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FOREWORD
 

This report covers a study performed for NASA Ames, "Parametric Study of
 

STOL Short-Haul Transport Engine Cycles and Operational Techniques to
 

Minimize Community Noise Impact", under Contract NAS2-6994, Mod. No. 3.
 

The NASA technical monitor for the study was M. H. Waters, Systems Studies
 

Division, Ames Research Center, California.
 

The Douglas study team consisted of the following personnel:
 

Program Manager E. P. Schuld 

Acoustics . J. P. Crovello 

Aerodynamics . J. H. Lindley 

Airport Evaluation : L.H. Quick 

Power Plant . F. S. LaMar 

Weights . R. H. Young 

The ten-month study, initiated in July 1973, was divided into several
 

phases; i.e., engine cycle studies, propulsion system and acoustic
 

trade studies, aircraft sizing and operational techniques, and community
 

noise impact analyses.
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1.0 SUMMARY
 

The main goal of this study was to investigate the effect of air

craft operational techniques in the terminal area on community noise impact
 

of future short-haul aircraft. One mechanical-flap (MF) aircraft and one
 

externally-blown-flap (EBF) aircraft were used to study the noise impact at
 

four U.S. airports: Hanscom Field (Boston); Washington National; Midway
 

(Chicago); and Orange County (California). The EBF aircraft was the final
 

design E-150-3000 aircraft developed during the NASA STOL Systems Study,
 

Reference 1.
 

With the exception of Washington National (DCA), the study showed
 

that a reduction of approximately 40 percent in the number of people highly
 

annoyed (as defined in the study) can be obtained by using these operational
 

techniques. At DCA the number of people highly annoyed using the standard
 

procedure was quite low, but it is significant that the minimum-impact case
 

for Runway 36 reduced the number of people highly annoyed to zero by using
 

a power cutback and a turning departure path. The evaluation procedures and
 

methodology developed in this study represents an advance in acoustical
 

state-of-the-art and should provide an effective and useful tool for deter

mining aircraft noise impact upon the airport community.
 

The MF aircraft was developed by a series of studies which began
 

with a comparison of 150-passenger, 2- vs 4-engine configurations designed
 

for a 3000-foot field length. The 2-engine configuration proved to be
 

slightly superior. The study progressed by comparing 2-engine MF aircraft
 

designed for 3000-foot and 4000-foot field lengths. Concurrently, an
 

acoustic/engine cycle trade study was conducted on engines with fan pressure
 

ratios of 1.32, 1.45, and 1.57 using takeoff sideline noise as the acoustic
 

criterion. These engines were examined with no acoustic treatment (hardwall)
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and with nacelle wall treatment. The trade study included generation of
 

uninstalled performance and weight estimates, preparation of installation
 

drawings, calculation of installed engine performance, calculation of takeoff
 

noise levels, and estimation of engine prices. At the outcome of the MF
 

aircraft studies, itwas concluded that an M-150-4000 aircraft with twin
 

1.57 FPR engines (nacelle wall treatment) should be used in the community
 

noise impact phase of the study. The M-150-4000 and M-150-3000 aircraft had
 

essentially the same noise impact, but the DOC of the M-150-3000 aircraft
 

was approximately 18 percent higher and the mission fuel 24 percent greater.
 

A study was conducted to determine the sensitivity of the NASA STOL
 

Systems Study final design E-150-3000 aircraft to changes inwing sweep and
 

thickness ratio. During the NASA STOL Systems Study, itwas determined that
 

this aircraft was relatively insensitive to aspect ratio and that AR = 8 was
 

near optimum. Similarly, itwas found that wing sweep and wing thickness had
 

little effect and that changing to an optimum wing (primarily a reduction in
 

wing sweep) would result in approximately a one to two percent reduction in
 

DOC. The insensitivity to wing geometry ispartly due to the engine being
 

selected for a field length and sideline noise requirement rather than for
 

a cruise speed requirement.
 

A Douglas-developed computer program was used to generate takeoff
 

and landing flight profiles for use in the noise impact studies. In this
 

program, parameters can be varied to determine their effect on the flight
 

path. The parameters varied were: 

Takeoff 

a) Flap retraction altitude 
b) Flap retraction rate 

c) Thrust cutback altitude 

d) Thrust cutback amount 
e) Amount of turning 

z 



Landing
 

a) Glide slope angle
 

b) Change in slope angle - two segment approach
 

c) Flap extension rate
 

The above program develops flight path data which is input to a
 

Douglas-developed acoustic computer program which calculates noise contours
 

and community noise impact.
 

The acoustic program uses predicted EPNL vs distance information
 

together with the flight profile data to compute single-event EPNL contours
 

as well as the total area enclosed by each contour. To evaluate the
 

community noise impact, census data is required for each airport examined,
 

and an annoyance factor, in terms of the percent of people highly annoyed,
 

is computed as a function of EPNL. By definition, the summation of the
 

annoyance factor times the population is the number of people highly annoyed
 

in the vicinity of the airport in question.
 

A standard operational technique was established for both the MF
 

and EBF aircraft. A low-impact operational procedure was then obtained as
 

a result of parametric .studies of the effects on noise impact of varying
 

operational parameters, such as, flap retraction height and rate, and thrust
 

cutback height and amount. These studies assumed a uniform population
 

distribution. By superimposing the low-impact contour on a standard 7.5
 

minute U.S.G.S. topographical map with an overlay showing census tract popula

tion, it was possible to optimize or "fine-tune" the low-impact operational
 

procedure to the specific airport community by varying takeoff flight
 

techniques. The contour was shaped by varying the level of power cutback,
 

cutback altitude and turn altitude and amount. Turns were made to follow
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waterways, parks, railroads, etc., to avoid highly populated and noise
 

sensitive areas. The final result was a minimum-impact procedure. No
 

detailed optimization was made for the approach procedure since the size of
 

the low-impact approach contour using a decelerating approach technique
 

was found to be minimal.
 

Also studied (at Midway Airport) was the effect of oversizing by
 

10 percent the engines on the E-150-3000 aircraft. The objective was to
 

reduce the noise impact by having steeper climb angles up to the point of
 

thrust cutback. This oversized case resulted in an additional 8 percent
 

reduction inthe number of people highly annoyed at Midway, employing the
 

same operational techniques used for the non-oversized case.
 

The typical noise impact reductions achieved by operational
 

techniques for both aircraft were studied. However, the noise impact
 

reduction for the M-150-4000 aircraft was less than that for the E-150-3000
 

aircraft. This ismainly due to the higher sideline noise produced by the
 

M-150-4000 aircraft which increased the width of the noise contours.
 

The study methods used herein for aircraft operational noise
 

alleviation provide a tool which can be used to help establish terminal
 

area flight procedures. Although itwas not applied in this study, the
 

capability also exists to compare operational flight procedures on the
 

basis of fuel consumption as well as noise impact to determine minimum
 

energy procedures in the terminal area.
 

The accuracy is limited by the accuracy of the noise-impact pre

diction methodology, the validity of the noise annoyance function, and the
 

census data base. Much work remains to be done to develop more accurate air

craft noise prediction methods, to improve and validate methods for predicting
 

community response, and to standardize airport noise evaluation methodology.
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2.0 INTRODUCTION
 

Past studies have shown the benefits of low fan pressure ratio
 

engines and the use of acoustically-treated nacelles for reducing the noise
 

generated by aircraft. This program used a FPR = 1.25 engine on the final
 

design E-150-3000 aircraft from the NASA STOL Systems Study (Reference 1) and
 

a FPR = 1.57 engine on a M-150-4000 aircraft. Both had acoustical treatment
 

on the nacelle walls; however, the nacelle for the FPR = 1.57 engine was
 

designed for aerodynamic performance and neither the inlet nor fan exhaust
 

ducts were extended for further noise reduction. To reduce the community
 

noise impact, this study investigated the effects of varying the aircraft
 

operating procedures in the terminal area.
 

The 	objectives of this study were to:
 

* 	Determine an optimum engine cycle for a short-haul mechanical-flap
 

airplane considering tradeoffs between acoustics, performance,
 

and economics.
 

* 	Investigate aircraft operational techniques in the terminal
 

airport area to minimize the noise impact on the community.
 

* 	Evaluate the noise impact of the study aircraft in four
 

representative airport communities.
 

The 	study was conducted in four major steps as shown in Figure 2-1.
 

Aircraft trade studies were performed to select an optimum MF
 

aircraft configuration, as well as to determine the effect of wing geometry
 

and oversized engines on the EBF configuration.
 

For the acoustic trade study, three engine cycles, with and without
 

acoustic treatment, were used to size the MF aircraft for two field lengths
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FIGURE 2-1. 



to form a matrix of twelve aircraft. From this study, the M-150-4000 aircraft
 

was selected for further community noise impact analyses.
 

The parametric study of operational techniques was performed to
 

determine the effect on community noise of various operational techniques
 

for EBF and MF aircraft assuming a uniform population distribution. Low-impact
 

procedures and noise contours resulted from these studies which were used as
 

a starting point for the evaluation of community impact.
 

For the community impact evaluation, the aircraft operational
 

techniques were optimized at selected airports (using census population data)
 

to develop a minimum-impact procedure for a particular runway. As shown in
 

Figure 2-1, the minimum-impact procedure was developed for the EBF and MF
 

aircraft at four study airports and for the EBF with oversized engines at one
 

airport.
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3.0 AIRCRAFT CONFIGURATION TRADE STUDIES
 

3.1 Mechanical Flap (MF) Aircraft Configuration Study
 

Current short-haul aircraft such as the McDonnell Douglas DC-9 and
 

Boeing 737 are twin-engine configurations. A twin-engine configuration will
 

tend to have lower initial engine cost, lower engine maintenance costs and
 

increased dispatch reliability as compared to a four-engine configuration.
 

On the other hand, engine-out performance requirements dictate higher total 

installed engine thrust for the twin. As design field length isreduced to
 

that normally associated with STOL aircraft, the engine-out performance
 

becomes increasingly significant resulting ina twin-engine configuration
 

that ismuch heavier than one with more than two engines.
 

3.1.1 Twin vs Four Engine Comparison - A trade study was conducted on a
 

3000-foot (914 m) field length mechanical-flap aircraft to determine whether
 

itwould have lower direct operating costs as a two or a four-engine configura

tion. Itwas assumed that ifthe trade study showed a twin-engine configuration
 

to be better at 3000-foot (914 m) field lengths it-would also be better at
 

4000 feet (1219 m). If a four-engine configuration was superior at 3000 feet
 

(914 m) then the same type of trade study would be necessary for the 4000-foot
 

(1219 m) field length configurations.
 

Two aircraft were sized, a twin-engine and four-engine design as
 

shown in Figures 3-1 and 3-2. Both aircraft are high wing configurations
 

with engines mounted under the wings and are designed to carry 150 passengers
 

over a 575 statute mile (926 km) stage length. Fairly long engine pylons
 

allow elimination of flap cutouts, and two-segment tracked-motion flaps
 

provide efficient low speed aerodynamic performance. Aerodynamic character-


Preceding page blank I 



GENERAL ARRANGEMENT 
M-150-3000 - TWO PD287-6 ENGINES 

138.5 FT _ _'1 

(42.2 M) 

158.2 FT 
(48.2 M) 
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PR3-STOL-2045 
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GENERAL ARRANGEMENT 
M-150-3000- FOUR PD287-6 ENGINES 

138.5 FT 
(42.2 M) 

157.9 FT 
(48.1 M) 

PR3-STOL-2046 

FIGURE 3-2. 



istics are presented in Appendix A.2. Allison PD287-6 engines (1.32 FPR),as
 

used in the acoustic trade study of the NASA Short-Haul STOL System Study
 

(Reference 1), were utilized.
 

Aircraft sizing was performed in accordance with the ground rules
 

and methods described in Appendix A.l. The procedure involves calculating
 

takeoff and landing performance to determine wing loading (W/S) and thrust

to-weight ratio (T/W) combinations that produce a 3000-foot (914 m) field length.
 

These W/S and T/W combinations together with parametric weight, drag, engine
 

performance and tail sizing data are combined with the mission requirements to
 

define the aircraft characteristics such as TOGW, wing area and engine size.
 

The resulting sizing charts for the two aircraft are shown in
 

Figure 3-3. The twin-engine configuration design point was selected at a
 

W/S = 60.3 lb/ft2 (294 kg/m 2)and T/W = 0.381 where landing and takeoff field
 

length performance are equally critical. Landing field length performance
 

is not a function of T/W for an unpowered high-lift system so the 3000-foot
/ 

(914 m) field length requirement restricts W/S to values less than or equal
 

to 60.3 lb/ft2 (294 kg/m 2). The T/W value of 0.381 was selected on the
 

basis of minimum DOC and weight rather than to achieve a given cruise Mach
 

Number. Cruise Mach Number is a fallout from the sizing process. An increase
 

in T/W will increase both DOC and TOGW.
 

The four-engine configuration sizing is somewhat more complex. As
 

in the two-engine case, landing performance restricts the W/S to values no
 

greater than 60.3 lb/ft2 (294 kg/m 2). Takeoff and landing are equally critical
 

at W/S = 60.3 lb/ft2 (294 kg/m 2) and T/W = 0.289. Minimum DOC occurs, however,
 

at a T/W = 0.350 on the landing critical line. The DOC is lower at this T/W
 

than at the point where takeoff and landing are equally critical because the
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gross weight increase is more than offset by the increase incruise Mach
 

number. Selection of the sizing point was made on the basis of minimum DOC.
 

A summary comparing the performance characteristics of the two
 

aircraft ispresented in Table 3-1. The four-engine configuration has a
 

slightly lower gross weight (0.3%) and lower fuel consumption (2.5%) than the
 

two-engine aircraft but DOC is 8 percent higher. The increased DOC is the
 

result of higher total engine costs and engine maintenance. On the basis of
 

this DOC difference, the two-engine configuration was selected for parametric
 

aircraft sizing during the acoustic trade study for field lengths of both
 

3000 and 4000 feet (914 and 1219 m).
 

3.1.2 Sensitivity to Engine Costs - A sensitivity analysis was performed
 

to assess the impact of engine cost on the trade study results. The DOC
 

values presented in the sizing chart and performance summary were based on
 

an engine cost curve used inthe STOL Short-Haul Study (Reference 1). A
 

revised curve has been derived (Section 4.2.6), based on a statistical study
 

of engine prices, which has a greater variation of cost with thrust. The
 

two cost curves are compared in Figure 3-4.
 

Use of the revised cost curve, as illustrated inTable 3-2, reduces
 

the DOC difference between the two and four-engine configurations from
 

8 percent to 6 percent. The assumption that engines would be produced
 

exclusively for the STOL aircraft, i.e., there would be only half as many
 

engines produced for the twin configuration as for the four-engined configura

tion, would reduce the DOC difference to just over one percent. The twin

engined aircraft still has lower direct operating costs but differences are
 

minimal. For a production design, the configuration choice would be greatly
 

influenced by the thrust sizes of available engines.
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TABLE 3-1
 

TWO Vs FOUR ENGINE MECHANICAL-FLAP STOL AIRCRAFT CONFIGURATION STUDY
 

PERFORMANCE SUMMARY 

150 Passengers, 3000-ft (914 m) Field Length 

PD287-6 Engines, Wall Acoustic Treatment 

2-Engine 4-Engine 
Configuration Configuration 

Design TOGW lb 173,550 172,900 
(kg) (78,720) (78,430) 

Wing Area ft2 
(m2) 

2,878 
(267) 

2,867 
(266) 

Thrust/Engine lb 33,060 15,130 
(N) (147,100) (67,300) 

Wing Loading lb/ft2 60.3 60.3 

(kg/m 2) (294) (294) 

Thrust-to-Weight Ratio 0.381 0.350 

OEW lb 125,260 125,110 
(kg) (56,820) (56,750) 

Wing Aspect Ratio 8.7 8.7 

Cruise Mach Number 0.66 0.64 

Cruise Altitude ft 28,000 26,000 
(m) (8,500) (7,900) 

DOC @ 575 st. mi. ¢/ASSM 2.21 2.39 
(926 kin) (t/ASKM) (1.37) (1.48) 

Block Fuel @ 575 st. mi. lb 13,390 13,030 
(926 km) (kg) (6070) (5910) 
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TABLE 3-2 
EFFECT OF ENGINE COST ON TRADE STUDY RESULTS 

DOC @ 575 Statute Miles (926 kin) in ¢/ASSM (¢/ASKM)
 

2 Engine 	 4 Engine
 

Configuration Confi guration
 

1. 	Initial cost curve (base case) 2.21 2.39
 
(1.37) 	 (1.48)
 

2.24 	 2.37
2. 	DAC revised cost curve 
(1.39) 	 (1.47)
 

3. 	Assume production run for 2
engine configuration engines is
 
half that for 4-engine configura

2.37
tion engines (1.35 x costs 	 2.34 


from 2). 	 (1.45) (1.47)
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3.2 Externally-Blown-Flap Aircraft Wing Geometry Sensitivity
 

A study was completed to determine the sensitivity of a 150-passenger,
 

3000-foot (914 m) field length externally-blown-flap STOL aircraft to indepen

dent variations in wing geometry; i.e., aspect ratios, average wing thickness
 

ratios and wing sweeps. The purpose of the study was to evaluate the
 

sensitivity of wing geometry on aircraft sizing rather than to determine the
 

optimum geometry for this specific aircraft. The sizing calculations were
 

performed in a manner consistent with the methods described in Reference 1,
 

Appendix B of Volume II. The sized aircraft presented below are all at wing
 

loading and thrust-to-weight ratio combinations for balanced takeoff and
 

landing field length. The E-150-3000 Final Design Aircraft with 1.25 FPR
 

engines, as described in Volume II of Reference 1, was used as the basepoint
 

for the study.
 

3.2.1 Aspect Ratio Study - The choice of wing aspect ratio is based on a
 

tradeoff between increased aerodynamic efficiency and increased wing structural
 

weight associated with an increase in aspect ratio. The influence of aspect
 

ratio on the sizing of a 150-passenger, 3000-foot (914 m) field length exter

nally-blown-flap STOL aircraft was examined in the NASA STOL Short-Haul System
 

Study (Reference 1) and is summarized below.
 

High-lift aerodynamic data for aspect ratios of 7, 8 and 9 were
 

used in determining wing loading and thrust-to-weight ratio combinations
 

that would result in a 3000-foot (914 m) field length capability. These wing
 

loading and thrust-to-weight combinations, in conjunction with parametric
 

weight and drag data for each aspect ratio, were used for aircraft sizing.
 

The primary effect of increasing aspect ratio on aircraft drag is to decrease
 

induced drag.
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The resulting aircraft for the three aspect ratios are summarized
 

inTable 3-3. Figure 3-5 graphically depicts the influence of aspect ratio
 

on aircraft sizing. The figure shows minimum direct operating cost occurs at
 

an aspect ratio of 8. However, the variation of direct operating cost with
 

aspect ratio isvery small, being less than 0.5 percent for a variation in
 

aspect ratio from 7 to 9.
 

3.2.2 Wing Thickness Ratio Study - The effects on aircraft sizing of in

creasing wing thickness ratio are primarily due to decreasing wing structural
 

weight and increasing parasite and compressibility drag. Induced drag and
 

low speed aerodynamic efficiency are not significantly affected by varying
 

wing thickness ratio. Accordingly, the same wing loading and thrust-to-weight
 

ratio combinations, for a 3000-foot (914 m) field length capability were used
 

insizing aircraft with average wing thickness ratios of .10, .1375 and .16.
 

Separate parametric weight data and parasite and compressibility drag estimates
 

were used for sizing the aircraft with each of the three average wing thickness
 

ratios. These aircraft are summarized in Table 3-4. The effect of varying
 

average wing thickness ratio is shown in Figure 3-6. The figure shows minimum
 

direct operating cost occurred at an average wing thickness ratio of .15.
 

However, variation of average wing thickness ratio over the range examined
 

resulted in a maximum change indirect operating cost on the order of one
 

percent.
 

3.2.3 Wing Sweep Study - Increasing wing sweep affects aircraft sizing by
 

decreasing parasite and compressibility drag, increasing induced drag, degrad

ing low-speed aerodynamic efficiency and increasing wing structural weight.
 

Effects on aircraft sizing due to wing sweep variation were determined by
 

sizing aircraft for wing sweeps of 5.6, 15 and 25 degrees (0.10, 0.26, and
 

0.44 rad). High-lift data for each wing sweep were used to determine wing
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Aspect Ratio 


Passengers 


Design Field Length 


Engine 


TOGW 

Wing Area 

Thrust/Engine 

W/S 


T/W 


OEW 


Cruise Mach Number 


Cruise Altitude 


D.O.C. @ 575 st mi 
(926 kin) 

Table 3-3 

ASPECT RATIO STUDY AIRCRAFT 

Externally-Blown-Flap Configuration 

= .3,t/Cavg .1375, A = 250 (.44 rad) 

7 8 

150 150 

ft (m) 3,000 (914) 3,000 

PD287-3 PD287-3 

lb (kg) 149,900 (68,000) 149,000 

ft2 (m2) 1,521 (141.3) 1,461 

lb (N) 18,860 (83,890 18,260 

lb/ft2 (kg/m2) 98.5 (481) 102.0 


0.504 0.490 


lb (kg) 102,920 (46,680) 102,610 


0.70 0.69 


ft (m) 26,000 (7,925) 26,000 


¢/ASSM (¢/ASKM) 2.085 (1.295) 2.076 


(914) 


(67,600) 


(135.7) 


(81,220) 


(498) 


(46,540) 


(7,925) 


(1.290) 
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150
 

3,000 (914)
 

PD287-3
 

149,400 (67,800)
 

1,448 (134.5)
 

17,820 (79,270)
 

103.2 (504)
 

0.477
 

103,390 (46,900)
 

0.69
 

26,000 	 (7,925)
 

2,081 (1.293)
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TABLE 3-4
 

WING THICKNESS RATIO STUDY AIRCRAFT
 

EXTERNALLY-BLOWN-FLAP CONFIGURATION
 

X= .3, AR = 8, A= 250 (.44 rad) 

Average Wing Thickness Ratio .10 .1375 

Passengers 150 150 

Design Field Length ft (m) 3000 (914) 3000 (914) 

Engine PD287-3 PD287-3 

TOGW lb (kg) 152,300 (69,100) 149,000 (67,600) 


Wing Area ft2 (m2) 1493 (138.7) 1461 (135.7) 


Thrust/Engine lb (N) 18,660 (83,000) 18,260 (81,220) 


W/S lb/ft2 (kg/m 2) 102.0 (498) 102.0 (498) 


T/W 0.490 0.490 


OEW lb (kg) 105,710 (47,950) 102,610 (46,540) 


Cruise Mach Number l 0.70 0.69 


Cruise Altitude ft (m) 26,000 (7925) 26,000 (7925) 


D.O.C. @ 575 st. mi. t/ASSM 2.099 (1.304) 2.076 (1.290)

(926 Ion) (t/ASKM) 

.16
 

150
 

3000 (914)
 

PD287-3
 

148,100 (67,200)
 

1452 (134.9)
 

18,140 (80,690)
 

102.0 (498)
 

0.490
 

101,630 (46,100)
 

0.69
 

26,000 (7925)
 

2.074 (1.289)
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loading and thrust-to-weight ratio combinations for 3000-foot (914 m) field
 

length capability. The wing loading and thrust-to-weight ratio combinations
 

for balanced takeoff and landing field length capability along with parametric
 

weight data and high-speed drag estimates for each wing sweep were used in
 

sizing the aircraft.
 

The resultant aircraft are summarized in Table 3-5. Figure 3-7
 

shows the effect of varying wing sweep on the aircraft sizing. The variation
 

of direct operating cost with wing sweep is shown to be less than one percent
 

for a variation of wing sweep from 5.60 to 250 (0.10 to 0.44 rad). The lowest
 

DOC was obtained with the lowest wing sweep since the high thrust lapse of
 

the 1.25 FPR engines prohibit high cruise speeds.
 

It should be noted that the 5.60 (0.10 rad) sweep results in a
 

straight rear wing spar and a flap hinge line perpendicular to the fuselage
 

and consequently simple flap hinge fittings. Reduction of wing sweep below
 

5.60 (0.10 rad) would not be expected to produce further economic benefits.
 

3.2.4 Conclusions - Direct operating cost (DOC) is not particularly sensitive
 

to aspect ratio, wing thickness ratio or wing sweep for the E-150-3000 aircraft
 

with 1.25 FPR engines. This conclusion is valid when the aircraft is sized
 

by the design field length requirement rather than for a specific cruise speed
 

capability. Sizing for a given cruise Mach Number would cause DOC to be more
 

sensitive to wing geometry.
 

An aspect ratio of 8, wing thickness ratio of 0.15 and a wing sweep
 

of 5.60 (0.10 rad) appear to be near optimum wing geometry for this specific
 

aircraft based on minimizing DOC at the design range. The resulting reduction
 

in DOC compared to the final design E-150-3000 aircraft from the NASA STOL
 

Short-Haul System Study would only be about one percent.
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TABLE 3-5 

WING SWEEP STUDY 

EXTERNALLY-BLOWN-FLAP CONFIGURATION 

X= .3,AR = 8, t/c = .1375 

Wing Sweep deg (rad) 5.6 (.10) 15 (.26) 25 (.44) 

Passengers 150 150 150 

Design Field Length ft (m) 3000 (914) 3000 (914) 3000 (914) 

Engine PD287-3 PD287-3 PD287-3 

TOGW lb (kg) 144,300 (65,400) 146,000 (66,200) 149,000 (67,600) 

Wing Area ft2 (m2) 1,374 (127.6) 1,391 (129.2) 1,461 (135.7) 

Thrust/Engine lb (N) 16,950 (75,400) 17,600 (78,290) 18,260 (81,220) 

W/S lb/ft2 (kg/m 2) 105.0 (513) 105.0 (513) 102.0 (498) 

T/W 0.470 0.482 0.490 

DEW lb (kg) 98,330 (44,600) 99,780 (45,260) 102,610 (46,540) 

Cruise Mach Number 0.67 0.68 0.69 

Cruise Altitude ft (m) 25,000 ( 7,620) 25,000 ( 7,620) 26,000 ( 7,925) 

D.O.C. @ 575 st. mi. 
(926 km) 

¢/ASSM 
(¢/ASKM) 2.057 (1.278) 2.061 (1.281) 2.076 (1.290) 
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3.3 Externally-Blown-Flap Aircraft with Oversized Engines
 

A trade study was conducted to determine if increasing the engine
 

thrust size over that required to meet takeoff and landing field length
 

requirements would reduce community noise impact for a short-haul aircraft.
 

Increasing engine size tends to increase sideline and approach noise but the
 

increased climb gradient associated with higher aircraft thrust-to-weight
 

ratio may result in a significant reduction in takeoff noise impact.
 

The E-150-3000 final design aircraft from the NASA Short-Haul
 

System Study (Reference 1) was chosen as a basepoint. This aircraft was
 

sized on the basis of minimum DOC which occurs at the intersection of the
 

landing and takeoff critical lines, i.e., takeoff field length = landing
 

field length = 3000 feet (914 m), as illustrated in Figure 3-8. Two addi

tional aircraft were sized having approximately 5 and 10 percent higher
 

thrust engines than the base aircraft. To minimize DOC penalties, design
 

points for these two additional aircraft were selected on the landing critical
 

line, i.e., increasing wing loading as engine thrust size is increased to
 

maintain a 3000-foot (914 m) landing field length. As can be seen in Table
 

3-6, there is essentially no increase in DOC associated with the use of
 

larger engines. The increase in cruise Mach number and hence block speed
 

compensates for the aircraft weight increase in determining DOC.
 

In the area of noise reduction, there is an additional benefit
 

associated with the use of oversized engines. Since the aircraft with
 

oversized engines are not takeoff critical, a takeoff flap setting lower than
 

that required for minimum field length may be selected. The lower flap angle
 

will result in increased initial climb gradient and, for an EBF aircraft, a
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Table 3-6
 

EBF WITH OVERSIZED ENGINES
 

PD287-3 Engines (1.25 FPR)
 

5% 10%
 

OVERSIZED OVERSIZED
 

150 150
 

3,000 3,000
 
(914) (914)
 

150,100 151,200
 
(68,100) 	 (68,600)
 

1,430 1,400
 

(132.8) (130.1)
 

19,160 20,040
 
(85,230) (89,140)
 

105 108
 

(513) (527)
 

0.510 0.530
 

103,290 103,900
 
(46,850) (47,130)
 

8.0 8.0
 

0.71 0.71
 

11,840 12,200
 
(5,370) (5,530)
 

2.077 2.082
 
(1.290) (1.293)
 

96.9 96.9
 

Payload 


Field Length 


Takeoff Gross Weight 


Wing Area 


Thrust Per Engine 


W/S 


T/W 


OEW 


Aspect Ratio 

Mcr @ 26,000 Ft (7925 m) 

Block Fuel @ 575 St Mi 
(926 km) 

DOC @575 St Mi 
(926 kin) 

EPNL at 500 Ft 
(152 m) Sideline 

Passengers 


Ft 

(m) 


Lb 

(kg) 


Sq Ft 


(m ) 


Lb 

(N) 


Lb/Sq Ft 


(kg/m 2) 


Lb 

(kg) 


Lb 

(kg) 


¢/ASSM 

(t/ASKM) 


EPNdB 


BASE 


AIRCRAFT 


150 


3,000 

(914) 


149,000 

(67,600) 


1,461 


(135.7) 


18,260 

(81,220) 


102 


(498) 


0.490 


102,610 

(46,540) 


8.0 


0.69 


11,530 

(5,230) 


2.075 

(1.289) 


97.1 


reduction inflap interaction noise. The reduction inflap interaction noise
 

results in lower sideline noise levels than the base aircraft even though
 

total thrust is larger. For the 10 percent oversized aircraft, the allowable
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reduction in takeoff flap angle isjust over 6 degrees (0.1 rad) which produces
 

a decrease insideline noise of 0.2 EPNdB. Figure 3-9 shows the effect of
 

engine oversizing on noise impact based on a uniform population distribution.
 

The reduction innoise impact is due primarily to the shorter takeoff noise
 

contours which result from the increase inthrust-to-weight ratio. Itappears
 

that oversizing the engines by more than 10 percent for this specific con

figuration will not produce further noise reductions.
 

A penalty associated with the use of larger engines, other than
 

higher aircraft weights and initial cost, isan increase in fuel consumption.
 

A 10 percent increase in engine size isaccompanied by a 6 percent increase
 

in block fuel at the design range of 575 statute miles (926 m) as illustrated
 

in Figure 3-10.
 

Insummary, an increase inengine size for the E-150-3000 aircraft
 

can be achieved without any significant DOC penalty although at the expense
 

of increased fuel usage. The effect of engine oversizing on aircraft noise
 

and community impact are further discussed in Section 5.4.4 and 5.6.5.
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EFFECT OF ENGINE OVERSIZING ON NOISE IMPACT
 
STANDARD PROCEDURE 
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FIGURE 3-9. EFFECT OF ENGINE OVERSIZING ON NOISE IMPACT 
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FIGURE 3-10. 	 EFFECT ON FUEL CONSUMPTION OF OVERSIZING 
EXTERNALLY BLOWN FLAP AIRCRAFT ENGINES 

30 



4.0 PROPULSION SYSTEM & ACOUSTIC TRADE STUDY
 

4.1 Objectives
 

A trade study was conducted to determine the effect of engine cycle
 

characteristics and degree of acoustic treatment on aircraft sizing, economics
 

and noise level for 150-passenger, 3000-foot (914 m) and 4000-foot (1219 m)
 

field length mechanical-flap aircraft.
 

4.2 Engine Definition and Performance
 

4.2.1 Engine Cycles - Three engine cycles were selected for the study. Fan
 

pressure ratio was the primary independent variable since noise, thrust
 

lapse, and cruise performance are strongly dependent on this parameter.
 

Maximum turbine inlet temperatures were the same for all engines to maintain
 

the same technology level, and component efficiencies were comparable to
 

those of the QCSEE engines of Reference 1 for consistency in the two studies.
 

(See Section 4.2.2.) Bypass ratio was established at a value which resulted
 

in a primary jet exhaust velocityat takeoff sufficiently low that the primary
 

jet is not the dominant noise source.
 

The fan pressure ratio range studied was 1.32 to 1.57. The value
 

of 1.32 was selected because it was upper limit at which engine companies
 

had previously indicated variable-pitch fans could be operated in the reverse

thrust mode. The ability to obtain reverse-thrust by use of reverse pitch
 

has advantages in weight, cost, and maintenance over cascade or other nacelle

mounted thrust reversers. Engines with lower fan pressure ratios were not
 

considered because they have less cruise thrust and larger diameters, which,
 

particularly with a two-engine aircraft, can cause installation and ground
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handling problems.
 

The highest takeoff fan pressure ratio engine used in the study
 

was 1.57. This level is typical of current technology fans which have noise
 

levels of the order of (FAR 36) - 10 dB. Also, an engine with this fan
 

pressure ratio and near optimum bypass ratio of 5.9 was available and had
 

been used in a similar trade study on an EBF aircraft inReference 1. A
 

1.45 fan pressure ratio was selected for an intermediate value.
 

Variable-area fan nozzles were used with the 1.32 and 1.45 FPR
 

engines to maximize available cruise thrust (Section 4.2.2.3).
 

Studies were conducted to determine bypass ratios for the 1.32 and
 

1.45 FPR engines. The Allison PD287-6 engine (Reference 3) has a FPR of 1.32
 

but a bypass ratio restrained by a requirement for a primary velocity of
 

700 ft/sec (213 m/sec). This cycle was designed for 95 PNdB noise level for
 

a propulsive-lift installation, where noise ismore sensitive to exhaust
 

velocity than it is with an installation such as that on the MF aircraft,
 

where the engine exhaust does not impinge on the flap. Using a lower bypass
 

ratio with a higher primary exhaust velocity for the 1.32 FPR fan increases
 

the cruise thrust and the specific thrust at takeoff, and makes the engine
 

less sensitive to losses.
 

Figure 4-1 shows the increase in specific thrust and primary exhaust
 

velocity at takeoff power as bypass ratio isdecreased, for an engine with a
 

fan pressure ratio of 1.32. The noise penalty associated with the primary
 

velocity isshown in Figure 4-2 as a function of bypass ratio, with relative
 

values of thrust and specific fuel consumption. Both the primary jet noise
 

and the core noise are functions of the primary exhaust velocity inthe
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SPECIFIC THRUST AND PRIMARY VELOCITY AT TAKEOFF
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EFFECT OF BYPASS RATIO WITH 1.32 FPR FAN
 

1.10 
,--TAKEOFF SPECIFIC THRUST 

RELATIVE 1.05 -_I-/_I CRUISE THRUST 
VALUE 

0.95,, 
PERFORMANCE 

CRUISE SF-C 

ON FAN DISCHARGE 
RELATIVE (HARDWALL)I 

NOISE 10 2 
, PNdB'n LEVL, I Ii I I _ "'II --TOTAL EXAUST -

500 FT - "FAN JET 
SIDELINE ' CR 

RELATIVE NOISE -- MECH FLAP PRIMARYJE 

11 11.5 12 12.5 13 13.5 14 14.5 15 
BYPASS RATIO PR3-SToL-2o5216 

FIGURE 4-2
 



noise estimation methods used in this study. (See Appendix C.l). The
 

results shown in Figure 4-2 led to the selection of a value of 12.8 as a
 

bypass ratio for the engine with a fan pressure ratio of 1.32. At this point
 

the cruise SFC was at a minimum value. At lower bypass ratios, higher takeoff
 

specific thrust (which results in better engine thrust/weight) and more cruise
 

thrust are available, but the primary velocity increases to a range where the
 

primary jet and core noise would be significant factors in the total noise
 

level of an engine with acoustical treatment.
 

The gains in engine performance by going to a bypass ratio of 12.8
 

from the value of 13.8 are shown in Figures 4-3 and 4-4 and summarized in
 

Table 4-1.
 

Table 4-1 

ENGINE PERFORMANCE CHANGE 

12.8 BPR VS 13.8 BPR 

Change Due to 
Lower BPR 

Fan Diameter - 2.0% 

Engine Thrust/Weight + 2.3% 

Climb Thrust (20,000 ft; 0.6 Mo) + 3.0% 

Max. Cruise Thrust (30,000 ft; 0.7 Mo) + 4.5% 

Min. SFC @ Cruise - 1.4% 

A study of the effect of bypass ratio on an engine cycle having a
 

fan pressure ratio of 1.45 was conducted in a similar manner. The results
 

are shown in Figure 4-5. A bypass ratio of 9.2 was selected for the 1.45 FPR
 

engine to be used in the acoustic trade study. Table 4-2 summarizes pertinent
 

characteristics of the engines considered in the trade study.
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EFFECT OF BYPASS RATIO ON MAX CLIMB THRUST
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EFFECT OF BYPASS RATIO WITH 1.45 FPR FAN 
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Table 4-2
 

SUMMARY OF CHARACTERISTICS OF ENGINES
 

IN ACOUSTIC TRADE-STUDY
 

Designation 


FPR 


Bypass Ratio 

Overall Pressure Ratio 


Fan Tip Speed 


Specific Thrust, Fn/w
a2 


Thrust Weight 


Above values at SLS, Std. Day
 

Cruise Thrust 

Takeoff Thrust
 

Cruise SFC* 


Fan Configuration 


Nozzle Configuration 


* @ 30,000 ft., Mo = 0.7 

12.8/1.32 


1.32 


12.8 

20.0 


925 ft/sec 

(282 m/sec) 


22.9 

(224 N/kg/sec) 


6.69 lbs/lb 


0.20 


0.59 


Variable-

Pitch 


Variable-

Area Fan 

Nozzle 
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9.2/1.45 5.9/1.57
 

1.45 1.57
 

9.2 5.9 

21.8 22.7
 

1250 ft/sec 1550 ft/sec
 
(381 m/sec) (472 m/sec)
 

26.5 30.4
 
(260 N/kg/sec) (298 N/kg/sec)
 

6.74 lbs/lb 6.92 lbs/lb
 

0.22 0.26
 

0.61 0.60
 

Fixed- Fixed-

Pitch Pitch
 

Variable- Fixed-

Area Fan Area
 
Nozzle Nozzles
 

http:5.9/1.57
http:9.2/1.45
http:12.8/1.32


The cycle performance for the above studies was generated using
 

the component efficiencies and temperatures discussed in Section 4.2.2, with
 

a thermodynamic cycle analysis program (SPEC) which calculates both design

point and off-design performance (Reference 4).
 

4.2.2 Component Technology Levels - The technology level of the engine cycles
 

used in this study was consistent with the engines used in the Reference
 

I study. Component efficiencies and maximum temperatures used in estimating
 

engine performance were values which resulted in duplication of the perfor

mance of the Allison PD287-6 reference engine (Reference 3).
 

4.2.2.1 	 Fan Performance - The performance map for the 1.32 pressure ratio
 

This map is for the design blade
variable-pitch fan is shown in Figure 4-6. 


angle. The design point fan efficiency, 'fan' is 0.90. The fan performance
 

for the 1.45 FPR engine was generalized from Figure 4-6, using an efficiency
 

of 0.88 at the design point. Figure 4-7 shows design point fan efficiency as
 

a function of design point pressure ratio, for various existing and proposed
 

fans, including the study engines.
 

4.2.2.2 Other Engine Components - High pressure compressor, combustor, and
 

turbine parameters are listed in Table 4-3. Also shown are the turbine inlet
 

temperatures used to define the operating levels for takeoff, maximum climb,
 

and maximum cruise thrust settings.
 

4.2.2.3 Nozzle Performance - The fan and primary nozzle characteristics were
 

from Reference 3. The velocity coefficients are shown in Figures 4-8 and 4-9,
 

and the nozzle discharge coefficients in Figures 4-10 and 4-11. The fan
 

nozzle area schedule for the 1.32 FPR engine, Figure 4-12, is that of the
 

PD287-6. Figure 4-12 also shows the operating curve assumed for the 1.45 FPR
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engine. The effect of fan nozzle area on cruise performance was investigated
 

for a 1.45 FPR engine with the result shown in Figure 4-13. The degree of
 

variation with Mach -number illustrated in Figure 4-12 was made consistent with
 

that of the 1.32 FPR engine, with the level of the Mach .75 value set at that
 

for maximum thrust from Figure 4-13.
 

Table 4-3
 

DESIGN POINT COMPONENT EFFICIENCIES
 

Percentage 

H.P. Compressor Efficiency 83.6 

Combustion Efficiency 99.5 

Burner Pressure Loss 5 

H.P. Turbine Efficiency 89.5 

L.P. Turbine Efficiency 90.5 

Turbine Inlet (Burner Out) Temperatures:
 

Takeoff, 900F (33°C) 29600R (16440 K) (max)
 

Takeoff, Std. Day : 28050R (15580K)
 

Max. Climb 2695°R (14970K)
 

Max. Cruise : 2600'R (14440K)
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FAN NOZZLE VELOCITY COEFFICIENT
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PRIMARY NOZZLE VELOCITY COEFFICIENT
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FAN EXHAUST NOZZLE AREA VARIATION
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EFFECT OF FAN NOZZLE AREA AT CRUISE
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4.2.3 Engine Weights and Dimensions - The engine weights were estimated
 

assuming the same technology level previously used in Reference 1 . The
 

results for the three engines are shown in Table 4-4
 

For the EBF airplane, the engine weight was that used for the EBF
 

airplane in Reference 1
 

4.2.3.1 Component Weights - Engine component weights were compiled from
 

-References 6 through 8 , and parameterized. Fan blade containment is
 

presently required for commercial engines and is expected to be required for
 

these study aircraft. Weight for fan blade containment was estimated for
 

each engine, based on the method described in Section 4.2.3.2. Figures
 

4-14 through 4-18 show the weight correlations used for the fan, high
 

pressure compressor, combustor, high and low-pressure turbines, and engine
 

systems.
 

Fan weight was estimated as a function of fan pressure ratio and
 

inlet airflow as shown in Figure 4-14. The high pressure compressor weight
 

correlation used is on Figure 4-15 as a function of compression ratio for a
 

fixed value of the core air flow corrected to the conditions at the compressor
 

exit. For other airflows, the weight from the figure was scaled by the
 

airflow ratio to the 1.16 power, or
 

H.P. Compressor Weights = (Ref. Weight) (WaHP ef. Irflow/
 
6HP Ref. Airflow,
 

Figure 4-15 gives combustor weights as a function of the same
 

corrected airflow, the core flow corrected to the compressor outlet or
 

combustor inlet conditions. The high pressure turbine weight in Figure 4-16
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TABLE 4-4
 

ENGINE WEIGHT SUMMARY
 

Engine 12.8/1.32 9.2/1.45 5.9/1.57
 
Thrust 35,000 lbs 35,000 lbs 30,000 lbs
 

(155,700 N) (155,700 N) (133,400 N)
 
lbs (kg) lbs (kg) lbs (kg)
 

Fan Wt. 2,095 (950) 1,920 (871) 1,630 (739)
 

HP Compr 525 (238) 525 (238) 575 (261)
 

Combustor 160 (73) 160 (73) 165 (75)
 

HP Turb 400 (181) 400 (181) 435 (197)
 

LP Turb 820 (372) 1,025 (465) 950 (431)
 

Gearing 480 (218) 395 (179) 0 (0)
 

Fan Blade Cont. 179 (81) 144 (65) 108 (49)
 

Other 570 (259) 625 (284) 475 (215)
 

Total 5,229 (2372) 5,194 (2356) 4,338 (1968)
 

Thrust/Weight 6.69 6.74 
 6.92
 

http:5.9/1.57
http:9.2/1.45
http:12.8/1.32
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was correlated as a function of the same parameter. Low pressure turbine
 

weight in Figure 4-17 varies as the low pressure turbine power. Engine
 

systems weights (lubrication system, engine fuel pump, controls, etc.) are
 

shown in Figure 4-18 as a function of the low pressure turbine power, as
 

this parameter gave the best correlation. Values are shown for engines with
 

geared and with direct-drive fans.
 

For engines with geared fans, the gear weight was estimated to be:
 

0.048 (Q)0.84
Gear Wt. = 

where the weight is inpounds and the torque, Q, in pound-feet based on the 

fan RPM. This isequivalent to 

.Gear Wt. = 0.01686(Q)
0 84
 

where weight is in kilograms and the torque, Q, is in newton-meters.
 

For comparison, the weights of the engines with a fan pressure ratio
 

of 1.57 and 1.32 used in the acoustic trade study of Reference 1 were calcu

lated by the above method. The results are given in Table 4-5 and show
 

agreements within a few percent.
 

4.2.3.2 Fan-blade Containment - A study was conducted to estimate the fan

blade containment requirements for the three engines of the acoustic trade
 

study.
 

A,correlation was established between the fan blade kinetic energy
 

and the effective thickness of the structure required to contain a single 

blade failure. The available data were plotted, Figure 4-19 , and an 

equation formulated to define the boundary between the contained and the 
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Table 4-5
 

COMPARISON OF ESTIMATED WEIGHTS WITH 

ENGINE WEIGHTS FROM REFERENCE I 

Fan Pressure 1.57 1.32
 

Bypass Ratio 5.9 13.8
 

Thrust 16,000 lb (71,200 N) 16,000 lb (71,200 N)
 

Weights: Lbs Kg Lbs Kg
 

Fan 760 (345) 990 (449)
 

H. P. Compressor 280 (127) 205 ( 93)
 

Combustor 93 (42) 70 ( 32)
 

H. P. Turbine 213 (97) 152 ( 69)
 

L. P. Turbine 460 (210) 360 (163)
 

Gearing 0 (0 ) 188 (85)
 

Other 335 (152) 380 (172)
 

Total 2,140 '(972) 2,345 (1,064)
 

Weight from Ref. 1 2,115 (960) 2,359 (1,070)
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uncontained points. The equation is:
 

t0.16 
 = 0.0466(KE)0 1
 

where t is the effective thickness of stainless steel ininches and KE is
 

the fan-blade kinetic energy infoot-pounds, or,
 

t = 0.1127 
(KE)0 1
 

where t is in centimeters and KE is injoules.
 

For each engine, an estimate was made of the fan-blade kinetic
 

energy. For the 1.32 and 1.45 fan pressure ratio engines, spar-shell con

struction of the fan blade was assumed. The fan blade weights were based on
 

Allison and Hamilton Standard estimates of the weight exclusive of the spar,
 

plus Douglas estimates of the spar weight. (Because of the low exponent on
 

the kinetic energy term, containing the spar does not add appreciably to
 

the containment penalty. For example, for a 20,000 pound (89,000 N) 1.32 fan
 

pressure ratio engine, containing the spar adds 12 pounds (5.5 kg) to the
 

engine weight over the weight which contains only the fan blade without the
 

spar.) The effective thickness of stainless steel for containment was
 

calculated using the above equation. The actual thickness of the fan case
 

designs used to obtain the engine weights was estimated. The containment
 

ring length was assumed to extend a distance equal to half the blade width
 

plus 0.26 times the blade length, with a minimum value of the blade width
 

plus 1-1/2 inches (3.8 cm). Table 4-6 shows the containment calculations.
 

4.2.3.3 Engine Dimensions - Overall engine dimensions for the installation
 

drawings were determined by using the general dimension relationships of the
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Table 4-6
 

FAN BLADE CONTAINMENT PENALTY SUMMARY
 

FAN BLADE FAN BLADE REQ'D. CASE FWD. FAN FWD. FAN FAN BLADE 
TANGENTIAL KINETIC EFF. THICKNESS CASE SECTION CASE SECTION CONTAINMENT 
VELOCITY ENERGY FOR CONTAINM'T WEIGHT W/O WEIGHT WITH WEIGHT 

ENGINE THRUST AT BLADE C.G. LEVEL (STAIN. STEEL) CONTAINMENT CONTAINMENT PENALTY 

Lbs ft/sec ft-lbs in lbs lbs lbs 
(Newtons) (m/sec) (joules) (cm) (kg) (kg) (kq) 

12.8/1.32/20 20,000 595 17,370 .222 40 137 97 
(89,000) (181) (23,550) (.564) (18.1) (62.1) (44.0) 

12.8/1.32/35 35,000 595 30,895 .244 72 251 179 
(156,000) (181) (41,890) (.620) (32.7) (113.9) (81.2) 

9.2/1.45/20 20,000 807 22,650 .232 32 106 74 
(89,000) (246) (30,710) (.589) (14.5) (48.1) (33.6) 

9.2/1.45/35 35,000 807 39,840 .254 55 199 144 
(156,000) (246) (54,020) (.645) (24.9) (90.2) (65.3) 

5.9/1.57/20 20,000 1127 42,400 .256 40 112 72 
(89,000) (344) (57,490) (.650) (18.1) (50.8) (32.7) 

5.9/1.57/30 30,000 1127 51,870 .265 57 165 108 
(133,000) (344) (70,330) (.673) (25.8) (74.8) / (49.0) 



QCSEE Task I and IIengines and other study engines of the same technology
 

level.
 

The fan frontal area, Af, was based on the SLS takeoff airflow Wao:
 

2
Wao 

Af = 3T where Af is in ft
 

and Wao is in lbs/sec
 

or
 
2
cm
= 64 Wa where Af is in
Af 


0
 

and Wao is in kg/sec
 

The fan tip diameter, Df, is:
 
-4 Af~ 

Df -

The maximum diameter (including flanges) of each engine was assumed to be
 

3-1/2 inches greater than the fixed-pitch fan diameter and 6 inches greater
 

for the variable-pitch fan.
 

The fan case length for the fixed-pitch fan was calculated from the relation

ship
 
33
 

Lfan case = 3.1 (Wao)0. 

1 

where L is in inches and Wao is in ibs/sec, or 

Lfan case = 10.22 (Wad)0.33 

if L is in cm. and Wao is in kg/sec.
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For the variable-pitch fan, the case length was given by 

L = 0.58 
Df
 

The engine length beyond the fan case was expressed as a function of the
 

corrected core flow. For a non-geared engine, the primary length was found
 

from
 

_ 0
Lpri = 34 (a 4 - a3 

where L is in inches and Wa4 is in lbs/sec 

or
 
0.33
/
or Lpr i = 112 (Wa4 4
 

where L is in cm. and Wa4 is inKg/sec. 

For a geared engine: 

Lpri = 37 (- _0.) inBritish units 

or 

03
 

Lo 122 inmetric units
 

The overall engine length is the sum of the fan case and primary lengths.
 

The fan nozzle variable area range is discussed inSection 4.2.2.
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4.2.4 Propulsion Installation for MF Aircraft - Engine installation drawings
 

were made for the three study engine cycles. The nacelles lines were deter

mined on the basis of aerodynamic performance using methods utilized on the DC-9
 

and DC-IO. Both "hard-wall" and treated duct installations were evaluated in
 

the noise level - DOC trade study using the same dimensions for the instal

lations. For the treated installation, acoustical lining was applied to the
 

inlet and exhaust duct walls wherever practical. The 9.2/1.45 and 5.9/1.57
 

engines had longer fan exhaust ducts than required for aerodynamic performance
 

because of the use of thrust reversers, and, therefore, more area for sound
 

treatment.
 

The nacelles were located to attain the best nacelle/wing drag
 

characteristics consistent with avoiding impingement of the hot jet exhaust
 

on the flap surfaces during takeoff and landing.
 

Engine installations for a mechanical-flap aircraft are shown in
 

Figures 4-20 through 4-25. Figure 4-20 is a vertical section view of the
 

nacelle designed for a 35,000 pound (156,000 N) thrust, variable-pitch fan
 

engine with a fan pressure ratio of 1.32 and a bypass ratio of 12.8. (The
 

installation shown iswith acoustic treatment. The untreated case for this
 

engine is identical except the acoustic treatment is deleted.) Figure 4-21
 

shows the nacelle, pylon, and wing relationships for this installation.
 

Figure 4-22 is the acoustically-treated installation of the 9.2/1.45
 

fixed-pitch fan engine at a rated thrust of 35,000 pounds (156,000 N). Figure
 

4-23 shows the installation on the wing. Figure 4-24 and 4-25 are for a 30,000
 

pound (133,000 N) engine with a fixed-pitch fan, a FPR of 1.57, and a bypass
 

ratio of 5.9.
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NACELLE WITH 12.8/1.32 ENGINE
 
VARIABLE PITCH FAN 

35,000 LB (156,000 NI)/ 
THRUST ENGINE 

-ACOUSTIC TREATMENT 

PRIMARY EXHAUST 
NOZZLE=645 SO IN. (0.42M2IAREA54.4 1IN. 

ol(1.38M) 

117.5 IN.
 
(2.98M)
 

-,. ,___. VARIABLE GEOMETRY 
.. -- + FAN EXHAUST NOZZLE 

3CRUISE POSITION 

" ,AREA = 3379 SQ IN. (2.18M2) 
159.5 IN. TAKEOFF POSITION M2 

(4.05M) 244.7 IN. AREA = 3976 SQ IN. (2.56M2 ) 
(6.21 M) 

REVERSE THRUST POSITION 

PRS-STOL-2034A 

FIGURE 4-20. 
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- - - -------

---- -------- 
-

INSTALLATION OF 12.8/1.32 ENGINE NACELLE 
MECHANICAL FLAP AIRCRAFT 

a, '/ 

-' - -' -

I ~I 

VARIABLE-PITCH FAN ENGINE PR4-STOL-2383 

FIGURE 4-21. 
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NACELLE WITH 9.2/1.45 ENGINE
 
FIXED PITCH FAN 

FAN EXHAUST THRUST REVERSER ACOUSTIC TREATMENT 

35,000 LB (156,000 N) THRUST ENGINE 

THRUST SPOILER

1__ 'PRIMARY EXHAUST NOZZLE 
51.7 1IN.
 

(1.31M) 

-Jk 

112 IN. 
(2.84M) 

l , .----- VARIABLE GEOMETRY 
_ FAN EXHAUST NOZZLE 

CRUISE POSITION 

XAREA = 2575 SQ IN. (1.66M2~) 

\-TAKEOFF POSITION 
172.3 IN. AREA = 2792 SQ IN. (1.80M 2 ) 
(4.38M) "_! _ 

266.1 IN. 
(6.76M) PR3-STOL-2033A 

FIGURE 4-22. 
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---------- - - - - -

INSTALLATION OF 9.2/1.45 ENGINE NACELLE 
MECHANICAL FLAP AIRCRAFT 

o 

FIXE--- -PITCH-----NGIN 

ED-PITCH FAN ENGINE PR4-STOL-2382 

FIGURE 4-23. 
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1.0 

NACELLE WITH 5.9/1.57 ENGINE 
FIXED PITCH FAN 

FAN FLOW THRUST REVERSER 

30,000 LB (133,500 N) ACOUSTIC TREATMENTTHRUST ENGINE -

APRIMARY FLOW

/ THRUST SPOILER 

44.8 IN.
 
(1.14M)
 

95.1 N.1.
 2 
(2.42M)(
 

PRIMARY EXHAUST NOZZLE
 
4AREA = 658 S IN.((.42M 2 )
 

~FAN EXHAUST NOZZLE 
: -- AREA = 1797 SO IN. (1.16M2 ) 

139.7 1IN. 

(3.55M1215.6 1N. 
(5.48M) 

P R3-STOL-2035 , 

FIGURE 4-24. 
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-------------

- - -- - - - - -

INSTALLATION OF 5.9/1.57 ENGINE NACELLE
 
MECHANICAL FLAP AIRCRAFT 

' FAN
 
- , , - .. -


FIXED-PITCH FAN ENGINE 
PR4-STOL-2381 

FIGURE 4-25. 
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Performance penalties, which are a function of each nacelle design,
 

were assessed and combined with the engine cycle performance of the 1.32,
 

1.45 	and 1.57 FPR engines. This was accomplished by combining the thermo

dynamic cycle program (SPEC) with a mathematical description of the instal

lation effects listed below:
 

o 	 Inlet and exhaust system total pressure losses, including the
 

applicable losses due to acoustic treatment.
 

o 	 Nacelle freestream drag and scrubbing drag for those external
 

,surfaces that are washed by the engine exhaust flow.
 

The effect on engine thrust and fuel flow for these installation
 

effects isshown in Table 4-7.
 

4.2.4.1 Engine Inlet Geometry - The engine inlet throat area issized to
 

give an average throat Mach number of 0.6 at takeoff power at sea level
 

static conditions. The inlet isconfigured with a leading edge lip thickness
 

that varies from 11 percent at the top to a maximum of 13.7 percent at the
 

bottom. This lip design isbased on test results to give acceptable inlet
 

distortion levels at high angles of attack.
 

4.2.4.2 Engine Inlet Loss - The inlet total pressure loss, shown in
 

Table 4-7, iscalculated as flat-plate skin-friction loss on all surfaces.
 

A friction coefficient, 40 percent higher than that for smooth surfaces, was
 

assumed for all acoustically treated surfaces. The increase in loss at
 

high mass flow ratios (takeoff condition) is due to high local velocities
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Table 4-7 

INSTALLATION LOSSES
 

Engine 
Designation 

Flight 
Condition Alt 

N~ T 
o 

F 
Fo W 

Loss 
SOa5 

Inlet 
Recovery 

Egn 

0 

Air 
Condltionlng 

Diced 

Mechanical 
Por 

Extraction 

PT 
DUCT 

AP 
PRI7 0FAi 

DAS 

DpR1 

FNc 
AF, 

7jj 
A 

5 9/1 57 T 0 0 .117 95-F 
(35-C) 

25,774 lb 
(114 648 N) 

10,818 lb/hr 
(1.363 kg/a) 

Anount 

AF1/F N 

996 

007 

1.27 lb/sec 
(.576 kgds) 

011 

75 liP 

(56 kW) 

- 001 

0041 

003 

007 

002 

30 lb 
(133 U0) 

001 

455 lb 
(2024 11) 

018 

36 lb 
(160 N) 

001 

24,692 lb 
(109,835 11) 

042 

10,730 lb/hr 
(1.355 kg/s) 

af/i f 002 004 002 0 0 0 0 0 0 0 0 0 0 008 

Cruise 30,000 ft 
(9144n) 

7 Std 7,832 lb 4,758 lb/hr 
(34,840 01) ( 599 kg/s) 

Asount 

AFo/F0 

997 

007 

1 27 lb/sec 

( 576 kg/}) 

03 

55 liP 

(41 kl) 

-.008 

0041 

005 

007 

003 

316 lb 
(1405 1) 

041 

270 lb 

(1201N) 

.035 

24 lb 
(107 M) 

003 

6,924 lb 
(30,799 1) 

116 

4,783 lb/hr 

( 603 kg/s) 

AWf/Ouf 003 004 - 013 a 0 0 0 0 0 0 0 0 0 -005 

9 2/1.45 T 0. 0 117 95-F 
(35-C) 

29,822 lb 10,996 lb/hr 
(132,654 11) (1 385 kg/s) 

Amount 

6Fo/FU 

996 

010 

2 05 lb/sec 
( 93 kg/s ) 

014 

75 HP 
(56 k) 

002 

0054 

007 

013 

003 

39 lb 
(173 N) 

001 

549 lb 
(2442H) 

.019 

20 lb 
(89 01) 

001 

28,122 lb 
(125,093 U) 

.057 

10,845 lb/hr 
(1 366 kg/a) 

N Wf/hf 004 007 003 0 0 0 0 0 0 0 0 00 .014 

Cruise 30,000ft 

(9144m) 

7 Std 7,790lb 

(34.653 R) 

4,640 lb/hr 

( 585 kg/s) 

Aasount 

AFN/N 

997 

010 

2 05 lb/sec 

( 93 kg/) 

042 

55 lIP 

(41 kW) 

002 

.0054 

009 

013 

005 

419lb 

(1864 N) 

.058 

342 lb 

(1521 II) 

.047 

12 lb 

(53 N) 

.002 

6,427 lb 

(28,589 H) 

175 

4,513lb/hr 

(.569 kg/a) 

Awf/b/f 004 022 001 0 0 0 0 0 0 0 0 0 0 027 

12 8/1.32 T 0. 0 117 95°F 
(35M) 

29,358 lb 
(130.591 N) 

9,890 lb/hr 
(1 246 kg/s ) 

Anunt .996 

.FF/FH.010 

2 05 lb/sec 
( 93 kg/s) 

014 

76 HP 
(56 kW) 

09 

.0032 

00 

.010 

003 

41 lb 
(182 01) 

.001 

375 lb 
(1658N) 

013 

24 lb 
(107 N) 

001 

27,032 lb 
(123,02 N) 

052 

9,739 lb/hr 
(1 227 kq/s) 

agf/Wf 003 008 004 0 0 0 0 0.0 0.0 0 0 015 

Cruise 30,000 ft 
(9144m) 

7 Std 7,122 lb 
(31.680 91) 

4,133 lb/hr 
(.521 kg/s) 

Amount 

AFN/F11  

997 

011 

2 05 lb/sec 
( 93 kg/s) 

048 

65 HP 
(41 kW) 

004 

0032 

007 

.010 

.004 

439 lb 
(1953 N) 

062 

275 lb 
(1223 H) 

039 

14 lb 
(62 N) 

002 

5.862 lb 
(26,075 N) 

177 

3,999 lb/hr 
( 504 kg/s) 

awf/wf 003 027 002 0 0 0 0 0.0 0.0 00 032 

NOTES (1) Uninstalled thrust (Fn) contains the effect of nozzle velocity coefficients (Cv) and nozzle discharge coefficients (Cd). shown in Section 4 2 2 



near the inlet leading edge at static conditions and low forward speeds.
 

The method used to estimate the inlet pressure loss has been correlated with
 

test data obtained from wind tunnel and full-scale boundary layer surveys
 

on the inlets of DC-8, DC-9 and DC-l0 aircraft.
 

4.2.4.3 Nacelle External Shape - The maximum nacelle radii are sized
 

to provide engine fan case clearance and to the accommodation of a fan
 

exhaust duct which has been designed for a duct Mach number of 0.45. The
 

nacelle/fan case clearance includes a volume allocation for the engine
 

accessories and engine-mounted airframe system components such as C.S.D.
 

generators, hydraulic pumps and pneumatic system controls and ducting. Size
 

estimates of these components were based upon past experience with airplane
 

requirements on the DC-8, DC-9 and DC-10 production programs.
 

The core cowl afterbody length is the minimum consistent with
 

keeping the boat-tail angle at a value that prevents compressibility drag.
 

4.2.4.4 Nacelle External Drag - The drag of the isolated nacelle at the
 

typical cruise condition is included in the installed engine performance.
 

The skin friction coefficient used to calculate drag is a function of the
 

local Reynolds number. Local Reynolds number is calculated for both the
 

freestream cruise condition and the fully expanded exhaust flows for both
 

fan and primary exit conditions. Drag coefficients, D/q, are then calculated
 

for the nacelle and pylon in the three flow regimes; freestream, fan nozzle
 

discharge, and primary nozzle discharge. Depending on the nacelle configura

tion, the fan cowl and part of the pylon are exposed to freestream flow,
 

while parts of the pylon and engine core cowl are exposed to fan nozzle
 

discharge. Also, nozzle base drag for the fan and primary nozzles is included
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in the drag coefficients. Drag values for the three flow regimes are shown
 

in Table 4-7.
 

4.2.4.5 Exhaust Duct Geometry - The fan duct flow area is sized to maintain
 

duct Mach number below 0.45 through the duct from the engine fan exit to the
 

discharge section. For the 1.32 and 1.45 FPR engines, a variable area is
 

required at the fan nozzle to maintain an efficient match between takeoff
 

and cruise. The area variation is accomplished by the fan cowl trailing
 

edge having actuated flaps which produce varying nozzle exit diameters. The
 

1.57 FPR engine has a fixed-area fan nozzle. The primary exhaust duct has a
 

center plug shaped to minimize flow losses.
 

4.2.4.6 Exhaust Duct Losses - The exhaust system losses were evaluated
 

using skin friction calculations for smooth and for acoustically treated
 

walls in the same manner as for the inlet.
 

4.2.4.7 Accessibility - Access to the engine accessory section, located
 

around the periphery of the engine fan case, is provided by fan cowl doors
 

which are hinged at the top from the pylon structure. The accessory gear
 

box is located on the bottom of the engine fan case since airlines prefer
 

this location over location on the gas generator based on their experience.
 

The benefits are ease of accessibility and improved service life due to the
 

cooler environment.
 

Engine core case access is provided by splitting the fan duct
 

vertically into half sections which are hinged from the pylon structure.
 

This concept is basically the same as that which has been successful on the
 

DC-l0.
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4.2.4.8 Thrust Reversing - Reverse thrust is obtained with the 1.32 FPR
 

variable-pitch fan engine by rotating the fan blades into reverse pitch. The
 

effect of this feature upon the overall engine installation is a requirement
 

for the variable-geometry fan nozzle to function as an inlet during reverse
 

(Figure 4-20). The area required is larger than that required for takeoff
 

and cruise. Mechanical designs for engines having variable-pitch fans with
 

fan pressure ratios greater than 1.4 have not yet been established. For
 

these higher fan pressure ratio engines, cascade-type fan reversers were
 

used, as shown in Figures 4-22 and 4-24.
 

The fan duct thrust reversers shown are fixed-cascade types with
 

external cowl doors that are hinged at the aft end and which can thus be used
 

to assist the cascade vanes in imparting a forward directivity to the fan
 

exhaust flow. In response to the requirement to improve low speed capability
 

for minimum re-ingestion and reverser flow ground-impingement, upward direct

ivity is imparted to the reversed thrust fan exhaust stream by limiting the
 

cascades and external cowl doors to only the top 200 degree portion of the
 

nacelle circumference. Blocker doors which hinge inward from the outer wall
 

of the fan duct at the cascade trailing edge station are used to close off
 

the forward thrust flow path during reverse thrust.
 

Primary spoilers of the cascade type are also shown. The low engine
 

thrust/takeoff gross weight characteristics of the MF aircraft make it
 

doubtful that sufficient reverse thrust can be attained without spoiling the
 

primary flow.
 

4.2.4.9 Weight of Engine Installations - Installed engine weight is discussed
 

in Appendix A. Propulsion system weights for the 1.32, 1.45, and 1.57 FPR
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engines are itemized inTable A-5.
 

4.2.5 Engine Performance - Installed engine performance was generated by com

bining the engine installation effects resulting from each engine nacelle desig,
 

described inSection 4.2.4 with the airframe demands supplied by the engine.
 

These additional losses result from engine compressor airbleed
 

and mechanical power extraction. Engine compressor airbleed is used for
 

air conditioning and pressurizing the cabin. Airbleed levels are based on
 

DC-10 required cabin flow rates per passenger.
 

Mechanical power extraction isbased on a statistical study of
 

system requirements in several modes of flight. For all configurations,
 

150 HP (112 kW) per airplane was used for takeoff conditions, while 110 HP
 

(82 kW) per airplane was used for cruise conditions.
 

The effect on engine thrust and fuel flow of airbleed and power
 

extraction is shown in Table 4-7.
 

Installed propulsion system performance data for all significant
 

aircraft operating conditions are shown inFigures 4-26 through 4-31.
 

Performance for takeoff (maximum power) ispresented interms of gross thrust
 

and ram drag in Figures 4-26 through 4-28. Installed fuel flow for any
 

condition can be obtained from Figures 4-29 through 4-31 which show the
 

generalized fuel flow parameter as a function of net thrust and Mach number.
 

The data shown do not account for the effects of acoustic treatment.
 

The effect of duct wall acoustic treatment on engine thrust is small, and
 

negligible on fuel flow. To account for the effect of wall treatment on
 

engine thrust,the percentage thrust losses listed in Table 4-8 were applied
 

to the basic data shown inFigures 4-26 through 4-31.
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TABLE 4-8
 

Thrust Loss Due to Acoustic Treatment
 
(AFN/FN)
 

Engine Designation
 

Power Setting 5.9/1.57 9.2/1.45 12.8/1.32
 

T.O. 	 .002 .003 .004
 

All Others 	 .003 .004 .005
 

4.2.6 Engine Price Estimates - Estimates of engine prices were made for
 

inputs into the DOC calculations. The method of Reference 5 was used as a
 

base for estimating the effect of thrust on price of a fixed-pitch fan engine.
 

The level of the engine price curve was adjusted to coincide at the 20,000
 

pound (89,000 N) thrust level with the fixed-pitch engine (PD287-23) used in
 

the acoustic trade study DOC calculations of Reference 1. The price of a
 

variable-pitch fan engine used was 1.154 times that of a fixed-pitch engine
 

of the same level. This factor was obtained as an average for the values
 

used in the NASA QCSEE Study Program in 1972. Figure 4-32 presents the
 

engine price in 1972 dollars per unit of thrust as a function of thrust for
 

both fixed-pitch and variable-pitch fan engines.
 

Figure 4-32 also shows the results of using the Rand (Reference 5)
 

estimation method for a "Class II"engine*:
 

55 M0	 6
Caver = 27.8F0. .62 Q0.1 + 0.194 F0 .6Q0.846 x 1.35 x 10

where Caver is the average cost in 1972 dollars per engine, with the development
 

* 	The referenced report classifies a "Class II"engine as one which contains 
more steel than titanium and super-alloys. The classification determines 
the level of cost, but does not substantially affect the variation of cost
 
with thrust, which was the purpose of this comparison.
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cost amortized over Q number of engines, F is the takeoff thrust in thousands
 

of pounds, and the Mach number M was assumed to be 0.85. The factor 1.35
 

was used to convert from 1969 to 1972 dollars. Prices of some existing engines
 

produced invarying quantities are shown for comparison, and they tend to
 

substantiate the shape of the curves derived by the Rand method.
 

If F is in kilonewtons, the equation becomes:
 

55 M0 62 Q0 1 + 0.0792 F0 6 Q0.846 x 1.35 x 1o
Caver = 12.24 F0. . .
6
 

Q
 

4.3 Aircraft Sizing
 

A matrix of twelve mechanical-flap aircraft were sized based on
 

the methods and ground rules described inAppendix A.1. This matrix consisted
 

of:
 

Design Field Length: 3000 ft. (914 m), 4000 ft. (1219 m)
 

Engine FPR: 1.32, 1.45, 1.57
 

Acoustic Treatment: None (hardwall), nacelle wall treatment
 

A twin-engine,configuration was selected for all twelve aircraft
 

based on the results of the mechanical-flap configuration trade study (see
 

Section 3.1). Sizing plots, typical of the aircraft in the matrix, are
 

shown in Figures 4-33 and 4-34 for 3000-foot (914 m) and 4000-foot (1219.m)
 

field length aircraft with 1.32 FPR engines without acoustic treatment. Design
 

points were selected on the basis of minimum DOC which occurs at the W/S and
 

T/W where takeoff and landing performance are equally critical. There is,
 

however, very little penalty in terms of aircraft weight or operating cost
 

associated with engine oversizing (increased T/W).
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A summary of the aircraft performance characteristics for the
 

twelve aircraft are shown inTables 4-9 and 4-10. A noticeable increase in
 

Mach number capability isassociated with higher engine FPR. This isdue
 

to the lower thrust lapse rate of the higher FPR engines. There isalso very
 

little penalty in terms of either weight or DOC due to the use of engine
 

nacelle wall acoustic treatment. This level of treatment does not add signifi

cantly to engine installation weights nor has much impact on engine thrust
 

and SFC.
 

Figure 4-35 shows the impact of engine FPR on direct operating cost
 

and aircraft fuel consumption for a 575 statute mile (926 km) stage length.
 

Reducing FPR from 1.57 to 1.32 produces a reduction infuel usage of 10 to 12
 

percent for the 3000-foot (914 m) and 4000-foot (1219 m)mechanical-flap
 

aircraft configurations. Fuel consumption for the 4000-foot (1219 m) field
 

length mechanical-flap aircraft is20 percent lower than for the 3000-foot
 

(914 m) field length vehicle.
 

The DOC for the 4000-foot (1219 m) field length aircraft with 1.57
 

FPR engines is approximately 4 percent lower than the DOC for the aircraft
 

with 1.32 FPR engines based on a fuel price of 12 cents per gallon (31.7 $/m3).
 

Figure 4-35 also shows that higher priced fuel reduces the advantage of the
 

high FPR engines. With the fuel price at 24 cents per gallon (63.4 $/m3)
 

the DOC advantage of the aircraft with 1.57 FPR engines over that with 1.32
 

FPR engines is reduced to approximately 3 percent.
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TABLE 4-9 

ACOUSTIC TRADE STUDY AIRCRAFT SIZING 

Twin Engine Mechanical Flap Configuration 
3000 Foot (914 m) Field Length 

Engine FPR 1.32 1.45 1.57 1.32 1.45 1.57 

Engine Treatment None None None Wall Wall Wall 

Gross Weight Lb 167,900 172,900 172,100 168,300 173,200 172,300 
(kg) (76,200 (78,400) (78,100) (76,300) (78,600) (78,200) 

Wing Area Ft2 
(m2) 

2,775 
(257.8) 

2,858 
(265.5) 

2,844 
(264.2) 

2,782 
(258.4) 

2,863 
(266.0) 

2,848 
(264.6) 

Thrust/Engine Lb 31,050 31,330 30,70 31,240 31,490 30,680 
(N) (138,100) (139,400) (136,000) (139,000) (140,100) (136,500) 

W/S Lb/Ft2 
(kg/m 2 ) 

60.5 
(295.4) 

60.5 
(295.4) 

60.5 
(295.4) 

60.5 
(295.4) 

60.5 
(295.4) 

60.5 
(295.4) 

T/W 0.370 0.362 0.355 0.371 0.364 0.356 

OEW LB 120,590 124,710 122,790 120,890 1'24,930 122,940 
(kg) (54,700) (56,570) (55,700) (54,840) (56,670) (55,770) 

AR 8.7 8.7 8.7 8.7 8.7 8.7 

Mcr 0.66 0.68 0.74 0.66 0.68 0.74 

Hcr Ft 28,000 30,000 30,000 28,000 30,000 30,000 
(m) (8,534) (9,144) (9,144) (8,534) (9,144) (9,144) 

DOC @ 575 St. Mi. 
(926 km) 

¢/ASSM
(¢/ASKM) 

2.15 
(1.34) 

2.12 
(1.32) 

2.05 
(1.27) 

2.15 
(1.34) 

2.12 
(1.32) 

2.06 
(1.28) 



Table 4-10
 

ACOUSTIC TRADE STUDY AIRCRAFT SIZING
 

Twin Engine Mechanical Flap Configuration
 
4000 Foot (1219 m) Field Length
 

Engine FPR 1.32 1.45 1.57 1.32 1.45 1.57 
Engine Treatment None None None Wall Wall Wall 

Gross Weight Lb 140,300 144,000 143,500 140,600 144,200 143,600 
(kg) (63,600) (65,300) (65,100) (63,800) (65,400) (65,100) 

Wing Area Ft2 

(m) 
1,641 
(152.4) 

1,684 
(156.4) 

1,678 
(155.9) 

19644 
(152.7) 

1,687 
(156.7) 

1,679 
(156.0) 

Thrust/Engine Lb 27,490 27,540 26,780 27,660 27,670 26,870 
(N) (122,300) (122,500) (119,100) (123,000) (123,100) (119,500) 

W/S Lb/Ft2 85.5 85.5 85.5 85.5 85.5 85.5 
(kg/m) (417.4) (417.4) (417.4) (417.4) (417.4) (417.4) 

T/W 0.392 0.383 0.373 0.393 0.384 0.374 

OEW Lb 96,200 99,060 97,470 96,400 99,210 97,550 
(kg) (43,640) (44,930) (44,210) (43,730) (45,000) (44,250) 

AR 8.7 8.7 8.7 8.7 8.7 8.7 

Mcr 0.69 0.71 0.77 0.69 0.71 0.77 

Hcr Ft 28,000 30,000 30,000 28,000 30,000 30,000 
(m) (8,534) (9,144) (9,144) (8,534) (9,144) (9,144) 

DOC @ 575 St. Mi. 
(926 km) 

¢/ASSM
(¢/ASKM) 

1.82 
(1.13) 

1.79 
(1.11) 

1.73 
(1.07) 

1.82 
(1.13) 

1.79 
(1.11) 

1.74 
(1.08) 
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4.4 Acoustic Analysis
 

4.4.1 Aircraft Noise Definition - Aircraft noise can be broadly classified
 

into three categories; noise produced by the turbulence associated with the
 

passage of a large body (the aircraft) through the ambient air, propulsive
 

noise produced by the aircraft engines and, inthe case of an EBF aircraft,
 

propulsive-lift-system (PLS) noise produced by directing the engine exhaust
 

over or under the wing and flap surfaces to augment the lift characteristics
 

of the aircraft. Of these three components the latter two are considered the
 

most important for STOL type aircraft.
 

Noise from a turbofan engine can be subdivided into internally
 

generated high-frequency turbomachinery noise and low-frequency core noise
 

produced by the combustion process, and externally generated jet noise
 

produced by the turbulent mixing of the high velocity exhaust gases with the
 

ambient air. Noise from propulsive-lift systems is produced by the direct
 

impingement of the engine exhaust gases on the wing and flap surfaces.
 

Internally generated turbomachinery noise can usually be suppressed by the
 

installation of acoustic materials inthe engine nacelle, whereas jet noise
 

and PLS noise are not easily suppressed.
 

4.4.2 Source Noise Prediction and Suppression
 

4.4.2.1 Engine Noise Prediction - Engine source noise was predicted using
 

the Douglas developed Quick-Response Engine Source Noise (QRESN) procedure.
 

This procedure, based on ground static and flight test data, uses basic
 

engine operating parameters to predict the peak perceived noise (PNL) on a
 

sideline produced by the engine fan, core, turbine and jet exhaust. The peak
 

inlet and peak aft radiated noise on a sideline is calculated by the
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logarithmic summation, on a PNL basis, of the component noise levels, taking
 

into account the directivity of the noise of each component. Engine noise on
 

an EPNL basis was calculated as the peak PNL on a sideline less a duration
 

factor which varies with the aircraft type, distance to the aircraft and air

speed. The duration factor was based on predicted and measured flyover noise
 

data. The methodology for the QRESN procedure isexplained inAppendix C-1.
 
I 

Adjustments were made to the predicted component noise levels based
 

on comparisons of extensive ground static and aircraft flyover noise data.
 

These comparisons indicate an adjustment of -4 dB to the fan inlet radiated
 

noise, when airborne, to account for the reduction of inlet duct airflow
 

distortion and turbulence.
 

A -1.5 dB technology factor was applied to each engine component
 

noise level to account for estimated improvements injet engine design which
 

will lead to lower source noise levels. The 1.5 dB improvement isbelieved
 

to be reasonable as engine acoustic technology development iscontinued into
 

the 1980 time period. Adjustments for ground attenuation (EGA) and fuselage
 

shielding were based on SAE ARP 1114. For the trade study estimates itwas
 

assumed that the peak noise on a 500-foot (152 m) sideline would occur after
 

liftoff when the aircraft reached a 100 foot height. This resulted in an
 

adjustment of -3.0 dB for ground attenuation and fuselage shielding.
 

4.4.2.2 Turbomachinery Noise Suppression - Internally generated, turbo

machinery noise may be suppressed by the use of acoustic materials within
 

the engine nacelle. The specific type of acoustic material for each appli

cation requires knowledge of the spectral characteristics of the turbo

machinery noise to be suppressed. Since the source noise levels were pre

dicted on a PNL basis, the exact nature of the acoustic materials will not
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be specified. Instead, the preliminary design chart shown in Figure 4-36
 

was used to determine the suppression, on a PNL basis, obtained by a given
 

amount of unspecified nacelle acoustic treatment. This chart was developed
 

from the results of numerous noise suppression tests on JT3D, JT8D, JT9D, and
 

CF6 engines. The abscissa, in Figure 4-36, isthe average ratio, for a given
 

treated duct, of the length of treatment (L)to the duct-passage height (H).
 

Itcan be seen that the attenuation correlates well with the average L/H ratio.
 

Adjustments were made to account for estimated improvements in
 

acoustic materials design which would result inmore noise suppression for a
 

given amount of nacelle acoustic treatment. These adjustments for improved
 

technology assumed that the suppression obtained by a given amount of advanced
 

technology treatment would be equivalent to the suppression obtained by adding
 

30 percent more of today's nacelle acoustic treatment. The amount of nacelle
 

acoustic treatment was restricted to available space within the existing
 

engine nacelle walls. For the EBF aircraft the nacelle treatment configuration
 

is the wall treatment configuration defined inthe Final Report, Volume II,
 

of the NASA Short-Haul Systems Study (Reference 1). The nacelle treatment
 

configurations for the MF trade study engine cycles are shown in Figures 4-20,
 

4-22, and 4-24. Note that these nacelles were designed for aerodynamic
 

performance. Additional noise reduction could be achieved by lengthening
 

the inlet and exhaust ducts to increase the amount of acoustic treatment.
 

4.4.2.3 Propulsive-Lift-System (PLS) Noise Prediction - Noise produced by
 

the EBF propulsive-lift system was predicted using the Douglas developed
 

Quick Response Propulsive-Lift System (QRPLS) procedure. This procedure was
 

developed by analyses of numerous sources of static test data. The procedure
 

uses basic aircraft operating parameters to predict the maximum PLS noise on
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a sideline, both on a PNL and EPNL basis. The methodology and background for
 

this procedure is explained in Appendix C-i.
 

Since propulsive lift is a relatively new concept, a -3.0 dB
 

technology factor was applied to allow for estimated future advances in PLS
 

technology. For the trade study estimates an adjustment of -3 dB for ground
 

attenuation (EGA) and fuselage shielding was based on SAE ARP 1114. 
Aircraft
 

noise was calculated as the logarithmic summation of engine noise and PLS
 

noise on both a PNL and EPNL basis.
 

4.4.3 Externally-Blown-Flap Aircraft - During the NASA STOL Short-Haul
 

Systems Study (Reference 1), a trade study was conducted to determine the
 

effect of engine cycle characteristics and degree of acoustic treatment on
 

aircraft sizing, economics and noise level for a 150-passenger, 3000-foot
 

(914 m) field length EBF aircraft. Since improved noise prediction procedures
 

have been developed since that study was performed, the noise estimates made
 

for the three EBF engine cycles were updated. The revised takeoff noise
 

levels, on 500-foot (152 m) sideline, are shown in Table 4-11. Shown in this
 

figure are the component noise levels in terms of PNL, with and without
 

nacelle acoustic treatment, the resultant peak inlet radiated PNL, peak aft
 

radiated PNL, and estimated peak EPNL on a 500-foot (152 m) sideline. The
 

revised estimates were based on the engine characteristics given in Table
 

4-12. Figure 4-37 is a plot relating EPNdB on a 500-foot (152 m) sideline
 

to direct operating cost for the three EBF trade study engine cycles.
 

From the NASA STOL System Study the engine cycle selected for the
 

E-150-3000 baseline aircraft had a FPR = 
1.25. The nacelle acoustic treat

ment was increased over that of the trade study aircraft, and the revised
 

EPNL on a 500-foot (152 m) sideline for the final design version of this
 

aircraft, as used in this study, is estimated to be 97 EPNdB. The acoustic
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TABLE 4-11
 

500-FT SIDELINE NOISE COMPARISON
 
EXTERNALLY BLOWN FLAP AIRCRAFT 150 PASSENGERS
 

3000 FT (914 m) FIELD LENGTH
 
100 KNOTS TAKEOFF THRUST, 18-DEGREE FLAPS
 

NOISE SOURCE 

FAN INLET PNL 

FAN EXHAUST PNL 

TURBINE PNL 

CORE PNL 

JET AND FLAP PNL 

PEAK INLET PNL 

PEAK AFT PNL 

EPNL 

FPR = 1.25 


UNTRTD L/H TRTD 


96.5 1.0 92.0 

104.0 1.7 99.0 

93.0 2.6 86.0 

81.5 81.5 

90.5 90.5 

98.0 94.0 

104.5 100.0 

103.0 98.5 

TECHNOLOGY AREA 


JET-FLAP NOISE 

FAN, TURBINE AND CORE NOISE 
ACOUSTIC TREATMENT 

FPR 

UNTRTD 

99.0 

106.5 

93.5 

81.5 

94.0 

100.5 

107.0 

105.5 

= 1.32 

L/H 

1.1 

1.9 

1.8 

FPR = 1.57 

TRTD UNTRTD L/H TRTD 

94.0 106.5 1.2 101.0 

101.0 109.0 4.6 96.0 

88.5 95.5 95.5 

81.5 96.5 96.5 

94.0 107.0 107.0 

96.5 109.0 106.5 

102.0 111.5 108.0 

101.0 111.0 108.5 

TECHNOLOGY FACTOR 

-3 dB 

-1.5 dB 
1.3 x (L/H) 1973 

INCLUDES SHIELDING AND EGA PER SAE ARP 1114 FOR 100-FOOT ALTITUDE PR4-STOL-2391 



treatment configuration for the final design aircraft is shown in Figure 

B-i of Appendix B-i. 

TABLE 4-12
 

ENGINE CHARACTERISTICS FOR ACOUSTICS STUDY
 

Engine Type Variable-Pitch Variable-Pitch Fixed-Pitch
 

Fan Pressure Ratio 1.25 1.32 1.57
 

Bypass Ratio 17 13 6
 

Wafan' lbs/sec (kg/sec)(l)(2) 969 (440) 863 (391) 570 (259)
 

Vtan' ft/sec (m/sec)(2)  655 (200) 732 (223) 939 (286)
 

Wgpri , lbs/sec (kg/sec)(1)(2) 57 (26) 63 (28.5) 98 (44.5)
 

Vpris ft/sec (m/sec)(2)  690 (210) 700 (213) 1324 (404)
 

Tip Speed, ft/sec (m/sec) 750 (229) 900 (274) 1550 (472)
 

No. of fan blades 17 23 44
 

1. For 20,000 lbs (89,000 N) SLS takeoff thrust
 

2. SL, Std. day, M0 = 0.15
 

4.4.4 Mechanical Flap Aircraft - The methods used to evaluate the sideline
 

noise characteristics of the MF trade study engine cycles were the same as
 

those used to evaluate the EBF aircraft. Core jet velocities were kept low
 

to reduce jet and core noise and to ensure that the resultant noise levels
 

would be dominated by the fan, which can be suppressed by the use of nacelle
 

acoustic treatment. The takeoff noise levels, on a 500-foot (152 m) sideline,
 

for the M-150-3000 and M-150-4000 aircraft are shown inTables 4-13 and 4-14.
 

These tables list the component noise levels in terms of PNL, with and without
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PR4-STOL-2394 

FIGURE 4-37. 



TABLE 4-13 

500-FT SIDELINE NOISE COMPARISON 
MECHANICAL FLAP 150 PASSENGER
 

3000 FT (914 M) FIELD LENGTH
 
100 KNOTS TAKEOFF THRUST
 

FPR = 1.32 FPR = 1.45 FPR = 1.57 

NOISE SOURCE UNTRTD L/H TRTD UNTRTD L/H TRTD UNTRTD L/H TRTD 

FAN INLET PNL 98.5 0.9 94.0 104.0 0.9 100.0 104.5 0.9 100.0 

FAN EXHAUST PNL 105.5 1.6 101.0 107.0 2.6 99.5 107.5 2.7 99.5 

TURBINE PNL 92.0 2.4 85.0 92.5 3.8 81.5 93.5 2.6 86.5 
C 

CORE PNL 87.5 87.5 89.5 89.5 95.0 95.0 

JET PNL 84.5 84.5 90.0 90.0 98.0 98.0 

PEAK INLET PNL 99.5 95.0 104.5 100.5 105.0 101.0 

PEAK AFT PNL 106.0 101.5 107.5 101.0 108.5 103.0 

EPNL 104.0 99.5 105.5 99.0 106.5 101.0 

TECHNOLOGY AREA TECHNOLOGY FACTOR 
FAN, TURBINE AND CORE NOISE -1.5 dB 
ACOUSTIC TREATMENT 1.3 x (L/H) 1973 
-3.0 dB FOR SHIELDING AND EGA PR4-STOL-2392 



TABLE 4-14
 

500-FT SIDELINE NOISE COMPARISON 
MECHANICAL FLAP 150 PASSENGER
 

4000 FT (1219 M) FIELD LENGTH
 
100 KNOTS TAKEOFF THRUST
 

FPR = 132 FPR = 1.45 FPR = 1.57 

NOISE SOURCE UNTRTD L/H TRTD UNTRTD L/H TRTD UNTRTD L/H TRTD 

FAN INLET PNL 98.0 0.9 93.5 103.5 0.9 99.5 104.0 0.9 99.5 

FAN EXHAUST PNL 105.0 1.6 100.5 106.5 2.6 99.0 107.0 2.7 99.0 

o 	 TURBINE PNL 91.5 2.4 84.5 92.0 3.8 81.0 93.0 2.6 86.0 

CORE PNL 87.0 87.0 89.0 89.0 94.5 94.5 

JET PNL 84.0 84.0 89.5 89.5 97.5 97.5 

PEAK INLET PNL 99.0 	 94.5 104.0 100.0 104.5 100.5 

PEAK AFT PNL 105.5 	 101.0 107.0 100.5 108.0 102.5 

EPNL 	 103.5 99.0 105.0 98.5 106.0 100.5 

TECHNOLOGY AREA 	 TECHNOLOGY FACTOR
 

FAN, TURBINE AND CORE NOISE -1.5 dB 
ACOUSTIC TREATMENT 1.3 x (L/H) 1973 
-3.0 dB FOR SHIELDING AND EGA PR4-STOL°2390 



nacelle acoustic treatment, the resultant peak inlet radiated PNL, peak aft
 

radiated PNL, and estimated peak EPNL on a 500-foot (152 m) sideline. The
 

difference in untreated fan noise levels for the three engine cycles was
 

partially offset by the greater amount of acoustic treatment, as indicated by
 

the treatment (L/H), installed inthe higher fan pressure ratio engines.
 

It should be emphasized that the nacelles were not designed for best acoustics
 

as was done in the NASA STOL Systems Study (Reference 1). Minimum drag was
 

the primary criterion with the thrust reverser installation influencing the
 

amount of treatment inthe FPR = 1.45 and 1.57 designs.
 

Figure 4-38 is a plot relating EPNdB, on a 500-foot (152 m) sideline,
 

to direct operating cost for the M-150-3000 and M-150-4000 aircraft. The
 

FPR = 1.57 engine cycle was selected for the MF aircraft because of its low
 

direct operating cost relative to the other two engine cycles, and because
 

the sideline noise penalty relative to the other two cycles was minimal for
 

the nacelle acoustic treatment configurations evaluated.
 

4.5 Summary of Results
 

For the engine cycles studied, FPR = 1.32, 1.45 and 1.57, several
 

general trends were noted.
 

The aircraft with 1.57 FPR engines had the highest cruise speed
 

capability and lowest direct operating costs. The DOC advantage of approxi

mately 4 percent compared to the 1.32 FPR engined aircraft is based on a 1972
 

fuel price of 12 C/gallon (31.7 $/m3). Any significant increase infuel
 

price will tend to narrow this DOC difference due to the higher fuel consumption
 

of the high FPR engines.
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ACOUSTIC/ENGINE CYCLE TRADEOFFS 
TWO ENGINE MECHANICAL FLAP 

150 PASSENGERS 
575 ST MI (926 KM) STAGE LENGTH * HARDWALL 

(d/ASSM),2. 2 (d/ASKM)1 0 WALL TREATMENT ONLY 

FIELD LENGTH = 3000 FT (914M) 

0, FPR=1.32 

0- 1.45 

1.57 

2.0 

DOC 
-1.2
 

1.9 
FIELD LENGTH = 4000 FT (1219M) 

*FPR =1.32 
1.8 1.1-p 1.45 

-1.1.1
 

1.7 
90 95 100 105 110 

EPNdB - 500 FOOT'(152 METER) SIDELINE 
PR4-STOL-2602 

FIGURE 4-38. 

http:FPR=1.32


Sideline noise levels were slightly higher for the aircraft with
 

the highest FPR engines. With the incorporation of nacelle acoustic linings,
 

the 1.57 FPR engined aircraft are only 2 EPNdB noisier than the aircraft
 

with the quietest engine studied. There were essentially no weight or DOC
 

penalties associated with the use of nacelle wall acoustic treatment provided
 

overall nacelle dimensions were not increased.
 

The 4000-foot (1219 m) field length aircraft are 0.5 EPNdB quieter
 

interms of sideline noise than those with 3000-foot (914 m)field lengths.
 

This isdue to the smaller engine thrust size and higher takeoff speeds of
 

the 4000-foot (1219 m) field length airplanes. The higher takeoff speeds
 

reduce the time duration factor used in EPNdB calculations. Inaddition,
 

the DOC for the 3000-foot (914 m) aircraft was 18 percent higher than the
 

4000-foot (1219 m) aircraft and the mission fuel 24 percent greater.
 

From these results, the twin-engine 4000-foot (1219 m) mechanical

flap aircraft with 1.57 FPR engines was selected to evaluate operational
 

techniques for noise reduction along with the E-150-3000 aircraft.
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and the E-150-3000 aircraft with 10 percent oversized engines which was
 

derived inSection 3.3.
 

The general arrangement of the final design E-150-3000 aircraft
 

is shown in a three-view drawing, Figure 5-1. The aircraft with oversized
 

engines isessentially identical except for small changes inwing and tail
 

surface areas and engine size.
 

Figure 3-8 isa sizing plot for the two EBF aircraft and a
 

characteristics summary is shown inTable 5-2.
 

The engine for these EBF aircraft isthe Allison PD287-3 with a
 

takeoff bypass ratio of 17.5 and a variable-pitch fan with a pressure ratio
 

of 1.25. Table 5-1 gives basic information on the engine. The uninstalled
 

performance and weight are from Reference 1. The installation and installed
 

performance are included in Appendix B,and are the same as used inthe study
 

reported in Reference 1.
 

The engine parameters used for acoustic calculations are shown in
 

Figures 5-2 through 5-4. The mass flows of Figure 5-2 are for a 20,000-pound
 

(89,000 N) reference-size engine and were linearly scaled to the required
 

sizes.
 

TABLE 5-1
 

ENGINE FOR EBF AIRCRAFT
 

Engine Type PD287-3 Variable-Pitch Fan
 

Fan Pressure 1.25
 
Bypass Ratio 17.5
 

Overall Pressure Ratio 20
 

Fan Tip Speed 750 ft/sec (229 m/sec)
 
Exhaust Configuration Separate flow
 

Variable-area fan exhaust
 
Fixed-area primary exhaust
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5.0 OPERATIONAL TECHNIQUES FOR NOISE REDUCTION
 

5.1 Introduction
 

This section evaluates the potential and applicability of using take

off and landing operational techniques to reduce the community noise impact
 

caused by the operation of aircraft from selected airports. The aircraft used
 

for this evaluation were the M-150-4000 aircraft with 1.57 FPR engines from
 

the propulsion system and acoustic trade study and the final design E-150-3000
 

aircraft from the NASA STOL Systems Study (Reference 1). Also, a version of
 

the EBF aircraft with oversized engines was evaluated at one of the airports.
 

The number of people highly annoyed within the single-event 80 EPNdB
 

contour was used as the noise impact criteria. This required an assumption
 

of the fraction of people impacted that are highly annoyed for noise levels
 

greater than 80 EPNdB. This assumption will be defined and discussed later
 

in this section. The evaluation started with a parametric analysis of
 

operational techniques based on a uniform population distribution. From the
 

parametric analysis, a low-impact operational procedure was selected for
 

each aircraft, which resulted inthe least number of people highly annoyed.
 

The low-impact procedure was then evaluated at four airports where a minimum

impact procedure was developed at each airport by tailoring the operational
 

techniques to minimize the noise impact.
 

5.2 EBF Aircraft Characteristics
 

Two externally-blown-flap aircraft were used inthe study of opera

tional noise-reduction techniques; the final design 150-passenger, 3000-foot
 

(914 m) field length aircraft from the NASA Short-Haul System Study (Reference 1)
 

105
 



Payload 


Field Length 


Takeoff Gross Weight 


Wing Area 

Go 

Thrust per Engine 


W/S 


T/W 


OEW 


Mcr @ 26,000 ft. 

(7,925M)
 

D.O.C. @ 575 ST. MI. 

(926 KM) 


EPNL @ 500 ft. 

Sideline (152M)
 

TABLE 5-2
 

EBF AIRCRAFT SELECTED FOR VARIATION OF
 

OPERATIONAL TECHNIQUES FOR NOISE REDUCTION
 

PD287-3 ENGINES (1.25 FPR)
 

FINAL DESIGN AIRCRAFT 

Passengers 150 

ft. (M) 3,000 ( 914) 

lb. (kg) 149,000 (67,600) 

ft.2 (M2) 1,461 (135.7) 

lb. (N) 18,260 (81,220) 

lb/ft.2 (kg/M 2) 102 C 498) 

0.490 

lb. (kg) 102,610 (46,540) 

0.69 

4/ASSM 2.075 (1.289) 

(t/ASKM)
 

EPNdB 97.1 


10% OVER-SIZED
 

150
 

3,000 ( 914)
 

151,200 (68,600)
 

1,400 (130.1)
 

20,040 (89,140)
 

108 ( 527)
 

0.530
 

103,900 (47,130)
 

0.71
 

2.082 (1.293)
 

96.9
 



EXTERNALLY BLOWN FLAP AIRCRAFT
 

139 FT 9 IN._ _ 
(42.6 M) 

108 FT 1 IN. 
(32.9 M) 

41 FT 4 IN. 
0 0n00 0 (12.6 M) 

-nin nn1 n I 

8/13/73 PR3-STO L-1512C 

FIGURE 5-1.
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5.3 MF Aircraft Characteristics
 

The selection of the mechanical-flap STOL aircraft for the opera

tional noise reduction techniques study was based on the results of the
 

acoustic trade study (see Section 4.0). In this study, the 1.57 FPR engine
 

with acoustic wall treatment was found to produce the lowest direct operating
 

costs and sideline noise levels only 2 EPNdB higher than the quietest engine
 

examined. This engine has a fixed-pitch fan and a bypass ratio of 5.9.
 

Engine installation and performance are discussed in Section 4.0 and Table 5-3
 

lists the major engine characteristics. The engine parameters used for 

acoustic calculations are shown in Figures 5-5 and 5-6. The mass flows shown
 

are for a 20,000-pound (89,000 N) reference-thrust size engine and were
 

scaled linearly to the engine size used on the aircraft.
 

Initially both the M-150-3000 and M-150-4000 aircraft with two 1.57
 

FPR engines were selected for examination. Standard flight profiles and
 

noise contours were calculated for both aircraft as described in Section 5.4.
 

Based on these contours, there was no appreciable difference in community
 

noise impact (using a uniform population distribution) for the two aircraft.
 

Selection of the 4000-foot (1219 M) field length aircraft for study at the
 

specific airports was made on the basis of its lower DOC, 1.74 t/ASSM
 

(1.08 /ASKM) as compared to 2.06 ¢/ASSM (1.28 ¢/ASKM) for the 3000-foot
 

(914 M) field length aircraft, and its lower mission fuel consumption.
 

Sizing plots for the M-150-3000 and M-150-4000 aircraft are shown
 

in Figures 5-7 and 5-8 respectively. Both aircraft were sized for minimum
 

DOC which occurs at the W/S and T/W where landing and takeoff are equally
 

critical. A brief summary comparing the characteristics of the two aircraft
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is presented in Table 5-4 and three-view drawings are shown in Figures 5-9
 

and 5-10. Note that the sizing criterion leads to a higher T/W for the longer
 

field length due to the higher W/S for the M-150-4000 aircraft. The resulting
 

increase in climb gradient capability f6r this aircraft contributes to its
 

smaller noise contour areas as will be shown later in this chapter.
 

TABLE 5-3
 

ENGINE FOR MF AIRCRAFT
 

Engine Type Fixed-Pitch Fan 

Fan Pressure 1.57 

Bypass Ratio 5.9 

Overall Pressure Ratio 22.7 

Fan Tip Speed 1550 ft/sec 
(472 m/sec) 

Exhaust Configuration Separate flow 

Fixed-area fan exhaust 

Fixed-area primary exhaust 

5.4 Aircraft Acoustics Characteristics
 

5.4.1 Evaluation Procedures - The evaluation of operational techniques for
 

noise reduction was performed on the basis of aircraft noise contours and
 

community noise impact. Contours of 100, 95, 90, 85, and 80 EPNdB were
 

generated using the Douglas-developed Aircraft Noise Contour/Community Noise
 

Impact Evaluation (AlFA) digital computer program in conjunction with a Gerber
 

plotter. AlFA inputs required for noise contours include noise data, in the
 

form of EPNL as a function of slant distance, and flight path and performance
 

data such as the aircraft position, airspeed, flap setting, and engine
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Payload 


Field Length 


Takeoff Gross Weight 


Wing Area 


Thrust per Engine 


W/S 


T/W 


OEW 


Mcr @ 30,000 ft.
 
(9144 M) 


D.O.C. 	@ 575 ST. MI. 

(926 KM) 


EPNL @ 500 ft. Sideline 


TABLE 5-4
 

CANDIDATE MECHANICAL FLAP AIRCRAFT
 

OPERATIONAL TECHNIQUES FOR NOISE REDUCTION
 

1.57 FPR ENGINES WITH ACOUSTIC WALL TREATMENT
 

Passengers 150 

ft. (M) 3,000 ( 914) 

lb. (kg) 172,300 (78,150) 

ft.2 (M2) 2,848 (264.6) 

lb. (N) 30,680 (136,470) 

lb/ft2 (kg/M 2) 60.5 (295.4) 

0.356 

lb. (kg) 122,940 (55,770) 

0.74 

¢/ASSM 1.86 (1.16) 
(4/ASKM) 

EPNdB 101.0 

SELECTED AIRCRAFT
 

150
 

4,000 ( 1,219)
 

143,600 (65,140)
 

1,679 (156.0)
 

26,870 (119,520)
 

85.5 (417.4)
 

D.374
 

97,550 (44,250)
 

0.77
 

1.58 (0.98)
 

100.5
 



GENERAL ARRANGEMENT 
-M-150-3000 TWO 5.9/1.57 ENGINES 

138.5 FT __ 
(42.2 M) 

157.5 FT 
(48.0 M)l 

4.1 FT 

0 000000000000 0000000000000(13.4 M), 
6 6 

n Onnn nn nn 

PR4-STOL -2404
FIGURE 5-9. 
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GENERAL ARRANGEMENT 
M-150-4000 - TWO 5.9/1.57 ENGINES 

131.7 FT 
(40.1 M) 

•120.9 FT 
(36.8 M) 

38 FT 
.................. 0(12.6 M)
 

ni n nn - -- I 
PR4-STO L-2403 

FIGURE 5-10. 

http:5.9/1.57


operating parameters.
 

Using this program, the aircraft noise level, in terms of EPNL,
 

corresponding to a takeoff and approach flight path was calculated at each
 

500-foot (152 m)sideline interval, relative to the airport runway centerline,
 

to form a rectangular grid of EPNL values. Contours of equal EPNL were
 

calculated by interpolation within the grid. The EPNL at each grid point was
 

determined by finding the minimum distance to the flight path and relating the
 

noise level to the aircraft operating conditions at that point on the flight
 

path. EPNL adjustments were made for airspeed, based on a 10 log (ratio of
 

the actual airspeed to the reference airspeed) relationship, and ground
 

attenuation (EGA) and fuselage shielding based on SAE ARP 1114.
 

The evaluation of community noise impact required additional infor

mation in the form of population density data at each airport. The population
 

density data was formulated as the average number of people at each 500-foot
 

(152 m) sideline interval relative to a rectangular coordinate system which
 

had its origin at the airport reference point. The community noise impact
 

was calculated by a transformation of the EPNL coordinate system into the
 

population density coordinate system, interpolation to determine the EPNL at
 

each population (P)grid point, calculating the fraction (K)of people highly
 

annoyed, and calculating the sum of the product of K and P for all grid points
 

within the 80 EPNdB contour. The methodology of this procedure is shown in
 

Figure 5-11A. A sample output of the AlFA tomputer program is shown in
 

Appendix C-2. The relationship of the fraction of people highly annoyed to
 

EPNL, defined in Reference 2 and shown in Figure 5-11B, assumes zero annoyance
 

for a noise level below or equal to 80 EPNdB. For noise levels greater than
 

80 EPNdB the relationship is linear and passes through 40 percent highly
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COMMUNITY NOISE IMPACT EVALUATION
 
POPULATION 
GRID POINTS AIRPORT 

o" a a a o o TRANSFORM THE EPNL GRIDTOTHEPOPULATION 
N- REFERENCE COORDINATE SYSTEM AND INTERPOLATEN TO FIND THE EPNL AT EACH POPULATION GRID POINT 

WITHIN THE 80 EPNdB CONTOUR 
RUNWAY 

E 
, o o ARP o o 

Sa a aGRID 

o CALCULATE AN ANNOYANCE FACTOR (K) AT EACH 
POINT (FRACTION OF PEOPLE HIGHLY ANNOYED) 

POPULATION REFERENCE COORDINATE SYSTEM 

ORIGIN: AIPPORT REFERENCE POINT 
K = 0.02 (EPNdB - 80) 
K= 0 EPNdB< 80 

EPNdB > 80 

AXES: N, S, E, W 
POPULATION AT 500-FOOT INTERVALS REFERENCE: D.O.T. TM72-1, 6-6-72 

EPNL 
0 GRID POINTS 

CALCULATE THE COMMUNITYY° 
(NUMBER OF PEOPLE NOISE IMPACT

HIGHLY ANNOYED) 

N 
° IMPACT = K, x P, 

° """EPNL 

° CONTOUR K, = ANNOYANCE FACTOR OF THE iTH GRID POINT®ARP 
0 RUNWAY P = POPULATION DENSITY OF THE iTH GRID POINT 

0 

0 N = TOTAL NUMBER OF GRID POINTS WITHIN THENOISE CONTOUR COORDINATE SYSTEM 80 EPNdB CONTOUR 
ORIGIN: BRAKE RELEASE POINT PR3-STOL-2062B 
AXES: RELATIVE TO THE CHOSEN RUNWAY 
EPNL AT 500-FOOT INTERVALS 

FIGURE 5-11A. 
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COMMUNITY RESPONSE TO AIRCRAFT NOISE 
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annoyed at 100 EPNdB. Although it is believed that the function relating
 

the fraction of people highly annoyed to the EPNL is meaningful, it is
 

recognized that this function will differ depending upon the type of community
 

surrounding the airport and the time of day. The procedure used for the single

event EPNL levels herein also can be applied to composite noise prediction
 

methodologies, such as the Noise Exposure Forecast (NEF).
 

5.4.2 EPNL vs Distance Plots - Plots of EPNL as a function of slant distance
 

were calculated inaccordance with the procedures discussed inAppendix C-i.
 

The plots are shown in Figures 5-12 and 5-13 for the M-150-3000 and M-150-4000
 

aircraft, and Figures 5-14 and 5-15 for the E-150-3000 aircraft. Two figures
 

are shown for the E-150-3000 aircraft because the engine noise and propulsive

lift system noise were calculated independently and then summed to arrive at
 

the total aircraft noise. Figure 5-14 isthe EPNL map for the E-150-3000
 

engine noise only, and Figure 5-15 isan EPNL map of the E-150-3000 powered

lift system noise for typical takeoff and landing operating conditions.
 

5.4.3 Standard Flight Profiles - Standard takeoff and landing procedures
 

were defined as a starting point for the parametric study of operational
 

techniques for noise reduction. The parametric variations in this study are
 

based on perturbations from these standard flight procedures. Itwas desired
 

that the standard flight procedures be representative of normal commercial
 

operations.
 

Takeoff - The standard takeoff flight profiles for the E-150-3000 aircraft
 

and E-150-3000 with 10 percent oversized engines are shown in
 

Figures 5-16A and 5-16B. Similar profile plots for the M-150-3000
 

and M-150-4000 aircraft are shown in Figures 5-17 and 5-18.
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EPNL vs DISTANCE
 
MECHANICAL FLAP 150 PASSENGERS 3000 FT (914 m) FIELD LENGTH 

REFERENCE CONDITIONS 

o (2) 5.9/1.57 ENGINES 
* 100% THRUST = 61,360 LB 

* AIRSPEED = 100 KNOTS 
100 * WITHOUT EGA OR SHIELDING 

EPNL 90 
(EPNdB) 9 

80 

40%___ _70 _ __ _ 

FEET 250 500 
_ 

1000 
_ 

2000 4000 8000 
METERS 100 250 500 1000 2000 

SLANT DISTANCE TO AIRCRAFT PR4-STOL-2389 

FIGURE 5-12. 
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EPNL vs DISTANCE 
MECHANICAL FLAP 150 PASSENGERS 4000 FT (1219 m) FIELD LENGTH 

110 
REFERENCE CONDITIONS 
* (2) 5.9/1.57 ENGINES 

* 100% THRUST = 53,740 LB 

9AIRSPEED = 100 KNOTS
100 * WITHOUT EGA OR SHIELDING 

EPNL ^1% THRUST 
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The 	standard climbout maneuver consists of the following segments:
 

1. Takeoff - Normal STOL takeoff; gear retraction assumed to
 

be complete 10 seconds after liftoff; SL, 770F (250C)
 

ambient conditions.
 

2. Accelerate - Accelerate to VCLIMB while maintaining constant
 

aircraft attitude (0); 9 selected such that VCLIMB isreached
 

by the time flap retraction is complete; VCLIM B selected for
 

maximum climb gradient with the aircraft inthe zero-flap,
 

slats-extended configuration provided this speed is greater
 

than 1.3 times the one engine failed stall speed. Figure
 

5-19 illustrates selection of VCLIMB for the final design
 

E-150-3000 aircraft. Inthis case the stall speed criterion
 

dictates VCLIMB rather than maximum flight path angle.
 

3. Flap Retraction - Retract flaps from takeoff position to zero
 

flap at a rate of 3 degrees per second (0.05 rad/sec) commencing
 

at 400 feet (122 m). Slats are left extended during the climb
 

to provide high maneuver margins.
 

4. 	Climb - Climb at constant speed to a height of 1500 feet (457 m).
 

5. 	Thrust Cutback - Starting at 1500 feet (457 m), reduce thrust
 

at a rate ofs30 percent per second from takeoff thrust to climb
 

thrust.
 

6. 	Climb at constant speed with climb thrust.
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Landing - Standard approach flight profiles for the E-150-3000 and E-150-3000 

with 10 percent oversized engines are shown in Figures 5-20 and 5-21 

and for the M-150-3000 and M-150-4000 aircraft in Figures 5-22 and 

5-23. The standard approach flight procedure is a decelerating 

approach with a constant glide slope. Glide slope angle was selected
 

to provide a sink rate of 900 fpm (4.6 m/sec) at the threshold height
 

with final approach speed. This results in path angles of approxi

mately 5.4 degrees (0.094 rad) for a 3000-foot (91-4 m) field length
 

aircraft and 4.5 degrees (0.079 rad) for a 4000-foot (1219 m) field
 

length aircraft. Approach flap is used down to a height of 1000
 

feet (305 m) at which point flaps are extended at a rate of 3
 

degrees per second (0.05 rad/sec) to the landing flap setting. As
 

the threshold is approached, thrust is increased as required to
 

maintain the glide slope and to stabilize approach speed.
 

5.4.4 Standard Noise Contours - Based on the standard takeoff and approach
 

flight paths defined in Section 5.4.3, standard noise contours of 100, 95, 90,
 

85 and 80 EPNdB were generated for the M-150-3000, M-150-4000, and E-150-3000
 

aircraft. These noise contours are shown in Figures 5-24 to 5-26. In each
 

case, the size of the takeoff contours is much larger than the size of the
 

landing contours. This would seem to imply that, for these aircraft, takeoff
 

operational techniques would offer the most potential for reducing community
 

noise impact.
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Comparing the MF standard contours with the EBF standard contours
 

the most noticeable difference is in the width of the takeoff contours. The
 

higher sideline noise levels produced by the MF aircraft result inwider
 

takeoff noise contours for these aircraft. The landing contours for the MF
 

aircraft are smaller than those for the EBF because of the absence of powered

lift system noise during landing for the MF aircraft. The standard contours
 

for the M-150-3000 and M-150-4000 are almost identical in terms of area but
 

not inshape. The higher T/W of the M-150-4000 aircraft produces a higher
 

climb gradient tending to shorten the takeoff contours. The lower total
 

installed thrust narrows the takeoff contours. The M-150-4000 landing
 

contours, however, are longer and wider due to the shallower approach flight
 

path angles associated with longer field length.
 

The standard- noise contours for the EBF with 5 percent and 10
 

percent oversized engines are shown in Figures 5-27 and 5-28. The improved
 

climb characteristics of the EBF aircraft with oversized engines-more than
 

offset the small sideline noise penalty associated with oversizing the
 

engines; therefore, the corresponding noise contour areas are smaller for
 

the aircraft with oversized engines.
 

A noise impact evaluation was made for each aircraft, based on
 

the standard takeoff and approach procedure, and a uniform population
 

density distribution (Reference Figure 5-11A). The results of this evaluation,
 

relative to the E-150-3000 aircraft, are as follows:
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Relative Percent of
 

Aircraft People Highly Annoyed
 

M-150-3000 + 9.3
 

M-150-4000 + 8.7
 

E-150-3000 0
 

EBF (5%Oversized Engines) - 6.0
 

EBF (10% Oversized Engines) - 8.1
 

The results show the impact of the two MF aircraft to be essentially 

the same. Since the M-150-4000 has a lower direct operating cost, and uses 

less mission fuel, itwas chosen along with the E-150-3000 aircraft to further 

evaluate the use of operational techniques for noise reduction. The EBF with 

10 percent oversized engines was also evaluated at one of the study airports. 
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5.5 Parametric Study of Operational Techniques
 

5.5.1 Objectives - A parametric study of takeoff and landing operational
 

techniques for noise reduction was conducted to narrow down the number of
 

techniques to be evaluated at each airport. The parametric study resulted in
 

the selection of a takeoff and landing operational procedure, for each
 

aircraft, which would produce the lowest noise impact based on a uniform
 

population density. These low-impact procedures would provide a starting
 

point for 'determining the best operational procedures to use at each airport
 

to produce the minimum community noise impact.
 

5.5.2 Evaluation Procedure - Takeoff and landing operational techniques were
 

evaluated on a noise impact basis assuming a uniform population density.
 

This was the same procedure used for the evaluations in Section 5.4.4.
 

The evaluation started with the standard takeoff and approach procedure for
 

each aircraft and the effect of varying each operational parameter was studied
 

independently. The resulting change in noise impact was compared to the noise
 

impact produced by the standard takeoff and approach procedure.
 

The philosophy taken concerning the variations of the takeoff and
 

landing flight profiles was that the flight procedures should be compatible
 

with both VFR and IFR operations. On this basis, the following operational
 

constraints were imposed:
 

Takeoff
 

1. No turns or thrust cutbacks were made below a height of
 

500 feet (152 m).
 

2. Amount of thrust cutback limited so that all-engine climb
 

gradient 4%; one-engine-out climb gradient > 0%.
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The all-engines-operating 4 percent gradient requirement was found
 

to be critical for the four-engine EBF aircraft and the zero
 

gradient with one engine failed was critical for the MF twin-engine
 

aircraft.
 

3. 	Combination maneuvers were avoided, i.e., changing thrust level
 

during a turn or changing flap setting during a turn.
 

Landing
 

1. 	At a height of 500 feet (152 m) the aircraft should be essentially
 

stabilized in the final landing configuration. Therefore, no
 

changes in flap angle, glide slope or turns were made below a
 

height of 500 feet (152 m).
 

2. The final approach descent rate was limited to a maximum of
 

1000 ft/min (5.1 m/sec).
 

5.5.3 Takeoff Techniques - Takeoff procedures incorporating variations in
 

flap retraction height, flap retraction rate, thrust cutback height and
 

thrust cutback amount were evaluated. The noise impact, based on a uniform
 

population density, produced by each of these techniques, relative to the
 

impact produced by the standard takeoff procedure is shown in Figures 5-29
 

through 5-32. The results show, for the EBF aircraft, that flap retraction
 

should occur as soon as practical after liftoff in order to minimize
 

propulsive-lift-system noise. The noise impact for the MF aircraft was not
 

particularly sensitive to flap retraction height or rate. Early flap
 

retraction was found to give a slight reduction in noise impact. Flap
 

retraction rate should be kept low to minimize hydraulic power requirements.
 

A rate of 3 deg/sec (0.05 rad/sec) was found to be the lowest rate which did
 

not increase noise impact. For both aircraft, thrust should be cut back to
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the lowest level consistent with safe aircraft operation. Selection of
 

thrust cutback height is based on a tradeoff between minimizing noise close
 

to or far from the airport. The particular value selected is strongly
 

influenced by the particular aircraft performance and noise generation
 

characteristics. From these results, a low-impact operational procedure
 

which produced the lowest noise impact based on a uniform population distri

bution was developed for each aircraft. The selected low-impact takeoff
 

operational procedure for each aircraft is defined as follows:
 

E-150-3000 M-150-4000 

Flap Retraction Height Ft(m) 200 (70) 250 (76) 

Flap Retraction Rate Deg/Sec (Rad/Sec) 3 (0.0525) 3 (0.0525) 

Thrust Cutback Height Ft(m) 1000 (305) 750 (229) 

Thrust Cutback Power % 64 66 

5.5.4 Approach Techniques - The small size of the noise contours for the
 

standard approach procedure was a limiting factor in evaluating potential
 

approach operational techniques for noise reduction. The techniques
 

evaluated were limited to two segment glide slopes and decelerating approaches.
 

The use of a two-segment glide slope did not prove to be useful for
 

noise levels above 80 EPNdB because of the low aircraft noise levels. The
 

approach noise contours for both aircraft were fully developed within the
 

second segment of the approach, so the first or steep glide slope segment
 

had no effect on the noise contours. The first- and second-segment glide
 

slope intersection height was chosen to be 750 feet (229 m) for the two

segment technique in order that stabilization be achieved prior to reaching
 

a height of 500 feet (152 m).
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The effect of descent rate isshown in Figure 5-33. This figure
 

shows that as the descent rate increases there isa reduction in noise impact.
 

Based on these results, the descent rate chosen for the low-impact approach
 

procedure was 1000 ft/min (5.1 m/sec). The landing flap extension rate was
 

held to a minimum to permit a low power setting while decelerating. The
 

selected low-impact approach procedure for each aircraft is defined as follows:
 

E-150-3000 M-150-4000
 

Descent Rate Ft/Min (m/sec) 1000 (5.1) 1000 (5.1)
 

Flap Extension Rate Deg/Sec (rad/sec) 1 (0.0175) 1 (0.0175)
 

Approach Power Idle Idle
 

The flight profiles for the low-impact procedure, for the E-150-3000
 

and M-150-4000 aircraft, are shown in Figures 5-34 through 5-37. The noise
 

contours corresponding to the low-impact procedure, for the E-150-3000 and
 

M-150-4000 aircraft, are shown inFigures 5-38 and 5-39. A comparison of
 

the standard and low-impact procedure, based on noise contour areas is
 

included below.
 

Mi2 (KM2)
EPNL Contour Area--


EPNL
 
Contour E-150-3000 M-150-4000
 

-(dB) Standard Low-Impact Standard Low-Impact
 

80 3.19(8.27) 2.61(6.77) 3.29(8.52) 2.77(7.17)
 

85 1.71(4.43) 1.22(3.16) 1.83(4.73) 1.45(3.75)
 

90 0.92(2.38) 0.73(l.90) 1.04(2.71) 0.82(2.13)
 

0.44(l.14) 0.38(0.98) 0.52(l.35) 0.50(l.30)
 

100 0.18(0.45) 0.18(0.45) 0.26(0.67) 0.26(0.67)
 

5.5.5 Sunmmary of Results - Takeoff and approach operational procedures were
 

developed for the EBF and MF aircraft which produce the lowest noise impact
 

based on a uniform population density. The small size of the low-impact
 

approach noise contours, relative to the takeoff noise contours implies that
 

little ifany reduction in noise impact can be obtained at an actual airport by
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FIGURE 5-35. 	 MINIMUM IMPACT LANDING APPROACH PROFILE-EXTERNALLY 
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optimizing the low-impact approach procedures. For this reason only the take

off procedures were optimized in Section 5.6 for actual community situations.
 

5.6 Community Noise Impact Evaluation
 

The potential for applying the previously described noise abatement
 

operational techniques to a number of representative existing short-haul air

ports isdemonstrated in this section. The four airports selected for this
 

evaluation are well known airports with recognized noise problems. The
 

representative sample includes primary CTOL, secondary CTOL, general aviation
 

and military joint-use airports, each with different community characteristics
 

and noise problems,
 

5.6.1 Objectives - The primary objective of the airport noise evaluation phase
 

of the study was to demonstrate that aircraft noise impact can be significantly
 

reduced by flight operational techniques. A secondary objective was the
 

development of an effective methodology or tool for assessing aircraft noise
 

impact on the airport and adjacent community. None of the noise evaluation
 

methods now inuse fully address the problem of community noise impact. It is
 

hoped this study will provide supporting data for the ultimate development
 

of an industry accepted standard noise prediction and evaluation procedure.
 

5.6.2 Evaluation Criteria and Procedures - The criterion used for evaluating 

the aircraft noise impact at a specific airport was the total number of 

people highly annoyed within the 80 EPNdB contour during a combined takeoff 

and landing operation. Noise contour area by itself is not an adequate 

measure of aircraft community noise impact unless the community has a uniform 

population density. This is rarely the case. Contour areas can be used to
 

compare noise differences between aircraft types and/or operational proce

dures; however, it isbelieved essential when measuring community noise impact
 

to determine the number of persons exposed, as well as the degree of annoy
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ance. The methodology which considers these elements for determining the
 

number of people annoyed has been previously described in Section 5.4.1.,
 

Many operational procedures were evaluated at each airport for
 

each aircraft type. A baseline or standard operational procedure was
 

derived using a flight profile developed on the.basis of estimated normal
 

operating procedures for short-haul aircraft.
 

As a result of the parametric study of flight operational techniques
 

of the EBF and MF aircraft a low-impact operational procedure was developed
 

for each aircraft type. The low-impact procedure incorporates the landing
 

and takeoff operational techniques which provided the lowest noise impact
 

assuming a uniform population distribution.
 

By superimposing the EPNL contours produced by the low-impact
 

operational procedure on a standard 7.5 minute U.S.G.S. topographical map
 

showing population distribution itwas possible to optimize or "fine-tune"
 

the low-impact operational procedure and resultant noise contour to the
 

specific airport configuration by varying flight techniques. Primary
 

operational variations were power cutbacks and turns. The contour was shaped
 

by varying the level of power cutback, cutback altitude, and turn amount
 

and altitude. Turns were made where appropriate to follow waterways, rail

roads, etc., or to avoid highly populated and noise sensitive areas.
 

Optimization was not possible for the landing operational procedure since
 

the area of the noise contours using the low-impact decelerating approach
 

technique already was minimal.
 

The population data input into the Douglas AlFA computer program
 

was derived from the 1970 census tract and block statistics reports issued
 

by the U.S. Bureau of the Census. In some instances itwas found necessary
 

to adjust the block data to reflect areas of zero population (e.g., rivers,
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lakes, parks, cemeteries, etc.). The population density was calculated
 

for each 500 foot (152 m) interval grid point over an area of approximately
 

130 square miles (337 sq. km.).
 

5.6.3 Airport Selection - A national network of short-haul airports was
 

developed under the previous NASA Short-Haul Systems Study conducted by the
 

Douglas Aircraft Company and reported in Reference 1. A total of over
 

200 airports were surveyed in the study and twelve representative airports
 

were selected for detailed community analysis. The current study selected
 

four of the twelve for evaluation of noise reduction flight operational
 

techniques. The four airports and their key characteristics are shown in
 

Figure 5-40. All currently are experiencing aircraft noise problems ranging
 

from moderate to severe.
 

5.6.3.1 Selection Criteria - The earlier NASA Systems Study contained a
 

detailed discussion of the reasons for selection of the twelve airports.
 

Primary criteria were airport type, activity level, geographical location,
 

adjacent land use, and relative importance to a national short-haul trans

portation system. The four airports evaluated inthe current study were
 

chosen as being most representative with respect to operational noise
 

problems and land use characteristics.
 

5.6.3.2 Airport Characteristics - Operational and community characteristics
 

of the four representative airports are summarized below;
 

BED - Hanscom Field. Laurence G. Hanscom Field is a joint-use general
 

aviation/military airport located near Bedford, Massachusetts at the western
 

boundary of the Boston metropolitan area. The airport isowned by the
 

Massachusetts Port Authority with a major portion leased to the USAF
 

Electronic Systems Command. The airport and military base encompasses
 

approximately 1125 acres (455 sq. km.). Current operations are almost
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AIRPORTS EVALUATED
 

NOISE REDUCTION OPERATIONAL TECHNIQUES
 

CODE AIRPORT NASP CLASS OPERATIONAL CLASS. LAND USE CATEGORY 

BED Hanscom Field S-2 G.A./Military Residential/Military 

Runway 5 

DCA Washington National P-2 Air Carrier/G.A. Recreational/Industrial 

Runway 18/36 

SNA Orange County S-i Air Carrier/G.A. Residential/Commercial 

Runway 19R 

MDW, Chicago Midway S-2 Air Carrier/G.A. Residential/Industrial 

Runway 22L 

Runway 31L 

FIGURE 5-40. 



exclusively general aviation, with relatively few military flights. Until
 

recently the field housed some active and reserve Air Force transport air

craft, but these have been relocated. There are no scheduled airline
 

activities at Hanscom at the present time, although the airport isdesignated
 

as a reliever for Boston-Logan and is classed as an S-2 (Secondary-Medium
 

Density) airport by the FAA.
 

Runway 5/23 was selected for short-haul operations due to its
 

proximity to the terminal. Runway 5 was selected for noise evaluation as
 

it ismore noise sensitive than Runway 23.
 

The relatively large military base includes some permanent military
 

housing and has an average population density of approximately 370 persons
 

per square mile (140 per sq. km.). Land use in the surrounding communities
 

is predominantly residential but is rural in character. Some light manufac

turing is interspersed throughout the area which isfairly wooded. Population
 

density currently is relatively light, averaging approximately 2000 persons
 

per square mile (800 per sq. km.), with higher concentrations inthe nearby
 

towns of Bedford, Lexington and Concord. Ambient noise levels of the general
 

a!-ea are relatively low. Primary noise sensitive areas are the MIT Lincoln
 

Laboratories which are located on the airport reservation and the Veterans
 

Administration Hospital located north of Bedford. Most aircraft noise
 

complaints originate from the adjacent towns of Lexington and Concord.
 

DCA - Washington National. Washington National Airport is a major
 

short-haul commercial airport located on the Virginia side of the Potomac
 

River near downtown Washington, D.C. The airport is owned and operated by
 

the Federal Aviation Administration. The field is located on filled land
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and encompasses approximately 650 acres (2.63 sq. km.).
 

DCA is designated as a class P-2 (Primary-Medium Density) airport
 

per NASP classification and handles approximately 5 million passengers
 

annually. Aircraft operations are approximately 70 percent air carrier
 

and 30 percent general aviation. G.A. activities are primarily business
 

jet aircraft. Air carrier operations are predominately short-haul and are
 

currently limited to aircraft of less than 200,000 pounds (90,720 kg.)
 

takeoff gross weight (B727 and smaller).
 

Runway 18/36 is the primary air carrier runway with operations
 

approximately 50 percent in each direction. Runway 36 was selected for noise
 

evaluation as it is the most critical with respect to community impact.
 

Stringent noise abatement flight procedures are currently in effect at DCA.
 

ATC procedures primarily direct flights over the Potomac River and away
 

from populated areas. Flights over government centers are prohibited.
 

Land use in the immediate airport vicinity is primarily recreational
 

and includes boating marinas, landscaped parkways, and a waterfowl santuary.
 

Arlington National Cemetary, Ft. Meyer, and the Pentagon are located to the
 

north and west of the airport. A major railroad marshalling yard is located
 

south and west of the airport. The city of Alexandria is located south of
 

the airport and the central and Georgetown areas of Washington, D.C. are to
 

the north.
 

Population density in the vicinity of Alexandria is approximately
 

12,000 persons per square mile (4600 per sq. km.) and in the D.C. and
 

Georgetown areas is approximately 20,000 persons per square mile (8500 per
 

sq. km.). The entire area is highly urbanized and ambient noise levels are
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relatively high due to automobile traffic and other concentrated urban
 

activities.
 

SNA - Orange County Airport. Orange County Airport is located in the
 

southern coastal region of the Los Angeles basin and serves the rapidly
 

growing South Bay area. The county-owned airport is located near the cities
 

of Newport Beach, Costa Mesa and Santa Ana. The airport is relatively small
 

in area, encompassing only 520 acres (2.1 sq. km.) but is one of the nation's
 

most active and controversial airports. The airport serves both short-haul
 

air carrier and general aviation operations and is a major reliever of LAX
 

traffic. SNA is rated as an S-1 (Secondary-High Density) airport according
 

to the 1972 NASP classification. In 1973 the level of aircraft operations
 

increased to over 630,000 making it the second busiest airport in the nation.
 

Air carrier operations, however, accounted for less than 1 percent of the
 

total.
 

The primary runway OIL/19R is the only runway capable of jet
 

operations. Due to prevailing wind conditions, runway 19R is used over
 

95 percent of the time. This runway also is the most noise sensitive and
 

therefore was selected for the subject noise evaluation. Rigid noise abate

ment procedures are in effect and permanent noise monitoring equipment is
 

installed.
 

Land use in the adjacent communities is predominantly residential,
 

however, the areas to the north and east include both military and industrial
 

facilities. The area to the north is sparsely populated but is fast becoming
 

urbanized. The communities of Costa Mesa to the west, and Newport Beach to
 

the south already are highly urbanized, with high value residential properties
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directly under the takeoff flight paths. Average value of homes within the
 

noise-impacted Newport Beach area is in excess of $50,000 according to the
 

1970 census. The University of California at Irvine is located just southeast
 

of the airport. Population density inthe Newport Beach area is approximately
 

9000 persons per square mile (3500 persons per sq. km.). Since the area
 

is predominantly high-value residential, ambient noise levels are relatively
 

low and accentuate the aircraft noise problem.
 

Accordingly, Orange County Airport in addition to being one of
 

the nation's busiest airports also isone of the most noise sensitive.,
 

MDW - Midway Airport. Chicago's Midway Airport, located in the Cicero
 

section of South Chicago, is one of the nation's earliest air carrier airports.
 

Dedicated in 1927, but relatively inactive since the opening of O'Hare
 

International in 1960, the airport recently has been actively promoted as a
 

reliever for O'Hare's short-haul traffic. Air carrier activity currently is
 

relatively light and the airport is highly under-utilized. Midway is owned
 

by the City of Chicago and managed by the Chicago Department of Aviation.
 

The airport encompasses approximately 640 acres (2.6 sq. km.) and is bordered
 

by residential areas on all four sides. As the airport was built prior to
 

the advent of all-weather operations there are no clear zones extending
 

beyond the field boundary.
 

Midway was rated as a Class S-2 (Secondary-Medium Density) airport
 

inthe 1972 National Airport Systems Plan and handled slightly over one million
 

total passengers annually. Air carrier operations currently account for less
 

than 10 percent of the total operations, the remainder being predominently
 

general aviation with some military reserve activity.
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Runways 4R/22L and 13R/31L are the primary air carrier runways. Due
 

to prevailing wind conditions, runways 22L and 31L are the predominant use
 

runways and were accordingly selected for noise evaluation. The majority
 

of noise complaints originate from operations on runway 31L. Departures
 

from runways 22L and 31L are split approximately 60 percent to the west
 

and 40 percent to the east. Departure turns are made to the right or left
 

on either runway but are held to within a 3 mile (4.8 km.) radius of the
 

field to avoid conflict with O'Hare traffic. Midway traffic is closely
 

coordinated with O'Hare operations and approaches and departures normally
 

use runway directions similar to those at O'Hare. There are no special
 

noise abatement procedures in effect at Midway at the present time.
 

Land use in the immediate vicinity of Midway is predominantly
 

residential with single dwelling housing extending up to the city streets
 

bordering the mile square airport area. Approximately twenty-two schools
 

are located within a two mile (3.2 km.) radius of the airport. An industrial
 

corridor parallels the Southwest Expressway approximately one mile (1.6 km.)
 

north of the airport. The Chicago sanitary and ship canal and the Santa Fe
 

tracks also follow this corridor which extends in a southwesternly direction
 

The corridor widens into a major industrial area approximately 3 miles
 

(5 km.) west of the airport near the Des Plaines river. A second large
 

industrial area is located approximately one-half mile (.8 km.) south of
 

the airport. This area in the Bedford Park Section of Chicago includes a
 

major rail marshalling yard, extensive factories, and other industrial
 

facilities. The area to the east of the airport is mostly single story
 

residential. Population density of the residential areas in the immediate
 

vicinity of the airport is approximately 15,000 persons per square mile
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(5800 persons per sq. km.). Population density increases to approximately
 

40,000 persons per square mile (15,500 persons per sq. km.) in the Englewood
 

section, approximately 5 miles (8 km.) east of the airport. Maximum popula

tion density in the survey area is 54,000 persons per square mile (21,000
 

persons per sq. km.) in the high-rise apartment areas near Douglas Park,
 

approximately 6 miles (10 km.) northeast of Midway Airport.
 

Ambient noise levels in the immediate vicinity of Midway are
 

relatively high due to the high degree of urbanization and related surface
 

vehicular traffic. This may account for the relatively small number of noise
 

complaints experienced at Midway.
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5.6.4 Community Noise Impact - EBF Airplane - Aircraft characteristics 

and noise reduction flight operational techniques applicable to the
 

E-150-3000 airplane were previously discussed in Sections 5.2 and 5.5. The
 

following describes the results of applying these techniques at the four
 

study airports. Landing and takeoff flight profiles and noise footprint
 

maps are shown for the E-150-3000 standard, low-impact, and minimum-impact
 

procedures at each airport. The low-impact flight procedures and resultant
 

noise contours were developed from the operational parametric analysis
 

which assumed a uniform population distribution. The standard and low-impact
 

flight procedures therefore are the same at all airports. The minimum-impact
 

procedure was developed by "fine-tuning" the flight procedures to specific
 

airport and community characteristics and differs at each airport.
 

The landing procedure for the E-150-3000 minimum-impact profile
 

also is identical to that of the low-impact landing flight profile since
 

the low-impact approach procedure developed in the acoustic parametric
 

study represents the optimum within acceptable limits of flight safety.
 

Accordingly, the resultant landing condition noise footprints for both the
 

low-impact and minimum-impact cases are identical for all airports and runway
 

combinations.
 

The standard takeoff and landing flight profiles of the E-150-3000
 

airplane were previously shown in Figures 5-16 and 5-20. The low-impact
 

landing and takeoff flight profiles of the E-150-3000 airplane were shown
 

in Figures 5-34 and 5-35.
 

Single-event noise contours for 100, 95, 90, 85, and 80 EPNdB
 

levels were developed for each flight procedure. The NASA Systems Study
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* 	 (Reference 1) did not evaluate noise levels below 90 EPNdB. Itwas found
 

during the current study that a significant number of people are affected
 

within the contour bands between 80 and 90 EPNdB which justifies investigation
 

of the lower noise level. The single-event noise level of 80 EPNdB for
 

the two aircraft analyzed translates to approximately 67 dBA which is below
 

the ambient noise level of most urban communities.
 

5.6.4.1 Noise Impact - HANSCOM FIELD - The community noise impact evaluation
 

of the 	standard, low-impact, and minimum-impact flight procedures of the 

E-150-3000 airplane at Hanscom Field Runway 5 is summarized below.
 

Standard Procedure. The single-event landing and takeoff noise footprints
 

resulting from the standard or baseline operational techniques are shown
 

* 	 in Figure 5-41. As shown, the 100 EPNdB footprint is almost entirely contained
 

within the airport boundary. The 90 EPNdB footprint, which is normally con

sidered the complaint threshold, also is more than 50 percent airport contained.
 

The 85 and 80 EPNdB footprints project into the town of Bedford with the
 

80 EPNdB spike extending to the Massachusetts Turnpike, approximately 3 miles
 

(4.8 km) from the airport.
 

Low-Impact Procedure. The single-event noise footprints using the low-impact
 

flight procedure are shown in Figure 5-42. The power cutback used in this 

technique shortened the 90 and 85 EPNdB takeoff lobes reducing their impact 

on Bedford. The 80 EPNdB takeoff spike however was lengthened approximately 

1 mile (1.6 ki) due to the reduced climb gradient after thrust cutback. 
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NOISE FOOTPRINTS - STANDARD FLIGHT PROCEDURE
 
HANSCOM FIELD, RWY 5 - E.150.3000 AIRPLANE
 

I4 

.734
 

Ii
 

EI GURJ 5-41. 
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NOISE FOOTPRINTS - LOW IMPACT PROCEDURE
 
HANSCOM FIELD, RWY 5 - E.150.3000 AIRPLANE
 

FIGURE 5-42.
 

175
 



Minimum-Impact Procedure. The minimum-impact flight procedure represents 

the best of eight different techniques investigated. Primary perturbations
 

were variations in power cutback amount and cutback altitude. Although
 

the previous study of Reference 1 showed a curvilinear takeoff path at
 

Hanscom, examination of the census population distribution indicated a
 

straight flight path was most effective in reducing population impact. A
 

takeoff power cutback to 64 percent gross takeoff thrust at an altitude of
 

800 feet (244 m), as shown inFigure 5-43, provided the minimum community 

impact. The resultant single-event noise footprints are shown inFigure 5-44. 

As noted, the 90 EPNdB lobe falls short of the town of Bedford and the 

85 EPNdB lobe projects only slightly into the urbanized section of the town. 

The 80 EPNdB takeoff spike however islengthened due to the reduced climb 

gradient and extends approximately 5 miles (8km) up the Shawsheen River 

almost to the town of Pinehurst. This area is relatively unpopulated. Only 0 
one school isimpacted by the 80 EPNdB footprint of the minimum-impact 

procedure. 

A summary of the community impact of the above flight procedures
 

is presented inTable 5-5. Both the total population affected and the number
 

of persons highly annoyed are shown. The low-impact procedure provided a
 

36 percent reduction inpersons highly annoyed and the minimum-impact
 

procedure provided a slightly greater reduction of 37 percent. The minimum

impact procedure, however, resulted in224 additional persons exposed to the
 

80 EPNdB footprint compared to the low-impact procedure.
 

5.6.4.2 Noise Impact - WASHINGTON NATIONAL - The community noise impact 

evaluation of the E-150-3000 airplane at Washington National Runway 36 is 

summarized below. Results of the standard flight technique using Runway 18 
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TABLE 5-5 
NOISE IMPACT SUM4ARY - E.150.3000 AIRPLANE 

HANSCOM FIELD - RUNWAY 5 

STANDARD PROCEDURE LOW-IMPACT PROCEDURE MINIMUM-IMPACT PROCEDURE 
EPNL Contour Area Population Contour Area Population Contour Area Population
Contour Sq.. Sq.Km. Affected Annoyed Sq.i. Sq.Km. Affected Annoyed Sq.Mi. Sq.Km. Affected Annoyed 

100 0.18 0.45 56 27 0.18 0.46 53 26 0.18 0.46 53 26
 

95 0.44 1.14 142 57 0.38 0.98 117 48 0.38 0.98 117 48
 

90 0.92 2.38 427 125 0.73 1.90 322 99 0.69 1.79 261 85
 

85 1.71 4.43 1122 230 1.22 3.16 616 141 1.18 3.07 564 124
 

80 3.19 8.27 2682 297 2.61 6.77 1855 190 2.84 7.37 2079 188
 



also are presented due to the high usage of this less noise sensitive runway. 

Standard Procedure. The single-event landing and takeoff noise footprints
 

using the standard procedure for a north arrival and departure on Runway 36
 

are shown in Figure 5-45. The 100 and 95 EPNdB footprint are essentially
 

contained within the airport boundary. The major portion of the 90 and 85
 

EPNdB footprints extend over the Potomac River with some land impact along
 

unpopulated areas of the river bank. The 80 EPNdB footprint of the straight
 

departure path extends across Constitution Avenue into the downtown section
 

of D.C. just west of the White House.
 

Low-Impact Procedure. The single event noise footprints using the low-impact
 

procedure are shown in Figure 5-46. The power cutback used in this procedure
 

shortened the 90 and 85 EPNdB takeoff lobes but extended the 80 EPNdB spike
 

approximately 1 mile (1.6 km) into the downtown D.C. area to a point slightly
 

beyond DuPont Circle.
 

Minimum-Impact Procedure. A total of seven different takeoff maneuvers were 

evaluated in developing the minimum-impact procedure. A turning takeoff 

flight path was used in developing the minimum-impact footprint shown in
 

Figure 5-47. The corresponding takeoff flight profile is shown in Figure 5-48.
 

A 30 degree (.524 radian) left turn initiated at 500 feet (152 m) with a power
 

cutback to 64 percent maximum gross takeoff thrust at 1275 feet (389 m) on
 

completion of the turn resulted in zero population impact. As shown, the
 

resultant flight path extends up the Potomac River with the 80 EPNdB foot

print spike terminating near the Roosevelt Memorial on Theodore Roosevelt
 

Island.
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NOISE FOOTPRINTS - STANDARD FLIGHT PROCEDURE 
WASHINGTON NATIONAL, RWY 36 - E-1503000 AIRPLANE 
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NOISE FOOTPRINTS - LOW-IMPACT PROCEDURE
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NOISE FOOTPRINTS - MINIMUM IMPACT PROCEDURE 
WASHINGTON NATIONAL, RWY 36 - E.150-3000 AIRPLANE 

FIGURE 5-47. 
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* 	 Standard Flight Procedure - Runway 18. The standard flight procedure also 

was examined using a south arrival and departure on Washington National 

Runway 18 as shown inFigure 5-49. The 80 EPNdB footprint of the straight 

departure path extends over the Potomac River and impacts only a small 

unpopulated section of the river bank on the Virginia side. Since the 

population impact of the standard procedure was zero, evaluation of addition

al operational techniques for this runway was considered unnecessary. 

The results of the community impact evaluation of the E-150-3000
 

at Washington National Airport are summarized inTable 5-6. Itshould be
 

noted that the population impact of the low-impact procedure on Runway 36 

was greater than that of the standard procedure. The increase from the 

standard procedure resulted from a lower power cutback height which extended
 

* 	 the 80 and 85 EPNdB contours over highly populated areas. The minimum-impact 

procedure for Runway 36 resulted in zero impact, as did the standard flight 

procedure on Runway 18. 

5.6.4.3 Noise Impact - ORANGE COUNTY AIRPORT - The community noise impact 

evaluation of the standard, low-impact, and minimum-impact flight procedures 

of the E-150-3000 airplane at Orange County Airport, Runway 19R is summarized
 

below.
 

Standard Procedure. The single-event landing and takeoff noise footprints
 

using 	the standard flight procedure are shown in Figure 5-50. The 100 and 

the 95 EPNdB footprints are essentially contained within the airport boundary,
 

with the 90 and 85 EPNdB takeoff and sideline lobes extending slightly into
 

residential areas adjacent to the southern boundaries of the airport. The
 

@80 EPNdB takeoff lobe of the straight departure path extends into highly
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NOISE FOOTPRINTS - STANDARD FLIGHT PROCEDURE
 
WASHINGTON NATIONAL, RWY 18 - E1503000 AIRPLANE
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Table 5-6 
NOISE IMPACT SUMMARY - E.150.3000 AIRPLANE 

WASHINGTON NATIONAL - RUNWAY 36* 

EPNL 
Contour 

STANDARD PROCEDURE 
Contour Area Population 

Sq.MI. Sq.Km. Affected Annoyed 

LOW IMPACT-PROCEDURE 
Contour Area Population 

Sq.Ml. SQ.Km. Affected Annoyed 

MINIMUM-IMPACT PROCEDURE 
Contour Area Population 

Sq.Mi. Sq.Km. Affected Annoyed 

100 0.18 0.45 0 0 0.18 0.46 0 0 0.18 0.46 0 0 

95 0.44 1.14 0 0 0.38 0.98 0 0 0.38 0.98 0 0 

90 0.92 2.38 0 0 0.73 1.90 0 0 0.75 1.95 0 0 

co 85 1.71 4.43 0 0 1.22 3.16 0 0 1.39 3.61 0 0 

80 3.19 8.27 649 9 2.61 6.77 3116 30 2.42 6.26 0 0 

* NOTE: Population affected and/or annoyed is zero for all three above flight 

procedures when operating from Runway 18. 
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*noise sensitive residential areas around Upper Newport Bay, although a major
 

portion impacts upon the Bay itself.
 

Low-Impact Procedure. The single event noise footprints using the low-impact 

procedure are shown in Figure 5-51. The power cutback with this procedure 

reduced the impact of the sideline noise but increased the impact of the 

80 EPNdB takeoff spike which extends approximately 3 miles (4.8 km) southward 

to the Coast Highway. 

Minimum-Impact Procedure. A total of twelve flight procedures were evaluated.
 

The takeoff procedure which produced the lowest impact is presented in
 

Figure 	5-52. The minimum-impact procedure involved a power cutback to 

66 percent gross takeoff thrust initiated at 750 feet (229 m) altitude
 

followed by a 20 degree (.349 radian) turn to the left initiated at 850 feet
 

(259 m) altitude followed by a power reduction to 64 percent thrust. The
 

resultant minimum-impact noise footprint Is shown in Figure 5-53. The flight
 

path parallels the centerline of Upper Newport Bay. The early power cutback
 

significantly decreases the sideline noise impact near the field boundary. 

The 80 EPNdB takeoff spike extends over a populated area in the East Bluff
 

section of the City of Newport Beach and slightly into Balboa Island, however,
 

no schools are located within the minimum-impact footprint. Shortening the
 

80 EPNdB spike increased the sideline impact in the Upper Newport Bay area
 

and resulted in greater total impact. A power variation technique, as shown 

in Figure 5-54 was tried in an attempt to reduce the sideline noise impact
 

but also resulted in an increase in overall noise impact. The noise foot

prints 	of the above power variation technique shown in Figure 5-55 are
 

* 	 shown to illustrate the effect of power variations on the sideline noise
 

contours.
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O NOISE FOOTPRINTS - MINIMUM IMPACT PROCEDURE 
ORANGE COUNTY AIRPORT, RWY 19 R - E1503000 AIRPLANE
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NOISE FOOTPRINTS - POWER VARIATION PROCEDURE 
ORANGE COUNTY AIRPORT, RWY 19R - E-150.3000 AIRPLANE 

FIGURE 5-55. 
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A summary of the standard, low-impact, and minimum-impact procedures 

is presented in Table 5-7. The total population affected and number of highly
 

annoyed persons are summarized for each procedure. The low-impact procedure 

resulted in a 31 percent reduction in persons annoyed by the 80 EPNdB foot

print relative to the standard procedure. The minimum-impact procedure 

further reduced the community noise impact an additional 9 percent for a 

total reduction of 40 percent over the standard procedure. 

5.6.4.4 Noise Impact - MIDWAY AIRPORT - The community noise evaluation 

of the standard, low-impact, and minimum-impact flight procedures of the 

E-150-3000 airplane at Chicago's Midway Airport ispresented below. The
 

evaluation was conducted for Runways 22L and 31L since both are high usage
 

runways.
 

OStandard Procedure. The single-event noise footprints using the baseline
 

or standard procedure are shown inFigure 5-56. Except for a small portion
 

of the approach lobe, the 100 EPNdB footprints are contained within the
 

airport boundary. The approach and takeoff lobes of the 95 to 80 EPIdB
 

footprints extend into the residential areas at the end of each runway as
 

shown.
 

Low-Impact Procedure. The single-event noise footprints of the low-impact 

procedure at each runway are shown in Figure 5-57. 

Minimum-Impact Procedure. A total of seventeen different takeoff flight 

procedures were evaluated for Midway Airport Runway 22L. The flight procedure 

which resulted inminimum impact is plotted in Figure 5-58. The procedure 

combines a power cutback to 66 percent gross takeoff thrust at an altitude 

of 500 feet (152 m)with a 45 degree (.785 radian) right turn initiated at 
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TABLE 5-7 

NOISE IMPACT SUMMARY - E.150.3000 AIRPLANE 

ORANGE COUNTY AIRPORT - RUNWAY 19R 

EPNL 
Contour 

STANDARD 
Contour Area 

SQ.Mi. Sq.Km. 

PROCEDURE 
Population 

Affected Annoyed 

LOW IMPACT-PROCEDURE 
Contour Area Population 

Sq.Mi. Sq.Km. Affected Annoyed 

MINIMI' -IMPACT PROCEDURE 
Contour Area Population 

Sq.Mi. Sq.Kin. Affected Annoyed 

100 0.18 0.45 5 3 0.18 0.46 5 3 0.18 0.46 5 3 

95 0.44 1.14 131 44 0.38 0.98 143 48 0.38 0.98 143 48 

90 0.92 2.38 769 201 0.73 1.90 582 158 0.70 1.81 383 109 

01 
85 1.71 4.43 1808 354 1.22 3.16 1169 249 1.22 3.16 1126 214 

80 3.19 8.27 4882 468 2.61 6.77 3857 324 2.89 7.49 3067 282 

0
 



NOISE FOOTPRINTS - STANDARD FLIGHT PROCEDURE 
MIDWAY AIRPORT, RWYS 22L, 31L - E-150-3000 AIRPLANE 

FIGURE 5-56. 
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600 feet (183 m) and subsequent power cutback to 64 percent. This procedure
 

directed the flight path over the unpopulated railroad classification yards
 

in the Stickney district south and west of the airport as shown inFigure
 

5-59.
 

The minimum-impact procedure lengthens the 85 and 80 EPNdB takeoff
 

lobes due to the reduced climb gradient, however, the lobes extend over
 

relatively unpopulated industrial areas. The one school located within the
 

minimum-impact footprint isexposed to a level of only 85 EPNdB on takeoff.
 

A similar procedure proved the most effective of seventeen takeoff flight
 

procedures evaluated using Midway's Runway 31L. Power cutback amount and
 

altitude were identical but a 45 degree (.785 radian) left turn was initiated
 

at a slightly higher altitude of 700 feet (213 m) to impact on the relatively
 

unpopulated industrial area west of the Chicago sanitary and ship canal. The
 

minimum-impact procedure for Runway 31L is plotted in Figure 5-60. The
 

resultant noise footprints were shown in the previous Figure 5-59. A total
 

of four schools and a monastery are contained within the noise impact area,
 

however none are exposed to a noise level greater than 85 EPNdB.
 

A summary table of the standard, low-impact, and minimum-impact
 

flight procedures for the E-150-3000 airplane at Midway Airport, Runway 22L
 

is presented in Table 5-8. The low-impact procedure resulted in a 39 percent
 

reduction in persons highly annoyed compared to the baseline case and the
 

minimum-impact procedure resulted in a 45 percent reduction over the base

line.
 

As shown inTable 5-9 which summarizes the noise impact on Runway
 

31L, the low-impact procedure resulted ina 25 percent reduction inpersons
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TABLE 5-8 

NOISE IMPACT SUMMARY - E.150.3000 AIRPLANE 

MIDWAY AIRPORT - RUNWAY 22L 

STANDARD PROCEDURE LOW-IMPACT PROCEDURE MINIMUM-IMPACT PROCEDURE
 
EPNL Contour Area Population Contour Area Population Contour Area Population
 
Contour Sq.Mi. Sq.Km. Affected Annoyed SQ.Mi. Sq.Km. Affected Annoyed Sq.Mi. SQ.Km. Affected Annoe
 

100 0.18 0.45 94 39 0.18 0.46 0 0 0.18 0.46 0 0
 

95 0.44 1.14 1343 455 0.38 0.98 952 329 0.37 0.97 814 280
 

90 0.92 2.38 4005 1119 0.73 1.90 2212 666 0.62 1.62 1800 543
 

85 1.71 4.43 7187 1595 1.22 3.16 4466 1000 1.35 3.49 3778 855
 

80 3.19 8.27 11960 1819 2.61 6.77 8018 1117 3.21 8.32 6895 997
 



TABLE 5- 9
 

NOISE IMPACT SUMMARY - E.150.3000 AIRPLANE
 

MIDWAY AIRPORT - RUNWAY 31L
 

STANDARD PROCEDURE LOW-IMPACT PROCEDURE MINIMUM-IMPACT PROCEDURE 
EPNL Contour Area Population Contour Area Population Contour Area Population
 
Contour Sq.Mi. 1Sq.Km. Affected Annoyed Sq.Mi. Sq.Km. Affected Annoyed Sq.M1. Sq.Km. Affected Annoyed 

100 0.18 0.45 0 0 0.18 0.46 101 41 0.18 0.46 101 41 

95 0.44 1.14 1553 529 0.38 0.98 997 340 0.37 0.97 795 275
 

90 0.92 2.38 4969 1368 0.73 1.90 3743 995 0.62 1.62 2427 662
 

85 1.71 4.43 8682 1909 1.22 3.16 6395 1388 1.34 3.48 5687 1142
 

80 3.19 8.27 15559 2168 2.61 6.77 12780 1619 3.19 8.27 9956 1322
 

00 0 



highly annoyed compared to the baseline procedure. The minimum-impact
 

procedure provided an additional 14 percent reduction, or a total reduction
 

of 39 percent compared to the standard procedure.
 

5.6.5 Evaluation of EBF Aircraft with Oversized Engines - An E-150-3000 EBF
 

airplane with 10 percent oversized engines was selected for evaluation as
 

previously discussed inSections 3.3 and 5.4.4. The evaluation was conducted
 

using Midway Airport Runways 22L and 31L as this airport and runway combina

tion has the largest population concentration of the four study airports.
 

Results of the evaluation are directly comparable to the results of the
 

basic E-150-3000 airplane since similar flight procedures were used.
 

Development of a low-impact procedure for this airplane was
 

considered unnecessary since it is similar to the baseline E-150-3000 air-


O plane.
 

Standard Procedure. The takeoff and landing profiles for the standard flight
 

procedure for this aircraft were shown in Figures 5-17 and 5-21 respectively.
 

The resultant single-event noise footprints for Midway Runways 22L and 31L
 

are shown inFigure 5-61. The footprints are similar in shape to those of
 

the basic E-150-3000 airplane previously presented in Figure 5-56. 

Minimum-Impact Procedure. The minimum-impact takeoff profiles for the 

E-150-3000 airplane with 10 percent oversized engines at Midway Runways 22L 

and 31L are shown in Figures 5-62 and 5-63 respectively. These procedures 

were similar to those of the basic E-150-3000 airplane except for degree of
 

power cutback and turn altitude. The minimum-impact landing procedure is
 

shown in Figure 5-64. The resultant noise footprints are shown in Figure
 

5-65. 
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FIGURE 5-61. 
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NOISE FOOTPRINTS - MINIMUM IMPACT PROCEDURE 
MIDWAY AIRPORT, RWYS 22L, 31L - E.1503000 AIRPLANE 
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Results of the noise impact evaluation of the E-150-3000 airplane 

with 10 percent oversized engines using Midway Runway 22L are summarized in 

Table 5-10. The minimum-impact procedure of this aircraft resulted in a 

49 percent reduction over the comparable standard procedure. The oversized 

engine airplane on this runway also resulted in a 9 percent reduction in
 

number of persons highly annoyed compared to the similar minimum-impact 

procedure for the basic E-150-3000 airplane. 

A summary of the oversized engine airplane using Runway 31L is 

presented in Table 5-11. The minimum-impact procedure of the oversized
 

engine airplane resulted in a 39 percent reduction in number of persons 

highly annoyed compared to the baseline procedure. The oversized engine
 

airplane also resulted in a 7 percent reduction in persons highly annoyed
 

compared to that of the basic E-150-3000 airplane for this airport and
 

runway combination.
 

5.6.6 Community Noise Impact - MF Airplane - Aircraft characteristics 

and noise reduction flight operational techniques applicable to the two
 

engine MF-150-4000 airplane were discussed in Sections 5.3 and 5.5. The
 

results of applying those techniques to the four study airports are described
 

in this section. The evaluation procedures were similar to those used in
 

evaluating the comunity noise impact of the EBF airplane and discussed in
 

Section 5.6.4. A standard and low-impact procedure which assumed a uniform
 

population distribution was developed and evaluated at each airport and
 

runway combination. The low-impact procedure was then modified to minimize
 

population impact by tailoring the takeoff operational procedures to the
 

specific airport configuration and population characteristics. The resultant
 

procedure is termed the minium-impact procedure. 
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TABLE 5-10
 

NOISE IMPACT SUMMARY - E.150.3000 AIRPLANE
 

10% OVERSIZED ENGINES
 

MIDWAY AIRPORT - RUNWAY 22L
 

STANDARD PROCEDURE LOW-IMPACT PROCEDURE* MINIMUM-IMPACT PROCEDURE
 
EPNI Contour Area Population Contour Area Population Contour Area Population 
Contour Sq.Mi. Sq.Km. Affected Annoyed S Mi. Sq.Km. Affected Annoyed Sq., S.lKm. Affected Anoyed 

100 0.17 0.44 94 40 0.16 0.41 45 18
 

95 0.41 1.05 943 321 0.35 0.91 457 154
 

N 90 0.85 2.21 3760 1032 0.59 1.52 1465 399 

85 1.60 4.13 7423 1573 1.26 3.26 3816 760
 

80 2.95 7.63 12282 1776 2.99 7.75 6940 903
 

*NOTE: Low Impact flight procedure developed for basic E.150.3000 airplane also is
 

applicable to oversized engine airplane. Low impact contour unnecessary for 

oversized engine case. 

00 0 



TABLE 5-11 
NOISE IMPACT SUMMARY - E.150.3000 AIRPLANE 

10% OVERSIZED ENGINES 

MIDWAY AIRPORT - RUNWAY 31L 

EPNL 
Contour 

STANDARD PROCEDURE 
Contour Area Population 

Sq.Mi. Sq.Km. Affected Annoyed 

LOW-IMPACT PROCEDURE* 
Contour Area Population 
Sq.Mi. Sq.Km. Affected Annoyed 

MINI4JM-IMPACT PROCEDURE 
Contour Area Population 

Sq.Mi. Sq.Yn. Affected Annoyed 

100 0.17 0.44 0 0 0.16 0.41 0 0 

95 0.41 1.05 1210 418 0.35 0.91 582 198 

90 0.85 2.21 4338 1187 0.59 1.52 2187 568 

85 1.60 4.13 9002 1866 1.26 3.27 5688 1042 

80 2.95 7.63 14258 2032 2.97 7.68 10245 1236 

*NOTE- Low Impact flight procedure developed for basic E.150.3000 airplane also 

is applicable to oversized engine airplane. Low impact contour unnecessary 

for oversized engine case. 



The standard takeoff and landing flight profiles of the M-150-4000 is
 

airplane were previously shown inFigures 5-19 and 5-23 respectively. These
 

profiles and the resultant noise footprints are identical for each airport.
 

The low-impact flight profiles of the takeoff and landing procedure 

for this aircraft were previously shown in Figures 5-36 and 5-37 respectively. 

These profiles and the resultant low-impact noise footprints also are identical 

for each airport and runway combination. As with the EBF airplane, the 

landing portions of the low-ipact and minimum-impact procedures are identical. 

Takeoff profiles of the M-150-4000 minimurimpact procedures, however, differ 

for each airport and runway combination. Single-event noise contours for 

EPNLs of 100, 95, 90, 85, and 80 EPNdB were produced for each flight procedure. 

The shape of the noise footprints of the M-150-4000 differ from
 

those of the E-150-3000 airplane due to differences in design sideline noise
 

levels and aircraft performance characteristics of the two aircraft types.
 

The approach and takeoff lobes of the M-150-4000 footprints are slightly
 

wider than the E-150-3000 due to the higher design sideline noise level.
 

The takeoff lobes are shorter because of the greater climb gradient of 

the M airplane. 

5.6.6.1 Noise Impact - HANSCOM FIELD - The conmunity noise impact evaluation
 

of the standard, low-ipact, and mininum-impact flight procedures of the
 

M-150-4000 airplane is summarized below:
 

Standard Procedure. The single-event landing and takeoff noise footprints
 

using the standard or baseline procedure are shown in Figure 5-66. As with
 

the EBF airplane the 100 EPNdB footprint is essentially contained within the
 

airport boundary.
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NOISE FOOTPRINTS - STANDARD FLIGHT PROCEDURE
 
HANSCOM FIELD, RWY 5 - M.150.4000 AIRPLANE
 

FIGURE 5-66. 

215
 



Low-Impact Procedure. The single-event landing and takeoff noise footprints
 

of the low-impact procedure are shown in Figure 5-67. 

Mininum-Impact Procedure. A total of twelve takeoff procedures were evaluated 

and it was found the straight flight path low-impact procedure also resulted
 

in minimum impact. The technique used in this procedure involved raising the
 

landing flaps at 250 feet (76 m) altitude with a power cutback to 66 percent
 

of gross takeoff thrust initiated at an altitude of 750 feet (2f9 m). The
 

resultant noise footprints were shown in Figure 5-67. As in the case of the
 

EBF airplane, no schools are contained within the footprint areas.
 

Results of the community noise evaluation of M-150-4000 airplane
 

airplane at Hanscom Field, Runway 5 are summarized in Table 5-12. The
 

mininum-ipact procedure resulted in a reduction of 33 percent in the number
 

of persons highly annoyed compared to the standard or baseline procedure. 

5.6.6.2 Noise Impact - WASHINGTON NATIONAL - The community noise evaluation 

of the standard, low-impact, and minimum-impact procedures of the M-150-4000 

airplane at Washington National is discussed below. 

Standard Procedure. The single-event landing and takeoff noise footprints
 

using the standard procedure are shown in Figure 5-68. The 80 EPNdB foot

print of the straight flight path projects slightly beyond Consitution Avenue
 

near 19th Mtreet.
 

Low Impact Procedure. The single-event noise footprints of the low-impact
 

procedure are shown in Figure 5-69. As noted,the power cutback of the
 

straight flight path low-impact procedure narrowed and lengthened the 80
 

EPNdB spike of the takeoff lobe causing it to project slightly farther into
 

downtown D.C.
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NOISE FOOTPRINTS LOW-IMPACT PROCEDURE 
HANSCOM FIELD, RWY S - H4150"4000-AIRPLANE 

(ALSO MINIMIJM-IMPACT) 

FIGURE 5-67. 
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TABLE 5-12
 

NOISE IMPACT SUMMARY - M.150.4000 AIRPLANE
 

HANSCOM FIELD - RUNWAY 5
 

STANDARD PROCEDURES LOW-IMPACT PROCEDURE MINIMUM-IMPACT PROCEDURE* 
EPNL Contour Area Population Contour Area Population Contour Area Population
Contour Sq.Mi. Sq.Km. Affected Annoyed SQ.MI. Sq.Km. Affected Annoed Sq.MT. Sq.Km. Affected Annoyed 

100 	 0.26 0.67 80 40 0.28 0.73 90 45 0.28 0.73 90 45
 

95 	 0.52 1.35 199 81 0.50 1.30 185 77 0.50 1.30 185 77 

90 	 1.04 2.71 636 187 0.82 2.13 303 107 0.82 2.13 303 107
 

N 
- 85 1.83 4.73 1372 298 1.45 3.75 857 186 1.45 3.75 857 186
O 

80 	 3.29 8.52 2836 361 2.77 7.17 2136 243 2.77 7.17 2136 243
 

*NOTE: 	 Low impact procedure also is the minimum impact procedure for this 

airport and runway combination. 

0 	 0
 



OISE FOOTPRINTS - STANDARD FLIGHT PROCEDURE 
WASHINGTON NATIONAL, RWY 36 - M-150.4000 AIRPLANE 

FIGURE 5-68. 
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NOISE FOOTPRINTS - LOW-IMPACT PROCEDURE 
WASHINGTON NATIONAL, RWY 36 -M150,4000 AIRPLANE 

FIGURE 5-69. 
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Minimum-Impact Procedure. A total of seven takeoff techniques were evaluated
 

before arriving at the minimum-impact procedure described in Figure 5-70.
 

This technique involved raising the landing flaps at an altitude of 250 feet
 

(76 m) and initiating a 30 degree (.524 radian) left turn at 500 feet (152 m)
 

altitude. Power was subsequently reduced to 66 percent gross takeoff thrust 

upon reaching an altitude of 1450 feet (442 m). Although this procedure
 

widened the takeoff lobes of the 85 and 80 EPNdB footprints as shown in
 

Figure 5-71, the footprints do not impact on populated areas. The minimum

impact procedure resulted in zero population impact. 

Standard Flight Procedure - Runway 18. The standard flight procedure of the
 

M-150-4000 airplane also was evaluated using a southbound straight approach
 

and departure on Runway 18. As shown in Figure 5-72, the footprints are
 

wider than those of the EBF airplane, however,the footprint land impact is
 

over unpopulated riverbank areas of the Potomac. The resultant population
 

impact of the standard procedure was zero and eliminated the need of investi

gating additional techniques for this runway.
 

The results of the community noise evaluation of the M-150-4000
 

airplane at Washington National Airport are summarized in Table 5-13. The
 

minimum-impact procedure on Runway 36 and the standard procedure on Runway 18
 

both resulted in zero population exposure.
 

5.6.6.3 Noise Impact - ORANGE COUNTY AIRPORT - The community noise impact 

evaluation of the standard, low-impact, and minimum-impact procedures for
 

the M-150-4000 airplane at Orange County Airport Runway 19R is discussed
 

below. 

Standard Procedure. The single-event landing and takeoff noise footprints
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NOISE FOOTPRINTS - MINIMUM IMPACT PROCEDURE 
WASHINGTON NATIONAL, RWY 36 - M.150.4000 AIRPLANE 

'rf
34 

FIGURE 5-71. 

2Z23 



NOISE FOOTPRINTS - STANDARD FLIGHT PROCEDURE 
WASHINGTON NATIONAL, RWY 18 - M-150.4000 AIRPLANE 

FIGURE 5-72. 
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TABLE 5-13 

NOISE IMPACT SUMMARY - M.150.4000 AIRPLANE 

WASHINGTON NATIONAL - RUNWAY 36* 

EPNL 
Contour 

STANDARD PROCEDURE 
Contour Area Population 

Sq.Mi. Sq.Km. Affected 

LOW-IMPACT PROCEDURE 
Contour Area Population

jAnnoyedSQ.Mi. Sq.Km. Affected Annoyed 

MINIMUM-IMPACT PROCEDURE 
Contour Area Popu ation 

SQ.Mi. SQ.Km. Affected Annoyed 

100 0.26 0.67 0 0 0.28 0.73 0 0 0.28 0.73 0 0 

95 0.52 1.35 0 0 0.50 1.30 0 0 0.51 1.33 0 0 

90 1.04 2.71 0 0 0.82 2.13 0 0 1.01 2.60 0 0 

85 1.83 4.73 0 0 1.45 3.75 0 0 1.63 4.22 0 0 

80 3.29 8.52 293 3 2.77 7.17 706 12 2.67 6.92 0 0 

*NOTE: Population affected and/or annoyed is zero for all three above flight 

procedures when operating from Runway 18. 



using the standard flight procedure are shown in Figure 5-73. As inthe case
 

of the EBF airplane, the 100 and 95 EPNdB footprints are essentially con

tained within the airport boundary. The takeoff lobe of the 85 and 80 EPNdB
 

footprints impact on the populated areas of Upper Newport Bay to a greater
 

extent than the comparable footprints of the EBF airplane.
 

Low-Impact Procedure. The single event noise footprints of the low-impact 

procedure are shown in Figure 5-74. The power cutback of this straight 

flight path procedure reduces the impact in the Upper Newport Bay area but 

increases the impact of the 85 EPNdB takeoff lobe upon the East Bluff develop

ment in the Middle Bay area.
 

Minimum-Impact Procedure. A total of fifteen different takeoff techniques
 

were evaluated. The minimum-impact procedure shown in Figure 5-75 involves 

initiating flap retraction at 250 feet (76 m) altitude and a power cutback
 

to 66 percent gross takeoff thrust at 500 feet (152 m) followed by a 20 degree
 

(0.349 radian) turn to the left initiated at an altitude of 650 feet (198 m).
 

As shown in Figure 5-76 the turn positions the flight path over the center
 

portion of Upper Newport Bay. The early power cutback significantly reduces
 

the sideline impact at the south end of the airport. The 80 EPNdB takeoff
 

spike extends over the populated section of the East Bluff area but unlike
 

the 80 EPNdB spike of the EBF airplane closes before reaching Balboa Island.
 

A summary of the community impact evaluation of the standard,
 

low-impact, and minimum-impact flight procedures for the M-150-4000 airplane
 

at Orange County Airport is presented in Table 5-14. The low-impact procedure
 

provided a 39 percent reduction in number of people highly annoyed compared
 

to the standard or baseline procedure. An additional 5 percent reduction
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NOISE FOOTPRINTS - STANDARD FLIGHT PROCEDURE 
ORANGE COUNTY AIRPORT, RWY 19R M-.1504000 AIRPLANE 

feoducbe "cOPY 

FIGURE 5-73. 
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NOISE FOOTPRINTS - LOW-IMPACT PROCEDURE 
ORANGE COUNTY AIRPORT, RWY 19R - M-150"4000 AIRPLANE 

FIGURE 5-74. 
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NOISE FOOTPRINTS - MINIMUM IMPACT PROCEDURE
 
ORANGE COUNTY AIRPORT, RWY 19R M-150.4000 AIRPLANE
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FIGURE 5-76. 
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TABLE 5-14
 

NOISE IMPACT SUMMARY - M.150.4000 AIRPLANE
 

ORANGE COUNTY AIRPORT - RUNWAY 19R
 

STANDARD PROCEDURE LOW-IMPACT PROCEDURE MINIMUM-IMPACT PROCEDURE
 
EPNL Contour Area Population Contour Area Population Contour Area Popu ation
 
Contour S.Mi. Sq.Km. Affected Annoyed Sq.Mi. SQ.Ki.. Affected Annoyed Sq.Mi. Sq.Km. Affected Annoyed 

100 0.26 0.67 7 4 0.28 0.73 102 42 0.27 0.69 39 17
 

95 0.52 1.35 392 136 0.50 1.30 297 110 0.43 1.12 139 52
 

90 1.04 2.71 1192 336 0.82 2.13 656 199 0.82 2.11 713 188 

N 85 1.83 4.73 2627 548 1.45 3.75 1513 324 1.51 3.90 1606 323 

80 3.29 8.52 5349 655 2.77 7.17 3760 402 2.84 7.37 2516 364
 



0 was obtained with the minimum-impact procedure for a total reduction of 


44 percent over the baseline case.
 

5.6.6.4 Noise Impact - CHICAGO MIDWAY - The community noise impact evaluation 

of the standard, low-impact, and minimum-impact flight operational techniques 

of the M-150-4000 airplane on Runways 22L and 31L at Chicago's Midway Airport
 

isdiscussed below.
 

Standard Procedure. The single-event noise footprints using the standard
 

operating technique are shown in Figure 5-77. As in the case of the EBF
 

airplane, a small portion of the 100 EPNdB approach and takeoff lobes projects
 

slightly into the populated areas at both ends of each runway.
 

Low-Impact Procedure. The single-event noise footprints of the low-impact
 

procedure on both runways are shown in Figure 5-78. As noted, the 80 EPNdB
 

takeoff lobe spike projects beyond the industrial areas of Stickney and
 

Bedford Park and extends into the residential areas beyond.
 

Minimum-Impact Procedure. A total of seventeen different takeoff flight
 

techniques were evaluated at each runway. The flight procedure which resulted
 

inminimum impact when operating from Runway 22 isdescribed in Figure 5-79. 

This procedure involved retracting the landing flaps at an altitude of
 

300 feet (91 m) and reducing power to 66 percent gross takeoff thrust at
 

500 feet (152 m) altitude. A 45 degree (.785 radian) turn to the right
 

subsequently was initiated at an altitude of 600 feet (183 m) to direct the
 

flight path over the unpopulated rail classification yards near Bedford Park
 

southwest of the airport as shown in Figure 5-80. The one school contained
 

within the footprint impact area is exposed to a noise level of approximately
 

90 EPNdB on takeoff.
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NOISE FOOTPRINTS - STANDARD FLIGHT PROCEDURE 
MIDWAY AIRPORT, RWS 22L, 31L- M-150-4000 AIRPLANE 
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FIGURE 5-77. 
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NOISE FOOTPRINTS - LOW-IMPACT PROCEDURE
 
MIDWAY AIRPORT, RWS 22L, 31L -H 150 4000 AIRPLANE
 

FIGURE 5-78. 
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A similar technique was used to arrive at a minimum-impact procedure
 

for Runway 31L. The corresponding takeoff flight profile is described in
 

Figure 5-81. The resultant noise footprints were shown in Figure 5-80. This
 

procedure is similar to that used for the EBF airplane. Landing flap re

traction was initiated at 300 feet (91 m) altitude and power subsequently was
 

reduced to 66 percent gross takeoff thrust at an altitude of 500 feet (152 m).
 

A 45 degree (.079 radian) right turn was initiated at 700 feet (213 m) altitude
 

to direct the flight path over the unpopulated areas of the Southwest Express

way and Chicago ship canal. Four schools are impacted by this procedure,
 

all to noise levels of less than 90 EPNdB during takeoff.
 

A summary of the community noise impact of the three procedures 

using Runway 22L is presented in Table 5-15. The low-impact procedure
 

*results in a 20 percent reduction in number of persons highly annoyed compared
 

to the standard procedure. The minimum-impact procedure provides an addition

al reduction of 10 percent or a total reduction of 30 percent compared to the
 

baseline.
 

A similar summary of the Runway 31L procedures is shown in Table
 

5-16. The low-impact procedure results in a 22 percent reduction in the 

number of persons highly annoyed compared to the baseline procedure. The 

minimum-ipact technique provides an additional 9 percent reduction, or a 

total reduction of 31 percent over the standard procedure when operating
 

from Runway 31L. 

5.6.7 Summary of Results - The primary objective of the community noise 

impact evaluation was to demonstrate that aircraft noise can be reduced by
 

flight operational techniques tailored to a specific aircraft and airport.
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TABLE 5-15
 

NOISE IMPACT SUMMARY - M.150.4000 AIRPLANE
 

MIDWAY AIRPORT - RUNWAY 22L
 

STANDARD PROCEDURE LOW-IMPACT PROCEDURE MINIMUM-IMPACT PROCEDURE
 
EPNL Contour Area Population Contour Area Population Contour Area Population
 
Contour Sq.Mi. Sq.Km. Affected Annoyed Sq.Mi. Sq.Kmn. Affected Annoyed Sq.Mi. Sq.Km. Affected Annoyed
 

100 0.26 0.67 263 108 0.28 0.73 538 277 0.26 0.68 400 168
 

95 0.52 1.35 1703 616 0.50 1.30 1608 612 0.42 1.09 1196 442
 

90 1.04 2.71 3034 962 0.82 2.13 2681 896 0.82 2.14 2406 753
 

85 1.83 4.73 6496 1478 1.45 3.75 4862 1218 1.54 3.98 4317 1040
 

80 3.29 8.52 11352 1686 2.77 7.17 9008 1354 2.89 7.50 8247 1178
 



TABLE 5-16
 

NOISE IMPACT SUMMARY - M.150.4000 AIRPLANE
 

MIDWAY AIRPORT - RUNWAY 31L
 

STANDARD PROCEDURE LOW-IMPACT PROCEDURE MINIMUM-IMPACT PROCEDURE
EPNL Contour Area Population Contour Area Population Contour Area Population

Contour Sq.Mi. Sq.Km. Affected Annoyed Sq.Mi. Sq.Km. Affected Annoyed Sq.Mi. SQ.Km. Affected Annoyed
 

100 0.26 0.67 202 84 0.28 
 0.73 405 172 0.26 0.68 202 87
 

95 0.52 1.35 1653 587 0.50 1.30 1451 540 0.42 1.09 844 314
 

90 1.04 2.71 5307 1496 0.82 2.13 3609 1069 0.82 2.12 3204 899
 

85 1.83 4.73 8973 2004 1.45 3.75 6458 1490 1.54 3.98 6136 1328
 

80 3.29 8.52 14413 2253 2.77 7.17 
 12482 1764 2.89 7.50 10554 1549
 



A secondary objective was the development of an effective methodology or
 

tool for assessing aircraft noise impact on the airport and adjacent
 

community. The study accomplished both objectives -- to an even greater
 

degree than anticipated.
 

The community noise impact evaluation investigated the noise
 

impact of two different types of short-haul turbofan-powered aircraft at
 

four representative airports: Hanscom Field, Washington National, Orange
 

County and Chicago Midway. All have existing noise problems ranging from
 

severe to moderate. The aircraft types were the E-150-3000, a 150-passenger
 

externally-blown-flap (EBF) four-engine airplane designed for a 3000-foot
 

(914 m) field length, and a 150-passenger mechanical-flap (MF) two-engine
 

aircraft designed for a 4000-foot field length. The takeoff design noise
 

levels of the two airplanes were 97 EPNdB at 500 foot (152 m) sideline for
 

the EBF and 101 EPNdB for the MF airplane.
 

EBF Airplane. Results of the community noise evaluation of the E-150-3000
 

airplane are summarized in Table 5-17. The criteria for the evaluation was
 

the total number of persons highly annoyed within the single-event 80 EPNdB
 

noise footprint. The relationship between the number of persons affected
 

or exposed and the number of persons highly annoyed was based on a relation

ship established by the U.S. Department of Transportation. The evaluation
 

showed that an average reduction of approximately 40 percent in the number
 

of persons highly annoyed could be achieved by varying flight operational
 

procedures. All procedures investigated are considered to be well within
 

safe operating limits and should involve no compromise in flight safety.
 

Acceptability of the procedures, however, must be determined by actual
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TABLE 5-17
 

NOISE REDUCTION SUMMARY
 
E.150.3000 AIRPLANE
 

NUMBER OF PERSONS HIGHLY ANNOYED
 
Standard Low-Impact Reduction Min.-Impact Reduction


AIRPORT 	 Procedure Procedure From Std. Procedure From Std.
 

BED - HANSCOM FIELD
 

Runway 5 297 190 36% 188 37%
 

DCA - WASHINGTON NATIONAL
 

Runway 36 9 30* (333%) 0 100%
Runway 18 	 0 0 
 -0 	 -

SNA - ORANGE COUNTY
 
Runway 19R 468 324 31% 282 40%
 

MDW - CHICAGO MIDWAY
 

Runway 22L 1819 1117 39% 
 997 45%
 
Runway 31L 	 2168 1619 
 25% 1322 39%
 

* 	 The increase from the standard procedure results from a lower power cutback height 
which extends the 80 and 85 EPNdB contours over highly populated areas. 



flight tests. Approximately two-thirds of the noise reduction was achieved
 

through a parametric analysis of the various techniques which assumed a
 

uniform population distribution. The remaining third was achieved by
 

tailoring the flight techniques and aircraft flight paths to a specific
 

airport.
 

EBF With 10 Percent Oversized Engines. The study also investigated the amount
 

of community noise reduction achievable by the E-150-3000 airplane with
 

10 percent oversized engines. This evaluation was conducted at Chicago Midway,
 

which has the highest population concentration of the four study airports.
 

The results of this evaluation are summarized inTable 5-18. The oversized
 

engine aircraft provided an approximate 8 percent reduction innumber of
 

persons highly annoyed compared to the basic E-150-3000 airplane.
 

MF Airplane. Results of the community noise evaluation of the M-150-4000
 

airplane are summarized inTable 5-19. Evaluation criteria were identical
 

to those used for the E-150-3000. As with the EBF airplane, the major part
 

of the reduction resulted from the acoustic parametric analysis. Approxima

tely 6 percent of the total reduction was obtained by tailoring the takeoff
 

flight procedure to the specific airport community situation.
 

It should be noted that the two aircraft designs -- the E-150-3000
 

and the M-150-4000 are not directly comparable since they have different
 

takeoff noise levels and field lengths. The study did demonstrate that the
 

use of flight operational procedures to minimize noise impact was equally
 

applicable to each aircraft type; however, the operational procedures varied
 

slightly due to differences in aircraft performance characteristics.
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Table 5-18 

NOISE REDUCTION COMPARISON 

E.150.3000 VS. E.150.3000 WITH 10% OVERSIZED ENGINES 

MIDWAY AIRPORT 

RUNWAY E.150.3000 

NUMBER OF PERSONS HIGHLY ANNOYED 

10% Oversized 
Engines 

Impact 
Reduction 

MDW - RUNWAY 22L 

Standard Procedure 

Minimum-Impact Procedure 

1819 

997 

1776 

903 

2.4% 

9.1% 

MDW - RUNWAY 31L 

Standard Procedure 

Minimum-Impact Procedure 

2168 

1322 

2032 

1236 

6.3% 

6.5% 



AIRPORT 


BED - HANSCOM FIELD
 

Runway 5 


DCA - WASHINGTON NATIONAL
 

Runway 36 

Runway 18 


SNA - ORANGE COUNTY
 

Runway 19R 


MOW - CHICAGO MIDWAY
 

Runway 22L 


Runway 31L 


Table 5-19
 

NOISE REDUCTION SUMMARY
 

M.150.4000 AIRPLANE
 

NUMBER OF PERSONS HIGHLY ANNOYED
 

Standard Low-Impact Reduction Min.-Impact Reduction
 
Procedure Procedure From Std. Procedure From Std.
 

361 243 33% 243 33%
 

3 12* (400%) 0 100% 
0 0 0 

655 402 39% 364 44%
 

1686 1354 20% 1178 30%
 

2253 1764 22% 1549 31%
 

* The increase from the standard procedure results from a lower Dower cutback height which 
extends the 80 and 85 EPNdB contours over highly populated areas. 



Airport Comparison. Figures 5-82 and 5-83 compare both the number of persons
 

affected or exposed, and the number of persons highly annoyed for each air

port and runway combination. The greatest noise impact isexperienced at
 

Chicago Midway and the least at Washington National.
 

Noise Evaluation Methodology. The evaluation procedures and methodology
 

developed in this study provide an effective tool for determining aircraft
 

noise impact upon the airport community. Much work remains to be done,
 

however, to develop more accurate aircraft noise prediction methods and to
 

standardize airport noise evaluation methodology.
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AIRPORT NOISE IMPACT SUMMARY 
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AIRPORT NOISE IMPACT SUMMARY 

M.150.4000 AIRPLANE 
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6.0 CONCLUSIONS AND RECOMMENDATIONS
 

It has been shown that aircraft operational techniques can
 

significantly reduce airport community noise. The aircraft studied were
 

designed for field lengths of 3000 feet (914 m) and 4000 feet (1200 m) but
 

the methodologies described herein are applicable to all fixed-wing aircraft.
 

The following are conclusions drawn from this study:
 

Conclusions:
 

(1) Over the range considered, some DOC decrease can be obtained at the
 

expense of increased noise level by using engines with a higher fan
 

pressure ratio.
 

(2) Acoustical treatment of engine inlet and exhaust ducts, without an
 

increase in dimensions, provides some reduction in noise with little
 

or no increase in DOC.
 

(3) A variable-pitch engine with a fan pressure ratio of 1.32 results in
 

an aircraft with a lower TOGW than one with a 1.57 FPR fixed-pitch fan.
 

A 1.32 FPR engine results in a higher DOC because of the slower cruise
 

speed resulting from its lower cruise thrust. Higher fuel prices will
 

decrease the slight DOC advantage of the 1.57 FPR engine. Increasing
 

the fan pressure ratio of a variable-pitch fan while maintaining the
 

capability of operating in the reverse mode will increase cruise thrust.
 

This may reduce operating costs by improved productivity resulting from
 

higher cruise speeds.
 

(4) For a MF installation, the bypass ratio of the engine can be controlled
 

so that the primary jet noise will have little effect on the total
 

propulsion system noise level.
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(5) For a field length of 3000 feet (914 m) there is very little difference
 

between a two- and four-engine MF aircraft configuration in terms of
 

direct operating cost. Higher fuel prices will tend to favor the
 

four-engine configuration due to its lower total installed thrust when
 

sized by field length performance.
 

(6) The trade study for the E-150-3000 aircraft with 1.25 FPR engines
 

showed that there was very little difference in DOC between an optimum
 

wing geometry and that used inthe STOL System Study. Changing to
 

an optimum wing geometry (primarily a reduction inwing sweep) would
 

result inapproximately a one percent reduction inDOC. The insensiti

vity to wing geometry is due in part to the aircraft sizing philosophy:
 

the engine is selected for a field length and sideline noise requirement
 

rather than a cruise speed requirement.
 

(7) The use of engines larger than required to meet field length require

ments for an E-150-3000 type aircraft can result in a reduction in
 

community noise impact due to the higher climb gradients and lower
 

allowable takeoff flap angles. There isessentially no increase in
 

DOC for engine over-sizing of less than 10 percent, but there is a
 

fuel consumption penalty. Desirable engine size increases would
 

probably be less than 10 percent. Itappears that a similar result
 

would be found for mechanical-flap aircraft.
 

(8) For both the EBF and MF aircraft, a decelerating approach procedure

produced the smallest noise impact for all of the approach techniques
 

examined. Two-segment approaches and turning approach paths do not
 

provide any gains for low noise aircraft since the 80 EPNdB noise
 

level, the lower limit of the selected annoyance criteria, corresponds
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to an aircraft height of approximately 500 feet, a height by which all
 

configuration or path changes should be complete. The lower the aircraft
 

noise level, the less the potential gains on the landing approach due
 

to operational techniques.
 

(9) Significant reductions in airport community noise impact were achieved
 

by using results of parametric studies of landing and takeoff flight
 

operational techniques for a specific aircraft design.
 

(10) 	 An additional reduction in community noise impact was achieved by
 

tailoring the flight techniques to produce minimum impact at a
 

specific airport and runway combination.
 

(11) 	 A reduction in people highly annoyed of approximately 8 percent was
 

achieved by the E-150-3000 with 10 percent oversized engines relative
 

to the basic E-150-3000 airplane at the one airport examined.
 

(12) 	 In general, the number of people exposed and/or annoyed by the 80 and
 

85 EPNdB footprints exceeded by a factor of two the number similarly
 

affected by the 90, 95 and 100 footprints. This points out the
 

necessity of investigating low noise levels in community aircraft
 

noise impact evaluations.
 

(13) 	 For the quiet short-haul aircraft examined, takeoff operational
 

techniques offered more potential than landing operational techniques
 

for reducing community noise impact.
 

(14) 	 The evaluation procedures and methodology developed in this study
 

provide a useful tool for determining aircraft noise impact upon an
 

airport community.
 

251
 



Recommendations:
 

(1) In the MF acoustic trade study, the nacelles were designed for aero

dynamic efficiency and the available duct area was acoustically treated
 

for noise suppression. It is recommended, therefore, that the MF
 

acoustic trade study be extended to determine the potential noise re

duction that can be achieved by lengthening the duct and adding more
 

acoustical treatment.
 

(2) A study using the methods described in this report should be conducted
 

on current CTOL aircraft. Such an evaluation may provide significant
 

noise reduction potential for existing aircraft.
 

(3) Installation of oversized engines should be given consideration in
 

future STOL aircraft designs where noise is a major consideration.
 

(4) Investigation of low levels of noise should be included in future STOL
 

short-haul aircraft comnunity noise evaluations due to the relatively
 

high percentage of the population exposed to the lower noise levels.
 

(5) The study showed that approximately three times the number-of persons
 

were impacted by the 80 EPNdB noise footprint at Chicago Midway
 

compared to the Orange County Airport for a comparable aircraft type.
 

Noise complaint records, however, indicate that far more persons are
 

highlyannoyed at Orange County than at Midway (Reference 1).
 

Additional research and development should be conducted to determine
 

relative weighting factors for alj elements affecting annoyance. The
 

assumptions and methodology used as a basis for acoustic evaluations
 

need to be studied inmore detail. Some areas which warrant further
 

study are as follows:
 

a) Addition of source noise levels on a PNL or EPNL basis does not
 

account for the spectral or directional characteristics of the
 

source noise.
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b) 	EPNL vs distance maps are based on steady state, level flyovers
 

and are not necessarily representative of takeoff and landing flight
 

procedures.
 

c) 	Ground attenuation and fuselage shielding as defined by SAE ARP 1114
 

does not account for the spectral characteristics of the noise or
 

the aircraft structural configuration.
 

d) 	A standard methodology for generating aircraft noise contours
 

should be established.
 

e) 	The relationship of the percent people annoyed as used herein
 

needs further study. It equates 80 EPNdB with zero annoyance,
 

and does not take into account the number of operations, time of
 

day, ambient noise conditions, land use, social class structure,
 

etc.
 

f) Operational techniques for noise reduction should be studied at
 

a greater number of airports.
 

(6) 	Operational techniques can also be used to compare flight procedures
 

on 	the basis of fuel consumption as well as noise impact. A program
 

is recommended for investigating minimum energy terminal area flight
 

procedures.
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APPENDIX A - AIRCRAFT
 

A.l PERFORMANCE ANALYSIS METHODS AND GROUNDRULES
 

A.1.1 Aircraft Sizing. - The sizing process is illustrated by Figure A-i
 

Thrust-to-weight and wing loading combinations which satisfy the takeoff and 

landing field length requirements together with parametric weight data 

(OEW = f(TOGW, W/S, T/W)), installed thrust and fuel flow maps, and drag and 

tail sizing information are used as inputs to a computer program which per

forms the aircraft sizing calculations. The mission profile used for airplane
 

sizing is shown in Figure A-2.
 

A.l.2 Takeoff. - STOL takeoff performance was estimated by calculating the
 

time history of the takeoff flight path. This method allows for recognition
 

of changes in aerodynamic characteristics and flight limitations which occur
 

during the maneuver. The calculations are governed by the following assumptions:
 

1. The aircraft is assumed to be a point mass, i.e., second order
 

rotational dynamics have been ignored and the analysis is essentially two
 

dimensional.
 

2. The forces acting on the aircraft are summed in the longitudinal
 

and normal directions and are a function of true airspeed, flight path angle,
 

angle of attack and height above the ground.
 

3. Any restriction on speed, acceleration, attitude, etc., may
 

be imposed as desired.
 

4. The path is generated by numerical integration of the forces
 

acting on the aircraft over small increments in time using a digital computer.
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AIRCRAFT SIZING PROCESS
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SIZING MISSION PROFILE 
CRUISE AT MAXIMUM 
MACH NUMBER 


DESCEND AT 300 FPM 
Z/0' (1.524 M/S) CABIN 

PRESSURIZATION RATE 
CLIMB TO CRUISE
 
ALTITUDE
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20,000 FT (6096 M) TO 
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(3048M)TO 250 K1S HOLD AT 10,000 FT(3048 M)TO 25IAS (3048 M) AT MAXIMUM 

CLIMB TO 10,000 FT ( ENDURANCE 

(3048 M) AT 250 KIAS
 
(129 M/S - IAS) FINAL DESCENT
 

AT 250 KIAS
 
(129 M/S - IAS)
 

APPROACH, LANDING 
TAXI, TAKEOFF, AND AND TAXI 
CLIMBOUT 

10575 STATUTE MILE (926.KM) RANGEI-

PR3-STOL-1591 

'FIGURE A-2. 



Based on FAR Part 25 requirements, takeoff field length was defined
 

as the greater of:
 

1. 	1.15 x all engine takeoff distance to 35 foot (lC.7m) height.
 

2. 	Distance to 35 foot (lO.7m) height with critical engine failure
 

at V1.
 

3. 	Distance to accelerate to V1 and then decelerate to a stop.
 

The following constraints were used in calculating the takeoff field
 

lengths for the final design aircraft.
 

I. 	Rolling friction, p = 0.025 

2. 	Fuselage angle of attack < ground limit = 15* 

3. 	Rotation rate, o < 5°/sec
 

4. 	CL < 90% of CLmax out of ground effect 

5. 	CL < 100% of CLmax in ground effect 

6. 	No deceleration during air run to 35 feet (l0.7m) height
 

7. 	Five knot (2.57m/sec) early rotation may not give greater
 

takeoff field length.
 

8. Accelerate-stop distance based on three second delay after
 

reaching V1 followed by a deceleration of 0.4g to a stop.
 

9. 	Second segment climb gradient (at V2, with takeoff flap setting,
 

critical engine inoperative, gear up and out of ground effect)
 

[3.0% for four-engine aircraft
 

2.4% for two-engine aircraft.
 

A.1.3 Landing. - The methods and assumptions used in calculating landing field 

lengths are essentially the same as those used for takeoff performance. The 

landing maneuver consists of three segments; approach, flare and ground roll 

as shown in Figure A-3. Landing field length is defined as the landing dis

tance over a 35-foot (l0.7m) obstacle divided by a 0.6 factor, i.e., a 3000-foot 
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LANDING FIELD LENGTH DEFINITION
 

APPROACH I FLARE GROUND ROLL 
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I SEC 0.35g 
DELAY DECELERATION 

~LANDING DISTANCE-

LANDING FIELD LENGTH = LANDING DISTANCE/O.6 

PR3-STOL-1494 

FIGURE A-3. 



(914 m) field length requires a landing distance of 1800 feet (549 m).
 

Approach margins at the landing flap setting, selected to
 

provide adequate maneuver capabilities in the event of an engine failure,
 

were a 1.33 available load factor for the externally-blown-flap aircraft
 

and 1.3Vmin margin for the mechanical-flap aircraft. These margins in
 

addition to a 900 fpm (4.57 m/sec) approach sink rate define the approach
 

conditions.
 

The flare maneuver isgoverned by the following constraints:
 

= 150
1. Fuselage angle of attack < ground limit 

2. Rotation rate, < 50/sec 

3. CL < 100% of CLmax in ground effect.
 

For the externally-blown-flap aircraft, the flare maneuver
 

was accomplished by retracting DLC spoilers at the flare height and
 

rotating the aircraft at 50/second. Having no DLC capability, the
 

mechanical-flap aircraft flare maneuver was performed by rotating the
 

aircraft at 50/second starting at the flare height. As the aircraft
 

approaches the ground, CL and CD tend to diminish due to ground effect.
 

The ground roll consists of one second at constant speed from
 

touchdown to deceleration device effectiveness followed by a constant
 

deceleration of 0.35g to a stop. Landing, like takeoff, was calculated
 

for sea level, 95F (350C) conditions.
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A.l.4 Mission. - The mission calculations, for the mission profile 

previously shown in Section A.l.l, Figure A-2, are performed in a computer 

program specifically developed by Douglas Aircraft Company during the last 

five years for the sizing of STOL aircraft in the advanced design stage. The 

methods used are essentially those of classical airplane performance. The 

computer program calculates 2 degrees-of-freedom mission time histories, 

iterating on weight, thrust, drag and tail sizing data to determine such 

characteristics as TOGW, wing area, engine size, OEW, fuel burned, etc. 

of an aircraft which satisfies the requirements of the mission profile with 

the desired payload. When a solution has been found, the program calculates 

a direct operating cost breakdown. Direct operating cost calculations were
 

based on a production quantity of 300 aircraft with a 20 percent profit
 

margin.
 

Cruise altitude and climb Mach number were optimized to minimize
 

DOC. Mission performance was calculated for standard day conditions.
 

A.1.5 Flight Profile Calculations. - The methods and assumptions used in
 

calculating the approach and takeoff flight profiles are essentially the
 

same as used for the takeoff and landing calculations. A digital computer
 

program is used to calculate the three degree-of-freedom time history of
 

the flight path by numerical integration of the forces acting on the aircraft.
 

The aircraft is assumed to be a point mass and the forces acting on it are
 

summed in the horizontal x-y plane and normal direction. These forces are
 

a function of true airspeed, flight path angle, angle of attack, bank angle
 

and altitude. Engine thrust and ram drag are treated as a function of power
 

setting, speed and altitude. Both conventional and powered lift aerodynamics
 

may be handled.
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The program is capable of recognizing changes in aircraft configuration
 

such as gear drag, flap angle and DLC,etc., either as a step function or as a
 

time variant function. Many limitations may be imposed on the calculations,
 

i.e., limitations on attitude, angle of attack, power setting, stall speed
 

margin, bank angle, etc. Calculations of turning flight paths include roll-in
 

and roll-out bank angle changes. In addition, the program can be used to
 

determine fuel used during terminal area maneuvers.
 

Program output consists of a listing of the time history, part of
 

which is shown in Figure A-4 and a card deck which is used as input for the
 

noise impact calculation program.
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TERMINAL AREA PERFORMANCE PROGRAM FEBRUARY 7, 1974
 

TIME 
DISTANCE 

HEIGHT 

V(KTASl 
V(KEASI 

MACH 

- FUEL 
R/C 

Q 

THETA 
GAMMA 
ALPHA 

FLAP 
GAMDOT 

N 

CMU 
CL/CLM 

A 

CL 
CD 

CLMAX 

FG 
FGP 
FGL 

FR 
FRP 
FRI 

NE 
NE 

NEL 

TAU 
TAU 
TAUL 

TEMP 
PRESS 

CS 

BANK 
DIRECT 

SIDE 

47.49 
8224.8 
687.8 

153.69 
149.57 
0.2289 

0.0 
52.29 
75.74 

21.756 
1L.628 
10.128 

0.0 
0.0281 
0.9834 

O.431B 
0.5061 
-0.0091 

1.0122 
0.0801 
2.0000 

53546. 
0. 
0. 

14026. 
0. 
0. 

2.0000 
2.0000 
0.0 

1.0000 
1.0000 
0.0 

534.22 
2064.17 
671.32 

0.0 
0.0 

0.0 

20258. 
0.0 

48.49 
8478.9 
740.1 

153.69 
149.45 
0.2290 

0.0 
52.35 
75.61 

21.735 
11.642 
10.093 

0.0 
-0.0001 
0.9794 

0.4325 
0.5047 
0.0044 

1.0095 
0.0799 
2.0000 

53553. 
0. 
0. 

14015. 
0. 
0. 

2.0000 
2.0000 
0.0 

1.0000 
1.0000 
0.0 

534.03 
2060.23 
671.20 

0.0 
0.0 

0.0 

20306. 
0.0 

48.68 
8526.9 
750.0 

153.69 
149.43 
0.2290 

0.0 
52.35 
75.59 

21.750 
11.643 
10.107 

0.0 
0.0032 
0.9799 

0.4327 
0.5051 

-0.0001 

1.0102 
0.0799 
2.0000 

53554. 
0. 
0. 

14013. 
0. 
0. 

2.0000 
2.0000 
0.0 

1.0000 
1.0000 
0.0 

534.00 
2059.49 
671.18 

0.0 
0.0 

0.0 

20315. 
0.0 

48.68 
8526.9 
750.0 

153.69 
149.43 
0.2290 

0.0 
52.35 
75.59 

21.750 
1.643 
10.107 

0.0 
0.0030 
0.9798 

0.4327 
0.5051 

-0.0001 

1.0102 
0.0799 
2.0000 

53554. 
0. 
0. 

14013. 
0. 
0. 

2.0000 
2.0000 
0.0 

1.0000 
1.0000 
0.0 

534.00 
2059.49 
671.18 

0.0 
0.0 

0.0 

20315. 
0.0 

49.18 
8654.0 
775.8 

153.58 
149.25 
0.2288 

0.0 
50.70 
75.42 

19.250 
11.281 
1.969 

0.0 
-L.4509 
0.7766 

0.3686 
0.4052 

-0.7889 

0.8103 
0.0633 
2.0000 

45519. 
0. 
0. 

12904. 
0. 
0. 

2.0000 
2.0000 
0.0 

0.8500 
0.8500 
0.0 

533.90 
2057.50 
671.12 

0.0 
0.0 
0.0 

16773. 
0.0 

N 

49.68 
8781.1 
800.0 

153.24 
148.88 
0.2284 

0.0 
46.20 
75.04 

1b.750 
10.288 
6.461 

0.0 
-2.5178 
0.6306 

0.3050 
0.3342 

-1.4423 

0.6684 
0.0533 
2.0000 

37477. 
0. 
0. 

L1678. 
0. 
0. 

2.0000 
2.0000 
0.0 

0.7000 
0.7000 
0.0 

533.81 
2055.69 
671.07 

0.0 
0.0 
0.0 

[3279. 
0.0 

Ln 49.81 
8815.1 
806.0 

153.13 
148.75 
0.2282 

0.0 
44.60 
74.91 

16.003 
9.937 
6.146 

0.0 
-2.7487 
0.5996 

0.2080 
0.3193 

-1.5874 

0.6386 
0.0514 
2.0000 

35332. 
0. 
0. 

11329. 
0. 
0. 

2.0000 
2.0000 
0.0 

0.6600 
0.6600 
0.0 

533.80 
2055.29 
671.05 

0.0 
0.0 

0.0 

12357. 
0.0 

49.81 
8815.1 
80a.0 

153.13 
148.75 
0.2282 

0.0 
44.bJ 
14.91 

16.083 
9.937 
6.146 

0.0 
-2.7490 
0.5996 

0.2880 
0.3193 

-1.5876 

0.6386 
0.0514 
2.0000 

35332. 
0. 
0. 

11329. 
0. 
0. 

2.0000 
2.0000 
0.0 

0.6600 
0.6600 
0.0 

533.80 
2055.30 
671.05 

0.0 
0.0 

0.0 

12357. 
0.0 

50.31 
8942.5 
826.6 

152.81 
148.40 
0.2277 

0.0 
37.67 
14.56 

13.563 
8.400 
5.186 

0.0 
-3.40L5 
0.5135 

0.2894 
0.2739 

-0.5539 

0.5471 
0.0460 
2.0000 

35324. 
0. 
0. 

11301. 
0. 
0. 

2.0000 
2.0000 
0.0 

0.6600 
0.6600 
0.0 

533.72 
2053.71 
671.01 

1.500 
0.024 

0.0 

12377. 
0.0 

53.81 
9070.3 
843.8 

152.73 
148.28 
0.2276 

0.0 
31.Od 
74.44 

13.616 
6.)24 
o.701 

0.0 
-2.4993 
0.6441 

0.2890 
0.3455 

-0.0039 

0.6910 
0.0548 
2.0000 

35322. 
0. 
0. 

11291. 
0. 
0. 

2.0000 
2.0000 
0.0 

0.6600 
0.6600 
0.0 

533.66 
2052.48 
670.97 

3.000 
0.109 

0.2 

12389. 
0.0 

51.lI 
9198.3 
853.3 

152.72 
148.25 
0.2276 

V.0 
27.03 
14.40 

14.990 
6.018 
3.981 

0.0 
-1.1246 
0.tu398 

0.2899 
0.4525 

-0.01,40 

0.9049 
0.0708 
2.0000 

35322. 
0. 
0. 

11288. 
0. 
0. 

2.0000 
2.0000 
0.0 

0.6600 
0.6600 
0.0 

533.61 
2051.40 
670.94 

4.500 
0.288 

0.6 

12397. 
0.0 

51.81 
9326.5 
871.4 

L52.72 
148.22 
0.2276 

0.0 
25.1Z 
14.37 

15.472 
5.5'92 
9.911 

0.0 
-U.5815 
0.9190 

0.2901 
0.4958 

-0.0046 

0.9917 
0.0782 
2.0000 

35323. 
0. 
0. 

11286. 
0. 
0. 

2.0000 
2.0000 
0.0 

0.6600 
0.6600 
0.0 

533.56 
2050.43 
670.91 

6.000 
0.579 

1.6 

12404. 
0.0 

52.31 
9454.d 

803.7 

L2.72 
148.19 
0.T?76 

0.0 
24.10 
74.35 

ob.6dO 
5,.365 
10.361 

0.0 
-0.3263 

0.95o2 

u.2902 
0.5174 

-0.0036 

1.0349 
0.0822 
2.0000 

35324. 
0. 
0. 

11284. 
0. 
0. 

2.0000 
2.0000 
0.0 

0.6600 
0.6600 
0.0 

533.52 
2049.51 
670.88 

7.500 
0.977 

3.3 

12411. 
0.0 

FIGURE A-4.
 



A.2 Aerodynamic Characteristics
 

A.2.1 High Lift Configuration Aerodynamic Characteristics 

A.2.1.1 Externally-Blown-Flap - The high lift characteristics used for the
 

E-150-3000 final design aircraft and the EBF oversized engines trade study
 

(Section 3.3) are described in detail in Appendix B.2 of the NASA STOL
 

Short-Haul System Study (Reference 1). This report presents wind tunnel
 

based data for all engines operating and critical engine failed conditions
 

for a range of flap angles, angles of attack and thrust levels. The use of
 

direct lift control (DLC) and ground effects are also described.
 

A.2.1.2 Mechanical-Flap - STOL mechanical-flap high-lift systems are re

quired to provide good increments in lift at a fixed angle of attack, high
 

lift to drag ratios especially at takeoff and climb-out flap settings, and
 

high values of maximum lift coefficient. Inorder to achieve these require

ments a track-mounted flap with considerable aft extension with flap deflection
 

is required. The following is a basic description of the selected high-lift
 

system:
 

(1) The trailing edge flaps are track-mounted, 2-segment,
 

double-slotted flaps employing considerable aft extension
 

with flap deflection.
 

(2) The nested flap chord is 35 percent of the wing chord.
 

(3) The trailing edge flap is continuous spanwise from the
 

fuselage to the aileron.
 

(4) A 15 percent chord full span leading edge slat is provided
 

to prevent flow separation at high angles of attack.
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The low-speed aerodynamic characteristics used for both the 3000-foot
 

(914 m) and 4000-foot (1219 m) field length aircraft are based on advanced
 

DC-9 high-lift systems similar to that described above. No corrections
 

were necessary for sweep and aspect ratio since the base advanced DC-9 and
 

the mechanical-flap STOL aircraft have similar wing planforms. The effects
 

of Reynolds number on maximum lift coefficient were based on comparisons
 

of wind tunnel test data and flight test data for the basic DC-9 configura

tions and were included in the estimated STOL mechanical flap aerodynamics.
 

The estimated out-of-ground effect longitudinally trimmed lift-and

drag characteristics for the 3000-foot (914 m) and the 4000-foot (1219 m) 

field length mechanical-flap high-lift configurations are presented in 

Figure A-5 . The maximum lift coefficients presented in Figure A-5 are 

1 g values. Table A-i presents maximum lift coefficients that were used 

under the Vmin ground rules. Lateral-directional aerodynamic engine-out
 

trim increments are not included in Figure A-5 since the thrust effects 

are handled separately in the performance analysis. The estimated engine-out 

lateral-directional trim increments used in the performance analysis are
 

tabulated in Table A-2
 

The influence of ground effect on the aerodynamic characteristics
 

were calculated from Douglas-derived empirical equations previously presented
 

in NASA CR-114607 (Reference 1) in Appendix B.
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TABLE A-I
 

MECHANICAL-FLAP MAXIMUM LIFT COEFFICIENT
 

BASED ON VMIN GROUND RULES
 

Slats Extended
 

6F (deg) 
 CLmaxVmin
 

0 2.06
 

15 2.68
 

25 2.89
 

50 3.39
 

TABLE A-2
 

TAKEOFF MECHANICAL-FLAP ENGINE-OUT LATERAL-DIRECTIONAL
 

TRIM INCREMENTS IN DRAG COEFFICIENT
 

FIELD LENGTH ACDTRIM 
(ft) 

3000 .020 

4000 .015 
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A.2.2 High Speed Aerodynamic Characteristics - The cruise drag characteristics
 

for the final configurations have been estimated by the well-established
 

Douglas drag prediction procedure for jet transport aircraft. The cruise
 

drag consists of the zero-lift parasite drag and the drag due to lift at
 

Mach numbers below those at which compressibility effects exist, plus the
 

drag due to compressibility. The zero-lift parasite drag and the drag due
 

to lift are evaluated at 0.5 Mach number, but at the Reynolds number corres

ponding to the design cruise points; in this way, the compressibility drag,
 

which accounts for any drag increase at Mach numbers above 0.5, does not
 

include a Reynolds number variation with Mach number. This procedure is
 

identical to that used in the STOL System Study (Reference 1).
 

A breakdown of the estimated zero-lift parasite drag and a tabulation 

of the induced drag efficiency factors for the final M-150-3000 and M-150-4000 

configurations are shown in Table A-3 . The total estimated trimmed cruise 

configuration drag characteristics (zero-lift parasite, lift dependent and
 

compressibility drag) for these aircraft are shown in Figure A-6 for a range
 

of lift coefficients and Mach numbers. Similar data for the final design
 

E-150-3000 aircraft may be found in Appendix A of Reference 1.
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TABLE A- 3
 

LOW SPEED DRAG BREAKDOWN - FINAL MECHANICAL FLAP AIRCRAFT
 

Field Length ft 3000 


(n) (914) (1219
 

Passengers 150 150
 

Wing Area 2
ft 2848 1679
 
(m2) (264.6) (156.0)
 

EQUIVALENT PARASITE DRAG AREA, D/qo ft2 m2) 

Fuselage
 

Friction, Form, Roughness* 9.3 (0.86) 9.2 (0.85)
 
Canopy 0.1 (0.01) 0.1 (0.01)
 
Aft Fuselage Upsweep 0.7 (0.07) 0.7 (0.07)
 
Gear Pods 2.9 (0.27) 2.5 (0.23)
 

Wing
 

Friction, Form, Roughness 17.1 (1.59) 9.9 (0.92)
 
Flap Hinge Fairings 0.8 (0.07) 0.5 (0.05)
 

Horizontal Tail
 

Friction, Form, Roughness 3.8 (0.35) 2.0 (0.19)
 
Elevator Hinge Fairings 0.2 (0.02) 0.1 (0.01)
 

Vertical Tail
 

Friction, Form, Roughness 3.0 (0.28) 1.6 (0.15)
 

Nacelles and Pylons (Unscrubbed)
 

Friction, Form, Roughness 3.0 (0.28) 2.6 (0.24)
 

Subtotal 40.9 (3.80) 29,2 (2.71)
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TABLE A-3 (Continued)
 

LOW SPEED DRAG BREAKDOWN - FINAL MECHANICAL FLAP AIRCRAFT (cont'd)
 

ft2 2)
EQUIVALENT PARASITE DRAG AREA, D/qo m


Miscellaneous Items
 

Excresences (7.1% of Subtotal) 2.9 (0.27) 2.1 (0.20)
 

Air Conditioning (0.7% of Subtotal) 0.3 (0.03) 0.2 (0.02)
 

Control Surface Gaps 0.7 (0.07) 0.6 (0.06)
 

Nacelle Interference @ MSO.6 1.1 (0.10) 1.1 (0.10)
 

Contingency (5%of non N&P Items) 2.1 (0.20) 1.5 (0.14)
 

Total 48.0 (4.46) 34.7 (3.22)
 

CDo 0.0169 0.0207
 

Induced Drag Efficiency Factor 0.768 0.767
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Appendix A.3 Mass Properties Data
 

This Appendix documents the mass properties efforts associated with
 

defining baseline STOL aircraft for community noise impact studies. The
 

methods used to derive these baseline weights are identical to those used in
 

the NASA Short-Haul Systems Study, Reference 1. Therefore the weight sub

stantiation and moment of inertia nomographs given inAppendix E, Volume II
 

of that study report are representative of the aircraft presented herein.
 

The mass properties studies were completed in three phases. Section
 

A.3.l presents the results from task I which include weight summaries for
 

two-versus four-engine mechanical-flap (MF) aircraft, and the installed engine
 

weight variations as a function of fan pressure ratio (FPR) for treated and
 

untreated nacelles.
 

Section A.3.2 includes the task II vehicle weight summaries from
 

the propulsion/acoustics trade study, plus the weight results from the wing
 

sensitivity study. Section A.3.3 presents the results from task III which
 

include weight summaries for the externally-blown-flap (EBF) configuration
 

with five- and ten-percent oversized engines, and the group weight breakdowns
 

for the final design vehicles.
 

Because of the interrelationship between DOC and weight for the
 

point design trade study aircraft, particular emphasis was placed on detailed
 

weight analysis of the aircraft differences which are summarized inFigure
 

A-7. Results show that variations inweight and DOC among the aircraft are
 

small. Some examples of the details considered in the 400 component weight
 

breakdown are:
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FIGURE A-7
 

DOC SENSITIVITY INVOLVES WEIGHT SENSITIVITY
 

O 
 NUMBER AND LOCATION OF ENGINES
 

o ENGINE COWL AND THRUST REVERSER CONFIGURATION 

O 
 PYLON LOCATION WITH RESPECT TO THE WING
 

o AIRCRAFT SPEED AND AERO DATA - GUST AND MANEUVER LOADS 

0 WING BOX GEOMETRY 

o 	 WING TO FUSELAGE CARRY-THROUGH
 

° CONTROL SURFACE CONFIGURATION
 

CLOSE ATTENTION TO DETAIL PREVENTS OVERLOOKED COMPONENT WEIGHTS.
 



2- Vs 4-Engine Mechanical-Flap Study
 

o Propulsion unit weights vary due to relative location of pylon to wing.
 

o Wing bending load relief and pylon attach bulkheads cause wing box
 

weight variations.
 

o Engine instrument weights vary.
 

o Pneumatic system weights vary due to relative duct size and lengths.
 

Engine FPR Study
 

o Each section of cowling isweighed to account for differences in
 

nacelle geometry (10 component breakdown).
 

o Thrust reverser and pylon geometry details are evaluated for weight
 

impact for each engine configuration.
 

o Gust and maneuver load analyses are conducted for each point design
 

to account for differences in aircraft speed, geometry and wing
 

loading.
 

Wing Sensitivity Study
 

o A multi-station load/weight analysis of the wing box was conducted
 

o Wing to fuselage reaction loads were examined with respect to wing
 

to fuselage carry through structure.
 

A.3.1 Task I Study Results. - Weight evaluations were made for a two- and a
 

four-engine version of the 150-passenger, 3000-ft. (914.4m) field length
 

mechanical-flap aircraft. The objective of this portion of the study was to
 

select the best mechanical-flap configuration on which to perform engine and
 

acoustic trade studies.
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Weights are derived by a multi-step process as shown inFigure
 

A-8, and the results are given in Table A-4. The gross weight for the
 

four-engine version is slightly lower than for the two-engine configuration,
 

but the latter was chosen for further study due to its lower direct operating
 

cost.
 

A multi-component weight analysis was made for the 1.32, 1.45, and
 

1.57 FPR engine installations. Geometry data required for the weight calcu

lations are based on engine installation drawings. Both untreated and wall
 

treated configurations were analyzed and the weight results tabulated in
 

Table A-5. Since the geometry of the treated and untreated cases for a
 

given FPR is identical, there is very little weight penalty assessed for
 

treatment. The weight of the thrust reversers on the 1.45 and 1.57 FPR
 

engines more than offsets the weight decrease due to reduction inwetted area
 

with reduction in bypass ratio (BPR).
 

The nose cowl includes the inlet lip plus the inner and outer
 

structure to the fan front face. The weight decreases with BPR due to
 

decreasing inlet diameter and length. The fan cowl consists of the outer
 

nacelle structure over the fan case. Again weight decreases with BPR due to
 

fan diameter and case length.
 

The aft outer fan cowl extends from the fan cowl to the variable
 

nozzle. This structure isincluded with the fan thrust reverser for the
 

1.45 and 1.57 FPR configurations. The fan exhaust duct and bifurcation
 

includes the necessary structure for ducting the fan air exhaust from the
 

rear fan face to the tip of the outer fan nozzle, except that in the areas
 

of the fan thrust reverser and/or variable exhaust nozzle, the structure was
 

included with those weights.
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FIGURE A-8
 

VEHICLE SIZING
 

MISSION OBJECTIVES WEIGHT TREND DATA Weight trend curves (17 component breakdown) are used In 
PAYLOAD, RANGE, STRUCTURE & SYSTEMS conjunction with mission objective inputs to define a first 

level weight. A preliminary balance check is also made. These
 
W/S, T/W, F/W, CORRELATION PLOTS- data provide the information needed to develop a three-view of
 
TAIL VOLUMES PRELIMINARY BALANCE the vehicle.
 

THREEVIEWAERODATA
 

SPEEDS, CL, C, CD,I
 
WING TWIST DATA
 

The Mass Properties Estimation System (MAPES) is used to develop
 
00 a 400 component breakdown based on 300 inputs consisting of
 

M S R P TIES EST. (MAPES) criteria, loads, geometry and system descriptions. Output
 
400 COMPONENTS CALCULATED includes detail weights, structural criteria, loads, load dis

tributions, and systems design data (i.e., nacelle configuration,

00 INPUTS surface hinge moments, hydraulic flow rates, electrical output,
 

pneumatic flow requirements).
 

Factors are derived from the 400 component weight breakdown for 
PARAMETRIC WEIGHT input into the parametric weight sensitivity program (MSBA). 

This program calculates MIL-STD-1374 functional weight breakdowns 
SENSITIVITY PROGRAM for parametric variations including thrust loading, wing loading, 

(M5BA) fuel to weight ratio, payload capacity and gross weight. Since 
this program calculates detail wing weights and load distribu
tions, tradeoffs can be made with respect to weight versus wingI_ geometry (AR, TR, Sweep, t/c, etc.). 

VEHICLE SIZING j FINAL
 

CONFIGURATION
i(AERDYNICS) 



TABLE A-4
 
DESIGN DATA AND WEIGHT SUMMARY - 2- VS 4-ENGINE STUDY
 

TWO ENGINE FOUR ENGINE 

HIGH LIFT CONCEPT MECHANICAL FLAP MECHANICAL FLAP 
NUMBER OF PASSENGERS 150 150 
FIELD LENGTH-FT(m) 3000 914.4 3000 914.4 

TOGW-LB (kg) 
WING AREA-FT2 (m2 ) 

173,550 
2,878 

78,721 
267.4 

172,900 
2,867 

78,426 
266.4 

ENGINE DESIGNATION PD287-6 PD287-6 PD287-6 PD287-6 
ENGINE THRUST-LB (N) 
HORIZ/VERT TAIL AREA-FT2(m2) 

33,060 
649/574 

147,058 
60.3/53.3 

15,130 
642/561 

67,302 
59.6/52.1 

HORIZ/VERT TAIL LENGTH-IN (cm) 800/600 2032/1524 800/610 2032/1549 
HORIZ/VERT TAIL VOLUME 
WING LOADING-LBIFT' (kg/m2) 

.754/.063 .754/.063 .750/.063 .750/.063 
60.3 294 60.3 294 

THRUST/TOGW .381 .350 
FUEL WEIGHT/TOGW .105 .105 .103 .103 
FUSELAGE DIA/LENGTH-IN (cm) 180/1525 457/3874 180/1525 457/3874 

WEIGHTS-LB (kg) 
WING 32,322 14,661 31,893 14,466 
HORIZONTAL TAIL 3,218 1,460 3,183 1,444 
VERTICAL TAIL 3,644 1,653 3,559 1,614 
FUSELAGE 26,680 12,102 26,602 12,066 
LANDING GEAR 7,289 3,306 7,262 3,294 
FLIGHT CONTROLS 6,195 2,810 6,183 2,805 
PROPULSION 16,527 7,496 16,650 7,552 
FUEL SYSTEM 1,094 496 1,092 495 
AUXILIARY POWER UNIT 950 431 950 431 
INSTRUMENTS 1,175 533 1,245 565 
HYDRAULICS 2,209 1,002 2,205 1,000 
PNEUMATICS 775 351 1,110 503 
ELECTRICAL 2,540 1,152 2,540 1,152 
AVIONICS 1,760 798 1,760 798 
FURNISHINGS 13,690 6,210 13,690 6,210 
AIR CONDITIONING 1,430 649 1,430 649 
ICE PROTECTION 752 341 746 338 
HANDLING GEAR 30 14 30 14 

MANUFACTURER'S EMPTY WEIGHT 122,280 55,465 122,130 55,396 

OPERATIONAL ITEMS 2,980 1,352 2,980 1,352 

OPERATIONAL EMPTY WEIGHT 125,260 56,817 125,110 56,749 

PAYLOAD @ 200 LB/PAX C90.7 kg/paxl 30,000 13,608 30,000 13,608 
FUEL-JP-4 @ 6.7 LB/GAL(802.9 kg/m) 18,290 8,296 17,790 8,069 

TOGW 173,550 78,721 172,900 78,426 
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TABLE A-5
 
ENGINE INSTALLATION WEIGHTS
 

BYPASS RATIO 12.8 9.2 5.9 
FAN PRESSURE RATIO 1.32 1.45 1.57 

ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC 
THRUST-LB (N) 
FAN DIAMETER-IN (cm)
BARE ENGINE LENGTH-IN (cm) 
MAXIMUM NACELLE DIAMETER-IN (cm) 
MAXIMUM NACELLE LENGTH-IN (cm)
ENGINE THRUST/WEIGHT-UNINSTALLED 
ENGINE THRUST/WEIGHT-INSTALLED UNTREATED 

35,000 
93.6 
132.0 
117.5 
244.7 
6.692 
4.255 

155,700 
238 
335 
298 
622 

35,000 
87.0 

128.0 
112.0 
266.1 
6.737 
3.716 

155,700 
221 
325 
284 
676 

35,000 
81.2 

109.0 
103.0 
230.0 
6.913 
4.000 

155,700 
206 
277 
262 
584 

ENGINE THRUST/WEIGHT-INSTALLED TREATED 4.240 3.713 3.998 

WEIGHTS-LB (kg)
NOSE COWL 538 244 459 208 426 193 
FAN COWL 
AFT OUTER FAN COWL 

242 
100 

110 
45 

212 
0 

96 
0 

169 
0 

77 
0 

FAN EXHAUST DUCT AND BIFURCATION 
VARIABLE EXHAUST NOZZLE 
FAN THRUST REVERSER 
PRIMARY THRUST REVERSER 

239 
289 
0 
0 

108 
131 
0 
0 

242 
244 

1,089 
595 

110 
111 
494 
270 

194 
0 

1,046 
549 

88 
0 

474 
249 

CORE COWL 
TAIL PIPE 
TAIL CONE 
ENGINE SYSTEMS 

225 
125 
23 
315 

102 
57 
11 

143 

52 
0 

61 
315 

23 
0 

28 
143 

47 
0 

49 
315 

21 
0 
22 

143 

SUBTOTAL 
DRY ENGINE 

2,096 
5,230 

951 
2,372 

3,269 
5,195 

1,483 
2,356 

2,795 
5,063 

1,267 
2,297 

SUBTOTAL 
PYLON 

7,326 
900 

3,323 
408 

8,464 
955 

3,839 
433 

7,858 
893 

3,564 
405 

TOTAL UNTREATED WEIGHT 
TREATMENT PENALTY-NOSE COWL 
TREATMENT PENALTY-FAN DUCT 

8,226 
19 
9 

3,731 
9 
4 

9,419 
8 
0 

4,272 
4 
0 

8,751 
4 
0 

3,969 
2 
0 

TOTAL ACOUSTIC TREATED WEIGHT 8,254 3,744 9,427 4,276 8,755 3,971 



The variable exhaust nozzle forms the tip of the outer fan exhaust
 

duct and isnot required for the 1.57 FPR engine. The thrust reversers are
 

cascade types and are not required for the 1.32 FPR variable-pitch engine.
 

The core cowl extends from the end of the fan exhaust duct to the
 

end of the tailpipe. Part of its weight was included with the primary thrust
 

reverser for the 1.45 and 1.57 FPR configurations. The tailpipe weight is
 

also part of the primary thrust reverser for the 1.45 and 1.57 FPR install

ations. The tailcone is shorter for the 1.32 FPR engine since the primary
 

exhaust duct length was decreased due to no thrust reverser requirement.
 

The pylon unit weight (based on pylon side profile area) was based
 

on the weight of the demountable power plant, its location relative to the
 

wing and the side profile area of the pylon. The unit weight variations
 

were small and very close to the minimum unit weight due to only a slight
 

cantilever of the engine with respect to the wing. Therefore, pylon weight
 

was almost purely a function of pylon area which varies directly with nacelle
 

length.
 

A.3.2 Task II Study Results. - Weights were derived for the mechanical-flap
 

3000-ft. (914.4m) and 4000-ft. (1219m) field length aircraft with each of the
 

three candidate engine installations studied in task I. Each of the vehicles
 

were sized inaccordance with the process described in Figure A-8. The
 

objective was to select the acoustic trade study configuration which would be
 

evaluated for community noise impact along with the EBF airplane. Both
 

untreated and wall treated engine installation weights are tabulated in
 

Table A-6, but the latter was selected based on lower noise for less than
 

0.3 percent increase intakeoff gross weight. The 1.57 FPR engine was
 

selected for both 3000-ft. (914.4m) and 4000-ft. (1219m) field length since
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TABLE A-6
 

150 PASSENGER 3000' FIELD LENGTH MECHANICAL FLAP AIRCRAFT FOR ACOUSTIC TRADE STUDY
 

NO ACOUSTIC TREATMENT WALL TREATMENT 

ENGINE FAN PRESSURE RATIO 1.32 1.45 1.57 1.32 1.45 1.57 

ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC 

GEOMETRY DATA 

WING AREA FT2 (m2) 

WING LOADING LB/FT 2(kg/m2) 

HORIZONTAL TAIL AREA FT2(m2) 

HORIZONTAL TAIL VOLUME 

VERTICAL TAIL AREA FT2 (m2) 

VERTICAL TAIL VOLUME 

SLS THRUST/TOGW 

SLS THRUST PER ENGINE LB (N) 

FUEL WEIGHT/TOGW 
CRUISE MACH NUMBER 

2,775 

60.5 

642 

.787 

543 

.063 

.370 

31,050 

.103 
.66 

257.8 

295.4 

59.6 

.787 

50.5 

.063 

-

138,117 

.103 
.66 

2,858 

60.5 

660 

.775 

568 

.063 

-362 

31,330 

.105 
.68 

265.5 

295.4 

61.3 

.775 

52.8 

.063 

-

139,363 

.105 
.68 

2,844 

60.5 

654 

.773 

564 

.063 

.355 

30,570 

.112 
.74 

264.2 

295.4 

60.7 

.773 

52.4 

.063 
-

135,982 

.112 
.74 

2,782 

60.5 

643 

.786 

545 

.063 

.371 

31,240 

.103 
.66 

258.4 

295.4 

59.8 

.786 

50.7 

.063 
-

138,962 

.103 
.66 

2,863 

60.5 

661 

.774 

569 

.063 

.364 

31,490 

.105 
.68 

266.0 

295.4 

61.4 

.774 

52.9 

.063 
-

140,074 

.105 
.68 

2,848 

60.5 

654 

.772 

565 

.063 

.356 

30,680 

.112 
.74 

264.6 

295.4 

60.8 

.772 

52.5 

.063 
-

136,471 

.112 
.74 

0o 
WEIGHT DATA 

WING 

TAIL 

FUSELAGE 

LANDING GEAR 

PROPULSION 

REMAINING WEIGHT 

LB(kg) 
30,631 

6,627 

26,395 

7,052 

15,669 

31,244 

13,894 

3,006 

11,972 

3,199 

7,107 

14,172 

31,562 

6,876 

26,587 

7,263 

17,953 

31,490 

14,316 

3,119 

12,060 

3,294 

8,143 

14,284 

31,392 

6,817 

26,556 

7,228 

16,374 

31,445 

14,239 

3,092 

12,046 

3,278 

7,427 

14,263 

30,714 

6,649 

26,410 

7,069 

15,810 

31,266 

13,932 

3,016 

11,979 

3,207 

7,171 

14,182 

31,628 

6,890 

26,599 

7,275 

18,054 

31,505 

14,346 

3,125 

12,065 

3,300 

8,189 

14,291 

31,441 

6,827 

26,563 

7,236 

16,437 

31,458 

14,261 

3,097 

12,049 

3,282 

7,456 

14,269 

MANUFACTURER EMPTY WEIGHT 

OPERATIONAL ITEMS 

117,618 

2,972 

53,350 

1,348 

121,731 

2,979 

55,216 

1,351 

119,812 

2,978 

54,345 

1,351 

117,918 

2,972 

53,487 

1,348 

121,951 

2,979 

55,316 

1,351 

119,962 

2,978 

54,414 

1,351 

OPERATIONAL EMPTY WEIGHT 

PAYLOAD @ 200 LB/PAX (90.7 kg/pax) 

120,590 

30,000 

54,698 

13,608 

124,710 

30,000 

56,567 

13,608 

122,790 

30,000 

55,696 

13,608 

120,890 

30,000 

54,835 

13,608 

124,930 

30,000 

56,667 

13.608 

122,940 

30,000 

55,765 

13,608 

ZERO FUEL WEIGHT 

FUEL JP-4 @ 6.7 LB/GAL (802.9 kg/m 3) 

150,590 

17,310 

68,306 

7,852 

154,710 

18,190 

70,175 

8,251 

152,790 

19,310 

69,304 

8,759 

150,890 

17,410 

68,443 

7,897 

154,930 

18,270 

70,275 

8,287 

152,940 

19,360 

69,373 

8,781 

TAKEOFF GROSS WEIGHT 167,900 76,158 172,900 78,426 172,100 78,063 168,300 76,340 173,200 78,562 172,300 78,154 



TABLE A-6 (CONT)
 
150 PASSENGER 4000' FIELD LENGTH MECHANICAL FLAP AIRCRAFT FOR ACOUSTIC TRADE STUDY
 

NO ACOUSTIC TREATMENT WALL TREATMENT 

ENGINE FAN PRESSURE RATIO 1.32 1.45 1.57 1.32 1.45 1.57 

ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC 

GEOMETRY DATA 
WING AREA FT2(m2) 1,641 152.4 1,684 156.4 1,678 155.9 1,644 152.7 1,687 156.7 1,679 156.0 

WING LOADING LB/FT2(kg/m 2) 85.5 417.4 85.5 417.4 85.5 417.4 85.5 417.4 85.5 407.4 85.5 417.4 
HORIZONTAL TAIL AREA FT2(m2) 334 31.0 342 31.7 339 31.5 334 31.0 343 31.8 339 31.5 
HORIZONTAL TAIL VOLUME .830 .830 .818 .818 .815 .815 .829 .829 .818 .818 .814 .814 

VERTICAL TAIL AREA FT2(m 2 ) 306 28.4 318 29.5 316 29.4 307 28.5 319 29.6 317 29.4 
VERTICAL TAIL VOLUME .078 .078 .078 .078 .078 .078 .078 .078 .078 .078 .078 .078 
SLS THRUST/TOGW .392 - .383 - .373 - .393 - .384 - .374 -
SLS THRUST PER ENGINE LB (N) 27,490 122,282 27,540 122,504 26,780 119,123 27.660 123,038 27.670 123,082 26,870 119.524 

FUEL WEIGHT/TOGW .100 .100 .104 .104 .112 .112 .101 .101 .104 .104 .112 .112 
CRUISE MACH NUMBER .69 .69 .71 .71 .77 .77 .69 .69 .71 .71 .77 .77 

WEIGHT DATA LB(kg) 
WING 18,506 8,394 19,022 8,628 18,941 8,591 18,542 8,410 19,057 8,644 18,954 8,597 

TAIL 3,398 1,541 3,509 1,592 3,485 1,581 3,406 1,545 3,519 1,596 3,492 1,584 
FUSELAGE 23,793 10,792 23,831 10,810 23,826 10,807 23,796 10,794 23,833 10,811 23,827 10,808 

LANDING GEAR 5,893 2,673 6,048 2,743 6,025 2,733 5,905 2,678 6,057 2,747 6,031 2,736 
PROPULSION 13,748 6,236 15,660 7,103 14,227 6,453 13,873 6,293 15,743 7,141 14,278 6,476 
REMAINING WEIGHT 28,000 12,701 28,124 12,757 28,100 12,746 28,016 12,708 28,132 -12,761 28,103 12,747 

MANUFACTURER EMPTY WEIGHT 93,338 42,337 96,194 43,633 94,604 42,911 93,538 42,428 96,341 43,700 94,685 42,948 

OPERATIONAL ITEMS 2,862 1,298 2,866 1,300 2,866 1,300 2,862 1,298 2,867 1,300 2,866 1,300 

OPERATIONAL EMPTY WEIGHT 96,200 43,635 99,060 44,933 97,470 44,211 96,400 43,726 99,208 45,000 97,551 44,248 
PAYLOAD @ 200 LB/PAX (90.7 kg/pax) 30,000 13,608 30,000 13,608 30,000. 13,608 30,000 13,608 30,000 13,608 30,000 13,608 

ZERO FUEL WEIGHT 126,200 57,243 129,060 58,541 127,470 57,819 126,400 57,334 129,208 58,608 127,551 57,856 
FUEL JP-4 @ 6.7 LB/SAL (802.9 kg/m 3) 14,100 6,396 14,940 6,776 16,030 7,271 14.200 6,441 14,992 6.800 16,049 7,280 

TAKEOFF GROSS WEIGHT 140,300 63,639 144,000 65.317 143,500 65,090 140,600 63,775 144.200 65,408 T43,600 65,136 



the direct operating costs are lower due to less expensive engines and
 

higher block speeds.
 

The task IIstudy includes the effects of thickness ratio and
 

sweep on the EBF, 3000-ft. (914.4m) field length airplane. The results of
 

the weight sensitivity portion of the study are given inTable A-7.
 

Delta weights were first determined for each of the structural
 

components affected, as shown inthe upper half of the table. The horizontal
 

tail sweep and thickness ratio vary with the wing but the vertical tail
 

geometry remains fixed. The delta weights are based on constant wing area,
 

takeoff gross weight and tail volume.
 

The aircraft were then resized in accordance with the process
 

described in Figure A-8. The resultant weights are given in the lower half
 

of Table A-7.
 

A.3.3 Task III Study Results. - The task III study required evaluation of
 

aircraft operational techniques on community noise. One way to achieve a
 

reduction innoise level iswith oversized engines which provide greater
 

climb capability. The increase inweight due to higher thrust can be
 

partially offset by increased wing loading. Increases of five- and ten-percent
 

in thrust were studied for the EBF baseline aircraft. The weight results of
 

this study are shown inTable A-8.
 

Weight sumaries for the four final design aircraft are given in
 

Tables A-9, A-lO, and A-l. The four aircraft consist of the four-engine
 

EBF 3000-ft. (914.4m) field length aircraft with and without ten percent
 

oversized engines, and the mechanical-flap 3000-ft. (914.4m) and 4000-ft.
 

(1219m) field length vehicles each with two 1.57 FPR engines. The EBF final
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TABLE A-7
 
EBF WING SENSITIVITY STUDY - WEIGHT SUMMARY
 

DELTA WEIGHTS FROM E-150-3000; CONSTANT Sw, TOGW, TAIL VOLUME
 
CONFIGURATION BASELINE 1 z 3 4
 
SWEEP (Degrees) 25 25 25 15 5.6

tic (man) ,l 75 .a 1 P;
__ __75 

ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC ENGLISH METRIC
 

COMPONENT WEIGHTS-LB(kg):
 
WING SURFACE MATERIAL 5,807 2,634 + 1,369 + 621 - 450 - 204 - 643 - 246 - 752 - 341 

WING SHEAR MATERIAL 1,025 465 0 0 0 0 - 57 - 26 - 80 - 36 
WING RIBS AND BULKHEADS 1,378 625 + 95 + 43 - 4 - 2 + 29 + 13 + 37 + 17 

FUSELAGE BULKHEADS AT WING ATTACH 312 141 - 4 - 2 + 1 + 1 - 130 - 59 - 216 98 
WING FUSELAGE ATTACH FITTINGS 396 180 - 5 - 2 + 2 + 1 - 165 - 75 - 274 124 
HORIZONTAL TAIL-WEIGHT 2,582 1,171 

BOX CHANGE (due to tic and sweep changes) + 212 + 96 - 74 - 34 - 91 - 41 - 128 58 
CHANGE DUE TO TAIL LENGTH CHANGE 0 0 + 65 + 29 + 133 + 60 

TOTALS 11,500 5,216 + 1,667 + 756 - 525 - 238 - 892 - 405 - 1,280 580 

00oo EFFECTS DUE TO AIRCRAFT RESIZING
 
U1 

CONFIGURATION DESCRIPTION:
 

WING AREA-FT(m 2) 1,461 135.7 1.493 138.7 1,452 134.9 1,391 129.2 1,374 127.6 
WING LOADING-LB/FT (kg/mC) 102 498 102 498 102 498 105 513 105 513 
HORIZ/VERT TAIL AREA-FT2 (m2) 419/319 38.9/29.6 425/329 39.4/30.5 416/317 38.7/29.4 422/308 39.2/28.6 430/303 39.9/28.1 
HORIZ/VERT TAIL LENGTH-IN (cm) 885/735 2248/1867 885/735 2248/1867 885/735 2248/1867 863/735 2192/1867 842/735 2139/1867 
HORIZ/VERT TAIL VOLUME 1.426/.124 1.426/.124 1.400/.123 1.400/.123 1.431/.124 1.431/.124 1.511/.129 1.511/.129 1.528/.129 1.528/.129 

THRUST PER ENGINE-LB (N) 18,260 81,225 18,660 83,004 18,140 80,691 17,600 78,289 16,950 75,397 

THRUST LOADING-LB/LB .490 - .490 .490 - .482 - .470 -

FUEL WEIGHT/TGGW .110 .110 .109 .109 .111 .111 .111 .111 .110 .10 
MAXIMUM FUEL VOLUME (incl center wing)-LB(kq) 54,144 24,559 40,653 18,440 62,449 28,326 50,300 22,816 49,381 22,399 

CRUISE MACH NUMBER .69 .69 .70 .70 .69 .69 .68 .68 .67 .67 

4EIGHTS-LB (kg):
 

TAKEOFF GROSS WEIGHT 149,000 67,585 152,300 69,082 148,100 67,177 146,000 66,224 144,300 65,453
 
A TAKEOFF GROSS WEIGHT 0 0 + 3,300 + 1,497 940 - 426 - 2,980 - 1,352 - 4,740 - 2,150
 
A OPERATIONAL EMPTY WEIGHT 0 0 + 3,100 + 1,406 980 - 445 - 2,830 - 1,284 - 4,280 - 1,941
 



TABLE A-8
 
EBF WITH OVERSIZED ENGINES
 

BASE AIRCRAFT 5% OVERSIZED 10% OVERSIZED
 
English Metric English Metric English Metric
 

GEOMETRY DATA
 
WING AREA FT2 (m2) 1461 135.7 1430 132.8 1400 130.1
 
WING LOADING LB/FT1(k2/W) 102 498 105 512.6 108 527.3
 

)
HORIZ/VERT TAIL AREA FT (m2 419/319 38.9/29/6 420/320 39.0/29.7 421/319 39.1/29.6
 
HORIZ/VERT TAIL VOLUME 1.426/.124 1.426/.124 1.477/.131 1.477/.131 1.528/.132 1.528/.132
SLS THRUST/TOGW .490 - .510 - .530 
SLS THRUST PER ENGINE LB (N) 18,260 81,225 19,160 85,228 20,040 89,142 
FUEL WEIGHT/TOGW .110 .110 .112 .112 .114 .114 

WEIGHT DATA LB (kg)
 
WING 18,070 8,196 17,793 8,071 17,509 7,942
 
TAIL 4,625 2,098 4,637 2,103 4,640 2,105
 
FUSELAGE 23,405 10,616 23,422 10,624 23,440 10,632

LANDING GEAR 6,260 2,840 6,306 2,860 6,352 2,881
 
PROPULSION 19,470 8,832 20,380 9,244 21,272 9,649
 
REMAINING WEIGHT 27,940 12,673 27,915 12,662 27,853 12,634
 

MANUFACTURER EMPTY WEIGHT 99,770 45,255 100,453 45,564 101,066 45,843

OPERATIONAL ITEMS 2,840 1,288 2,837 1,287 2,834 1,285
 

OPERATIONAL EMPTY WEIGHT 102,610 46,543 103,290 46,851 103,900 47,128

PAYLOAD @ 200 LB/PAX (90.7 kg/pax) 30,000 13,608 30,000 13,608 30,000 13,608
 

ZERO FUEL WEIGHT 132,610 60,151 133,290 60,459 133,900 60,736
 
FUEL JP-4 @ 6.7 LB/GAL (802.9 kg/m 3) 16,390 7,434 16,810 7,625 17,300 7,847
 

TAKEOFF GROSS WEIGHT 149,000 67,585 150,100 68,084 151,200 68,583
 



TABLE A-9
 

WEIGHT SUMMARY
 

HIGH LIFT CONCEPT EXTERNALLY BLOWN FLAP EBF+10% OVERSIZED ENC MECHANICAL FLAP 

NUMBER OF PASSENGERS 150 150 150 

FIELD LENGTH - FT Cm) 3000 914.4 3000 914.4 3000 914.4 4000 1219 

DESIGN CRUISE MACH NO. .69 .69 .71 .71 .74 .74 .77 .77 

MISSION RANGE - S-MILES (km) 575 926 575 926 575 926 575 926 

ENGINE DESIGNATION (BPR/FAN PRESS RATIO) PD287-3 PD287-3 P287-3 PD287-3 5.9/1.57 5.9/1.57 5.9/1.57 5.9/1.57 

NO. OF WING MTD ENG/AIRPL 4 4 4 4 2 2 2 2 

DIMENSIONAL DATA 

WING AREA  FT2(b?) 1,461 135.7 1,400 130.1 2,848 264.6 1,679 156.0 

WING LOADING - LBS/FT2 (kg/m2) 102 498 108 527 60.5 295.4 85.5 417.4 

HORIZONTAL TAIL AREA - F 2 (0?) 419 38.9 421 39.1 654 60.8 339 31.5 

HORIZONTAL TAIL ARM  IN(cn) 885 2,248 885 2,248 800 2,032 738 1,875 

HORIZONTAIL TAIL VOLUME 1.426 I426 1.528 1.528 .772 .772 .814 .814 

VERTICAL TAIL AREA - FT2(,e) 319 29.6 319 29.6 565 52.5 317 29.4 

N VERTICAL TAIL ARM - IN(Cm) 735. 1,867 735 1,867 600 1,524 600 1,524 

-- VERTICAL TAIL VOLUME .1238 .1238 .1320 .1320 .063 .063 .078 .078 

MAXIMUM FUSELAGE LENGTH - IN(cm) 1,500 3,810 1,500 3,810 1,525 3,874 1,475 3,747 

MAXIMUM FUSELAGE DEPTH - IN(cm) 180 457 180 457 180 457 180 457 

MAXIMUM FUSELAGE WIDTH - INtcm) 180 457 180 457 180 457 180 457 

SLS THRUST (UNINST)/TOGW .490 .490 .530 .530 .356 .356 .374 .374 

SLS THRUST UNINST)/ENG - LBS(N) 18,260 81,225 20,040 89,142 30,680 136,471 26,870 119,524 

NO. OF ACOUSTICRINGS (INLET/EXH) 0 0 O 0 O 0 0 0 

MISSION FUEL WEIGHT/TOGW .110 .llOf .114 .114 .112 .112 .112 .112 



00 

TABLE A-9 (CONT)
 
WEIGHT SUMMARY
 

HIGH LIFl CONCEPT
 

NUMBER OF PASSENGERS 


FIELD LENGTH - FT (i) 


WEIGHTS-


WING GROUP 


TAIL GROUP 


BODY GROUP 


ALIGHTING GEAR GROUP 


SURFACE CONTROLS GROUP 


ENGINE SECTION OR NACELLE GROUP 


PROPULSION GROUP 


AU XILTARY POWER PLANT GROUP 


INSTRUMENTS & NAVIGATIONAL EQUIP. GROUP 


HYDRAULIC & PNEUMATIC GROUP 

ELECTRICAL GROUP 


ELECTRONICS GROUP 


FURNISHINGS GROUP 


AIRCONDITIONING & ANTI-ICING EOPT GROUP 


AUXILI ARY GEAR GROUP 


MANUFACTURER EMPTY WEIGHT 


OPERATIONAL ITEM WEIGHT 


OPERATIONAL EMPTY WEIGHT 


MISSION PAYLOAD WEIGHT * 


MISSION ZERO FUEL WEIGHT 


MISSION FUEL WEIGHT ** 


STOL TAKEOFF GROSS WEIGHT 


COST WEIGHT 

ANPR WEIGHT 


EXTERNALLY BLOWN FLAP 


150 


3000 914.4 


lb kg 


18,070 8,196 

4,625 2,098 

23,405 10,616 

6,260 2,839 

3,500 1,588 

7,090 3,216 

12,380 5,616 

950 431 

1,175 533 

2,285 1,036 
2,590 1,175 

1,760 798 

13,690 6,210 

1,960 889 

30 14 

99,770 45.255 


2,840 1,288 


102,610 46,543 


30,000 13,608 


132,610 60,151 


16,390 7,434 


149,000 67,585 


87,315 39,605 

84,235 38,208 


EBF+1O% OVERSIZED ENG 


150 

3000 914.4 

lb kg 

17,509 7,942 


4,640 2,105 


23,440 10,632 


6,352 2,881 


3,428 1,555 


7,778 3,528 


13,494 6,121 


950 431 


1,175 533 


2,280 1,034 

2,590 1,175 


1,760 798 


13,690 6,210 


1,950 884 


30 14 


101,066 45,843 


2,834 1,285 


103,900 47,128 


30,000 13,608 


133,900 60,736 


17,300 7,847 


151,200 68,583 


87,536 39,706 

84,456 38,309 


3000 


lb 


31,441 


6,827 


26,563 


7,236 


6,148 


2,873 


13,564 


950 


1,175 


2,993 


2,540 


1,760 


13,690 


2,172 


30 


119,962 


2,978 


122,940 


30,000 


152,940 


19,360 


172,300 


109,169 

106,139 


MECHANICAL FLAP
 

150
 

914.4 4000 1219
 

kg lb kg
 

14,261 18,954 8,597
 

3,097 3A492 1,584
 

12,049 23,827 10,808
 

3,282 6,031 2,736
 

2,789 3,850 1,746
 

1,303 2,516 1,141
 

6,153 11,762 5,335
 

431 950 431
 

533 1,175 533
 

1,357 2,108 956 
1,152 2,540 1,152 

798 1,760 798
 

6,210 13,6.90 6,210
 

985 2,000 907
 

14 30 14
 

54,414 94,685 42,948
 

1,351 2,866 1,300
 

55,765 97,551 44,248
 

13,608 30,000 13,608
 

69,373 127,551 57,856
 

8,781 16,049 7,280
 

78,154 143,600 65,136
 

49,518 85,314 38,698
 
48,144 82,284 37,324
 

• PAYLOAD @ 200 LBS/PAX (90.7 kg/PAX) **JP-4 @ 6.7 LB/GAL (802.9 kg/m3)
 



TABLE A-l0
 
GROUP WEIGHT SUMMARY
 

HIGH LIFT CONCEPT XIERNALLY BLOWN FLAP EBF+1O% OVERSIZED ENG MECHANICAL FLAP 

NUMBER OF PASSENGERS 150 150 150 

FIELD LENGTH - FT Cm)3000 914.4 3000 914.4 3000 914.4 4000 1219 
UNITS lb kg lb kg lb kg lb kg 

EMPTY WEIGHT SUMMARY: _____(8 597 

WING GROUP (18,070) (8,196) (17,509) (7,942) (31,441) (14,261) (18,954) (8,597) 

BOX STRUCTURE 9,866 4,475 9,686 4,394 16,329 7,407 10,386 4,711 

SECONDARY STRUCTURE 1,916 869 1,827 829 3,848 1,745 2,285 1,036 

AILERONS 362 164 345 156 627 284 333 151 

FLAPS - TRAILING EDGE 4,266 1,936 4,068 1,845 6,745 3,060 3,700 1,678 

- LEADING EDGE 450 204 430 195 0 0 0 0 

SLATS 681 309 649 294 2,802 1,271 1,653 750 

SPOILERS 529 240 504 229 1,090 494 597 271 

TAIL GROUP (4,625) (2,098) (4,640) (2,105) (6,827) (3,097) (3,492) (1,584) 
N STABILIZER - BASIC STRUCTURE 1,247 566 1,254 569 2,047 929 979 444 
00 
1. FINS - BASIC STRUCTURE 1,415 642 1,417 643 2,744 1,245 1,407 638 

SECONDARY STRUCTURE (STAB. AND FINS) 298 135 300 136 466 211 242 110 

ELEVATORS 655 297 668 299 729 331 369 167 

RUDDER 628 285 629 285 841 381 495 225 

SLATS - STABILIZER 382 173 382 173 0 0 0 0 

BODY GROUP (23,405) (10;616) (23,440) (10,632) (26,563) (12,049) (23,827) (10,808) 

FUSELAGE - BASIC STRUCTURE 17,060 7,738 17,095 7,754 19,524 8,856 17,092 7,753 

SECONDARY STRUCTURE 

MAIN LANDING GEAR PODS 519 236 519 236 940 426 784 355 

AIRSTAIRS 1,330 603 1,330 603 1,765 801 1,494 678 

DOORS, PANELS & MISC 4,496 2,039 4,496 2,039 4,334 1,966 4,457 2,022 

-1 --- n 



TABLE A-10 (CONT)
 
GROUP WEIGHT SUMMARY
 

HIGH LIFT CONCEPT EXTERNALLY BLOWN FLAI EBF+10% OVERSIZED ENG MECHANICAL FLAP 
NUMBER OF PASSENGERS 150 150 150 
FIELD LENGTH - FT (m) 3000 914.4 3000 914.4 3000 914.4 4000 3219 
UNITS In K9 ID rg Tb Kg lb rg 
ALIGHTING GEAR GROUP (6,260) (2,839) (6,352) (2,881) (7,236) (3,282) (6,031) (2,736) 

MAIN GEAR 
ROLLING ASSEMBLY 1,425 646 1,445 655 1,646 747 1,372 622 

GEAR STRUCTURE 3,102 1,407 3,146 1,427 3,584 1,626 2,987 1,355 

CONTROLS 453 205 459 208 523 237 436 198 
TOTAL MAIN GEAR 4,980 2,258 5,050 2,290 5,753 2,610 4,795 2,175 

NOSE GEAR 

ROLLING ASSEMBLY 235 107 237 108 270 122 285 102 

GEAR STRUCTURE 789 358 805 365 917 416 764 347 

CONTROLS 256 116 260 118 296 134 247 112 

TOTAL NOSE GEAR 1,280 581 1,302 591 1,483 672 1,236 561 

SURFACE CONTROLS GROUP (3,500 (1,588) (3,428) (1,555) (6,148) (2,789) (3,850) (1,746) 

COCKPIT CONTROLS 85 39 85 39 85 39 85 39 
AUTOMATIC PILOT 240 109 240 109 240 109 240 109 

SYSTEM CONTROLS 3,175 1,440 3,103 1,407 5,823 2,641 3,525 1,598 

ENGINE SECTION OR NACELLE GROUP (7,090) (3,216) (7,778) (3,528) (2,873) (1,303) (2,516) (1,141) 

INBOARD 3,545 1,608 3,889 1,764 2,873 1,303 2,516 1,141 
OUTBOARD 3,545 1,608 3,889 1,764 0 0 0 0 



TABLE A-10 (CONT) 
GROUP WEIGHT SUfMARY 

HIGH LIFT CONCEPT 

NUMBER OF PASSENGERS 

EXTERNALLY BLOWN FLAP EBF+1O% OVERSIZED ENG 

150 150 

MECHANICAL FLAP 

150 

FIELD LENGTH - FT (i) 

UNITS 

PROPULSION GROUP 

ENGINE INSTALLATION 

EXHAUST SYSTEM 

COOLING SYSTEM 

FUEL SYSTEM 

ENGINE CONTROLS 

3000 

lb 

(12,380) 

10,795 

360 

91 

779 

65 

914.4 

kg 

(5,616) 

4,897 

163 

41 

353 

30 

3000 

lb 

(13,494) 

11,848 

395 

99 

763 

71 

914.4 

kg 

(6,121) 

5,374 

179 

45 

346 

32 

3000 

lb 

(13,564) 

8,877 

426 

76 

1,088 

51 

914.4 

kg 

(6,153) 

4,027 

193 

34 

494 

23 

4000 

Ig 

(11,762) 

7,774 

374 

67 

835 

44 

1219 

kg 

(5,335) 

3,526 

170 

30 

379 

20 

N 

STARTING SYSTEM 
THRUST REVERSER 

AUXILIARY POWER PLANT GROUP 

INSTRUMENTS & NAVIGATIONAL EQUIP GROUP 

HYDRAULIC & PNEUMATIC GROUP 
HYDRAULIC SYSTEM 

PNEUMATIC SYSTEM 

290 
0 

(950) 

(1,175) 

(2,285) 
1,278 

1,007 

132 
0 

(431) 

(533) 

(1,036) 
580 

456 

318 
0 

(950) 

(1,175) 

(2,280) 
1,253 

1,027 

145 
0 

(431) 

(533) 

(1,034) 

568 

466 

248 
2,798 

(950) 

(1,175) 

(2,993) 

2,192 

801 

113 
1,269 

(431) 

(533) 

(1,357) 

994 

363 

217 
2,451 

(950) 

(1,175) 

(2,108) 

1,373 

735 

98 

1,112 

(431) 

(533) 

(956) 

623 

333 

ELECTRICAL GROUP 

ELECTRONICS GROUP 

EQUIPMENT 

INSTALLATION 

(2,590) 

(1,760) 

1,074 

686 

(1,175) 

(798) 

487 

311 

(2,590) 

(1,760) 

1,074 

686 

(1,175) 

(798) 

487 

311 

(2,540) 

(1,760) 

1,074 

686 

(1,152) 

(798) 

487 

311 

(2,540) 

(1,760) 

1,074 

686 

(1,152) 

(798) 

487 

311 

FJRNIHSINGS GROUP 

AIRCONDITIONING & ANTI-ICING EQUIP GRP 

AIRCONDITIONING 

ANTI-ICING 

AUXILIARY GEAR GROUP 

(13,690) 

(1,960) 

1,430 

530 

(30) 

(6,210) 

(889) 

649 

240 

(14) 

(13,690) 

(1,950) 

1,430 

520 

(30) 

(6,210) 

(884) 

649 

235 

(14) 

(13,690) 

(2,172) 

1,430 

742 

(30) 

(6,210) 

(985) 

649 

336 

(14) 

(13,690) 

(2,000) 

1,430 

570 

(30) 

(6,210) 

(907) 

649 

258 

(14) 

MANUFACTURER'S EMPTY WEIGHT 99,770 45,255 101,066 45,843 119,962 54,414 94,685 42,948 



TABLE A-1O (CONT)
 

GROUP WEIGHT SUMMARY
 

HIGH LIFT CONCEPT EXTERNALLY BLOWN FLAP EBF+10% OVERSIZED ENG MECHANICAL FLAP
 
NUMBER OF PASSENGERS 150 150 150 
FIELD LENGTH - FT (m) 3000 914.4 3000 914.4 3000 914.4 4000 1219 

UNITS lb kg lb kg lb kg lb kg 
OPERATIONAL ITEMS (2,840) (1,288) (2,834) (1,285) (2,978) (1,351) (2,866) (1,300) 

PILOT & CO PILOT @ 170# ea (77.1 kg ea 340 154 340 154 340 154 340 154 
CABIN ATTENDANTS @ 130# ea(59.0 kg ea) 520 236 520 236 520 236 520 236 

CREW LUGGAGE & BRIEFCASES 170 77 170 77 170 77 170 77 

PASSENGER SERVICE ITEMS 

FOOD, BEVERAGE, & GALLEY EQUIPMENT 231 105 231 105 231 105 231 105 

CABIN SUPPLIES & LAVATORY SUPPLIES 439 199 439 199 439 199 439 199 
POTABLE WATER 375 170 375 170 375 170 375 170 

ENGINE OIL 195 89 195 89 195 89 195 89 

EVACUATION SLIDES 225 102 225 102 225 102 225 102 
UNUSABLE FUEL 345 156 339 153 483 219 371 168 

N MANUFACTURER EMPTY WEIGHT 99,770 45,255 101,066 45,843 119,962 54,414 94,685 42,948 

OPERATIONAL ITEM WEIGHT 2,840 1,288 2,834 1,285 2,978 1,351 2,866 1,300 
OPERATIONAL EMPTY WEIGHT 102,610 46,543 103,900 47,128 122,940 55,765 97,551 44,248 

MISSION PAYLOAD WEIGHT* 30,000 13,608 30,000 13,608 30,000 13,608 30,000 13,606 

MISSION ZERO FUEL WEIGHT 132,610 60,151 133,900 60,736 152,940 69,373 127,551 57,856 
MISSION FUEL WEIGHT** 16,390 7,434 17,300 7,847 19,360 8,781 16,049 7,280 

STOL TAKEOFF GROSS WEIGHT 149,000 67,585 151,200 68,583 172,300 78,154 143,600 65,136 



TABLE A-10 (CONT)
 

GROUP WEIGHT SUMMARY
 

HIGH LIFT CONCEPT EXTERNALLY BLOWN FLAP EBF+1O% OVERSIZED ENG MECHANICAL FLAP
 

NUMBER OF PASSENGERS 150 150 150 

FIELD LENGTH - FT (i) 3000 914.4 3000 914.4 3000 914.4 4000 1219 

UNITS lb kg lb kg Ig kg Ig kg 

COST WEIGHTS 

MFR EMPTY WEIGHT 99,770 45,255 101,066 45,843 119,962 54,414 94,685 42,948 

LESS: ROLLING ASSY -1,660 -753 -1,682 -763 -1,916 -869 -1,597 -724 

DRY ENGINES -10,795 -4,897 -11,848 -5,374 -8,877 -4,027 -7,774 -3,526 

COST WEIGHT 87,315 39,605 87,536 39,706 109,169 49,518 85,314 38,698 

LESS ITEMS PECULIAR TO AMPR 

STARTERS -105 -48 -105 -48 -105 -48 -105 -48 

AUX POWER UNIT -245 -111 -245 -111 -245 -111 -245 -Iil 

INSTRUMENTS -631 -286 -631 -286 -631 -286 -631 -286 

BATTERY AND A.C. SUPPLY -561 -254 -561 -254 -511 -231 -511 -231 

AVIONICS (BLK BOXES) -1,074 -487 -1,074 -487 -1,074 -487 -1,074 -487 

AIRCONDITION UNIT -319 -145 -319 -145 -319 -145 -319 -145 

HYDRAULICS (DROP-OUT GEN) -145 -66 -145 -66 -145 -66 -145 -66 

AMPR WEIGHT 84,235 38,208 84,456 38,309 106,139 48,144 82,284 37,324 

N 

- - - -



TABLE A-11
 

DIMENSIONAL AND STRUCTURAL DATA
 

HIGH LIFT CONCEPT EXTERNALLY BLOWN FLAP EBF+1O% OVERSIZED ENG MECHANICAL FLAP 
NUMBER OF PASSENGERS 150 150 150 
FIELD LENGTH - FT (m) 3000 914.4 3000 914.4 3000 914.4 4000 1219 
DESIGN CRUISE MACH NO. .69 .69 .71 .71 .74 .74 .77 .77 
MISSION RANGE - S-MILES (km) 575 926 575 926 575 926 575 926 

CONFIGURATION DATA 

WING LOADING - LBS/FT2 (kg/td2) 102 498 108 527 60.5 295.4 85.5 417.4 
ENGINE DESIGNATrON PD287-3 PD287-3 PD287-3 PD287-3 5.9/1.57 5.9/1.57 5.9/1.57 5.9/1.57 
SLS THRUST (UNINST)/TOGW .490 .490 .530 .530 .356 .356 .374 ..374 
SLS THRUST (UNINST)/ENG - LB (N) 18,250 81,180 20,040 89,142 30,680 136,471 26,870 119,524 
NO. OF ACOUSTIC RINGS (INLET/EXH) 0 0 0 0 0 0 0 
NO. OF WING MTD ENG/AIRPL 4 4 4 4 2 2 2 2 
MISSION FUEL WEIGHT/TOGW .1100 .1100 .1147 .1147 .112 .112 .112 .112 

DIMENSIONAL DATA 

WING: 
AREA - FT2 (fl2) 2 1 461 135.7 1,400 130.1 2,848 264.6 1,679 156.0 
MAC LENGTH - IN (cm) 177.8 451.6 174.1 442.2 238.1 604.8 182.8 464.4 
SPAN LENGTH - FT (m) 108.1 32.94 105.8 32,25 157.4 47.98 120.9 36.84 
ASPECT RATIO 8.0 8.0 8.0 8.0 8.7 8.7 8.7 8.7 
TAPER RATIO .3 .3 .3 .3 .3 .3 .3 .3 
SWEEP BACK AT 25% CHORD - DEGREE 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 
THEO ROOT CHORD LENGTH - IN (cm,) 249.5 633.7 244.2 620.3 334.0 848.4 256.5 651.4 
THEO ROOT CHORD MAX t - IN (cm-) 41.5 105 40.3 102 55.1 140.0 42.3 107.5 
THICKNESS BREAK CHORD LENGTH - IN (cn) 188.4 478.5 184.4 468.3 252.2 640.6 193.6 491.8 
THICKNESS BREAK CHORD MAX t - IN (cm) 26.1 66.3 25.4 64.6 34.8 88.4 26.7 67.9 
THEO TIP CHORD LENGTH - IN(cm) 74.8 190 73.3 186 100.2 254.5 76.9 195.4 
THEO TIP CHORD MAX t - IN (cm) , 9.0 23 8.9 23 12.1 30.8 9.31 23.6 
LOC OF T/C BREAK - FRACTION OF b/2 .35 .35 .35 .35 .35 .35 .35 .35 



TABLE A-li (CONT)
 

DIMENSIONAL AND STRUCTURAL DATA
 

HIGH LIFT CONCEPT EXTERNALLY BLOWN FLAP EBF+1O% OVERSIZED ENG MECHANICAL FLAP 
NUMBER OF PASSENGERS 150 150 160 
FIELD LENGTH - FT (i) 3000 914.4 3000 914.4 3000 914.4 4000 1219 

WING (CONTINUED) 

AREAS: FT2 ' 2) 

AILERONS (AFT OF HINGE LINE) 65 6.0 61 5.7 112 10.4 59 5.5 

LEADING EDGE FLAP 81 7.5 78 7.2 0 0 0 0 

TRAILING EDGE FLAP 333 30.9 318 29.5 674 62.7 370 34.4 

SLAT 86 8.0 82 7.6 355 32.9 209 19.4 

SPOILER 143 13.3 136 12.7 294 27.4 161 15.0 

HORIZONTAL TAIL 

AREA - FT2 En2) 419 38.9 421 39.1 654 60.8 339 31.5 

MAC - LENGTH - .IN(cn 115.1 292.4 115.4 293.0 143.9 365.4 103.5 262.8 

SPAN - LENGTH - FT (m) 45.8 13.9 45.9 14.0 57.2 17.4 41.1 12.5 

ASPECT RATIO 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

TAPER RATIO .45 .45 .45 .45 .45 .45 .45 .45 

SWEEP BACK AT 25% CHORD - DEGREE 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 

THEO ROOT CHORD LENGTH - IN (cm) 151.5 384.8 151.8 385.7 189.4 481.0 136.2 345.9 

THEO ROOT CHORD MAX t- IN (cm) 15.2 38.6 15.2 38.6 18.9 48.1 13.6 34.6 

THEO TIP CHORD LENGTH - IN (cm) 68.2 173 68.3 173.6 85.2 216.4 61.3 155.7 

THEO TIP CHORD MAX t- IN (cm) 6.8 17 6.8 17.4 8.5 21.6 6.1 15.6 

HORIZ TAIL ARN - IN (cm) 885 2,248 885 2,248 800 2,032 738 1,875 

HORIZ TAIL VOLUME 1.426 1.426 1.528 1.528 .772 .772 .814 .814 

ELEV. AREA (AFT OF HL) - FT2 (m2) 140 13.0 141 13.1 156 14.5 79 7.3 

L.E. SLAT.AREA - FT2 (m2) 57 5.3 57 5.3 0 0 0 0 



TABLE A-11 (CONT)
 

DIMENSIONAL AND STRUCTURAL DATA
 

HIGH LIFT CONCEPT EXTERNALLY BLOWN FLAP EBF+10% OVERSIZED ENG MECHANICAL FLAP 
NUMBER OF PASSENGERS 150 150 150 
FIELD LENGTH - FT (m) 3000 914.4 3000 914.4 3000 914.4 4000 1219 

VERTICAL TAIL 
AREA - FT2 (m2) 319 29.6 319 29.6 565 52.5 317 29.4 
MAC - LENGTH - IN (cm) 205.1 521.5 205.3 521.5 316.2 803.3 236.7 601.3 
SPAN - LENGTH - FT (M) 18.7 5.70 18.7 5.7 21.5 6.6 16.1 4.9 
ASPECT RATIO 1.1 1.1 1.1 1.1 .82 .82 .82 .82 
TAPER RATIO .8 .8 .8 .8 .8 .8 .8 .8 
SWEEP BACK AT 25% CHORD - DEGREE 40 40 40 40 40 40 40 40 
THEO ROOT CHORD LENGTH - IN (cm) 227.2 577.1 227.2 577.1 349.9 888.9 262.0 665.4 
THEO ROOT CHORD MAX t - IN (an) 25.0 63.5 25.0 63.5 38.5 97.8 28.8 73.2 
THEO TIP CHORD LENGTH - IN (cm) 181.7 461.5 181.7 461.5 280.0 711.1 209.6 532.3 
THEO TIP CHORD MAX t - IN (an) 20.0 50.8 20.0 50.8 30.8 78.2 23.1 58.6 
VERT TAIL ARM - IN (cm) 735 1,867 735 1,867 600 1,524 600 1,524 
VERT TAIL VOLUME .1238 .1238 .1320 .1320 .063 .063 .078 .078 
RUD AREA (AFT OF HL) - FT2 (m2) 115 10.7 115 10.7 154 14.3 90 8.4 

FUSELAGE 
LENGTH - MAX FUSELAGE - IN (cm) 1500 3810 1500 3810 1525 3874 1475 3747 
DEPTH - MAX FUSELAGE - IN (cm) 180 457 180 457 180 457 180 457 
WIDTH - MAX FUSELAGE - IN (cm) 180 457 180 457 180 457 180 457 
WETTED AREA - FUSELAGE* - FT2 (in2) 5127 476.3 5127 476.3 5205 483.5 5009 465.3 

ALIGHTING GEAR 
TYPE TRICYCLE TRICYCLE TRICYCLE TRICYCLE TRICYCLE TRICYCLE TRICYCLE TRICYCLE 
LENGTH - OLEO EXTENDED - IN (cm) 100 254 100 254 102 259 85 216 
MAX OLEO TRAVEL - IN (cm) 27 69 27 69 27 69 30 76 

* To Theoretical Loft Lines - No Cutouts, No Pods. 



TABLE A-I (CONT)
 

DIMENSIONAL.AND STRUCTURAL DATA
 

HIGH LIFT CONCEPT EXTERNALLY BLOWN FLAP EBF+1O% OVERSIZED ENG MECHANICAL FLAP 
NU4BER OF PASSENGERS 150 150 150 
FIELD LENGTH - FT (m) 3000 914.4 3000 914.4 3000 914.4 4000 1219 

FUEL SYSTEM (USABLE) - PER AIRPLANE (8.080) (30.58) (7,530) (28.50) (22,220) (84.10) (10,000) (37.85) 
OUTER WING - NO. OF TANKS/GAL (m3) 4/6,830 4/22.07 4/5,400 4/20.44 4/17,715 4/67.06 4/7,440 4/28.16 
CENTER WING - NO. OF TANKS/GAL (m3) 1/2,250 1/8.516 1/2,130 1/8.06 1/4,505 1/17.05 1/2,560 1/9.69 

STRUCTURAL DATA - CONDITION 
STOL TAKEOFF G.W. LBS (kq) 149,000 67,585 151,240 68,601 172,300 78,154 143,600 65,136 
FUEL INWING - LBS (kg) 16,390 7,434 17,340 7,865 19,360 8,781 16,049 7,280 
STRESS'G.W. - LBS (kg) 149,000 67,585 151,240 68,601 172,300 78,154 143,600 65,136 
ULTIMATE LOAD FACTOR 4 . 5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 
STOL LANDING G.W. - LBS (kg) 149,000 67,585 151,240 68,601 172,300 78,154 143,600 65,136 
MAX. G.W. WITH ZERO FUEL - LBS (kg) 
LIKIT A/C LDS SINK SPEED - FT/SEC6m/SEC 

132,61W 
15 

60,151 
4.6 

133,900 
15 

60,736 
4.6 

152,940 
15 

69,373 
4.6 

127,551 
15 

57,856 
4.6 

WING LIFT FOR LDG DES COND  % 100 100 100 100 100 100 100 
PRESS CABIN-ULT DES DIFF-LBS/IN2 (kg/ci2 11.19 .7759 11.19 .7759 11.19 .7759 11.19 .7759 



design aircraft is identical to that tabulated in Appendix E, Vol. II of
 

Reference 1, but is reproduced here for easy comparison to the other final
 

designs. The mechanical-flap configurations are lighter than those in the
 

Reference I study by reason of a lighter weight engine, elimination of sound
 

suppression rings, short in lieu of long duct nacelle, a less cantilevered
 

pylon, shorter chord flap, and lighter wing box weight. The decrease in
 

wing box weight results from elimination of flutter penalty due to lower
 

aspect ratio and more box chord, lighter flap attach bulkheads because of
 

shorter chord flap, and lighter pylon attach bulkheads due to a further aft
 

engine placement on the wing.
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APPENDIX B
 

This appendix contains results of propulsion studies for the EBF
 

aircraft performed during the "Study of Quiet Turbofan STOL Aircraft for
 

Short-Haul Transportation" and previously reported in Reference 1.
 

Pertinent information has been included here for convenient reference.
 

B.1 Propulsion Installation
 

The externally-blown-flap engine installation isshown in Figure
 

B-1. The drawing is of a 20,000 pound (89,000 N) thrust Allison PD287-3
 

engine, which has a variable-pitch fan with a pressure ratio of 1.25. The
 

thrust level of the drawing was selected prior to final aircraft sizing and
 

does not necessarily match the engine size on the aircraft.
 

B.1.1 Engine/Airframe Interrelation - The engine installation is shown
 

matched to a wing cross section corresponding to the 50 percent semi-span
 

cut of an 1800 square foot (167 m2) wing with 7.0 aspect ratio, 0.3 taper
 

ratio, and 25 deqrees (.436 rad.) of sweep at the quarter chord. These values
 

were derived from previous studies and test experience as beinq tvpical for
 

meeting externally-blown-flap wing requirements for high lift with low weiqht.
 

The nacelle is positioned relative to the wing horizontally by
 

locating the fan exhaust plane forward of the wing L.E.; the vertical positton
 

isfixed by locating the top of the fan exhaust inthe same horizontal plane
 

as the lowest extremity of the drooped-wing leading edge section.
 

B.1.2 Engine Inlet Geometry - The engine inlet throat area issized to give
 

an average throat Mach number of 0.6 at takeoff power at sea level static
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VARIABLE-PITCH FAN ENGINE INSTALLATION
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conditions. The inlet is configured with a leading edge lip thickness that
 

varies from 11 percent at the top to a maximum of 20 percent at the bottom.
 

This lip design is based on test data to have acceptable inlet distortion
 

levels with crosswind and at the high local flow angles of attack due to
 

wing induced upwash. The inlet length is determined by the length of
 

acoustical treatment necessary to attain the desired level of noise attenuation.
 

B.l.3 Nacelle External Shape - The maximum nacelle radii are sized to provide
 

engine fan case clearance and to accommodate a fan exhaust duct with a Mach
 

number of 0.45 and the necessary acoustic wall treatment. The nacelle/fan
 

case clearance includes a volume allocation for the engine accessories and
 

engine-mounted airframe system components such as C.S.D./generators, hydraulic
 

pumps, and pneumatic system controls and ducting. Size estimates of these
 

components were based upon aircraft requirements using data from the DC-8,
 

DC-9, and DC-IO.
 

The fan and core cowl afterbody lengths are based on test data to
 

minimize length consistent with avoiding compressibility drag.
 

B.l.3.1 Exhaust Duct Geometry - The fan duct flow area is sizedito maintain
 

a duct Mach number below 0.45 through the acoustically lined duct between the
 

engine fan case and the leading edge of the variable area exhaust nozzle
 

vanes. The duct length was determined by acoustic requirements.
 

The variable fan area, thrust reversing, and accessibility features
 

of this engine installation are the same as discussed in Section 4.2.4.
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B.2 Installed Engine Performance
 

Installed engine performance data were generated by correcting the
 

engine manufacturer's reference engine performance values for the effects of
 

installing the engine on the airplane.
 

The 	installation effects are:
 

o 	 Inlet and exhaust system total pressure loss, including the
 

applicable losses due to acoustic treatment.
 

o 	 Exhaust system nozzle performance differences relative to
 

that included in the reference performance.
 

o 	 Scrubbing drag on those external surfaces that are washed by
 

the engine exhaust flow.
 

o 	 Engine compressor airbleed and mechanical power extraction to
 

supply the airplane accessory system requirements.
 

o 	 Fan airbleed to cool the compressor airbleed to acceptable
 

values.
 

B.2.1 Inlet Pressure Loss. - The inlet total pressure loss, shown in
 

Table B-1, is calculated as flat-plate skin-friction loss on all surfaces.
 

A friction coefficient, 40 percent higher than that for smooth surfaces, was
 

assumed for all acoustically treated surfaces. The increase in loss at
 

high mass flow ratios (takeoff condition) is du6 to high local velocities
 

near 	the inlet leading edge at static conditions and low forward speeds.
 

B.2.2 Fan Duct and Nozzle Losses. - The exhaust system losses were evaluated
 

using skin friction calculations for smooth and for acoustically treated walls
 

in the same manner as for the inlet.
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B.2.3 External Aerodynamic Losses. - The drag of the isolated nacelle at the
 

typical cruise condition is included in the installed engine performance.
 

The skin friction coefficient used to calculate drag is a function of the
 

local Reynolds number. Local Reynolds number is calculated for both the
 

freestream cruise condition and the fully expanded exhaust flows for both fan
 

and primary exit conditions. Drag coefficients, D/q, are then calculated
 

for the nacelle and pylon in the three flow regimes; freestream, fan nozzle
 

discharge, and primary nozzle discharge. Depending on the nacelle configura

tion, the fan cowl and part of the pylon are exposed to freestream flow,
 

while parts of the pylon and engine core cowl are exposed to fan nozzle
 

discharge. Also, parts of the pylon may be exposed to primary nozzle discharge
 

flow. Drag values for these three flow regimes are shown in Table B-i.
 

B.2.4 Airbleed and Mechanical Power Extraction. - Engine compressor air

bleed is used for air conditioning and pressurizing the flight deck and crew
 

compartment. Precoolers located in the pylons use fan bleed to cool the
 

compressor airbleed. Airbleed requirements are based on 14 CFM (.0066 m3/s)
 

per passenger, where flow density is calculated using the DC-10 maximum
 

cabin pressure schedule and a temperature of 700F (210C).
 

Mechanical power extraction is based on a statistical study of
 

system requirements in several modes of flight. For all configurations,
 

150 HP (112 kW) per airplane was used for takeoff conditions, while 110 HP
 

(82 kW) per airplane was used for cruise conditions.
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B.3 Installation Loss Analyses
 

Table B-i is a summary of the installation effects on engine
 

performance at takeoff and cruise conditions for the EBF nacelle configuration
 

considered in the study. The losses in each case are referenced to the re

quired uninstalled thrust, Fn0 . The uninstalled sea level static takeoff
 

thrust value for the selected engine size is denoted by FnREF.
 

B.4 Installed Propulsion System Performance Data
 

Installed propulsion system performance data for all significant
 

aircraft operating conditions are shown in Figures B-2 and B-3. Performance
 

for takeoff (maximum power) is presented in terms of gross thrust and ram
 

drag in Figure B-2. Installed fuel flow for any condition can be obtained
 

from Figure B-3 which show the generalized fuel flow parameter as a function
 

of net thrust and Mach number.
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TABLE B-1 
INSTALLATION LOSSES 

Inlet Ora,%Fms 

C o n f i g u r a t i o n 

E.a1F. 

P02117-I
287-318,260 lb 

181.224 kN) 

Felig h 
ntF 

T.O. 

Flight 

D .117 95'F 
(35C) 

14.749 Ib 
(65.606 kN) 

W 

4,284 b/hr 
(.5398 kg/s) 

OS 
$unary 

knount 

FN/FN 

/REFAWf/W 

0 

.9947 

.023 

.005 

A ir 

Bleed 

.62 lb/sec 
(.281 kg/sec 

.019 

.012 

Power 
Extraction 

375 He 
(20. kW) 

.001 

0.0 

TTF 

.0073 

.016 

0.0 

P 

.0072 

.003 

0.0 

T 

.978 

.008 

0.0 

I 

.977 

=0.0 

0.0 

26 Ib 
(118 N) 

.002 

0.0 

0 

9 Ib 
(443 N) 

.007 

0.0 

8 lb 
(36 N) 

0.0 

0.0 

5 

13,581 lb 
(60.411 kN) 

.079 

-

f 

f 

4.212 lb/hr 
(.5307 kg/s) 

0.17 

Cruise 20,000 Ft 
(6096.1) 

.7 STD 4.210 lb 
(18.727 kN) 

2 413 lb/hr 
1.304 kg/s) 

Ascunt .996 .62 lb/sec 
(.281 kg/sac) 

7,5 "P 
(20.5 kW) 

.O0W .000 .978 .977 436 lb 120lb 
(1939 N) (534 N) 

6 lb 
(27 N) 

3168 lb 
14.09 kN) 

2,359 lb/hr 
(.297 kg/s) 

'FNFN .022 

.0f/Wf.O4 

.040 

.016 

-. 003 

.002 

.022 

0.0 

.005 

0.0 

.029 

0,0 

:0.0 

0.0 

.104 

0.0 

.028 

0.0 

.001 

0.0 

.248 -

.022 

o 
U 

NOTE! 1) 
2) 

Not shown is the effect of pne-cooling fan bleed which is nreligible. 
The wuinstalled valve for C

t 
duct and CVpri is .985 
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APPENDIX C
 

C. ACOUSTICS
 

C.l Source Noise Prediction Methods
 

C.1.l Prediction of Engine Source Noise - The Douglas Quick Response Engine
 

Source Noise (QRESN) prediction procedure was developed to provide a quick

response method of estimating engine component and total noise on a PNL basis.
 

The procedure is based on measured static test data (NASA Fan A and Fan C,
 

JT3D, JT8D, JTYD and CF6), and flyover noise data (DC-8, DC-9, and DC-IO).
 

Noise from turbofan engines consist of turbomachinery noise,
 

combustion noise, and jet exhaust noise. Noise radiated from the engine
 

inlet is a maximum in the forward quadrant at angles between 40 degrees
 

(.70 rad) and 80 degrees (1.40 rad) relative to the inlet. The maximum values
 

of noise from the fan discharge, turbine discharge, and jet noise sources occur
 

in the aft quadrant at angles between 100 degrees (1.75 rad) and 140 degrees
 

(2.44 rad) from the inlet. Figure C-i presents a typical high bypass ratio
 

engine noise source breakdown showing Perceived Noise Level (PNL) as a function
 

of angle from the inlet.
 

The QRESN procedure determines the maximum PNL for each noise
 

source based on engine cycle parameters. The QRESN prediction procedure is
 

summarized in Figure C-2. The engine cycle parameters required to estimate
 

the component noise levels are as follows:
 

Preceding page blank 
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NOISE PREDICTION PROCEDURE
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PNL PNL PNL PNL PNL
 

ENGINE PARAMETERS FAN INLET FAN EXHAUST JET CORE TURBINE
 

Fan Tip Speed X
 

Inlet Flow Rate X X 

Fan Pressure Ratio X
 

Fan Exit Velocity X
 

Fan Exit Area X
 

Fan Exhaust Flow Rate X
 

Primary Exit Velocity X X
 

Primary Exit Area X X
 

Primary Flow Rate X X X
 

Using the cycle parameters applicable to each noise source the
 

individual component noise levels are calculated and the maximum PNL on a
 

sideline produced by all the noise sources is determined by combining logar

ithmically the contributions from all sources peaking in the aft quadrant.
 

The contribution of inlet noise to the total aft quadrant noise level was
 

assumed to be 9 PNdB less than the peak inlet noise level in the forward
 

quadrant (Ref. Figure C-1). A similar technique is also used in determining
 

the maximum PNL on a sideline, produced by the noise sources in the inlet
 

quadrant. Adjustments in terms of PNdB for ground attenuation, the number of
 

engines, distance from the noise source, technology factors, and turbomachinery
 

suppression (L/H), are made to the component noise source noise levels prior
 

to the summation process.
 

The effective perceived noise level (EPNL) is calculated as a
 

function of the maximum inlet or exhaust PNL and corrected for duration at a
 

specific sideline distance from the noise source. This procedure is used to
 

generate plots of EPNL as a function of distance and power setting.
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Figure C-3 shows the correlation between measured flyover noise
 

levels for the DC-10 (with CF6-6 engines) and predicted noise levels using
 

the DAC quick prediction procedure.
 

C.l.2 Prediction of Powered-Lift-System Noise - The procedure used to evaluate
 

the noise from powered-lift systems (PLS) was the Quick Response Powered Lift
 

System (QRPLS) procedure which was developed by Douglas Aircraft in 1973.
 

A schematic of the QRPLS procedure is shown in Figure C-4. The
 

calculation of PLS noise was determined by accounting for the effects of:
 

* flap deflection, 6F
 

* effective nozzle exit velocity, VEFF
 

* distance to the aircraft, SR
 

* exhaust temperature, TEXIT
 

* effective nozzle diameter, DEFF, and
 

* ambient aircraft velocity, VAMB
 

This procedure can be utilized to determine both EPNL and PNL for
 

both lower-surface blown (LSB) and upper-surface blown (USB) flaps. The QRPLS
 

procedure was formulated from a Douglas computer program for predicting PLS
 

noise. The parameters of this program were varied systematically to determine
 

their relative effect on a PNL and EPNL basis. This resulted in the PLS noise
 

correlation parameters specified above.
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COMPARISON OF DC-10-10 FLYOVER NOISE LEVELS
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QUICK RESPONSE PLS NOISE PREDICTION
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The range of input parameters which were evaluated are as follows:
 

* 	 flap deflection from 0 to 60 degrees
 

@ 	 effective nozzle exit velocities from
 

400 to 1200 ft/sec
 

* 	 effective nozzle exhaust temperatures from
 

519 to 2000 0F
 

* 	 ambient temperature from 480 to 560 oF
 

* 	 effective nozzle diameter from 3 to 7 feet
 

* 	sideline distances from 0 to 10,000 feet
 

* altitudes from 100 to 10,000 feet
 

In addition, the following adjustments were applied to the predicted PLS
 

values:
 

* 	 10 log (number of engines)
 

* 	 the effect of aircraft forward velocity = -1 dB 

* 	 technology relief factor = -3 dB 

The QRPLS procedure has been evaluated as having an accuracy of ±l dB
 

relative to the more extensive Douglas computer program. The computer
 

program, in turn, has predicted full scale, TF-34 PLS noise levels to
 

within t2 dB of those measured. It is therefore believed that this procedure
 

is a reasonably accurate method for evaluating PLS noise levels.
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APPENDIX
 

C.2 Noise Impact Evaluation
 

This appendix contains a sample computer run using the Aircraft
 

Noise Contour/Community Noise Impact Evaluation (AIFA) Program. The run shown
 

is for the E-150-3000 aircraft and the standard takeoff and approach
 

procedure. The noise impact evaluation is conducted at Orange County Airport.
 

TABLE OF CONTENTS
 

Page No.
 
(Upper Right
 
Hand Corner) Contents
 

Engine noise data, in terms of EPNL as a function of
 

distance to the aircraft and engine power setting.
 

2 Exhaust velocity and temperature data.
 

3-8 PLS noise data, in terms of EPNL as a function of exhaust
 

velocity, flap setting, and distance to the aircraft.
 

9 Variation of EPNL with temperature.
 

10-12 Takeoff flight profile data.
 

13 Approach flight profile data.
 

14-20 Takeoff EPNL grid at 500 feet (152 m) intervals
 

21-23 Approach EPNL grid at 500 feet (152 m) intervals
 

24-34 Takeoff and approach noise contours in terms of
 

coordinate points, for the 80, 85, 90, 95, and 100
 

EPNdB contours.
 

35-44 
 Community noise impact evaluation at Orange County
 

Airport; totals on page 44.
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PD287-3 ENGINE NOISE 4 ENGINES AIFA DATE 01/25/74 TIME 18.06.09 PAGE
 

ENGINE NOISE DATA , E PND B
 

P E RCENT T HR UST
 

20. 40. 60. 70. 80. 90. 100.
 

S 200. 88.9 95.9 100.1 101.8 102.9 104.3 105.6
 
L 500. 80.7 88.4 93.0 94.9 06.1 97.6 9.0
 
A 1000. 73.1 80.6 85.4 87.3 88.5 90.0 91.4
 
N 2000. 65.4 73.2 77.7 79.7 $1.0 82.2 63.7
 
T 4000. 65.8 63.8 t8.6 70.6 71.8 73.4 74.9
 

R 

V3
 
- RbEF VEL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

A
N
G
E 

http:18.06.09


PD287-3 ENGINE NOISE 4 ENGINES AIFA DATE 01/25/74 TIME 18.0b.09 PAGE 2 

FAN AREA = 19.60 S. Fl 

PRIMARY AREA = 3.00 SQ FT 

TOTAL AREA = 22.60 SW FT 

NOZZLE DIAMETER = 5.3b FT 

T E M P E k A T U R b A N U V E L O L I T Y L A TA 

PERCENT 
THRUST 

20. 

40. 
60. 
70. 
80. 
90. 

100. 

VELOCITY, FT/SEC 

FAN PRIMARY 

290.0 195.0 

420.0 330.0 
510.0 4C5.0 
550.0 525.0 
588 . 58.0 
b23.0 6b4.O 
6bSo, 705.0 

JEMPERATUKE, DEG R 

FAN PRIMARY 

545.0 1430.0 

555.0 1310.0 
560.0 1453.0 
566.0 1510.0 
570.t 1550.U 
575.0 1590.0 
576.0 1636.0 



LSB FLAP NOISE 4 ENGINES AIFA DATE 01/25/14 TIME 18.06.09 PAGE 3
 

FLAP NO ISE, E PNL-1OLOG (A) 

S I D EL INE D I STANCE 0. PT 

EXHAUST V ELOC ITY, F T/S EC 

400.0 500.0 600.0 700.0 800.0 900.0 1000.0 1100.0 1200.0 

F 0.0 69.90 71.90 83.90 89.10 93.40 97.40 100.60 103.60 106.30 
L 30.0 76.40 83.90 89.90 95.10 99.40 103.40 106.90 109.60 112.40 
A 60.0 81.50 69.10 95.10 100.10 104.60 108.40 111.70 114.80 117.40 
P 

CORRECTION FOR DI STA NCE AND V IEW ANGLE 

N SLANT R AN GE F T 

100. 200. 500. 1000. 2000. 3000. 

F 0.0 0.0 -3.20 -7.90 -12.10 -lb.90 -20.10 
L 30.0 0.0 -3.20 -7.90 -12.10 -16.90 -20.10 
A 60.0 0.0 -3.20 -7.90 -12.10 -16.90 -20.10 
p 

http:18.06.09


LSB FLAP NOISE 4 ENGINES 


FLAP N U I S E , E PN L- I 


S I 0 k L I N E D I S T A N C E 


EXHAUST VELO C IT Y, 


400.0 500.0 600.0 700.0 

F 0.0 58.40 66.40 72.90 78.50 

L 30.0 64.30 72.40 79.10 84.40 

A 60.0 68.90 77.10 83.50 8b.tC 

P
 

C OR R E C T IU N FOR l I S T A N L E 


S L A N T R A N GE 

610. 710. 1120. 2060. 


F 0.0 O.C -1.00 - .30 -7.30 
L 30.0 0.0 -0.6o -2.b0 -6.50 
A 60.0 0.0 -O.ZO -2.00 -5.50 
P
 

A1&A DAT- 01/125/7 TIME 18.0b.09 PAGE 4 

0 LO 6 A) 

500. P T 

F T /S E C 

800.0 900.0 1000.0 1100.0 1200.0 

83.10 8b.90 90.6)0 93.40 96.10 
88.80 92.70 95.90 98.90 101.50 
94.10 90.90 100.16 103.20 105.90 

A N U V IE W ANGLE 

F I 

3040. 

-10.20 
-9-10 
-8.20 



LSB FLAP NOISE 4 ENGINES AlFA DATE 01/25/74 TIME 16.06.09 PAGE 5 

FLAP N 0 I SE , E PN L-1 OLOG ( A) 

S I D E L I N k D I S T A N f k 1519. F T 

F 
L 
A 

P 

0.0 
30.0 
60.0 

400.0 

51.10 
57.40 
61.50 

EXHA US T 

500.0 

58.90 
b4.90 
b9.60 

VE L bC I TY, 

600.0 700.0 

65.40 70.90 
71.60 77.10 
76.40 81.90 

F T/ 

800.0 

75.60 
81.90 
66.40 

SEC 

900.0 

79.60 
85.90 
90.10 

1000.0 

63.40 
89.30 
93.5U 

1100.0 

86.40 
92.10 
'6.40 

120.0 

89.10 
94.90 
99.40 

CORR E C T I O N FOR D I STA NC E ANt V I E W ANGLE 

F 
L 
A 
P 

0.0 
30.0 
60.0 

1520. 

0.0 
0.0 
0.0 

SLANT 

1590. 

-0.10 
-0.05 
0.20 

RANGE. 

18 O. 2510. 

-0.50 -2.40 
-0.20 -1.90 
0.0 -1.40 

FT 

3360. 

-4.50 
--.80 
-3.10 



LSB FLAP NOISE 4 ENGiNES All-A DATE 0I/ib/74 TIME 1b.Ot.09 PAGE 6 

FL A P N 0 I S E , b P N L- I u LuG ( A) 

S 1D t L I N k L 1 5 T A N G E 2122. F T 

F 
L 
A 
P 

0.0 
30.0 
60.0 

400.0 

'48.90 
54.70 
59.20 

EX H A U S 

500.0 

56.40 
bo.50 
67.10 

T V E LU 

600.0 

0.90 
69.0l0 
7i.bo 

IT 

700.0 

b6.40 
74.70 
79.40 

Y, F T /S 

800.0 

72,u 
79.30 
E4.CO 

L 

900.0 

77.1( 
b4.40 
67.9U 

i100.0 

bO.9C 
66.90 
91.40 

1100.0 

83.90 
89.90 
94.00 

1200.0 

6b.90 
9a.00 
96.90 

C ORR E C T I ON F OR D I S1A NCL AN D V I k W A N G L E 

F 
L 
A 
P 

0.0 
30.0 
60.0 

Z122. 

O.C 
0.0 
0.0 

S L A N T R A N G 

e180. 4350. Z420. 

-0.10 -G.30 -1.60 
0.G -0.10 -1.00 
0.10 0.10 -0.76 

fi 

,ob. 

- .ZO 
-2.50 
-1.9U 



LSB FLAP NUISE 4 ENGINES AIFA DATE 01/25/74 TIME 18.06.09 PAGE 7 

FL A P N U I S E , E P N L- 1 0 LOG ( A) 

S I D E L I N E D I S T A N C E 50O0. F T 

F 
L 
A 
P 

0.0 
30.0 
60.0 

400.0 

43.I0 
4b.40 
52.4U 

EXHAUST 

500.0 

49.90 
55.60 
60.20 

V E L 0 L I T Y 

600.0 700.0 

55.90 61.10 
61.8u c7.0b 
b6.o0 71.90 

F T/ 

800.0 

6!,.60 
71.90 
76.70 

S E C 

900.0 

69.b0 
75.90 
80.90 

1000.0 

73.30 
79.70 
84.60 

1100.0 

76.*O 
82.90 
87.10 

1200.0 

79.40 
b5.90 
90.40 

C ORR E C T ION FOR D I ST A NC E AND V I E W ANGLE 

S L A N I R A N GE F T 

F 
L 
A 
P 

0.0 
30.0 
60.0 

5000. 

0.0 
0.0 
0.0 

7500O 

0.0 
0.0 
0.O 

10000. 

0.0 
0.0 
0.0 



LSB FLAP NLISE . ENGINES A1FA bATE 01/25/74 TIMt 18.O0.09 PAGL U 

P L A P N U I S b P N L  1 0 LU 6 ( A 

S I L L 1N E u I S r A N C b 10000. F T 

F 
L 
A
P 

0.0 
30.0 
60.0 

400.0 

$9.40 
43.4 
40.90 

LXH AU ST 

50U. 

44.40 
f9.VU 
55.60 

V EL 

600.0 

49.90 
!>5.40 
59.90 

ILITY, 

700.0 

54.60 
b0.4u 
65.10 

F T/ 

6uu.0 

!b.90 
64.90 

S E C 

.0U.0 

G.9( 
O.o90 
73.90 

1000.u 

6b.4L. 
7z.bO 
17.90 

110.0 

691.46 
75.90 
b0.90O6.90 

liOO.0 

71.40 
76.bo 

C 0 R R E C T I U N f bk D I S I A N E AND V IE W A NG L t 

F 
L 
A 
P 

0.0 
30.0 
00.0 

I0000.o 

0.0 
U.U 
0. 

S LA 

i25o. 

0.0 
0. 
0G. 

N T R 

15000. 

0.0 
0.0 
O. 

A N E T 



9 LSB FLAP NOISE 4 ENGINES All-A DATE 01/25/74 TINE 18.06.09 WAb& 


FLAP NOISE CORRECTION FOR EXHAUST TEMPERATURE
 
(INDEPENDENT OF DISTANCE)
 

TEMPERATURE DELTA EPNL
 

519.0 1.3
 
700.0 0.8
 
850.0 0.5
 
1000.0 0.3
 
1100.0 0.1
 
1160.0 0.0
 
1200.0 -b.1
 
1400.0 -0.3
 
1600.0 "-0.5
 
1800.0 -0.7
 
2000.0 -0.
 

oa 

http:18.06.09


E-150-300G STANDARD JAKLOFF AIFA DATE 01/25/74 lIML 18.06.09 PAGt 1U 

TAKEOFF PAR A M LT E K S 

DISTANCE FBR DIST FbR ALUN DlSTANCE FROM A1KLRAFT PEKLLNT FLAP EXHAUS7 EXHAUST 
ALONG FL PATH RUNWY CNIRLINE ALTITUDE RUNWY LNIRLINL VELOCITY lHRUST AN,LL VLLULIXY TLMPERAIUKt 

0.0 0.0 0.0 0.0 0.0 lO0. (I.G tbt.9 1171.1 
1489.5 1489.5 0.0 0.0 98.7 lO.O 20.r 662.9 1171.1 
1799.9 1799.9 0.0 0.0 1t.1 100.0 20.C 66Z.9 1171.1 
2423.6 242o.bt4.0 1.0 110.5 IO.0u40.G bb.9 1171.1 
2516.1 1516.1 qo.7 0.0 110.5 IUO.0 z1.0(o,. 1171.1 
2608.7 2600.7 56.7 0.0 110.L 100.0 Z.0 C02.9 1171.1 
2701.6 2701.6 70.4 0.0 111.1 110.6 cO.t "bZ.9 1171.1 
2756.7 2756.? 77.1 0.0 111.4 1uO.0 20.0 obz.9 1171.1 
2944.4 z944.4 98.1 0.0 112.4 100.0 20.0 6b2.% 11"1.1 
3134.1 i134.1 117.3 C.0 114.5 1150.0 40.U 62.9 1111.1 
3325.7 131.7 136.0 0.0 114.o 110.0 Z0.0 o0b.9 1171.1 
3519.0 3519.0 154.b 0.0 115.6 luO.0 z0.0 ubl.9 1171.1 
3679.0 3u79.0 170.5 0.1 116.3 100.0 z0.0 obl.9 1171.1 
3875.3 6S7b,. 190.2 0.0 117.5 lo.0 40.0 662.V 1171.1 

-j 4073.4 4073.4 210.6 0.0 118.5 100.0 eO.o ob6.9 1171.1 
4273.2 4273./ 231.9 1.0C 119.5 100.0 .0.0 obl.9 11/1.1 
4474.4 q474.4 c54.1 c.u 140.4 100.0 20.0 661.9 1171.1 
4677.1 '677.1 Z77.1 0.0 I11.3 100.0 4u.0 o6°.9 1171.1 
4881.1 4861.1 301.0 C.0 Iz.1 100.0 40.0 662.9 1171.1 
5086.3 5086.4 325.6 0.0 122.9 100.0 10.0 064.9 171.1 
5292.6 5191.8 350.9 0.U 12.b 100.0 Z1.6 662.9 1111.1 
5500.2 5500.2 37L.9 0.0 124.2 100.0 Z0.0 662.9 1171.1 
5680.; 5668.8b00.0 ().U 124.b 1O0.0 ZC.0 661.9 1171.1 
5785.4 5765.4 41J.4 0.0 Ieb.l 100.0 16.4 0oz.9 ±171.1 
5890.3 5890.6 426.7 1.65 115.6 1CO.0 16.6 6o2.9 1171.1 
5995.8 5995.8 439.o 0.0 12b.2 100.0 ±5. 002.9 1171.1 
6101.b o01.b 451.9 0.0 ,2O.9 100.0 13.6 ot2.9 11 .1 
6208.6 608.6 403.b .0 127.7 110.0 lz.o 662.9 1171.1 
b316.2 6616.2 474.5 0.0 1zb.6 ILC.0 10.4 66Z.9 17i.1 
6424.7 544.7 4b4.5 O.0 129.7 100.0 b.8 tb .9 L171.1 
6534.2 65J4.6 493.6 6.0 -1315.t 1UO.0 1.2 o62.9 1171.1 
6644.9 6644.9 501.8 0.0 132.1 10. !.o 662.9 1171.1 
6756.7 6756.t 509.0 0.0 133.. 100.0 4.0 o62.9 1171.1 
6869.7 t8d9.7 515.2 0.(5 134.9 100.0 2.4 o62.9 i71.1 
6984.1 o94.1 520.4 0.0 1"6.5 10.15 0.8 b66.? 1171.1 
7099.9 7099.9 524.6 0.0 13b.1 luO.0 -0.0 o2. 1.11.1 
7335.1 7335.1 b33.2 0.U 140.7 11o0.0 -Q.G 662.9 1171.1 
7572.9 773.0 548.3 0.0 141.8 100.0 -5.0 662.9 1171.1 
7810.7 7610.8 57. G.0 141.6 11O.0i -1.0 662.9 1171.1 
8047.4 815.tt.5 609.9 0.0 1'1.8 100.0 -0.0 662.9 1171.1 



E-150-3000 STANIARD TAKEOFF AIFA DATE 01/25/74 TIME 18.06.09 PA6E 11
 

T AK E OFF P ARAM EII R S 

DISTANCE FBR D1ST FbR ALUNU DISTANLI FRUM AIRLRAFT PERCENT FLAP EXHAUST EXHAUST 
ALONG FL PATH RUNWY LNIRLINE ALTITUDE RUNWY CNTRLINE VELUCITY THRUST ANGLE VELUCITY ILMPERAiURt 

8283.3 6283.3 650.7 G.0 141.b 100.0 -0.0 b62.9 1171.1 
8518.6 6518.6 694.1 0.0 141.6 100.0 -0.0 o62.9 1171.1 
8753.8 8753.8 738.7 0.0 141.6 100.0 -0.0 662.9 1171.1 
8988.9 8988.9 783.7 0.0 141.8 100.0 -0.0 65b.9 1171.1 
9223.9 9223.9 828.8 0.0 141.8 100.0 -0.0 062.9 1171.1 
9459.0 9459.C 673.9 0.0 141.6 100.0 -0.0 66Z.9 117l.i 
9694.0 9694.1 919.0 0.0 141.8 100.0 -u.b 6b6.9 1171.1 
9929.1 9929.1 964.0 0.0 141.8 100.0 -0.0 662.9 1171.1 
10164.2 101o4.Z 1008.9 0.0 141.8 100.0 -0.0 obb.9 1171.1 
10399.3 10199.3 1053.6 0.0 141.6 100.0 -4.0 662.9 1171.i 
10634.4 1063 .,4 1098.6 0.0 141.8 100.0 -0.0 t62.9 1171.1 
10869.5 lOb9.o 1143.3 0.0 141.6 100.0 -0.0 662.9 1171.1 
11104.7 11104.7 1187.9 0.0 141.6 100.0 -C.0 662.9 1171.1 
11339.8 11339.9 123Z.5 0.0 141.b 100.0 -0.0 66Z.9 1171.1 

N 11575.0 11575.0 1277.0 0.0 141.6 100.0 -0.0 562.9 1171.1 
O 11810.2 11810.2 121.4 0.0 141.b 10O.0 -0.U 662.9 1171.1 

12045.4 12045°. 1365.7 0.0 141.L 100.0 -0.0 ab6.9 1171.1 
12280.6 1,480.6 1409.9 0.0 141.b 100.0 -0.0 662.9 1171.1 
12515.8 1251!.9 1454.1 0.0 141.8 I0O.0 -0.0 06.9 1111I. 
12751.1 lz7I.1 149d.2 O.0 141.6 100.0 -0.0 b4.9 1171.1 
12760.8 12750.9 1500.0 0.0 141.L 10O0 -U.O tot.9 1171.1 
12878.4 1Z878.4 1521.8 0.0 141.6 65.C -0.G 606.9 1124.o 
12901.9 12901.9 1526.1 0.0 141.5 e2.0 -O. 595., 1115.b 
13137.1 13137.1 1565.1 0.0 141.0 82.0 -0.0 595.3 1116.8 
13372.6 1337c.7 1599.3 0.0 141.0 62.U -0.O 59!.3 111°.b 
13608.7 1360.b 1bZt.7 0.0 141.0 b6.0 -0.0 595°. 1115.8 
13845.1 13645.1 1656.4 0.0 141.0 82.0 -0.0 595.3 1115.6 
14081.5 140U1.5 1683.4 0.0 141.C 82.0 -0.0 595.3 1115.b 
14317.9 1k317.9 1710.0 0.0 141.0 o2.0 -0.0 595., 111s.6 
14554.4 14554.4 1736.5 0.0 14.i0 b2.0 -O.0 595.o 1116.6 
14790.8 14790.9 17bz.9 0.0 141.0 b2.0 -0.0 )95.3 11i5. 
15027.3 15027.3 1789.2 0.0 141.0 82.O -O.c !95.3 1115.b 
15263.8 15z63.6 1615.5 0.0 1.1.0 b2.0 -0.0 59s.. 11".b 
15500.3 15500.3 1641.8 0.0 141.0 bt.0 -L..' 9,.3 1115.o 
15736.7 15736.6 1868.0 O.0 141.U 62.0 -U.0 595.3 1115.b 
15973.2 15913.3 1894.1 0.0 1.1.04 62.0 -0.0 59.3 II15.b 
16209.7 16Z09.t 1920.3 0.0 141.0 62.u -0.0 59.i 111".b 
16446.z 104o.j 194(.4 O.0 11.C L2.O -C.0 5.3 1115.b 
16682.7 166bZ.b 1972.4 0.0 141.0 02.U -0.L 59b. 1116.6 
16919.2 16919.2 1998.4 0.0 141.0 82.0 -0. 595.j 1115.8 

http:18.06.09


E-150-3000 STANDARD 1AKLOF AlFA DATE 01/z/74 TIME lb. .09 PALA 12
 

TAK E OF F P A R A M L T MS 

DISTANCE FBR 0S11 bk ALUNG DI.]ANLE 1-RUM AIRLRAFT PERkLNI FLAP LXHAbST LXHA6SI 
ALONG FL PATH RUNWY LNiRLINE AL71TUDE RUNWY CNIRLINE VCLUCLTY TfIKUST ANGLE VELUCIlY 1LMPEnA1UKL 

17155.7 17155.b 2024.4 0.0 141.0 8..0 -0.0 !95.L Ill.k 
17392.2 11392.3 s05U.4 0.0 141.0 82.0 -0.0 591.3 1115.0 
17628.8 17bZ6.6 207b.3 0.0 141.0 L2.0 -0.0 595. 1±1.°. 
17865.3 l7bbb.s zL2.I 0.u 141.C 82.6 -0.C 95.j 1115.8 
18101.6 iLI0L.L 2147.9 0.0 141.0 b2.0 -U.0 595. 1115.b 
18338.3 1b.33.3 5!3.7 0.0 141.0 t2.0 -6.O 595.3 11155. 
18574.8 185b4.9 2179.5 0.0 141.0 b2.0 -!) 595.3 1Ill.t 
18811.4 18611.4 2205.2 0.0 141.0 a2.0 -0.0 595.i 1115.8 
19047.9 19047.9 Z30.9 0.0 P . b 2a.0 -0.0 59s..i 111!1.b 
19284.4 19484.! 4256.° 0.0 141.0 b.. -0.0 595. 115.k 
19521.0 195/1.0 2d8,.1 0.0 141.0 b2.0 -0.0 595.., 
19757.5 19757. tZ07O7 U.0 L4L.0 62.0 -0.1 595.3 llli.6 

w 19994.1 199Y4.1 33zl.2 0.0 141.0 2.6 -. ( 59bo 1115.t 
N 20230.6 ;0230.7 Z58.I 0.0 141.0 $2.0 -0.0 595.3 ll1.8 

20467.2 40467.2 2384.2 0.0 141.0 b2.0 -0.6 b.D°115.6 
2070Z.7 
20940.3 

e0704.b 
20940. 

4U9.t 
z43 .9 

(2.0 141.U 
0.0 141.0 

b.C 
e2.0 

-0.0 
-U.0U$$.o 

595.3 1115.b 
1115.8 

21176.9 c117U.9 2460.3 0.0 1lol0 b2.0 -0.( 595.5 111,.b 
21266o0 2le0.0 c469.b 0.0 141.0 L12.0 -0.0 SSS.o 1115.t 

21502.5 21502.6 2495.1 0.0 141.0 b2.0 -C.0 595.j 1115.8 
217317391791 2520.4 0.0 141.0 b2.0 -U.0 59bm Llllsob 
21975.7 z1975.7 4545.b 0.0 141.0 oZ.0 -v.G 595.3 LL1.b 
22212.3 2z212°. 2570.7 0.0 14.U b4.0 -U.0 595.3 1115.b 
22448.8 
22665.4 

/Z246.v 
22085.5 

e595.9 
2621.0 

0.0 141.0 
0.6 141.0 

e2.U 
8/0 

-0.0 
-0.c 

595 . 
595.3 

1115.8 
111.b 

22922.0 22922.1 264o.0 0.0 141.U 82.0 -0.0 595.o 1ils.b 
23158.6 23156.0 2o11.1 G.e 1i.O Z2.0 -0.0 595.3 111.b 
23395.2 2395.3 t69b.1 0.0 141.0 b2.0 -u.0 595.3 I115.b 
2363.18 /3631.9 71T.0 0.0 141., U2.u -0.o 595.3 1115.b 

23868.4 zEb6b.4 2745o9 0.0 14L.0 82.0 -1.u s95.s 1115.8 
24105.0 24105.1 Z770.b 0.0 141.0 82.0 -U.0 595.3 Illl.b 
24341.6 24341.7 2795.b 0.0 L41.0 82" -0.6 595.a lll5.b 
24578.2 24578.3 t820.4 0.0 1.1.0 62.0 -0.0 595.3 i115.8 
24814.9 24814.9 e6eS.L 0.0 141.0 8.6 -0.U 595.3 1115.8 
35000.0 35000.0 3890.0c 0.0 141.0 8".41 -0.0 :595).3 1115.8 



E-150-3000 STANDARD APPROACH AIFA AIE 01/25/74 TIME 18.O0.09 PAGE 15
 

A PP R 0 AC H V A R A M E T E KS 

DISTANCE TT DIST TT ALONG DISTANCE FROM AIRCKAFT PERCENT FLAP EXHAUST tAHAUST 
ALONG FL PATH RUNWY CNTRLINE ALTITUDE RUNNY CNTRLINE VELOCITY THRUST ANGLE VELUCITY ILMPERAIURt 

0.0 0.0 35.0 0.0 95.1 b4.5 39.Z 524.0 u59o.7 
247.0 247.0 58.2 0.0 95.1 64.5 39.2 4t. 0 £059.7 
566.7 o66.7 88.3 0.0 95.2 64.4 39.2 623.6 10i9o 
886.6 bb6.6 118.4 0.0 96.2 64.4 39.2 523.5 1059.3 
1206.7 120o.7 148.5 0.0 95.3 64.5 39.2 6 4.u IC69.7 
1527.0 1527.0 178.6 0.0 95.3 o4.5 -9.z 544.0 1059.7 
1847.5 16q7.> 208. 0.0 95.4 64.:3 69.2 b53.1 1056.9 
2168.3 216b.3 239.0 0.0 95.5 b4.3 39.2 523.1 1058.9 
2489.3 2489.3 2b9.2 0.0 95.b o4.1 9.2 522." I068.1 
2810.8 2b10.b 299.4 0.0 95.7 63.9 39.2 !21.4 1(057.a 
3132.6 3132.6 129.7 0.0 95.b 63.5 39.2 519.b 105!.7 
3455.0 3455.0 459.9 0.0 9o.0 bo.4 39.2 518.5 1054.5 
3778.1 3778.1 390.1 0.0 9b.z b2.9 39.2 !17.3 1053.4 
4101.9 4101.9 420.4 0.0 9b.5 62.4 39.c 515.L 1051.a 

uj 4426.7 4426.7 451.0 0.0 9t.b ol.3 39.2 51O.c 1040.b 
w 4752.6 4752.t 461.9 O.0 97.2 b9.6 39.2 503.4 1049.° 
0 5080.0 5080.0 514.8 0.0 97.7 57.b 39.2 494.8 lO0.5 

5409.2 5409.z 543.5 0.0 b.o 56.5 s9.c 468.6 1024.0 
5740.b 5740.8 573.6 0.0 99.0 55.7 9.e tb4.u 102W.0 
6015.3 6075.3 0A4.3 0.0 99.9 54.4 Z9.2 479.0 10".5 
6412.9 b412.9 o35.7 0.0 I01.0 51-1 39.2 44. 0 997.9 
6754.4 6154.4 668.7 0.0 12.3 46.t, 9.2 43b.4 909.4 
7100.t 7100.6 702.7 0.0 103.9 36.b 39.2 04.9 9,.2 
7453.2 745a.2 736.4 0.0 ILt.C 33.4 -9. 7C.0 9a.i 
7813.8 7613.b 7t8.t 0.0 16b.6 31.5 39.2 o7.b 917.b 
8184.0 6184.0 800.3 0.0 111.5 30.b 39.s A5j.3 915.6 
8564.2 8564.2 835.1 0.0 1'..7 30.9 j9.2 35.9 916.1 
8660.6 8a60.8 844.9 0.0 115.4 30.9 39.2 354.9 91b.1 
8758.0 8758.0 855.1 0.0 116.1 30.9 -19.4 353.9 916.1 
8855.7 685b.7 86.8 0.0 110.7 30.9 :59.z 91t.1 
6953.8 8953.8 876.5 0.0 117.3 30.9 i9.c 453.9 91o.1 
9052.5 9052.5 887.0 0.0 117.9 30.9 39. 354.9 91o.1 
9151.7 9151.7 89b.9 0.0 116.4 i0.9 w.z o63.9 910.1 
9253.3 9253.3 90t.b 0.0 11.7 30.9 37.o s53.9 91o.1 
9453.1 9453.1 925.7 0.0 119. 30.9 34.4 .ss3.9 91o.1 
9653.6 9653.b 94.5 1 0.0 119.5 iO.9 sl.t ,5s.9 910.1 
9654.7 9854.7 962.9 U.0 119.8 30.9 26.0 352b9 910.1 
10056.2 10056.2 981.3 O.u 120.0 30.9 24.8 3So.9 910.1 
10258.0 10258.0 1000.0 0.0 120.2 O.9 21.t 35b.9 91t.1 
10617.8 10617.b 1034.1 0.0 120.3 30.6 ?l.o 452.0 915.3 

http:18.O0.09


e 

E-150-3000 STANbAk APPKOACH AItA UATL 01/z,/7 TIME lb.06.09 FAbb 14
 

A P P R UA C H P A R A M I I k R S
 

DISTANCE TT tIST 11 ALONG bISTANLF f-kUM AlkLkA-T PRLENT [LAP EXHAUSI EXHAUST 
ALONG FL PA1H RUNWY CNTRLINE ALTITUDb kUNWY LNTLINE VELOCLIY ThkUS1 ANtiLL VELULIlY TLMPLKAIUKR 

11022.1 IlZ4z.1 107Z.6 0.6 120.4 0.b Z1.6 35i.0 915.o 
11426.7 11446.7 1111.0 0.0 110. oG.b 21.t 54°O 915 
11831.7 11631.7 114C.7 0.0 io.6 o0.7 l.6 3b5.7 915.1 
12237.2 1z/t7.4 1165.9 0.0 l.0.b 3G. 41.6 35z.7 913.5 
12643.6 12b64.O 1223.3 0.0 121.0 30.7 di. . 915.5 
13050.b 13050.9 1 t1.O 0.0 121.q 27.59 21.o S3'.. 90U.7 
13459.9 1o459.9 1300.9 0.0 122.1 22.7 21.o 361.z b93.4 
13872.1 lb7z.1 13%O.b O. lcs°j 17. 41. .7G.4 L7. 
14289.1 142b9.1 1379.& 0.0 124.9 15.1 2l.t zb.t 0'c.1 
14712.0 1471e.0 1418.5 0.0 126.b ib;. 41.6 45 .5 Ll.5l 
15141.1 15141.1 14)6.7 0.0 12o.L 15.0 z.t .97.b 
15576.2 1.55b. 1499.9 Loo 1$0.3 1.o0 1.t 251.9 L1.8 
16017.2 ltCI7.2 1541.3 0.6 134.1 15.u 21.6 z51.9 671.b 

wA 164b4.1 1t464.1 1563.6 0.0 163.b 15. cL1.0 .)1.9 b7l.b 
16917.t 1b917.0 16z5.Z 0.0 i5ob 1..0 4l.6 cI9 16-1. 
1375.0 17375.8 1666.4 O. 117.4 15.1u - tl.t z1.9 t7l. 
17040.5 17640. 1712.8 0.0 19.2 15.0 21.8 !)I.9 71.6 
18311.0 16311.0 1761.9 o.0 140.9 15.0 21.6 251.9 b7L.8 
187b7.3 16787.4 1O0c.9 0.0 1'.2.b 15.0 cl.b 261.9 b67.b 
19269.9 154bs'.9 1647.4 0.0 144.5 15.C 21.6 451.9 b871b 
19759.1 19759.1 1892.1 0.0 14o.5 1.0 t.t 451.9 b71.6 
20254.9 204.4.9 193b.3 0.0 14L.5 15.0 21.t 4!1.9 071.b 
2075,7.3 20757.3 198o.7 0.0 1bo.5 15O.U 21.6 451.9 b8l. 
21266.1 2126t.1 2036.5 0.0 1-4.4 15.U 21.b 251.9 b71.b 
21761.5 21781.5 c06b.0 O.0 154.. 15.0 Z1.6 z51.9 871.6 
22304.1 22304.1 z/14.0 o.0 156.6 15.6 21.t 51.9 t7l.b 
22034.6 22834.6 ZIi8.4 0.0 159.0 15.0 1.& 151.9 b71.b 
23373.5 23373.5 42i0.z 0.0 161.6 15.0 21.° 51. ntl.b 
23920.6 2B926.b 2282.0 0.0 1t'.1 15.0 21.t c1.°9 t71.b 
24475.6 24475.6 2338.5 0.0 166.4 15.U 21.6 251.9 b71.b 
25038.9 256o8.9 ;394.3 0.G 166.9 1".U 21. 51.9 871.8 
25611.5 btll.5 o447.0 0.0 171.8 15.0 t1.o 451.9 b11.6 
26194.4 Ztl9e.'. cbuO.0 0.0 175.u 15.c. tl.t o71.b 

http:lb.06.09


E-150-3000 STANDARD TAKEOFF AND APPRUACH AIFA DATE 01/25/74 TIME I6.0o.09 PAGE 15
 

E PNL G R I D 

D I ' I ANL E F k O m F L I G H T 

DISTANCE F.B.R. 0 500 1000 1500 2000 
5000 5500 6000 6500 ' 7000 

TYPE NOISE . . . ... 

0. 
ENGINE NOISE 115.0 91.1 87.9 81.9 77.7 
FLAP NOISE 1.7 9Z.6t 5.6 61.5 78.3 
TOTAL NOISE 117.U 98.9 b9.9 84.7 61.0 

500. 
ENGINE NOISE 114.8 97.6 87.7 81.7 77.5 
FLAP NOISE 112.5 92.4 8s.° 61.3 7b.1 
TOTAL NOISE 116.b 96.1 b9.7 84.5 80.8 

1000. 
ENGINE NOISE 111.6 94.o 84.7 76.7 74.5 
FLAP NOISE 1G9. b9.4 62.4 7b.2 15.1 
TOTAL NOISE 113.8 95.7 b6.7 81.5 77.8 

N1500. 
ENGINE NOISE 110.0 92.6 62.9 77.0 
FLAP NOISE 167.8 67.6 60.7 7b.5 
TOTAL NOISE 112.1 94.0 65.0 79.8 

2000. 
ENGINE NOISE 109.4 93.6 83.6 77.8 73.6 
FLAP NOISE 107.0 88.5 81.6 71.4 74.2 
TOTAL NOISE 111.4 94.8 65.9 80.6 76.9 

2500. 
ENGINE NOISE 106.6 94., 84.b 76.8 74.: 
FLAP NOISE 105.9 69.3 bk.! 7b.3 75.1 
TOTAL NOISE 110.! 95.7 86.8 61.6 77.b 

3000. 
ENGINE NOiSE 107.k 95.4 !5.7 79.7 75.5 
FLAP NOISE 103.9 u.4 85.4 79.3 7o.1 
TOTAL NOISL 108.9 96.4 b7.7 b2.5 78.8 

3500. 
ENGINE NOISE 106.0 95.4 8t.1 60.2 75.v 
FLAP NOISE 102.2 90.7 8.9 79.8 7G.6 
TOTAL NOISE 107.5 96.7 8b.1 b3.0 79.3 

TAKEOFF 

PATH C E N T ER L I N E 

2500 3000 3500 4000 
7500 6000 8500 9000 

.... . ..... 

I- T 

q500 
9500 

. 

74.4 
7t.9 
78.2 

74.2 
75.7 
78.0 

http:I6.0o.09


E-15O-3000 STANbARU TAKEOFF AND APPkUALH AIFA bATL U1/2fl/74 TIME I6.Ob.09 PAL lb
 

EPNL GRID - IAKLuFF 

D I S I ANL h R u H F L I Gh T P A TH C k N T L I N E TkT 

DISTANCE F.8.R. 0 b00 1000 1500 2000 2500 3000 3500 400C 4!00 
bo0 boo0 oO00 6500 7000 7500 kO00 8500 9000 9vbo 

TYPE NOISE . .. . . . . . .. .. .. ....... . 

4000. 
ENGINE NOISE 164.8 95.4 bb.' bo.5 70.3 
FLAP NOISE 100.oO 1.1 84.3 80.2 76.9 
TOTAL NOISE 106.2 96.9 6b.5 83.4 79.o 

4500. 
ENGINE NOISE 103.0 95.7 bo.t 80.9 76.o 
FLAP NOISE 96.3 91.6 64.t 60.6 77.3 
TOTAL NOISE 1(4.o, 97.1 66.b 83.7 6C.0 

5000. 
ENGINE NOISE 101.5 9".6 86.9 1l3. 7t.9 73.4 
FLAP NOISE 98.1 91.8 8b.0 80.9 77.o 75.1 
TOTAL NOISE 103.1 'J7.U b9.0 b4.0 bu.i 77, 

5500. 
ENGINE NOISE 1OO.e 94.9 o7.1 81.4 77.2 73.7 
FLAP NOISE 97.2 917 85.4 61.2 7b.0 75.4 
TOTAL NOISE li.9 96.6 89.4 8..3 800. 77.b 

6000. 
ENGINE NOISE 99.0 %4.J 87.3 a1.t 77.4 71.9 
FLAP NOISE 95.5 90.8 b4.9 80.7 77.4 74.b 
TOTAL NOISE 100.o 95.9 89.3 b4.2 &L.4 77.4 

6500. 
ENGINE NOISE 98.0 94./ 87.' 81.7 77.) 
FLAP NOISE 93.j 69.0 83.6 79.3 76.0 
TOTAL NOISE 99.3 15.0 88.9 83.7 76.8 

7000. 
ENGINE NOISL 97.2 93.- b7.4 81.6 77.4 
FLAP NOISE 91.2 8.1 U2.1 77.7 74.4 
TOTAL NOISE 98.2 94.1 sb.6 b3.1 79.2 

7500. 
ENGINE NOISE 0.6 92.8 87.4 81.6 77.4 
FLAP NOISE 90o.6 6.7 81.9 77.5 74.1 
TOTAL NOISE 97.6 93.7 88.5 b3.0 79.1 

http:I6.Ob.09


E-150-3000 STANDAR TAKEOFF AND APPROACH AlFA DATE 01/25/74 TIME 18.06.09 PAGE 17 

L PN L GR I b T A KE OF F 

D I S TANC E Fhk L FLIGHT PATH L E N I E R L I N E F T 

DISTANCE F.b.R. 

TYPE NOISE 

0 
5000 
.. 

500 
5500 
.. 

1000 
6000 
... ----.--

1500 
6500 
.--

2000 
7000 

2500 
7500 

3000 
8000 

3500 
6500 
--

4000 
9000 
--

45u0 
500 

-

8000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

95.0 
90.0 
98.6 

92.3 
60.4 
93.3 

87.3 
82.0 
86.5 

81.8 
77.b 
63.2 

77.5 
74.4 
7v.3 

8500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

9.1 
69.3 
95.3 

91.4 
66.1 
92.6 

87.0 
81.9 
88.2 

82.1 
78.3 
83.6 

71.8 
74.b 
79.0 

9000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

9c.7 
88.5 
94.1 

90.6 
85.7 
91.6 

66.6 
81.8 
87.9 

62.6 
79.0 
864.2 

78.1 
75.3 
79.9 

( 9500. 

ENGINENUISE 
FLAP NOISE 
TOTAL NOISE 

91.5 
67.b 
93.0 

69.7 
85.i 
V1.0 

6t.2 
U1.7 
67.5 

82.9 
79.5 
64.5 

7.5 
75.7 
80.3 

74.9 
74.v 
77.0 

10000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

90.3 
87.2 
92.0 

86.b 
85.0 
90.3 

85.8 
sl.& 
b7.. 

82.7 
79.5 
84.4 

7b.8 
76.3 
80.8 

75.2 
13.3 
77.3 

10500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

t9.3 
8(.5 
91.1 

6b.0 
64.5 
89.6 

65.3 
61.4 
6.8 

2.4 
79.4 
864.2 

7V.2 
7T.6 
81.2 

75.: 
73.7 
77.1 

11000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

b.4 
bb.0 
v0.o 

87. 
b4"1 
b9.O 

64.b 
81.1 
56.4 

84.4 
79.3 
b4.0 

79.5 
77.2 
81.5 

15.b 
74.U 
7b.0 

11500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

67.: 
65.4 
b9.6 

b6.5 
b3.7 
86.4 

64.4 
b0.9 
88b.0 

61.9 
79.2 
8.7 

7Y.3 
77.2 
81.4 

76.1 
14.5 
78.4 



-- 

E-150-3000 STANAR TAKEOFF ANb APPRUALH 


D I S T A NL L 

DISTANCE F.B.R. 

TYPE NOISE 

0 
5000 
. .. 

500 
!5OU 

1200G. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

8b.7 
8%.9 
bb.9 

85.9 
83. 
67.b 

12500. 
EN6INE NOISE 
FLAP NOISE 
TOTAL NOISE 

b.9 
t4.!, 
b8.3 

85. 
L.9 
b7.2 

13000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

b5.2 
b4.0 
87.7 

84.6 

8t.o 
86.7 

l 
135G0o 

ENGINE NUSE 

FLAP NOISE 
TOTAL NOISE 

bZ.4 
8u.2 
04.3 

81.o 

78.5 
b3.3 

14000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

I.b 
86.0 
b4.0 

81o2 
7b.3 
t3.L 

14500. 
ENGINE NUISE 
FLAP NOISE 
TOTAL NOISE 

81.4 
79.7 
b3.7 

80.9 
7b.1 
bz.7 

15000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

b1.0 
79.5 
b3. 

b0.t 
77.9 
82.6 

15500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

80.7 
79.3 
b3.1 

b60. 
77.8 
b2.z 

EPNL 6 kIDU 


F R 0 M F L I b H T 


1000 1500 2oo0 

bOO 6500 7000 

......-- --

b09 79.161.6 
80.7 79.1 17.1 
5.ob !3.5 81.2 


8o.4 bl.z 7b.9 
bc.5 7b.9 77.0 
bs.z 83.2 b1.0 

b3.0 80.9 78.6 
o0.2 1b.b 7b.9 
84.b 83.0 bO.9 

bo.1 7b.1
 
7os. 75.0 
81.7 79.b 

79.9 77.8
 
7&.c 7q.9 
81.4 79.t
 

79.6 77.b
 
7b.1 74.6
 
81., 7Y.5
 

79.3 77.4
 
7o.U 74.7
 
bl. 79.s
 

79o0 77.2
 
71.b 74o6
 
8O.7 79.1
 

TAKLO0F 


P A 7 H 


!500 

750u 
- -. 

7
 
74.9 
78.b
 

76.7 
7bo.
 
79.0
 

16.5
 
75.2 
78.9
 

AIFA bAit 01/ 5/74 11ME l&.0t*09 PA&Gt lb 

-


LE N I L k L I N L T
 

.LuO 3,00 0 '.0G0
 
bOOO 8500 V000 95LU 



E-150-3000 STANDARD TAKEOFF AND APPROACH AllA DATE 01/25/74 liMt 18.0.09 PAGE 1V
 

E PNL GRID A K 1; F -

D I S T ANC E FROM F L 16H T PATH C EN T E R L I N t F T 

DISTANCE F.B.R. 

T Y P E N O IS E 

0 
5000 
. . .. 

boo 
5500 

... 

1000 
600 

.---

1500 
6500 
- - - .. 

2000 
7000 
- -.... 

2500 
7500 

3000 
b00 

35OG 
8500 

4GO 
9000 

45Uo 
9500 

16000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

80.4 
79.1 
b2.6 

80.C 
77.o 
61.9 

78.7 
75.7 
bu.5 

77.0 
74.6 
76.9 

16500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

80.1 
7b.9 
64.! 

79.7 
77.4 
81.7 

78.4 
75.6 
80.2 

76.7 
74.5 
76.8 

17000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

79.b 
7b.7 
82.3 

79.3 
77.2 
61.4 

7b.1 
75.5 
80.0 

7t.5 
74.4 
78.b 

w 
0' 17500. 

ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

79.4 
78.5 
62.U 

79.0 
71.0 
61.1 

77.9 
7!.Z 
79.8 

18000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

19.1 
78.3 
81. 

76.7 
7o.9 
60.9 

77.6 
75.2 
79.b 

18500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

76.7 
76.1 
81.4 

7a.4 
76.7 
80.6 

77.1 
75.1 
7.i 

19000. 
ENGINE NO;IE 
FLAP NOISE 
TOTAL NOISE 

78.4 
77.9 
bl.2 

7E.L 
7b.5 
b0.4 

77.1 
74.9 
79.1 

19500. 
ENGINE NOISE 
FLAP NUISE 
TOTAL NOISE 

78.1 
71./ 
80.9 

77.8 
7o°. 
60.1 

7t.8 
7 .b 
7b.9 



E-150-3000 STANDARD TAKLJFP ANt APPKUALH AlFA uATE UI/L5/74 TIMb l.O ..09 PAGE aU
 

DISTANCE F.B.R. 


TYPE NOISE 


20000.
 
ENGINE NOISE 
FLAP NOISE 

TOTAL NOISE 


20500.
 
ENGINE NOISE 

FLAP NOISE 

TOTAL NOISE 


21000.
 
ENGINE NOISE 

FLAP NOISE 

TOTAL NOISE 


21500.
 
ENGINE NUISE 

FLAP NOISE 

TOTAL NUISE 


U I SI7 


0 

5000 

-

17.8 
77.5 

80.7 

77.5 

77.3 

bO.4 


77.2 

77.2 

80.2 


76.9 

77.0 

80.0 


A NC L 


500 
5500 
- - . 

77.5
 
7o.2
 
79.9
 

77.
 
76.0
 
79.6
 

76.9
 
75.9
 
7-.4
 

7b.0
 
75.7
 
79.2
 

E PNL Gk 1 - T A KL F F 

F R OM F L i G HT P AT h L E N I kR L I N L, F T 

100 
bOOt 
.... 

0 1500 
6500 

2CO0 L500 
7000 7500 

.... 

AGOU 
8000 
..... 

3 60 
8500 

... 

40 O 
9oo 

Ab 
90

v 
u0 



E-150-3000 STANDARD TAKEOFF AND APPROACH AiFA GATE 01/Z5/74 TIME 16.0o.09 PAGE tl
 

L P NL GRID - A P P UALH 

D ISTA NC E F R UM F L I GH T P A I H C EN T E R L I N E F T 

DISTANCE T.T. 

TYPE NOISE 

0 
5000 
- -

500 
5500 
- -. .. 

1000 
6000 
- - ..... 

1500 
6500 
-.. 

2000 
7000 

2500 
7500 

30Ou 
8000 

3500 
8500 

4000 
9000 

4500 
95UG 

0. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

104.9 
102.6 
107.0 

89.6 
64.b 
90.9 

79.3 
17.4 
81.) 

7e.0 
71.b 
74.9 

500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

103.6 
101.3 
10!.b 

0.4 
b5.7 
91.7 

80.3 
7b.4 
82.5 

73.2 
73.0 
76.1 

1000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

102.7 
99.0 
104.5 

9o.9 
Sb.3 
92. 

81.0 
79.1 
863.2 

74.0 
73.6 
76.9 

o 1500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

i0.b 
9.3 
103.3 

91.2 
8.9 
92.5 

81.5 
79.7 
83.7 

74.6 
74.5 
77.6 

2000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

100.2 
96.9 

101.9 

91.3 
b7.4 
92.k 

81.8 
bO.1 
64.1 

75.1 
75.0 
7L.1 

2500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

9b.7 
95.9 
100.5 

91.5 
87.9 
so.l 

82.1 
b.5 
84.4 

75.5 
75.4 
78.5 

3000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

97. 
94.9 
99.4 

91.Z 
88.0 
92.9 

82.3 
80.6 
b.6 

75.6 
75.b 
78.8 

3500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

96.i 
94.1 
96.j 

90.8 
57.9 
9.6 

84.5 
81.1 
84.o 

7b.0 
7b.0 
79.0 

http:16.0o.09


E-150-3000 STANDARD TAKEOFF AND APPRUALH AlFA DAlE 01/25/74 TIME 16.06.01 PAGE Zz 

tPNL GKILb APFFR ALH 

b I S I AN C L F R U M F- L I G h P A I H t L N I L R L I N E F T 

DISTANCE T.T. 

TYPE NOISE 

0 
bOO0 
---

500 
5500 
---

1000 
buuo 
----

1500 
6500 
----

aic0 
7000 
---

sOo 
7500 

.O0U 
00 

5Co 
8500 

'4LO0 
9UOO 

45CO 
95uO 

4000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

95.2 
93.3 
97.4 

C.z 
07.7 
92.2 

82.o 
bl. 
b!.O 

76.e 
7t.3 
79.2 

4500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

".I 
9L.4 
96.3 

b9.5 
87.3 
91.5 

82.o 
81.3 
8!.( 

16.2 
7b.2 
79.2 

5000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

91.7 
91.1 
95.0 

&t.b 
8o.5 
90.b 

b2.3 
81.0 
84.? 

75.9 
7,.b 
78.b 

,o 
U) 5500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

91.2 
89.b 
93.6 

b7.! 
85.5 
L9.t 

b2.1 
80.7 
b4.5 

75.6 
75.4 
76.5 

6000. 
ENGINE NUISE 
FLAP NOISE 
IOIAL NOISE 

b9.9 
86.b 
92.4 

b6.6 
b4.b 
bB.b 

81.1 
bG.2 
84.0 

75.5 
75.2 
78.4 

6500. 
ENGINE NOISE 
FLAP NUISE 
TOTAL NOISE 

bb.1 
86.9 
90.6 

65.2 
83.1 
81.3 

6O.& 
T8.1 
82.7 

74.8 
74.1 
77.5 

7COO. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

85. 
b6.3 
L7.4 

b 2. C 
79.5 
b4.J 

78.., 
7!).. 
60.1 

74s.1 
71.4 
75.3 

7500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISEL 

b1.5 
79.2 
83.5 

79.1 
75.3 
60.6 

75.1 
71.4 
76.b 

http:16.06.01


E-150-3000 STANDARD TAKEOFF AND APPRUACH AIFA DATE 01/25/74 lIME 18.06.09 PAGE 43
 

E PNL G R I D APPROACH 

D I S T ANC E FROM F L I G HT PATH C k N IER L I N E i-T 

DISTANCE T.T. 

TYPE NOISE 

0 
5000 
--

!00 
5500 
---

1000 
6000 
--

1500 
6500 
--

2uOO 
7000 
--

2500 
7500 
--

3000 
8000 
---

3500 
8500 
--

4000 
9000 
--

4500 
9500 
-

8000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

79.7 
77.5 
61.8 

77.6 
74.7 
79.1 

8500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

7b.8 
7b.b 
bO.9 

7o.9 
73.z 
78.,. 

03 

C 

9000. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

7b.1 
76.4$ 
80.3 

7o.3 
7.9 
77.9 

9500. 
ENGINE NOISE 
FLAP NOISE 
TOTAL NOISE 

77.4 
75.2 
79.4 

75.e 
72.0 
77.3 

http:18.06.09


E-150-3000 STANEARD IAKEUFF AN6 APPROACH All-A DATE 01/e5/74 lIML 18.06.09 PAIE /4 

bO.0 LPNUb NUISt LUNTUUR POINTS - TARLUFF 

ALL D1S1ANLES IN FLET 

OISTANCE BR U1IANt FRKOM 
ALONG FL PATH FL PATH LLNTIRLINb LUURUlNATL POINIS COOtRDINATE POINTS 

0. c1bk. £ 0., 21b84.) ( 0., -z1S%.) 
500. 2147. 1 50o., 21.) 500., -147.) 

1000. 1703. 1000., 1703.) iOUU., -17U3.) 
1500. 1477. i1500. 1477.) 1 15C0., -1477.) 
2000. 158. 2000., 1584.) 1 2000., -1584.) 
2500. 171Z. 4 2500., 112.) 4 zbuO., -1112.) 
3000. 1837. ( OOU., lbi7.) ( 3u00., -it37.) 
3500. 1901. 3500., i9u01.) 1500. -ISUI.) 
4000. 1951. 400., 1951.) 1 O'.. -1951.? 
4500. 1997. 4500., 1997.) 4 45,0., -1997.) 
5000. 2051. 5000., 2051.) h5OGO., -20Z5.) 
5500. 210. 5500., 2103. 5500., -2103.) 
6000. e07). 0oQO., z073.) obo0., -20/3.) 
6500. 1977 4t6500., 177.) 5CO., -1 77.) 
7000. 1696. 4 7000., 1696.) 7ouO., -1696.) 

7500. 1681. ( 7500., 1681.) 
8000. 1907. 8000., 1907.) 

7500., -lb11.) 
8000., -1907.) 

8500. 1949. I 6500., 19'9.) b500., -1949.) 
9000. 1994. 1 9000., 1994.) 9UO0., -1994.) 
9500. 2050. 9500. 2050.) 9500., -050.) 

10000. 2111. I 10000., 2111.) 10000., -Zi1.) 
10500. z171. ( 10500., 217z.) ( 10500., -Z172.) 
11000. 2215. 1 11000., 15.) I110G., -2415.) 
11500. 2228. ( 11500., 2228.) ( 11500., -2 28.) 
12000. z24E. 4 12000., 224b.) 10lot.. -2Zd'.) 
12500. 22!)". 1 14500., 9. 14560., -t..59.) 
13000. Z223. 13000., Z22.) I0oo0., -223.) 
13500. 1454. 13500., 1454.) 1500., -1454.) 
14000. 1397. 14000., 1,97.) 14000., -1397.) 
14500. 13'tj. 1 14500., 1343.) 145u0., -12)q3.) 
15000. 1205. 1500(., 12b5.) 1bOu., -12u5.) 
15500. 122. 15500., 1c22.) 1 155CC., 12 .) 
16000. 1154. I16000., 1154.) lb0U., -1154.) 
16500. 1065. 10500., 106.) i 5O., -103.) 
17000. 1008. 17000., IC06.) 17000., -IL08.) 
17500. 923. 17500. 923.) 17500., -923.) 
18000. 635. 16000., bib.) I1000.. -b8b.) 
18500. 743. I 18500., 745.) lb4O0., -143.) 
19000. b7. 19000., 047.) 190tU., -b*7.) 
195c0. 54E. 19500.. 548.) I 950. -548.) 



E-150-3000 STANDARD TAKEOFF AND APPROACH AIFA DATE 01/25/74 TIME 18.Oo.09 PAGE 26 

80.0 EPNB NOISE CONTOUR POINTS - TAKEOFF 

ALL DISTANCES IN FEET 

DISTANCE FBR 
ALONG FL PATH 

DISTANCE FRU 
FL PATH CENTERLINE COORDINATE POINTS COURUINATE POINTS 

20000. 
20500. 
21000. 
21418. 

422. 
212. 
124. 

0. 

( 20000., 
£ 20500., 
( 21000., 
I 21419., 

422.) 
272.) 
124.) 

0.) 

( 20000., 
1 2GUO., 
t 21000., 
( 21419., 

-4Z2.) 
-Z72.) 
-124.) 

0.) 

AREA WITHIN TAKEOFF CONTOUR 2.41 SQUARE MILES 
6.23 SQUARE KILOMETERS 



E-150-3000 STANDARD TAKEUFI- AND APPkUALH 

60.U EPNUb NOISE CCNTUUR PUINTS - APPRUACH
 

ALL DISTANCES IN FLET
 

DISTANCE TT UISTANLE FROM
 
ALONG FL PATH FL PATH CENIEkLINE LOuRbINATE PUINTS 


0. 	 U14 z164.)., 

500. 4063. 500., Co) 

1000. 153u. t 1000., 15)0.) 
1500. 130c. 4 1!00., 1404.) 
2000. 1339. 1 2000., 1349.) 
2500. 1171. 2S00., 1471.) 
3000. 139o. i00O., 1396.) 
3500o. 14i. 3500., 1416.) 
4000. 1434. 000., 1434.) 
4500. 1'.32. 14500., 1432.) 
5000. 1402. 15000., 14.02.) 
5500. lola. 5500., 137t.) 
6000. 135b. f 6000., 1356.) 

0) 	 6500. 1!61. oC., lbl.) 

7000. 1007. 7000., 1007.) 

7500. !b. 7500., 560.) 

8000. 331. 6000., i31.) 

8500. 187. 1 8500., 187.) 

9000. bO. I 9000., 60.) 

91b7. 0. 9L67., 0.) 


AREA WITHIN APPRUALh LUNIUUK = 0.79 SQUARE MILES 
2.04 bQUARE KILOMLTERS
 

TOTAL AREA WITHIN CU1TUUR = 3.19 SwUARE MILLS 
8.27 S(OUARE KILOMETEkS 

AIA DATE 01/4b/7ft TIME lb.06.u9 PAGE co
 

LUURLINATE PIWINTS 

t 0., -Zt'..) 
t C., -ZeLt3.) 
( 100., -1!"U.)
 
I 15. -1.42.) 
4 ZOO., -"39.) 
t 25LO., -171.) 

GLO., -. ~9.)
 
i35co. -141.)
 
40O., -14J4.)
 

1 4500.,-13.
 
I 5000.,-14.
 
15)00., -1376.
 

U00., -lobb.l
 
6500., -11.)
 

I 700G., -I07.)
 
7500., -SbO.) 
b40., -331.) 
8500., -167.) 

1 9000., -60.) 
9107., 0.) 

http:lb.06.u9


E-150-3000 STANDARD TAKEJFF AND APPRUALH 


65.0 EPNOb 	NOISE CONTOUR POINTS - TAKEOFF
 

ALL QISTANLES IN FEET
 

DISTANCE FBR DISTANCE FROM.
 
ALONG FL PATH FL PATH CENTERLINt COORDINATE POINTS 


0. 1472. 0., 1472.) 
500. 1453. 500., 1451.) 

1000. 1164. 1 1000., 11t4.1 
1500. 999. 4 1500., 999.) 
2000. 10ba. ( OO0., 108.) 
2500. 1173. ( 2500., 1173.) 
3000. 1260. 1 3000., libO.) 
3500. iM0h. ( 3500., 1305.) 
4000. 1340. 4000., 1440.) 
4500. i371. ( '50u., li7i.) 
5000. 140r4. 5000., 1402.) 
5500. 14.1. 5500., 1432.) 
6000. 144 . 6000., 1422.) 
6500. 137!. 6500., 1375.) 
7000. 1326. 7000., A.26.) 
7500. 131b. 7500., 1316.) 
8000. 131. 6000., 1331.) 
8500. 8500., "51.) 
9000. 1367. 9000., 13b7.) 
9500. 1422. 1 9500., 144Z.) 
10000. 1388. 10000., 1386.) 
10500. 1343. 10500., 1.4 .) 
11000. 12t. I11000., lbo.) 
11500. 141. 11500., 1419. 
12000. 1141. l00., 1141.) 
12500. 1053. C14500., 1053.) 
13000. 95b. 4 13000., 95b.) 
13399. 0. 1 13399., 0.) 

AREA WITHIN TAKEOFF CONTOUR = 1.42 S4UARL MILES
 
3.1" S(.UARc KILOMETERS
 

A1FA DATE 01/25/74 TIME 18.0O.09 PAGL z7
 

COORDINATE PUINTS
 

0., -1472.)
 
500., -1453.)
 

4 100., -1164.)
 
1 1500., -999.)
 
4 20U0., -10b2.)
 
1 z500., -1173.)
 
C DO., -lttO.)
 

3500., -1305.)
 
t 4000., -1540.)
 
4 4500., -"?I1.)
 
1 5uu., -102.)
 

5500., -p32.
 
600., -1't42.)
 
o500., -137).)
 
7000., -16Z6.)
 
7500., -118.)
 

1 6000., -1331.)
 
E5L6., -135l.)
 
90uO., -13b7.)
 
95600., -142!.)
 

lC0000., -l8)
 
CO5uC., -1343.)
 
C11000., -lb6.
 
1 11500., -1L19.)
 

12000., -1141.)
 
12500., -1053.)
 
iO. -956.)
 
139. 0.)
 

http:18.0O.09


E-150-3G00 STANDARD TAKEUFF AND APPROACH AIA bATE L/Zb/7. IIML ±b.0a.O, VAGL 2b 

b5.0 EPNb N61SL CUNTOUk PUINTS - APPKOALh 

ALL DISTANCES IN FEET 

DISTANCE T7 
ALONU FL PATH 

LISTANCL IRUM 
PL PATH CLtTLML1NL LUORU1NATL P-iNIS LUUKLINAlL PuINIS 

0. 
500. 
1000. 
1500. 
2000. 
2500. 
3000. 
3500. 
4000. 
4500. 
5000. 
5500. 
6000. 
6500. 
7T000. 
7306. 

1472. 
127b. 
b99. 
927. 
947. 
96b. 
979. 
990. 

1002. 
100Z. 
97t. 
949. 
8b. 
79. 
391. 

C. 

0., i7zT.) 
500., 127b.) 
O00., 59.) 

1500., 947.) 
2000., 947.) 
Z500., 9t6.) 
3006., 979.) 

1 4500., 940.) 
( 40., £002.) 
1 4500., 1002.) 

500C., 97.) 
5500., 949.) 
0000., b9a1. 
6500., 749.) 
7000., 391.) 
730b., 0.1 

C 

C 
1 

4 

C., -1k7L.) 
-1k7b.) 

00. -b99.J 
IbuO., -27.) 
tuuO., -947.) 
LbuO., -96.) 
30LG.. -979.) 
50., -V90.) 

4OuO., -1(02.) 
45U0., -1602.) 
5U., -76.) 
5500., -9.) 
bctu., -b9.) 
&5G0., -749.) 
71uO., - 1) 
7306., 0.) 

AREA WITHIN APPKUALI LUNIUUK 0.49 SjUAKE 
1.27 S"UAkE 

MILLS 
KAiLUMETLRS 

TOTAL AREA WIHIN CONTOUR = 1.71 S.UARL MILLS 
A.4i MUARE KILUMETERS 



E-150-3000 STANDARD TAKEOFF AND APPROACH AIFA DATE 01/25/174 TIME 18.06.09 PAGE 29 

90.0 EPNbj NOISE CONTOUR POINTS - TAKEOF-

ALL DISTANCES IN FEET 

DISTANCE FbR 
ALONG FL PATH 

DISTANLE FROM 
FL PATH CENTLkL1NL COORDINATE POINTS CUOkUINAIL POINTS 

0. 
500. 

1000. 
1500. 
2000. 
2500. 
3000. 
3500. 
4000. 
4500. 
b00. 
5500. 

6000. 
6500. 
7000. 
7500. 
8000. 
8500. 
9000. 
9500. 
10000. 
10500. 
11000( 
111 

996. 
985. 
817. 
7 1. 
7d8. 
dig. 
66b. 
89±. 
909. 
926. 
940. 
954. 

947. 
912. 
869. 
855. 
64G. 
79a. 
728. 
t47. 
!!1. 
7 
Io. 
0.=C 

0., 
500., 

1000., 
1 1500., 
£ 200G., 

2506., 
3000., 

C 5oo., 
4000., 
4500., 

C5OOC., 
6500., 

6000., 
4 500., 

7000., 
7500., 
8000., 

I 800., 
9000., 

4 9500., 
C 10000., 
C0600., 

11000., 
11221., 

99t.) 
985.) 
817.) 
721.) 
768.) 
819.) 
868.) 
891.) 
909.) 
92b.) 
940.) 
95 .) 

947.)
91 .) 
Sty.) 
E55.) 
640.) 
793.) 
726.) 
647.) 
551.) 
379.) 
12.) 

U.) 

0., 
500., 

1000., 
1500., 
2OuO., 
2500., 
300U., 
3500., 

( 4(U., 
C 'bOtu., 
4 5000., 
4 5500., 

fOOUo. 
6500., 
7000., 

4 7500., 
C 000., 

b5LO., 
Uuou., 

( 95o., 
C 10000., 
C 10600., 

11000., 
C 1Lz. 

-996.) 
-985.) 
-817.) 
-721.) 
-7b8.) 
-819.) 
-86b.3 
-891.) 
-909.) 
-926.) 
-940.) 
-954.) 

-947.) 
-912.) 
-b9.) 
-655.) 
-b40.) 
-79,.) 
-74c.) 
-647.) 
-551.) 
-379.) 
-122.) 

0.) 

AREA WITHIN TAKLuFF CONTOUR 0.6q SLUARr MILLS 
i.bS SwUAKE KILOMETERS 



E-150-30O STANUAkb TAKEOF-f- AND APPROACH AlFA UATE t1/1/74 lIME lb.Ob.6W PAUL -U 

90.0 EPNOB NUISE CUNTUOUR POINTS - APPkUACH 

ALL DISIANLtS IN FELT 

DISTANCE IT 
ALONG FL PATh 

&1STANLb FROM 
FL PA. CENTERLINE CUURUINATt PU1NIS LURkiNAFL POINTS 

Ua 
41 

13 

0. 
Soo. 

1000. 
15600. 
2000. 
2600. 
3000. 
300o. 
4000. 
4500. 
5000. 
5500. 
6000. 
bSOo. 
6590. 

6. 
.SO., 

c44. 
6b61. 
o7b. 
7o0. 

000. 
ob. 
61b. 
550. 
,!.52. 
33!. 
b7. 

0. 

1 

4 
C 

t 

U., 

000.. 
1500., 
4000., 
250., 
3000., 
350U., 
4000., 
4500., 
5000., 
5500.,1 
6006., 
6500., 

50, 

99b.) 
592.) 
622.) 
644.) 
0bI.) 
bIB.) 
b7b.) 
666.) 
obSI.) 
61b.) 
550.) 
4',2.) 
335.)
67.) 

U(.) 

0., 
t ,bO., 
f 10O0., 

1500., 
2ttC. 
2500., 
O0U., 

6§tL., 

40Gb., 
1 4500., 
C but., 
45500., 

bOuti., 
t OoLU., 

C Lj!g"a., 

-996.) 
-9.) 
-b"2.) 
-44.) 
-661.) 
-6t.) 
-66.) 
-bb6.) 

-bbi.) 
-61b.) 
-5SU.) 
-%.52.) 
-35.)
-el.) 

L) 

AREA WITHIN APPROACH LLN4UUR U.2E lwUARE MILES 
0.1.3 SQUARE KILUMETtRS 

TOTAL AREA WITHIN CONTULK = 0.1z SLUARE MILES 
4.3b SQUARE KILOMETERS 



E-150-3000 STANDARD TAKEUFF AND APPRUACH AIFA DATE O1/iS/74 TIME 18.Ot.09 PAGE 51 

95.0 EPNDb NOISE CUNTOUR POINTS 

ALL DISTANCES IN FEET 

- TAKEOFF 

DISTANCE FBR 
ALONG FL PATH 

CISTANLE FRUM 
UL PATh CENTERLINk COORDINATE PUINTS COORDINATE POINTS 

0. 

500. 

1000. 

1500. 

2000. 

2500. 

3000. 

3500. 

4000. 

,4500. 

5000. 

5500. 

6000. 

6500. 


w 7000. 
7500. 

00 8000. 
8500o. 
8641. 


716. 

707. 

539. 

471. 

494. 

b57. 

580. 

599. 

611. 

b26. 

62b. 

613. 

5sb. 
494. 

393. 

337. 

Z41. 


b. 
0. 


AREA WITHIN 1AKkt)&I- CUNTUR = 

0., 718.) 0., -718.) 
1 500., 70.) 500., -707.) 
C oo0., 539.) ( 1000., -569.) 
C 1500., 471.) (1cc. -471.) 
1 2000., 494.) t Z000., -494.) 
( 2500., 
( 3000., 

5.7.) 
580.) 

1 
C 

2500., 
3000., 

-537.) 
-560.) 

I 3500., 599.) ( 3600., -599.) 
( 4000., 612.) ( 4000., -012.) 
( 4500., 626.) ( 4500., -626.) 
1 5000., 628.) 1 b000., -628.) 

5500., 613.) 5500., -613.) 
o0oC., 569.) 600., -569.) 
o500., 494.) 6500., -494.) 

I1000., 393.) 70uO., -93.) 
t 7500., 337.) 75L., -37.) 

6000., 243.) b60°., -243.) 
I 5OO., 6/.) 6500., -64.) 

b641., 0.) b4.1., 0.) 

U0J2 S(AUARE M1LtL 
0.b4 SLUAKL KILuMETEkS 



L-150-3000 STANDARD IAKEUFF AND APeRUALH ALVA bAIt 01/2±1/ TiME 10.06.09 PAUL . 

9:).0 tPNDb NOISE LONlJR POINTS - APPRUALH 

ALL DISTANLES IN FHkT 

DISTANCE TI 
ALONG FL PATH 

UISTANGE FRuM 
FL PAIH LENTERLINL LO~kUINATE PUINTS LOURKLINAIL PL11NIS 

( 

0. 
buO. 

1000. 
150o. 
2000. 
2500. 
3000. 
3500. 
4000. 
4500. 
1000. 
5000. 

71b. 
483. 
Bat. 
Sbt. 

T7h. 
37. 
33b. 

bb. 
226. 
136. 

G. 
0. 

., 
"o. 

LOG., 
1500., 
400., 
2500., 
6jOOO., 

Co&0G., 
4000., 
4 00., 
5u., 

C500U. 

71b.) 
iba.) 
0b8.) 
3bb.) 
o79.) 
372.) 
Sb.) 
tBa.) 
228.) 
lib.) 

0.) 
0.) 

1 0. 
5CC1. 

1 IUUO., 
C( O. 
i CO., 
C SG., 
i3 000., 

3CbCL. 
40 0. 
45O., 

4 SOC0. . 
Cwoo.' 

-7Tb.) 
-3b3.) 
-o86.) 
-sbo. 
-j79.) 
-&72.) 
-3s6.) 
- 6.) 
-ZGz.) 
-L±b.) 
-0.) 
0.) 

AREA WITHIN APPROACH LUNTOUk 0.12 SLUARL MILES 
u.30 SWUARE KILUMETkS 

TOTAL AREA WIThIN LOIlUJ = 0.44 SIUANL 
1.1'4 SQAk 

MiL-S 
KILUMLTEK! 



E-150-3000 STANDARD TAKEOFF AND APPRUACH AlFA DATE 01/25/74 TIME lb.0b.09 PAGE 33 

IUO1O EPNDb NOISE CUNTOUR PUINTS - TAKEOFF 

ALL DISTANCES IN FEET 

DISTANCE FbR 
ALONG FL PATH 

DISTANCE FRUM 
FL PATH LtNTERLINE COORDINATE PUIN1S LOORDINATE PUINTS 

(A 
0' 

0. 
500. 

1000. 
1500. 
2000. 
2500. 
3000. 
3500. 
40.0. 
4500. 
5000. 
5500. 

6000. 
6223. 

470. 
46!. 
181. 
333. 
343. 
63. 
356. 
3B. 
333. 
B0t. 
25o. 
182. 

66. 
U. 

1 
C 

t 
C 
C 
4 

G., 
500., 

1000., 
150G., 
zooo., 
2500., 
3000., 
oO0., 
4000., 
4500., 
5000., 
5500., 
bOO0., 
6223., 

470.) 
465.) 
J6.) 

) 
343.) 
353.) 
bb.I 

346.) 
333.) 
306.) 
456.) 
18/.) 
63.) 
0.) 

C 

1 
1 
4 
4 
4 
4 

0., 
500., 

10U0o., 
1500., 
oO0., 

z5o0., 
300., 
i500., 
4000., 
4500. 
500U., 
5500., 
000., 
6223., 

-470.) 
-465.) 
-381.) 
-333.) 
-t,3.P 
-o53.j 
-356.) 
-i ) 
-333.) 
-0b.) 
-46.) 
-Ib2.) 
-t,3.) 

0.) 

ARtA WITHIN 1AKEOt+F LNTOUk = 0.14 SLUARE MILES 
0.37 SUAkL KILUMETLRS 



E-150-30GO STANDARD IAKEOFF ANU APPRUACH AllA DATL 0/,!e/7 TIM. lb.06.09 PAG. 3' 

100.0 LPNUb NUISL CUN7oUs PUINTS - APPRUALh 

ALL UISIANCLS IN FEIT 

DISTANCL TT 
ALONG FL PATH 

LISTANCk FROM 
FL PAth LLNIERLINL COORDINATE PUINIS LUURUlNAIt PUiNTS 

0. 
500. 

1000. 
1500. 
2000. 
2500. 
2729. 

470. 
205. 
183. 
16. 
104. 
ib. 

U. 

0., 
bo., 

C1000., 
C100.. 

4000., 
2500., 

C 2f9., 

170.) 
20b.) 
i03.) 
Lb.) 
1U4.) 
36.) 
U.) 

C 
( 
( 

C 

U., 
b00., 

1000.,-13. 
O.O0. 
OOb., 

Z500., 
z7,9., 

-470.) 
-0b.) 

-1a3, 
-IU4.) 

-3.) 
0.) 

w AREA WITHIN APPROALh LUN7hLR 
(0.69 

= U.03 MUARE MILLS 
SQUARE KILOMETERS 

TOTAL AkkA WITHIN LUNIUUK = 114 SUARE MALcS 
0.45 SwUAkE KILUMEAERS 



E-150-3000 STANDARD TAKEOFf- AND APPROACH AlFA [ATE 01/z5/74 TIME 18.0b.09 PAGE 35 

C OM MU N I T Y N OI S E 1 M V A C T 

AIRPORT -- SNA - ORANGE CO. (SANTA ANA) 

RUNWAY - 19R 
RUNWAY COORDINATES - t 700., 1600.) FEET RELATIVE TO AIRPURT REFERENCE POINT 
RUNWAY ANGLE - 241.2 DEGREES MEASURED COUNThRCLCKWISE FROM CAST-WEST LINE 

COORDS REL TO CUORS REL TO ANNUYANLL NUISE 
AIRPORT REF PT RUNWAY OR PT POPULATION LPNL I-ACTUk IMPALT 

-9500., -16500.) 20950., -12z.) 36.5 uO.G 0.001 0.02 
-9000., -16000.) £ O71.. 75.) 36.5 bO.4 0.00b 0.31 
-9000., -15500.) 193. -b.) b6.5(0.5 0.01t 0.o 
-9000., -15000.) 1 1s395.. -407.) 3b.5 8b.3 0.006 u.2 
-9000., -14500.) 18957., -647.) 36.5 L0.0 0.000 0.G 
"-8500., -15500.) 
--8500., -15000.) 

IVSVZ., 
1915!)., 

272.) 
32.) 

36.5 
36.5 

bC.4 
6i.u 

0.009 
0.021 

L.je 
0.7o 

1 
-8500., -14500.) 
-8500., -14000.) 

7ibi., 
C1278., 

-209.) 
-450.) 

36.5 bl.U 
c50.8 

0.010 
0.016 

0.72 
0.59 

-6500., -13500.) i 17b4o., -691.) 36.5 60.5 0.009 0.33 
-B500., -13000.) C 17401., -931.) 36.5 60.0 0.000 U.0t 
-8000., -15000.) ( 1891s. 470.) m.5t su.5 0.009 .3 

W 
.l 

-8000.. -14500.)
-8000., -14000.)
-6000., -13500.) 

( 
4 
C 

b'. 
18037., 
17599., 

229.) 
-12.1 

-.63.) 

6.5 
36.5 
&6.5 

b1.L 
61.7 
8.5 

0.021 
0.033 
0.036 

0.79 
1.z2 
1.10 

-800o., -13000.) 1716i.. -494.) 36., 61. O.OZ7 0.9b 
-8000., -12500.) 
-8000., -12000.) 

10741., 
t 16264., 

-735.) 
-976.) 

36.5 
36.5 

60.9 
08U.4 

C.018. 
G.o8 

L 
0.11 

-7500., -14500.) 1 IU24., 667.) 3b.5 80.3 0.O06 0.2" 
-7500., -14000.) 
-7500., -13500.) 

C 
( 

17796., 
1715b., 

4:6.) 
165.) 

3o.5 
56.5 

bI 
81.b 

(.Ui 
0.0.5 

U.b. 
1. 9 

4 -7500., -13000.) 
I-7500., -12500.) 
-7500., -12000.) 
-7500., -11500.) 

I 
Ibzo., 
I4o4., 
bU43., 

15605., 

-56.) 
-297.) 
-5_7.)
-7b.) 

3o.5 
.sb.5 
3o.5 
$o.5 

bz.z 
b,.O 
b1.6 
b1.i 

(.04 
U.041 
0.C,BG 
U.026 

1.oo 
1.5u 
1.33 
0.S' 

-7500., -1100c.) 15167., -1019.) 36.5 dO.b 0.ult 0.6L 
-7500., 
-7500., 

-10500.) 
-65UG.) 

1 14729., 
1z97t., 

-lteU.) 
-"44.) 

J6.> 
bi. 

6(l_ 
b0.6 

L.00 
0.COtu 

b. 14 
0.61 

-7000., -14000. 1755., b64.) 36.5 8o.1 U.003 0.10 
t-7000., -13500.) 17117., t23.) 36.5 bx.0 0.utC 0.74 
-7000., -13000.) 
-7000., -12500.) 
-7000., -1000.) 
-7000., -11500.) 
-7000., -11000.) 

16019., 
1tZ41., 

1 A5r03., 
1 153o4., 
C 14946., 

36b2.) 
142.) 
-99.) 

-340.) 
-561.) 

30.S 
0.u 
,.L 
0.G 

36.5 

611.6 
b2. 
OZ.I 
82. 
bz.3 

0.0j& 
0.0.9 
G.615 
0.011 
U.045 

1.sA 
(.0 
).0 
c.0 
1.b 

-7000., -10500.) ( 1448b., -822. 36.5 81.b 0.035 1.2b 
-7000., -10000.) i 1'.050., -1063.) Jb.5 81.t 0.02 0.b 
-7000., -9500.) ( 1362., -1304.) Ab.5 bU.5 0.010 U.oT 

http:18.0b.09


E-150-3000 STANDARb TAILOH- ANU APPkUALH AIA DATE ul/25/74 TIML 1b.Ub.09 VAGL so 

L U M MU N I TY N L i I M P A L T 

AIRPORT -- SNA - UKANGL LL. (SANTA ANA) 

RUNWAY - 19k 
RUNWAY CUUKVINATLS --. C 700., 18O0.) FLET kELATIVL TL AIRkUKI IEt-LKLNLL P011.1 
RUNWAY ANGLE -- 141.2 DLbkkbs MEASUKLb CIJLNTcMCLLCKWISc FkM £ASI-kSI LINL 

COOROS kEL TO LUOKUHf KLL 1U ANMJYANLL NU1LL 
AIRPORT REF PT RUNWAY oh P! POPULATIUN tPNL FACRL IMPALI 

-7000., -8500.) C lls. -1765.) 80.9 e1.9 r. ab .v3 
-7000., -&000.3 i297.. -2026. )0.9 61.0 0.020 1.61 

1 
-6500., -13000.) 
-6500., -1500.)-
-6500., -12000.) 

16436., 
ClouU., 
15562., 

621.) 
50.) 
349.) 

0.0 
0. , 
0.0 

b0.b 
b1.7 
b2.! 

0.01 
U.' 
0.049 

.U 
(.0 
6.0 

4-b500., -11500.) " L114.. 98.) 0.0 b .l U.064 0.0 
-6500., -1100b.) 1465., -143.) O.L e3.3 O.ct 0.0 
-6500., -105o0.) 14247., -304.) 0.0 L6.1 0.0o 0.0 
-6500., -10000.) 1 3o09., -b5.) 36.5 o2.1 0.055 i.G 
-6500., -9500.) 1 o -b. 3t.5 b.s 0.059 .15 
-6500., -4OOO.) 1 l93., -1106.1 3>.5 4.5 0.090 .zb 

Ln 
3 

C-6500., 
034-6500., 

-6500., 
-6500., 

-8500.) 
-8000.)

5OO.) 
-7000.) 

C12495., -1347.) 
C~ bb±.,., -1b. 

1116.. -1629.)
£ liIbo., -ZuO.) 

66.!) 
6.3.1 
80.9 
60.9 

b3.6 

62.1 
bl.L 

v.(,77
j. 0 uL 
O.041 
0.02u 

Z.61 
.t 

3.4b 
l.tl 

-o000., -12500.) 15759., 1018.) (. L 0.5 0.011 0.0 
-bOOO., -12000.) C lb2l., 77?.) G.0 81.5 0.049 G.u 
-6000., -11500.) C 14bb3., 5a6.) 0.0 o.4 0.046 U.U 
-6000., -1100) 
-6000., -10500.) C 

14444., 
IU0b., 

295.) 
54.) 

0.0 
0.0 

63.1 
L$.v 

0.ot3 
0.07? 

0.0 
0.0 

-6000., -10000.) ( 135bb., -106.) 0.0 ao. 0.07b 0.0 
-60O0., -9500.) 14i0. -427.) 0.0 L6.0 0.119 0.0 
-o0., -9000.) C 12691., -8.) 3.j 8b.4 0.17 4.0) 
-6000., -6500.) C12z64., -909.) ao.t5 b5.0 0.116 4z 
-6000., -6000.) 1116., -1150.) 36. 05.1 0.102 3.72 
-6000., -750C.) f 11377., -1391.) 80.9 64.4 O.Ubo t.96 
-6000., -7000.) ( 109s9., -1632.) 80.9 6o.3 0.0f7 5.40 
-6000., -6500.) 1 0501. -167u3.) 6.9 bz.O 0.0O0 3. ZO 
-6000., -6000.) ( lt.O., -" 114.) 80.9 b0.u L.U01 0.Oo 
-5500., -12000.) C 15060., 1Z15.) 0.0 bO.z 0.G04 0.0 
-5500., -11500.) C 14642., 974.) O. 61.2 0.024 0.0 
-5500., -IIUOO. 
-5500., -10500.) 

£ 
t 

1+20. ., 
13765., 

733.) 
'93.) 

0.0 
0.0 

b.2 
63.2 

0.643 
0.064 

0.b 
0.0 

4 -5500.. -10000.) ( 13347.. 252.) 0.u L5.0 0.100 C.0 
-5500., -S500.) C 1 869., 11.) 0.0 b7.6 (.156 0.U 
-5500., -9000.) ( 12451., -10.) 0.0 07.b 0.157 0.0 
-5500., -8500.) ( 12013., -471.) 36.5 b7.6 0.156 5.7 

1 -5500., -8000.) C 11575., -712.) .6.5 87.3 0.145 5.3e 



E-150-3000 STANDARD TAKEOFF AND APPRUACH 
 AIFA DATE 01/25/7. TIME 16.06.09 PA E 

COMMUNITY N uISE IMP ACT
 

AIRPORT -- SNA - URANGE CO. (SANTA ANA) 

RUNWAY - 19R 
RUNWAY CUORIINATES - C 700., 1bUG.) FEET RELATIVE TU AIRPORT REFERENCE PUINT 
RUNWAY ANGLE -- 241.4 DEGREES MEASURED LOUNTtRLLUCKWISE FROM EAST-WEST LINE 

COURDS REL TO 
 CUO<DS REL TO ANNUYANCE NOISE
 
AIRPURT REF PT RUNWAY BR PT POPULATIUN' EPNL FACTOR IMPALT
 

1 	-5500., -7500.) t 11137., -953.) $.5 66.5 0.130 4.76
 
-5500.. -7000.) ( o98., -1194.) 60.9 L5.6 0.113 9.13
 
-5500., -6500.) ( 1O2bO., -14J4.) 60.9 64.6 0.093 7.49
 
-5500., -6000.) 9bz.. -1675.) l.6 
 63.l 0.062 1.95
 
-5500., -5500.) 9484., -19l.) 31.c 60.9 0.019 
 0.60 

t -5000., -11000.) 14964., 117z.) 0.0 80.6 0.01b C. 
-5000., -10500.) 1 13525., 941.) 0.0 61.9 0.068 0.0 
-5000.. -10000.) C 106., a90.) 0.0 b5.4 0.109 0.0 
-5000., -9500.) C 12G46., 4q9.) 0.0 67.2 0.143 6.0 
-5000., -9000.) ( 12210., 200.) 0.0 b8.2 0.164 0.0 
-5000., -6500.) ( 11774., -13.) U. b9.1 0.163 0.0 
-5000., -6000.) 4 113i4., -274.) 0.0 61.1 0.163 0.c1j -5000., -7500.) C Ob19o., -515.) 0.0 b9.0 OI6 G.0
Ln
 
-5000., -7000.) C 10457., -755.) 0.0 L6.2 0.1o4 G.0

-5000., -6500.) 1 10019., -996.) 0.0 87.z 0.143 0.0
 
-5000., -6000.) 9551., -1217.) 
 0. bb.1 0.121 0.0 
-5000., -5500.) I 914a3. -1476.) 0.0 b4.' 0.068 0.6 
-5000., -5000.) 8705., -1719.) 0.0 b2.0 0.041 0.6 

1 -4500., -10500.) ( 132b4., 1369.) 45.9 b1.7 O..,o 0.b7 
1 -4500., -10000.) 4 1"4b., 1126.) e0.9 64.5 0.069 4.1 

-4500., -9500.) 4 12407., 867.) 25.9 65.7 0.115 Z.9b 
• -9000.) 11969., 66.) 2b.9 61.2 0.143 I.71-4500., 	 4 

-4500., -850C.) 4 405.) Z5.9 t6.5 6.171 t . 
-4500., -8000.) C 10'i. 164.) /5.9 b9.8 L.195 5.bo 
-4500., -7500.) I 106U5., -76.) /5.9 90.7 0.113 5.o4 
-4500., -7000.) 10217., -317.) 25.9 90.6 O.Zl 5.50 
-4500., -6500.) 9718., -558.) e5.9 90.3 (.L!) 5.31 

£ -4500., -6000.) 93'0., -799.) 25.9 b9.1 0.12 4.72
 
( 	-4500., -5500.) b92., -1040.) 25.9 o7.b 0.153 3.95 

-4500., -5000.) 64o4., -1281.) 25.9 b5.6 C.113 2.9z
9
-4500., -4500.) Ozb., -1!542.) !). b.l 0.0oc 1.uO
 

-4500., -400.) 7568., -L763.) 
 25.9 b1.0 0.01, 0.b 
-4000., -10000.) 12605., iSbb.) 0.0 L2.9 0.056 0.6 
-4000., -9500.) 1 10lo, 1425.) 0.0 E4.1 0.06 0.0 
-4000., -9000.) ll7z6., 1684.) 6.0 65.4 O.1U9 0.0 
-4000., -8600.) 1190.I b43.) -t.5 6b.9 6.138 5.Oo 

1-4000., 0-bOO0.) I 106., I u3.) 3G.5 kb.b O.L7/ o.50 
C -4000., -7500.) 1 10414., 462.) .6.b 90.2 0.204 7.44 

http:16.06.09


E-150-3000 STANDARD TAKEOI-F AND APPRUALH AIA DAlTE O1/±Z-7' 7iME ib.0t.o9 PAUt ob 

C UM M u N I TY N U I S E I M P A L T 

AIRPORT -- SNA - OKANE LO. (SANTA ANA) 

RUNWAY - 19R 
RUNWAY CUORDINATES -- 4 700., IO.) f-EET RLLATIVL TU AIRPORT KEI-LKENLE PUtM 
RUNWAY ANGLE --- i4.Z ULbRLLS MEASURED CJUN1LRCLCtKWIL FROM ASI-WeSli LINE 

COORDS RIL TO COURDS RtL TO ANNUYANLE NOISE 
AIRPORT REF PT RUNWAY bK P1 PUFULAi1LN LPNL &ALI0k IMPALT 

-4000., -7000.) C 9'/b., 11.) 5c.b ,±.7 0.I33 
C-4000., -500.) 77V)b., -12e0.) 6.-I7 9. 0.24'. 

-4000., 
-4000., 

-00|.) 
-5500.) 

C 99., -ALtI.) 
-o02.) 0.. 

-l.t,..7 
91.4 

O.24:) 
0.22-

.7t 
7.!3 

(-4000., -5000.) C 24, -"'3.) 41.6 89.e (l19G 6.19 
t -4000., 

-4000., 
-400.) 
-4000.) C 

7765., 
74,17., 

-10b4.) 
-1c. 

l.6 
I.t 

tb7.6 

ul.0 
0.01 
U.0111 

0.b0 
..1 

-4000., -3500.) 1099., -1565.) sl.o Li.? 0.054 1.71 
C-4000., -3000.1 C U47l., -180b.) r.- 81.t O.OtT 0.01. 
-3500., -10000.) 1 12464., 2004.) 0.0 b1.1 0.021 0.0 

" 
C-3500., 

C -5500., 
-9500.1 
-000.) 

C 119zb.. 
11487., 

1763.)
lb3.) 

thu 
.36.5 

bz. 
b6. 

0.041 
0.073 

0.0 
4.67 

a. -3500., -6500.) C 11049., 122.) 36.5 65.0 0.100 s.bS 

1 -3500., -LGO.) 10611., 1041.) sb.5 bo.b 0.121 f.7 
C -3500., -7500.) 10173., 800.) 36.5 t6.t 0.165 6.0a 

-3500., -7uO0.) 9745., 5!)9.) 36.5 90.3 0.20 7.!1 
-3500., -bbo0.) 9297., 41.) 31.( 9Z.1 0.242 7.o! 
-3500., -boo.) bb59., 77.) 1.o 94.1 0.2bi 6.vu 

t 
-3500., 
-3500., 

-5500.) 
0.) 

8440., 
796., 

-164.) 
-405.) 

31.6 
31.b 

,4.o 
$3.9 

0.49t 
u.-75 

9.2 
b.60 

C -3500., -4500.) 7544., -b45.) 11.0 9, 0.244 7.70 
C -3500., -400b.) to ?ot., -b6b.) sl.6 89.8 o.1st 6.1L 

-3500., -3500.) C bob., -1127.3 31.0 b7.b 0.149 4.71 
-500., -3co.) i G,-46., -1368.) U.° 85.3 0.107 0.03 

-3500., 
C-3500., 

- 50.) 
-Z/000.) 

C 791., 
5353., 

-160. .) 
-1850.) 

V. 
0.3 

.4 
b1.6 

0.06 
0.uz33 

0.0c 
0.01 

-3000., -9500.) C 11685., c/Cl.) .0 60.z 0.004 0.0 
-3000., -9000.) 1 11247., ly61.) Z6.5 81.6 0.033 1.19 
-3000., -e500.) C 10608., ±720.) Jo.5 81.9 0.05b 2.11 
-300C., -6000.) 10170., 1479.) Sc.5 b4.3 0.087 3.1b 

& -3000., -7±300.) C 932., lzob.) :6.5 bb.9 0.117 4.49 
-3000., -7000.) 1 949'.., 997.) b75 0.151 4.77 
-3000., -buO.) 9u56., 756.) B1.6 b9.7 0.194 6.14 
C3000., -000.) C 6618., 515.3 31.6 92.z 0.245 7.7' 
-3000., -5500.) C ol1., /tS.) 31.0 94.4 0.289 9.12 
-3000., -5000.) 7741.9 , 64.3 i.o 9b.9 0.4b ±U.ol 

( 
I 

-3000., 
-$)000.. 

"-400.) 
-4000.) 

C 
C 

TU5., 
bbb5.. 

-207.) 
-448.) 

31.t 
41.t 

90.z 
94.6 

O.3c4 
0.296 

lO.e° 
9.04 



E-150-3000 STANDARD TAKEOFF AND APPROACH AIFA DATE 01/25/74 TIME 16.0b.09 PAGE aY 

C U M MUN I T Y N OI S h I MP A C T 

AIRPORT SNA - ORANGE LU. (SANTA ANA) 

RUNWAY 1-9R 
RUNWAY COURLINATES - 4 700., 1bUO. FELT RELATIVE TO AIRPORT REFERENCE POINT 
RUNWAY ANGLE - 4 41.Z DEGREES MLASURELa LOUNTLRCLUCKWIE FROM LAST-WLST LINE 

CGORDS REL TO LUORDS kRL TU ANNOYANLE NOISEL 
AIRPORT REF PT RUNWAY bR PT POPULATION EPNL FACIDK IMPALI 

-3000.. -3500.) 1 6427., -689.) 0.3 92.b O.Z56 O.ub 
-3000., -3000.) 5989., -930.) 0., 'Uo2 0.205 0.06 
-3000., -2500.) 1 5551., -1171.) 0.3 87.6 0.154 0.05 
-3000., -2000.) 5112., -1412.) 0.- b.0 0.099 O.U 
-3000., -0o.) 4b74., -1653.) 0.3 &2.7 0.053 0.0z 
-300c., -1000.) 4236., -1893.) 0. bU.o 0.012 0.00 

£ -2500., -8500.) 1 lus8., 158.) 36.5 b0.1 0.003 0.10 
-25UO., -8000.) 10149., 1917.) 36.5 61.4 0.049 i.U6 
-2500., -7500.) 9691., 1&7o.) 31.t b3.l 0.Ool 1.94 
-2500., -7000.) 94!3., 1435.) 31.b b4.b 0.090 3.Ud 
-2500., -0SO0.) 1 815 ., 1194.) 3..b ub.4 0.129 4.0b 

Uw 
Ln 
0' 1 

-2500., 
-
-2500., 

-6000.)
5500.,-500.) 

-500C.) 

4 b77., 
7939., 
7500., 

954.) 
713.) 
472.) 

31.b 
31.6 
31.u 

88.7 
91.3 
94.0 

0.174 
0.225 
0.o79 

5.46 
7.11 
b.b 

-2500., -4500.) 1062., 231.) 31.o %o., 0.315 10.i7 
-2500., -4O.) bb4., -10.) 0.3 9b.9.. 376 0.11 
-2500., -3500.) 6186., -251.) 0., v7.8 0.3tb C.11 
-2500.. 
-2500., 

-3000.1 
-2500.) t 

!5748., 
5.10., 

--92.) 
-733.) 

0.j 
0.a 

96.4 
93.3 

0.a27 
0.2b) 

0.10 
O.Gb 

-2500., -2000.) 4874., -973.) O.a b9.4 0.1d8 C.0t 
-2500., -1500.) 4 44 ., -1214.) 0., bb.! 0.131 0.04 
-2500., -1600.) 3995., -1415.) 0.3 t.b 0.076 0.0. 
-2500., -500.) 3557., -1696.) 0.ob 1bt 0.631 0.G1 
-2000., -1000.) 9012., 181J.) 31.o b1.0 0.020 O.05 
-2000., -6500.) b4 74., 1633.) 31.t c2.6 0. 6 , 1.67 
-2000., --OO.) blbsto., 1s92.) jl.6 b4.4 6.9 2. 
-2000., -5500.) 1 769b., 1151.) 31.6 bb.b 0.1,7 
-2000., -5000.) t 7ZbO., 910.i 3l)o L3.1 o.19u 5.99 
-2000., -4500.) 6841., b69.) 0.s 9z*$ L...s0u 

f -2000., ,-000.) 1 083., 28. 0. 95.8 0.31o 0.09 
-2000., -3500.) 5945., 1b7.) 0.3 90. 0.379 0.11 
-2000., -3000.) 5507., -54.) 0., 161., 0.'nG. .3 
-2000., -2500.) 5069., -294.) 0.3 '9.4 0.,e9 L.1" 

1 -2000., -20.) 464Z., -535.) 0., Vo.5 G.,30 0.10 
-2000., -1500.) 419,., -776.) 6., 9c.G.c7 0.07 
-2000., -1000.) C ab±., -IUI?.) 0.3 66.1 G.16J U&.la 
-2000., -500.3 3316., -1z56.) O.j b5.3 6.i0e O.U 
-2000., 0.) 4 487b., -1499.) O. 62.a C.u.t 0.01 



E-150-3000 SIANLAkL IAKEUFP ANL APPRUALH 	 AIFA LAl 0l/t./7i. IlML Lt.0b.09 PAUL 40 

C 0 h MU N I I Y N L I S E I M P A L I
 

AIRPORT -- SNA - URANUE CO. (SANTA ANA)
 

RUNWAY -- 19k 
RUNWAY COORDINATES 700., 1uO.) FLtT RLLATIVE I AIIk[P0K kFIZLNLL PLINI 
RUNWAY ANGLE 1-41.e DEGREES MEASURED LUUNTFKLLOJCKWISE FROM LA .T-WES1 LINE 

COURDS REL TO LuOkUS KLL lo ANNOYANCL NUISL
 
AIRPOK[ REF PI RUNWAY bK PT PLPULATIJN LPNL ACTOR IMPALI
 

-1500.. -6000.) 1 I0.) s±.b 	 0-611 O.06l7a., 	 bO.O 

t -1500., -550U.) 1451., 1569.) 31.o b.6 0.46 .4o 
S-1500., -5005.)G011. 4 1"46.) .4 bA.b 0.095 u.Oa 
S-1500., -4500.) LObb. 1107.) 0.z b7.7 0.15! 0.L5 
( 	-1500., -4000.) 144 ., b66.) 0.3 90.9 U.LIt 0.U7 

-1500., -500.) t 57U4., bi5.) U.J y,4.t C.t9z 0.L9 
-1500. -3000.) Sit:., Abb.) 'b.3 9b.1 0.3c. 0.11 

I-1500., -2500.) I 4b~o., 144.) ,.41 101.7 0.435
 
-1500., -2000.) 4 439,U., __17.) 0.s lG. .4t6 G.14 
-1500., -1500.) 1 9tn. -328.) 0.34.' 0.399 0.Iz 
-1500., -1006 ) 1 5!.7 -579.) b. 9!. 0.307 .0 9 
-1500., --	 _Ob° 0. 9(.9 L.;.16 C.(7
bOO°j -82U.) 

-1500., 0.) 4 bo7, -1061.) 0.0 bo.4 0.1z6 v.°4 
1 -1500., b1199.,0.) -130z.) U.4IO.l .Oz 0.e2 

-1000., -000.) 6o7k., 1766.) L.3 (l.1 L.0c3 0.01 
-1000., -4500.) 1 6340., 1545.) 0o. bl. C.,67 U.U. 

4 -1000., 169o 0.3 b&.2 0.1,4 0.04-4000.) 1304.) 
-1000., -3t00.) 546o., 1664.) L.3 66.7 £.17s O.O5 
-1000., -3000.) 4 )U25., b23.) 0.o 91.V 0.ijf 0.07 
-1000., -Z500.) t 4567., 562.) ,.3 9±1.7 Uoalb O.u9 
-1000., -2000.) 4149., 341.) -0.3 9.7 0.395 0.14 
-1000., -1500.) C 7l., 100.) 0.3 104.9 0499 0.1 
-1000., -1000.) 3e73., -141.) 0.o 10.., 0.49b u.1b 
-1000., -500.) 1 34., -62.) 0.3 99.3 C.4tt UoI 
-1000, 0.3 2396., -b2$.) Loj 9s.a U.266 0.O6 
-100G., 500.) 195b., -663.) 0.3 cb.z 0.ib4 0.O± 
-1000i., 1UU.) £50. -1104.) L.s E3.9 U.UoP .Oz 

4 -10.,1 1500.) 1 IOZ., -i6!.) 0.3 b.b 0.657 Go.O 
-1000., 2000.) 1 644., -15b6.) 0.3 66.u .O06U u.z 
-1000., 1500.) z0., -164.) b.3 bz .644 0.GI 

4 -bo. --500.) 6099. 1984.) 0.3 Lo.4 0.009 0.00 
1 -500., -4000.) :,661., 174B.) 0. oz.5 0.050 0.01 

0
-500., -3500.) 1 5Z4ts., ls ) L.J b4.1 0.obi .0, 
-500., -3000.) 4 784., iz61.1 O.L b6.j C.IZ6 0.'. 
-500., -2500.) 434b., 1020.) U.s bb.5 0.161 0.05 
-500., -2000.) 4 90L., 779.) L.3 -n.1 0.241 0.07 
-500., -1500.j 1 3470., 538.1 0. 9t.0 0.3,0 0.16 

I -500., -1000.) 3042. 297.) 0o. 1UI.4 0.429 0.14 
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E-150-3000 STANDARD TAKEOFF AND APPROACH 	 AIFA DATE 01/2b/74 liME i.0b.09 PAGE 4
 

COM MU N I T Y N U I s E I MP A L T
 

AIRPGRI -- SNA - ORANGE LO. (SANTA ANA) 

kUNWAY -- 19k 
RUNWAY CUURD1NATkS - C 700., 1800.) FEET RLLAT1VE 70 AIRPORT REFERLNCE POINT 
RUNWAY ANGLE - 241.Z DEGREES MEASURED LCUNTERLLUCKWISE FRSM ASI-WEST LINE 

COORDS REL TO CUORLJS REL TO 	 ANNOYANCE NUI-L
 
AIRPORT REF PT RUNWAY bk PT POPULATIUN EPNL FACTOR iMPALI
 

-500., -500.) 2594., 5b.) 0.3 1O.5 0.!71 0.17
 
-500., U.) 2155.. -184.) 0.. 105.2 0.504 0.15
 
-500., 500.) 1717., -425.) .b 96.9 0.339 0.10
 
-500., lOOu.) 179.. -b66.) 0.1 9.1 U.235 0.07
 
-500., 1500.) 1 b41., -907.) 0.3 b9.S 0.8l7 0.0b
 
-500., 2000.) 403.t -1146.) 0.1 bb.' 0.164 U.05
 

0., -3so.) 4982., 194G.) 0.3 80.7 0.015 0.00
 
0., -sOOO.) i 4)-3.. 1699.) 0.3 8;.z 0.045 0.01
 
0., -2500.) 4105., 1458.) 0.3 b3.9 0.077 0.02
 
0., -2000.) 1 J66?., 1Z17.? 0.4 86.0 0.120 u.04
 
0., -1500.) 3229., s7.) 0.3 88.3 C.16t 0.05
 
0., -100.) 1 791., 73b.) U.3 9e.0 0.239 0.07
 

S ., -5k. C :3., 495.) 0.3 95.o 0.,11 0.09
 
Co 0., o.) 1915., 254.) 0. 103.0 0.459 0.1'
 

0., 500.) i3.) l1.7 ~b.34 0.19
1476., l.s 

0., 1600.) 4 l10b4., -22b.) 0.3 105.4 0.508 0.i5
 
0., 1500.) oo., -469.) 0. 9.2 0.4b5 L."t
 
0., 2000.) 162., -710.) 0.s 95.1 0..0I O.09
 
0., 2500.) -lb., -951.) 0.3 83.0 0.059 0.02
 
0., 3000.) -71q.., -1192.) 0.o 80.4 O.O7 0.00
 

500., -2500.) C 3864'.. 1896.) 0.3 60.3 0.00o 0.00
 
500., -Z000.) C zb., 1655.) 0.3 [1.b 0.03 0.01
 
500., -1500.) C 98., 14l1.) 0.3 [..4 0.06 0."2
 
500., -1000.) 2550., 1174.) 0..,.I G.501 G.u
 
500., -500.) C Ilt., 933.) 0.3 b7.3 0.145 0.0.
 

1 500., 0.) C 1674., 69 .) 0.3 0.6b°I6 0..01
 
I 500. , 500. ) I L2ob., '. ) 0.4 b.7 0.s33 0.1 (


C 	 b00., 1000.) Y7.' 210.) 0.l 1d. 0.54b U.lb
 
500., 1500-.) 451. 1.) .. 115.8 C.715 0.21
 
500., z000.) -79., -27.) 0. 9.2 u.3St C.11
 
500., sGO.) -517., -512.) 0.3 91.5 0.230 0.07
 
o500., sOO.) -55. -753.) 0.oj7.( 0. 1l 0.05
 

500.. 3500.) C jj, -994.) 0.3 83).? 0.074 0.Uc.
 
5OC., 4000.) -1832° -1Z35.) 2.7 tl.± 0.022 C.(o


l1oo., -10.)C l1z.) 80.4 0.006 0.06
U9. k.C 

1000., -500.) 1 1b7l., 1371.) 0., 81.7 0.0,5 U.01
 
IOO0., 0.) 1431., 1130.) 0.3 Ls.9 0.077 0.uz
 
1000o., 500.) 1 995. 889.) .b 8.7 C. 175 0.05
 



E-150-3000 SIANDARD IAKLUP AND nPPRUACh AIFA bATE 01/zS/74 lIME lb.Go.0O PAUL 4, 

1OMMU N I TY N U A S I M FAL 1 

AIRPURT - NA - UKAN6L CU. (SANTA ANA) 

RUNWAY - 19 
RUNWAY COUROINATbS - 1 700., lbOu.) FELT RELA1IVL 10 AIRPuR1 tFLtNCL POINT 
kuNWAY ANbL -- 241.2 biL0REES MEASURL LUNILRLUCKWISL FROM LAST-WEST LINt 

COORDS REL TO COURUS REL TO ANNOYANLt NbIL 
AIRPURT ktF PT RUNWAY bi PT POPULATION LPNL FACbk IMPALI 

100., 1000..) 04b.) U.i 91.7 0.314 0.0S 
1000., 1500.) lit., 407.) 0.3 102., 0.444 U.I 
1000., 2000.) -320., 167.) 0.- 1Ul.i 1.4Z( L.lz 
1000., Z500.) -75u. -14.) C.3 103.2 0.4o3 0.14 
1000., 3000.) -1i9., -315.) u..3 v.7 0.55, G.i6 
1000., 3514-.) C 1.., -556.) U. 91.t G."6 u.0?1 
1000., 400C.) -2074., -797.) Z.7 b7.7 u.15$ 0.41 
1000., 4500.) -btl., -04.) 1.7 L'.0 0.079 0GaI 
1000., 5000. -zgt4. -1279.) . EdI.: U.C07 L.U? 
A500., 500.) 754., 1327.) 0.= b4. 0.0 6 0.0 
1500.. 1000. 31b., lOb.) b.9 0.17b G.05 

t, 
n 
.0 

150G., 
1500., 
1506., 

iu.) 
2000.) 
2500.) 

-14-, 
-5o1. 
-999., 

84o.) 
bus.) 
34.) 

. 
U.: 
0.4 

b.6 
ts.S 
95.! 

O.U9s 
0.197 
U.31± 

L.0, 
C."6 
.U9 

1500., 3000.3 -4o. 123.) 0. 160.6 C.41. 0.1 
C15O0., 3500.) -1b87.. -118.) 1. 100.0 0.400 L.08 
1500., 4000.) -2313. -359.) Z.7 95. U.SB( G.bt 
1500., 4bOC.) 1 -z751., -66.) z.7 91. 1. o 0.61 
1500., 600.) ( -3190., -b1.) e.7 b7. 0.140 
1560., 5500.) -obtb., -1061.) 2.7 83.9 0.079 0.41 

4 
1500.,
2000., 

6000.)
sOO.)} 

-4066., 
516., 

-"2.1 
1765.) 

;..7 
0.3 

l.3 
82.6 

G.G 6 
O.0%', 

0.u7 
0.01 

LOO0., 1000.) 75., 1525.) 0.. b'.b 0.090 u.Oj 
1 2000., 1000.) -bOt., IU43.) ., :1.4 0.04 0.01 

zo0., 2500.) B"-.,St.) 0.3 E7.0 0.159 1'.L 
200G., 300.) C-167b., 561.) 0.5 91.o 0.231 0.07 

4 2000., 3500.) l. 60)27 1 . 9u.U 0,.3zC 0.b( 
2000., 400G.) -2554.9 79.) 2.7 vv.2 0.SbS 1.04 
2000., 4500.) -299,., -lbO.) 2.7 97.3 0.3tb 0.96 
2000., 500.) -430., -4U.) 2.7 93.8 0.z'7 0.1 
2000., 
200G. 

5500.) 
6000.) 

-.b6., 
-07., 

-o'5.) 
-b4.) 

t.? 

2.7 
§U.c 
db.b 

0.204 
0.132 

0.55 
0.6L 

1 2000., 0506.) C-4745., -110:.) 2.7 b86.'. 0.ObL 0.16 
2000., 7000.) -5186., -166.) 1/.8 C0., C.006b.UL 
2500., 2500.) -14l., 1240.) 0.3 bO.7 0.015 0.uO 
2500.. jrOc.) -919., 999.) 2.7 L4.0 0.081 0.22 
2500., 3500.) C-"a7., 758.) z.7 88.5 0.170 0.46 
2bO., 4000.) -2795., 517.) 2.7 9e.7 0.254 U.69 



E-150-3000 STANDARD TAKEOFF AND APPROACH 	 AIFA DATE 01/25/74 TIME 18.06.09 PAGE 
43
 

C UMMUNI TY N OI SE I MPA C I
 

AIRPORT -- SNA - ORANGE CO. (SANTA ANA) 

RUNWAY - 9R 
RUNWAY CUOROINATES -- 4 700., 1600.) FEET RELAT1VE TO AIKPUKT RLFLkRNLL PUINT
 
RUNWAY ANGLE -- z41.2 DEGREES MEASURED COUNTERLLUCKIS FRUM LAST-WEST LINt
 

COORDS REL TO CUURDS REL TO 	 ANNOYANCE NuISE
 
AIRPORT REF PT RUNWAY 8k P1 POPULATION LPNL FACTOR IMPACT
 

2500., 4500.) -3"43., 277.) 2.7 95.5 0.310 O.b4
 
2500., 5000.) -671., 16.) 2.7 97.6 0.352 0.95
 
2500., 5500.) -4109., -205. 2.7 95.0 0.301 0.bl
 
2500.. 6000.) -4548., -446.) 2.7 9t.U 0.239 r.o!
 
2500., 6600.) 4 -'9b., -ob7.) 2.7 b6.4 0.16b 0.45
 
2500., 7000.) -5424., -928.) 2.1 85.3 0.05 0.28
 
2500., 7500.) -ut2., -1169.) 2.7 64.1 0.044 0.1z
 
3000., 3500.) -259o., 1197.) 2.7 bz.1 O.04z 0.1i
 
3000., 4C00.) -3036., 95b.) 2.7 ob.4 0.lut 0.z9
 
3000., 4500.) -3474., 115.) Z.7 U9.3 C.165 0.5G
 
3000., 6000.) -3912., 474.) 2.7 92.5 0.2!0 0 ob
 
3000., 5500.) -4350., 233.) 2.1 94.4 0.267 0.77
 
3000., 6000.) -4789.. -8.) 2.7 95.5 0.310 0.64

3000., 6500.) -5z7., -449.1 d.7 9.3 0.245 (.66


o 3000., 7000.) C -5665., -490.) 2.7 b9.4 0.169 U.11
 
3000., 7500.) 1 -6103., -71.) z.7 L6.3 0.1d6 0.j
 

t 	 3000., 8000.) 1 -541.. -971.1 2.1 b2.6 0.055 0.ls
 
3500., 4000.) -6z7T., 1394.) 2.7 b0.2 0.003 0.01
 
3500., 4500.) - 715., 1153.) 1.7 83.1 0.0t3 0.1t
 

1 3500., 5000.) C '.5.., S'1 .) e.7 0o.2 G. 1,! 0I.34
 
3500., 5500.) 4 -4591., 071.) 2.7 b9.2 0.164 0.5u
 
5500., 6000.) C -5029., 430.) c.7 91.1 0.Z23 0.tC
 
3500., 6500.) 1 -5468., 169.) 2.7 94.2 0.243 0.0t
 
3500., 7000.) 1 -5906., -61.) 2.7 92.3 0.246 U.60
 
3500., 7500.) -o3. -29c.) 2.7 b9.2 u.163 0.49
 

4 3500., 8000.) -6Tc., -533. 4o7 b5.x 0.l(t 0.49
 
3500., E500.) ( -7220., -774.) 2.7 b0.4 0.009 0.04
 

1 4000., 6000.) ( -4394., 1350.) 2.7 Ll.U 0.019 0.05
 
4000., 5500.) --4642., u o9.) 2.7 b3.5 0.01 C.19
 
4000., 6000.) C -5270., b6.3 Z.7 bo.0 0.Itl 6.s
 
4000., 6500.) 4 -57S., 626.) 1.! bL.O 0.160 0.
 
4000., 7000.) C -b147., i87.) Z.7 b9. O.166 .49
 

1 	 4000., 7500.) -t-bbS. 146.) 2.7 69.1 0.ILZ 0.4%
 
4000., 8000.) -70Z3., -95.) 4.7 bo.b 0.133 O.ZG
 
4000., 8500.) ( -7461., -336.) 2.7 61.9 C.037 1.l
 
4500., 6000.) -551., 107.) 2.1 80.6 U.Ol 6.04
 

1 	 4500., 6500.) -5949., 1o6.) .7 84.0 0.bO6 U.i
 
4500., 7O00.) t -u387., 815.) 4.7 84.b C.092 0.25
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E-150-3000 STANUAR 1AKL(F[ AICU APFKJALI, AiFA CiAIL /' 10/1lL ,.0O.oq PAbt .. 

L U M h U N I T Y N u I S L I M F A L l 

AIRPURT -- SNA - tIRANbt CO. (SANlA ANA) 

RUNWAY -- 1Sk 
RUNWAY LUU$DINATFS -?0 ( 7U., ltoO.) f-LIT KtLATIVL ITOAIKPJII 1,LkEKENLt P'lNl 
RUNWAY ANGLE -- 241.1 UE(kLLS MEASURLU CUUNIERLLLCKWLSL FRUM (ASI-WLSI LIN 

CUORDS kEL TO 
AIRPORT KEF PI 

LtUOUS REL 10 
RUNWAY bK P1 PUPULATIUN LPNL 

ANNOYANCE 
FALTUk 

NbISL 
IMPAIL 

C 

C 

4500., 
4500., 
4500., 
4500 , 
5000., 

7500.) 
8000j.) 
b50.) 
V000.)) 
9500.) 

( -cbeb., 
I-'71.4., 
C -77ut., 

-blO., 
C -bu81.. 

584.) 
54. 
1.) 

-139.) 
59.) 

Z.7 
L. 

t.7 

2.1 
.7 

b9o 
b. 
bl.L 
Lu.t 
bO. 

0.09 
0.06t 
&.cLV 
O.UL 
u.C.Ll 

C.ia 
U.i" 
U.0, 

U 
-

TOTAL POPULAIION Af-E TID = 
TOTAL ANNOYANLL = bl.tb 
TOTAL NOISE IMPALI 4,6.41 

48b2. 



APPENDIX
 

C.3 Aircraft Noise Contours
 

This appendix contains some of the noise contours which corres

pond to the operational procedures which were evaluated at each airport.
 

Table C-i and C-2 lists the operating parameters which were varied for each
 

operational procedure. Figures C-5 through C-28 are the noise contours
 

corresponding to the operational procedures evaluated for the E-150-3000
 

aircraft. Figures C-29 through C-37 are some of the noise contours corres

ponding to the operational procedures evaluated for the M-150-4000 aircraft.
 

362
 



TABLE C-i
 

VARIATIONS OF TAKEOFF OPERATIONAL PROCEDURES
 

Externally Blown Flap - 150 Passengers - 3000 Ft. (915 m) Field Length
 

Flap 
Retraction Power Cutback Turn 

Operational 
Procedure 

Height 
ft (M) 

Level 
% 

Height 
ft (m) 

Angle 
Deg (Rad) 

Height 
ft (m) 

1 200 (61) 64 750 (229) ...... 

2 200 (61) 64 1000 (305) --

t3 200 (61) 64 1200 (366) ...... 

4 200 (61) 64 1500 (457) 45 (.785) 500 (152) 

5 200 (61) 64 1750 (534) 45 (.785) 750 (229) 

6 200 (61) 64 1975 (602) 45 (.785) 1000 (305) 

7 200 (61) 64 1150 (351) 20 (.349) 500 (152) 

8 200 (61) 64 1400 (427) 20 (.349) 750 (229) 

9 200 (61) '64 1275 (389) 30 (.524) 500 (152) 

10 200 (61) 64 1525 (465) 30 (.524) 750 (229) 

11 200 (61) 64 500 (152) 20 (.349) 550 (168) 

12 200 (61) 70 500 (152) 

13 200 (61) 70 750 (229) ...... 

14 200 (61) 64 750 (229) 20 (.349) 800 (244) 

15 200 (61) 64 1000 (349 20 (.349) 1050 (320) 

16 200 (61) 64 1775 (541) 30 (.524) 1000 (305) 

17 200 (61) 64 1600 (488) ...... 

18 200 (61) 64 2000 (610) ...... 

19 200 (61) 64 500 (152) ...... 

20 200 (61) 64 500 (152) ...... 

200 (61) 82 800 (244) ...... 

21 200 (61) 64 500 (152) 45 (.785) 800 (244) 

22 200 (61) 82 500 (152) ...... 

23 200 (61) 70 1000 (305) ...... 

24 200 (61) 64 1000 (305) 20 (.349) 800 (244) 

25 206 (61) 64 500 (152) 45 (.785) 550 (168) 

26 200 (61) 64 500 (152) 45 (.785) 600 (183) 

27 200 (61) 64 500 (152) 45 (.785) 700 (213) 
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TABLE C-2
 

VARIATION OF TAKEOFF OPERATIONAL PROCEDURES
 

Mechanical Flap - 150 Passengers - 4000 Ft. (1219 m) Field Length
 

Flap 
Retraction Power Cutback Turn 

Operational Height Level Height Angle Height 
Procedure ft (m) % ft (m) Deg (Rad) ft (m) 

1 400 (122) 66 1000 (305) ......
 

2 300 (91) 66 500 (152) ......
 

3 300 (91) 66 750 (229) ......
 

4 300 (91) 66 1000 (305) ......
 

5 500 (152) 66 1000 (305) ......
 

6 250 (76) 66 1000 (305) ......
 

7 250 (76) 66 750 (229) ......
 

8 250 (76) 66 500 (152) ......
 

9 250 (76) 70 1000 (305) ......
 

10 250 (76) 70 750 (229) ......
 

11 250 (76) 70 500 (152) ......
 

12 250 (76) 66 500 (152) 20 (.349) 550 (168)
 

13 250 (76) 66 750 (229) 20 (.349) 800 (244)
 

14 250 (76) 66 1000 (305) 20 (.349) 1050 (320)
 

15 300 (91) 66 500 (152) 45 (.785) 550 (168)
 

16 300 (91) 66 500 (152) 45 (.785) 600 (183)
 

17 300 (91) 66 500 (152) 45 (.785) 700 (213)
 

18 300 (91) 66 500 (152) 45 (.785) 800 (244)
 

19 300 (91) 66 500 (152) 45 (.785) 900 (274)
 

20 250 (76) 66 1450 (442) 30 (.524) 500 (152)
 

21 250 (76) 66 1950 (596) 30 (.524) 1000 (305)
 

22 250 (76) 66 1700 (518) 30 (.524) 750 (229)
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NASA AMES CONTRACT -- PARAMETRIC STUDY OF STOL 
SHORT-HAUL TRANSPORT ENGINE CYCLES AND OPERATIONAL 
TECHNIQUES TO MINIMIZE COMMUNITY NOISE IMPACT 

E-150-3000 LOW IMPACT OPERATIONAL PROCEDURE NO.3 
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NASA AMES CONTRACT -- PARAMETRIC STUDY OF STOL 
SHORT-HAUL TRANSPORT ENGINE CYCLES AND OPERATIONAL 
TECHNIQUES TO MINIMIZE COMMUNITY NOISE IMPACT 
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NASA AMES CONTRACT -- PARAMETRIC STUDY OF STOL 
SHORT-HAUL TRANSPORT ENGINE CYCLES AND OPERATIONAL 
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AREA AREA 
NASA AMES CONTRACT -- PARAMETRIC STUDY OF STOL EPNL (SQ MI) (SQ KM) 
SHORT-HAUL TRANSPORT ENGINE CYCLES AND OPERATIONAL 80.0 2.74 7.09 
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