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ABSTRACT

A theory is developed for a digital equalizer for

use in reducing intersymbol interference (ISI) on high-

speed data communications channels. The equalizer is

initialized with a single isolated transmitter pulse,

provided the signal-to-noise ratio (SNR) is not unusually

low, then switches to a decision-directed, on-line mode

of operation that allows tracking of channel variations.

Conditions for optimal tap-gain settings are obtained first

for a transversal equalizer structure by using a mean-

squared error (MSE) criterion, a first-order gradient

algorithm to determine the adjustable equalizer tap-gains,

and a sequence of isolated initializing pulses. Since the

rate of tap-gain convergence depends on the eigenvalues of

a channel-output correlation matrix A convergence can be

improved by making a linear transformation on A to obtain

a new correlation matrix A. The corresponding change in

equalizer structure results in a set of parallel trans-

versal filter-sections, the weighted outputs of which are

summed to produce the equalizer output. It is shown that

by properly selecting the tap-gains of each transversal

filter-section, the equalizer can be adjusted to minimize

the MSE on the first iteration of the algorithm. A method
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is proposed for making this selection using the pseudoinverse

of A to obtain a "best" approximation to an orthogonality

condition. By using a Hadamard matrix it is shown that A

is similar to a projection matrix. Thus all eigenvalues

are either 0 to 1, which is the desired condition for

initialization in one algorithm iteration.

When the channel SNR is low initialization can be

improved by averaging several initializing pulses in order

to better identify the channel. Next a simple approxi-

mation to the error criterion is used to obtain an on-line

algorithm for noisy channels; it makes small adjustments

to the filter-section output weights to compensate for

channel noise and time-variations, as well as poor initiali-

zation. Convergence of this on-line algorithm is shown in

a statistical sense under a stated hypothesis, and

suggestions are made for detection and correction of poor

channel tracking. Finally the equalizer design is evaluated

by means of a digital computer simulation and the results

are presented and discussed for three baseband channel

models. The interaction among several key equalizer para-

meters is studied for a wide range of SNR.
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LIST OF SYMBOLS

Symbol Meaning

v a column vector

M a matrix

6 the Kronecker delta
mn

MT transpose of M

M-1 inverse of M

-I  pseudoinverse of M

M complex conjugate of M

MH complex conjugate (hermitian) transpose
of M

diag(a,b,...c) diagonal matrix with diagonal elements
a,b, . . .c

det (M) determinant of M

N N x N identity matrix

ONN x N null matrix

V gradient operator

E mathematical expectation operator

<x,> inner (scalar) product of x and y

II.II norm of vector x

mod n modulb n

(M,N,D) set of parameters describing the
equalizer

s second (of time)
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CHAPTER 1

INTRODUCTION

Motivated by the need to transmit binary data

directly between computers, there has been a steady increase

in the use of digital techniques for data transmission.

This is due in large part to the profound advances in solid-

state technology which have resulted in small, reliable,

fast, and inexpensive digital components. Attempts to

increase the transmission rate of digital data over band-

limited channels are often limited by interference among

successive data symbols, an effect known as intersymbol

interference (ISI). The reduction of ISI by signal

processing techniques is known as equalization.

1.1. THE EQUALIZATION OF DIGITAL CHANNELS

The basic principles:of digital communications are

well documented in standard texts [1]. Such systems always

contain unwanted signals which are usually classified

collectively as noise. For this study it is convenient to

divide noise into two subcategories; background noise caused

by external sources such as thermal excitation and ISI

caused by the overlap in time of the received signals. As

the data transmission rate is increased for a fixed channel

1
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bandwidth, the ISI becomes increasingly important for the

following reason. Over the nominal channel passband all

practical channels have nonlinear phase vs. frequency

characteristics which cause different frequency components

of a transmitted signal to be delayed by different amounts.

This results in a transmitted pulse being spread out, or

dispersed, in time. This time dispersion is further

aggravated by the fact that all physical channels are

bandlimited and thus attenuate the high frequency components

of transmitted signals. At the channel output these

successive time dispersed signals overlap to give a composite

signal equal to their algebraic sum. Fig. 1.1 shows such a

situation, with the circled points indicating those values

measured by a receiver that takes a single sample per bit.

In the figure time has been normalized, and Td represents

the normalized time delay of the transmitted pulse caused

by the channel. The channel output sample at t = Td + 2,

for example, is closer to unity than zero; therefore, the

zero transmitted at t = 2 would be mistaken for a one,

resulting in a message error. Errors can also be caused

by background noise or time variation of channel parameters.

Some ways to reduce the error rate include raising the

signal-to-noise ratio (SNR), introducing redundancy through

coding, and the use of pulse-shaping filters to reshape the

transmitted or received signals. This latter approach is

called channel equalization, and the filter is termed an

eq-ua-l-i-zer.
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A number of classification schemes have been proposed

for equalizers; the most important for this study being

analog or digital according to the type of signal being

processed. Digital equalizers may be further classified by

the duration of their response to a standard test signal

called the unit pulse, i.e., a binary one preceded and

followed by strings of binary zeros. The unit pulse is

the discrete analog of the unit impulse for continuous

systems, and is in fact often referred to as the "discrete

unit impulse." If the theoretical unit-pulse response goes

to zero after a finite time and remains there, then the

equalizer has a finite impulse response (FIR), otherwise it

has an infinite impulse response (IIR). Other classification

schemes are based on linearity (linear, nonlinear), feedback

(recursive, nonrecursive), signal flow (parallel, series,

cascade), stationarity of characteristics (time-varying,

time-invariant), and historical nomenclature (frequency-

sampling, transversal, sampled data). A thorough discussion

of these classifications is given by Rabiner, et al. [2].

Of particular interest here is the transversal filter

structure, shown in Fig. 1.2. The blocks represent delay

elements of duration T s, such as digital shift registers

or analog tapped delay line stages, and the numbers {cn

are called tap-gains. It will be convenient to mathemati-

cally represent the T s delay by the z-transform delay

operator z-1 which is discussed in A.4.t Transversal

tThe notation A.4 refers to Section 4 of App. A.
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equalizers have a number of nice properties such as good

stability characteristics, ease of implementation, linearity,

and mathematical tractability. Consequently, they have

proven particularly useful in equalizing ISI.

If an equalizer is set at some initial time, e.g.,

when installed, and not changed thereafter, then it is

called a preset or fixed equalizer. Fixed equalizers often

prove inadequate in modern digital communications networks

having switching between many branches, atmospheric trans-

mission links, wide temperature fluctuations, and component

aging. Such applications require an equalizer capable of

being adjusted either during normal message transmission or

at selected breaks between messages. Although the term

adaptive equalization has sometimes been used for both of

these cases, it will be reserved herein to describe only

the former, while the latter case will be called automatic

equalization [3]. Both adaptive and automatic equalizers

will be referred to as self-adjusting.

Since a separate feedback channel from receiver to

transmitter is usually infeasible in complex communication

systems, some alternative method is necessary to produce an

error signal for use by the equalizer. In adaptive

operation this can be done by employing a decision-directed

scheme. It is assumed that a high percentage of the output

decisions are correct so that the sequence of output

decisions closely approximates the transmitted sequence.
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The error signal is then defined as the difference between

signals before and after the decisions are made. The

limitation of this scheme is obvious; if the equalizer is

poorly adjusted initially, then the output sequence contains

so many errors that the error signal becomes meaningless.

Consequently, it is usually necessary to transmit an initial

known training or test sequence which can be reproduced at

the receiver. Comparison with the equalizer output before

the decision device then gives the desired error signal.

This known test sequence, transmitted during the initialization

or training period is frequently selected to be a string of

unit pulses with sufficient spacing between pulses to prevent

the received waveforms from overlapping. After each such

isolated test pulse an incremental adjustment of a particular

set of equalizer parameters is made according to an iterative

procedure called an algorithm. Assuming that the algorithm

is convergent, the training period is continued until

initialization is achieved, at which time the message

transmission commences. In applications such as networks of

sensors or polling systems where the messages are short,

this training period can be considerably longer than the

message length. Furthermore, many common equalizer

structures require that the adjustment increments be small

to insure convergence of the algorithm, thereby necessi-

tating lengthy test sequences.
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The problem to be studied herein is the development

of an equalizer with a short initialization period that can

be operated in an adaptive manner after initialization.

It should have practical application to noisy time-varying

networks that include switching. It is assumed throughout

that sufficient digital computing equipment is available,

such as a hardwired logic network, a minicomputer, or a

time-shared general purpose computing system.

1.2 BACKGROUND AND ORGANIZATION

Some familiarity with the theory of modern digital

communications in both the time and frequency domains is

assumed herein, and a basic knowledge of applied mathe-

matics is essential. The discrete nature of digital signals

makes the z-transform a valuable tool, and some essential

properties are given in App. A. This appendix also contains

some fundamentals of linear operators which are then

applied to the treatment of selected topics from the theory

of vectors and matrices. Familiarity with probability and

statistics is also desirable. A number of references are

cited in the appendices both for completeness and as a

source of proofs omitted from App. B. Finally, a reading

knowledge of the FORTRAN programming language will be

helpful in understanding the computer simulation listings

found in App. C.
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In addition to some introductory material on digital

equalizers, this first chapter also contains a review of

related work found in the literature. In Chapter 2 the

initialization theory is developed for an automatic digital

equalizer under the assumption that there is no background

noise, i.e., the channel is deterministic. The equalizer

uses a first-order gradient algorithm and a short test

sequence to achieve initialization on the first iteration of

the algorithm. A number of proofs relating to this chapter

were relegated to App. B in order to preserve continuity.

Chapter 3 first considers the effect of noise on the

previously developed initialization theory. Then an

approximation to the gradient algorithm is introduced which

allows the equalizer to make on-line adjustments for time-

variation of the channel parameters and noise statistics.

The resulting adaptive equalizer is evaluated by means of

a digital computer simulation, with the modeling assumptions

presented and discussed. A complete description of the

computer simulation program including a listing is found in

App. C. The concluding chapter, Chapter 4, includes some

practical considerations for implementation of the equalizer

design developed in the preceding chapters and itemizes some

additional areas for further investigation.
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1.3 SURVEY OF RELATED LITERATURE

Equalization has been used on analog communication

channels for many years to improve the channel amplitude

vs. frequency characteristics. Such equalizers were

generally of the fixed type, and the resulting channel phase

vs. frequency characteristics were usually unimportant since

the human ear is not very sensitive to the resulting delay

distortion. However, with the advent in the 1950's of

extensive digital traffic over the increasingly complex

existing networks, it became more and more important to

reduce ISI by making the phase vs. frequency characteristic

as linear as possible in the channel passband. These

attempts at increasing the data rates by decreasing ISI

stimulated considerable interest in the use of transversal

equalizers employing tapped delay lines and analog multipliers,

e.g., attenuators, for the tap-gain multipliers. The first

noteworthy attempt to make such equalizers self-adjusting

was by Lucky [4] in 1965. By defining the peak distortion

error criterion as a measure of ISI he obtained conditions

for the optimal tap-gain settings using a series of isolated

initializing pulses prior to message transmission in con-

junction with a steepest-descent gradient technique.

By computing the approximate gradient with only the polarity

of the variables involved he was able to realize the

equalizer using only digital logic. Lucky subsequently



combined the initialization procedure with a decision-

directed on-line adaptive scheme for slowly-varying channels,

and was again able to realize the equalizer with digital

circuits [3]. Although these equalizers performed.well when

initialized, the initialization procedure generally required

a large number of initializing pulses and did not converge at

all when the peak distortion was greater than unity. Such

equalizers were simple to implement and were inherently

stable. They were named zero-forcing, since the unit-pulse

response of the equalized channel was made zero at a 
number

of points adjacent to the main pulse, with the number 
of

such zeros dependent on the equalizer length.

In 1966 Widrow [5] introduced a transversal equalizer

based on optimization with the mean-squared error criterion

[6], and made it adaptive by using a decision-directed

scheme and an appropriate "noisy" gradient estimate to

update the tap-gains. Although this equalizer required

linear multipliers rather than the less complex logic for

computing the gradient, the speed of convergence was much

faster. Initialization still required a large number of

isolated initializing pulses. The application of this

equalizer was first considered by Lucky and Rudin [7], and

a detailed mathematical analysis of its convergence

properties was done by Gersho [8]. An interesting all-

digital serial realization of this type of equalizer was
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developed by Lender 19]. Hirsch and Wolf [10] described an

actual equalizer developed for Bell Labs using integrated

circuits and field-effect transistors for the tap-gain

multipliers. General treatments of these linear self-

adjusting equalizers have been done [11,12], and the effects

of quantization noise in digital implementations has also

been studied [13].

In addition to the linear transversal equalizers, a

number of other approaches have been made to the design

and improvement of digital equalizers. One method [14] used

the recursive frequency-sampling structure with a special

initializing sequence that allowed each two-pole filter to

be' adjusted independently. Use of the Viterbi algorithm 115]

for on-line channel identification for equalization was

discussed by Magee and Prokias [16], and the somewhat

related technique of dynamic programming has been suggested

[17] to improve the initialization speed of an equalizer using

a first-order gradient algorithm. By using the technique

of quasilinearization the Kalman filter theory has been

applied to estimate both the channel and the channel input

[18]. Another approach to digital equalization uses the.

feedback of previous decisions through a transversal filter

to compensate for the postcursors of the current pulse.

This method is called decision-feedback [19,20], and is

particularly good where the channel distortion is large with



13

relatively few precursors. However, decision errors tend

to propagate and cause error bursts.

Throughout the development of digital equalizers

there have been continuing attempts to reduce the time

required for initialization. For short messages the initiali-

zation times were often excessive, e.g., an equalizer using

the mean-squared error criteria was reported [10] to require

several thousand isolated initializing pulses, and a

considerably larger number of pulses was required when the

equalization was done using the more slowly convergent zero-

forcing equalizer. A number of methods were proposed to

speed up this convergence, including the use of second-order

gradient algorithms [21], use of different error criteria

[22], and the periodic adjustment of the convergence factor

in first-order algorithms [23,24]. This latter approach

included the so-called "gearshift" method which used large

initial adjustments to approach the optimal tap-gain value,

and then changed to small adjustment increments for final

accuracy. In 1971 Chang [25] proposed a new equalizer

structure based on a set of parallel transversal filters.

He showed that when the channel amplitude vs. frequency

characteristic was accurately known, initialization was

possible in one iteration of the tap-gain adjustment

algorithm, and also that fast initialization was possible

for a common class of partial response systems when the



14
channel was estimated. A similar structure has also been

used to study the case when thore are a -mall I umbr: of

possible channels, each with a priori known statistics, to

be equalized with a single equalizer [26]. There is

currently a continuing interest in equalizer design, and

the steady improvements in speed and availability of solid-

state digital devices indicates that more sophisticated

designs will soon be practical.

1.4 COMMENTS ON NOTATION

The theory of digital filters and equalizers has

developed from a number of mathematical and engineering

disciplines, e.g., networks, communications, control

systems, optimization, and mathematical programming.

Consequently, the notation and terminology found in the

literature vary considerably. The most significant attempt

at terminology standardization to date is found in

Terminology in Digital Signal Processing [2] compiled by

the committee on Digital Signal Processing of the IEEE

Group on Audio and Electroacoustics.

A list of symbols used herein is found on page

iv; .however, some additional comments will also prove

useful. All vectors are taken to be column vectors, and

vector and matrix variables are indicated by an underline.

To avoid confusion brackets are used to index the algorithm

iterations. Several types of sequence notation are also
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used. The sequences in Chapter 2 generally relate to the

first iteration of the tap-gain adjustment algorithm and

are indexed by subscripts, e.g. {Xk}, while those in

Chapter 3 relate one-to-one with the algorithm iterations

so the index is placed in brackets, e.g. {x[k]}. Sequences

are also represented by the corresponding z-transform,

e.g. X(z), in the manner discussed in A.4. When integrating

in the z-domain the unit circle is always taken as the con-

tour of integration. When evaluating these contour integrals

it is often useful to make the substitution z = e j , where

w is the normalized frequency in radians per sample, i.e.,

O 5 w < 2r. The resulting function will be denoted in the

conventional manner, e.g., X(jw) vice X(e ). Other notation

that is specific to a particular section is defined therein

and is not discussed here. This especially true of the

appendices.



CHAPTER 2

A THEORY FOR ONE-STEP EQUALIZATION

IN THE ABSENCE OF NOISE

After defining the channel model and the equalizer

structure, an algorithm for equalizer adjustment is

selected. The characteristics that control convergence of

the transversal equalizer are studied, and from them a

transformation is developed which insures convergence on

the first iteration of the algorithm provided that the

channel is noise free.

Before proceeding, however, it is necessary to

briefly examine the overall digital communication system

shown in Fig. 2.1. The transmitter produces a sequence of

digital symbols {d }, taken here to be binary. This

sequence is sent through a digital channel which distorts

the input to produce the channel output sequence {xm}.

The digital channel is described by its discrete unit-pulse

response {gm}, but will usually include an analog channel

such as a cable or radio link. It is then necessary to

use a modulator at the analog channel input to map the

digital sequence into a train of short analog waveforms,

and a demodulator at the channel output to perform the

16
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inverse operation. In order to compensate for the effect

of the channel an equalizer is employed at the channel

output, and finally a decision device is used to obtain

an estimate of the transmitted sequence based on

observation of the equalizer output sequence {yf}. Note

that each block of Fig. 2.1 involves only digital inputs

and outputs, hence these signals can be represented in the

time domain by sequences,e.g., {x4), and in the transform

domain by the respective z-transform

cm
X(z)= xm z - m

m=0

It will be assumed that'all necessary timing and

synchronization information is available, and that the

channel time delay Td is known. These problems are

extensively covered in the literature [27 ,2 8 ]. The time

delay will be absorbed in the notation; for example, the

received signal xk will correspond to the transmitted

signal dk although it actually occurs Tds later.

2.1 CHANNEL MODEL AND THE GENERALIZED EQUALIZER STRUCTURE

The type of channel to be considered is a linear

digital channel at baseband having a finite-length

response {g0, gl,...gG-11 to the unit pulse,where G is

the sequence length. The channel will in general be time
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varying due to switching and other background noise. For

this chapter it will be assumed that the channel is free of

stochastic noise, and that no switching occurs during the

initialization period. Furthermore, other channel variations

will be assumed slow in relation to the response time for a

single pulse. These assumptions allow channel time

variations to be neglected during the one-step initialization

period. The effect of stochastic noise will be considered

in Chapter 3. In addition to the unit-pulse response, the

channel can be described by a transfer function

G-1

G(z) gz, (2.1)

m=O

where G(z) is the z-transform of {}m .

A fixed equalizer can in theory be located at any

point of a linear channel. However, a self-adjusting

equalizer is usually located at the channel output since

it must obtain sufficient information about the channel

to initialize itself and then maintain a suitable setting

as the channel and noise characteristics change. When this

channel identification is performed using a known test

sequence or by a decision-directed scheme, the result is

obtained at the channel output, and so any other equalizer

placement necessitates a highly reliable feedback channel.
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Many linear automatic equalizer designs can be put

in the parallel form shown in Fig. 2.2, which is referred

to as the generalized equalizer structure 17]., The blocks

{FM(z)} will be called the filter-sections since each

transfer function F (z) represents a digital filter. When

the channel output X(z) is applied to the filter-sections,

the equalizer output Y(z) is obtained by multiplying each

filter-section output V (z)}by the corresponding real-valued

tap-gain cm and then summing over the M weighted outputs

{cmVm(z)}. The equalizer transfer function H(z) Y(z)/X(z)

is determined as follows:

M-1

H(z) = - C Vm(z) = CT F(z),

m=0

where aAe (oll,...cM_-1)T and F(z) (F (z),Fl(z) ,

... FM_ 1 (z)) T. For self-adjusting operation the tap-gains

are made adjustable. A device called an adapter seeks to

minimize the ISI by iteratively computing a set of varying

tap-gain increments {tc m[k]} using a predetermined algorithm.

The tap-gains are then adjusted at iteration k according to

cm[k+l] = Cm[k] + Ac'm[k], m=0,1,...M-l.

2.2 THE ALGORITHM AND ERROR CRITERION

The usefulness of the first-order gradient algorithm

for self-adjusting equalizers is well established in the
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EQUALIZER INPUT X(z)

F 0(z) F1(z) FM-1(z)

V0 (Z) V1(z) VM-1(z)

Co C1  x CMI- X

Y(z) EQUALIZER OUTPUT

TRANSMITTED SEQUENCE
D(z)--

- Ac0

0 (z) ADAPTER 1
V1(z) A M-1
VM_ (z)

Fig. 2.2. The Generalized Equalizer Structure
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literature 15,7,8] . It has the vector form

c[k+l] = c[k] - 1/2 y VJ(c[k]), (2.2)

where c[k] is the M-vector of tap-gains at iteration k and

the corresponding tap-gain increment vector is given by

Ac[k] = clk+l] - c[k]. The real scalar y is called the

convergence factor. It scales the tap-gain increments and

thereby determines whether the sequence of tap-gain vectors

{c[k]} converges to some final value, and if so, the rate

of this convergence. The differentiable, real-valued function

J(c[k]), called the error criterion, is a quantitative

measure of the equalizer performance in reducing ISI. Such

a function is also called an index of performance, cost

function, and objective function. The ISI remains constant

when the gradient VJ(c[k])=O, and from (2.2), no change

is made in the tap-gains, i.e., the algorithm converges.

Since the purpose of the algorithm is to determine a tap-

gain vector c which minimizes the ISI, it is necessary to

define J(c) so that the algorithm converges to C. One way

of doing this is to select J(c) to be convex. It then

follows that any value c satisfying VJ(c) = 0 also

minimizes J(c) [291.

Subject to these considerations, a convenient choice

for the error criterion, analogous to the continuous integral-

squared error [30], is the quadratic mean-squared error
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(MSE) criterion given by

Co

J(c) = E m 2 (2.3)
m-ao

where m Ym - dm is the error corresponding to the

transmitted symbol dm . Using the complex convolution

theorem (A.10), integrating around the unit circle of the

z-plane, and noting that e(z) = Y(z) - D(z), it follows that

J(c)=1 -(zl (Z) z- d

T T
= c A c - 2 c b + d, (2.4)

where

A= . V(z)V (z- )z dz = X(z)F(z)F(z-l)X(z-l)z-ldz

a 1 1-1b = [F(z) X(z) D(z-') + F(z )X(z) (2.5)

and

a 1-1-1d D(z) D(z )z dz.

By letting z = ejW it is easy to show that both the M-vector

b and the scaler d are real. The $g* matrix A in (2.5) is

shown to be hermitian and positive semidefinite in B.1. To

insure that A is also real, hence real symmetric, it is

assumed that the filter-sections are FIR filters so that the

output of Fr(z) corresponding to input X(z) has the form
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K-1

Vm(Z) = v mk-k (2.6)

k=0

This assumption will be shown valid in (2.26) for the

particular equalizer considered. Now from (1.5) it follows

that any arbitrary element a of A is real since
mn -

K-1

amn =Z Vm(z) Vn (z-l)z-dz = mk Vnk. (2.7)

k=0

Since A is positive semidefinite, J(c) is a convex function.

Thus the gradient algorithm is applicable and the gradient

is given by

VJ(c) = 2 A c - 2 b. (2.8)

The unique minimum value of ISI thus occurs for any tap-

gain vector c satisfying VJ(c) = 0, or equivalently when

Ac=b . (2.9)

2.3 THE TRANSVERSAL EQUALIZER

Since A is positive semidefinite it may be singular,

in which Case there will not be a unique solution c for

(2.9). However, it is possible to select the filter-sections

so that A is strictly positive definite, as will be shown.

In particular, if Fm(z) = z-m for m=0,1,...M-l, and all

filter-sections share the same shift register, then a
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transversal equalizer results. To distinguish this case

the quantities F(z), V(z), A, and b in (2.5) will be

identified by a tilde, e.g., A. It is shown in B.2 that

A is positive definite, implying that it is nonsingular.

~ 1
Thus A exists and the optimal tap-gain vector is found to

be c = A b. The tap-gain error vector e is now defined

by

A

e= Ac - c = c-A b, (2.10)

and is given at iteration k by e[k] = c[k] - c. By adding

T -l1
and subtracting the term b A b, (2.4) can be reformulated

as

T _-1 T
J(clk]) = d - b A b + e [k] A elk]. (2.11)

The term e Tk] A elk] is a positive definite quadratic form,

which is zero only when e[k] = 0. In this case (2.10)

implies that c[k] = c, so the irreducable error Jmin equals

_T -1
= d - b A b. (2.12)min

The correctable error after k iterations is

T
J [k] = e [k] A e[k]. (2.13)cor

Substituting (2.8) into (2.2) and using (2.10) gives the

algorithm as

c[k+l] = c[k] - y A e[k].

Repeated substitution into (2.10) with decreasing index k

results in the "telescoping" form
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e[k] = 0 (I - y el01

i=0
(2.14)

= (I - y )k e[0].

Further simplification results from the observation that,

since A is real symmetric, all eigenvalues are real and

there exists a unitary transformation Q such that

QT A = A, where the diagonal elements of

A = diag(Xb, X,... AMl) are the eigenvalues of A and the

columns of Q are the corresponding normalized eigenvectors

{m} of A. Upon making the substitution A = Q A T (2.14)

becomes

e[k] = 0 (I - y A)k 0T e[o],

which when substituted into (2.13) gives

M-1

Jcor[k] = (e [O]qm2 Xm(l-YXm)2 . (2.15)
m=0

It has been observed by Chang [25] that the

eigenvalue spread of A, i.e., the difference between the

largest and smallest eigenvalues, is a crucial factor in

the rate of convergence. If all eigenvalues are equal

then J or can be reduced to zero on the first iteration
~ -1

by setting y = . Unfortunately, since A depends on

the input sequence to the equalizer, there is no general

way to control the eigenvalues without changing the
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equalizer structure. A logical approach is to investigate

a more suitable form for the filter-sections {F m()}, and

this will be done in the next section. It is interesting

to note that by selecting a more general algorithm the

correctable error can be reduced to zero on the first

iteration using the transversal structure. This case is

detailed in B.3.

2.4 THE GENERALIZED TRANSVERSAL EQUALIZER

Perhaps the simplest extention of the transversal

equalizer is that generalized equalizer structure in

which each filter-section is itself a transversal filter.

Such an equalizer will be called a generalized transversal

equalizer, and a typical filter-section is shown in Fig.

2.3. This equalizer can be implemented so that all filter-

sections share a common shift register. For convenience it

will be assumed that all filter-sections are of equal

length N, which will be strictly less than M. The resulting

filter-sections are described by

N-1

F m( ) = fmnz -n , m = 0, 1,..M-1. (2.16)

n=0

They can be considered as devices which form linear

combinations of those N values of the channel output

sequence contained in the equalizer shift register, or

equivalently, as the following linear time-invariant

transformation on this sequence,
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EQUALIZER INPUT X(z)

FILTER-SECTION fm0

F (z)

x
fml -

V (z)
Sfm2 -1

m,N-2

x
m,N-1 -1

X

L

Cm X

Fig. 2.3. Generalized Transversal Equalizer
Filter-Section F m(z)
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fOn 00 01 " 0,N-1 1

N-1 fin f 0 f11 z-1

F(z)= . z =

n=0

-N+1

M-l,0 fM-l,0 "fM-1,N-1

(2.17)

The MxN matrix in (2.17) is now augmented by adding M-N

zeros to each row, and the resulting MxM matrix is

denoted FT . Notice that column m of F corresponds to the

coefficients of Fm(z). This corresponds to physically

extending the shift-register length from N to M and

assigning tap-gains of zero to the new tap-gain multipliers,

and is done strictly for mathematical convenience. Upon

recalling that for the transversal case

-1 -2 -M+l T
F(z) = (1, z , z ,...z ) , the relation

T
F(z) = FT F(z) (2.18)

T
is seen to hold. Noting that V(z) = F F(z) X(z)

T r T "= F V(z) it follows from (2.5) that A = F A F and

b = F b. Substituting these expressions into (2.4)

gives the new MSE expression

T T A F T T b + d. (2.19)J(c) = C F A F d - 2 c F b + d. (2.19)
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Taking the gradient of (2.19) gives

VJ(c) = 2 F Fc - 2 b = 2 (A c - b) , (2.20)

A A

Thus any vector c satisfying A c = b minimizes the ISI

and is consequently an optimal tap-gain vector. It is

crucial to note here that such a vector exists even though

A is singular because, as proved in B.4, b is always in

the range space of A. The optimal tap-gain vector in

-I -I
this case is given by c = A b, where A is the

pseudoinverse of A as defined in A.3.

By adding and subtracting the term bT A - I b in

(2.20) and using the facts from A.3 that A A b = b and

AA-I A = A, the error criterion can be reformulated in

terms of the tap-gain error vector

^ - I
e = c - c = c - A b. (2.21)

This gives

J(c) = d - b A b + eT A e. (2.22)

The term d - bT A~' b is independent of e hetap-gain vector

c and represents the minimum error J(c) = Jmin' while the

quadratic term again represents the correctable error

Jcor. The symmetry of A follows from that of A upon

noting that, for arbitrary m and n, aik = aki implies
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M-1 M-1

amn= f im aik fkn
i=0 k=0

M-1 M-1

E E fkn aki fim = anm
i=0 k=0

Therefore, the matrix Q having the normalized eigenvectors

{q } of A as columns forms a unitary transformation that

diagonalizes A according to QT A Q = A = diag(A ,Al,..._l)

with {A } being the set of eigenvalues of A. By sub-

stituting the gradient (2.20) into the algorithm and

recognizing e[k] at iteration k from (2.21) it follows

that

c[k+l] = c[k] - yA e[k]. (2.23)

Subtracting c from both sides of (2.23) gives

etk+l] = e[k] - y A e[k] ,

which reduces to the following expression in terms of e[O],

e[k+l] = Q(I - y A)k Q Te[O].

Finally, Jcor k] expressed in terms of this result is
cor

J COr[k] = (QT e[0o])T(I - y A)k A(I -y A)k (Q e[l0])

M-1

= (eT 0] Sm 2 Am (l-y Am) 2k (2.24)

m=0
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Since F, and hence A, is singular then one or more of

the eigenvalues Am will be zero and the corresponding

terms of (2.24) are then zero, too. This observation

will prove useful in the next section.

If an input sequence {dm} of length D is trans-

mitted over the digital channel of (2.1) then the channel

output is given in the transform doaTin by

G-1 D-1

X(z) = G(z) D(z) = d d z- (m+n)

n.=0 m=0

Rearranging the summations and letting k = m+n results in

D+G-2 k
X(z) = gn dk-n z-k (2.25)

k=0 n=0

L-1
A 1: -k
= xk z ,
k=0

where L = D + G - 1 is the length of the channel output

sequence. The channel output sequence {Xm) is given by

the discrete convolution of the channel input {dm } and

channel unit-pulse response {gm}, as seen from (2.25).

An analogous derivation for each filter-section of length

N gives the filter-section output

L+N-2 k K-l

Vm(Z) = fmn Xk-n -k mkz  ,(2.26)

k=0 =0 k=0
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where the sequence {vmk} has length K = L + N - 1.

At this point it is necessary to make some

assumptions which will lead to the selection of the

filter-section length N and the number of such sections M.

First, a finite upper limit L of the channel output

sequence length L is assumed known. Since a FIR channel

was assumed in Section 2.1 and the transmitted initializing

sequence {dm) is known, L certainly exists. Second, it

is assumed that M is at least as large as the length of

the filter-section output sequences K, i.e.,

M 2 N + L - 1 . (2.27)

For channels with L very large it may be necessary to

truncate the channel unit-pulse response in order to

obtain a reasonable value for M. This has only a slight

effect on performance when the truncated terms are small.

This last condition (2.27) insures that the output sequence

length can always be extended from K to M by appending M-K

zeros to the transmitted sequence {dm}. The selection of

numerical values for M and N will be considered in the

next section.

The convolution relation (2.26) can now be written

in the following matrix form
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x 1

Vm x 0  0. .L-

Vml Xo " mO

0 x xL-1  0

S0 x f0 "xl im,N-l

Vm, Mi

or more concisely as

v = X f , m = 0, 1,...M-l. (2.28)
-in -- in

The MxN matrix X has rank N since the NxN principle minor

is lower triangular with nonzero diagonal elements. The

filter-section output vector vm is an M-vector, and the

filter-section tap-gain vector fm has length N. With

this vector notation an arbitrary element a of A can
mn -

be written using (2.7) as

amn = Vn > (2.29)

which is the correlation of the output sequences from

filter-sections m and n, i.e., A is a correlation matrix.

It can now be seen from (2.24) that J is reduced to

zero on the first iteration when all nonzero eigenvalues

of A are equal, since the convergence factor need only

-1
be set at y = m1 for X # 0. Conditions for whichm mm

S= 0 or Xm = v1are established in the next section.
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2.5 CONDITIONS FOR ONE-STEP INITIALIZATION

Since the elements of A depend on the filter-

section output vectors {yl}, their relation to the

eigenvalues of A is most important. An ideal solution

would be to determine a set {f } of ideal filter-section
-in

tap-gain vectors that would make the corresponding set

{v m orthonormal for a given channel output. It then
-m

follows from (2.29) that A is the identity matrix with all

eigenvalues equal to unity. Unfortunately, (2.28) represents

M scalar equations in N unknowns with N < M which cannot in

general be solved exactly for f . A "best" approximate

solution does exist, however, and is given by

f = X , (2.30)

where X is the pseudoinverse of X as defined in A.3, and

f is the actual filter-section tap-gain vector. The
-m

actual filter-section output vector vm and the ideal-mn

vector Vm Which it approximates can be related by

-I ^

_ = X f = XX - . (2.31)
- - -m

A -IT X X-I -I
m A (= X X , and substitution of this

result along with (2.31) into (2.29) gives

-I^ ^ -I
a = x > , X X , x x > (. 2.32)
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Using the orthonormal sets {10,' I''''-M-1 and

I{, L1,...N-1} and the generalized spectral repre-

sentations for X and X-I as defined in A.3, it is easy to

show that

N-1

x = m (2.33)

m=0

Furthermore, the orthonormal set {m)} is linearly

independent and thus constitutes a basis for the real
A

vector space of dimension M to which Ym and vm belong.

Consequently, v can be represented in this basis by

M-1

= h. (2.34)
n=O

where hmn =<Vm' n is the coordinate in the direction

of n. Now let H, V and Y be the matrices with columns
A

coinciding with the ordered sets {hmn}, {v}, and {_m},

respectively. Then making H an orthogonal matrix also

makes V orthogonal, as is easily shown by observing that

Y is unitary or equivalently, that

M-1 M-1

<m nn = h mk hni<k'
k=O i=O

M-1

Shmk hnk = h m , _n>
k=O
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for all m and n. Substituting (2.33) and (2.34) into (2.32)

gives an expression for any element a of A in terms of

the set {,},

N-1

amn = hmk hnk (2.35)

k=0

To make the set {h I orthonormal the matrix H must be

orthogonal. Before discussing the selection of such a

matrix, however, the eigenvalues of A will be determined.

By defining the MxM matrix V as having columns

A -I
coinciding with C{m) and letting P X X , (2.31) and

(2.34) can be combined into the matrix equation

A

V=PV=P H

Furthermore, observing from (2.29) that A can be written

as A = VT V, it follows that

A = HT  T pT P H . (2.36)

It is shown in B.5 that P represents a projection operator

so that p p = P2 = P , and in B.6 that YT p T equals the

block diagonal matrix diag(IN I 0MN ) . Since H is orthogonal,

(2.36) implies that A is similar to diag(I 0 and thus

has the same eigenvalues, namely, N equal to unity and M-N

equal to zero. The desired conditions for one-step
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initialization have now been found, as can be seen from

setting y = 1 in (2.24) and observing that each term of

the summation is then zero.

There are an infinite number of orthogonal matrices

which could be used for H, however the class of Hadamard

matrices, discussed in A.2, is particularly well suited

for generating H. Such matrices are binary in the sense

that all elements are either +1 or -1, have orthogonal

columns, and are known to exist for all orders which are

multiples of four over the range of feasible values of M.

Consequently, normalizing an MxM Hadamard matrix by 1/IF

produces an orthogonal matrix with all elements equal in

magnitude. This is particularly convenient for digital

computation since the normalization can often be done

near the end of the computation rather than on each element

of A initially.

The filter-section tap-gains can be computed

without actually computing the pseudoinverse X , since

substituting (2.33) and (2.34) into (2.30) gives

N-1 M=I

m k-1 k k :hmn n)
Sk=O n=O

(2.375

N-1

- : 'k hmk ik ' m = 0, 1,...M-1.
k=0
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This expression involves only the first N rows of H and

the eigenvalues {fm 2 }and eigenvectors {Em of the NxN real

symmetric matrix X X as discussed in A.3. A number of

numerical methods exist for finding eigenvalues and

eigenvectors which are particularly simple for real

symmetric matrices. Some of these methods are discussed in

C.3.

2.6 SIMULATION RESULTS FOR NOISE-FREE CHANNELS

The equalizer initialization theory developed in this

chapter was tested by using a digital computer simulation.

A detailed description of the simulation, including a

complete listing, is found in App. C. Since this simulation

was written for a maximum of 32 filter-sections, i.e.,

M K 32, there is a practical limit to the length of the

channel unit-pulse response as indicated by (2.27). Under

this restriction, three digital channel models were selected

for their representative characteristics. In the absence

of an actual data channel, two models were taken from the

literature and one was determined in the laboratory.

The first channel was a low-pass filter (LPF) having

a normalized cutoff frequency of 1.0 Hz and a 40 dB/decade

roll-off. It is described mathematically by the Fourier

transform pair
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Gl(f) = (1+jf)-2 4-# g1 t) = 4 2 te- 2 Tt , t 1 0. (2.38)

By sampling at 0.1 s intervals and truncating all sample

values which are less than 0.02, the unit-pulse response

{2.11, 2.25, 1.80, 1.28, 0.85, 0.55, 0.34, 0.21, 0.12,

0.07, 0.04, 0.021 of length 12 is obtained. Although

this channel is rather artificial for actual data communi-

cations, it is useful to demonstrate equalizer performance

with nonnegative samples which are relatively large with

respect to unity. It also serves for comparison with an

ideal bandlimited channel and the previous work of Burlage

and Houts [31]. An experimentally convenient and widely

used measure of ISI is the binary eye opening and the

related peak-distortion criterion [32]. Assuming that

the second sample corresponds to the desired unity output,

then the normalized peak distortion is 3.284, and thus

considerably more than the value of 0.5 required for

eye-closure.

For the second channel model an electronic bandpass

filter (BPF) [33] was used which had a maximally-flat

passband with break frequencies of 200 Hz and 3.0 kHz

and 60 dB/decade roll-off. The unit-pulse response of

this channel was determined in the laboratory by exciting

the filter with white noise and crosscorrelating the filter

output with delayed versions of the white noise. Assuming

a sampling interval of 50 ps, the unit-pulse of length 11
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was {0.50, 1.15, 0.50, -0.25, -0.50, -0.35, -0.20, -0.10,

-0.15, -0.10, -0.05}. This channel passband approximates

the amplitude characteristic of a voice-grade telephone

line, with zero phase at midband and tending to ± 2700

in the stopbands. Since the normalized peak distortion is

2.348, the binary eye is again well closed.

The third channel model was taken from a paper by

Wescott [34], and represents the unit-pulse response of a

vestigial-sideband (VSB) amplitude-modulated data link

composed of two carrier systems and 100 miles of loaded

cable. When sampled at 0.4167 ms, corresponding to a

transmission rate of 2400 baud, the unit-pulse response of

length 9 was reported to be {-0.05, 0.05, -0.20, -0.05,

0.90, 0.12, 0.15, 0.05, 0.031. The peak distortion value of

0.778 indicates a closed eye once again. Unlike the previous

channels, this one has a relatively large number of pre-

cursors as well as a phase characteristic that is quite

nonlinear.

For an approximation to a noise-free channel the

SNR was programmed for 100 dB as computed on a per-bit basis,

i.e., Eb/NO = 1/02. A single unit pulse was transmitted

and the MSE for this pulse was computed in accordance with

the error criterion (2.3). Simulation runs were made to

study the effects of the following parameters on equalizer
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performance: the delay (D) between the arrival at the equa-

lizer of the first precursor of the channel unit-pulse response

and the occurrence of the locally generated reference pulse,

the number of shift-register stages (N) in each filter-section,

and the number of filter-sections (M) each of which has an

associated tap-gain multiplier cm. It will also prove con-

venient to introduce the notation (M,N,D) to describe the

equalizer defined by these three paramet&rs. For the study

of D two different sets-of values were used for the para-

meters M and N. In order to obtain as wide a range of D as

possible the relatively large values of 32 and 20 were

initially used for M and N, respectively. The second set
A

of values was selected so that N = L,,the length of the

unit-pulse response of the particular channel considered,

and M was then set to the smallest multiple of four con-

sistent with the constraint (2.27) i.e., M 2 N + L - 1.

Thus a comparison is obtained between relatively large and

small equalizer structures. For the study of N, M was again

set to 32 and D assigned a nominal value suitable for the

channel considered. Selection of this value will be dis-

cussed shortly. In studying M, N was assigned the largest

value consistent with (2.27) and D was again set to some

nominal value. Finally, the equalized unit-pulse response

of all three channels was determined using (32,20,D) and.-

(j4,L,D) equalizers with M the smallest feasible value and with

D set to the corresponding optimal value.
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Selection of the nominal value of D involves several

considerations. The basic convolution relation describing

the channel is obtained from (2.26), which for the noise-

free case and filter-section m reduces to

k k

mk = fmn gk-n = fm,k-n gn (2.39)

n=O n=0O

where fmk is defined to be zero if k 2 N, and {gm } is the

channel unit-pulse response. If there are i precursors

{g0' 911...gi-1 } then (2.39) implies that the main pulse

gi corresponding to a binary one cannot affect the

equalizer output before i shifts of the N-stage register.

It is intuitive to expect the best equalization to occur

when both precursors and postcursors are able to influence

the equalizer output sample corresponding to the transmitted

unit pulse. However, since the MSE (2.3) depends on the

filter-section outputs at each of the N+L-1 sample times

required for the channel output sequence to pass completely

through the equalizer, this may not always be true. In

general the optimal delay can be expected to be somewhat

larger than i, provided the shift-register length is on

the order of 2i or greater. For shorter lengths the

optimal delay may be less than i in order to retain a

sufficient number of precursors in the shift register for

the best equalizer output. Since the equalizer tap-gain
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settings depend on D and the output depends simultaneously

on all tap-gain multiplier outputs, the filter-sections

cannot be treated independently in determining the optimal

D. Consequently, the optimal D must be determined by trial

and error, which is not feasible to incorporate in the

initializing algorithm considered here; therefore, a nominal

delay must be selected for a given type of channel.

Additional insights into the selection of the

nominal delay can be gained by considering the frequency

domain. Since each filter-section is a transversal digital

filter with, in general, no symmetry in the set of multipliers

{f mn}, the phase vs. frequency characteristic is nonlinear

and the corresponding delay cannot be expected to be

constant. Rather, different frequencies will be delayed

by different amounts. This same nonlinear phase charac-

teristic is also typical of analog communication channels

where it produces delay distortion. For example, the

voice-grade telephone lines commonly used in data trans-

mission typically employ such phase-distorting devices as

loading coils and bandpass filters. Delay distortion tends

to cause relatively long precursors in addition to an

average time delay of the signal maximum, and also may

cause a skewing of the signal peak which results in either

a small delay or advance of the signal maximum from the

average time delay.



45

The transmitted signal also undergoes amplitude

distortion in the channel. This effect is due to nonuniform

amplitude vs. frequency characteristics in both the channel

passband and stopbands, and it causes dispersion of the

transmitted pulse with the resulting precursors and post-

cursors. Based on these considerations the nominal value

of D for the LPF channel was taken to be approximately

0.25 N since the channel has a nearly linear phase

characteristic over most of the passband. A nominal value

of approximately 0.50 N was chosen for the VSB channel in

view of the loading and modulation, whereas, for the BPF

channel, where the degree of phase nonlinearity is somewhere

between the other channels, simulation runs were made using

each of the previous choices.

Results of the study of parameters D, M and N for the

three aforementioned channels are presented in Figs. 2.4, 2.5

and 2.6. Corresponding numerical data is found in Tables 2.1

and 2.2. The effect on MSE when the delay D is varied while

holding M and N fixed is shown in Part (a) of each figure.

The anticipated variation of delay with the channel phase

is apparent, and it can also be seen that the nominal values

of D are reasonable.

It is interesting to note that for the LPF channel

with M set to 32 any value of delay less than six

essentially minimizes the MSE. Because of the large
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amplitudes of the first two samples of the channel output,

either could be considered to correspond to the transmitted

unit pulse. Hence the channel delay is small and could

easily be.zero, depending on which sample the equalizer

chooses to correspond to the unity output. Due to the

nature of the particular filter-section tap-gains computed

for this channel, the smallest residual MSE values occur

when the channel output sequence begins to enter the shift

register, rather than after most of the postcursors are

included as might intuitively be expected.

The variation in performance with shift-register

length (N) is shown in Part (b) of Figs. 2.4 through 2.6.

Larger values of N produce better performance, as can be

clearly seen. For the BPF channel there is little difference

in the results for nominal delays of approximately 0.25 N

and 0.50 N so long as N is larger than the channel unit-

pulse response length (L) of 11. However, when N becomes

less than L, the value of 0.50 N is clearly superior.

This is as predicted, since the short shift-register lengths

cannot hold complete information on both precursors and

postcursors, and a delay of 0.25 N results in a relatively

large absence of postcursors. The improvement in performance

with an increasing number of filter-sections (M) is also

clearly seen from Part (c) of each figure.
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The unit-pulse response of the respective channel is

shown in Part (d) of each figure both before equalization

and for the smaller equalizer case. Thus the plotted unit-

pulse response represents a relatively small equalizer

structure. Although the resulting distortion is quite

small in all cases, it can be further reduced by increasing

the equalizer size. This can clearly be seen from Table

2.3 which gives the equalized responses for both large

and small size equalizers and the optimal values of D

pertinent to each case. From the table it is also apparent

that the largest deviation of the equalized response from

the desired values is about 0.08 for the BPF channel, while

the corresponding figures for the LPF and VSB channels are

on the order of 0.005 and 0.015 respectively.

The equalizer design developed in this chapter affords

considerable reduction of ISI for the noise-free channels

considered. All three channels were successfully equalized,
A

even when N was less than L,the channel unit-pulse response.

This is an important observation because, as discussed in

C.3, the amount of computation required is proportional to

N3 . The effects of background noise and channel parameter

variations will be analyzed in Chapter 3.
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TABLE 2.1

EFFECT OF DELAY (D) ON MSE FOR NOISE-FREE CHANNELS

LPF CHANNEL BPF CHANNEL VSB CHANNEL

M 32 24 M 32 24 M 32 20

N 20 12 N 20 11 N 20 9

D MSE(xlo ) D MSE(x )0-6) D MSE(l0- 3)  D ME(x0 -3 )

0 0.00 26.67 2 88.26 100.90 4 50.26 49.84

2 0.01 35.31 4 20.06 42.39 6 11.19 11.19

4 0.01 48.54 6 13.85 60.04 8 1.54 1.75

6 12.43 67.38 8 17.27 75.73 10 0.30 0.57

8 26.27 67.52 10 21.28 204.40 12 0.05 49.59

10 35.31 >10 12 31.40 14 0.01

12 48.54 14 55.77 16 0.00

14 67.38 16 71.09 18 0.01

16 67.52 18 72.05 20 0.22

18 >104 20 371.70 22 22.27
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TABLE 2.2

EFFECT OF SHIFT-REGISTER LENGTH (N)
AND NUMBER OF FILTER-SECTIONS (M) ON

MSE FOR NOISE-FREE CHANNELS

CHANNEL CHANNEL

LPF BPF BPF VSB LPF BPF BPF VSB

M 32 32 32 32 N M-11 M-10 M-10 M-8

D 0.25N 0.25N 0.50N 0.50N D 0.25N 0.25N 0.50N 0.50N

MSE MSE
N -M

(x0-6) -4 - -x10- --3 M (x10- 6)  -- -(x10 -3  -

4 >104 322.90 139.50 16 67.07 229.20 108.80 49.85

6 67.23 229.29 108.80 20 50.10 107.3 65.52 11.19

8 67.03 124.50 83.76 49.84 24 35.06 52.71 34.14 1.52

10 67.14 107.30 65.49 48.16 28 24.85 22.37 23.97 0.30

12 66.88 57.50 60.02 11.19 32 13.42 13.68 17.02 0.05

14 50.40 52.71 34.12 9.25

16 48.35 26.77 32.35 1.54

18 39.23 22.37 23.98 1.28

20 35.31 16.83 21.82 0.30

22 13.68 20.31 0.20

24 0.05
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TABLE 2.3

UNIT-PULSE RESPONSE WITH(dn ) AND WITHOUT (xn ) EQUALIZATION

LPF CHANNEL BPF CHANNEL VSB CHANNEL

M 32 24 M 32 24 M 32 20

N 20 12 N 20 11 N 20 9

D 0 0 D 6 4 D 16 10

xn dn(x0l-3) x d (xlO
- 3) x dn(xlO-3)

0.00 0.0 0.0 0.0 0.0

2.11 1000.0 1000.0 -34.6 -0.8

1.80 0.0 0.0 5.5 0.0 10.0

1.28 . . -19.1 -92.6 -0.2

0.85 -5.3 19.9 0.3 0.0

0.55 0.00 -14.5 -50.6 -0.1 -1.6

0.34 0.50 -9.9 -7.0 0.1 2.7

0.21 1.15 986.2 957.7 0.0 -12.6

0.12 0.50 -12.3 -13.2 0.1 10.5

0.07 -0.25 -14.8 -42.6 0.0 -2.6

0.04 -0.50 -14.3 -24.5 0.00 0.0 3.1

0.02 0.0 -0.35 -15.7 -39.7 -0.05 -0.1 -1.8

0.00 -3.6 -0.20 -16.4 -32.2 0.05 -0.1 1.4

3.7 -0.10 -17.1 -20.3 -0.20 -0.1 -0.6

0.6 -0.15 -18.7 -76.7 -0.05 0.1 0.5

0.0 -0.05 -18.0 -12.6 0.90 1000.0 999.4

0.00 -22.3 -65.3 0.12 0.0 -0.8

-21.5 -80.9 0.15 0.0 -0.4

-22.5 -57.7 0.05 0.1 8.9

-21.6 -52.1 0.03 0.0 -0.8

-25.0 -6.6 0.00 0.0 -12.8

-28.7 -23.5 . -0.1 -4.6

-16.2 -7.8 - -0.1 0.0

-44.2 -9.3 -0.9

-48.1 0.0 -0.1

-29.5 . 0.0

-26.3 -0.1

-7.3 0.0

-10.9

-4.2

-3.8

0.0



CHAPTER 3

ON-LINE OPERATION OF THE INITIALIZED

EQUALIZER WITH NOISY CHANNELS

In this chapter the generalized transversal

equalizer design of Chapter 2 is modified so that near-

optimal operation is maintained on noisy channels during

the message transmission which occurs after initialization.

Since it is impractical to compute the exact gradient

VJ(c) of the error criteron (2.3) for noisy channels with

ISI, a computationally simple method for estimating this

quantity is presented. Some convergence properties of the

resulting algorithm are then developed, and an eigenvalue

condition is obtained which insures convergence in a

stochastic sense under a stated set of assumptions. When

these assumptions are violated the possibility of divergence

exists, and a simple test is then proposed to determine

when reinitialization is desirable. Finally, the effect of

noise on both the initialization procedure and the on-line

tracking is studied by means of a computer simulation using

the same channel models as in Chapter 2.

54
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3.1 THE NOISY ON-LINE ERROR CRITERION

Under the noise-free hypothesis of Chapter 2 the

equalizer initialization procedure used a single isolated

initializing pulse and there was only one iteration

of the algorithm (2.2). It was feasible to compute the

gradient of the error criterion exactly, at least to within

the limitations of numerical accuracy, since all nonzero

error samples k resulting from the initializing pulse

were available separately for the summation resulting from

(2.3), i.e.,

1 VJ(c[011 =  E k VEk

k=-0

However, when the equalizer is operated in a decision-

directed mode with a noisy channel, then the situation is

less straightforward. First, because of the channel noise

the equalizer output sample is a discrete random variable.

Consequently, the equalizer output and the error criterion

are random as well, and some type of statistical averaging

is indicated. Second, as the message pulses are no longer

isolated at the channel output, but rather overlap to

produce ISI, it is necessary to notationally distinguish

between error samples corresponding to different transmitted

pulses. Since the on-line equalizer will be adjusted once

for each transmitted pulse, it will be convenient to
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denote the error sample at iteration k by E[k]. Notice

that in general c[k] depends on the precursors and post-

cursors of neighboring pulses as well as the kth pulse.

By taking the expected value of c2[k] the error criterion

J(c[k]) for the noisy on-line case, corresponding to (2.3),

is given by

Y(c[k]) = E{E2[k]}, (3.1)

where E is the mathematical expectation operator.

The on-line algorithm for adjusting the equalizer

tap-gains now becomes

c[k+l] = c[k] - y VY(c[k]), (3.2)

where y is again the scalar convergence factor, and the

gradient expression is

1 Jck] VE{ 2
- VJ(c[k]) = VE E [k]}. (3.3)
2 2

To simplify (3.3) the filter-section output vector v[k] is

defined to be v[k] = (v0 [k], Vl[k],...vM-l[k]) where the

component v m[k] is the output value of the mth filter-

section at iteration k. Notice that v[k] is distinctly

different from v defined in (2.28). If the decision--in

directed estimate d[k] of the kth transmitted message pulse

is denoted by d[k], then the error e[k] is given by
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[k] = y[k] - d[k] = <c[k], v[k]>- d[k],

and upon substitution into (3.3) there results

-VE{E2 [k]} = E{e[k]v[k] }

TA
= E{v[k] vT[k] c[k]} - E{d[k]v[k]}. (3.4)

Although both variables el[k] and v[k] are explicitly

available in the equalizer and their product is easily

calculated, taking the expectation of the result on-line

is not practical. To circumvent this difficulty the

gradient (3.4) will be estimated using the so-called

"noisy" estimate method suggested by Widrow [5]. The

resulting expression is

1 V (c[k]) e= [k] v[k], (3.5)

which is an unbiased estimate since

E{e[k] v[k]} = 1VJ(c[k]).
2

The algorithm (3.2) is now approximated by the easily

implementable form

ctk+l] = c[k] - y e[k] v[k]. (3.6)

Equation (3.6) involves no explicit a priori

statistical information, but it is based on the decision-

directed hypothesis that the binary sequence of equalizer
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output decisions closely approximates the transmitted

message sequence. It should also be noted that the

initialization procedure requires a priori information in

the form of the locally-generated initializing pulse replica.

When a priori statistical information is available during

on-line operation more accurate algorithms can be obtained,

although the gradient determination generally involves more

computation. Several such cases are discussed in B.7.

The equalizer structure developed in Chapter 2 can

now be modified for on-line operation using (3.6). Fig. 3.1

shows the complete equalizer block diagram. All variables

shown correspond to the output sample y[k], i.e., the

delay caused by the channel and filter-sections is suppressed

in the notation. The channel noise n[k] is added to the

deterministic channel output s[k] to obtain the equalizer

input xlk]. A filter-section output v m[k] is the weighted

sum of those N input samples located in the shift register

when y[k] occurs, and the weights are the filter-section

tap-gains given by (2.37). The equalizer output is now

given in vector form by

y[k] = c[k], v[k]>

The shift to on-line operation involves only two

switchings as shown in Fig. 3.1. First, the equalizer

output decisions rather than the reference generator
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Fig. 3.1. Equalizer Structure With On-Line Tracking
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output are fed back to produce the error signal in a

decision-directed manner. Second, since the on-line

computations are considerably simpler than those during

initialization, it may be advantageous to use a set of

digital multipliers to compute the on-line gradient

estimate in lieu of the adaptive computer used for

initialization. This is particularly true when the

initialization computation is done by a time-shared general

purpose computer. Of course, if the adaptive computer is

continuously available the second switching operation is

unnecessary.

A final design consideration involves the detection

of erroneous operation. One simple method for doing this

is to compare I [k]j with some predetermined positive

threshold value Emax and to reinitialize the equalizer

whenever emax is exceeded a given number of times in a

specified period.

3.2 CONVERGENCE PROPERTIES OF THE ON-LINE ALGORITHM

Before investigating the convergence properties of

the on-line algorithm (3.6), several preliminary con-

siderations are necessary. Since the noise. s random, this

convergence must be considered in some statistical sense.

It is also mathematically expedient to model the noise as

a stationary random process with zero mean and finite
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variance. Although some forms of background noise are not

stationary, e.g., switching and impulse noise, other forms

such as thermal noise do fit this model reasonably well,

particularly if the time frame is not too long. Furthermore,

if the equalizer setting deviates too .much from the optimal

setting, then the excessive-error test on the resulting

errors e[k] will indicate the need for reinitialization.

Taking the expectation of (3.6) under the stated

hypothesis and assuming clk] is statistically independent

of v[k] gives

c[k+l] = c[k] - y (R c[k] - ) , (3.7)
vv -dv

where R = R (0) E{v[k] v T[k]} is the filter-section
-vv -vv

correlation matrix, r d(n) E{d[k] v[k]} defines a cross-

correlation vector, and c[k] now denotes the expectation of

the tap-gain vector. A channel output M-vector x[k] at

iteration k consists of the current shift-register contents,

which produce y[k], for the first N components, and the most

recent M-N samples to have passed through the register as

the remaining components. By now defining the crosscorrela-

tion matrix R = R (n) = E{x[k]x [k]} and vector r =
--XX -xx -dx

T
E{d[k]xk]}, and noting that v[k]=F x[k], it follows that R

F R F and dv = F rdx. Under the mild assumption that the

signal s[k] and noise n[k] are independent, it is shown in

B.8 that R is positive definite and thus nonsingular. It
-xx

can then be shown by the same procedure as in B.4 that r
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lies in the range space of R , and consequently (3.7) is-vy

convergent for c = R rdv. Although this is not, of

course, the exact optimal solution of the original

deterministic algorithm (2.2), it is the optimal expected

solution of the on-line algorithm (3.6) in which the

"noisy" gradient estimates are used.
A

To study the convergence of (3.7) c is first sub-

tracted from both sides of the equation which is then

written in terms of the tap-gain error vector elk] = c[k] - c

as

elk] = (I - y Rvv k - ell]. (3.8)

Since R is a correlation matrix it is symmetric and-vv

positive semidefinite. Consequently, all eigenvalues {pi }

are both real and nonnegative and there exists an ortho-

normal set of eigenvectors {i }. Letting 0 and 6 denote the

index sets corresponding to the positive and zero eigenvalues

of Rvv , respectively, a unique orthogonal decomposition

e[k] = e [k] + o [k] exists, so that e [k], eo k] = 0.

In this decomposition e[l] is written as

+ eOe[l] = e [I] + e0 [Il] = ei + ai (3.9)

iee igO

where { i } are the appropriate coefficients for the basis

{_i}. Substitution of (3.9) into (3.8) now gives
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el = [k] + l [k] = i (l-ypi ) k-I i +  i

(3.10)

The last term of (3.10) is simply. eol] as can be seen from

(3.9), i.e., e0 ol[k] will converge if the convergence factor

y is chosen to insure that

max{ 1 - y pi } < 1, (3.11)

since in this case

HeI[kl]I< max {1*1 -YPil} IIE ii< i l l  e [l ]II
ii6

Therefore, the condition to insure convergence of (3.7)

is found from (3.11) to be

Y < 2/pmax

where

Pmax > Pi for all i.

3.3 SIMULATION RESULTS FOR NOISY CHANNELS

To study the combined theory for equalizer initiali-

zation and on-line operation, the computer simulation used

in Chapter 2 was expanded to reflect the theoretical results

of this chapter. In particular, provisions were made for

generating a random binary sequence to simulate the trans-

mitted message, for adding gaussian noise with specified

statistics, for adjusting the equalizer tap-gains at each

bit time, and for detecting erroneous operation. The
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computer simulation is described in some detail in C.1 and

C.2.

The equalizer performance was again evaluated over

the three channels discussed in 2.6, i.e., the LPF, BPF,

and VSB channels, but the SNR was varied from the essen-

tially noise-free value of 100 dB down to 15 dB. At 15 dB

the noise standard deviation is 0.1778 and the probability

of the noise alone causing a bit error is 0.0025. When

this effect is superimposed on the distortion due to ISI,

it is apparent that the equalizer alone should not be

expected to perform well when the SNR is in this range.

In practice such low SNR situations are commonly handled

by coding, and are usually incompatible with the high

baud rate to bandwidth ratios that justify sophisticated

equalization.

In addition to the equalizer parameter set (M,N,D)

defined in 2.6, the convergence factor y must be specified

for the on-line algorithm. It was found by trial and error

that a good selection was 0.02, which represents 4% of the

decision threshold value. Larger values of y tend to

increase the bit error rate when there is noise in the

channel, and can lead to divergence if the increase is too

large. On the other hand, smaller values result in slower

equalizer convergence rates. The transmitted message

was simulated by repeatedly generating a 255 bit pseudo-

noise (PN) sequence, and the error criterion was taken to
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be the average MSE c2[k] after 500 iterations of the on-line

algorithm. In determining elk] the transmitted bit d[k] was

used in place of the output device decision d[k] for pro-

gramming convenience. This substitution has no effect when

there are no bit errors, and the effect is considered

negligible for the SNR range considered. Data in which

one or more isolated bit errors occurred is indicated by

an asterisk in the appropriate figures.

The first parameter studied was the delay (D)

between the arrival at the equalizer of the first precursor

of the channel unit-pulse response and the occurrence of

the locally-generated reference pulse for initialization.

Since D depends on such nonlinear effects as the channel

and filter-section phase characteristics, it is impractical

to determine the optimal value analytically. As in 2.6,

simulation runs were made for a relatively large equalizer

structure, (32,20,D), and for one for which the equalizer

shift-register length N equaled the channel unit-pulse

response, i.e., the structure is (M,L,D). The simulation

results are shown in Part (a) of Figs. 3.2, 3.3, and 3.4,

from which the effect of D as well as channel SNR at 20 dB

and 40 dB can be seen. All three channels were equalized

successfully for a SNR of 30 dB or greater using the larger

equalizer structure. However, the smaller structure was

unable to equalize the BPF channel, and the larger structure
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was ineffective on this channel at 20 dB; consequently, a

value of 30 dB vice 20 dB was used. The curves in Figs. 3.2

and 3.4 indicate that there is no significant improvement

in performance for the larger structures provided D is

properly chosen, and in fact for the VSB channel the smaller

structure performs slightly better. However, there is a

much wider range of feasible values of D for the larger

structures. Thus the possibility of poor equalization due

to an inaccurate choice of D with a small structure must

be weighed against the complexity and cost of realizing a

larger structure. Since the accurate selection of a

nominal value of D depends on knowledge of the channel, a

larger structure is particularly suitable when the channel

is relatively unknown, or may be expected to change

significantly after initialization. Based on the con-

sideration of 2.6 and the experimental results, nominal

values for D of 0.50 N, 0.25 N, and 0.80 N were selected

for the LPF, BPF, and VSB channels, respectively.

The next parameter studied was the shift-register

length (N). The result of varying N with M set to 32 and

D to the corresponding nominal value is shown for each

channel in Part (b) of Figs. 3.2, 3.3, and 3.4. For high

SNR values performance tends to either improve or remain

nearly constant with increasing N. However, with the LPF

channel the performance degrades slightly with N > 8.
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This may be attributed in part to the increased number of

arithmetic operations, each of which is reduced in accuracy

by the noise, that is inherent in the larger structures.

It is also evident for the LPF and VSB channels that, for

SNR Z 30 dB, there is a lower value of N above which there

is little change in performance. As previously noted,

this is important since the amount of computation required

for initialization is reduced considerably with N. Again,

however, it should be kept in mind that small values of N

make the selection of D more crucial. It is interesting to

note that for the LPF channel equalization was achieved

when the SNR was 20 dB with a shift-register having only

three taps.

Part (c) of Figs. 3.2, 3.3, and 3.4 shows the effect

of SNR on equalizer performance when both a single

initializing pulse and an average of four such pulses were

used by the equalizer to identify the channel during

initialization. It is clear in each case that the use of

multiple initializing pulses is quite benefitial where the

SNR is low and the noise represents a significant percen-

tage of the unit-pulse amplitude. This is not the case at

SNR above 30 dB, so little advantage results from using

multiple initializing pulses.

The LPF and VSB channels were successfully equalized

with a 20 dB SNR; however, 30 dB was needed before the BPF
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channel was equalized without bit errors. As can be seen

from a comparison of the channel unit-pulse responses shown

in Part (d) of Figs. 3.2, 3.3, and 3.4, the BPF channel

has more overshoot than the other two, and also has a

number of large, negative postcursors. Thus it is expected

to be the more difficult channel to equalize.. The fact

that no value of N was reached above which the equalizer

performance remained fairly constant suggests that better

equalization is attainable for larger equalizer parameters

than the maximum of (32,22,D) permitted by the particular

computer simulation used. There are a number of tradeoffs

in selecting the equalizer parameters which can now be

summarized. First, selecting large values of M and N gives

a.larger range of values from which to select the nominal

value of D, which is particularly important if little is

known about the channel a priori. On the other hand,

smaller values of N greatly reduce the amount and time of

computation required for initialization, while smaller

values of M reduce the number of on-line multiplications

required at each algorithm iteration. These considerations

can also be thought of as a tradeoff between the accuracy

desired from the equalizer and the cost that must be paid

to achieve it.



CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

The design of a linear digital equalizer for reducing

ISI on digital communication channels has been developed

and evaluated. This design includes an initialization

algorithm empldying a digital computer, as described in

Chapter 2, and a simplified on-line algorithm, developed

in Chapter 3, which requires only a set of digital multi-

pliers. The effects of the main equalizer parameters

(M,N,D) and of channel SNR were studied by means of a

digital computer simulation for three baseband channels.

All channels were equalized successfully for a SNR of

30 dB or greater, and two were equalized at 20 dB.

Considering a digital computer as a sophisticated digital

filter, the equalizer simulation is quite realistic except

for the relatively long word length of 36 bits.

There are a number of considerations to be taken

into account when realizing an equalizer of the type

presented here. First, the maximum shift-register length

N is clearly limited by the digital computer used for the

initialization computation. The amount and speed of

digital hardware available for the shift register,

72
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multipliers, and summers limits N, and M as well. Another

important consideration is the determination of a nominal

value for the delay D. Good estimates of D will generally

require some a priori knowledge of the channel character-

istics or some preliminary experimental data. An alter-

native procedure, which might be necessary with a completely

unknown channel, is to iterate the initialization procedure

several times using different values for D. If the nominal

value of D is uncertain, or if considerable variation is

expected in the channel unit-pulse response, then a large

value of N will make the equalizer performance less

sensitive to D. The nominal value of D ranged from 0.25N

to 0.8N depending on the choice of channel model. A third

design consideration is the test for excessive error

indicated in Fig. 3.1. Since single bit errors are highly

probable when the SNR is low or the channel badly equalized,

some type of averaging is desirable to avoid an excessive

number of reinitialization commands. This could be done,

for example, by keeping a running count of the number of

times I Ek] I exceeds a predetermined limit Emax over the
last m iterations and reinitializing only if it is

exceeded n < m times, where m and n are known integers.

Such a scheme would also prevent short bursts of impulse

or switching noise from causing a needless reinitialization.

This scheme could be easily implemented with digital
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hardware, as could more sophisticated schemes which might

be devised for particular installations.

There are a number of interesting areas which could

provide motivation for further investigation. One

particularly germane area is the equalizer performance on

time-varying channels and the effect of the convergence

factor y on this tracking. The computer simulation of

App. C is easily modified for such a study. A second more

theoretical area involves reduction of the amount of

computation required for initialization. More efficient

algorithms for finding eigenvalues and eigenvectors could

perhaps be devised for particular equalizer installations.

The use of a suboptimal procedure to estimate the initial

equalizer settings might also reduce the initialization

time considerably. The third area to be suggested concerns

the effects of short word lengths and the related problems

of truncation and round-off error. There has been some

interesting theoretical work in this area [13], and

experimental simulations could be done using a minicomputer

for which a typical word length is 16 bits. A fourth area

for further investigation is the possibility of further

simplifying the on-line algorithm by using only polarity

information of some of the variables. This type of scheme

has been called "hybrid" by Hirsch and Wolf [10] who studied

.it for transversal equalizers.



75

A final comment concerns the feasibility of physically

realizing an equalizer of the type developed herein. Al-

though the equalizer requires a considerable amount of

computing equipment for initialization, the constant

improvement in integrated circuit technology and the

development of faster, more complex components make the

production of such equipment appear feasible. Furthermore,

the proliferation of time-sharing systems and inexpensive

minicomputers makes large amounts of computing facility

widely available. Thus the equalizer design presented

herein is both theoretically and physically feasible.



APPENDIX A

MATHEMATICAL FUNDAMENTALS

This appendix will provide both review and

supplemental mathematical material. It deals first with

selected topics from linear algebra and operator theory

on finite dimensional inner product spaces. This theory

is then specialized to matrices on real and complex vector

spaces, with the subject of pseudoinverse matrices covered

in a separate section. Finally, the classical z-transform

is briefly discussed and some useful properties are

derived.

A.1 LINEAR VECTOR SPACES AND OPERATORS

A mathematical field F consists of a set of elements

called scalars which satisfy a particular set of axioms [35].

The only fields used herein are the sets of all real and

all complex numbers. A linear vector space over a field F

is denoted (U,F) or just U when F is clearly understood.

The elements of U, called vectors, also satisfy a certain

set of axioms [36] and are related to each other and to

the scalars by the operations of vector addition and scalar

multiplication. Linear vector spaces are also called
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vector spaces or linear spaces. Vector spaces are called

real or complex according to whether the field is real or

complex, respectively. A set of vectors {x' x '...XK } in

U spans U if every vector y in U can be expressed as a

linear combination of the set, i.-e., if there exists a set

of scalars {al, 2,...aK} such that

K

S= ac k k *

k=1

A set {xm) is linearly independent if the only way that their

linear combination can be made to equal zero is for all of

the scalar multipliers to be zero. Any linearly independent

set that spans U is called a basis of U, and the number of

elements in any basis is called the dimension of U. Only

vector spaces of finite dimension will be considered here.

Let (U, F) and (V, F) be vector spaces with a, 8 being

arbitrary scalars in F and w, x, y arbitrary vectors in U.

Suppose that to each element of U there is assigned a unique

element of V, then the collection of these assignments is

called a map T from U into V. Maps are also called functions,

transformations, or operators, and these terms will be used

interchangeably.

The identity operator I is defined by I x = x, and a

map T-1 satisfying the relation T-1T TT-1 = I is called the

inverse of T. The inverse operator may not exist; however,

when it does then T is said to be invertible. The set of
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scalars X for which the map (T - A I) is not invertible is

called the spectrum of T and will be denoted a[T]. When T

satisfies the relation

T(a x + 8 1) = a T(x) + T(y)

it is called a linear operator. It is interesting to note

that a field is a vector space, and also the set of all

linear operators from U into V forms a vector space in which

each linear operator is itself a vector ppace [3711

There are many important maps between vector spaces.

An inner or scalar product is a scalar-valued function of

two vectors, denoted <x, Y> , which is defined by the

following three axioms;

i. < - =<EY

ii. ax + B , x + , w

iii. <x, x > 0 with equality only when x = 0.

A vector space with an inner product defined on it is

called an inner product space. The inner product determines

the relative directions of vectors, and two vectors are

orthogonal if <x, > = 0. The notion of distance in

vector spaces is indicated by a nonnegative scalar-valued

map called a norm, II II , which is also defined

axiomatically by

i. II x+ 1 = I I + II 11

iii. IJx II > 0 with equality only when x = 0.
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A set of vectors {xm} is an orthonormal set if 11xm I = 1

for any m and any two distinct vectors are orthogonal. A

vector space with a norm defined on it is a normed vector

space. For the finite dimensional vector spaces considered

herein it will be convenient to define the inner product of

two vectors, say x = (x, x2 ,...xK)
T and y = (Y11 Y2' YK )

by

K

<x Y>Xkk* T *

k=1

which then defines a norm of x by

[I x II ./ x, x

A map T, not necessarily linear, is called convex if

for every value of a satisfying 0Sa 1, it has the following

property;

T([1 - a] x + a y) i (1 - a) T(x) + a T(y).

If the inequality is strict, then T is strictly convex.

For every linear operator T on an inner product

space U there exists another operator TA called the

adjoint of T defined by

If T = TA then T is called a self-adjoint operator, and if

T T = TA T then T is a normal operator. A projection

operator is one which is both self-adjoint and idempotent,
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i.e., T T = T. Any map for which the adjoint equals the

inverse is a unitary operator.

A final important notion deals with the geometric

interpretation of a map T from U to V. The set of elements

x in U such that T x = 0 is called the null space, or some-

times the kernel, of T and is denoted N(T).' The set of

elements y in V which can be written y = T x for some x in

U is called the range space, or image, of T and is denoted

R(T). The null space of T is related to the range space

of its adjoint TA in the following way: every element

in N(T) is orthogonal to every element of R(TA). To show

this note first that x belongs to N(T) if.and only if

<Y, T >= 0 for any y in U, and since <Y, T> =

<TAx. y>then x is orthogonal to every w in U such that

w = TA y for some y. But this set of w's is just the range

space of TA , hence the desired result is proven.

A useful consequence of this last result is that the

range spaces R(TA ) and R(TA T) are identical. This can be

proved indirectly by first noting that if x is in N(TA )

then (T TA) , = T(TAx) = T(O) = 0 so x is also in N(TA T).

Conversely,if x is in N(TA T) then IITx II 2 = <Tx, Tx>-

x TA Tx >=,O>= 0, so that Tx = 0 and x is in N(T).

The proof is completed by noting that every element of R(TA )

and R(TA T) is orthogonal to every element of N(T) and
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N(TA T), respectively. , Hence R(TA) and R(TA T) must then be

identical.

A.2 MATRICES

An M x N matrix T is a rectangular array of elements

having M rows and N columns; the element in row m and column

n is denoted by tmn and the entire matrix T is sometimes'

denoted by [t mn]. By defining the sum of two matrices and

the multiplication of a matrix by a scalar in the usual way,

it can be shown that the set of all M x N matrices, with

elements in the same field F, forms a vector space [38]1

The way that matrices are used to represent linear

operators is made precise by the following Representation

Theorem [39] :

Let (U, F) and (V, F) be real or complex vector

spaces with bases {u u2 ,...U} and { 1 , v2 ,.' :M},

respectively, and let T be a linear map from U

to V. Then, with respect to these bases, T is

represented by the M x N matrix T = [tmn] where

the elements of column k of T are the components

of T(uk) with respect to the basis im }.

when M = N then T is a square matrix and U is identical

to V, i.e., T maps U into itself. If M = N and

{ , u',...N} is another basis for U in which _ represents

T, then there exists a nonsingular square matrix P that
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relates these representations according to T = p-1 T P.

Such a mapping is called a similarity transformation, and

the matrices T and T are said to be similar. Thus similar

matrices represent the same operator in different bases.

For a square matrix T of order N the spectrum

a[T] is that set of scalars for which (T - X I) fails to

be invertable, or equivalently, for which the determinant

det(T - X I) = 0. This last equation is a polynomial in

X of order N, so that a[T] contains exactly N elements

which may not be distinct. These elements are called the

eigenvalues of T, or sometimes proper or characteristic

values. The spectrum is a property of the abstract

operator T and does not depend on the particular repre-

sentation, e.g., T or T. This can be seen by recalling

p -1
that T = P T P so that

det(T- X I) = det(P - 1 T P- X P P)

= det(P- 1 ) det(P) det(T- X I) = det(T- A I).

Any nonzero vector.p such that (T - X I) a = 0, with X in

a[T], is called an eigenvector of T corresponding to the

eigenvalue X.

There are a number of special matrices that will

prove useful herein, some of which represent the various

operators defined in Section A.l. The square matrix

representing the adjoint TA of an abstract linear trans-

formation T on vector space U is the complex conjugate
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transpose of T denoted T as can be seen from the following,

S, T x> T (TY <* = T y = >x,

When T is self-adjoint T = TH and T is called a hermitian

matrix. If the vector space U is real rather than complex,

then T = TT and T being self-adjoint implies T = T . Such

a matrix is called real symmetric. The eigenvalues of an

N x N hermitian matrix T are always real, and there always

exists a set {m} of N linearly independent eigenvectors

which are orthogonal [40]. In fact, since when p is an

eigenvector then E/ 11 pll is too, then the set {pm} can

always be taken orthonormal. Writing the eigenvector equattQn

T2m = Xm m for m = 1, 2,...N in matrix form gives

T2.1' P 2'"'EN ] = [P2' 2'"'EN] diag(X1, X2'"'"XN)

or, more concisely in terms of the matrices P and A,

TP = P A.

Furthermore, since <Pm' en =mn and a similar relation

exists for.the rows of P [41], then P-1 = H which implies

P is a unitary matrix. Consequently, the similarity

transformation A = P- T P that diagonalizes T becomes

A = H T P (A.1)

which is called a unitary transformation. Hermitian

matrices can be easily decomposed into their spectral

representations by using unitary transformations in the

following way,
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N

T=PAP = 1 Xm 2, nH (A.2)

m=l

When the vector space is real and thus T is real symmetric,

the complex conjugate transpose is simply the transpose.

Results analogous to the hermitian case exist for the

general case where T does not have N linearly independent

eigenvectors, but the theory is considerably more involved

[42]

A projection operator is represented by a projection

matrix T which is hermitian and has the idempotent property

T2 = T. It can be shown [43] that all eigenvalues are

either zero or unity, and that the eigenvectors of the

unity eigenvalues span the subspace into which the operator

projects. Thus any projection operator is similar to the

block diagonal matrix diag(IJO) = diag(l,l,...l, 0,...0)

where the square matrices I and 0 are of orders equal to

the number of unity and zero eigenvalues, respectively.

A quadratic form is a real-valued function of N real

variables {xm ) defined by

N N

F(x I , x2 '...) = rmn xm xn (A. 3)

m=l n=l

which can also be written as
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N N

Srmn xm2  (r + rnm) xm xn

m=l m=l n<m

The value of this last expression remains unchanged if the

substitution smn = 1/2'(rmn + rnm) is made. By defining

the real symmetric matrix Q 4[qmn ] and letting x = (xl,

X2,...XN) , (A.3) can be written in matrix form as

F(x) = x Q x = x, Q x >

In the more general complex case when Q is hermitian the

function is still a quadratic form since then

N N

F(x) = q Xm2 + (qmn+ mn) xm xn
m=1 m=1 n<m

which is real due to qmn+ qmn = 2 Re(qmn).

A real symmetric matrix Q is positive semidefinite

if, for any choice of x, the quadratic form F(x) = <x, Q x>

is nonnegative. If F(x) = 0 only when x = 0 then Q is

positive definite. The eigenvalues of Q are related to

the definiteness in the following way; if Q is positive

semidefinite all eigenvalues are nonnegative, while all are

strictly positive when Q is positive definite. If Q is

positive definite it is invertible.

The final type of special matrix to be considered

in this section is the Hadamard matrix, which has orthogonal

rows and columns, and is binary in the sense that all
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elements are either 1 or -1. Except for the 2 x 2 case

Hadamard matrices may exist only for orders which are

integer multiples of four, and have been constructed for

all such orders up to 100 [44]. For those orders which are

also powers of two, the construction is done recursively by

starting with H and using the iterative relation

Hk -k-k+1 3
The construction of other orders involves the determination

of quadratic residues C~45] and is thus somewhat more involved

in theory but easily.implemented using a digital computer

as discussed in Section C.2.

A.3 THE PSEUDOINVERSE MATRIX

Before defining the pseudoinverse matrix a number of

preliminary notions are necessary. Let the M x N matrix X

represent a linear map from a vector space U to a normed

vector space V of dimensions N and M, respectively. Assume

that the field is the set of real numbers and that M 2.N.

T
Then all eigenvalues of the real symmetric matrices X X

and XX ard real and nonnegative. The real property follows
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from symmetry; to show that X TX has nonnegative eigenvalues,

let v = X u for some arbitrary vector u in U. Then

0 < 2 vii V v = v XT X u

so X TX is positive semidefinite from which the desired

result.follows. An analogous procedure holds for XXT. If

the rank of X is R < N, then it can be shown [461

that both X X and XXT have exactly R identical nonzero

2 2 2eigenvalues, say {l 2' 2 '* R 1, with all other

eigenvalues zero. Furthermore, from symmetry it follows

that X TX and XXT each have a set of orthonormal eigenvectors

which will be denoted by the sets { E , 2 ". } and

i' 2"'" M', respectively. These sets are ordered so

that m and Im correspond to Um2 for m = i, 2,...R. The

rectangular matrix X can now be expressed [47] in the

generalized spectral representation

R

X = k 4k k T . (A.4)

k=1

When X is real symmetric, hence squarerthen (A.4) reduces

to (A.2). This cart be shown by noting that XXT = xTx = X2

and, from the Frobenius Theorem the nonzero eigenvalues of

X are {l 2 1"PR}. If a is a normalized eigenvector of

X corresponding to p, it is also an eigenvector of X2
2

corresponding to 2. To show this note that (X - P I) = 0

implies that (X - _2 )p = X (X.) - P X p = X [(X - P I) p]

= 0. Consequently, for this case {m)} , {Em}, and {jm are
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all equal and the desired result follows.

The N x N pseudoinverse matrix X- I of X is now defined

by

R

xI - k k  (A.5)

k=l

One important application of this definition can be seen

by considering the matrix equation X u = v. If v belongs

to the range space of X then an exact solution exists, but

is unique only when X is nonsingular in which case it is

given by the usual inverse X-1 as u = X-1 v. Otherwise

there are more linearly independent equations than unknowns

and an exact solution does not exist. In either case the

pseudoinverse solution 's-,, X'v is the unique best solution

in the sense that, for any other possible solution i_, it can

be shown [48] that IX u- vlf X - vll . Finally,

there are two other properties of the pseudoinverse that

will prove useful, both of which are easily proven from the

basic equations (A.4) and (A.5). The properties are

( XX-I ) = XX-I and XX -I X = X. Together they imply that

(XX-I )T (XX-I ) = XXI. (A.6)

cj
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A.4 THE STANDARD Z-TRANSFORM

A thorough treatment of the z-transform is found in

Jury [49], and its use in the design of digital filters is

discussed by Gold and Rader 150Q]. The z-transform is a

linear map from a vector space of sequences, f = {fm } , into

a vector space of functions F(z) of the complex variable z.

It is defined by

F(z) = f k z-k (A.7)

k=0

which is a power series in z-  thus z- is taken within the

radius of convergence of the power series. Multiplying

F(z) by z-1 has the effect of shifting the corresponding

sequence {fm) by one index as is seen from

Z-1 F(z) = f zk Z-(k+l)= E fn-1 z-n

k=0 n=l

Consequently, z-1 is known as the unit delay operator.

The inverse z-transform can be obtained by multiplying both

sides of (A.7) by zm -l, integrating around a closed contour

that encloses the origin of the z-plane and applying the

Cauchy integral theorem to obtain

1 zm-1dz = k 1 j z-(k-m+l) = f

k=0
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When the sequence {fm  represents a stable physical

quantity, for example a sampled voltage waveform, then it

must not diverge. If F(z) is rational and contains terms

of the form z/(z-a), then stability requires that jal < 1,

or equivalently, that all poles of F(z) lie within the unit

circle of the z-plane. Since this result can be extended

to all stable sequences, the unit circle is the smallest

contour that always encloses all singularities of F(z);

consequently, the unit circle will always be taken as the

path of integration in the z-plane.

There are two important properties which will be

used extensively herein; namely, the multiplication

relation and the Complex Convolution Theorem, known also

as Parseval's Theorem. Multiplication in the z-transform

domain is given by

H(z) = F(z) G(z)= E E fngm z-(m+n)

m=0 n=0

00 k

E fng kn Z-k
k=0 n=O

so that from (A.7) it follows that

k

hk = fngk-n . (A.8)

n=0

This last expression is the discrete convolution of the
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sequences {fm I and {gm }. The Complex Convolution Theorem

can be obtained by considering the sequence {dm } obtained

as term-by-term products of the two sequences {em } and

{fm }, i.e., dk A ekfk. The z-transform of {dm } is

D(z) ekfkz -k k Fz -k 1f (v) vk-ldv

k=0 k=0

= 2JjF (v) ek(z/v)] v dv

= F(v) E(z/v)v-ldv, (A.9)

which is known as the complex convolution of E(z) and F(z).

A particularly useful special case is obtained by first

letting z - 1 to obtain

Sekfk F(v) E(1/v)V -ldv,
k=0

then setting Tk = ek for each k, and finally replacing the

dummy variable v with z. The result is

e -- E(z) E( -1 )z dz. (A.10)

k=0

This equation reduces to the classical form of Parseval's
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Identity when the path of integration is the unit circle.

This corresponds to letting z=eJw ' which gives

ek f E(jw)E(-Jw)dw
k=O -7

where E(jw) is the Fourier transform of the continuous

function e(t) from which {e m } is obtained by sampling at

the normalized rate of 1 sample per second. Equivalently

w can be considered as an angle defined by w = OT, where

0 is the actual radian frequency and 1/T is the sampling

frequency.



APPENDIX B

SUPPLEMENTARY RESULTS FOR CHAPTERS 2 AND 3

A number of statements from Chapters 2 and 3 are

proven in this appendix. Although all of the proofs are

important, inclusion in the chapters would have distracted

from the chapter continuity. Most results are given in

the "statement-proof" form, and the section from which the

statement was taken is found in parenthesis after the proof

number, e.g., "B.1 (2.2)" indicates that the first proof in

Appendix B is of a statement in Section 2.2.

B.1 (2.2) The matrix A defined by

amn X(z) Fm(z) Fn(z- 1  *.'1 1 dz

is hermitian and positive semidefinite.

Proof: By letting z = ejo it follows that

93
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which implies that A is hermitian. To show positive semi-

definiteness let c be an arbitrary M-vector, then

c Ac= C V(z) V (z - ) c z dz.

Since Y(z) = cT V(z), it follows that

cA = c - Y(z) Y(z) z- dz

2Tr

2 I Y(jw) 2 dw 1 0
-T Q.E.D.

B.2 (2.3) The matrix A defined by taking F (z) = z-m in

(2.5) is positive definite.

Proof: Referring to Fig. 2.2, the filter output can be

written as
M-l M-1

Y(z) = Cm Fm(Z) X(z cm m X(z)

m= 0 m= 0

= C(z) X(z),

Where C(z) is defined to be the term in brackets. Using

this notation the quadratic form c A c can be written

T 1 -1 -1c A -a 31 Y(z) Y(z - ) z - 1 dz

C( 2 ( 2 dw.

-7T
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Now C(jw) is a linear combination of M complex exponentials,

and hence must always be nonzero on any finite interval

unless c = 0; furthermore, the input signal is converted to

digital form by an A/D converter operating at a sampling

rate which is at least twice the highest signal frequency

in accordance with the uniform sampling theorem. Conse-

quently, the spectrum X(jw) must be nonzero on some

interval of the primary region [-7r,w], and therefore,

c A c > 0 for c 0 0 and A is positive definite. Q.E.D.

B.3 (2.3) One-step convergence can be obtained for the

transversal equalizer using the more general algorithm

c[k+l] = c[k] - 1/2 F[k] VJ(c[k])

where _[k] A diag(y0 [k], y1 [k],...yg_1 [k]).

Proof: A derivation analogous to that of (2.14) for this

new algorithm gives

k-l

e[k] = ' 'i- ri. A. efO]

i=O

Letting the definitions of A and Q remain unchanged, the

result corresponding to (2.15) is

M-1 - k-l

Jcor k]= (eT[] ) 2  (1 - Ym[i] n)

m=0 i=0
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which reduces to zero on the first iteration upon adjusting
~-1

the diagonal components of r[0] to satisfy ym[01 = Am

for m = 0,1,...M-1.
Q.E.D.

B.4 (2.4)For equation (2.20), the vector b belongs to the

range space R(A) of A.

Proof: Since b = F b and A = F A F, it is sufficient to

show R(A) = R(F ). Since A is nonsingular and real

symmetric it has a square root A
1/2 which is also nonsingular

and real symmetric; consequently, A can be written as

A = (A1/ 2 F)T (A1/ 2F) ST S. Also, b can be written

b = FT (A1/ 2 -1/2) b = T (A-1/ 2 b). Upon observing that

ST is the adjoint of S it follows from 
A.1 that R(ST =

R(S S) = R(A). However, b is obtained by applying

S FT A 1/2 to the arbitrary vector A
/ 2 b and since

A1 / 2 is one-to-one, then R(S ) = R(F ). Consequently,

R(F ) = R(S T ) = R(A). Q.E.D.

B.5 (2.5) The map P = XX-I defined by (2.33) is a projection

matrix, i.e., it is both self-adjoint and idempotent.

Proof: First, P is hermitian since it is real and

T
N-1 N-1
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Furthermore, since

N-1 N-1

m- = n=

N-1 N-1

= 6mn nT = P r
m= 0 n=0

then P is also indempotent, hence P represents a projection

operator. Q.E.D.

B.6 (2.5) The matrix T P T = diag( II M-N)

Proof: The result follows directly from the fact that {m }

is an orthonormal set:

o
T

N-1
T 1 T t * 1

Ttm M-- -0

0m=
• T

Sdiag N I 0M-N)'
0 0-N

Q.E.D.
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B.7 (3.1) If a priori statistical information is available

for evaluation of the gradient (3.4), then the tap-gain

adjustment algorithm (3.2) reduces to other well-established

algorithms.

In the first case it is assumed that the noise

statistics are unknown, the transmitted signal and noise

are uncorrelated, and that statistical information is known

about the transmitted sequence {dlk]}. Under the decision-
A

directed hypothesis that d[k] = dik] for all k, the

gradient (3.4) becomes

1 V(c[k]) = E{vIk] T [k]} clk] - dv

where clk] is assumed independent of v[k] and

-r .r(n) E{v[k] d[k]) = F E{x[k] d[k]}.

The result, known as the Griffiths Algorithm, was considered

by Griffiths [511 in connection with antenna-array signal

processing, and some convergence results were developed.

For the second case it is assumed that complete

statistical information is available a priori, so that (3.4)

becomes

1-
- VJ(c[k]) = Rvv ck] - dv

with r defined as before and the M x M correlation matrix
-dv

v given by Rvv = R (0) E{v[k] vT [k]). The result is
-vv -vv -vv _

the well-known steepest descent algorithm

clk+l] = ck] - y ( c2k] - dv).
_ _ -vv -dv
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B.8 (3.2) Under the stated hypothesis the matrix Rxx is

positive definite.

Proof: Since x[k] = sk] + n[k] for all k, then the

signal and noise vectors s[k] and n[k], respectively,

corresponding to x[k] are defined component-wise by

x[k] = slk] + n[k]. It follows from the independence of

signal and noise that R = E {s[k] s [k]} + E {n[k] nT [k]}
-xx

R + R . Now R is a correlation matrix, hence positive-ss -nn -ss

semidefinite; also Rnn can be diagonalized by a unitary

matrix Q to give QT R Q = A .n However, upon defining
-xx -nn

m Q n a new representation of the noise results with

crosscorrelation matrix E{QTn[k]n T [k ] Q} = QT R Q = A ,
- nn -nn

i.e., the crosscorrelation matrix of m[k] is diagonal.

The elements are all variances, thus are all positive,

and it follows that R and R are positive definite.-nn -Qxx

Q.E.D.



APPENDIX C

COMPUTER SIMULATION

This appendix contains a detailed description of

the digital computer simulation written in FORTRAN to

study the equalizer design which has been developed.

The simulation consists of a main routine, called MAIN,

and a number of subroutines, which together simulate a

transmitter, digital communication channel, and the

equalizer. In addition to using subroutine GRAPH for

producing graphical output of the equalizer performance,

MAIN uses two other subroutines, namely FLTSET and HADGEN,

to compute the initial tap-gain settings in accordance

with (2.37). Each of these in turn calls two or more

subroutines as shown in Fig. C.l. MAIN is described in

C.1 while the remaining subroutines are covered in C.2.

Two numerical methods for finding eigenvalues and eigen-

vectors of real symmetric matrices are described in C.3.

One is used by the IBM library subroutine EIGEN [52] and

the other by the UNIVAC library subroutines TRIDMX, EIGVAL,

and EIGVEC 153]. It is interesting to note here that,

since a modern digital computer is actually a very

sophiscated digital filter in itself, then the simulation

of the equalizer is quite realistic, although not very

efficient from a hardware standpoint.

Cal.



MAIN

FLTSET HADGEN GRAPH

MODE EIGEN TRIDMX EIGVAL EIGVEC DOUBLE QADRES

Fig. Cl1. Hierarchy of Subroutines

0
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C.1 PROGRAM MAIN

The program MAIN can be subdivided into two basic

parts. The first simulates the transmission of an

initializing pulse through the channel and performs the

equalizer initialization based on the theory of Chapter 2.

The second part generates the transmitter message sequence

and uses the initialized equalizer to track the channel.

A flowchart for MAIN is shown in Fig. C.2, and the program

listing in Fig. C.3. For reasons of continuity a few

parameters, usually pertaining to small blocks of code,

are set locally as they occur rather than at the beginning

of the program. The listing of key parameters found in

Table C.1 will be helpful in identifying and using these

variables.

A concise description of the program is found in

block 0. The program is designed to repeat until no

further data cards are found, at which time it terminates

normally. After reading the simulation parameters and

initializing variables in blocks 0-30, the channel output

sequence (X) is formed in blocks 40 and 50 by passing an

initializing pulse through the noisy channel (CHNL, G,

CNOISE). Block 60 calls the subroutine FLTSET which returns

in common the eigenvalue and eigenvector information (FSET)

for ci'puting (.2.37). In block 70 an M x M Hadamard matrix

(H) is formed by subroutine HADGEN, and the matrix (F), whose
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MAIN

0
DO 500 I=1,15

END =501 40,50FORM CHANNEL
OUTPUT SEQUENCE

10
READ CHANNEL
AND EQUALIZER 60

PARAMETERS COMPUTE FILTER-SECTION
SET-UP MATRIX

(CALL FLTSET)

INITIALIZE
VARIABLES

70
GENERATE A HADAMARD

MATRIX OF ORDER M

PRINT DATA FOR (CALL HADGEN)

SIMULATION

SET FILTER-SECTION
20,30 TAP GAINS

READ CHANNEL UNIT-PULSE
RESPONSE, SET TRANSMITTER

FOR A UNIT PULSE

90
SET INITIAL TAP-GAINS,
PRINT TAP-GAIN VALUES

40

Fig. C.2. Simulation Program MAIN
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110
INITIALIZE

DO 112 K=1,MSGLT

'RANDNO' 120 'PNSEQ'

TRTYPE

PRODUCE MESSAGE PRODUCE MESSAGE

BIT WITH RANDOM BIT WITH PN

NUMBER GENERATOR SEQUENCE GENERATOR

150 YES
EXCESSIVE

ERROR
TRANSMIT

UNIT-PULSE NO DIAGNOSTIC

ADJUST TAP-GAINS

130 PRINT OUTPUT DATA

PULSE THROUGH NOISY

TIME-VARYING.CHANNEL

CALL GRAPH

140 . 500
PASS CHANNEL OUTPUT

THROUGH EQUALIZER

Fi. C.2. (Continued)STOP

Fig. C.2. (Continued)
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(IMLIT10N D(52) X(5J2) ,(2) ,CINL(32) IREG( 10) C( (32)
1 W(.52),R(332 F(32i2),UELC(32),TRANS(32) PLOTY(64)

INtEGER DELAYUMAXTRTYPErTOTLER
COMMON H(32,32),FSET(32,32)
LOUIVALENCE (DLLC(1),CIHNL(1),H(1l )),(TRANS(1),H(1i2))
1 ,(PLOTY(I),ii(1 3))

OUO TiIS PROGRAM SIMULATES AN ADAPTIVE DIGITAL EQUAL1ZER

C AND ASSOCIATED BASEBAND CHANNEL. THE INITIALIZATION

C' IS PERFORMED IN BLOCKS 10-90, AND ON-LINE OPERATION

C IS SIMULATED BY BLOCKS 100-150.

C

C THE DATA CARD FORMATS ARE AS FOLLOWS
CARDI M(15), N(15) OELAY(15)P MSGLTH(IS), TRTYPE(A6)

CARD2 CMEAN(F10.5), CSTDEV(F10.5), CVFCTR(F10.5) NINIT(I5)

CARD3 CHANNEL IMPULSE RESPONSE LENGTH NG(I5)

CARD4 CHANNEL IMPULSE RLSPONSE G(8F10.5)
C
L REPEAT ENTIRE SIMULATION UNTIL DATA RUNS OUT

D00 5U II=1l15
RL.AD (5, 1,Ei-O=501) M,N,DELAYPMSGLTHTRTYPEP

1 CMEANCSTUEVCVFCTRNINIT
1 FORMAT (415,4X,Ab/3F10.5,I5)

C INITIALIZE VARIABLES AND ARRAYS
DO 10 I=1,32
CHNL(I)=
C(I)=U
D(1)=U
6(1)U
X(I)=U
DO 1U J=1.32
F(I,J)=O
H(IJ)=0

10 CONTINUE
C SET THE NOISE GENERATOR PARAMETERS

IA=127329
Id=56b387
IC=2**20
REALC=IC
CVAR=CSTUEV*CSTDEV

C PROGRAMMING NOTE: CSTDEV MUST NOT BE ZERO
SNR= 20*ALOG10(1/CSTDEV)

C PRINT THE INITIAL EGUALIZER PARAMETERS
WRITE (6.12) M,NFMSGLTHTRTYPECMEANCVARSNRDELAY,

Fig. C,3. Listing of Program MAIN
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1 LVFC TkNINIT
1? FURMAT (ltIl//////10 'SYSTEM PARAMETERS'/

1 IUXI'NUMIER OF FILTER SECTIONS (m4) =',15/
2 10X,'LENGTH OF FILTER SECTIONS (N) =',15/

3 1OX,'LENGTH OF TRANSMITTED MESSAGE (MSGLTH) =',17/

4 1OX,'TYPE OF TRANSMITTER SIMULATED (NTRTYP) =',Ab/

5 IOX,'NOISE MEAN =',F1O.5/1OX,'NOISE VARIANCE =',F10.5/

6 10X'SIGNAL TO NOISE RATIO IN DB =',F10.5/
7 1UX,'TOTAL DELAY =', 15 /10X,'CONVERGENCE FACTOR =',

8 F10.5/1OX,'NUMBER OF INITIALIZING PULSES =',I5)

C02U HEAD IN THE CHANNEL DESCRIPTION

C
READ (5,21) NG, (6(I),I=1,NG)

21 FORMAT ( 15/(8F10.5))
WhITE (6,22) NG, (IG(1),I=1NG)

22 FURMAT (////1OX,'CHANNEL RESPONSE G OF LENGTH',IS/

1 (10X, 'G( '12' )=' F8.4))
C
C030 IF INITIALIZING SEQUENCES OTHER THAN THE UNIT-PULSE

C AHE USED THEY SHOULD bE DEFINED IN THIS BLOCK,

C OTHERWISE A UNIT-PULSE SEQUENCE IS GENERATED

rlD=l
D(1)=1

C
L040 ADJUST THE INPUT SEQUENCE LENGTH

C
C CHECK FOR EXCESSIVE CHANNEL-RESPONSE LENGTH

L=ND+NG-1
IF (L .LE. M-N+1) GO TO 41
WRITE(6,42)

42 FORMAT (1Htl,lOXe'****THE OUTPUT IS TOO LONG***')

GO TO 500

C EXTEND THE OUTPUT SEQUENCE LENGTH

41 LzM-N+1

CU50 FORM THE CHANNEL OUTPUT SEQUENCE X(Z)=D(Z)*G(Z)

C
50 CONrINUE

00 52 I=I\NG
52 CHNL(1)=0

DO 51 K=1L
NGM=NG-1
DO 53 I=1,NGM

53 CHNL(NG-I+1)=CHNL(NG-I)
CHNL(1)=D(K)

FPg. C.3. CConttnuedl Lttng of Progr~am MAN
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X (K)=0
00 54 I=1,NG

54 X(K)=X(K)+6(1)*CHNL(1)
C bENEHATE A GAUSSIAN RANDOM VARIABLE FOR CHANNEL NOISE

RSUM=u
DO 55 1=1,12
Ib=MOU(Ib*(2**10+3),IC)
REALD=BI

55 RSUM=RSUM+REALB/REALC
CNiOISE=(RSUM-6)*CSTDEV/NINIT + CMEAN

C AUD THE CHANNEL NOISE
X(K)=X(K)+CNOISE

51 CONTINUE
C PRINT THE CHANNEL OUTPUT FOR THE UNIT-PULSE

WRITE (6,56) L,(I,X(I),I=1,L)
56 FORMAT (////1OX'CHANNEL OUTPUT SEQUENCE X OF LENGTH',

1 15/(10X'X(',I2p' )= ' F8.4) )

COoO COMPUTE THE FILTER SETUP MATRIX FSET

C
C SELECT TYPE OF EIGENVALUE COMPUTATION

EIGTYP='JACOUI'
CALL FLTSET (MN,XEIGTYP)

C
cO70 GLNERATE AN MXM HADAMARD MATRIX AND NORMALIZE

C
CALL HAOGEN(M)
REALM=M
SUM=b RT(REALM)
DO 7U I=1,M
DO 70 J=1,M
H(I,J)=H(IJ)/SQM

7U CONTINUE

CobO SET THL FILTER SECTIONS
C

DO 80 J=1,M
DO 80 I=1,N
F(I,J)0
DO 81 K=lN

81 F(IJ)=F(I J)+FSET(IK)*H(KJ)
80 CONTINUE

CU90 INITIALIZE THE FILTER AND SET THE TAP GAINS
C

DO 91 I=1,M
DELC(I)=0

Ftg. C,3. (Contlnued) Listing of Progran MAIN
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91 R(I)=0
ANSE=0
00 92 K=1,M

C LOAD AND SHIFT THE FILTER REbISTERS
NM=N-I
)O 94 I=1I,IM

93 K(N-i+1)=R(N-1)
k(1)=X(K)

t FORM THE FILTER OUTPUT Y
Y=O
DO 94 I=1M
W(I)=O
DO 9b J=1,N

95 W(I)=W(I)+R(J)*F(J l)
94 Y=Y+W(I)*C(I)

C COMPUTE THE BIT ERROR AND THE TAP ADJUSTMENTS

E=Y
IF (K.GT.DELAY) E=Y-D(K-DLLAY)
AMISE=AMSE+(E*E-AMSE)/K
DO 96 I=1,M

96 ULC(I)=DELC(I)+E*W(1)
92 CONTINUE

L SET THE EUUALIZER TAPS
DO 97 I=1pM

97 ((1)=C(I)-I)ELC(I)
WHITL (6,98) (IC(1),I=1IM)

9b FORMAT (////IOX,'INITIAL TAP GAIN SETTINGS'/
1 (10X,'C('e12,')='F8.4)
WRITE (6999) MSGLTH

99 FORMAT (li1125X,'THE TRANSMITTED SEQUENCE IS',Ie4

1 ' BITS LONG'////bXlliHTRANS/DEC'Np9X,'NOISE'4X,
2 'CHNL OUT'p2X,'EOLR OUT',4X,'ERROR'93X,'AVE MSE',
3 2X,'TOTAL MSE',4Xv'C(1) ---- >'//)

CluO THE REMAINING PART OF THIS PROGRAM IS A LARGE LOOP
C THAT ITERATES ONCE FOR EACH MESSAGE BIT
C
C110 SHIFI TO RUN MODE AND TRANSMIT THE MESSAGE

DO 111 I=lL
TtkANS(I)=0

111 CHNL(I)=0
UO 113 I=1,64

113 PLOTY(1)=U
AMSE=U
TIMSE=O

TOTLEH=U

Fig, C.3. IContinued) Listing of Program MAIN



109

N COU'I'=4
LL=.d
LLM=LL-1
UfAX=25
LLIM=2.0
NGM=NG-1
NLINE=1

C
DO 112 K=1,MSGLTIH

C120 GENERATE A TRANSMITTER PULSE

C SELECT THE INPUT SEQUENCE FROM EITHER A PN
C SEQUENCE (PNSEQ) OR RANDOM NUMBER GENERATOR (RANDNO)

IF (TRTYPE.EQ.'PNSEQ') GO TO 122
IF (TRTYPE.EO.'RANDNO') GO TO 121

C ASSUNE THAT A UNIT-PULSE IS DESIRED
DD=U
IF (K.E.1) DD=1

GO TO 126
121 CONTINUE

C GENERATE A RANDOM NUMBER BETWEEN 0 AND 1 USING

C THE POWER RESIDUE METHOD
IA=MOD(IA*(2**10+3)#IC)
REALA=IA
RANDIN=REALA/REALC

C CONVERT TO BINARY USING A THRESHOLD OF 0.5
DU=O
IF(RANDIN .LT. 0.5) DD=l
60 TO 126

C GENERATE A 2**LL-1 BIT PN SEQUENCE FOR THE MESSAGE
122 IF (K.NE.1) GO TO 123

00 125 I=I1LL
125 IREG(I)=1
123 DU=IREG(3)

ITEMP=MOD(IREG(2)+IREG(3)+IREG(4)+IREG(8)92)
)O 124 I=1,LLM

124 IREG(LL-I+1)=IREG(LL-I)
IREG(1)=ITEMP

126 CONTINUE
C
C STORE THE TRANSMITTED SEQUENCE FOR PRINTOUT LATER

DO 127 I=1,DMAX
127 TRANS(DMAX-I+1)=TRANS(DMAX-I)

TRANS(I)=DD
C
C150 PASS THE TRANSMITTED PULSE THROUGH THE TIME-VARYING

Fg,. C.3. LContinued) Listing of Program MAIN
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C CHANNLL
C
130 CONTINUE

C THE TIME-VARYIlNG CHANNEL SHOULD BE CHANGED HERL

)O 131 I=1,NGM
131 CtNL(NG-I+1)=CIINL(NG-I)

CHNL(1)=DD
XX=O
Du 132 I=1,NG

132 XX=XX+G(I)*CHNL(I)

C GENERATE A GAUSSIAN RANDOM VARIABLE WITH PRESET

C MEAN AND STANDARD DEVIATION
RSUM=U
DO 133 I=1,12
Ib=MOD(IB*(2**10+3),IC)
RLALB=IB

133 RSUM=RSUM+REALB/REALC
CHOISE=(HSUM-6b)CSTDEV+CMEAN

C ADD THE CHANNEL NOISE
XX=XX+CNOISE

C
C140 FILTER THE CHANNEL OUTPUT PULSE XX

C
C LOAD AND SHIFT THL FILTER REGISTERS

DO 141 I=1NM
141 R(N-I+1)=R(N-1)

R(1):XX

C FORM THE FILTER OUTPUT Y
Y=0
DO 142 I=1,M
w(I)=0
DO 143 J=IN

143 W(I)=W(I)+R(J)*F(J,I)
142 Y=Y+W(I)*C(I)

C SET UP THE EUALIZER OUTPUT FOR PLOTTING

I120*( Y+0.5)+1.5
IF(I.LT.1) I=1
IF(1.GT.51) 1=51
PLOTY(I)=PLOTY(I)+1

C

CI1O COMPUTE THE ON-LINE TAP-GAIN ADJUSTMENTS.

C
C ESTIMATE THE TRANSMITTED VALUE

ES1D=O
IF(Y.GE.O.b) ESTD=1
E=Y-ESTL

pg. C,3. (Continued) Listing of Program MAIN



AMSE=AMSL+ ( EE- AM E) /K
TMbL:TMSbE L*

L CHECK FOR UIVLRGENCE
IF (AUS(E) .LT. LLIM) 6O 10 153
WRITE (t,151) K

151 FORMAT (////1IX,'***THE ALGORITHM DIVERGES AT STEP',

1 15,' ***')
GO TO 500

C ADJUST THE FILTER TAPS USING THE GRADIENT ESTIMATES

153 DO 152 I=1,M
152 C(I)=C(I)-E*W(1)*CVFCTR

C PRINT EVERY NLINE-TH LINE FOR BREVITY
IF (K.NE.K/NLINE*NLINE) GO TO 155

WRITE (6,154) KTRANS(1+DELAY)ESTDCNOISEXXPYtE
1 AMSEP TMSE,(C(I),I=1,NCOUT)

154 FORMAT (1H ,16,F4.1'9 /',F4.1p6X14F10.5,2G10.4t' *,,

1 4F10.5/(64X,4F10.5))
155 CONTINUE

IF (ABS(ESTD-TRANS(1+DELAY)) .LT. 0.1) GO TO 157

TOTLER=TOTLER+1
WRITE (6lb5o)

1bb FORMAT (iH+lI X,'*****')
157 CONTINUE

112 CONTINUE
C
C500 TERMINATING PROCEDURE
C

WHITE (6P502) TOTLERPMSGLTH
502 FORMAT (//26X'THERE WERE',I4' ERRORS IN THE',I4#

1 ' BIT MESSAGE')
CALL GRAPH (-0.5e0.05PLOTY F51)

500 CONTINUE
501 CONTINUE

STOP
END

Fig. C.3. (Continued) Listing of Program MAIN
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TABLE C.1

LIST OF SIMULATION VARIABLES

Name Typet Description

AMSE R Average MSE per iteration

CHNL(32) R Shift-register for simulating the channel

CMEAN R Mean value of channel noise

CNOISE R Channel noise value

CSTDEV R Standard deviation of channel noise

CVAR R Variance of channel noise

CVFCTR R Convergence factor for the on-line
algorithm

D(32) R Working array for the initializing
sequence

DELAY I Delay of reference pulse in bits

DELC(32) R Tap-gain increments for initialization

DMAX I Maximum delay

E R Equalizer output error

ELIM R Equalizer output error threshold

ESTD R Decision on equalizer output

F(32,32) R Matrix whose columns are the filter-
section tap-gains

FSET(32,32) R Matrix returned by FLTSET used for
computing initial filter-section
tap-gains

G(32) R Noise-free channel unit-pulse response

H(32,32) R Hadamaxd matrix returned by HADGEN

R indicates a real variable and I indicates an
integer.
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TABLE C.1 (Continued)

Name Type Description

L I Channel output sequence length

M I Number of filter sections

MSGLTH I Number of bits in transmitted message

N I Length of shift register

NCOUT I Number of tap-gain values to be
printed at each iteration of the
on-line algorithm

NG I Length of noise-free channel unit-
pulse response

NINIT I Number of isolated initializing
pulses used to set the equalizer

NLINE I Number of output lines skipped before
printing a line of output data

PLOTY(60) R Contains the equalizer output-value
distribution for plotting by GRAPH

R(32) R Shift-register for equalizer filter-
sections

SNR R Channel SNR on a per-bit basis

TMSE R Total (cumulative) MSE

TOTLER I Total number of errors in equalizer
output

TRANS(32) R Array to store transmitted sequence
for later printout

TRTYPE Transmitter type, either 'PNSEQ' or
'RANDNO' for PN sequence or-random
number generator,respectively; otherwise
a unit-pulse.sequence is transmitted

W(32) R Filter-section output vector

X(32) R Channel output sequence

Y R Equalizer output
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columns are the filter-section tap-gains, is then computed

as the product of FSET and H. The equalizer is now

initialized in block 80 by first computing the equalizer

tap-gain corrections (DELC), and then adding the result

to then existing tap-gains (C) in accordance with (2.2),

and the initial tap-gains are printed in block 90.

The remaining part of MAIN, starting with a

description in block 100, is essentially a large loop

that iterates once for each transmitted pulse. All coding

inside the loop has been done inline, i.e., there are no

subroutines, in order to reduce the program execution time.

After a number of variables are initialized in block 110,

the loop begins. A transmitter pulse (DD) is generated

in block 120 using either a pseudo-noise sequence (TRTYPE =

'PNSEQ') or a random binary number (TRTYPE = 'RANDNO') gen-

erated by quantizing random numbers that are uniformly dis-

tributed between 0 and 1. If no transmitter type is specified

then a unit-pulse is txannsitted. In block 130 the pulse

is next passed through the channel which is corrupted by

gaussian noise. Since time-variation in communication

channels is rather arbitrary, this effect is simulated by

inserting a user-supplied description immediately after

statement 130. The transmitted pulse (XX) is then filtered

by the equalizer in block 140 to produce the equalizer

output (Y). The average MSE per bit (AMSE) and total
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(cumulative) MSE (TMSE) are next calculated, and the bit

error (E) is compared against the maximum acceptable error

value (ELIM). If the limit is exceeded an error message

is printed and the equalizer can either be reinitialized

by returning to block 50, or the run can be terminated

by a transfer to 500. Otherwise, at block 150 the

equalizer tap-gains are adjusted in accordance with (3.6)

and, when indicated by a local parameter (NLINE), a line

of data concerning the iteration is printed before

repeating the loop for the next transmitter bit. After

the indicated number (MSGLTH) of message bits has been

transmitted, the total number of bit errors is printed

and GRAPH is called to plot the frequency of occurrence

of each value of the equalizer output.

C.2 SUBROUTINES

The flow chart and listing for subroutine FLTSET

are found in Figs. C.4 and C.5, respectively. It generates

the convolution matrix (XMX) of (2.28) from the channel

unit-pulse response vector (X) that is passed from MAIN.

The N x N real symmetric matrix (SYMX) is then formed and

the corresponding eigenvalues and eigenvectors determined

by one of the two methods discussed in C.3. If the Jacobi

method is used (EIGTYP = 'JACOBI'), then subroutine MODE

is used to convert SYMX into the linear array (EVAL) form

required by the IBM library subroutine EIGEN.. The other
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SUBROUTINE
FLTSET

COMPUTE CONVOLUTION MATRIX
XMX FOR CHANNEL

UNIT-PULSE RESPONSE X

FORM SYMMETRIC
MATRIX SYMX

'JACOBI' ' CODIAG'

EIGTYP

CALL MODE CALL TRIDMX

CALL EIGEN
CALL EIGVAL

CALCULATE FILTER CALL EIGVEC

RETURN CALCULATE FILTER
SET-UP MATRIX FSET

Fig. C.4. Subroutine FLTSETURN

Fig. C.4. Subroutine FLTSET
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eprOuced from
abest available coPY.

SUULOUIINE FLTb (M,N r X LIGTYP)
UIMENSION X(32),XNiX(32,32)r EGVL(32),D(32)SD(32)'
1 TEMPI(32),TEMP2(32),SYMX(32'r32) ,EVAL(528) EVCT (10U24)

COMMUON EGVC(32,32),FSEI(32,32)
ELUIVALENCE (SYMX(1,1)rFSLT(v11),EVCT(1))
EUUIVALENCE (EVAL(1),EGVL(1))P(EVAL(33),PD(1))
1 (EVAL(65),SD(1)),(EVAL(97) TEMPU()),(EVAL(1

2 9 )'

2 TEMP2(1))

C FORM THE CHANNEL OUTPUT MATRIX XMX

00o i IIM
DO 1 J=l1lj
XlIX ( I, J) =0
IF (I.GE.J) XMIX(I,J)=X(I-J+1)

1 CONTINUE

C FORM THE REAL SYMETRIC MATRIX SYMX=(XMX)T*XMX
DO 2 I=IN
DO 2 J=I,N
SYMX(I ,J)=O
DO 3 K=IPI

3 SYMX(I,J)=SYMX(I,J)+XMX(K I )*XMX(KJ)
2 CONTINUE

C
IF (EIGTYP.E.'JACObI') GO TO 10

IF (LIGTYP.EO.'CODIAG') GO TO 5

C O1HERWISE PRINT DIAGNOSTIC AND GO TO 10

WRITE (6bb)
b FORMAT (10X,'****EIGNEVALUE METHOD NOT SPECIFIED****')

O6 TO 10
C
5 CONTINUE

C COMPUTE THE EIGENVALUES AND EIGENVECTORS OF FSET
CALL TRID "X(N,2pSYMXDp SD)
CALL EIGVAL (NeEGVLDSUTEMP1,TEMP2)
CALL EIGVEC(N,32,SYMXDSD,EGVLEGVCTEMP1 TEMP2)

C
C CALCULATE THE FILTER SET-UP MATRIX FSET

00 4 J=1,N
EGVL(J)=1/SQRT(EGVL(J))
DO 4 I=1,.J
FSET(I,J)=EGVL(J)*EGVC(IU)

4 CONTINUE
RETURN

C
10 CONTINUE

Fig, C,5. Listing of Subroutine FLTSET
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CALL MOLL (IJpSYMXELVAL)
CALL LIGEN (EVALPEVCTpHO)

C CALCULATL THE FILTER SET-UP MATRIX

DO I1.JJ=1,M
J-M-JJ+1
IF (J.LE.rN) 60 TO 12
00 13 I=1Nh

13 FSET(IJ)=O
GO TO 11

12 K=(J-1) *.
KK=J* (J+1)/2
EVAL(KK)=1/SR (EVAL (KK) )
DO 14 1=11i4

14 FSET(I,J)EVAL(KK)*EVCT (K+I)

11 CONTI I NUE
RETUiN
END

Fig. C.5. CContinuedl Listing of Subroutine FLTSET
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method (EIGTYP L'.CODIAG') is that of Householdez, which

uses the UNIVAC library subroutines TRIDMX to convert SYMX

to tridiagonal form, then EIGVAL and EIGVCT to compute the

corresponding eigenvalues (EVAL) and eigenvectors (EVCT).

These subroutines require several working matrices (TEMP1-e

TEMP2, SD, D). After the eigenvalues and eigenvectors are

determined, FLTSET computes the filter set-up matrix (FSET)

and returns. In the notation of 2.5, the columns of FSET

are given by Pk -1 Lk' k = 0, 1,...N-1.

Subroutine MODE places the upper triangular part of

a given real symmetric matrix (SYM of dimension DIM) in a

linear array (EVAL) columnwise starting with column 1 as

required by subroutine EIGEN, then returns. The correspond-

ing listing is given in Fig. C.6.

For any order (M) which is a multiple of four and

is not greater than 32, subroutine HADGEN generates a

Hadamand matrix (H) by one of three procedures, depending

on the order desired. The flow chart is shown in Fig. C.7

and the corresponding listing in Fig. C.8. If M is a

power of 2, i.e., 4, 8, 16, and 32, then H is formed in

the manner discussed in A.2 using subroutine DOUBLE to

repeatedly make the substitutions

1- and -ii
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oduced from
bes available COPY

SUHNuUTINL MUDL(DM SYMI',LIN)
L TildS PROCCIULJI PLACES FHL UPPEI Ti<IANGULAt{ PART OF

SOUALE REAL SYMIME'THIC MAII,IX SYM IN LINEAl" ARRAY LIN
L IN MOUE I FOHMI AS REQUIRED BY SFUBROUTINE EIGEN

C
DIMENSION SYM(2P,52) rLIN(528)
INiTEGL DIM
REAL Llir
L=DIOM (DI4+1) /2
UU 1 I=1,L

1 LIN(I)0
DU 2 J=1uIlM
DO 2 I=10J
K=J*(J+1)/2
IF (I.LT.J) K=I+(J-I)*J/2
LIII (K)=S Yll ( I PJ)
CONTINUE
R LTUkN
LUn

C.6. Listing of Subroutine MODE
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I1AI)GEN

NO IS M
FEASIBLE

DIAGNOSTICYES

YYESES

NO FIND QUADRATIC

RESIDUES OF 13
YES

M=12,20,24 CALL QADRES

FIND QUADRATIC
NO

RESIDUES OF 11,19,1.1 i FORM THE

CALL QADRES MATRIX H'

DETERMINE THE

POWER OF 2 THAT

FORM THE EQUALS M CALL DOUBLE

MATRIX H' L=2

YES NO

CALL DOUBLE ( RETURN

CALL DOUBLE

L=2L

RETURN

Fig. C.7. Subroutine HADGEN
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eproduced ompy
bes avatil

SUoROUI INL IAI.\uGLN (fi,)
C HIls PROCEUIJE GLILkAILS A BINARY HADAMARU MATI<IX OF

L OKRDER M=4*K wilH K<-6, AND CAN EASILY BtE EXTENDEi

C TO K>8

CUMMOI il(32r32)
INJT cbEl RbLS(eU)

IF ((vl/4) 4.NL.i..0.MioV.GT..,2)0 GO TO 25

C IF M=?. FORM A SIZE 14 MATRIX AND DOUBLE

IF(MI.NL.26) GO 10T 10
LJ=13
CALL OAJRES (LeLKeRES)
LJ=LJ+1
DO 1 I=1,LJ
DO 1 J=I,LJ
I- (J.NE.I) GO TO 2
H(IrJ)=0
GU TO 1

2 IF(I.NL.I) 0 10 .5
5 -r(I rJ)=1

H(J,l)=1
GO TO 1

3 DO 4 K=1LK
IF(J-I.EQ.RES(K)) 60 TO 5

4 CON I;NUE
H( lI eJ)-1i
I-(J, i )=-1

1 CONTINUE
CALL DOUBLE (LJ)
RL TURN

L IF M=12 OR M=20 FORM 1HE MATRIX DIRECTLY

C IF M=24 FORM A SIZE 12 MATRIX AND DOUBLE

10 IF.(M.NE.12.AND.M.I;JE.20.ANJD.M.NE.24) GO TO 20

LJZ11
IF(M.EO.20) LJ=19
CALL GADRES (LJtLKRES)
LJ=LJ+I
UD 11 I=1,LJ
DO 11 J=1LJ
IF(I.NE.1) GO 10 i3
H(l,)=1
H(JlI)=1
GG TO 11

13 IF(J.NE.1) GO 10 15

Fig. C.8, Listing of Subroutine HADGEN
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H(I ,)-1
6O TO 11

15 DO lb K=1LK
IF(J-1.EU.RES(K)) GO TO 18

lb CUNTINUE
H(I, J)=-1
H(JI)-1
(0 TO 11

lb H(I,J)=1
H(Jl)Z-1

11 CONTINUE
IF(M.NE.24) GO TO 19
CALL UOUbLE (LJ)

19 CONTINUE
RETURN

C
C SINCE M=2**K, FORM A SIZE 2 MATRIX AND DOUBLE

C RECURbSiELY K-1 TIMES
2U H(1.,)=1

H(1 , )=1
H(2l1)=1

H(2,2)=-1
L1=
IF(M.EQ. 6) LI=2
IF (M.EQ.I() LI=3
IF(M.EO.32) LI=4
L=2

22 Du 24 I=1,LI
CALL DOUBLE (L)

24 L=2*L
RETURN

2b WRITE (6,26)
•2b FORMAT (IH1,'***THE VALUE OF M IS INCORRECT***')

t<ETURN
END

Fig. C.8. (Continued) Listing of Subroutine HADGEN
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If M is not a power of 2 then the generating pro-

cedure is slightly more complicated, and requires the

notion of the Legendre symbol. If the congruence relation

r2 Eq(mod p) has a solution for integers p, q, and r, then

q is called a quadratic residue of p, otherwise it is

called a quadratic nonresidue. The Legendre symbol (q/p)

is defined for a prime p to be 1 When q is a quadratic

residue of p, and -1 when q is a quadratic nonresidue.

The remaining values of M now fall into two categories.

If M = 2k(p + 1), k = 0, 1i,... , for some prime p = 3

(mod 4), i.e., M = 12, 20, 24, then the (p + 1) x (p + 1)

array H' is first formed, with each element computed

according to

1 ' if i = 1 or j = 1
h = -1 Af i j and i > 1

(j -i/p) otherwise

where the quadratic residues are determined by QUADRES.

If M = p + 1, then H is taken to be H', otherwise

M = 2(p + 1) and DOUBLE is called to generate H before

HADGEN returns. Finally, if M = 2 k(p + 1) for prime

p = l(mod 4), i.e., M = 28, then H' is computed according

to

1 if i = 1 or j = 1 but i j j

S(j-i/p) othewise ,
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and again QADRES is called to obtain the quadratic

residues. Since M = 2(p + 1), then DOUBLE is called to

obtain H before returning. A detailed treatment of the

generation of Hadamard matrices for all order up to 100,

and many orders greater than 100, can be found in the

literature (44,45). Consequently, HADGEN could be expanded

to handle considerably larger orders than the present

value of 32.

Subroutine DOUBLE doubles the size of a given matrix

H' = [h' ] with elements 1, -1, and 0, to obtain a new

matrix by making the following substitutions,

1 1 1 -1 -1 -1

hij = 1- , h!j = 0 , and h!. = -1

The original matrix is overwritten by the new matrix H

which is binary, i.e., all elements are 1 or -1. The

listing is found in C.9, and the algorithm is to simply

test each element hij and make the corresponding matrix

substitution just indicated.

Subroutine QADRES computes the quadratic residues

of a given prime defined in the discussion of HADGEN,

and sorts them in a stack by increasing value. It then

returns the stack and the number of elements in the stack.

The flowchart and the listing are shown in Figs. C.10

and C.11, respectively.
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Reproducedfrom
best available copy.

SUBRuUT INE UOUbILE (L)
C THIS PROCEDURE SUBSTITUTES A PARTICULAR 2X2 MATRIX

C FOR EACH -1,U,+1 ELEMENT OF MATRIX H , THUS

C DOUBLING THE SIZE
C

COMMON V(i2,32)

C SET INDEXING SO THAT NO ORIGINAL ELEMENTS AiE ERASED

D0 1 I=1,L
II=L-I+1
11I=2*II
DO 1 J=1,L
JJ=L-J+1
JJJ= *JJ

C
C TEST FOR A +I ELEMENT

IF(V(II,JJ)-O.O1) 3,2r2
2 V(IIIJJJ)=-1

V(IIIJJJ-1)=1
V(III-1,JJJ)=1
V(III-1JJJ-1)1
60 TO 1

C TLST FOR A -1 ELEMENT
3 IF(V(II,JJ)+O.U1) 4,4,5
4 V(III,JJJ)=1

V(IIIIJJJ-1)=-1
V(III-1,JJJ)=-i
V(III-1,JJJ-1)=-1
GO TO 1

L ASSUME A U ELEMENT BY DEFAULT
5 V(III,JJJ)=-1

V(IIl,JJJ-1)=-1
V(III-1,JJJ)=-l
V(III-1JJJ-1)=1

1 CONTINUE
C

RETURN
END

Fig. C,9, Listing of Subroutine DOUBLE.
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SUBROUTINE

QADRES

L= 0

DO 1I= 1,P

YES 2

NO

COMPUTE QUADRATIC
RESIDUE OF I

iS

YES QUADRATIC
RESIDUE IN

STACK

NO

PUT IN CORRECT
STACK LOCATION

L= L+1

g. C. RET. SURN

Fig. C.10. Subroutine QADRES
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buLJbHkUJT INL /UJUL, (', L L.,)
C THll5 PROCEUURE COMPUTLS THE uUADHATIC RESIUL.L
i OF ANY PRIME P AND STORES THEM IN STACK RES(L)

INTEGLR P,(RiSPMfRL.S(20)
L=0
PIv;=P-1
DO 1 =l=pPi
ISo=*I
IF(ISU.LT.P) 60 T0 1

C COMPUTE THE OUADRhTIC RESIDUE FOR EACH INTEGER 1<P
RES=ISU-( IS/P)*P

IF(L.6T.O) GO TO 4
RS (1)=QRES
GU TO 3

4 CONTINIJE
L CHECK THE STACK RES FOR DUPLICATION

D) 5 J=1,L
IF(~RES(J).EQ.QRES) GO TO 1

t, CONTINUE
C AUU THil NEW WUADRATIC ESIDUE TO THE STACK AND
C SHIFT POINIER L

RES(L+)=0RES
UO 2 J=1,L
IF(ORES.GT.RES(L-J+1)) GO TO 3
RLS(L-J+2)=RES(L-J+1)

2 RLS(L-J+1) =RES
3 L=L+1
1 CONTINUE

RETURN
EN.

Fig. C.11 Listing of Subroutine QADRES
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C.3 COMPUTATION OF EIGENVALUES AND EIGENVECTORS

The computer simulation described in this appendix

uses one of two methods to obtain the eigenvalues and

eigenvectors of an N x N real symmetric matrix A. 
Both

methods are iterative, thus adaptable for machine compu-

tation, and both make use of a series of unitary similarity

transformations to reduce the given matrix to a simplified

form.

The first method 154], originally proposed by Jacobi

in 1864, has been revised in recent years for application

to modern digital computers. The original method is based

on applying an infinite series of particular similarity

transformations of the form A i+ = .T  with A = A.

The matrices S. are plane (two-dimensional) rotations, and-1

by properly selecting the plane and angle of rotation, any

particular off-diagonal element can be annihilated, i.e.,

reduced to zero. Although the annihilation of other elements

will in general cause previously annihilated elements to be

nonzero, Jacobi showed that all off-diagonal elements tend

to zero in the limit. By defining S and D to be the limits

of i and Di' respectively, it follows that

D = S AS

with D diagonal and S unitary. This implies that the

diagonal elements of D are the eigenvalues of A, with

the corresponding eigenvectors being the columns of S.
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With machine computations the process. is, of course,

terminated after a finite number of steps as soon as the

magnitude of the largest off-diagonal element becomes less

than some predetermined threshold value. The convergence

rate can also be improved by properly selecting the order

in which the elements are annihilated.

The second method 155] uses a procedure suggested

by Householder to convert a real symmetric matrix into

tridiagonal (codiagonal) form C with a series of N - 2

unitary transformations of the form I - 2 u u where IIUII=1.

By properly selecting u, any column and the corresponding

row can be transformed to contain only two elements, thus

giving the tridiagonal form. Once A is in tridiagonal

form the eigenvalues of C, hence of A, are found by

noticing that the set of characteristic polynomials

corresponding to the leading principle submatrices forms

a Sturm sequence. Each root of the largest polynomial is

an eigenvalue of A, and the roots are found by obtaining

successively smaller interyals in which each lies. The

eigenvectors are then found for C by applying the inverse

power method [56] which is particularly simple for

codiagonal matrices. These eigenvectors are then transformed

into those of A by using the same series of unitary trans-

formations obtained in computing C initially.
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