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A SIMULATOR INVESTIGATION OF ENGINE FAILUP.E COMPENSATION FOR

POWERED-LIFT STOL AIRCRAFT

Albert W. Nieuwenhuijse

and

James A. Franklin

Ames Research Center
Moffett Field, California 94035

ABSTRACT

A piloted simu:ator investigation of' various engine failure compensation concepts for powered-
lift STOL. aircraft was carried out at the Ames Research Center. The purpose of this investigation
was to determine the influence of engine failure compensation on recovery from an engine failure
during the landing approach and on the precision of the STOL landing. The various concepts	 j
included (1) cockpit warning lights to cue the pilot of an engine failure, (2) programmed thrust and
roll trim compensation, (3) thrust command and (4) flight-path stabilization. The aircraft simulated
was a 150 passenger four-engine, exte-rally blown flap civil STOL transport having a 90 psf wing
loading and a .56 thrust to weight ratio. Results of the simulation indicate that the combination of
thrust command and flight-path stabilization offered the best engine-out landing performance in
WTbulence and did so over the entire range of altitudes for which engine failures occurred.
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ON THE QUESTION OF PILOT DETERIORATION DURING LOW ALTITUDE FLIGHT

P. Schulz*

1.	 Introduction
	

/99*

The ride qualities of an aircraft represent one of several

multi-discipline problems which are related to the development

of a controller for the high velocity low altitude flight regime.

The usual criteria for evaluating the ride qualities of an

aircraft are the variances of accelerations at the location of

the pilot seat. Since the factors which influence the minimiza-

tion of the aircraft response to gusts also influence the flight

properties of the system, we should also consider the following:

1. Stability and control, and

2. Instabilities induced by the pilot,

i.e., a gust aid system cannot be designed in a manner which is

too stable, otherwise, :a,e pilot will have difficulties in

flying tl.e aircraft.

However, these problems will not be discussed in this paper,

which is only concerned with the calculation of the ride qualities

during the project and definition phases. In order to be able to /100

calculate the ride qualities in a satisfactory manner, the accur-

acy of the following models is important:

*VFW-Fokker GmbH., Bremen.

**Numbers in the margin indicate the pagination of the
original foreign text.
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1. the turbulence model for low altitudes,.

2. the aircraft model,

3. the aircraft mission model,

U.	 the pilot model which is loaded by the accelerations

The first calculations can be made using a , r igid aircraft.

Later on, when the elastic and aerodynamic properties are

better known, it is possible to include the elastic degrees of

freedom. There are two possibilities for calculating the trans-

fer function of the aircraft:

1. the equations for longitudinal motion of the point

mass aircraft,

2. buildup of a relatively simple discrete aircraft model

and use of the rigid degrees of freedom for calculating the

transfer function.

Both methods will be discussed because they give different

results for aircraft with large sweepback angles.

The tolerance limits of human beings to accelerations have

not yet been determined even today, because not enough data have

been collected.

The pilot deterioration should be the general criterion for

the ride qualities, and not the variance of the accelerations at

the pilot seat. This requirement is a consequence of the fact

that two different power spt ,,tra can have the same variance

(because of the	 but could result in different degrees

of pilot deteriora^'.i . 'Therefore, this lecture will primarily

deal with this topso.
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/101The sensitivity of an aircraft to atmospheric turbulence

primarily depends on the ratio of the force produced by the gust

and the mass of the aircraft, as well as the tendency of the

aircraft to turn into the relative wind. In order to calculate

the gust sensitivity at the center of gravity and at the pilot

seat, we can use the equations for the longitu a tnal motion as a

first approximation [3]. The results of these calculations will

be very useful for the following investigations:

I.	 the influence of the angle of attack oscillation on

the gust sensitivity at the center of gravity. The result is

that there is a decrease in G'„ 	 when ^ and 6). are increased

(Figure 1).

2. the influence of the angle of attack oscillation and

of the dynamic amplification factor on the gust sensitivity at

the pilot seat (Figure 2).

Since these various parameters for optimum ride qualities

also influence the flight property criteria, for example,w;/tttf

ZeL/W. and „ 4/^y^ , the proper selection, of these quantities
depends on both the ride qualities and the flying qualities.

The Behavior of Huma n- under the Influence of

Stochastic Disturbances

/102Not much data is available which describes the fatigue of

humans caused by stochastic accelerations. When these data are

applied to high velocity, low altitude flight, one encounters

the problem of whether and how the pilot can solve tactical and

flight handling tasks if he is subjected to a stochastic accel-

eration spectrum. All of the data on this subject apply for

sinusoidal accelerations with a certain variance and frequency,

3
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for example, see [1]. This will be used here as a basis for

calculating the pilot deterioration due to gusts. This r•^ference

Indicates that the acceleration within six octaves must be

Integrated to obtain partial values of the variance, i.e.,

^rtlb n 
A^^r) ^W

W^

whereon(W )= power spectrum of accelerations. Using these

partial values of the variance of the accelerations, the per-

missible loading times t 	 are calculated from the load capacity
i

curves (Figure 3). The reciprocal S i = 1/tz 
i 

is then the pilot

deterioration. The deterioration from all octaves is then summed

and one finds the total deterioration due to the existing power

spectrum of accelerations at the pilot seat location.

The method given in this reference uses a type of average

value of accelerations in this octave for calculating the

aeterioration. Since the permissible loading times depend very

greatly on the variance and frequency of the accelerations, the

pilot deterioration will change drastically when the octaves are

displaced (Figure 4). Therefore, it would be desirable to have

a method which does not use the average value of the accelerations

but a method which averages the permissible loading times for the /103

deterioration. This can be done by means of the following substi-

tutionxw= w, • 2

a JW. L  • W,2" dx

kiN

2

PwrE • " WO 2 " .Qry► 2 ^^^^ (^ k
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4

In this formula, x is a dimensionless quantity, i.e., the

ntegrand has the same dimensions as 02.

Therefore, we make the following substitution

Q ( gyp	 W 2 x ^' 2 A (k)

and we obtain the following for the variance of octave i

v4
s	 V 

-^) dx
k;

This expression has the advantage that 0 *2 x) is a continuous

function and has the same dimensions as a2part I• Therefore,

o2part in the average of the function a * (2 x) of the octave i,

becausa the length of the integral is 1. Therefore, the

deterioration curve*(a*, x) is calculated from the continuous

function aI x) and the permissible loa O curves (Figure 3). The

earlier summation of partial deterioration values is then

replaced by an integration of the deterioration curve.

S. 1 S low) dw

The disadvantage of the old method is that it averages a *2x)

This fact and the variation of the permissible load curves 	 /104

are the reasons for the change in thE • results when the octaves

are displaced.

9



The quest:.on of tie applicability of the permissible load

curves to stochastic accelerations becomes rather unimportant by

making a transfer to the continuous function a* (x) from the partial

values of variance. These permissible load curves are then es-

tablished for sinusoidal accelerations with a certain frequency

and amplitude. Discrete points of the curve a*, i.e., the

corresponding power spectrum of accelerations, can be looked upon

as representations of sinusoidal functions with frequencies and

variances corresponding to the selected points. Therefore, the

reference mentioned above can also be applied for stochastic

accelerations

3. Pilot Deterioration Due to Stochastic Accelerations

A pilot can withstand an acceleration spectrum with a

certain variance for only a limited time t z , which is a function

of the average value of accelerations and the frequency of the

gusts. This function was taken from [1] mentioned above. The

variance of the load multiple a w at the pilot seat is given by

t

^w	 ow^W^ dW
0

^ lW is the	

V 0

p )	 power spectrum of the load multiple; ^Mlu) is

the power spectrum of the gusts; F(w) is the transfer function /105

of the aircraft A t/W .

During the mission, the transfer function of the aircraft

changes because of the decrease in aircraft weight. Other reasons

for this are the changes in weather, velocity, and flight altitude

during the flight. In order to include these changes in the

10
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load multiple in the calculation, the influence of any effective

time Is explained by means of a damage accumulation [2].

The "damage rate", which varies in time, has been giv 	 by

dS •
dt	 t1jo

where t z (t) = instantaneous permissible load time due to a z W W.
The instantaneous damage is then the ratio of the loading time

--dt — and the permissible loadinr time tz(t).

In this waY, the total damage over the mission becomes

TM	 TM ^t

S • S(TN )	 '	 S T
where TM = mission time.

oince any mission differs from any other mission because of

the r`,ange in the weather and because only the statistical distri-

bution of the gusts is known, it is impossible to calculate the

actual damage during a certain mission. Therefore, it is only

possi l •le to calculate the expectation value of pilot deterioration:

	

((	 1	

~	 /105

E S (TN ) J - J 
S(r-w) ^Wcorw) . SCrw) w(rtj dGw

where W(aw ) = probability function and w(a w ) = probability

density function.

It is defined in [4] as follows:
a	 t

ppvcrtW 
Or")	 1r^^	 G 264ZZ	 _

	

b•	 6z 1 Te



q

where the parameters P 1 and P 2 are the ratio of flight time or

flight path for nonstormy and stormy turbulence, b  and b 2 are

the ocale parameters for the individual probability distributions

of ow for the two types of turbulence.

The power spectrum for the vertical turbulences is given by

the Dryden or the Karmann spectrum.

4.	 The Calculation of the Aircraft Transfer Function

As already mentioned a bove, there are two possibilities for

calculating the transfer function of a rigid aircraft.

1. The equations of motion for the point mass aircraft

2. If a relative simple discrete model is used, it is

possible to employ the rigid body motions for calculating the

transfer function.

" lie main differences between the method are in the treatment /107

of the unsteady aerodynamic effects and the sweepback angle.

In order to calculate the transfer function of the rigid

aircraft due to vertical gusts for the longitudinal motion, the

equations of motion are taken from [5]

The unsteady aerodynamic effects are not contained in these

equations. Since the deflections of individual wing points

cannot be determined in this model, it is only possible to

consider the Kuessner function. Therefore, for the right side,

12



we obtain

W a	
Klti	 1.1

where V+ = Kuessner function.

The transfer function is obtained from the two equations

given above by using the Laplace transformation. The pitch

moment term in the moment equation can be split up into compon-

ents for the wing-fuselage and for the elevator, in order to

Include the dead time between these two components. The Kuessner

function of the elevator can be ignored because the chord length

of the elevator is small compared with that of the wing and the

aerodynamic response can the fore be approximated by a dump

function.

The transfer functions for the two degrees of freedom of the

system a and I' are calculated from the two equations of motion.

With this it is possible to then calculate the load multiple at

the center of gravity and the additional load multiple caused by

rotation around the center of gravity.

Qh^ s	^J;,	 /108
u 

AV► tj	 Q'
LA

The transfer function for the total load multiple is then the

sum of both

All	 ANS+ Aha:

LA	 u	 u

13
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The calculation of the transfer function of the elastic

aircraft will be outlined here. Starting with the general matrix

equation of an elastic equation, it is possible to determine the

displacements and rotations cf the discrete points of the air-

craft. These are then built up from the contributions of the

individual eigen modes and of a time function, according to the

Bernoulli separation theorem. When a transfer is made from the

time region to the frequency region, this then becomes the trans-

fer function of the system. Because of the fact that the deflec-

tions are known, it is possible to apply the Kuessner and the

Wagner force under these unsteady aerodynamic conditions, In our

calculations, we only considered the circulatory components

caused by vertical motion of the profile and of the rotation

around the C/4 point in the Wagner force.

The advantage of an aircraft built up of discrete points is

that it also becomes possible to consider the influence of the

wing sweepback. In the case of a wing with a strong sweepback,

a straight gust front will reach the individual points of the

wing at different times and, therefore, the response of the

aircraft will be softer. Another advantage is the possibility

of being able to consider the Kuessner and the Wagner forces

under unsteady aerodynamic conditions.

These two facts are the reasons for the differences in the 	 /109

two curves given in Figure 5. This is also the reason for their

general appearance. Even though one wishes to only calculate

the rigid aircraft, the discrete model can be used because the

rigid degrees of freedom and the eigen modes can be used for

describing the aircraft and its motion. In addition, later on,

the elastic eigen modes can be incorporated relatively easily

into the computer program.

14
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5.	 Summary_

The calculation of pilot deterioration for high velocity,

low altitude missions is a multi-layered problem. The improved

method of considering the physiological data of humans represents

only a small step towards the exact calculation of ride qualities.

Because of the difficult situation of a pilot during a terrain-

following mission, it is necessary to have a flight controller

for controlling the aircraft. Therefore, a complete aircraft

model for calculating the pilot deterioration should contain this

controller.

The load on the pilot- caused by maneuver stresses during

terrain following flights is very high. Therefore, it is

necessary to consider these accelerations in the calculation.

However, we encounter the following difficulty: if one super-

imposes the acceleration caused by vertical gusts with those of

the terrain following flight, one then indirectly is saying that

there is no relationship between the gusts and the terrain shape.

Even if we have a noise generator and a filter during a real

time simulation, which produces the statistical gust distribution

along the flight path, one has still not yet made any statement

about the relationship between these two quantities. Another

difficulty is the low frequency at which the maneuver loads of

terrain following flight occur. The permissible load curves given

in [1] extend to a frequency of down to f = 0.7 Hz. After about /110

1 Hz, one encounters the region of seasickness, which was inten-

tionally excluded in this report, because not enough is known and,

in addition, the available data is contradictory.

For the first calculations of pilot deterioration during the

project phase, it is not necessary to consider the elastic degrees

of freedom. Since the influence of the elastic oscillations on

the pilot is considerable even for small aircraft, one should

16
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include the elastic degrees of freedom as soon as possible in the

calculations. The curves gi-en in Figure 6 show the influence
of the elastic degrees of freedom. The slight dif:erence between

the two curves at large swefpback angles was produced by the

fact that the moments of inertia of the wing segments were too

small.

The method for calcula-ing the pilot deterioration is the

same for sideways motion. Only the permissible load curves are

somewhat different in this case.
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