops Z9b, Z10a, a, and

counter Z11 control the calibration sequence.

FR-2656-101 9-14




The calibrate line (Z9b pin 1) defines the calibration period of approximately
11 minutes. When calibrate goes high, Z15a turns on Q3, Q4, Q5, and Q6, acti-
vating solenoid valves connected at pins 15, 16, 17, and 18. These valves
direct flow through the AgBr column providing known [Ag*] concentration for

calibration.

Simultaneously, the sample and hold switch driver Q9 is turned om, turning Q7
and Q8 off, thus locking the output at the precalibration value. The calibration

indicator LED is also turned on.

After 2 to 3 minutes of the calibration sequence have passed, flip-flop Z10b is
clocked by counter Z11 giving an output, pulse (Z10b pin 1). This output resets
the bad cal flip-flop (Z9a). After five minutes of the calibration sequence have
passed, counter Z1ll clocks flip-flop Z10a forcing signal count low.

When the count is low, the calibration register, consisting of counters 26, 7,

and 8, is enabled and counts up or down under control of the hysteresis comparator,
consisting of Z3A and Ql. The output of the calibration register controls DAC Z5,
adjusting electrode asymmetry through amplifier Z2B. Amplifier Z3B offsets the
output signal of Z2B so that it may be compared with the AgBr reference column

temperature by the hysteresis comparator consisting of Z3A and Ql.

A bad calibration is signaled by a calibration register overflow or underflow
condition that occurs when the adjustment range is exceeded (Z8 pin 2 goes low).
Should a bad calibration occur, flip-flop Z9 is set and Z15e and Q2 turn on the

bad cal indicator.

At the end of the calibration period flip-flop Z9b is set bty an output from
counter Z11 (Z11 pin 1), thus terminating the calibration period and doing the
following: turn off Q3, Q4, Q5, Q6; release solenoid valves; turn off Q9;
turn on Q7, Q8; turn off calibrate indicator; reset flip-flops Z10a, b.

The original four component boards and supporting bracket, which occupied a

volume of 10 x 11 x 35.5 em (3.9 x 4.3 x 13.9 in.) were replaced by one electronic
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package, measuring 3.8 x 12.7 x 26.7 cm (1.5 x 5.0 x 10.5 in.). The weight of
the electronics plus the preliminary case was reduced from 3624 grams (218 oz

or 8 1b) to 3288 grams (116 oz or 7.25 1b).

This weight includes all the connecting cables and connectors, readout meter

and switches.
Figure 9-7 shows the redesigned silver ion monitor electronics.

9.2.5 Size and Weight of Modified System

The weight of the system was reduced by material substitutions, electronics
redesign, and elimination of the pressure relief valve and fittings. Con-

currently, weight was added by the necessary use of metal shielding braid.

The weight of the modified system and of individual components is given in

Table 9-3.

The actual size of the electronics was reduced as described in Section 9.2.3;

however, no reduction in the outside package of the system was attempted since

weight and size reduction were not included in the modification goals.
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Figure 9-7. Redesigned Silver Ion Monitor Electronics-—-Packaging
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Table 9-3. Modified System Weight and Weight of

Individual Components

Weight
Component Grams 0z
Fluid Handling Unit
Ion-Exchange Column 165 5.82
Silver Bromide Column 182 6.42
Calibration Loop Tubing and Fittings 115 4.1
Pump-Motor Combination with Bracket 1472 51.9
Solenoid Valve + Nylon Fittings (2) 836 29.5
Sensing Electrode with Cable and
Connector 23. 0.8
Primary Reference 43 1.52
Teflon Isolation Valve, V1 + Bracket 114 4.0
Measuring Loop Tubing and Fittings 43 1.52
Sensor Chamber 694.6 24.5
Support (estimated) 375 13.23
Metal Shielding Braid 127 4.5
Redesigned Electronics Unit
Electronics + Preliminary Case
(35.56 x 40.6 x 22.2 cm) 3288.0 116.0
TOTAL SYSTEM WEIGHT REVISED: 7.478 kg
16.5 1b
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10.0 DESIGN VERIFICATION TESTING

10.1 Purpose

It was originally intended that after the preliminary testing of individual
components and subsystems, the preliminary flight prototype silver ion monitor
would be assembled, functionally tested, and adjusted for optimum response. The
totally integrated system would then be subjected to testing to verify its capa-
bility to operate under anticipated use conditions. These tests were to consider
flow, pressure, temperature effects, silver ion concentration, and zero gravity
compatibility. Calibration requirements were to be established as part of the

verification testing.

The verification testing phase of the program was originally divided into six

subtasks:

a. Design test fixture modification
Modify test fixture

c. Perform environmental testing

d. Establish zero gravity compatibility

e. Establish calibration requirements

Perform life testing

Subtasks a. and b. were performed in parallel with the final fabrication of the
fluid handiing unit. The problem of the loss of silver ion from solution during
recirculation was identified soon after assembly of the fluid handling unit and
subsequent radioisotope tests revealed that the silver was depositing on the
stainless steel surfaces. Modification of the fluid handling unit by substi-
tuting Teflon and nylon for stainless steel was implemented to reduce the loss

of silver ion from the solution recirculating in the system.
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The modifications to the system required that additional subtasks be included
in the testing phase of the program and that they be performed prior to sub-

tasks c. through f. These subtasks were as follows:

° Determine effectiveness of Teflon substitution.

o Determine response and degradation characteristics of new sensing
electrodes.

) Integrate fluid unit with redesigned electronics.

] Determine system operating characteristics with automatic calibration.

The effort expended toward the above subtasks precluded the remainder of the
verification tests subtasks c. through f. However, portions of subtasks e. and

f. were performed as part of the four additional subtasks.
During the performance of the various tests necessary under the current effort,
the test fixture was modified several times and/or parts used in temporary test

setups,

10.2 Test Fixture Design Modification

The test fixture fabricated and used under the Residual Water Bactericide Monitor
Development Program, Contract NAS9-12733, was modified to facilitate the various
tests of the prototype flight monitor subsystems. As originally modified, it was
intended to be used to simulate a main water line of the Space Shuttle's potable
water system and was to provide variations in pressure, flow, silver ion concen-
tration, temperature, as well as a stable source of silver ion concentration for
the 1life testing. Consequently, a number of modifications to the original design

were required. The modifications were as follows:

° Replacement of the Micro Pump #12-41-316-759

. The flow cell was replaced by two "Ts" and a flow restrictor across

which the flight prototype monitor will be connected

o The cover of the fluid reservoir, which was previously clamped on, was
welded on to permit pressurizing the system to 4.8 x 105 N/m2 (70 psig)

with nitrogen gas

FR-2656-101 10-2



° The thermocouple was relocated to a "T" just upstream of the connection

to the flight prototype monitor.

° A needle valve and bypass was added in parallel with the silver bromide
canister to permit variation of silver ion concentration at a constant

temperature.

Figure 10-1 shows a block diagram of the modified envirommental test fixture and

connection to the preliminary flight prototype monitor.

10.3 Testing
10.3.1 General

Following completion of mechanical modifications, the system was assembled for
testing without the solenoid valves and calibrating loop (see Figure 10-2). The
test design was to progress in a stepwise fashion to demonstrate that the re-
duction in stainless steel areas had lowered the rate of silver ion depletion.
Testing began with a simple flow=through system and progressed to the complete

recirculating system. A Beckman Century SS pH Meter was employed.

10.3.2 Flow-Through Testing

Flow-through testing of silver solutions at the 50~ and 500-ppb level was con-
ducted. These solutions were pumped through the sensing cell to waste while
sensor output was constantly being monitored. Tests weré conducted with a 50-ppb
solution for up to two hours with satisfactory performance, i.e., less than 1.4 mV

drift and no silver depletion observed. No electrode deterioration occurred.

10.3.3 Recirculation Testing

Following the successful completion of the flow-through tests, 50-ppdb silver
solutions were recirculated, utilizing a reservoir volume of 1000 ml. During
an overnight run of eighteen hours, a gradual decline in silver level occurred,
followed by a gradual increase to an apparent level of approximately 60 ppb
(based on recalibration). Independent beaker tests following the completion
of the overnight run showed a silver level of 22 ppb--a significant improvement

over the stainless steel system (see Figure 10-3). The apparent increase in

FR-2656-101 10-3



r————=—-
t 1 [
]
i R2 R)
: : 50 ppb V) 500 ppb
H — ::{ :
l :‘-——RECIRCULATE
b———————— i
! }
vi 1 V2
| e—
WASTE @——
1/4-1IN. OD
/_— TEFLON TUBING
f1s
S6
O
R -—
P
CHAMBER -
PUMP
BECKMAN BECKMAN
$S-1 10- INCH
pH METER RECORDER

R1,R2 - 1-Liter Reservoirs, Glass

A - Selection Valve, Glass
V2 - |solation Valve, Teflon
S - Sensing Electrode

SG - Solution Ground

R - Reference Electrode

Figure 10-1. Test System as of 6 March 1974
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silver level in the recirculating system has been attributed to a temperature
increase of the circulating solution to 34°C (93°F) contributed by the pump.
This was the first time the silver level remained high enough to warrant that
length of test, and thus the first time that the heat rise was observed.
Although the monitoring system electronics has temperature compensation capa-

bility, such was not the case with the pH meter setup.

To eliminate this heat buildup, the recirculating fluid was passed through a
coil which was immersed in a constant temperature bath at 25°C (77°F). The
coil was initially fabricated of glass tubing to provide reasonably efficient
heat - transfer, but either the coil was continually breaking or connections were
leaking, thereby effectively ruining the experiment due to loss of fluid.
Eventually, the coil was constructed of Teflon which appeared to afford ade-
quate heat transfer; however, insertion of this Teflon cooling loop caused an

increase in system noise.

The flow of the low conductivity fluid through the 15 feet of Teflon tubing
apparently forms an electrostatic generator which was thought to be the source
of the noise. Later it was found that by some undetermined mechanism the Teflon
tubing loop was picking up noise from the electrical components of the constant
temperature bath. Removal of the Teflon loop from the constant temperature bath

reduced the noise significantly.

The overnight recirculation test was repeated three times. At the end of about -
16 hours the silver ion concentration of the recirculating fluids showed 26, 18,
and 16 ppb, down from a starting level of 50 ppb. The differences between the
silver ion concentration at the end of the four tests was probably due to
temperature differences (no thermostatic control of the recirculating fluid),

flow rate changes, and +2 ppb measurement errors.
A previous recirculation test with a stainless steel fluid system and a one-

liter reservoir exhibited a loss of silver ion of from'SO ppb to less than

1 ppb in two hours (see paragraph 8.2).
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The recirculation tests clearly demonstrate the effectiveness of the substi-
tution of Teflon for stainless steel in the reduction of the loss rate of the

silver ion.

During the recirculation tests with the stainless steel, during which silver
ion was lost rapidly and the silver ion concentration dropped to below 2 ppb,
the silver sulfide electrode in the system always degraded rapidly--sometimes
irreversibly. The degradation was noted as a loss in sensitivity from the

original Nernstian response of 59 mV/decade to below 54 mV/decade. Noise and

drift usually accompanied the loss in sensitivity.

During the recirculation tests with the Teflon system in which the silver ion
level never fell below 16 ppb, some of the silver sulfide electrodes were
observed to be very stable while others slowly became unstable with or without

a loss of sensitivity. Rapid degradation during recirculation was not observed.

10.3.4 Electrode Response and Degradation

10.3.4.1 Sensing Electrode

Twelve of the new configuration electrodes (see Figure 9-4) were fabricated in
two batches of six each. Five of the electrodes of the first batch, which
originally exhibited satisfactory responses, degraded following combined
exposure to the recirculating silver solutions in the Teflon fluid system

and solutions in beaker tests., Their history prior to failure was reviewed

in an attempt to discover a failure mode.

All electrodes were conditioned in a 10 ppm silver ion solution and treated
the same except for exposure time. None was exposed to-silver ion solutions

lower than 16 ppb, and all were stored dry when not being tested
Table 10-1 shows the responses of the five electrodes before and after degra-

dation. The history and data omn these electrodes contained nothing that would

indicate a definite failure mode.
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Although only conjecture, the possibility exists that the silver sulfide pellets
were formed with inadequate pressure due to a faulty hydraulic press. The
hydraulic press used to form the pellets was later found to be functioning

improperly when a second batch of electrodes was attempted.

It was thought that one possible mode of electrode failure was the diffusion of
the silver ion solutions through the epoxy seal between the pellet and electrode
body. One technique of attaining a good seal that is used commercially is to

wax impregnate the lower portion of the electrode.

An attempt was made to utilize wax impregnation as a means of sealing the elec-
trode to effect electrode stabilization. The electrode so treated degraded in

the same manner as the other electrodes.

One electrode of an earlier configuration (see Figﬁre A-1), RSB-~2, fabricated
in July, 1973, was found to have exceptional stability. This electrode had
always been stored dry when not in use. However, to determine the stability
of this electrode with a continuous exposure to silver ion solutions, it was
stored in a stirred 50 ppb silver ion solution when not in use. The electrode
remained stable for 80 days then developed a slight drift, but the noise

remained less than +0.7 mV.

It was observed that the electrodes developed a "memory response'" after exposure
to the same silver ion concentration for greater than 6 hours. "Memory response"
is a typical membrane electrode response occurring after a prolonged exposure to
a single ion concentration. The acceptable current mechanism for such a response
is that the membrane (the silver sulfide pellet in the sensing electrode) becomes
saturated ﬁith a given ion concentration. After saturation the electrode is

slow to respond to other ion concentrations because the membrane must be desat-
urated and a new equilibrium established between the membréne and the fluid to
which it is exposed. Desaturation of the membrane (the silver sulfide pellet)

is most efficiently accomplished by recycling between a high and low ion con-
centration until repeatability without drift at both levels is attained. Elec-

trode RSB-2 has been responding readily to the desaturation procedure.
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A second batch of the new configuration electrodes was fabricated using a
hydraulic press of tested performance. The electrodes were conditioned in

10 ppm of silver ion at 40°C (104°F) for 72 hours. Three of the electrodes
were found to have acceptable response characteristics. One electrode, PR 46,
was observed to have very good stability and was used in the monitoring system
prior to and after integration of the fluid unit with the electronics. This
electrode was exposed intermittently to silver ion fluids in beaker tests and
in the monitoring system for 334 hours before degradation was observed. During
this period the electrode exhibited "memory response'" but responded to the

desaturation procedure readily.

Degradation of PR 46 was observed after prolonged (greater than 4 hours)
exposure to the effluent of the calibration loop (ion exchange resin column

and silver bromide column). Initially, following the first exposure to the
calibration loop, the electrode showed a loss of sensitivity of 6 mV per-
decade with increase of noise and drift. Cleaning the surface of the silver
sulfide pellet with 600 grit carbide paper and buffing on a soft cloth rejuv-
enated the electrode (59 mV decade with +0.7 mV noise). Final degradation was
observed as an increase in noise to 3.5 mV and continuous drift. Rapid cycling
between 50 and 500 ppb silver ion solutions showed that the response had not
changed significantly (less than +2 mV decade).

Following exposure to the effluent of the calibration loop, electrode RSB-2,
which was used in the beaker test setup, also showed signs cof degradation about
the same as PR 46. This electrode, however, was successfully rejuvenated by
buffing with a soft cloth and cycling between 50 and 500 ppb silver ion

solution._

At the present time there is no evidence that the effluent from the calibra-
tion loop is a cause of electrode degradation other than the coincidence of
both electrodes (PR 46 and RSB-2) showing signs of degradation at about the

same time.
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The second good electrode degraded, i.e., exhibited noise and continuous drift,

during storage. Rejuvenation methods were not effective.

The third electrode was not used or tested after initial evaluation.

10.3.4.2 Reference Electrode and Electrolyte Reservoir

A study of the stability of the reference electrode was made by making periodic
checks of a primary reference electrode, R4, which was in constant use in the
sensor chamber for a period of 40 days. The electrode did not change its

characteristics throughout the period nor did it become noisy.

The electrolyte reservoir was cleaned and refilled on April 9, 1974, with one
molar potassium nitrate solution (1M KNO3) to which was added one percent car-
boxymethylcellulose as a thickening agent. After 40 days the reservoir still
contained sufficient electrolyte to provide correct operation of the reference

electrode.

10.3.5 Integration of Electronics with Fluid Handling Unit

Just prior to integrating the electronics with the remainder of the monitoring
system, the stability of the system was checked by a flow-through test for a
period of 7 hours with calibration only at the start. Fifty and 150 ppb
solutions were pumped through to waste and millivolt readings were taken by

a pH meter at least 5 minutes after a stable response was indicated. The data

are shown in Figure 10-4. At the 150 ppb level the average deviation was #3.5 mV

or +8 ppb (5%) and at the 50 ppb level the average deviation was +2 mV or 2 ppb
(4%). The recorded output from the pH meter showed approximately +0.7 mV noise
with an o¢casional 14 mV spike. A slight up/down drift was also observed.

The output of the ion exchange/silver bromide columns was also checked prior to
connecting into the integrated system. De-ionized water was flowed through the
ion exchange and silver bromide columns at 80 ml/minute at 25°C and the silver

ion concentration of the effluent determined in a beaker test setup. The con-

centration was 76 ppb silver ion, which is in good agreement with a theoretical
of 78 ppb. '
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pH METER READOUT FOR FLOW-THROUGH STABILITY TEST
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The electronics were connected to the other components of the system and 50 and
150 ppb silver ion solutions pumped through the system. Much noise was observed
with a continuous drift. Shielding the fluid unit with metallic shielding braid
and connecting it to the solution ground was found to be necessary. Also, ade-
quate grounding of all metal components of the system was found to be very
critical. Grounding of the pump motor frame to the solution ground was found
necessary to prevent pickup of ac interference voltages from the motor via

capacitive coupling.

Noise and drift were still observed. The 4.57 meter (15-foot) Teflon heat trans-
fer loop was found to be picking up noise from the constant temperature bath
components. The Teflon loop was removed from the constant temperature bath

resulting in a significant reduction in system noise.

The apparent reason for the increased noise with the re-designed electronics
over that observed with the pH meter was that the pH meter had a much higher
common mode rejection ratio than the system electronics. The preamplifiers
were modified to increasd the common mode rejection ratio and resulted in a

reduction of the noise.

During preliminary recirculation tests in the measuring mode bubbles were observed
to form slowly in the system about the same time that the recorded response started
to show drift and an increase in noise. It was postulated that perhaps the bubbles
were forming in the pump then moved downstream to the sensor chamber causing, at
least in part, the observed noise and drift. However, placing the pump downstream
of the sensor chamber did not reduce the noise or drift or bubble formation. It
was noted that the slower flow rates favored bubble accumulation in various

locations of the monitoring system.

Wirh the exception of the bubble formation, the short recirculation tests indi-

cated that the system in general was functioning properly.
A temporary modification of the test setup permitted flow-through calibration with

50 and 150 ppb silver ion solutions. The system's meter did not indicate the con-

centration correctly since the automatic calibration had not been permitted to
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function yet. The output of the electronics was monitored with a pH meter in

place of the system's meter.

The system responded to the 50 ppb solution with a 153 mV output and to the

150 ppb solution with a 183 mV response. Thus a sensicivity of 63 mV/decade
was demonstrated. The éystem was immediately switched to the automatic cali-
bration mode with fluid recirculating through the calibration loop (pump, ion

exchange column, silver bromide column, and sensor chamber).

After about 10 minutes, or sufficient time for the system to effect calibration,
the system output was 53 mV, This indicated a concentration of silver ion in
the effluent of the silver bromide column to be below 2 ppb while the actual
concentration was approximately 60 ppb.

In an attempt to ascertain the source of error or problem, the preamplifiers
were bypassed and the output of the electrodes connected directly to a pH meter.
The recirculation of the fluid in the calibration loop was continued. A contin-
uous downward drift was observed. The output of the silver bromide column was

found to have degraded to 60 ppb or 28 ppb below theoretical.

The test setup was modified to that shown in Figure 10-5 and Table 10-2. This
modification retained automatic calibration but used a 75 ppb silver ion solution
from the reservoir R3. It also made possible continuous flow-through testing with
two different silver ion concentrations, usually 50 and 150 ppb. Recirculation

using either a 1 or 18 liter reservoir was also provided.

A 12-hour flow-through test was conducted using the test setup. The needle value

on the flow gauge was used to adjust the flow to 90 to 95 ml/minute at 25°C.

Automatic calibration, about every 3 hours, was employed. The three reservoirs
were kept filled with freshly analyzed silver ion solution. The results of the
test are shown in Figure 10-6. The graph shows the meter readings while the
corresponding data below the reading show the actual silver ion concentration

of the fluid and the error in ppb of silver ion. Between the third and fifth

FR-2656-101 10-15



/6T TTady 1 Jo se dniag 1s3] wdlIsLsS

‘S-0T 21n814

94

I1SYM 0L

31VINJY 1IN

A

(e o

-

€A

€y

NEL ]

\
~

.

ds

QF—" 13

7

l

(4]

10-16

FR-2656-101



Table 10-2. Component Identification for System
as of 4~11-74

R3 - 3-liter calibration fluid reservoir--75 ppb
[agt)

R1 - 18-liter reservoir--approximately 50 ppd
[agt)

R2 - 1-liter reservoir--150 ppb [Ag+]

V1 - Selection valve--glass

SP - Sampling point for 5-gallon reservoir

V2 - Isolation valve

v3 - Solenoid valve--calibrating or test fluid

P - Pump~-316 stainless steel

sc ~ Sensor chamber

S - Sensing electrode connection

R - Reference electrode connection

SG - Solution ground connection

ELECT - System electronics

REC - 10-inch Beckman recorder

FG - Flow gage

Tubing between V1 and R1,R2--Tygon

hour, electronic adjustments were necessary otherwise the response was very
good. The average error over the 10 operating hours was 2 ppb with 5 ppb being

the largest.

The data show a system operating reasonably well but with an error of 10 percent

while the. goal for .the system was 5 percent.

Since the system, exclusive of the calibration column, appeared to be functional,
attention was again focused on the calibration loop. The silver bromide column
was repacked with the silver bromide/glass bead mixture from the large column
which -had been filled by Chemtric, Inc. The effluent from the column was 72 ppb
which was 6 ppb below theoretical. Even though the column output was slightly
lower than ideal, a 2-hour flow-through test was performed using automatic cal-

ibration but initiated manually instead of by the electronics.
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The test setup was that shown in Figure 10-5 with a slight modification. Reservoir
R3 was replaced by the ion exchange column/silver bromide column through which

de-ionized water passed during calibration.

The test results are shown in Figure 10-7. A large and varying error was observed
with the 50 ppb solution flowing through. With the 150 ppb solution, the system
meter appeared to be pegged at 155 ppb.

Since the actual output of the ion exchange/silver bromide column was not known,
the test setup was modified slightly by adding an open beaker in the line between
the ocutput of the silver bromide column and the solenoid valve. This allowed
periodic removal of sample for analysis. The open beaker also allowed observation

and removal of bubbles from the column effluent.

A 90-minute test was run with analysis of the effluent of the silver bromide
column at 0, 50, and 70 minutes. The test results are shown in Figure 10-8. The
errors are very large but appear to be steady. The most apparent cause of the
error was a 28 ppb calibration error due to low silver ion concentration in the
effluent of the silver bromide column. A less obvious error determined by flow-
through test later showed that the adjustments for electrode span and offset
potential in the electronics were out of adjustment by a significant amount.
Since these two adjustments interact with each other, determination of the

individual error due to each was not readily made.

The system was then run in the flow-through mode without the calibration loop
using 50, 75, and 150 ppb from the various reservoirs and attempts were made to
adjust the span and offset potential controls. These are miniature potentiometers
in the electronics package, Span and offset potential adjustments resulted in a
temporary matching of meter readings with the concentrations of the solutions but
a continuous upward drift was observed. The sensing electrode was beaker tested

and found to have a span or sensitivity of 59 mV/decade without drift.

The input amplifiers were changed such that each had a gain of one. The common
mode rejection ratio was also increased significantly. However, system tests

still showed a continuous upward drift.
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To determine if it was the system electronics or the electrodes and fluid system

that were drifting, the preamplifiers were bypassed and the signals from the elec-
trodes were connected to a pH meter (see Figure 10-9). In a 25-hour recirculation
test the output of the electrodes was observed to drift, after stabilization, +2 mV

or -1 mV at the 50 ppb level. This is shown in Figure 10-10.

Operation of the system in the flow-through mode while making electronic measure-
ments and tests indicated that the thermocompensation for the silver bromide
column effluent was malfunctioning. Since the delivery time for a new thermo-
compensation was six months, the compensating circuit was essentially shorted
out. Preliminary short-term tests indicated this action had indeed reduced

the drift significantly.

A 1l6-hour recirculation test was performed recirculating the fluid to an 18-liter
reservoir of approximately 50 ppb silver ion solution. The contents of the
reservoir were analyzed before and after the test. The fluid was recirculated

at 65 ml/min. (8.6 1b/hr) at 25 +1°C. The test setup was the same as that shown
in Figure 10-9 except that the complete electronics were used, The input from
the 75 ppb reservoir comes into the system at the same location that the output

end of the silver bromide column would connect to the system.

The results of the test are shown in Figure 10-11. The actual silver ion concen-
tration of the recirculating fluid decreased slowly due to silver ion depletion
due to deposition on the surface of the system and reservoir (45 ppb at start to
42 ppb at finish, a drop of 3 ppb). The indicated level of silver ion went from
48 ppb at the start to 45 ppb at the finish showing an overall parallel drop of

3 ppb similar to the true concentration.

The cause of the up-down shift or drift is not definitely known. It is very
probable that the drift and/or error is due to a combination of phenomenon such
as flow variations, bubble interference, electrode drifp; electronic drift, and
perhaps the buildup and discharge of a streaming potential(s). The offset of 3
ppb from actual concentration could be due to improper adjustment of offset

potential or calibration errors.
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If a 3 ppb downward shift correction was applied to the meter readout, the largest
resulting system error would be 2.5 ppb or within the 5-percent error limit estab-

lished as a goal.

A 72-hour recirculation test with calibration only at the beginning of the test
showed a beginning concentration of 42 ppb. After 72 hours, the indicated level
was 40 ppb while the actual was 30 ppb. The up-down variations in drift were
again observed. The overall error in this test was 10 ppb at the 30-ppb level

or 33.3%. This definitely demonstrates the need for frequent calibration.

The 72-hour test was followed by a 3-day continuous recirculation test with the
-same test setup. Span and offset adjustments were made to correct meter reading
errors and at the same time the differential and common mode voltages were mea-
sured. Both the common mode voltages were observed to sporadically and rapidly
increase the same amount while the differential voltage, which reflects the
response of the electrodes and thus silver ion concentration, indicated a similar
change. This showed that there was no drift of the electronics but some unde-
termined phenomenon within the system was causing the up-down drift and unusual

response.

The ion exchange column was cleaned out and repacked with an ion exchange resin
mixture prepared exactly in accordance with the Chemtric procedure (see Appendix
"C"). A quantity of the IRA-402 resin was received from Chemtric. The silver
bromide column was repacked with freshly prepared silver bromide/glass bead

mixture in accordance with the Chemtric procedure.

The initial flow-through test resulted in a silver ion concentration in the column
effluent of approximately 60 ppb. An additional 15 em (6 in.) column of silver
bromide was added to the calibration loop. The effluent was constant at 76 ppb
silver ion at 25°C (77°F) for a flow of 100 ml/min. (12.3 1b/hr) using pressure

from the de-ionized water system.

An attempt to test the repacked silver bromide columns as part of the calibration

loop showed that there was too great a difference between the pressure drop of
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the calibration loop and the monitoring loop resulting in a flow difference of

about 1 to 3. Such a flow difference resulted in calibration errors greater than

5 ppb.

The degradation of the PR 46 sensing electrode and its backup electrode precluded

further testing.
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A-1.0 ADHESIVE AND FABRICATION TECHNIQUE STUDY - SILVER SULFIDE ELECTRODE

A-1.1 Introduction

Under Contract NAS9-12733, an evaluation was performed on solid-state silver
sulfide electrodes to be used as a silver ion sensor in a monitoring instrument

for silver ions in the Space Shuttle Potable Water System.

Exposure to a 500 ppb silver ion solution at 60°C resulted in degradation of
the electrode response. Response became erratic, non-Nernstian or showed

continuous drift.

The degraded electrodes were examined and found to have a poor seal between
the silver sulfide pellet, the silver ion sensing element, and the electrode
housing. The higher temperature or cycling between high and low temperature
had apparently caused a failure in the seal allowing the silver ion solution(s)
to diffuse or flow between the pellet and housing resulting in an unacceptable

response.

Initially the silver ion monitors were to be placed downstream of the shuttle's
water heaters and chillers, thus requiring an electrode having an operating
range of 4 to 71°C (40 to 160°F).

The purpose of the adhesive and fabrication technique study was to find an
adhesive and/or fabricating technique which would produce silver sulfide

electrodes having an operating range of 4 to 71°C.

A-1.2 Adhesives and Fabrication Techniques

Three adhesives and three fabrication techniques were chosen for the study. The
adhesives were chosen on manufacturer's recommendations and on communication

with adhesive consultants. They were as follows:
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1. Epoxylite 223 - The EpoxyliteCorp., New York
2, Kenseal 78-05-083 - Kenics Corp., Danvers, Mass.

3. RTV-108 - General Electric Corp.
Three fabrication techniques were studied:

1. Plain fabrication, i.e., no sandblasting or metal ring.

2. Sandblasting the surface of the silver sulfide pellet and
ad jacent plastic housing.

3. Formation of the silver sulfide pellet in a stainless steel
ring which is readily adhered to by adhesives.

For detailed fabrication see paragraph 5.3.2.4, FINAL REPORT, Residual Water
Bactericide Monitor Development Program, FR-2639-102, dated 23 March 1973.

A-1.3 Fabrication

All silver sulfide pellets were fabricated in an identical procedure from one
batch of silver sulfide powder. Following fabrication, all electrodes were

conditioned in 1000 ppb silver solution at 40°C for 72 hours.

A-1.4 Temperature Tests and Results

Each electrode was stabilized at the test temperature for approximately 30
minutes in a 500 ppb silver ion solution. Each electrode was cycled between
50 and 500 ppb silver ion solutions to determine the response characteristics.
Exposure to each solution each time was a minimum of 30 minutes. The test

solutions were contained in a beaker in a constant temperature bath.

The rationale for testing was based on the observed performance of electrodes

and their failure during the previous contract, in which practically all failures
occurred at or resulted from exposure to 65°C. It was assumed that electrodes in
a flight monitor would be subjected to cycling from low or ambient temperature to
a maximum of 65°C. Therefore, the electrodes were tested at 23°C, then at 65°C,

and again at 23°C. Whenever an electrode exhibited non-Nernstian response or

FR-2656-101 A-2



excessive noise or drift, it was considered a poor electrode and was eliminated

from further testing.

The results of the tests are given in Table A-1l. Good response was defined as
Nernstian %3 millivolts or at 23°C, 59 millivolts/decade change (50 to 500 ppb)

in silver ion concentration with little or no drift or noise.

The configuration of the electrode used for the tests is shown in Figure A-1.
The configuration containing the stainless steel sleeve is now shown since the

only difference was the addition of the sleeve.

A-1.5 Conclusion

The data in Table A-1 indicates that none of the adhesive and/or fabricating
techniques are suitable for consistently preparing wide temperature range silver

sulfide electrodes.
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TABLE A-1. ELECTRODE TEST DATA - ADHESIVE AND FABRICATION TECHNIQUE STUDY
Electrode Fabrication Test
Ident. Adhesive Technique Temp °C Response
RP-1 RTV-108 Plain 23-65-23 Good
RP-2 RTV-108 Plain 23-65 Poor
RP-3 RTV-108 Plain 23 Poor (1)
RSB-1 RTV-108 Sandblasted 23-65-23 Good
RSB-2 RTV-108 Sandblasted 23-65 Poor
RSB-3 RTV-108 Sandblasted ' 23-65-23 Good
EP-1 Epoxylite 223 Plain 23 Poor (1)
EP-2 Epoxylite 223 Plain 23-65-23 Good
ESB-1 Epoxylite 223 Sandblasted 23-65-23 Good
ESB-2 Epoxylite 223 Sandblasted 23-65 Poor
KP-1 Kenseal Plain 23-65-23 Good
KP-2 Kenseal Plain 23 Poor (1)
KP-3 Kenseal Plain 23-65 Poor
KSB-1 Kenseal Sandblasted 23-65-23 Poor
KSB-2 Kenseal Sandblasted 23-65 Poor
KSB-3 Kenseal Sandblasted 23 Poor (1)
MA1 RTV-108 Plain 23-65 Poor
MA2 Epoxylite 223 Plain 23 Poor
MA3 Kenseal Plain 23-65 Good
MB1 RTV-108 Sandblasted 65 Good
MB2 Epoxylite Sandblasted 23 Poor
MB3 Kenseal Sandblasted 65 Poor
MS1 RTV-108 SS Sleeve 23 Poor
MS2 Epoxylite 223 SS Sleeve 23-65 Poor
MS3 Kenseal SS Sleeve 23-65 Poor

(1) Mfg flaw--either poor solder joint or fab technique.

Key to table:

R = RTV-108 a room temperature curing silicone rubber.

P = Plain fabrication technique

SB = Sandblasting of Ag,S pellet and adjacent electrode housing surface.

E = Epoxylite 223 an epoxy cement.

K = Kenseal an epoxy cement.

M = Second batch of electrodes fabricated at one time which included the

stainless steel sleeve type.

FR-2656-101
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Figure A~-1. Solid-State Silver Sulfide (Agzs) Electrode
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Plain fabrication technique as a control, second batch.

™
(]

Sandblasted technique as a control, second batch.

Electrodes fabricated with the silver sulfide pellet formed in a
stainless steel sleeve.

The test temperature column shows the temperatures at which the electrodes were
tested. The last temperature indicated shows the temperature at which the

electrode failed or was found to have good response characteristics.
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PRELIMINARY FAILURE MODE EFFECTS ANALYSIS

SILVER ION MONITOR

Contract No. NAS9-13387

18 May, 1973

Prepared for:

National Aeronautics and Space Administration
Johnson Space Center
Houston, Texas 77058
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1.0 GENERAL

1.1 Introduction
This preliminary report contains the Failure Mode Effects Analysis of the

Silver Ion Monitor.

The report is submitted in fulfillment of the National Aeronautics and Space
Administration, Johnson Space Center's Contract NAS9-13387 requireﬁent for an

informal FMEA analysis,

1.2 Report Summary

The prototype system is non-redundant and therefore all category II failures
are single point failures. However, this problem will be solved for the flight

designed system by employment of two Silver Ion Monitors as redundant systems,

There are five category I failure modes, All are concerned with gross external
leakage. This problem will be solved for flight system by employment of redun-
dant systems and by using a flight qualified manual valve (V1) with a high

reliability seal design.

The flight unit requirement is fail operational and fail safe, Fail operational
can best be achieved by providing system and subsystem redundancy. Fail safe can
be achieved by assuring that in no case will a subsystem failure result in hazard

to mission or crew.

2.0 DISCUSSION

The Silver Ion Monitor monitors the silver ion concentration of the Space Shuttle
Potable Water Supply System. The silver ions are employed as a bactericide. The
monitor is placed upstream of the water heating and cooling apparatus. The Silver

Ion Monitor System is composed of the measuring and calibration subsystems.



2.1 Ground Rules Used in Performing FMEA

The following ground rules were used in performing this FMEA:

a, Failures considered were limited to single failure occurrence and their

single or multiple failure effects during the mission.
b. Failure classifications were determined by the following criteria:

1. Failure Classification I - A failure whose occurrence could adversely

affect crew safety or other systems,

2. Failure Classification II - A failure whose occurrence could render

the Silver Ion Monitor inoperative.

3. Failure Classification IITI - A failure whose occurrence could result

in loss of confidence in the monitor readout.
c. Leakage failure modes analyzed were limited to gross leaks.

d. For purposes of analysis the system electronics were broken down into
the four basic functions listed in paragraph 6.3.5.2 of "Instrument

Package Definition, Silver Ion Monitor, COR-2639-1,

e. Design compensating provisions listed in the FMEA apply to the flight
design only, not to the prototype.
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APPENDIX C

CHEMTRIC DEIONIZER COLUMN PREPARATION
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SILVER HALIDE COLUMNS

1.0  Packing Preparation®

-

Packing preparations for the silver halide columns cntails

428 Un APPSR

(1) classifying the silver halide granules, (2) cleaning glass
beads, and (3) mixing the silver halide and glass beads in the

ratio by weight of 1 part silver salt to 1.25 parts glass bead.

1.1 The silver chloride (AgCl) and silver bromide (AgBr)
arc procurcd from Fisher Scientific Co., Chicago, Illinois under

catalog numbers S-172 AgBr and S-174 AgCl. The reagent grade

material "as-received" contains granules ranging from dust sized
particles to golf ball sized lumps. Since.some degree of un-
iformity istesirable, the material that passes through a 45
mesh (Tyler) screen should be rejected while material retained
by a 6 mesh screen should be further rcduced in size by "hammeT -
ing" with a pestile or by "cutting-up" the lumps with a knife or
razor blade. The silver salts can be photoreduced, consequently,

care must be taken not to expose them to direct light.

1.2 The glass beads (0.42 - 0.59mm) are procured from
Advanced Process Supply Co., Chicago, Illinois 60622, under cat-
alog number 2406-6 coarse. ‘

1.2.1 The "as-received" glass beads should be washed

in an aqucous solution of detergent (Alconox or equivalent)

0
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1.2.2 Next the detergent solution should be decantecd
and the glass beads rinsed with hot tap water several times

(at least 5).

1.2.3 Wash the glass beads in concentrated chromic
acid; the chromic acid is heated to boiling and allowed to

simmer for one hour.

1.2.4 After allowing the chromic acid and glass
bcads to cool, decant the acid and wash the glass beads re-

pcatedly with deionized water.

1.2.5 Finally, dry the glass beads in an oven for
12 hours at 376°%K (217.4°F). Allow the beads to cool to room-

temperature before use.

t

1.3 The glass beads and ground silver salts are blended
by weight in the ratio of 1.25 parts glass beads to one part
silver salt. Once the proper proportions are weighed-out, the
ingredients are added to a common container (preferably glass)
along with a volume of water just equal to the volume of the
ingredients. The ingredients are stirred manually to achieve
uniform distribution of glass beads and silver halide particles.
Fbr the AgCl column, 312 grams of the dry salt-glass bead mix-
ture are necessary, while.148 grams §f the dry AgBr-glass bead

mixture fill that column.

C-2
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2.0 Assembly Preparation

Two Pyrex wool (Owen-Corning Fiberglas Corporation Cata-
log number 3950 or equivalent) supports for the particulate bed

must be prepared.

2.1 A roll of Pyrex wool should be soaked in deionized
water and a working surface wet down by deionized water. On
the working surface, unroll and fold the wet Pyrex wool into a

1/2 inch thick pile.

2.2 This pile of Pyrex wool should be sandwiched between
two 10 x 20 mesh 316 stainless steel retaining screens. The
wool is trimmed around the periphery of the screens about 1/16th

of an inch in excess.

2.5 A second support bed is prepared for the other end

of the column. This is a duplicate of the one from 2.1 and 2.2.

3.0 Assembly

3.1 Insert a support bed assembly of Pyrex wool sandwiched

between four screens into the bottom of the canister body.

3.2 Lload the canister body, under subdued lighting with
tiie pre?iously prepared packing; see 1.0. Add the packing mix-
ture in 25 to 50 ml increments while tapping the outlet against
a hard surface and tapping the canister body with a rubber mal-
let. When the packing is near completion, gently ram the mix-

ture down with a rubber stopper (smaller in diameter than the

c-3
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canister) affixed to a rod. Do not use any water in loading
the canister; if the canister contains water, the silver chlor-
ide particles and glass beads will settle to the bottom at-dif-

ferent rates resulting in stratification.

3.3 Place the second sandwiched support bed of Pyrex wool

on top of the packing.

3.4 The upper sicve is next put in place on top of the

Pyrex wool support screens.
3.5 The spring is put into place on top of the sieve.

3.6 The O-ring is positioned on the flange of the canis-

texr body.

3.7 The spring is compressed by the canister cover and
while holding the cover in its proper position, the V-band

clamp is affixed.

3.8 When packing and assembly are complete, connect the
canister to a deionized water source and flush at 2 1/min for
10 minutes. Analyze the effluent for silver content and tur-
bidity, to check that the canister is saturating the deionized
water with silver ions, and that the 'fines" produced during
the loading are flushed-out. Repeat flushing until effluent

contains no "fines" and Ag* content is 1.0 - 1.3 ppm.



4.0 Cartridge Packing

For the PFP tests, cartridges were designed for the silver
salt/glass beads mixtures. The cartridges arc packed in the
same outlined manner outside the column with similar scrcen and
Pyrex wool sandwiches on either end. The cartridge is then slip-
ped into the column and flushed as before. Then, the cartridge.
can be removed, fresh pyréx wool inserted to replace that which

had caught some fines, and the cartridge reloaded into the col-

umn.

-5
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DEIONIZER COLUMN

1.0 Packing Preparation

Three types of ion exchange resin are uscd 'in this column.
These resins all manufactured by Rohm § Haas Company of Phila-
delphia, Pennsylvania are Amberlite IR-120, Amberlite IRA-402,

and Amberlite IR-45.

The .resins uscd requirc very extensive preparation to elim-'
inate manufacturing residues. Previous experience has indicat-
ed that the as-received resins are also biologically contaminat-

¢d - thereby requiring sterilization and decontamination.

1.1 Each resin type is prepared separately. The initial
step for IR-120 and IR-45 consists of multiple extfactions in
boiling, very high quality (2 to 3 megaohm) deionized water. In
the above process, a resin quantity of 150 ml IR-45 or 300 ml IR-
120 was mixed with at least five volumes of water in a Pyrex
glass beaker and heated to boiling. The mixture is boiled for
five to ten minutes, after which the container is removed from
the hcat source and the resins allowed to settle. The superna-
tant liquid is decanted-off and fresh deionized water added im-
mediately. The resins are again allowed to settle and the water
decanted-off and fresh deionized water is added again. The
above process 1s repeated at leust ten times dr until all traces

of color and taste are climinated.

C-b



1.2 For IRA-402 the initial step consists of 3 cycles of
cxhaustion and regeneration as suggested by the manufacturer.
Lach cycle is accomplished by cxhaustion of 225 ml IRA-402 in a
solution of 0.5% sodium chloride and rcgenerated using 5.0% -
sodium hydroxide at a level of 1.5 Kg NaOH/cubic meter of Tresiny

The three resins are then recady for mixing.

1.3 Mix the ion exchange resins in a ratio of 200 cm3

(12.2 in3) Amberlite IR-120, 150 cmd (9.1 in3) Amberlite IRA-
402, and 100 cm3(6.l in3).Amberlite IR-45. Mix the resins in a
container (preferably  glass) along-wifh a volume of water just
cqual to the volume of resins. Stir the mixture manually with

a4 spatula and distribute the resins uniformly.

2.0 Assembly Preparation

Prepare two Pyrex wool support beds for the deionizer col-

unug .
2.1 Soak a roll of Pyrex wool in deionized water.

2.2 Wet down a working surface with deionized water, un-
roil and fold over the wet Pyrex wool into a pile one-half inch
thick. .

2.3 Sandwich the one-half inch thick wet Pyrex wool pile,
between two 316 stainless stecel retaining screens. :

2.4 Trim the Pyrex wool pile with a pair of scissors uround
the periphery of the screens, uabout one-sixtcenth of an inch lar-
ger in radius than the retuaining screens.

. c -7
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2.5 'ﬁepeat 2.1 - 2.4 for second support bed.

3.0 Packing and Assenbly

3.1 Inscrt the lower Pyrex wool resin support subasscembly
sandwiched between four retaining screens, two screens on cach
face of the Pyrex wool disc, into the bottom of the deionizer

canister body.

3.2 Load the deionizer caﬁ?éter body with the previously
prepared resin mixture; see Section 1.3. Add the resin mixturec
in 50 to 100 ml increments while tapping the outlet against a
hard surface and tapping the canister body with a rubber mallct.
When the packing is near completion, gently ram the mixture
down with a rubber stopper (smaller in diameter than the canis-
ter) fixed to a rod. Do no£ use any water in loading the can-
ister; if the canister contains water, the Amberlite resins will
scttle to the bottom at different rates and produce stratifica-

tion.

3.3 Insert the upper Pyrex wool resin support subassembly
sandwhiched between two upper retaining screens and two lower

rectaining screens on top of the resin bed.
3.4 Place the sieve on top of the Pyrex wool support bed.
3.5 Place the O-ring on the flange of the canister body.

3.6 Center the spring on the sieve.



3.7 Compress the spring with the deionizer column's cover
and while maintaining position, position and fasten V-band

clamp.
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