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SUMMARY

Analytic models are developed for computing the periodic sound pres-
sures of subsonic fans and compressors in an infinite, hardwall annular
duct with uniform flow. The basic sound-generating mechanism is the scat-
tering into sound waves of velocity disturbances appearing to the rotor or
stator blades as a series of harmonic gusts. The models include the sources
of velocity disturbances arising from the component interactions studied
by Kemp and Sears, and non-component-induced inlet distortions at a rotor.
The primary result of the models is the computation of the periodic sound
pressure mode amplitudes which can be used as inputs to a duct acoustic
program for computing the propagation through a finite, multisectioned
duct and the radiation to the far field outside the duct. Computer sub-

programs for the mode amplitude calculations are presented.
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SYMBOLS

a constant
eddy transverse length scale

radial location of the maximum distortion in
the cone model

nth order Glauert coefficients

a mode amplitude, or coefficient of eigenfunc-
tion expansion of the pressure spectral density

blade spacings of a two-dimensional cascade of
blades

airfoil chord lengths

switches used in the generalized equations
for the potential flow field interactions

airfoil section drag coefficient

axial spacing between midchords of two blade
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slope of steady lift versus angle of attack

a function defined by equation (B4l)
a function defined by equation (2.1.22)
a function defined by equation (2.1.15)

unit vector perpendicular to airfoil
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z-component of e
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¢~-component of e

bandpass filter factor; see equation (3.3.23)
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equation (3.1.15)
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complex term in the equation for the induced
velocities resulting from a potential flow

field interaction

airfoil acoustic response function, defined
by equation (3.1.39)
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the nondimensional dipole surface density re-
sponse function for convected, harmonic gusts

Hankel function of the first kind of order m

Hankel function of the second kind of zeroth
order

Hankel function of the second kind of order
one

complex term in the equation for the induced
velocities resulting from a potential flow
field interaction, equation (3.2.31)
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and crder 2
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Bessel function of order m

Bessel function of order zero

Bessel function of order one
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ﬁz mean axial flow velocity when there is steady
distortion

n dummy index, harmonic index, or radial mode
index
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bation

T

exponent in the '"power law,' equation (3.3.3)

complex ternm in the equation for the induced
velocities resulting from a potential flcw
field interaction, equation (3.2.3)

position vector, field location

position vector, source location

radial location of eddy center

unnormalized radial eigenfunction

distance from origin in Prandtl-Glauert scaled
coordinates

axial propagation wave number of mnth mode in
Prandtl-Glauert scaled coordinates and
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Sears function
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time at field location

time at source location
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8 Dirac delta function

Kronecker delta symbol

m—l, aN
AO factor in viscous wakes formula, equation
(3.1.35)
Zz, Z¢ axial eddy strength modulation function
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function
z rectangular coordinate normal to the airfoil
n hub-to-tip ratio, annular duct inner radius
€] inverse cosine of nondimensionalized chord-
wise coordinate
K temporal or spacial harmonic index
KE chordwise compactness parameter; see
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equation (2.2.18)
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between the midchord plane and the eddy center
position at the temporal origin ; also,t - to

Xiv



polar angle coordinate of cylindrical

¢j s ¢é > ¢ coordinate system

d polar angle coordinate of eddy center
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1.0 INTRODUCTION
1.1 Background

Gutin (ref. 1) in 1936 published the first analytic model for the
tone noise generated by rotating machinery. His idea was to replace a
rotating propeller by a disc of applied acoustic dipoles, the strengths
of which were determined by the steady air forces acting on the propeller
blades and the frequencies of which were determined by the propeller shaft
frequency and the number of blades. Not until 1963, when Van de Vooren
and Zandbergen (ref. 2) published their work, did the problem receive an
essentially different formulation: The rotating and translating blades
were replaced by dipoles and monopoles, the strengths of which were to
be determined by solving a linear boundary value problem. They did not,
however, solve this problem, but returned, instead, to the momentum con-

siderations of Gutin for the strengths of these moving sources.

The advent of the turbofan engine gave a new impetus to the construc-
tion of analytic models for the generation of tone noise by rotating ma-
chinery. 1In 1961 Slutsky, et al. (ref. 3) developed analytic models for
the generation of tone noise by a turbofan stage assuming for the sources
of sound the steady, rotating vorticity of the rotor blades and the
unsteady vorticity of the rotor and stator blades induced by the two-
dimensional cascade aerodynamic interactions studied by Kemp and Sears
(refs. 4 and 5). These noise models were for a ducted fan stage and
included, in principle, the transmission and reflection at the termina-
tion of the duct. Tyler and Sofrin (ref. 6) reported upon similar,
althrough less detailed, work, e.g., no explicit source modeling, in
1962, and a year later Hetherington (ref. 7) reported upon a source
modeling scheme essentially the same as that used by Slutsky (whose
work did not receive general notice until much later). Griffith (1964,
ref., 8) added randomness to the phasing considerations in the blade row
interaction tone noise generation processes and Hulse, et al, (ref. 9)
added similar, although less detailed, considerations to the Gutin-type
of free-rotor tone noise mechanism. At this time Lighthill's (ref. 10)
theory of aerodynamic noise, and Curle's (ref. 11) extended version,

began to be applied to the problem of the analytical modeling of the



tone noise generation by fans and compressors, particularly by Lowson
(refs. 12 and 13. Ffowes Williams and Hawkins (ref. 1L) advanced an
argument based on the Lighthill theory for a tone moise generating mech-
anism for a fan or compressor rotor that was neither a surface dipole or
monopole, but a fluid volume quadrupole. They did not, however, develop
the idea into a working analytic model. Wright (ref.l5) and Morse and
Ingard (ref. 16) developed working models for tone noise generation by
free rotors in steady nonuniform flow using time~dependent Gutin-type
dipoles, and Lowson (ref. 17) added to these models the element of non-
steadiness in the nonuniform flow at the rotor (see Griffiths and Hulse).
Pfenninger (ref. 18) gave physical insight to the problem of tone noise
generation by turbofans in non-steady, non-uniform inflow conditions.

By employing an interesting combination of Griffith's and Pfenninger's
ideas, Hanson (ref. 19) has recently advanced a model (without explicit
source modeling) for computing the complete spectrum of sound radiated
by a free rotor with turbulent inflow, and a similar blade row inter-
action model (refs. 19 and 20, with explicit source modeling). Detailed
source modeling for the tone noise generation by a ducted rotor in uni-
form flow is being investigated by Lordi (ref. 21) while Drischler

(ref. 22) has computed pressures in the duct of a ducted propeller using
a Gutin-type dipole model for the blades. Schaut (ref. 23), in using the
Morse and Ingard radiation model for a free rotor, modeled the blade

pressures after the design profiles.

1.2 Present Work

It was the purpose of the present work to develop an analytical
procedure and a set of computer subprograms for computing the sound pres-
sure at the harmonics of the blade passing frequency which is radiated
from an axial flow compressor or fan stage in an infinite, hardwalled
annular duct. The problem is presented in the form of a boundary value
problem to which approximate solutions are adapted from the published
literature on the aerodynamics of thin airfoils. The radiated pressure

in the duct is most conveniently expressed in terms of an eigenfunction



expansion, with the coefficients of the expansion determined by the
pressure on the fan rotor and stator blades. By the familiar process

of linear analysis, these coefficients then can be used as inputs to
problems involving a large variety of ducts. Zorumski (ref. 24) has
recently proposed a very extensive and systematic scheme based on mode
matching techniques, which utilizes these infinite—duct coefficients

as the elements of an input, or known, vector in an inhomogeneous matrix
equation wherein the unknown vector is the set of coefficients for the
pressure expansion in the eigenfunctions appropriate to the section of
duct contiguous with the inlet or exit of a finite, multisectioned duct,
which, when known, allows the computation of the far-field pressure out-
side the duct (see, e.g., Slutsky [ref. 3], Lansing [ref. 25], and Clark
[ref. 26]). The inverse of the matrix multiplying the unknown vector
represents the multiple transformations which the pressure expansion
coefficients undergo between the duct section containing the compressor
or fan, and the section contiguous with either the inlet or the exit.

It was, in part, to supply computer subprograms for computing input
vectors to this matrix equation that the present work was performed.
Examples of this matrix equation in the present context can be found

in Zorumski's report and Lansing and Zorumski (ref. 27).

The models considered include the blade row interactions of Kemp and
Sears and the rotor alone in steady and quasi-steady nonuniform inflow.
The computer subprograms have been coded in standard FORTRAN for a CDC
6600 scientific computer. They have been designed to compute the non-
dimensionalized, infinite duct coefficients, or mode amplitudes, for
the eigenfunction expansion of the radiated pressure for each of the
models. Since these are subprograms and their outputs are intermediate
results in the computation of the radiated pressure, a user must supply

a main program for computing pressures from the expansion coefficients.



2.0 ACOUSTIC THEORY

This analysis is based upon the linearized theory of compressible
fluids, thus restricting the applicability of the results to lightly
loaded blades and to subsonic subcritical relative flow velocities.

Some of the tone noise characteristics of modern transonic fans, e.g.,
the '"buzz saw' phenomenon, are, therefore, excluded from consideration.
It is assumed that under these conditions the most efficient discrete
frequency sound-generating mechanism is the scattering into outgoing
pressure waves of flow perturbations which appear to the turbomachinery
blades as unsteady velocity disturbances. Since a perturbation-free

flow is difficult to achieve under the best of conditions, this mechanism,
it seems, will persist into the flow regimes in which, presently, dynamic
calculations cannot be made. Under linear conditions, the strengths of
the outgoing pressure waves are proportional to the strengths of the
velocity disturbances at the fan rotor and/or stator faces. The analysis
consists of determining the transfer function for general velocity dis-
turbances and then identifying and describing the velocity disturbances
which occur in the operation of ducted turbomachines. Although little
work has been done in the determination of the transfer function, even

less has been done in analyzing and describing these velocity disturbances.

To obtain the transfer function requires doing two things: solving
the convective wave equation with a dipole singularity as an inhomo-
geneous term, and then solving for the induced dipole distribution that
is required to cancel ocut the incident velocity perturbations that are
normal to the rotor and/or stator blades, which are taken to be thin
airfoils. These are discussed in this section, leaving to the next
section the details of the tone noise models that result when the

incident velocities are specified.

2.1 The Acoustic Fropagator

The geometry of the problem is depicted in figure 1. The mathemat-

ical conventions and the nondimensionalized form of the linearized £fluid
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equations are presented in appendix A. The governing equation for the
linear pressure variations in a fluid with uniform mean flow velocity,

M, parallel to the positive z-axis of the coordinate system, that results
from the presence of a dipole of strength -F(t), orientation

".= ] +—p’¢z 1
e o,e¢,ez and position fg=y"s 8, s is

~OP(F,t) = F(£)8-V_ 6 (F - %)

(2.1.1)
where[]C is the convective D'Alembertian,
{2 3 {2 2
D:Gt+ﬂaz) v
(2.1.2)
_(_3 )13, »_ 1 a2 %
ot oz p 9p op p2 8¢2 3z2

and 38 is the gradient with respect to the s-subscripted coordinates.

If a solution to the simpler equation
-O I‘(?,}*o,t-to) = 5(?—?0)6(t-to)
¢ (2.1.3)

is found, then the solution to equation (2.1.1) is

o0
> - -+ >
P(T,t)= J F(e eV r(r,r,, t-t )f> =+ dr_
= o s
(2.1.4)

In this report I will be referred to as the acoustic "propagator,"”
a descriptive word often used in similar contexts in elementary particle

physics, e.g., Feynman (ref. 28)., It satisfies causality but, in this



case, not reciprocity, so that it is not a Green's function in the com-
monly accepted sense, e.g., Morse and Feshbach, chapter 7 (ref. 29).

For equation (2.1.4) to hold, T must satisfy the same boundary conditions
as does p. These conditions are that the normal gradient of p at the

inner and outer duct walls should vanish,

p = = =
30 . ©at e=l, p=n, (2.1.5)

and that only outgoing waves should exist. The problem is simplified

by defining the temporal Fourier transform of I by

iwt

r,T ,'r*o,r)e Tt (2.1.6)

<>
(’0’ r

and the '"generalized Prandtl-Glauert" transformation by

-1 Mm(z'zg)

A 1-M2 e
r(}*,'{o,w) = & y(r®,r *,w¥)
1-M2
(2.1.7)
where ¥ =
l—M2
(2.1.8)
and T = {p,0,z%}
with z* = z
2

l_M (201-9)



~

Then the equation y must satisfy is

~ " >%
v Yi-w*zy = 6(;*'ro )

with the boundary conditions that

~

]
g} = o at p=], p=n,

and for [z-zsl + ®, a = constant,

~ "
Y,\‘e-al z-z_[Im (w™)

(2.1.10)

(2.1.11)

(2.1.12)

This last condition is the statement that if the fluid is considered

to have a small absorptivity, equivalent to letting w* have a small

imaginary part, then the pressure decays exponentially away along the

axis. However, when the absorptivity is neglected, Im(w*) = O, then at

least a part of the pressure does not decay for [z—zs[+ » (neglecting,

of course, all other absorption mechanisms).

It is convenient to solve

for y as the sum of a particular integral to the inhomogeneous equation

neglecting the presence of the duct walls, with the general solution to

the homogeneous equation, and then adjust the undetermined parameters in

the general solution to satisfy the hardwall duct boundary conditions.

This is done in appendix B, from which equation (B42) is found:

¥ = fl;zln;im(¢_¢o)nzﬂm(umo)ﬂm(n 0 )d
=0

* - zk_ gk
‘mn’ 0/ “mn (= ZooY )

(2.1.13)



with the definitions as given in appendix B. This result could be re-
ferred to appropriately as the Prandtl-Glauert space Green's function,

The acoustic propagator is, then, from equation (2.1.7):

~

L1 In(9-0 )R
r= “{;Ze o Zﬁm(umo)ﬁm(umoo)

m m—oo n=o *
* Dmn(z-zo,w)
(2.1.14)
with
M
. 1-M
Dpp = A dmn(z*~z*°,w*)
vV1-M2
~i=—5(z-z ) i m“2|z'zol
= e 1-M e 1-M
2iR
mn (2.1.15)
where
2 2. 2
B —% -(1-M7)u m
(2.1.16)

and an has the same properties as a function of w that S n has a func-

tion of w* (see appendix B), but with different branch points.

~

An alternative way of expressing D 0 is
m

=D¥ + D (2.1.17)
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with -
lKmn(z--zo)

¥ - e (2.1.18)
= + - L
Dmn e(x(z zo)) 318
mn
1,X>0
e(X) =

0,X<o (2.1.19)

. -wMtB
and K- =——3‘3“~— .
mn
1-M (2.1.20)

This makes explicit the distinction between downstream (+) and upstream

(-) propagation.

Finally, the time~dependent propagator is given by

N 1 & i _ [
I(r,ro,t) =—2—"—-Zemw d’o)Zﬁm(ump)ﬁm(umnoo)Dmn(z—zo,T)

M= N & =

(2.1.21)
with
1 o7 ~iwT
Dmn —-E;— ,f Dmn(z—zo,w)e dw
= D+ + D-
n on (2.1.22)
and
. ( Z-Zo) ( \/2 2 :
DT = e(tt J. by - (2-2,-MT1) 2.1.23)
mn 1+M 0\ "mn



This result follows from the discussion in Morse and Feshbach, chap-
ter 2, (ref. 29), on the Klein-Gordon equation and the elastically braced
string. This reference also is useful for understanding how the chan-
neling by the duct walls results in the fluid being a dispersive medium
for acoustic propagation. Otherwise, this result for Dmn can be found
by converting the Fourier inversion to a Laplace inversion for causal
functions, and looking up the result in a table of Laplace transforms

(e.g., equation [29.3.92], p. 1027 of Abramowitz and Stegun, ref. 30).

2.2 Radiation from Dipoles in Ducts

-5
The solution to equation (2.1.,1) for a stationary dipole (rs

independent of time) is, from equations (2.1.4) and (2.1.14),

1l = .
A > it
p(?,r) =-———.f P(r,w)elw dw
2w T

where R . .
p(£,0) = Fw)e-¥ I(F,Z_,0)
l [=2) o0 . +
2—2_— Z Z [e(z—zs)AﬁLm (w)elenz
¥l =—C0 =
m =0 (2.2.1)
- - iKia2 im¢
+ E(ZS z)Amgw)e Knn ]Rm(umnp)e
with
: aoe +K: e ap + K= 2 )
_ ~ —
A%n(m) = -F(w) —55%—J32—5— Bh(umnps)el m¢s mn s
mn
(2.2.2)

11
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These are the downstream or upstream mode amplitudes for a station-
ary dipole source. Since F(t) is a real function, it follows from the
+
definition of B (see the discussion of s in appendix B) that A~ (w)
mn mn mn

has the symmetry property

(2.2.3)

At (w) = (ax @) D"

allowing negative frequency mode amplitudes to be known in terms of
positive frequency mode amplitudes. This symmetry guarantees that

p(r,t) is real, and

+ 1 ~ S -iwt
p(r,t) = == 2 REAL | p(xr,w)e dw
2n f [ ] (2.2.4)

When the same dipole 1is rotating at the constant rotational fre-
quency & while maintaining its orientation with respect to the local
cylindrical coordinate triad, its position vector, ?;, becomes time-
dependent,

>
r

RRCRNOREN
with

¢s(t) =Qt+$-2"92 = oo®,te00,%% %, + (2'2°5)

where ¢ is the revolution counter and ¢ is the angle coordinate of the

dipole for £ = 0 and t = 0. Then,

-~}

F(t) — F (¢(t),t) = F(t)Zc(cp-szc + $4212) (2.2.6)

£ 22



and the pressure field of this rotating dipole is given by

© 2%
5> >
p(r,t) = F ¢0(to),t0 e-v F(r ro,t—to) by = b, d¢odto
-0 O Z =2

Z Za (u m(pmn 0) eim¢

m=-o n=0
o0 0 21‘[
*E //6 (¢ -6t ¢ + 2m12) F(ty)
f=—c0 -0
* | e ——-D (z—zs,t) + 3Dmn(z-zs’t) 1m¢o d¢ dt
¢ Ps 3z €. 1€ 6o o
s

(2.2.7)

The evaluation of this expression is performed in appendix C. The
result is, for the pressure spectral density downstream and upstream,

(x), respectively,

p(r w) =—>— Z ZA— (w)ﬁ (u ple L(mé + Kﬁnz) (2.2.8)

m=-o n=0

13
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with

m
. pse¢ +K;ne Q
= - _ 2
A%n (w) F(w-mQ) zsmn m(umnos)e

i(mp + Kt z
(m¢ ml“S)

(2.2.9)

The same symmetry property prevails, as it must, but there are two
differences from the mode amplitudes for a stationary dipole: E is the
angle coordinate for the dipole location in the reference frame rotating
with the dipole, and the dipole spectral density is shifted differently

for each spinning mode (m is the spinning mode index).

The pressure field of a stationary surface distribution of dipoles is

the sum of the individual dipoles associated with each infinitesimal

area of the surface. Letting

Fw)=Flo_, E(6,7%,) ) (2.2.10)

be the dipole surface density spectral density, where it is assumed that
the surface extends from the inner to the outer duct wall and for each
radius the lateral extent of the surface projection onto a duct cross
section is sufficiently small so that a straight line can replace the
arc (see fig. 2). The surface can then be taken to be made up of dif-
ferent straight line segments having projections on ¢ and z, but not

on p which are strung together from inner to outer duct radius, i.e.,

a fan blade whose surface is, at each span segment, approximated by its

+
chord line. If e = {o, e, , ez} is the unit vector normal to the surface

¢
for a given radius, then the local rectangular coordinates are §, ¢,
where (see fig. 2)
= 1 '
13 P o <8 +2'e

s ¢

=o' e +2' e
8" 8 ¢ 8 2z (2.2,11)



. sueld
IW3 - jueisuod

4

AYLIWOIO 3OV4HNS 370dId — € FYNOI4

aueid

jueisuod = ¢

*}

-U.EN

r4

aue|d

DNy - jueisuos = ¢
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oW, _,
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and

¢
, (2.2.12)
pS¢ s ;e¢-€ez
. _ 1
with ¢S = ¢M.C + ¢ s
- ' (2.2.13)
zs - ZM.C tz s

where ¢M c.’ 2M.c are the midchord coordinates at the radial station,
.C. .C. .
LI The phase factor in the expression for A;n in equation (2.2.2)

becomes

-1 (m¢s + Kt zg ) -1 (m¢M.C.
e

. m
+K=x ) -i(Kx e -=e_ )t
e = e :

“mn*M.C. ¢ Pgz’> 2,2,14)

when evaluated at { = 0, i.e., on the chord line. Hence, the mode ampli-
tude to be used in the expansion for the pressure radiated by this dis-

tribution of dipoles is

1
..1(m¢ + K 2 )
- e McCo mn M'C'
A'r%n(w) = - / [edfgl + ezK%mJ (Rm (umnps)
28 " 8 :
c/2 m
R -1 (Kt e, ~=— e ) &
* p
7/ FpgsEiue mn ¢ P8 z' "dEde (2.2.15)
~c/2

with ¢ the lateral extent of the surface at the radius, Cqs i.e., the
chord of the equivalent blade segment. When there are N such surfaces

equispaced about the annulus with the same z C but with

M.

- o 21
*M.c9y = (2.2.16)



and

then

N-1 273

.

j=o

1
c z -im"§ v
*‘ff{ © Fj (ps,E o)
-1

with £ ' = g/c/2 and

*

t e
K~ = " e,-
mn [Ymn ¢ EéeZ}7
Similarly, for a rotating set of surfaces

1

28

~ie &'
}e T dglde

., X
Ai ~ e’lenz.M.Co m + Kt R ( )
mn(m) - [b-ge¢ mnez] m umnDS

mn n

(2.2.17)

(2.2.18)

17
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. 1 N-1 - 2;1 X
* _2_ f { e Fj (DS’E',N"mQ)
-1 j=o )
i 1 4
~iK
xe ™ dEldpg (2.2.19)

2.3 The Dipole Surface-Density Function

The dipole surface-density functions are the pressure difference
functions of thin airfoil theory and must be determined from the condition
that the normal velocities at the airfoil surfaces vanish. When the blades
comprising a fan or compressor blade row are unstaggered, flat plates, a
precise formulation in terms of a set of integral equations can be made
(see appendix D). A similar formulation for a blade row which performs
a net turning of the mean flow is as yet unavailable (see Atassi and
Goldstein, ref. 31, for a linear formulation for the unsteady lift with
finite camber and angle of attack of a single two-dimensional airfoil).

It was not, however, the intention of this work to develop this formula-
tion and seek solutions within it. The intention was to recognize the
basic requirements for such a formulation and seek means of approximately
satisfying these requirements. The basic requirement is that the incident
velocity perturbations normal to the blade surfaces should be cancelled
by the induced velocities of the ducted blade row. The approximations

to the satisfaction of this requirement are determined by the available
aerodynamic calculations and the form of the result of these calculations.
It is desired that the result be in the form of known mathematical func-
tions or numerical routines the evaluation of which is not much more
cumbersome than the evaluation of known functions. A further require-~
ment is that the approximations should be consistently employed. The
approximation used in this work is that the incident normal velocities
are cancelled by the velocities induced in an incompressible fluid
neglecting three-dimensional effects, the presence of the other blades

in the row, and the duct walls (see appendix D). In particular, the
calculations of Sears (ref. 32), Kemp (ref. 33), Horlock (ref. 34),

Naumann and Yeh (ref. 35), and Filotas (ref, 36) are used. The mean



flow conditions are assumed to be those through the staggered row (see

fig. 3). The general form for the dipole surface-density function is,

then,
- dCL ~ A
F ' = M z 1 '
j (psag s w) do MMuj(DS, S,w) —T;H (pS,g :w)
(2.3.1)
where:
MM = mean nondimensionalized velocity through the row,
uj = spectral density of the normal velocity perturbation
incident on the jth blade
%'H = nondimensional dipole surface-~density response function

for convected, harmonic gusts

Of the models to be considered, only the potential field blade row
interaction model does not make use of the assumption that the incident
velocities can be taken to be '"frozen-convected gusts.'" Under this
assumption, &j (ps, z_s w) is taken to be independent of £', i.e., its
variation over the chord of the airfoil is negligibly small and 2, = Zy oo
or some other appropriate value such as the axial coordinate of the
point on the airfoil one-quarter chord from the leading edge (see Sears,
ref. 32). The item dCL/da is the slope of the steady lift versus angle
of attack curve, which for a flat, two-dimensional airfoil is 2w. The

dC /da

use of L instead of 2w arose from the quasi-steady lift consider-

ations: 1if low-frequency sound pressure is proporticmal to the section

unsteady 1ift, and

1

i/H(p g'sw) dg' —1,
T S,
w=o0
-1
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FIGURE 3. — MEAN FLOW THROUGH STAGGERED ROW



then

where:
8L
da

with

section lift variation

angle of attack variation

21
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3.0 MODELS FOR TONE NOISE GENERATION

The four models discussed in this section are referred to as the
viscous wake interaction model, the potential field interaction model,
the rotor in steady distortion model, and the rotor in nonsteady dis-—
tortion model (or the "single eddy" model). A model comnsists of de-

-~

fining the u, in equation (2.3.1) along with appropriate H. Lifting-

line models iesult when the K;n in the chordwise integration is taken
to be zero. The potential field interaction model is a lifting-line
model, while the other models include the lifting-line assumption as

an option. Assuming a lifting line is equivalent to assuming the blade
is a chordwise compact acoustic source. It is felt, in turn, that a
first order model for a chordwise noncompact airfoil is achieved by nct
setting K;n equal to zero. Higher order estimates will include com-
pressibility in the dipole surface~density function, which means
including the effects of the other blades in the row and the duct walls

as well as the propagation of pressure waves from one part of the air-

foil to another.

The specific results of each model will be an analytical procedure
for computing the mode amplitudes of the pressure radiated by a single
component of a fan stage, i.e., equation (2.2.17) or equation (2.2.19),

with a specificaticn of the chordwise integral

1, §-1 2mj | e
c Z _im_N_" = LIS
2 /{ ) Fiolog,8"hu)i e mrode!
-1 j=o (3.0.1)
or, in the lifting-line models,
N-1 —im 2nj R
N L. (p_,w)
€ 3 Wgr (3.0.2)
j=o



where

Lj (pgsw ) = %‘ .}(.Fj (pS,E',w) dg'
Y (3.0.3)

3.1 The Viscous Wake Interaction Model

In an ideal axial flow fan or compressor stage, the inlet flow and
exit flow are axial. To achieve this requires at least two components—-—
a rotor and a stator. Viscous wake interactions occur when a rotor cuts

through the viscous wakes from the blades of an upstream stator and when

the viscous wakes from an upstream rotor sweep by the blades of a stator.

These possibilities are given a two-dimensional cascade representation
in figures 4 and 5. Ccnsider first the inlet stator-rotor configuration
(fig. 4). Since the wake defect will be known in the primed coordinate
system attached to the inlet stator blades, it is necessary to determine
the transformation from this coordinate system to the system attached to
the rotor blades (the "bar-primed" coordinates of fig. 4). This trans-
formation is (subscript 1 is for upstream row and subscript 2 is for

downstream row)

Z' =7' COS @ +Y' SIN B+ d COS ¢ + UtSIN ¢

(3.1.1)

Y' =7' SINB+ ¥' CcOS B -~ d SIN ¢y + UtCOS ¥

Then the coordinates for the ch wake in the jth rotor blade

coordinate system are

' = Tt T +d . _ ,
2y = 7' C0S 8+ T  SIN B +d COS ¢ + ULSIN § +(J by-2b)) SIN y
Y'lj =~Z'j SIN B + Y'j COS B - d SIN ¢ + UtCOS ¢ +(3b, - 2b) COS ¥

(3.1.2)

where all the symbols correspond to those used in figure 4 and:

23
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~

FIGURE 4. CASCADE REPRESENTATION OF INLET STATOR ROTOR COMBINATION

U=MTPT

et d —
FIGURE 5. — CASCADE REPRESENTATION OF ROTOR OUTLET STATOR COMBINATION




U =

rotor blade nondimensionalized speed equal to MTp

MT =

rotor blade tip nondimensionalized speed

B = relative stagger angle, vy + ¢

Y = rotor blade row stagger angle,

y = exit angle of the stator row.

If Nl is the number of blades in the upstream row, the stator row, and

N2 is the number of blades in the downstream row, the rotor row, then

o
L]

21rp/N1

o
]

and 2 21rp/N2 (3.1.3)

Representing the wake defect velocity behind the Rth stator blade

in the jth rotor blade coordinates by wzd

developed in a double spatial Fourier integral, then

and assuming it can be

]

— i (RY',. + Az',.)
_ dx dK = 23 23
W,Q.j = ! 2n 21 W(K,)\)e (3.1.4)

and the velocity due to all the stator blades is

(3.1.5)

25



{3.1.5) cont.

_ iK [—E'. SINB + ¥',COSB - dSINy + UtCOStp]
W(K,\)e 3 3

I
ol
BI&

ix [Z'jcoss + Y'jsms + dCosy + UtSINw]
*a

i[KCOSlp + Asmw] ib

*e

> -18b) [Kcosw + ASINwJ
* E e

L=—co

From the Poisson sum rule

—l—Z e-l.?,bl [KCOSxp + ASINtJ}] 1 sl (22 _xrawy
27 b, COSY b, COSY
L=moo

Nn=—co

(3.1.6)

so that the velocity at the surface of the jth rotor blade is

dTANy

_ Zﬂlnj —= Znin 5
Y', = = 1
Wy (X = 0=5 cosw 2

)=~

(3.1.7)



(3.1.7) cont.

2 (Z' ,SINB - UtCOSY)

"
blcosw
d +z', COSy
® iX —d
*# fdX =f21n - ATANY,Ae oSy
27 b, COSY

- If the stator wakes do not decay too rapidly along Z' , then
W(K,\) will be concentrated in a narrow bandwidth about X = 0. Then,

if ¢ is not close to ©/2 the tan ¢ term in the K-dependence of W can be

dropped, giving for the A integral,

© d + 2', COSy
dA =(2mn i
=L ylern
Of 4 (b 050 ATANq;,A)e Cosy

1
~ [dx =(2nn irz!
f (b cosy ° )‘\) €

—{ 2%n )
=& e __ g
(blcos“’ (3.1.8)

where Z' is the same for all blades and is the distance from the stator
midchord to the axial plane cutting through the rotor blade quarter
chord (see the discussion after equation 72.3.1]) as measured along the

mean streamlines from the stator row (see fig.4).
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Then, when b1 and bZ from equation (3.1.3) are used,

N nN
w (T, =0 =i 1L W ——1
j j 21 pCOSY pCOSY?

n=--o

ioN, 251 _jny I
we LNz 771 coSY

- VvVt
1 pCOSy i ve)

. -inN
*e

. _ Ucosg
with V = SING

(3.1.9)

(3.1.10)

This velocity perturbation on the jth rotor blade is thus a sum of

frozen-convected harmonic gusts, with ﬁj given by

int
; o ,z',w = SINR Ww. [Y' =0,Z' =0 e dt
i\"s?" i\ >3

oo

. 2mj
Npsme— (PN ) N
p_ COSy * \pCosy’

=00

. dTANY
-inN, ———
e 1~ o 6w +nNM)

(3.1.11)



This form for Wj justifies the use of the pressure difference
function induced by frozen-convected harmonic gusts given in
reference 35 (see equation [26 lof this reference) for the nondimen-

sional dipole surface~density response function (with §'= - cos 8)

~ 0 © ivcoso
H (p ',w)= S(v) COT < - COTBL:COT — e
s*® 2 2 (3.1.12)

«w

o ivcos® 4 k-1
+£f {F(v)COT-— + 2 SING e + Ny E i Jk(v) SINkO}]

2
k=1
with the reduced frequency defined by
W €2
VEY a2 (3.1.13)
and S (v) is the Sears function
S(\)) = e
™ (i Py + 1, P () (3.1.14)
2 o 1
and F (v) is defined by
J, (V) Jl(v)
F(v) = T(v) [J*(v) i ] - JW) 45 (3.1.15)
with
J) = Jo(v) + 17, (v) (3.1.16)
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and , (3.1.17)
12 ) + 11Dy

T(v) =
-H(g)(v)+ i H(i)(\))

and HO(Z), Hl(z)

chordwise integration gives the acoustic response function of the air-

are the Hankel functions of the second kind. The

foil span section

1
1 ~ ] _i'c;ng' ] 4
= H(pS’E W) e dg' = S(v) J (K;m)
._l ’

*
2 Jl(v + Kmn)

+
- - +
cotB [a J{v+ Kmn) + f {F(v) J (Kmn)+ o
mn

2 k
UZ('D 3, () {Jk+l (<) +3 (k2D }}]
k=1

(3.1.18)
The section lift response is from (equation [27] of ref.35):
1
—}—/H (p_,E',w) dE' = S(v)-COT B [aF (V) + £ F (v):]
T s o f
-1
(3.1.19)



with

Fa(v) = J(v)

and

Jl(v)

Ff(v) = F(v) + 4

(3.1.20)

(3.1.21)

In these formulas, « is the small angle of attack (in radians) and

f is the ratio of maximum camber of a slightly cambered airfoil over the

half-chord length (see fig. 6).

Combining these results with equation (2.3.1), the chordwise inte-

gration in equation (2.2.19) becomes (with @ = MT)

2 : S2 %€y Mosing 7 aly -
2 da 2Mp cosy p COSY’

S
Nn=-—oc
-ian‘ig-éEm 1 y R —iK;ng'
S 1
*e = /H (pS,E y0 - mMT) e ag'
-1

Nz'l an-m

*:E :eZ“j N, 6 (w-my +nNM)

j=o

(See appendix E for a discussion of the d-dependent phase).

(3.1.22)
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The sum on j can now be done:

2 .
2n1j ——— N,, FOR nN, ~m = -oN, 0 = 0, £ 1,¢«*
2 o N2 ={ 2 1 2, (3.1.23)

o, otherwise

and gives new form for the right-hand side of equation (3.1.22), where

n - ¢ to avoid confusion with the mode amplitude n index,

N.N. ¢, dC
R.H.S. =_12 2 L2 M, SINB W Ny , 2! (3.1.24)
P, 2 da CoSy b _COSYy
E:—m 5
...12,N —d—m
1 pg

s (w—chMT) [S(vz) J(K:m)

+
2Jl (vg + Kmn)

Vg + K%n

+
- + K=
cot B aJ(vl mt?+f

F(vy) J (Kfm) +

2 _1yJ + +
57 Z (-1) I (vyp) ij+1 (<) + i1 (";n)}f}]‘sml, n-oN,
-1

with

v, = ANy Ny 2 (3.1.25)

Mo Sy
M

where V is approximated by M M’ and B by the sum, Y + ¢y (see fig. 3).

2

33



34

There remains to be defined the wake defect in terms of the primed

coordinates of a typical stator blade, W(Y", 2°) , in order to get

©

-— -1 '
W (K,z" =fw<y',z') e 1KY gy (3.1.26)

-0

The choice is made to use the empirical formulas of Silverstein,

et al - (ref. 37):

W(Y',z') = W_(z') cos’ <n %l) (3.1.27)
o
where
1.21 \/C
A D1
WO(Z ) MlE AR (3.1.28)
¢
"y o= 1. Z' - 0. 3.1.29
and Y (2') = 1.364[C; cl‘,c—‘ 0.35 ( )
1
wherer
CDl = drag coefficient of the stator blade at Py
MlE =  exit velocity from the stator row at Py
c = gtator blade chord at ps.



These formulas give for

KY
WY SINT —2 1
W(K,z') = 020 K%ﬂ 5 (3.1.30)
2 . o 1- { K¥q
211' 2.".
with
1 - 0.15
c c
1 1 (3.1.31)
and KY Y
0 =g o
27 2npscos¢/Nl
(3.1.32)

from K = ¢ N1/ps cos ¢

This completes the specification of the mode amplitude calculation
for the viscous wake interaction model with a rotor downstream of an

inlet stator. The final formula is

1
e'iKﬁnzM.c. NN, o Q
Aﬁn(w) T B 8 [p_ e¢ + Ktix;nez] m( umnos)
mn s
n
dc
1 da DSCOS ¥
s _ :
*h, € Gune 3P & (w-oN M) (3.1.33)
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with

SIN Mor Y 2 2 Y ?
B =M Moy = My, * Mg~ My,

2M "1E

(see fig. 3) and,

mng

+
2 Jl (vl + Kmn)_

+ £ (F J (k%
{ ("z) (Kmn) M
L mn

2 ~1yJ
vy 2207 5 e o e gy 6
j=1

=

n

= ot - s
G = S(VQ)J ('”mn) COT B [a J (vg' + f’“m)

(3.1.34)

(3.1.35)

(3.1.36)

(3.1.37)

(3.1.38)

(3.1.39)



The computer subprogram AAAAA (see section 3.1.1, volume II)

computes the facter multiplying the frequency spike,

8w - ¢ NQMP), for w in the propagating regicn.

With subscript 1 referring to the upstream rotor and subscript 2

tc the downstream stator , the same development for the viscous wake

interaction model with a rotor and an outlet stator can be made, and

gives for the mode amplitude

1
-ikK+ =z
mn M.C. N,N
At (0) = - & ; é 2 / [%‘- e * “&n ez] (3.1.40)
mn mn s
n
d CLZ SINB

w @) (u o00) ©1% “Fa Mo Mg Fecos g

-10N 4 TANY
1 -
* z :AO(Z') Ao e ps Gmnd dps §(w ONIMT)
¢
where:
e, = - COS
6 Y
ez = SIN ¥

" and with the restriction that

m = oN, + 2N, (3.1.41) -

37



38

Aois given by equation (3.1.35), A0 by equations (3.1.36) and (3.1.37),

with i-»o , and Gmnc is given by equation (3.1.38) with

|

c
Vo > TV, = -oNl 5

M (3.1.42)

=

The computer subprogram AAAAA computes the factor multiplying the

frequency spike for w in the propagating region.

3.2 The Potential Field Interaction Model

In the close vicinity of a blade row, the potential flow field is
not uniform. This is due to the noncontinuous distribution of the aero-
dynamic forces that are exerted by the blades onto the medium. If an
airfoil moves through this nonuniform flow field, it will experience
unsteady lift forces. In this section, we are concerned with the inter-
action of a blade row with the potential flow field of another blade row.
The analysis is based on the formulas developed by Kemp and Sears
(ref. 4).

The following assumptions were made to compute the induced veloc-
ities at an airfoil resulting from the potential flow field of all the

blades of an adjacent blade row.

. The flow through a rotor-stator combination is represented by

nonviscous, incompressible flow through a two-dimensional cascade.

. The airfoils of both blade rows, the velocity inducing and the

l1ift producing, are represented by vortex sheets.



. The steady vorticity representing a blade is located on a straight

-
s

cascade and that has the length of the local blade chord.

sine,

that is parallel to the mean flow velocity through the

. Only the unsteady 1ift forces resulting from the relative moticn

of an airfoil through the potential flow field of the steady vort-

icity of a blade row are considered.

resulting from secondary interactions are neglected.

All unsteady 1ift fcrces

. Only the transverse component of the induced velocity is considered

in the computation of the unsteady lift.

Four different interactions are possible between the potential

flow fields of a rotor-stator combination:

1)
2)
3)
4)

The analysis will be summarized

Rotor downstream of stator, unsteady
Rotor downstream of stator, unsteady
Stator downstream of rotor, unsteady

Stator downstream of rotor, unsteady

1lift induced at
lift induced at
1ift induced at

lift induced at

stator
rotor
rotor

stator

for the first case, then the

equations will be generalized so that they can be used for all four

interactions.

In reference 4 the following equation was derived for

the induced, unsteady velocities at a stator blade located upstream of

a moving rotor blade row:

Z —in
' r,2 @ ch 1 e iONZMtt
= o]
W(zZ,t) — Z 8;,1 © e
1 o=1
'
o - zl
s 15— 1wt
= Eg_ e G MM,l e ’
wC 0,1
1 9g=1

(3.2.1)
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with

C N pM
C.N i ~g 22 2 <1+ i tan(Y2> 1 pME -1 £
4% Miq o, * 1% Yy, 1 cosy, ",2
0.,1 zp e O’. e
(3.2.2)
2 2 (

-7 LI

Q =3 iC_ZN;'( )E:(l)n n+l n-1 2)
0,2 of 2 2 A + A2 n 20
1
(3.2.3)
2 2
(2 =mc, My 2 <Ao + Al> (3.2.4)
wc,l = o N Mt (3.2.5)
RN AR
=g _

0,1 (3.2.6)

where: >
Wy 1 = temporal frequency
b
o1 © complex frequency of the chordwise velocity

distribution

stagger angle

chord length

midchord plane separation
mean relative flow velocity

. th
Glauert coefficients of n order



Index 1

]

stator parameter

Index 2 = rotor parameter
The Glauert coefficients are the coefficients used in the series repre-
sentation of the steady vorticity of an airfoil introduced by Glauert
(ref. 38).

The geometrical relationships upon which these equations are based
are shown in figure 7. The unsteady, induced velocities described by
equation (3.2.1) are characterized by two properties:

1) They decay exponentially with increasing distance from the source.

2) They are not medium bound and can, therefore, move at speeds

different from the medium velocity.
For these reasons, they cannot be treated as frozen convected gusts.
Equation (3.2.1) defines the induced velocities only along the chord

of the zeroth stator blade. A small modification of the term 85 1 will
b}

make it possible to compute W(z,t) at any point of the stator flow field.

N M Y, g C, Mp
2 . P tL iYL M2 Tt
—O-—p— dfl + i tanYZ'iEM_cosY l—d—e -3 > W
CYy -in o ! Ha 2
= e
8,1 (Y1) 2% © 042
(3.2.7)

The term 85 1 can be modified using the following approximation
b

pPM¢

~tan =t —_— e
Yl an Y2 MM’l cos Yl

(3.2.8)
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A
a

/

K=2
inlet stator Rotor
Me., 1A

~ iy, 2
M, 1 72 MyP

Mpg 1 Me 2

v, Mp, 2

1 =M, | =M | M

FIGURE 7. — CASCADE REPRESENTATION FOR THE POTENTIAL FIELD INTERACTION
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For the computation of the unsteady section 1lift we need to know

. - . . t .
the induced velocities at the midchord point. For the zero h stator it

is
r = ioN .M t
" = -2 2t
W1(21“°*t> mCy 2 : &,1 ©

o=1
(3.2.10)
The midchord plane is defined by the relationship
v (3.2.11)
Zl = -Yl TAN Yl

and the induced velocities at its location are defined as follows:

] 1 T
ot Al
® 1 =iy 2 1
rz iONz T e 1 -iONZ "61’ e imo’.. lt
=1

L]

1 }
M (Zl,Yl,">

. ® 1oNy 5141 1 g, 3-t
= 22 g 1 e e
Tl'Cl 0,
o=1
t
Y1
® ioN
T 2 pcos Y 1wo..,l £
_2 g e 1 e
= wC 04l
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With the following definition of the blade separation distance,

the induced velocity at the midchord of the th blade can he computed

Y.
1 =__21p j
cosY1 Nl
(3.2.1)
I"2 «© _lch f]_-,lr j- hn,’ lt
1) = <.
J(t) -"Cl gO,le e
ag=1
(3.2.14)

In reference 4 it is shown that for the transverse gust velocities
described by equation (3.2.1), the lift response function KL assumes

the following form:

(2)
(V)
(2)

(vl)-+ iH (Vl)

¥ 1:11 (M)

CRN R EXCAEFENCS) e

{3.2.15)
Vl ) (uCl _ Mt N2 Cl .
2 ¥ )
My, 1 1
(3.2.16)
LT
A -_-._u_f_l_'_:N ioel(z-Yl)
1 2 2 2p
My, 1
(3.2.17)



where:

1 = reduced frequency
Al = reduced complex frequency of chordwise velocity
distribution
JO’Jl = Bessel functions of the first kind
Ho(z),Hl(Z) = Hankel functions of the second kind

Knowing the lift response function and the transverse gust velocity

at the midchord point, the unsteady section 1lift can now be computed:

Rj - 27

- oy 2T
rz My, 1 (dC ) “t TN s, 1t

L 1 )
da 122 go,l * KL <\’c,l’ Ao,l>e € (3.2.18)
0:

The Kemp-Sears lift response function is referred to as KL. If the
imaginary part of Al is equal to zero, and if the real part is equal

to Vs then KL becomes the Sears function. If the imaginary part of

Al is not equal to zero, it increases proportionally to o and KL’

then diverges for large values ¢ because of the character of the
"Bessel functions. But, even then will the unsteady section lift assume

finite values. This is due to the exponential decrease of the term

851 with increasing values of o. It can be shown that the section lift
b
remains finite for large values of o, if the following restriction is
satisfied:
1 C,co0sY, + C, cosyY d 2
2\°1 1 2 2) < (3.2.19)

which indicates that the two intera¢ting blade rows do not overlap, thus

allowing relative motion.
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If the amount of turning is small in each of two interacting blade

rows — that is, if the relative inflow and exit flow angles of a blade
row can be set equal to the stagger angle — then Al can be approximated
by the following equation:

1. + 1 cot Yl
» = V\i ¥ tanv; cotv (3.2.20)

In this case, Al is, therefore, only a function of 2 for a given
combination of stagger angles. 1In figure B, Kemp~Sears lift response

functions are shown for three different combinations of stagger angles.

Due to the convention (see appendix A) used for the Fourier transforma-
tions, the complex conjugate of the section 1lift computed in equation
(3.2.18) will be used in this analysis and the summation over o is

modified to extend from -~ to +», The new formula for the unsteady

section lift is therefore

s (3.2.21)
T dC © iGN ﬁrj‘ "iU) t
MM 2N I
L fo] t) = __Z—l ___L G K e 1 e 9
j( ? ) b da /4 g,1 0,1
4 g=—®
with *
[%L(fc,l’xo,l>] FOR vo,l >0
K, = :
011 2 L *
EKL( Vg, 17 Ao,l)] FOR Vo1 < ©
(3.2.22)
*
(gc, 1) FOR 0 > o
G = o] FOR 0 = o
o,1
g—o,l) FOR ¢ < ©
(3.2.23)



KL =(x+iv)

Inlet stator-rotor interaction
unsteady lift responsef of rotor.
Yr = Rotor stagger angle

o

Y1s = Inlet stator stagger angle - 45

Y5 = Iniet stator stagger angle — 45°
Yr = 90° gives Sears function
v = Reduced frequency

FIGURE 8. — KEMP-SEARS LIFT RESPONSE FUNCTION
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Since this is a lifting-line model, equations (3.0.2) and (2.2.17)

will be used to compute the mode amplitudes. Therefore, the temporal

Fourier transform of Lj (p,t) has to be determined.

[ ]

' , 215
- My,1 fac, ton, 4 'i(“o 1‘”)‘
Lj (p,w) = G K e 1 e ? dt
1 .

4w da 0,1 0,1
. 2n]
ToMy 1 ac ioN, 5§
= 2 da Go,lKo,l e 6("0 1-)
1
(3.2.24)
N,-1 2w
1 —1m—3§} . f2",1 fdc, a
e * Li(p,0) 2 da ] “o,1 Ko,l (50,1"“>'
j=o
Nl—1 10N2—J—2". ~im 2mj
N N
- L] e l e 1
j=o
(3.2.25)
N.-1 274
1 —. — — F—1 LI ]
) i(m cNZ)Wﬁ? _ N, IF(m—oNz)— SN, & = 0,%1,%2,
. o0 OTHERWISE
j=o
(3.2.26)
- 274
N1 o N] | (fac
. R = i/ _L -
e Ly,w) =Ny ToMe 12\ x) %151 6<“o,1 “)
j=o 1
(3.2.27)

The duct mode amplitudes can now be computed using equation (2.2.17).

» N -1 i
e lKl%sz. C. [me¢ 1 ~im Nl ~
+ = - +
Aﬁn(w) Zﬂmn 5 + Kimez Rm (umnp) E e Lj (p,w)dp

n j=o



-1K: Z

1
mn M.C. dcC me
- & L _9
At (o) T Nl/MM,l T, <da> Gy 3 xa’l[ 2+ KnimezJ
1
n

‘R (u_p 6<w —)dp
“‘(m“) a1 (3.2.29)
C2 Mt
with -i}{~-¥y +oN,{— tan Y —
1 1
Cl ~0N2§— Z\e 2 MM,2
Gc,l = EE N.e H0 e
(3.2,.30)
C2 i (1 - y2> = n An+l,2 - An-1,2 C2 1<E._ YZ)
HUZ—Jo GZ;NZe +Z (1) \ ray Jn c~2—5N2e
s (o] 2 1,2
n=1 4
*
Ko,1 [KL ("o,l’ "0,1)]
(3.2.31)
N o
o)l My 4
(3.2.32)
T
A = N ~El o] 1(2 -Yl)
0,1 27 %€
(3.2,33)

The equations for the other three potential flow field interactions

possible in a rotor-stator combination are summarized in appendix F.

49



50

The computer subprogram AABAA (see section 3.1.2, volume II) computes the
factor multiplying the frequency spike in equation (3.2.29) with w in the

propagating region.
3.3 Rotor-Alone Models
A ducted fan will seldom, if ever, consist of a rotor alone, but the

velocity disturbances at the rotor can be separated, in principle, into

the component interactions and non-component-induced inflow distortions.

The latter are the disturbances considered in these models. An exit stator

will straighten out the flow so that upstream and downstream of the stage
the flow will be axial. The inflow disturbances can be categorized as
being either steady or nonsteady distortions. Steady distortion can
occur under different conditions including for the fan stage of aircraft
engines gll conditions in which the air enters the duct inlet at a rel-
ative angle of attack, and the distortions which result from the inlet
and duct contours. Under static engine test conditions such distortions
can result from ingesting the persistent nonuniformities in the air
characteristic of the facility. Nonsteady distortions can be further
classified according to their duration at the rotor. The classification
parameter might be, for instance, the duration of the distortion times
the blade passing frequency of the rotor. Steady distortions then lie
at one end of this parametric scale, while small-scale turbulence lies
at the other end. To have well-defined tone noise resulting from the
distortion, the parameter must be, from purely intuitive reasoning,
greater than unity. One possibility for the occurrence of distortions
in this range is atmospheric turbulence, whose eddies can be stretched
as they accelerate into the duct (for low-speed flight or ground static
testing); see Pfenninger (ref. 18) and Hanson (ref. 19). It is a
particular representation of this possibility that is developed into the

model discussed in section 3.3.2.

Figure 9 illustrates the rotor blade section velocity triangles. As in
the component interaction models, the velocity disturbances must be

determined in the coordinates attached to the blades. This is done in
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appendix G for an unspecified distortion, use of which is then made in

sections 3.31 and 3.32 for the particular models.

3.3.1 Steady Distortion. — When the distortion is expressed as the

ratio of the deviation from the mean to the mean velocity,

W= == (3.3.1)

then, from equation (G19), with

- 194 (3.3.2)

o v z ; Jsfw+ 2
u M_ SIN Y v, e w M£>

Substituting this result into equation (2.3.1) gives, from equations
(3.0.1) and (2.2.19),

-iK+ 2 1

e mn M.C. 1 o
At (w) = - —m— = f — e, + K+ e
mn an 4 [ps ¢ mn Z]

dCL _ =
L —— G
& (umnps ¢ do M'M Mz SIN'Y Z wIL mni?,dps

SO0

2ni &:E-j
N s w—(m—l)M£> (3.3.3)



The sum on j can be performed to give

N1 2mi -2—:-—_] N if ¢-m = -oN,0=0,%1,%2,¢°+
© o otherwise
j=o
(3.3.4)
The expression for the mode amplitude then becomes
+ 1
At () e iKmnzM.C. N f m
N e A ey TKEe p
mn Bon 4 Py ¢ z ( s)
4]
(3.3.5)
°c-——-MMM SIN Y E E mnd Zm—oN 6(w-—0NM )dp
Lm0 g=—to
with
£=m=-0 N
(3.3.86)
and
L
Vo = T (3.3.7)

Nle

o

and Gmnsl. is given by equation (3.1.39) for this Vs MM is used to approx-~
imate V, i.e., vy is taken as the mean stagger angle. All references to
subscripts 1 and 2 have been dropped since there is only the one compo-

nent under consideration, the rotor. The computer subprogram BCDAA
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computes the factor multiplying a frequency spike for w in the

propagating region.

This model is analytically similar in all respects but one to the
inlet stator-rotor mode of the viscous wake interaction model. The
exception is in the origin and specification of the velocity disturbances.
In the viscous wake model, studies had been made, data had been correlated,
and some theoretical ideas had been employed (Prandtl's mixing length
theory) to determine the empirical formulas for the wake defects of air-
foils (Silverstein, et al., ref. 37). Although much data has been gathered
on the steady distortion of fan duct inlets, no work known to the
authors has been published in which this data has been studied with the
view of deriving a general empirical formula for computing the velocity
distortion. In lieu of a sound theoretically or experimentally supported
procedure, acousticians have begun to develop rather crude empirical
models of their own in order to perform calculations. Wright (ref. 15),
Lowson (ref. 17), Lowson and Ollerhead (ref. 39), and Barry and Moore
(ref. 40) have investigated a '"power law" for '"blade loading harmonics."
That is, in the present language, they represented the velocity distortion
at a rotor disc in a Fourier series on the polar angle about the axis,
at some average radius, and assumed that the coefficients monotonically
decreased as Q-q, with 2 the Fourier series index and q some positive
number [loading harmonics are actually velocity harmonics times 1lift
responses; see Hanson, chapter 6 of (ref. 19) for a discussion of this
"law"]., This model is included in the computational possibilities of
the computer subprogram BCDAA. It requires knowing besides the power,

q, the first harmonic coefficient of the cosine series, the determination
of which can possibly be determined from on axis microphone measurements

(see Barry and Moore), i.e.,

a
P Sl
W, =5 L

2 (3.3.8)

The other options in this subprogram include inputting the Fourier

cosine and sine series coefficients as determined by the user (a simple



integraticn schene iz supplied outside the subprogram fer computing these
coefficients from distortion data), and a sizmple analytical wmsdel, the
"ecene model.”  This model was part of a study intended tc clarvify e

oower law discussed above and is given in terms of tue formulc

v
LA '7:'[;/ 2 ~ —_ \
. . - - NP A
W{p;¢) = iy A p COS ¢ - \/(A p COS ¢~1)“=(-A"3 (0"} )
i (3.3.9)

where:

ratio of maximum to minimum distortion

> <
>
\<
[
1] 1]

span position of the maximum

When the coefficients of the cosine and sine series are input, then

W = ———— (3.3.10)

and

(3.3.11)

with ags b2 the cosine and sine coefficients, respectively.

3.3.2 Nonsteady Distortion. — Reference is made to Pfenninger (ref.

18) for a discussion of the origin and occurrence of stretched eddies in
fan ducts. Hulse, et al. (ref. 9) put forth the idea of isclated
"patches' of distortion convecting through a rotor to explain some of
their results, and Hanson (ref. 19) has gathered some data relevant to
the occurrence of stretched eddies in fan ducts. This model puts into

an analytical form some of these ideas. 1In appendix G an expression for
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the velocity perturbation on a rotor blade due to the convection through

the rotor of a stretched eddy is developed; see equation (G23).

Substituting for uJ from this equation into equation (2.3.1), there

results for the dipole surface density function the expression

o0

dc i%¢,
- ' _ L _]_-_ 7 ( 1 > 3
FJ pS’E aw> < da MM - H pS’E s W €
Q==
(w 4 Mg ( + !LMT> (3.3.12)
Mz )
. + COS
SIN vy W 2 > M CoS v W 5w M

where wz£ is the lth coefficient in the complex Fourier series represen-
tation of the axial component of the eddy cross section at the radius Pge
The cross-sectional profile of an eddy is time independent, the assump-
tion being that shape changes with z or z - M t are less significant

than magnitude changes. The term w¢£ is the lth coefficient in the ser-
ies for the circumferential component of the eddy cross section at the
radius Pge Assuming the stretched eddy has cylindrical symmetry about
its own axis, then a reasonable choice for a cross—-sectional profile is

the Gaussian (see fig. 10),

0% + R%2 p R COS <¢ - ¢>
zazz s s
W <ps’¢s> = wz e (3.3.13)

and similarly for W¢(ps,¢s) with W, and a,, where wz,w are

¢ b ¢ ¢

the maxima of the distortions and the "transverse length scales'" of the

and a_,a
z

distortions, respectively. The location of the cross-sectional center



FIGURE 10.

(R, &, Zmc. —dc) = location of eddy center C att =0

d. = Mz . = axial position of C referenced to the rotor midchord plane
L, a = eddy length scales
W (Z) = axial eddy velocity distribution

— EDDY VELOCITY SPATIAL DISTRIBUTION AT TEMPORAL ORIGIN (t=0)
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of the eddy is given by ‘R, 4)} . This gives for wzz(ps)

2
) QpS-R> ) oSR
2

2 R -igd
2a P 1
W o = 27W e z e az I = e (3.3.14)
z% s z L a2
z

with 12 the modified Bessel function of the first kind of order L.
Similarly,

22 2 R\ -ifd
2az ag fs (3.3.15)
W(M <ps> = 2y e e _ IL 5 |e

Expressions for Az and A¢ are developed in appendix G, equation (G22),

from which

z
. M.C.
1 Z<N+QMI z -1<w+2.MT>‘tei w+£l~t1> My
2mn M z M
z 2w
1.2 2
-3 1 (w + mT>
e (3.3.16)

and

2
. » ‘[ M.C.
21 ZC»+MT=T el@+m>re\m+mT> T
ﬂMz ¢ Mz \/Zn .

1.2 2
-=T
e 22 @+ ) (3.3.17)



T, LY,
T

o =1,/n,

LZ,L¢ = axial length scales of the eddy

time at which the axial center of the eddy coincides

~
]

with the midchord plane of the rotor

Upon substituting these results into equation (3.0.1), the sum on

j gives
N-1 2mi g-m . |N if 2-m = -oN, 0 = o0,*1, *2,+-*
2 -
j=o o otherwise
(3.3.18)
Hence, from equation (3.0. l),
1 N-1 2m5
f: : ~im N F (p » & ’w—mMT> =
N Ly
'5°da MMZ z% ¢ 07 T
0_—(‘9
1
1 it g’
;/HCPS,E ,w-—mMT) dg’
1
(3.3.19)
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with 2 = m-oN. Substituting this result into equation (2.2.19) for the

mode amplitude gives

1
© -iK+
N e lKrTsz.C. o
At (w) = - — —_——— — e + Kt e R u P
mn 4 8 p ¢ mn z m{ mns
mn s
Jg=—- n

-&;—MM ™
z

- w-oNM,
A —
dCL z <Mz )
. C wz 2 SIN Y 3

(3.3.20)

oL

m-%,0N

- w-o
A —_
¢ M,
+ W Ccos Y 21er )

This spectrum for the mode amplitude is two series of Gaussians
centered on the harmonics of blade passing frequency, with two-thirds of
the power of each bump within plus or minus 21T/Tz and 21r/'I‘¢. For purposes
of computing a single mode amplitude for each harmonic, the Gaussian

"bumps' are replaced by weighted delta functions (see fig. 11).:

z Mz

2 Mz - Ez 8 (m-ONMT)

:3.3.21)



?Q(w)

(’R\
a(w) /
2 -
- B 8 (wT;)2
f ) =e 2T_i2 R _ i
i filw) = T; V271 e 2
2B = Filterbandwidth

FIGURE 11. — BANDPASS FILTER FOR TONES
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and

(3.3.22)

with

(3.3.23)

where 2B is the bandwidth of the filter used to define the tone and the
subscripts z and ¢ refer to the z and ¢ components, respectively. The

+
frequency~dependent parts of A;n (w) are then evaluated at harmonics of

blade passing frequency, giving

1

+
N eiKﬁnzM.C. n
+ R i E——— — +
Aﬁn(w) 4 B p e¢ + Kﬁn €.
mn s

n

dc
. L
- anps} ¢z M ; W,y SIN Y E2
(3.2,2h)

1

1 - [ -in%mg' =
W, COS Y E¢$ = /HGS,E ,w-mMT> e dgnz a@—oNMT)dos

- 1 g==—%



with
£ =m- 0N

Two methods are used to evaluate the chordwise integration of
equation (3.3.24). One is to employ the pressure difference function
of Naumann and Yeh (ref. 35) as was done in the steady distortion model

of section 3.3.1, giving

1
-iK+ 2
mn M.C.
At (w) = - Ne - - D oe +Kte R U p
mn 4 B p. ¢ mn z{ m\_mn s
mn s
n
dCL

. C — . .
do MM W22 SINYEZ+W cosS 7 E¢$Gmn2

¢L

©o

:E:: §(w-o0 NMT:)dps

os-w (3.3.25)

with Gm given by equation (3.1.39). The other method is to assume a

liftingfiine model with the lift response function developed by Filotas
(ref. 36) for oblique gusts, the assumption being that the radial varia-
tions of a compact eddy present to the blade oblique gusts made up of
harmonic gusts in the chordwise and radial directions. Following in
spirit the calculation "Distortion of Standing Wave by Strip" in

chapter 11 of Morse and Feshbach (ref. 29), for calculating the section
lift response of a three—-dimensional gus:, the blade is assumed to be a
two~-dimensional airfoil. The radial variation of the incident gust is
decomposed into harmonics that travel up and down the span. These
harmonics combined with the chordwise harmonic gusts produce oblique

gusts at a given span position as required in the formulation of Filotas

(see fig. 12).
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FIGURE 12. — SCHEMATIC OF OBLIQUE HARMONIC GUST



For this purpose the most significant radial variation in wzl and w¢2

is isolated, then the rectangular coordinate x is substituted for

Py in this factor to derive the plane wave expansion. Since the most
significant radial variation resides in the Gaussian factor of equations
(3.3.15) and (3.3.16), the exporential and the modified Bessel function

tend to be inversely related; then

(2]

P - . -ikx
wzg(k) f“z% (ps,x> e dx

-0

_ PsR o _ (x-R)?
2 p R s 232 -ikx
xmmwWel2z 1 [ -2 elg"b e Z e dx
z 2 2
a
z - 00
- pSR 1 22
aZ PR -ife ~ikR - S a’k
=21 W e I — je 21 a e e z
z 2 2
a
z
(3.3.26)
Similarly,
st
_ a2 o R\ -ifp -ikR -~ % a%?
W‘M(k) = 2m Wq)e ¢ I, - |e 27 a¢e e ¢
a’
¢/
(3.3.27)
These results produce oblique gusts of the form
-1 AR TN . !
e ih [\g Vt) SIN ¥ X COS u]
(3.3.28)
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with
SNENGOS

where, from appendix G,

v =— 2 ginvy
2 pg
(3.3.29)

-1
= TN < > (3.3.30)

Since the gust wave form used by Filotas is with % - -y and since

and

<
|

(see appendix H)

T(h,-y) = T (h, ¥),
(3.3.31)

it is the complex conjugate of the oblique gust response function that

is required here. Computing the section 1lift resulting from each k and
adding them up then gives

1

1 " ! - 1
IJZQH/HG)S’E s = Y dE

-1

_ PsR @
2 p..R ~ p -
We 4z 1 =~ lM,V a /e ( )
4 2 2
a
z -0
2.2 ‘
- % azk N (3.3.32)
s e T'(h,y) dk =



o R

S
T2 -i29 e
a, p, R * 2a ik (fs—§> - l-aﬁkz ;
21 W e I 2—)e REAL [ e e 2 ' (h, ) dk
z L 2
a 27
z o]
1
P _l_ f -~ - _ -
Similarly, for W¢2 = H (?S,E » O an) dg

with W, and a, in place of W_ a_.

) ¢ zZ, z

Substituting these results into equation (3.3.24) then gives the
mode amplitude by this method. Subprogram BBCAA computes the mode
amplitudes for w in the propagating region using one of two methods,
i.e., the factor multiplying the frequency spike in equation (3.3.253)
or that in equation (3.3.24) with the substitutions from equation

(3.3.32) and the w equivalent equation,

3.4 Numerical Considerations

Each of the models produce an expression for a mode amplitude which

can be written quite generally in the form

1
~IKEhZu,c
+ =8 " Tele In + d
Aﬁno Zan [ps e¢ + Kimez ﬁm (PmnPs> fmn (?é) ps
n

(3.4.1)

where ¢ is the harmonic index specifying the frequency under considera-
tion. To compute all of the upstream- or downstream-propagating mode
amplitudes for this harmonic, the set of m's and n's for these modes

must be determined from the cut-on criterion,
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where:
NR = number of rotor blades
EB = a bound for the eigenvalues to be computed .

Having determined the indexes for the propagating modes, the corresponding
set of umn's are computed. These preliminaries determine the set of
integrals that have to be computed. The integrand of each of the inte-~
grals is then subjected to the following factorization: the factors that
are independent of the radial, or span, variable ps, i.e., the constant
factors, are identified and placed outside the integral sign. Then the
integration interval is subdivided into a number of equal subintervals,
the number of subdivisions being determined by the number of oscillations
of the most oscillatory factor. The remaining ps—dependent integrand is
then factored into a part that varies significantly, possibly changing
sign, within the subinterval, and a part that varies slowly, allowing its
average value to represent it within the subinterval. The calculation

can then be written symbolically in the form

N

A%no = (CONSTANT) * E (AVE OF SLOWLY VARYING FACTOR)
3=1

aj+l ' (3.4.3)

. / (OSCILLATORY FACTOR) dps
a

3

with aj the left endpoint of the jth subinterval, The integration on

each subinterval is then performed using an 8-point Gaussian rule.



4.0 USERS GUIDE TO COMPUTER SUBPROGRAMS

These subprograms compute all the mode amplitudes for a given harmon-
ic of blade passing frequency for either upstream— or downstream-propasating
modes. Subroutine AAAAA does this for the viscous wake interaction model,
subroutine AABAA for the potential field interaction model, subroutine
BCDAA for the rotor in steady distortion model, and subroutine BBCAA for

the rotor in nonsteady distortion model (see fig. 13).

4.1 Calling Sequence

All four primary subroutines have the same calling sequence and

are called as follows:

DIMENSION MUSE (MDIM) ,MAXN(MDIM),
*  ARMUMN(NDIM,MDIM),ARMISC(40), AR(MAXDIM,MAXJ,3)

COMPLEX ALPHAMN(NDIM,MDIM)

AAAAA
carr { AABAA L\ RMISC,MAXDIM,MAXJ,AR,MDIM,NDIM,
BCDAA
BBCAA
* ARMUMN , NOFM, MUSE , ALPHAMN , TERROR)

4.2 Input, Input — Output, Output
INPUT

ARMISC an array of dimension 40 used for input and fully

described in the section below.
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AAAAA — Viscous wake
interaction

AABAA — Potential field
interaction

BCDAA — Rotor in steady
distortion

BBCAA - Rotor in
non-steady
distortion

Blade-vane interaction
IGV - rotor, rotor - OGV

Unsteady flow from
adjacent row

|
A | |

B
Rotor alone
B | |
Unsteady Steady
flow flow

Viscous Potential
wakes field

Atmospheric
turbuience

Nonuniform

flow

| L

Compact
{lifting line)

non-compact source

Coupling to the sound field in an infinite
duct produces acoustic source mode amplitudes

FIGURE 13. — PRIMARY SUBROUTINES




MAXDIM

AR

MDIM

NDIM

The first variable dimension of the array AR, which
corresponds to the radial positions and must be
dimensioned at least 2 more tham the largest number
of radial positions to be input for any component

(inlet stator, rotor, or outlet stator).

The second variable dimension of the array AR, cor-
responding to the number of aerodynamic and geometric

variables input and, per package, must be at least

Package Value

1 (AAAAA) 11

2 (AABAA) 9 + max{ARMISC(I): 1=18,19,2o}
where:

max ARMISC(I) > 3, 1=18,19,20

3 (BCDAA) 11 if ARMISC(22) 0,1
12 if ARMISC(22) 2
11+ARMISC(23) if ARMISC(22) = 3

4 (BBCAA) 9 4if ARMISC(25)
11 if ARMISC(25)

It
~n

A three-dimensional array of geometric and aerodynamic

variables, described in the section 4.4.

The variable dimension corresponding to the maximum
number of spinning mode indexes. MDIM should be at
least 2EB + 1 but need be no more than 201 to ensure
that all spinning mode indexes can be calculated

(EB = w*; see equation [2.1.8]).

The variable dimension corresponding to the number of

radial mode indexes, limited to at most 40,
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INPUT/OUTPUT

ARMUMN

NOFM

MUSE

MAXN

OUTPUT

ALPHAMN

The real array-dimensioned NDIM x MDIM-that contains
the eigenvalues calculated in the primary subroutine.
Upon subsequent calls to the primary subroutine the
eigenvalues from the previous case are reused if the
parameters used in calculating the eigenvalues remain

unchanged.

The number of spinning mode indexes computed by the

program; can be reused as discussed in ARMUMN,

An integer array-dimensioned MDIM-that contains the
NOFM spinning mode indexes and can be reused as
discussed under ARMUMN.

An integer array~dimensioned MDIM-containing the
maximum radial mode indexes corresponding to the
spinning mode indexes in array MUSE. Array MAXN can

be reused as discussed in ARMUMN.

The complex array-dimensioned NDIM x MDIM-containing
the calculated mode amplitudes. For any index IOFM
(IOFM = 1.,.., NOFM), M = MUSE (IOFM) is an available
spinning mode index. For this M, the available radial
mode indexes are N =1, 2,..., MAXN (I0FM). Then the
corresponding mode amplitude is ALPHAMN (N, IOFM) and
the corresponding eigenvalue is ARMUMN (N, IOFM).



ERROR RETURN

TERROR 0 = all calculations have been complete successfully

2 = an incomplete set of eigenvalues is calculated,

and the corresponding mode amplitudes are calculated

4 = there are no eigenvalues, hence, there are no mode

amplitudes

4.3 Input Array ARMISC

In this and following sections, the code given below is used to refer

to the subroutine packages:

Package Code
AAAAA 1
AABAA 2
BCDAA 3
BBCAA 4

In the following definitions, all variables referred to as non-

dimensional are nondimensionalized as prescribed in appendix A.

ARMISC
ARMISC
array Packages
index used in Definition
1 1, 2 Nondimensional average distance be-

tween the midchord planes of the
inlet-stator and the rotor; see

figure 4.
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ARMISC
array

index

Packages
used in Definition
1,2 Nondimensional average distance
between the midchord planes of the
rotor and the outlet-stator vanes;
see figure 5.
1,2,3,4 The hub-to-tip ratio of the duct
1,2,3,4 -1 for upstream sound propagation
1 for downstream sound propagation
1,2 1 indicates inlet stator-rotor inter-
action
2 indicates rotor-outlet stator inter-
action
1,2,3,4 Trace printout option, where
0 = no trace printout
1 = trace printout of major factors
in the primary subroutine
2 = detailed printout of the eigen-
value calculation in subroutine
ZEROS; see section 3.2.2 of
volume I
1,2,3,4 MT’ the rotor blade tip Mach number
1,2 NISV’ the number of inlet-stator vanes
1,2 NOSV’ the number of outlet-stator
vanes



ARMISC
array

index

10

11

12

13

14

15

16

17

18

Packages
used in
1,2,3,4
1

1
1,2,3,4
1,2

1,2
1,2,3,4
2

Definition

NRB’ the number of rotor blades

Not used

¢OS’ in radians; phase angle for ad-
justment of skewness of the incident
wakes on the outlet stator; see

appendix E.

¢R’ in radians; phase angle for ad-
justment of skewness of the incident

wakes on the rotor; see appendix E.
The harmonic index

ZIS’ the axial position of the inlet

stator

Y/ the axial position of the outlet

0s’
stator

Z the axial position of the rotor

R’

-1 means the upstream blade row is
the sound generator in a potential
flow field interaction

1 means the downstream blade row is

the sound generator in a potential

flow field interaction
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ARMISC

array Packages
index used in Definition
19 2 The number of inlet stator vane
Glauert coefficients, which is
0 if ARMISC(5) = 2 or
ARMISC (18) = -1
n where 3 <n <15
if ABMISC(5) = 1 and
ARMISC(18) =1
(see sec. 3.2)
20 2 The number of rotor blade Glauert
coefficients, which is
0 if ARMISC(5) + ARMISC(18) = 1 or 2
n where 3 < n< 15
if ARMISC(5) + ARMISC(18) = 0 or 3
(see sec. 3.2)
21 2 The number of outlet stator Glauert
coefficients, which is
0 if ARMISC(5) = 1 or
ARMISC(18) =1
n where 3 < n <15
if ARMISC(5) = 2 and
ARMISC(18) = -1
(see sec. 3.2)
22 3 = no distortion

distortion is represented by the

cone model



ARMISC
array

index

23

24

25

Packages

used in

1,2,3,4

Definition

2 = distortion is represented by the
power model

3 = distortion coefficients are input

VA/V]_ if ARMISC(22) = 1

q if ARMISC(22) = 2

Total number of distortion coeffi-

cients if ARMISC(22) = 3

A 1if ARMISC(22) = 1

Skip factor used with distortion coef-

ficients if ARMISC(23) = 3

Defines the 1lift function to be used:

2 = LIFTFN2, the generalized Sears

lift response function; see equa-
tion (24) of appendix I; used in
package 2 only.

LIFTFN3 or NONCPT; LIFTFN3 is the
combination of lift response func-
tions as developed in reference 6;
NONCPT is the 1lift response func-
tion for noncompact source theory,
see equation (22) of appendix I;
used in packages 1, 3, and 4.
LIFTFN4, Filotas lift response
function; see equation (25) of

appendix I; used in package 4.
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ARMISC
array

index

26

27

28

29

30

31

32

33

Package

used in

Definition
Not used
Not used
R, radial position of the eddy center

¢, angular position of the eddy center

in radians

Wz, axial eddy velocity component at
the eddy center, nondimensionalized
with the average axial flow velocity;

see figure 10.

W¢, angular eddy velocity component
at the eddy center, nondimensionalized
with the average axial flow velocity;

see figure 10.

a, eddy length scale in the direc-
tion normal to the average flow
velocity for the axial eddy velocity
component; see figure 10.

a eddy length scale in the direc-

¢’
tion normal to the average flow
velocity for the angular eddy velocity

component; see figure 10.



ARMISC

array Packages
index used in Definition

34 4 LZ’ eddy length scale in the direc-
tion of the average flow velocity
for the axial eddy velocity compo-~
nent; see figure 10.

35 4 L¢, eddy length scale in the direc-
tion of the average flow velocity for
the angular eddy velocity component;
see figure 10.

36 4 B, upper bound of the frequency band
considered in the generation of’ tone
duct mode amplitudes by nonsteady
distortion; see figure 11.

37 4 T, time when eddy center is located
in rotor plane

38 1,3,4 0 compact source (LIFIFN3 is used)

#0 noncompact source (NONCPT is used)

Note: ARMISC(38) can be used if and only if ARMISC(25) = 3.

39 ——— Not used

40 ——— Not used

4.4 TInput Array AR

AR is an array of dimension MAXDIM x MAXJ x 3 which contains geometric

and aerodynamic data as either average values across the span or as values
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given at spanwise positions.

defined according to the use

AR

array
index
K =1
K= 2
K=23
I=1
I =2

Package

used in

1,2

1,2,3,4

1,2

1,2,3,4

1,2,3,4

The values of the array AR, AR(I,J,K), are

of each index I, J, and K.

Definition

Refers to inlet stator data and is

used when ARMISC(5) = 1.

Refers to rotor data, i.e.,

AR(I,J,2) contains the rotor data.

Refers to outlet stator data and is

used when ARMISC(5) = 2.

0 if average value
of quantity cor-
responding to J
and K indexes is
to be used

n(K) if spanwise data

AR(1,J,K) =.< corresponding to

J and K indexes

is to be used

wvhere n(K) = num-
ber of spanwise

positions for

index K

AR(2,J,K) refers to the average value
of the quantity corresponding to J

and K indexes.



AR

array Package

index used in Definition

I =3,4... 1,2,3,4 AR(I,J,K), I = 3,4 ... refers to
spanwise data corresponding to J and
K indexes. AR(3,J,K) refers to first
nondimensional duct radial position,
AR(4,J,K) refers to second nondimen-
sional duct radial position, and so
on, in monotonic increasing order.

J =1 1,2,3,4 p, nondimensional duct radial position

J =2 1,2,3,4 C, nondimensional-chord

J=3 - Not used

J =4 1 CD’ drag coefficient

J=25 — Not used

J=6 1,2,3,4 dCL/da, derivative of steady-state
lift coefficient, CL, with respect to
incident angle, a

J=17 1,2,3,4 MI’ relative inflow Mach number of a
blade row; see figure 3.

J =28 1,2,3,4 ME’ relative exit flow Mach number of
a blade row; see figure 3.

J=29 1,2,3,4 MZ, axial flow Mach number; see fig-

ure 3. Note: the average value,

AR(2,9,K), must always be given.



For the remaining definitions of J, the subroutine packages are dis-

cussed separately,

For package 1 (AAAAA):

AR

array

index Definition

J =10 f, the ratio of maximum blade camber to the half-
chord

J =11 o, the blade angle of attack

For package 2 (AABAA)

Let NGC = max {ARMISC(18+K): K = 1,2,3}

= number of Glauert coefficients (see sec. 3.2)

AR
array
index Definition
J =10 AO, Glauert coefficient of order 0O
J =11 Al, Glauert coefficient of order 1
NGC-1 ,
J =9 + NGC A , Glauert coefficient of order NGC-1



For package 3 (BCDAA):

If ARMISC(22) = 0, 1:

AR

array

index Definition

J =10 f, the ratio of maximum blade camber to the
half-chord

J =11 o, the blade angle of attack

If ARMISC(22) = 2:

AR

array

index Definition

J =10 f, the ratio of maximum blade camber to the
half-chord

J =11 a, the blade angle of attack

J = 12 al, which is used in the power model; see

equation (3.3.8)

If ARMISC(22) = 3:

Let NDC = ARMISC(23) = total number of distortion coefficients and
let SF = ARMISC(24) = skip factor.



array
index Definition

J =10 f, the ratio of maximum blade camber to the

half-chord

J =11 o, the blade angle of attack

J =12 Agps distortion coefficient

J =13 bSF’ distortion coefficient

J = 14 asxgp? distortion coefficient

J =15 bZ*SF’ distortion coefficient

J = 10 + NDC a , distortion coefficient
NDC
—— *SF
2
J = 11 + NDC bNC , distortion coefficient
s

For package 4 (BBCAA):

If ARMISC(25) = 4, no further J's are required and array AR is
complete; if ARMISC(25) = 3:



AR

array

index Definition

J =10 f, the ratio of maximum blade camber to the
half-chord

J =11 o, the blade angle of attack

4.5 Restrictions and Limitations

The use and restrictions on the input arrays ARMISC and AR and the
special input/output NOFM, MUSE, MAXN, and ARMUMN are given in the

previous section,

The maximum spinning mode index is limited (see subroutine EGNVAL2,
sec. 3.2.1 of vol. IT) in absolute value to 100 and the maximum radial

mode index is at most 34.
4.6 Diagnostics
Diagnostic messages related to the computation of eigenvalues are
provided according to the printout control parameter ARMISC(6) and the
error return parameter IERROR.

When ARMISC(6) # 0 and IERROR = 2, the following is printed:

A REDUCED SET OF EIGENVALUES IS AVAILABLE
COMPUTATIONS WILL PROCEED.

and when ARMISC(6) # 0 and IERROR = 4, the following is printed:

THERE ARE NO PROPAGATING RADIAL MODES
NO COMPUTATIONS CAN BE MADE.
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4.7 Storage

Each subroutine package with the subprograms listed in section 4.9

requires the following approximate storage (octal):

Package Storage
1 (AAAAA) 12,000
2 (AABAA) 15,000
3 (BCDAA) 12,100
4 (BBCAA) 20,100
4,8 Timing

The timing in general is dominated by the calculation of the eigen-

values. For the sample cases run, the average time per case is:

Subroutine Time in decimal
Package seconds

1 55

2 62

3 117

4 145



4,9 Internal Subprogram Relationships

The following listing gives the subprograms required for each package
except the standard CDC - issued system routines such as SORT, SIN, etc.
An  "X" indicates that the subprogram is used and a blank indicates
nonuse. The subprograms used are described either in this documentation
(vol. 11), or NASA Langley Research Center library subprograms (refs.
41, 42, 43), which are marked by an asterisk.

Subprogram AAAAA AABAA BCDAA BBCAA
EGNVAL?Z2
ZEROS
EQATION
UNEGNFN
EGNNORM
FACTINT
FACTIN2 X
FACTIN3 X
FACTIN4 X
LIFTFN2 X
LIFTFN3 X X
LIFTFN4
DISINT X
FUNIN4 ’
NONCPT
APROX1
APROX2
JARRATT
GAUSS
GAUSS?2
BSSLS
BESNX X
BESJLA
BESIE
BESIK

LT B IR -
oK MK M
Ea - T B
LT T - B

3

EST-— -
>

>
P

>
>
LI A S ST o T A

I R T T BB B B



Subprogram AAAAA AABAA BCDAA BBCAA

ROCABES X X
SICL X
GRTHFCN X
BF4F#* X X X X
MTLUP* X X X X
ALGAMF* X X



5.0 RESULTS AND CONCLUSIONS

Analytic models for computing the sound pressure at harmonics of the
blade passing frequency generated by a single stage of a fan or
compressor operating in an infinite, hardwall annular duct have been
developed and programmed to give numerical results on a CDC 6600
computer, The outputs of the programs are the hardwall, plug flow mode
amplitudes for those harmonics above cutoff—the propagating-mode
amplitudes. Using the mode function of section 2.2, the pressures at
field points in the duct on either side of the fan stage can be com-
puted by first adding up the product of the mode amplitudes times mode
functions to get ; and then using equation (2.2.4) to get the pressure.
Since the pressure is nondimensional, the appropriate reference pressure
will have to be used to get the correct SPL level. A simple procedure
is to compute the SPL from the computed pfessure and add 197 dB, the SPL
level of standard atmospheric pressure. However, the more important use
to which the results of the programs can be put is as inputs to a duct

acoustic program such as the one envisioned by Zorumski (ref. 24).

No attempt has been made to seek out data to compare with the results

of this analysis. This should be done, but the data should be well
gathered. That is, the experiments should be performed under sufficiently
controlled conditions so that a determination can be made on which part

of the models—the incident velocity disturbances or the acoustic response

of the blade rows—gives the variance.

The interaction models produce the rotor-stator blade number ratio results
of Tyler and Sofrin, and Lowson, and they allow studies to be made of the
relative importance for sound generation of the potential fields versus
the viscous wakes and the fall-off of sound level with blade row spacing.
Among other possibilities, the rotor-alone models could be used to gain

a better understanding of the differences between static test data and
flight data by considering the different inflow conditions of the two

situations.
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It is felt that to improve these models, one would seek better definition
of the velocity disturbances and a less restrictive approximation to the
acoustic respomnse function involving, perhaps, the carrying through of the

formulation of appendix D.

Boeing Commercial Airplane Company
P.0. Box 3707
Seattle, Washington 98124, May 31, 1974.



APPENDIX A

In this report, the temporal Fourier transform of a real function f(t)

is referred to as the spectral density of f and is defined by

le (A1)

so that

<o

N ~-iwt
£(t) = 3= / fwe W

- (A2)

A function that is periodic has a spectral density that is a sum

of Dirac delta functions, or frequency spikes, f.e., if

(o]

1 ~iwnt
EEZ fne

=eo (A3)

f(t)

then

£ ()

Il

Z £8 (wup)

n=-e (A4)
All complex functions will cbey a symmetry principle in w (when

w+-w) so that only positive frequencies need to be considered in the

final calculations, i.e.,
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©

£(t) = é—" / 2 Real (E(m)e"iwt) dw

o

Spatial Fourier transforms are defined by

[+

g(K) = / g(x) e KXy

-Q0

with

1 - iKx
g0 = 5= | B@e K

-0

and Fourier series, such as on the interval 0 to 2w,

with

W(4) =% Z L) et

=00

(AS)

(46)

(A7)

(A8)

(A9)



The linearized differential equations of an inviscid, compressible
fluid in which isentropic perturbations from equilibrium can take place
are assumed to be sufficient for the analysis. The speed of sound is

then taken to be a constant, with

) P
speed of sound = a =V - (Al0)

where p is the pressure perturbation and § is the density perturbation.
It is assumed that for computing the perturbation variables the mean
velocity can be taken uniform and constant. Since everything will take
place in a duct, the duct outer radius will occur often as a factor

multiplying an inverse length type quantity.

The choice is made then to nondimensionalize all quantities from
the beginning, choosing the duct outer radius, the speed of sound, and
the mean fluid density as the basic scale factors. Letting these be,
respectively, Tos 8, and do’ and letting primed quantities be dimen-

sional, then the nondimensional quantities of interest are

§ = 6'/d density perturbation (A1)
)
P= p'/d 2 pressure perturbation (A12)
o %o
v = V'/a velocity perturbation (AL3)
o
vl
V=Ms= /a mean velocity (Al4)
o
x|
x="lr length (A15)
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rt
"

t'2/y time (A26)
To

€
it

m'ro/ao frequency (Al7)

The nondimensionalized basic equations are

Dv
— “+ = AB
D V p 0 (A18)

D$
Dt

= 0 (A19)

§ = p (A20)

with

(A21)

and 4 is a constant vector. For computing sound pressures, M is taken to
be axial and positive in the positive z direction, where the z-axis of
the coordinate system is coincident with the duct axis. Substituting

for § in equation (Al19) and decoupling v from p by applying V- to equa-
tion (A18) and D/Dt to equation (Al9), the comvective wave equation for

p is arrived at:

(A22)

This is the basic, nondimensionalized equation for this analysis.



APPENDIX B

The required particular integral to the inhomogenous equation, equation

(2.1.10), is the familiar Helmholtz equation Green's function for out-

going waves:

5 —— eiw*R*
FF r:"c r*’w* = e —————
0 4 R* (Bl)

with

R* = '\/p2+p02-—2ppoCOS (4=6, ) + (z%-2% )°
(B2)

It is more convenient in cylindrical coordinates to express this

solution in a combined Fourier series-Fourier transform form,

~ i im (99 ) (L) . is (z*-z*)
e B i) 0 () ()

T (33)
(see, e.g., Levine and Schwinger, ref. 44)
wo=Y urdos? 2| sloue? (B4)
and
PR (B5)
#>= { p_ IF p< p
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’ p 1IF p< Py
p<:
l Po IF p> Po (B5)

l .
and Hm(—) is the Hankel function of the first kind, of order m, and

JW is the Bessel function of order m. By separation of variables, the

general solution to the homogenous Helmholtz equation inm cylindrical

coordinates can be similarly expressed,

- z - ( ca (Ko
53 I () o ()]
m=-wo - (B6)

with Ym the Neumann function of order m, with Am and Bm undetermined,

~

and the subscript on Yy B intended to convey the use to which the
general solution will be put, i.e., as a boundary effect. It is by

adding vy B to v FF and solving for Am and Bm from the boundary conditions

that the boundary effects are included in y. Adding them gives

L
[ e 1m0y
I ° f{Ame (up) + B_ ¥ (up) ~ H D uoy) 3 (o )
M=o s

) k% (B7)
is(Z Zo) ds
* e

Employing the boundary conditions of equation (2.1.11),



gives the simultaneous equations for Am and Bm,

' ' _ ¢9)
A Jm(u) + B Ym(u) = Jm(upo) B (w)

A Jhm) + B Gn) = 38 Gun) B (o) (58)

where the prime denotes differentiation with respect to the argument.

The solutions to these equations are

Jm(UDo) Y;(un) - Ym(upo) Jé(un)

A = Jm(upo) + i Ym(u) Am(u) 59)
and
J (up ) Y'(u) = Y (up ) J3'(w)
B, = -1 J!(un) n..° B ) n._o m
m M (B10)
with
A () = J;(u) Y;(un) - Jé(un) Y;(u) (B11)

Substituting these results into equation (B7) and performing the

algebra gives for vy ,

. 1 ) im (d}"d)o) ~
Y=o z e I (p,po,z*—zg,w*>

p— (B12)

97



98

where

(B13)

and

Xm = {Jm(up>) Yé(u) - Ym(up>) J'm(u)} { Jm(up<) Y;(un)— Y (up) Jé(un)}

(B14)

Xp and Am’ when analytically continued into the complex s-plane, are

regular functions of the complex variable s. This can be seen by con-

sidering Am and letting w* have a small positive imaginary part:

w* = mﬁ + ie , €> o. (B15)

Then the branch points of p are raised off the real s-axis, as in fig-

ure 14, The phases of u are indicated in this figure as well,

Across
the cut for u, the following relations hold:

Jm(u+) = (_1)m Jny )

4y _ (_1 0 - ., -
G = D" [ 100 + 21360 | (5169
Then, using the relationships

' = -
2 Jm(u) Jm_l(u) Jm+1(u) (817)



— COMPLEX S PLANE

Smn
X
X
X
X M/'\/\/\f\ur_\/\/\,\,
w*R +i€ IJ+
—
/\/\/W x
g X
X M+ =+ 32 _ w*z
X y- - 5 o
~Smn
Smn = w*z —_ #2 mn
FIGURE 14.
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2 Yt‘n(u) = Ym_l(u) - Ym+l(u) s (B17)

it follows that

Am(“+) =4 [( Jm—l(“+) ‘JMl(u+))(Ym_l(ﬂu+) - Ym+l(nu+))
SR CT R I O N e S I m+1(“+>>]

= Am(u—) (B18)

from equation (B16). Similarly for Xy

Then, since the zeros of Am are not coincident with the zeros of
X the integrand of the integral for im is meromorphic in the finite
complex s~plane, For z* - zg > 0, the contour can be closed in the
upper half-plane to encircle the poles at the zeros of Am. If these
zeros (an infinite number, since Am is transcendental) occur at S’

n=0,1, 2, ..., then

> X
Im T T2 Z RES [(S_smn) Am €
n=o s+ s
o (B19)
The zeros in the lower half-plane occur at s = S BT 0, 1, 2,

(see fig. 15), so that when z* - zg < 0, and the contour is closed

in the lower half-plane,



X is(Z*—Zg)]

(o]
I =4 im m
Io=+3 ZRES [(s e Se
n=o0o m

Since A is a function of u, the zeros of A are u
m m mn

real, nonnegative numbers, and since

Am='Am ’ umn‘ltmx
This gives for S
2 2
= *“ -
Smn" w Hon
(B21)

See appendix J for a discussion of the numerical scheme used to

calculate these zeros.

Near a zero in the upper half-plane,

A (W) =~ Am(umn)+(s—smn %EI A' (u )

m =
mn
4 (B22)
= (g~ ap '
(s Smn’ ds m(umn) ’
s = s
mn
X : -
[] - pnladt w2
RES = e
vl At )
ds m° mn
s=s
(B23)
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equat?
1]
é-)"\‘\= - ﬁ N
as )\ g Yo
N (324)
and
" : v Yy o~ ° 3 (un) W)
RICHR \ Jm(u) p ) ¥ o Yo . )
- 1 Y“
3 m(\m) m(u) oo
“32” SR \Ls o\ P 1__“3.——2—*
i 2 o\ oo o nzu 2.
Ymn
with
AL
o S mm) » “mnp)

(326)
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Also,

(B28)

o (en) =% ()5 (Van) o () )

so that

S= Yo Con) Yo (M) Ba (Mg O R, (b ) eismn (z*_z*>
= {(1— '—2) 1 (W) Ry Gl ) " <- 22 ), ud e )

mn u

H

(B29)

. . Y Py . L 1]
Dividing top and bottom of this expression by Ym (umn> Ym (numn>

gives
= Rm (umnp> Cumnpo> eis“m (Z*-Z8>

RES = 1 { (l ) m(umn) m? ) Rm (mlmnD } Smn

Ynn m Cumn> ( nzufm Yt;l (’“‘mn)

(B30)

Then,

R (u ) RZ (v

m \ mn _ m mn)

Yt:1 (umn> i Yx;n (umn> Jm (umn> -Jl;l Cumn) Ym (umn>

=X
T2 l‘lmn Rm(“mn) (B31)
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and

Ry (nhgn)

2
mg 12[ Pon 0 Rm Cnuﬂm>

(832)

& (d) B (o) o 225)

RES. = = > ;
5 { (1—- 5 ) R Q’mn) -n (- nzug )Rm (ﬂhnn)} juis!
mn

1 Loy (2425
e
T &, @mnp) R <umnp°) mn
(B33)
where
R P
. mg mn 2
am U’lmnp) Nmn :
(B34)
and
2 2
2 1 o 2 2 m 2
= - - = . - 1— H
Nmn 7 {(1 2 ) m(umn) n ( nszmn) m(’ﬂ mﬁ)}
L
(B35)



This is a convenient form for the result since Nmn is

ation of the Rm (umnp) function, i.e.,

1
f (Rm (umnp) (Rm<umlp) pdp = 6n2
n

Then, for Z7Z% - Zg > 0,

n © iSmn (Z*-Zg)
_ e
In = Z R, (umnp) - (umnpo) 21is

n=o0

For For Z* - Zg < 0,
s
du| __s = _mn
ds| __. M - Hmn
s=-sp s=-s .

So that, following the same algebra, from equation (B20),

) ey, (2% - 28)
Im = Z Rm (umnp) 6:{m (umnpo) 2is

n=o

mn

the normaliz-

(B36)

(B37)

(B38)

(B39)
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Finally, the result for |ois
m

3 61 ;;) d{(u fs ) d (Z* -Z*,mQ)
m mn mn O mn 0

(B40)

_I—\
S~~~
=l
>

=]

~
~
»
f
~
C %
-
€
b3

N—"
]
2

wi th

is Lx-7%
e mn o)

d -(Z*—Z* m{) = -
mn o’ 2ispg

(B41)

Substituting this result into equation (B12) gives the final result,

the solution for vy:

R DU ) W RO TN RS T e X
m=—co n=o

(B42)

Considering w* to be a complex variable, then S.n 35 @ function of

the complex w* has the branch line and phases as indicated in figure 15.

Hence X > —_ % = - * * <

ce, for w Hon? Spn (9% Spp (@*), and when Hon® Smn =
. 2 2 . .
i umn - w* when w* approaches the real axis from above it. The

region of the real axis outside the branch points at iumn is referred to

as the propagation (or 'cut-on') region. It is seen that

~

dmnCZ* - zg,-w*> = a,ﬁn CZ* - 23""*> (B43)

where + means complex conjugation. This ensures that y (~w*) = y *(w*).

Finally, just above the real axis in the propagating region, S n has a



st = 4+ ‘/;.12mn _ w*2
—4 mn

S = —Smn | S =+ Smn

mmn Real W™

ST = —i \/#zmn~w*2 -]

FIGURE 15. — COMPLEX w* PLANE
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fO ]

y o2 Im (%) |z - 2% (B44)

108



APPENDIX C

The evaluation of equation (2.2.7) is done using the transforms of F

and Dmn' Letting

=]

A -iwt
1
13 (to> =5 F(w) e dw
-0 : (Cl)
and
1 - -ide
- = — YAYA e w
Pon <Z Zo’T> 2 DmnC w)
(Cc2)
with 7 =t - to , then
—r 1 .
p(r,t) = - ﬂg : E :am CumnDD (ﬁm Cumnps) elné
(C3)

o]

dw dw' | m + - in't
//211 27 [ps e(b + Kmnez] F(w) e

~ 00

o 2T
—imzt)o -i(w-w')t

D CZ-ZS,wD Z / fé@o - + ZnE—Q@ e e © dt dé,
o

f==m -
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Considering the to and ¢o integration, the delta function gives

i(w-w')ty, -imd,

o w T
Z ff 8 (¢o - ¢ + ZHR—Qto) e e dtodéo
- g N

&= (c4)
2m '
o w-w' . w-w , w—u ' +mf
<Z 1 =271 a ) i 'y f i—g %‘Po
= E-e e e
f==c0 (o]

|
'—I
Q~__\ X
Y
)]
[}
[
VY
D11
./
o)
|
< |
+
N
ol
/
|
™)
B
=
o

Then, using Poisson's sum rule, and doing the ¢o integration, gives

o
o=
w
il

) L - . —27i w-w' + mQ
2 ¢ (- )e™® i e )

0=—

[

56 G &P s (2 o)

0‘=—cn

= Z 8 CoQ—(m-w')) ei0¢2n §o,-m
g==—oo (CS)



T2 8 (wmw' + gy o-imd

51‘(?@ = - %;“Zz(ﬁm C“mn

2 By @mnpo) o 1mg eiKng
M=o =g

S e + K+ e _ .
mn s - ‘
ps ¢ ¢ e lm¢e lenZs of dw'(?(w'~m + mR) F(u')
—~—— T
zsmn

-0

©
.

(C6)

mn (Rm @mnps)e'i@a + Kll;lnzs) ()
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APPENDIX D

The geometry is shown in figure 16, assuming for this discussion a
stationary row. The blades are unstaggered, flat-plate, constant

chord airfoils, so that e¢ = 1 and e = 0. Letting Zy.c. = 0, then

when points within the blade row are to be considered, the pressure

spectral density resulting from the airfoils being dipole surfaces is

o N-1

® 1
~ . . d
P @ - - 5T T8, G im0 G )
‘ n

m=-= n=0 j=o

iKﬁn(Z‘E')

ik~ (Z-£") }

1
f j(ps,ﬁlw) {e(-z_ii') e +e(g' -2') e ag'
-1

(D1)
with
7t = L
c
2
(D2)
and
=<
“an = 2 Sn (D3)

The ¢-component of the velocity spectral density associated with

this pressure field is, from equation (Al8).



FIGURE 16. — UNSTAGGERED BLADES IN ANNULUS
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Z w
~ - 1 = (Z2-2") ~
= e QO _i M ]
V¢(p’¢92’w) = v¢(p,¢,z— 9‘”) M e ;)];a P (ap:;bsz ’m) 4z
A cz © © N-1 mz
= v¢(p,¢sz=—“,w) + IEFIES'}E: E—*'“m (umno)
m=-® n=0 j=o mn
L
im (¢— 2—;‘1)/ ~
*e A fmnj (E ,‘-U)Amn(g sZ) dE' (D4)
with
1
- - , dps
fmnj €"w) Jam (pmnpS) Fj (ps,ﬁ »w) B—S—
n
(D5)
and
z ' ) iKtj-ﬁn(zlg') _ iK%m (Z—O -’ ’ )
' = ! 1_5
Amn(g ,Z) -f € CZ £')e + € CE Z) e dz
) (D6)

The boundary conditions at the airfoils are that this induced velocity

cancels the "incident" velocity normal to the airfoil,

. 21k
G FORK = 0,1, e, W1, g =2
1 (0:250) = u (p,0,2,0) = = v, (0,4;,2,0) (D7)



with c
n<p-<l1l AND—'E

and that the pressure difference or dipole density vanishes at the trail-
ing edge (the Kutta condition). These conditioms turn equation (D4) into
the system of equations for £ .
mnnj
2 e >, 2
~ _ ~ - —c——— m 8
"'Uk(paz’w) - V¢k(p9z— w’w) + lGITiMp Z Z B m(umnp)

m=—-o n=0 mn

(D8)

-1 N-1 k=i
2nim = ~ '
f% e N fj(e:',w)} b (£',2) de
-1

for k=0, 1, ... N1, and p,z on the kth airfoil. The state of affairs
in solving this problem seems to be as follows: writing equation (D1)

in the form

N-l ~
~ > ol
p (r,0) = :E: d/:/.Fj (Ps’zs’9> an_ da
j=o '
(D9)

with daS a surface area element, and using I' = T rt FB (see appendix B),

F

with PFF the free-field propagator and FB the "duct wall effects" func-

tion, gives

(p10)
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with Ppy and Py given by equation (D9), with FF and TB in place of T,

F
respectively. The term Py is then neglected for the purpose of solving
for Fj‘ Further, the three-dimensional problem remaining is converted
to a two-dimensional cascade problem by taking the airfoils to be

infinite and parallel (see Kaji and Okazaki, {[ref. 45] and Mani [ref. 46]).
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APPENDIX E

The phase factor

TAN ¢

felf="

-in N
e
(E1)

in equation (3.1.9) accounts for the relative phase of the wake at the
downstream row for different span positions. If tan ¢ is not propor-
tional to p, then the wake will be skewed, i.e., nonradial, and the
relative phase will be different for different span positions. Three-
dimensional flow effects might also cause skewness in the wakes. A
crude model to account for some of this extra skewness is the following:
assume that the major three-dimensional correction will be in the tip

region and consider the linear adjustment

d d p-n
d TAN ¢ =+ — TANY -¢—
1 5 v -¢ 1-n

> (E2)

where ¢ and this linear phase adjustment is illustrated in figure 17.

This correction is included in the computer subprogram but has no
other justification than that it was a part of a study to understand the
effects of wake skewness on tone noise. The correction was not itself

developed from theory.
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FIGURE 17. — VISCOUS WAKE SKEWNESS CORRECTION



APPENDIX F

The equations for the mode amplitudes of the four potential flow field

interactions are very similar. They only differ in signs and indexes.

All four interactions are therefore represented by the same set of

equations. Modifications to the signs in the equations are done with

switches C3 to Cl4, defined in the table following the equations.

M
z
arc COS( ’K>
My,x

Y. =

K
(F1)
\/ 2 2 2 2 V%12
- - - L
My, K (MI,K My Kk +\/ME,K MZ,K) z t M x
(F2)
- A
Tka = ™ Cro My, k2 (Poka ¥ 21,x2)
(F3)
d
c I <R A TR
€, KL 6 2o K2 ,
M_C
¢ “x2
i|CY + C,N tawY
[8 ST R N 2MMK2)]
e
(F4)

O,K2 1,K2 20 K2

=]
[}
=

(F5)

. _ . 3 '
Ak k2 ~ Pac1,k2 C €133 - 1)
Z Cc A FA c. k X2y e
11 Jn \"12



{ ¥
[KL Cra A"’KDJ Ve, K1 > °

k,K1 ¥
’ [KL ("’K,Kl’“)‘ k,Kl)] Vegr € ©

(F6)
(v, ) [ ) -1 ()] 5 o LAY
v,A) = |J -iJ. )| +iYy
T © 1 H{Z) v) + iHéz) v) Al
(F7)
M .N,..C
Ve.x1 = % ; 2L«
Ks My, k1
(F8)
C c, i(%-7 )
- _K1 3 2 K1
AK,Kl - C6 K 2p NK2 € (
(F9)

1 L

27
I _
=1l Nl ) dC
=Nep " o " Myka © 7 \ @ k1 Se,ka KFeora (“’K,m"”)

-
o
I

~
©
3
~
I

(F10)

*
+ e_ 1KmnzM .C.
A (w) - = .
mn
28mn

N -1 _im.gﬂi

me Kl ~
¢ + N
[p + Kmnez] R (pmno> 2: e K1 Lj(p,w) dp
j=0

(F11)

-
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The following table gives the values of the switches required in the

previcus equations to make the equations represent a specific interaction.

For an interaction specified by a column in the upper box, the corres-

ponding column in the lower box gives the appropriate value of the

switches. The abbreviations and indexes used in the table are as
follows:
Component Index Abbreviation
Inlet stator 1 18
Rotor R
Qutlet stator 3 0S
Velocity~inducing
component I8 R 0s R 1S R 0s R
Lift-producing
component R 0s R is R 0s R 1S
Subscript of velocity-
inducing component,
K2 1 2 3 2 1 2 3 2
Subscript of sound-~
producing component,
K1l 2 3 2 1 2 3 2 1
Sign of « <0 >0
K A g L g L a A a
C3 -1 1 1 -1 1 -1 -1 1
Coé -1 1 -1 1 -1 1 -1 1
c7 ~1 -1 -1 -1 1 1 1 1
Cc8 1 -1 -1 1 -1 1 1 -1
C9 1 -1 -1 1 1 -1 -1 1
Cll 1 1 -1 -1 -1 -1 1 1




122

Ccl2
Cl3

Cl4




APPENDIX G

Figure 18 illustrates the rotor blades as a two-dimensional cascade and
defines the blade coordinates. It is seen that a point in the velocity

field is given in terms of the blade-fixed coordinates of the jth blade

by

[
]

Z! cos~{+§:'i SINY + 2

j M.C.

(G1)

<
|

—-EJ! SINY + Y:." COS y + jb + Ut - 22wp

where the 22mp term results from the periodicity on 2mp of the distortion
(this must be modified if there is preswirl to the rotor). Assuming the
two-dimensional representation of the distortion, then the magnitude of

the velocity disturbance at the jth rotor blade on the zth revolution is,

at Y! =0
J

«©
_ dx  dK dw i(KY 2 -wt)
Wo(Y,2,t) —/_‘//——21r a om W (Khe) e
_ dr dK duw = -2mitKp 1(KU -ut) 1iKb
2n 2w 2w
- 00

_l - —' .
. e i(KSINy ACOSY)Zjelkz

>

M.C.

(G2)



e
<l

U=MTp

<t

NI

N
N
\

Ny

FIGURE 18. — CASCADE REPRESENTATION OF ROTOR ALONE
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The sum over all the periods gives the velocity

b= (G3)

From the Poisson sum rule,

o0
E e-2n15LKp _1 z :5(1( _ 9_)’
p p
2= =00 = —o0
(G4)
so that, using b = 2mp/N and U = M.P,
21 o -
1 in<tl d» dw = {(n iz
w_m / T w(p,k,w) e M.C
n= =-oo —om .
(G5)

] ei[()\COS Y- % SIN v) E'-—(nMT—w)t:]

Assuming the distortion is frozen convected with the mean axial

velocity in the duct, then

W(Y,2,t) = W(Y,Z- Mzt) (G6)

(=]
=_//Q_ K Ty oIKY i) (Z—Mzt)
-00

2n 2w



W (5 ,)\,w) = ﬁ(f’- ,A) 21T5<w -AM ) (G7)
P P z
and, from equation (GS5),
o0 2 R [+
. "I — 3 _yu! ] .
W= 1 E eln N dr W -E,A e l\)no‘) [Z v t] elAZM.C.
27p 27 p
n=-o© -
(G8)
7
with t' = —=— , 7" = -2 am
c e
5 5 (G9)
o - 2 51N v
vV = MT n
SIN vy-x £ cosy
n
and
(G10)

v (A) = nMT - AMZ c
n — 3

[\V]

Finally, from the periodicity in y,

21p n
ﬁ(;—‘,x)= f WY, e 7 Yay
(o]
2w
= f T @,0) e g
0
=pwn M\,
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so that

with

When the distortion is steady,

Wn () = 278(X) Wn

so that

- V't} iz
e

(G12)

(G13)

M.C.

(G14)

(€15)

(G16)



with

. .
n v 2 (G17)
and
I
SINy (G18)

If the distortion is strictly axial, then the spectral density of
the normal component of the velocity perturbation on the jth blade

required in equation (2.3.1) is

(G19)

= SIN yz W e 35 (w +nM_)

=—00

When the distortion is nonsteady, the assumption is that it is the
quasi-steady disturbance resulting from the convection with the flow of

stretched eddies. Thus, the factorization can be made

W= W(P)IA(E-Ep) (G20)
where:
£E =2z - Mzt
Eo = *M.c. ~ MzT’
T = time at which the center of eddy is coincident with the midchord

plane of the rotor
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Choosing to represent A(&—Eo) by a Gaussian distribution,

2
_ (& -tg)
A(E-E)) =e 217
(G21)
with L the "axial length scale" of the eddy, then
2.2
_ . 115
) =\2r Lel*fe 3 2
T 2m)
(G22)

If the eddy velocity disturbance has both axial (w ) and circumfer-
ential (w ) components, then the spectral density of the normal component

of the veloc1ty perturbation on the j blade is

o0
u, = f { SINy W_(Z'=0) + COSy W (E’=0)} 19t 4y
I . z )
o0 -0
_ ing., dx — ) _ _
= z e J{WZ SIN Y/;-“ )6 (AMZ M, w)
n=-oo -00

-0

- |
+w¢ COSy o A¢(A)6 (AMZ - nMT -w>‘

=00
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From equations (G9) and (Gl0) it is seen that when the distortion
is nonsteady, the harmonic gusts at the blades have phase velocities
dif fering from the relative mean flow velocity, i.e., the harmonic
gusts are not "frozen" in the fluid, It is only when A'z'/aan and
A¢/2wMZ approach being delta functions that these gusts became frozen

convected,



APPENDIX H

Figure 12 illustrates the oblique gust geometry. Filotas (ref. 36)
developed an approximate solution for the 1lift response of a thin air-
foil to such a gust. His results were in a form containing an infinite

series,

T(h,y) =

v 1 Lo(h,) + I,(h,)
_TZL h + F(h,w) Jo (hl_lhz)""l-]l ‘ hl—lhD

(H1)

where hl = h sin ¢ and h2 = h cos ¥ (equation [64] of ref. 36 with his
k - h and B > ¢). In this equation, I0 and Il are modified Bessel

functions of the first kind, JO and Jl are Bessel functions, and T is

given in terms of an infinite series involving modified Bessel functions

of the second kind (equations [21] and [22] of ref. 36). A generally

good approximate form to equation (Hl) was also developed:

_ih [SIan-"“’Cl"' .5 Coqu ]

1+2nh (1+ % CoSy)
. ,

T

" Vitrh (esIN?y + 7h cosy)
‘ (H2)

Both equations (H1) and (H2) have been programmed for use in sub-
program BBCAA. Figure 19 is a plot of ITI versus h for different y
values. When ¢y = w/2, the gust is no longer oblique and T then

approximates the Sears function,
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This appendix contains the list of equations used in the analysis that
are referenced in the FORTRAN variable dictionary and the subprogram

descriptions.

l.

1 2 2
Brn = V(o mM ) - an? 2

APPENDIX I

2

- -(cNRMT)°Mthn
o 1-m2
oN
pmn s ___BEEL—_= EB
V 1-u2
' In (XY
Jm(X)—Y, ol Y'X) =0
m
J' (nX)
1 ' m
v § 3160 - el @} =0
: J' (p__n)
R -3 m " mn
(umno) IRCTIN)) oL ) Y, Gon
2
= 1 m 2 1 2
Nmn - [2 (l T2 ) Rm (umn) T2 <n -
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10.

11.

12.

13.

14,

15.

SUB bj
+ CONSTANT AVERAGE OF OSCILLATORY
AI_I.IHO = ¢ FACTOR * Z NON-OSCILLATORY * f FACTOR
. FACTOR X .
j=1 3 aj
2
M (o) = \/<\/;4§<p) -2 ) +Viele) - Mﬁ(o)) Lol

Mz.(p)

Y(p) = IARC COoSs —MM—(D)—
M, (0)
e¢(p) = COS (Y(D)) = %, (o)

ez(p) =

S(v) =

|



16, PV =3,(0) + i, v)

17, 1Dy . {2 (yy
TO) = — l(2)
~Hs <7 (v) + i1 (v)
18, JX) = J,x) + 1 Jl(X)
19, % 1 1 |
F(X) = T(x) '[J ) - 2 Jl(X)] - [J(X) -5 Jl(X)]
200 P (v) = F(y) 4 4 J(v)
f v
21, L(v) = b, *S(v) + b, "Fu(v) + by Fe(v)
22, L'(\)) =

br* S(v) +J (Kt

+ *
mno.) +. bz °J (\) +K.mn0')v + b3Ff’ (\)’ Kmno-)
+
2.3 v + K- )
23. ] * = + . 1 mngo
Fe (umencr_) [J (Kmno) Flv) +



26. 8 )

K (0,1) =( [Jg()\) -1 Jl(x)]' 12 ) + s ()

+ iv/A Jl(k)

IF vA # 0
(2)
Hl ) + i 2
HiZ)(V) + iﬁgz)(v) 2 IF v$ 0,0 =0
[Jo(k) -i Jl(A)] IF v= 0, A% O
\ 1 IF v=0, A= 0

25. 2

T(\)',O) =7 , 2 1
1+mv [1+SIN® o+mv c0so) |5

mo (l+ %— COSO)
~iv [SIN@ - )

14+2nv ( 1+ 1 CcQSso

Additional equations for the viscous wakés interaction model:

26.
Mzz(p)

cost¥) = MiE(p)

27 g(p) = y(p) + ¥(p)
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SIGOL +Y.* N
1 2 mpCOoS ¢

1

]

’ X
Y, 1.36 - Cl c. "~ .35

1

V = SIGN L 2

o Z.MM,Z
ISOROS 1 2
SIGOL L o

q -2 o]

SIGN 1 -1

Constant ~ N1N2 ik 7
- T BEa, ™2
factor mn
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34,

Average of
ch> SIN 8
: = . of —— fe b T < A
non oscillatory Cl C2 da MM,Z ME,l p+COSY Ao o]
factor
COMPACT
SOURCE

p mn

. , me¢ X .
-[?(vg) - o COTB -Fa(vo) - £+ COTB* Ff(vo)] '[ + K~ ez]

35.
Average of

dcC
non oscillatory)= C1 CZ(d ) MM,Z ME,I 5 -COSY Ao AO
factor

NON-COMPACT
SOURCE

me
| * . . * - co- * '
[ p * Kmez} [S(vﬂ) J (Kmno COTB -0+ J (v ng ) ¥ COTB £F;(vy)

36. { 0scillatory }= _iaNy0, | i steoL.y; S-S

prCOS ¢, R (u o)
1factor mn

Additional equations for the potential flow field interaction model:

37. ° °
I pp®) = 1€, (0) My 1o (0) (Amm + A}Q(o))

where Aéz = Glauert coefficient of jth order of component K2



38.

39.

40.

41.

42,

43.

-C_K Db N

aK’Kl(p) = 2p e
n+l n-1
. o) - AKZ (p) - AK2 (p)
n,K2 ° 1
'sz(p) + AKZ(p)
where
oy(0)s Ag,(0),++, A¥ () ARE INPUT,
N+l N+2
AK2 %Q(m-ommnlz SN+ 1

ks
€1 2"NgoCa (P) 2313 [E' C14 Kz(p)]

h__(p) =

K2 20

N+1
n

He o) = J (g, @) + 3 €1 D g ko (o) 3, Gy, 0D

n=1
_ MpCyo (P)
dy 1 (P) = CgOyy () + CRN, [(}/é)TANeKl(p) M ]
,K2
Ve k1 ¢P) - Ce ZTNKZ K K
’ MM’Kl(D)
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Lb. KN __C__(p) . T _
N K2 K1l ¢ oiC3 [— Kl(p)]

AK,Kl(p) = C¢ T 2
45.
Constant NKl —iKi 7
factor = - 4B e mn Kl-2y
mn '

46.
Non-oscillatory
= 1.
factor
h|
47. Oscillatory ° -id (r)
factor =MM,-Kl(p)FK2(O) aK,Kl(p) HK’KZ(O) e " K,K1T7,

. da /K1 | [ﬁe

¢ +
27 5 + Kmnez] am@mn‘)) KK’Kl(p)

Additional equations for the rotor-steady velocity distortion inter-

action model:

2n
W, @) = [ uee,e) e g

[-]

48.

where

1-v, v
W(p,¢) = C——‘%——D [1—Ap cos 4~ (aocose-1) 2 - @2—1)@2-1)]
1-A
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49.

50.

51.

52.

53.

54,

W (p) = 3 a;(p)

. 179

1 .
7 (ég(p) + 1bZ (p)) IF 2>0

Wg(p) =

2 (@, - b, (6) IF 2<0

Cz(p)

M
t

\)Q,(p) =4 ZMM(O)

Mz(o)

COT(B) =

N

+
-iK™ Z
§C0nstant - NRe mn R
factor . Aan

Average of

dCL me¢ +
non-oscillatory } = CR 1% /) MM 'Mz SINB - + Kmngz
factor COMPACT

SOURCE

. [S(vz) -d °C0TB'Fa(v2) - f COTB ‘Ff(vl)]
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55.

. L] i - L] L] i . - '
[S(vl) J (fmno) - COTB* @ +J (}2+ Kmnc) + coTB- £ Ff(vl)]

Average of dCL me¢ X
non-oscillatory} = CR da . MM- MZ- SINB- —B—» + Kmn?Z .
factor NON COMPACT

SOURCE

Oscillatory§
56. = W, (P& u_op
3factor 2 m-< mn )

Additional equations for the rotor nonsteady velocity distortion

interaction model:

Average of

dCL me¢
57- - i = . . -
non-oscillatory MZ C P 5 + Kmne%]
factor
+
-iK™ Z
mn
Constant _ - E -
58. - an
factor '
59. §°S°1llat°ry§ = FACTING
factor

L.
60. T == ﬁl——
Z



If ARMISC(25)

62.

630

b4,

65.

66.

2BTj SIN(BT)

1[ . IF BT, <
\\V2 7 Bt i

A E, = 2 + COS(wt) duw

N
N

= 3

jo

2
L
T.) IF BT, > 10.
J J

IF .1 < BT,< 10,

FACTIN4 = <Rm (}mn§)° MM(D)-'SIN(Y) [glz(p)'Fl(o) - gzg(p)-Fz(o)]

vz(p) =2

]

Cz(o)' M

2 MM(p)

= 5(v) - a(p)- COT(Y)+ Fy(v,) - £(p)

, COMPACT

&

= §

[Fz(p)-l

SOURCE

NON-COMPACT
SOURCE

COT(y)

Ff(vg)

)3 (o) = OICOT() -+ 3 b+ Ko ) ~£(p) -COT(Y) “FL(v,)

= COT(v)*S(vy) + alp)-F (v,) + £(p)"

COMPACT
SOURCE

Fo(v)
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67. [Fz(p)] = COT(Y) *5(v,) =3 (Kyn ) + 6(e)-d (v, k3 )
NON-COMPACT

SOURCE + f(p)- F%(vl)
2
) (P-R) _oR
2312 a2
i Rp j ~if¢
= 2P, -e s I {—\ e
68. gjz(o) TP, Q(az)
h|
If ARMISC(25) = 4:
69. FACTING = 2477 am<p )e"”“’
_PR
2
3MM(D) SINY(p) P, T, %) 1 1,
a
1
- PR
aZ
2

kzaz.
J

70, I, =a Re / AR L (h(p, 0,00, )e 2 dk

Q
o>
N
+
o]
o
©
i
v
=
1
=
S’
(Y
®
)
E.
-
*
N
m‘g
<
°
®
N’

1]
-
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-1 7
72. 3 (p,k) = TAN [E&p SIN(y)]
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APPENDIX J

The zeros of Am(u) are symmetric under a change in sign of m, i.e.,

for

a () = Jé(u) Yé (un) - Jé (un) Yé (w)
J1)

A n W =28 (32)

Hence, the zeros are computed for Alml(u). All the zeros are nonnegative.

They are computed by first approximating the zeros for m = 0 as follows:
1) For n = 0, use formula (9.5.13) of reference 30
2) For .2 2 n < 1, use formulas (9.5.28) and (9.5.31) of reference 30

3) For 0 < n <.2, use quadratic interpolation with the values for n =0

in item 1 above and n = .2 and .3 in item 2

Using the approximation formulas in item 2 restricted to n z .2
yeilds a one~to-one correspondence with the eigenvalues (zeros) where
the first several values are poor approximations. The approximations
in item 2 get worse as n decreases and for n < .2 no longer give a one-
to-one correspondence. For this reason, interpolation procedure 3 is
used to obtain better values. For more accurate values for the zeros,
an iteration method is applied with above approximations as starting
values., Reference 47 gives an iterative procedure for computing a real
zero of a real valued nonlinear function f(x) in which a rational
function is fitted through previously computed values. The interaction

formula is

CX -X _1)@ ~Xn. 2)f (fn 1 n 2)
n+l (X -X —l) Cfn- -f ) £ + an Xn_2> (fn'fn—ID fao2

(33)
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where fn if f(xn). Here, f is Alml and x is uy. One of the three
starting valuec required is chosen form the approximations discussed
above, with the other two that approximation * £ where ¢ is chosen to

"surround" the zero.

Applying the iteration until f(xn) is small provides zeros with accuracy
limited by the evaluation of £ 1itself. In this case this accuracy is
that of the Bessel and Neumann function evaluators. Do this for m = 0,
use the m = 0 zeros as starting values for the m = 1 zeros, etc.
Examples of the zeros used as eigenvalues in the analysis are plotted

in figures 20, 21, and 22, each figure corresponding to a different

‘value of 7.
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