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ABSTRACT

A theory is developed for a digital equalizer for
use in reducing intersymbol interference (ISI) on high-
speed data communications channels. The egualizer is
initialized with a single isclated transmitter pulse,
provided the signal-to-noise ratio (SNR) is not unusually
low, then switches to a decision-directed, on-line mode
of operation that allows tracking of channel variations.
Conditions for optimal tap-gain settings are obtained first
for a transversal equalizer structure by using a mean-
squared error (MSE) criterion, a first-order gradient
algorithm to determine the adjustable equalizer tap-gains,
and a sequence of isolated initializing pulses. Since the
rate of tap-gain convergence depends on the eigenvalues of

~

a channel-output correlation matrix A convergence can be
improved by making a linear transformation on é to obtain
a new correlation matrix A. The corresponding change in
equalizer structure results in a set of parallel trans-
versal filter-sections, the weighted outputs of which are
summed to produce the equalizer output. It is shown that
by properly selecting the tap-gains of each transversal
filter-section, the equalizer can be adjusted to minimize

the MSE on the first iteration of the algorithm. A method
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is proposed for making this selection using the pseudoinverse
of A to obtain a "best" approximation to an orthogonality
condition. By using a Hadamard matrix it is shown that A

is similar to a projection matrix. Thus all eigenvalues

are either 0 to 1, which is the desired condition for
initialization in one algorithm iteration.

When the channel SNR is low initialization can be
improved by averaging several initializing pulses in order
to better identify the channel. Next a simple approxi-
mation to the error criterion is used to obtain an on-line
algorithm for noisy channels; it makes sﬁall adjustments
to the filter-section output weights to compensate for
channel noise and time-variations, as well as poor initiali-
zation. Convergence of this on-line algorithm is shown in
a statistical sense under a stated hypothesis, and
suggestions are made for detection and correction of poor
channel tracking. Finally the equalizer design is evaluated
by means of a digital computer simulation and the results
are presented and discussed for three baseband channel
models. The interaction among several key equalizer para-

meters is studied for a wide range of SNR.
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CHAPTER 1

INTRODUCTION

Motivated by the need to transmit binary data
directly between computers, there has been a steady increase
in the use of digital technigues for data transmission.

This is due in large part to the profound advances in solid-
state technology which have resulted in small, reliablé,
fast, and iﬁexpensive digital comﬁonents. Attempts to
increase the transmission rate of digital data over band-
limited channels are often limited by interference among

successive data symbols, an effect known as intersymbol

interference (ISI). The reduction of ISI by signal

processing techniques is known as equalization.

1.1. THE EQUALIZATION OF DIGITAL CHANNELS

The basic principles:of digital communications are
well documentéd in standard texts [1]}. Such syétems always
contain unwantgd signals which are usually classified
collectively as noise. For this study it is convenient to
divide noise.into two subcategories; background noise caused
by external.sources such as thermal excitation and ISI
caused by the overlap in time of the received signals. As
the data transmission rate is increased for a fixed channel

1



bandwidth, the ISI becomes increasingly important for the
following reason. Over the nominal channel passband all
practical channels have nonlinear phase vs. frequency
characteristics which cause different frequency components
of a transmitted signal to be delayed by different amounts.
This resultsg in a transmitted pulse being spread out, ox
dispersed, in time. This time dispersion is further
aégravated by the fact that all physical channels are
bandlimited and thus attenuate the high frequency components
of transmitted signals. At the channel output these
successive time dispersed signals overlap to give a composite
signal egual to their algebraic sum. Fig. 1.1 shows such a
‘situafion, with the circled points indicating those values
measured by a receiver that takes a single sample per bit.
In the figure time has been normalized, and T4 represents

the normalized time delay of the transmitted pulse caused

by the channel. The chénnel output sample at t“='Td + 2,
for ekample, is closer to unity than zero; therefore, the
zero transmitted at t = 2 would be mistaken for a one,

resulting in a message error. Errors can also be caused

by background noise or time variation of channel parameters.

Some ways to reduce the error rate include raising the

signal-to-noise ratioc (SNR), introducing redundancy through
coding, and the use of pulse-shaping filters to reshape the
transmitted or received signals. This latter approach is

called channel equalization, and the filter is termed an

equalizer.
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A number of classification schemes have been proposed
for equalizers; the most important for this study being
analog or digital according to the type of signal being

processed. Digital egualizers may be further classified by

the duration of their response to a standard test signal

called the unit pulse, i.e., a binary one preceded and

followed by strings of binary zeros. The unit pulse is
the discrete analog of the unit impulse for continuous
systems, and is in fact often referred to as the "discrete
unit impulse." If the theoretical unit-pulse response goes
to zero after a finite time and remains there, then the

equalizer has a finite impulse response (FIR), otherwise it

has an infinite impulse response (IIR). Other classification

schemes are based on linearity (linear, nonlinear), feedback
(recursive, nonrecursive) , signal flow (parallel, series,
cascade), stationarity of characteristics (time-varying,
time-invariant), and historical nomenclature (frequency-
- sampling, transversal, sampled data). A thorough discussion
of these classifications is given by Rabiner, et al. [2].

Of particular interest here is the transversal filter

structure, shown in Fig. 1.2. The blocks represent delay
elements of dufation‘T s, such as digital shift registers
or analog tapped delay line stages, and the numbers'{cn}
are called tap-gains. It will be convenient to mathemati-
cally represent the T s delay by the z-transform delay
operator 2”1 which is discussed in A.4.' Transversal

fThe notation A.4 refers to Section 4 of App. A.
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equalizers have a number of nice properties such as good
stability characteristics, ease of implementation, linearity,
and mathematical tractability. Conseguently, they have
proven particularly useful in equalizing ISI. A

If an egualizer is set at some initial time, e.d.,
when installed, and not changedlthereafter, then it is

called a preset or fixed equalizer. Fixed equalizers often

prove inadequate in modern digital communications networks
having switching between many branches, atmospheric trans-
mission links, wide temperature fluctuations, and component
aging. Such applications require an equalizer capable of
being adjusted either during normal message transmission or
at selected breaks between messages. Although the term

adaptive equalization has sometimes been used for both of

these cases, it will be reserved herein to describe only
_the former, while the latter case will be called automatic

egqualization [3]. Both adaptive and automatic equalizers

will be referred to as self-adjusting.,

Since a separate feedback channel from receiver to
transmitter is usually infeasible in complex communication
systems, some alternative method is necessary to produce an

error signal for use by the equalizer. In adaptive

operation this can be done by employing a decision=-directed

scheme. It is assumed that a high percentage of the output
decisions are correct so that the seguence of output

decisions closely approximates the transmitted sequence.
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The error si?nal is then defined as the difference between
signals before and after the decisions are made. The
limitation of this scheme is obvious; if the equalizer is
poorly adjusted initially, then the output sequence contains

so many errors that the error signal becomes meaningless.

Consequently, it is usually necessary to transmit an initial

known training or test sequence which can be reproduced at
the receiver. Comparison with the equalizer output before
the decision device then gives the desired error signal.

This known test sequence, transmitted during the initialization

or training period is freguently selected to be a string of

unit pulses with sufficient spacing between pulses to prevent
+he received waveforms from overlapping. After each such

isolated test pulse an incremental adjustment of a particular

set of equalizer parameters is made according to an iterative
procedure called an algorithm. Assuming that the algorithm
is convergent, the training period is continued until
initialization is achieved, at which time the message
transmission commences. In applications such as networks of
sensors or polling systems.where the messages aré short,

this training period can be considerably longer than the
message length. Furthermore, many common equalizer
structures require that the adjustment increments be small

to insure convergence of the algorithm, thereby necessi-

tating lengthy test sequences.



The problem to be studied herein is the developnent
of an equalizer with a short initialization period that can
be operated in an adaptive manner gfter initialization.

It should have practical application to noisy time-varying
networks that include switching. It is assumed throughout
that sufficient digital computing equipment is available,
such as a hardwired logic network, a minicomputer, or a

time-shared general purpose computing system.

1.2 BACKGROUND AND ORGANIZATION

Some familiarity with the theory of modern digital
communications in both the time and frequency domains is
assumed herein, and a basic knowledge of applied mathe-
matics is essential. The discrete nature of digital signals
makes the z-transform a valuabie tool, and some essential
properties are given in App. A. This appendix also contains
some fundaméntals of linear operators which are then
applied to the treatment of selected topics from the theory
of vectors and matrices. Familiarity with probability and
statistics is also desirable. A number of references are
cited in the appendices both for completeness and as a
source of proofs omitted from App. B. Finally, a reading
knowledge of the FORTRAN programming language will be
helpful in understanding the computer simulation listings

found in App. C.
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In addition to some introductory material on digital
equalizers, this first chapter also contains a review of
related work found in the literature. In Chapter 2 the
initialization theory is developed for an automatic digital
egualizer under thé assumption that there is no background
noise, i.e., the channel is deterministic. The equalizer
‘uses a first-order gradient algorithm and a short test
sequence to achieve initialization on the first.iteration of
the algorithm. A number of proofs relating to this chapter
were relegated to App. B in order to preserve continuity.
Chapter 3 fifst considers the effect of noise on the
previously developed initialization theory. Then an
approximation to the gradient algorithm is introduced which
allows the egualizer to make on-line adjustments for time-
variation of the channel parameters and noise statistics.
The resulting adaptive equalizer is evaluated by means of
a digital computer simulation, with the modeling assumptions
presented and discussed. A complete description of the
computer simulation program including a listing is found in
App. C. The concluding chapter, Chapter 4, includes some
practical considerations for implementation of the egqualizer
design developed in the preceding chapters and itemizes some

additional areas for further investigation.
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1.3 SURVEY OF RELATED LITERATURE

- Equalization has been used on analog communication
channels for many years to improve the channel amplitude
vs. frequency characteristics. Such egualizers were
generally of the fixed type, and the resulting channel phase
vs. frequency characteristics were usually unimportant since
the human ear is not verﬁ sensitive to the resulting delay
distortion. However, with the advent in. the 1950's of
extensive digital traffic over the increasingly complex
existing networks, it became more and more important to
reduce ISI by making the phase vs. frequency characteristic
as linear as possible in the channel passband. These
attempts at increasing the data rates by decreasing ISI
stimulated considerable interest in the use of transversal
equalizers employing tapped delay lines and analog multipliers,
e.g., attenuaters, for the tap-gain multipliers. The first
noteworthy attempt to make such equalizers self-adjusting
was by Lucky [4] in 1965. By defining the peak distortion
error criteribn as a measure of ISI he obtained conditions
for the optimal tap-gain settings using a series of isolated
initializing pulses prior to message transmission in con-
junction with a steepest-descent gradient technique.
By computing the approximate gradient with only the poclarity
of the variables involved he was able to realize the

equalizer using only digital logic. Lucky subseguently
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combined the initialization procedure with a decision-
directed on-line adaptive scheme for slowly-v¥arying channels,
and was again able to realize the egualizer with digital
circuits [3]. Although these equalizers performed well when
initialized, the initialization procedure generally required
a large number of initializing pulses and did not conVerge at
all when the peak distortion was greater than unity. Such
equalizers were simple to implement and were inherently
stable. They were named zero-forcing, sincé the unit-pulse
response of the equalized channel was made zero at a number
of points adjacent to the main pulse, with the number of
such zeros dependent on the equalizer length.

In 1966 Widrow [5} introduced a transversal equalizer
based on optimization with the mean-squared error criterion
[6], and made it adaptive by using a decision-directed
scheme and an appropriate "noisy" gradient estimate to
update the tap-gains. Although this equalizer reqguired
linear multipliers rather than the less complex logic for
computing the gradient, the speed of convergence was much
faster. Initialization still required a large number of
isolated initializing pulses. The application of this
equalizer was first considered by Lucky and Rudin [7], and
a detailed mathematical analysis of its convergencé
propertieé was done by Gersho [8]. An interesting all-

digital serial realization of this type of equalizer was
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developed by Lender [9]. Hirsch and Wolf [10] described an
actual equalizer developed for Bell Labs using integrated
circﬁits and field-effect transistors for the tap-gain
multipliers. General treatments of these linear self-
adjusting equalizers have been done [11,12], and the effects
of quantization noise in digital implementations has also
been studied [13].

In addition to the linear transversal equalizers, a
number of other approaches have been made to the design
and improvement of digital equalizers. One method [14] used
the recursive frequency-sampling structure with a special
initializing sequence that allowed each two-pole filter to
be' adjusted independently. Use of the Viterbi algorithm [15]
for on-line channel identification for equalization was
discussed by Magee and Prokias [16], and the somewhat
related technique of dynamic programming has been suggested
[17] to improve the initialization speed of an equalizer using
a first-order gradient algorithm. By using the technique
of guasilinearization the Kalman filter theory has been
applied to estimate both the chan;el and the channel input
[18]. Another approach to digital egualization uses the
feedback of previous decisions through a transversal filter
to compensate for the postcursors of the current pulse.
This method is called decisién-feedback [19,20], and is

particularly good where the channel distortion is large with
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relatively few precursors. However, decision errors tend
to propagate and cause error bursts.

Throughout the development of digital equalizers
there have been continuing attempts to reduce the time
required for initialization. For short messages the initiali-
zation times were often excessive, e.g., an equalizer using
the mean-sguared error criteria was reported [10] to require
several thousand isclated initializing pulses, and a
considerably larger number of pulses was reguired when the
equalization was done using the more slowly convergent zero-
‘forecing egualizer. A number of methods were proposed to
speed up this convergence, including the use of second-order
gradient algorithms [21], use of different error criteria
[22], and the periodic adjustment of the convergence factor
in first-order algorithms [23,24). This latter approach
included the so-called "gearshift" method which used large
initial adjustments to approach the optimal tap-gain value,
and then changed to small adjustment increments for final
accuracy. In 1971 Chang [25] proposed a new equalizer
structure based on a set of parallel transversal filters.

He showed that when the c¢hannel amplitude vs. frequency
characteristic was accurately known, initialization was
possible in one iteration of the tap-gain adjustment
algorithm, aed also that fast initialization was possible

for a common class of partial response systems when the
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channel was estimated. A similar structure has also been
used to study the case when thore ave a small numbor of
possible channels, each with a priori known statistics, to
be equalized with a single equalizer [26]. There is
currently a continuing interest in equalizer design, and
the steady improvements in speed and availability of solid-
state digital devices indicates that more sophisticated

designs will soon be practical.

1.4 COMMENTS ON NOTATION

The theory of digital filters and equalizers has
developed from a number of mathematical and engineering
disciplines, e.g., networks, communications, control
systems, optimization, and mathematical programming.
Consequently, the notation and terminology found in the
literature vary considerably. The most significant attempt
at terminology standardization to date is found in

Terminology in Digital Signal Processing [2] compiled by

the committee on Digital Signal Processing of the IEEE
Group on Audic and Electroacoustics.

A list of symbols used herein is found on page
iv;. ‘however, some additional comments will also prove
useful. All vectors are taken to be column vectors, and
vector and matrix variables are indicated by an underline.
To avoid confusion brackets are used to index the algorithm

iterations. Several types of Ssequence notation are also
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used. The segquences in Chapter 2 generally relate to the
first iteration of the tap-gain adjustment algorithm and

are indexed by subscripts, e.q. {xk}, while those in

Chapter 3 relate one-to-one with the algorithm iterations

so the index is placed in brackets, e.g. {x[kl}. Segquences
are also represented by the corresponding z-transform,

e.g. X(z}, iﬁ the manner discussed in A.4. When integrating
in the z-domain the unit circle is always taken as the con-
tour of integrétion. When evaluating these contour integrals
it is often useful to make the substitution z = ejw, where

w is the normalized frequency in radians per sample, i.e.,

0 ¢ w £ 2r. The resulting function will be denoted in the
conventional manner, e.g., X{(jw) vice X(ejw). Other notation
that is specific to a particular section is defined therein

and is not discussed here. This especially true of the

appendices.



CHAPTER 2

A THEORY FOR ONE-~STEP EQUALIZATION

IN THE ABSENCE OF NOISE

After defining the channel model and the equalizer
structure, an algorithm for equalizer adjustment is
selected. The characteristics that control convergence of
the transversal eqgualizer are studied, and from them a
transformation is developed which insures convergence on
the first iteration of the algorithm provided that the
channel is noise free.

Before proceeding, howevef, it is necessary to
briefly examine the overall digital communication system

shown in Fig. 2.1. The transmitter produces a sequence of

digital symbols'{dm}, taken here to be binary. This

sequence is sent through a digital channel which distorts

the input to produce the channel output sequence {x !.
The digital channel is described by its discrete unit-pulse

response {g,}, but will usually include an analog channel

such as a cable or radio link. It is then necessary to
use a modulator at the analog channel input to map the
digital sequence into a train of short analog waveforms,

and a demodulator at the channel output to perform the

16
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inverse operation. In order to compensate for the effect
of the channel an egualizer is employed at the channel

output, and finally a decision device is.used to obtain

an estimate of the transmitted sequence based on
observation of the equalizer output sequence {yy,}. Note
that each block of Fig. 2.1 involves only digital inputs
and outputs, hence these signals can be represented in the
time domain by sequences,e.g., {xj}, and in the transform

domain by the respective z-~transform

X(z) = : xmz_m .
m=0

It will be assumed that’ all necessary timing and
synchronization information is available, and ﬁhat the
channel time delay Td is known. These problems are
extensively covered in the literature [27,28]. The time
delay will be absorbed in the notation; for example, the
received signal Xy will correspond to the transmitted

signal dk although it actually occurs Td>s-rater.

2.1 CHANNEL MODEL AND THE GENERALIZED EQUALIZER STRUCTURE

The type of channel to be considered is a linear
digital channel at baseband having a finite-length
response'{go, gl""gG-l} to the unit pulse, where G is

the sequence length. The channel will in general be time
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varying due to switching and other background noise. For
this chapter it will be assumed that the channel is free of
stochastic noise, and that no switching occurs during the
initialization period. Furthermore, other channel variations
will be assumed slow in relation to the response time for a
single pulse. These assumptions allow channel time
variations tc be neglected during the one-step initialization
period. The effect of stochastic noise will be considered
in Chapter 3. In addition to the unit-pulse response, the

channel can be described by a transfer function

G(z) & : gmz"m, (2.1)

where G(z) is the z~transform of {ga} .

A fixed equalizer can in theory be located at any
point of a linear channel. However, a self—adjust%pg
equalizer is usually located at the channel output since
it must obtain sufficient information about the channel
to initialize itself and then maintain a suitable setting
as the channel and noise characteristics change. When this
channel identification is performed using a known test
sequence or by a decision-directed scheme, the result is
obtained at the channel output, and so any other equalizer

placement necessitates a highly reliable feedback channel.
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Many linear automatic equalizer designs can be put
in the parallel form shown in Fig. 2.2, which is referred

to as the generalized equalizer structure [7]. " The blocks

{F1(z) } will be called the filter-sections since each

transfer function F _(z) represents a digital filter. When
the channel output X(z) is applied to the filter-sections,
the equalizer output Y(z) is obtained by multiplying each
filter-section outpuﬁfgm(z)}by the corresponding real-valued
| tap-gain cp and then summing over the M weighted outputs

A

{e v (2}}. The equalizer transfer function H(z) £ Y(z)/X(z)

is determined as follows:

M-1
Hz) = g7y L CoVp(® =<' E(2),
m=0

][

A , ‘
where & = (&g,¢),...cy ;)7 and E(2) 2 (Fy(2),Fy(2),
.o M_l(z))T. For self-adjusting operation. the tap-gains
are made adjustable. A device called an adapter seeks to
‘minimize the ISI by iteratively computing a set of varying

tap-gain increments'{ﬁcm[k]} using a predetermined algorithm.

The tap-gains are then adjusted at iteration kiacéording to

o, lk+l] = c_[k] + deplk], ' m=0,1,...M-1.

2.2 THE ALGORITHM AND ERROR CRITERION

The usefulness of the first~order gradient algorithm

for self-adjusting equalizers is well established in the
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literature [5,7,8] . It has the vector form
clk+l] = clk] - 1/2 y vJ(clk]), {(2.2)

where clk] is the M-vector of tap-gains at iteration k and
the corresponding tap-gain increment vector is given by
Aclk]l = cfk+1} - ¢[k]l. The real scalar y is called the

convergence factor. It scales the tap-gain increments and

thereby determines whether the sequence of tap-gain vectors
{ci{k]} converges to some final value, and if so, the rate
of this convergence. The differentiable, real-valued function

J{clk]), called the error criterion, is a gquantitative

measure of the equalizer performance in reducing ISI. Such
a function is also called an index of performance, cost
function, and objective function. The ISI remains constant
when the gradient VJ(cl[k]) =0, and from (2.2), no change
is made in the tap-gains, i.e., the algorithm converges.
Since the purpose of the algorithm is to determine a tap-
gain vector é which minimizes the iSI, it is néceséary to
define J(c) so that the algorithm converges to'é. One way
of doing this is to select J{(c} to be convex. It then
follows that any value'g satisfying VJ(¢) = 0 also
minimizes J{c) [291].

Subject to these considerations, a convenient choice

for the error criterion, analogous to the continuous integral-

squared error [30], is the quadratic mean-squared error
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(MSE) criterion given by

2
Jle) = E e, (2.3)
m===o
where € A Yo dm is the error corresponding toc the
transmitted symbol dm. Using the complex convolution
theorem (A.10), integrating around the unit circle of the

z-plane, and noting that e(z) = ¥Y{z) -~ D(z), it follows that

3 = s fEH E@ 27 az

T

=c 9."29.T13+d, (2.4)

I»

where

i

-1 1

dz = z%;x(zlgfz)gz‘(z"l)x(z-l)z- dz

[

z%ﬁx_r(zn_fr(z'l)z

2_-%§[g(z) x(z) D(z™) + Bz Dx(z"Hp(2)] 27laz  (2.5)

M=

o

and

-1

aé %f p(z) p(z 1)z laz.

By lettiné z = ejuJ it is easy to show that both the M-vector
b and the scaler d are real. The yx® matrix A in (2.5) is
shown to be hermitian and positive semidefinite in B.l. To
insure that A is also real, hence real symmetric, it is
assumed that the filter-sections are FIR filters so that the

output of F.(z) corresponding to input X(z) has the form
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K-1

v (z) = : vmkz'k. (2.6)
k=0

This assumption will be shown valid in (2.26) for the
particular equalizer considered. Now from (1.5) it follows

that any arbitrary element a . of A is real since

: K-1
_ 1 -1, -1. _
a, = m§ Vm(z) Vn(z Yz “dz = z Vok Vnk® (2.7)
k=0
Since A is positive semidefinite, J(¢) is a convex function.

Thug the gradient algorithm is applicable and the gradient

is given by
VJi(c) = 2Ac¢c - 2b, (2.8)

The unique minimum value of ISI thus occurs for any tap-

gain vector é satisfying VJ(é) = 0, or equivalently when

i »

Ac=b. (2.9)

2.3 THE TRANSVERSAL EQUALIZER

Since A is positive semidefinite it may be singular,
in which ¢tase there will not be a unique solution é for
(2.9)., However, it is possible to select the filter-sections
so that A is strictly positive definite, as will be shown.

In particular, if F (z) = z ™ for m=0,1,...M-1, and all

filter-sections share the same shift register, then a
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transversal equalizer results. To distinguish this case
. the quantities F(z), V(z), A, and b in (2.5) will be

identified by a tilde, e.g., A. It is shown in B.2 that

A is positive definite, implying that it is nonsingular.

Thus éﬁl exists and the optimal tap-gain vector is found to

1 b. The tap-gain error vector e is now defined

~

be ¢ = A&
by

il

e=c-c=¢-A4A" b, (2.10)

and is given at iteration k by el[k] = clk]l] - ¢. By adding
and subtracting the term é? A~ b, (2.4) can be reformulated

as

i l -~

T b+ eTlk] A elk]. (2.11)

O

i

J(clkl) = @ - bT A~

~

The term g?[k] A i[k] is a positive definite quadratic form,

which is zero only when e[k] = 0. 1In this case (2.10)
implies that c[k] = ¢, so the irreducable error Jmin equals
4 _ T a1
Jmin = 9 - B A" b, (2.12)

The correctable error after k iterations is
I k] = eTk] A elk] (2.13)
cor - - = o '

Substituting (2.8) into {2.2) and using (2.10) gives the
algorithm as

¢lk+1] = clk] - v A elk}.
Repeated substitution into (2.10) with decreasing index k

results in the "telescoping” form
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k-1

ekl = [T (x - v Berto

i=0
: (2.14)

(L - v ¥ ero1.

il

Further simplification results from the observation that,
since é_is real symmetrie, all eigénvalues are real and
there exists a unitary transformation é such that

X 3 = X, where the diagonal elements of

~ -~ ~

A = diagtrys Aps...2 ) are the eigenvalues of A and the

M-1
columns of g are the corresponding normalized eigenvectors
{ém} of é. Upon making the substitution é_= é i Q? (2.14)

becomes
elk] = 8 (X - v D* g% etol,
Which when substituted into (2.13) gives

M-1
Teoelk) = L (7101692 %_(1~vi)™ . (2.15)
m=0

It has been observed by Chang [25] that the

eigenvalue spread of é, i.e., the difference between the

lérgest and smallest eigenvalues, is a crucial factor in
the rate of convergence. If all eigenvalues are equal
then Jcor can be reduced to zero on the first iteration
by setting y = im_l. Unfortunately, since é_depends on

the input seguence to the equalizer, there is no general

way to control the eigenvalues without changing the



27
equalizer structure. A logical approach is to investigate
a more suitable form for the filter-sections*{Fm(z)}, and
this will be done in the next section. It is interesting
to note that by selecting a more general algorithm the
correctable error can be reduced to zero on the first
iteration using the transversal structure. This case is

detailed in B.3.

2.4 THE GENERALIZED TRANSVERSAL EQUALIZER

Perhaps the simplest extention of the transversal
equalizer is that generalized equalizer structure in
which each filter-section is itself a transversal filter.

Such an equalizer will be called a generalized transversal

equalizer, and a typical filter-section is shown in Fig.
2.3. This equalizer can be implemented so that all filter-
sections share a common shift register. For convenience it
will be assumed that all filter—sections are of equal

length N, which will be strictly less than M. The resulting

filter-sections are described by

N-1
F (z) = : £z, m=0,1,..M-1. (2.16)
m mn

n=0

They can be considered as devices which form linear
combinations of those N values of the channel output
sequence contained in the equalizer shift register, or
equivalently, as the following linear time-invariant

transformation on this sequence,
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[ on o0 Tor -+- fo,n-1 1
n-1 | f1n f10 : 271
F(z) = I: . z o=, . . .
=0
) ) ,-N+1
fu-1,0 fu-1,0 vooo Byog,n-1f - -
(2.17)

The MxN matrix in (2.17) is now augmented by adding M-N
zeros to each row, and the resulting MxM matrix is

denoted E?. Notice that column m of F corresponds to the
coefficients of Fm(z)_ This corresponds to physically
extending the shift-register length from N to M and
assigning tap-gains of zero to the new tap-gain multipliers,
and is done strictly for mathematical convenience. Upon

recalling that for the transversal case

F(z) = (1, 27, 272, 20T the relation
T
F(z) = F~ F(z) (2.18)
is seen to hold. Noting that V(z) = E? E(z) A(z)
o ™
= g? V(z) it follows from (2.5) that A = g? A F and

b = Fr E. Substituting these expressions into (2.4)

gives the new MSE expression

g?‘FT A F & - 2 cT FT

Jie) = b+ d. (2.19)
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Taking the gradient of (2.19) gives

vilg) =2 F AFc-2Fbf2@ac-n, (2.20)

N

Thus{ﬁny vector é satisfying A ¢ = b minimizes the ISI
and is consequently an optimal tap-gain vector. It is
crucial to note here that such a vector exists even though
A is singular because, as proved in B.#, b is always in

the range space of A. The optimal tap-gain vector in

I

this case is given by ¢ = A"~ b, where g—I is the

pseudoinverse of A as defined in A.3.

I

By adding and subtracting the term'g? A™" b in

(2.20) and using the facts from A.3 that é_gfl‘b = b and

aala- A, the error criterion can be reformulated in

terms of the tap-~gain error vector

I

-~ —
e=c-c=c-A

[¢]

b, (2.21)

This gives

T -1 T

J(e) e’ A e. (2.22)

I
o]

1
o
ool
{o
+

T | - ,
The texrm d - b™ A L b is independent of the tap-gain wvector

¢ and represents the minimum error J(g) &g

min’ while the

gquadratic term again represents the correctable error
J.op- The symmetry of A follows from that of % upon

noting that, for arbitrary m and n, gik = Eki implies
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M-l M-1
B = I: £im 2ix Txn
i=0 k=0
M-1 M-l
- E z fkn 8 i fim = 4mm”
i=0 k=0

~ Therefore, the matrix @ having the normalized eigenvectors
{g,} of A as columns forms a unitary transformation that
diagonalizes A according to g? AQ=A= diag(K&?Kl"‘?%M—l)
with {A_ } being the set of eigenvalues of A. By sub-
stituting the gradient (2.20) into the algorithm and
recognizing e[k] at iteration k from (2.21) it follows
that
clk+l] = ¢[k] - v A e[k]. (2.23)

Subtracting é from both sides of (2.23) gives

elk+l] = e[k] - v & elkl,
which reduces to the following expression in terms of e[0],

elk+1] = (I - v M¥ g elo0].

Finally, J Or[k] expressed in terms of this result is

C

T 1kl = (@ReloD T - v 1F A -y 05 (F elo)

M-1
Yo cefror g? a, -y 2% (2.24)
m=0
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Since F, and hence A, is singular then one or more of
the eigenvalues Am will be zero and the corresponding
terms of (2.24) are then zero, too. This observation
will prove useful in the next section.

If an input sequence‘{dm} of length D is trans-
mitted over the digital channel of (2.1) then the channel
output is given in the transform domzin by

G-

X(z) = G{z) D(z) = 2

1 D-1
: gn dm z—{m+n)
n=0 m=0

Rearranging the summations and letting k = m+n results in

D+G-2 k
- -k
X(z) = L 9y G| 2 (2.25)
k=0 n=0 '
\
L-1
A x gz K
= k b4 ’
k=0
where L 4 D+ G - 1 is the length of the channel output

sequence. The channel output sequence'{xm} is given by .
the discrete convelution of the channel input {dm} and
channel unit-pulse response {gm}, as seen from {2.25).
An analogous derivation for each filter-section of length

N gives the filter-section output

L+N=-2 k

X-1

-k A -k

Vm(z) = : : frnn xk-n z = z vmkz r(2.26)
k=0 n=0 k=0
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where the sequence {Vﬁk} has length X 8+ - 1.

At this point it 1is necessary to make some
assumptions which will lead to the selection of the
filter-section length N and the number of such sections M.
Fixst, a finite upper limit ﬁ of the channel output
sequence length L is assumed known. Since a FIR channel
was assumed in Section 2.1 and the transmitted initializing
sequence'{dm} is known, £ certainly exists. Second, it
is assumed that M is at least as large as the length of

the filter-section output sequences K, i.e.,

M2N+£-l. (2.27)
For channels with £ very large it may be necessary to
truncate the channel unitwpulse response in order to
obtain a reasonable value for M. This has only a slight
effect on performance when the truncated terms are small.
This last condition {(2.27) insures that the output sequence
length can always be extended from K to M by appending M-K
zeros to the transmitted sequence'{dm}. The selection of
numerical values for M and N will be considered in the
next section,

The convolution relation (2.26) can now be written

in the following matrix form



34

vmo xo 0 L) L] L] 0
Vol Xy XQ . fm0
- - x L
. 1l f
= . ml
Ym, k-1 *L-1 .
. 0 X1 %o .
’ 9 X1 fm,N—-l
o vm’M—l.— g ’ : —-—
or more concisely as
vV = X f r m= 0, lpco_oM_ln (2.28)

-m = -m
The MxN matrix X has rank N since the NxN principle minor
is lower triangular with nonzero diagonal elements. The

filter-section output vector YV is an M-vector, and the

filter-section tap-gain vector Em has length N. With

this vector notation an arbitrary element & of A can

be written uéing (2.7) as

an =¥r Tn D (2.29)

which is the correlation of the output sequences from
filter-sections m and n, i.e., A is a correlation matrix.
It can now be seen from (2.24) that Jeor is reduced to
zero on the first iteration when all nonzero eigenvalues

of A are equal, since the convergence factor need only

-1

be set at y = A for Am # 0. Conditions for which

m
Ag = 0 or A, = y—l are established in the next section.
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2.5 CONDITIONS FOR ONE~-STEFP INITIALIZATION

Since the elements of A depend on the filter—
section output vectors'{!m}, their relation to the
eigenvalues ofré_is most important. An ideal solution
would be to determine a set {%m} of ideal filter-section
tap-gain vectors that would make the corresponding set
{ﬁm} orthonormal for a given channel output. It then
follows from (2.29) that A is the identity matrix with all
eigenvalues equal to unity. Unfortunately, (2.28) represents
M scalar equations in N unknowns with N < M which cannot in
general be solved exactly for Em' A "best" approximate

solution does exist, however, and is given by

=Xty , (2.30)

where E-I is the pseudoinverse of X as defined in A.3, and

Em is the actual filter-section tap-gain vector. The

actual filter-section output vector Yo and the ideal

~

vector v which it approximates can be related By

= E - (2031)

I.T -I T

From A.3 (X X 7)° X X~ = X X ~, and substitution of this

result along with (2.31) into (2.29) gives

- =

~t v, >= gy X X7T §n> (2.32)

amn = X X X

1=

XX gy



Using the orthonormal sets {QO, yl,...gm_l} and
‘{go, El"'“EN-l} and the generalized spectral repre-

sentations for X and X T as defined in A.3, it is easy to

show that
N-1

-1 _ T
XX = F Uy - (2.33)
m=0

Furthermore, the orthonormal set'{ym} is linearly
independent and thus constitutes a basis for the real
vector space of dimension M to which Ym and Y belong.

~

Consequently, v«

v, can be represented in this basis by

M-1
Y%= L Pm (2.34)
n=0

where h;mn =<\_{m, lgn> is the coordinate in the direction
of ¥,. Now let H, V and ¥ be the matrices with columns
coinciding with the ordered sets'{hmn},'{gm}, and’{gm},
respectively. Then making H an orthogonal matrix also
makes V orthogonal, as is easily shown by observing that

¥ is unitary or equivalently, that

M-1  M-1
~ "
Yt En>= 1?0 'Eo hoge Bns Klyer ¥ D
o lz

= ¥ by =<y b D

k=0

36
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for all m and n. Substituting (2.33) and (2.34) into (2.32)

gives an expression for any element a.n of A in terms of

the set {gm},

N-1
a_ = { ho ho. . (2.35)
k=0

To make the set {h } orthonormal the matrix H ﬁust be
orthogonal. Before discussing the selection of such a
matrix, however, the eigenvalues of A will be determined.
By defining the MxM matrix V as having columns
coinciding with'{gm} and letting P A X gﬁl, (2.31) and

{2.34) can be combined into the matrix egquation

5

j<t >

V=PV=PRYH.
Furthermore, observing from (2.29) that A can be written
as A = Y? V, it follows that

A=8 ¥ pTpVH, (2.36)

It is shown in B.5 that P represents a projection operator

so that E? P = 22 = P , and in B.6 that g? P ¥ equals the

block diagonal matrix diag(ILy IEM—N)' Since H is orthogonal,
(2.36} implies that A is similar to dlag(zN |QM_N) and thus
has the same eigenvalues, namely, N equal to unity and M-N

equal to zero. The desired conditions for one-step
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initializatiou have now been found, as can be seen from
setting vy = 1 in (2.24) and 6bserving that each term of
the summation is then zero.

There are an infinite number of orthogonal matrices
which could be used for H, however the class of Hadamard
matrices, discussed in A.2, is particularly well suited
for generating H. Such matrices are binary in the sense
that all elements are either +1 or ~1, have orthogonal
columns, and are known to exist for all orders which are
multiples of four over the range of feasible values of M.
Consequently, normalizing an MxM Hadamard matrix by l/vqf
produces an orthogonal matrix with all elements equal in
magnitude. This.is particularly convenient for digital
computation since the normalization can often be done
near the end of the computation rather than on each element
of A initially. |

The filter-section tap-gains can be computed
without actually computing the pseudoinverse gﬁI, since

substituting (2.33) and (2.34) into (2.30) gives

' N-1 M=1
_ -1 T "
.f.m—(): My skﬂk)(}:hmun)
k=0 n:o
(2.37)
N~-1

uk hn‘k gk ’ m=0' l'-.-M-lo
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This expression involves only the first N rows of H and

the eigenvalues'{umz}and eigenvectors {f_} of the NxN real
symmetric matrix g? X as discussed in A.3. A number of
numerical methods exist for finding eigenvalues and
eigenvectors which are particularly simple for real
symmetric matrices. Some of these methods are discussed in

cC.3.

2.6 SIMULATION RESULTS FOR NOISE~FREE CHANNELS

The equalizer initialization theory developed in this
chapter was tested by using a digital computer simulation.
A detailed description of the simﬁlation, including a '
complete listing, is found in App. C. Since this simulation
was written for a maximum of 32 filter-sections, i.e.,
M £ 32, there is a practical limit to the length of thé
channel unit-pulse response as indicated by (2.27). Under
this restriction, three digital channel mecdels were selected
for their representative characteristics. In the absence
of an actual data channel, two models were taken from the
literature and one was determined in the laboratory.

The first channel was a low-pass filter (LPF) having
a normalized cutoff frequency of 1.0 Hz and a 40 dB/decade
‘roli—off. It is described mathematically by the Fourier

transform pair
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2 2 =21t
e )

G, (£) = (1+3f) © ¥ g, (t) = 41° t £t 20. (2.,38)

1 ¢

By sampling at 0.1 s intervals and truncating all sample
values which are less than 0.02, the unit-pulse response
{2.11, 2.25, 1.80, 1.28, 0.85, 0.55, 0.34, 0.21, 0.12,
0.07, 0.04, 0.02} of length 12 is obtained. Although

this channel is rather artificial for actual data communi-
cations, it is useful to demonstrate equalizer performance
with nonnegative samples which are relatiﬁely large with
respect to unity. It also serves for comparison with an
ideal bandlimited channel and the previous work of Burlage
and Houts [31]. An experimentally convenient and widely

used measure of ISI is the binary eye opening and the

related peak-distortion criterion [32]. Assuming that
the second sample corresponds to the desired unity output,
then the normalized peak distortion is 3.284, and thus
considerably more than the value of 0,5 reguired for
eye-closure,

For the second channel model an electronic bandpass
filter (BPF) [33] was used which had a maximally-flat
passband with break frequencies of 200 Hz and 3.0 kHz
and 60 dB/decade roll-cff. The unit-pulse response of
this channel was determined in the laboratory by exciting
the filter with white noise and crosscorrelating the filter
output with delayed versions of the white noise. Assuming

a sampling interval of 50 us, the unit-pulse of length 11
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was {0.50, 1.15, 0.50, -0.25, -0.50, -0.35, -0.20, --0.10,
-0.15, -0.10, -0.05}. This channel passband approximates
the amplitude characteristic of a voice-grade telephone
line, with zero phase at midband and tending to ¢ 2703

in the stopbands. Since the normalized peak distortion is
2.348, the binary eye is again well closed.

The third channel model was taken from a paper by
Wescott [34], and represents the unit-pulse response of a
vestigiai-sideband (VSB) amplitude-modulated data link
composed of two carrier systems and 100 miles of loaded
cable. When sampled at 0.4167 ms, corresponding to a
transmission rate of 2400 baud, the unit-pulse response of
length 9 was reported to be {-0.05, 0.05, -0.20, -0.05,
0.90, 0.12, 0.15, 0.05, 0.03}. The peak distortion value of
0.778 indicates a closed eye once again. Unlike the previous
channels, this one has a relatively large number of pre-
cursors as well as a phase characteristic that is quite
nonlinear.

For an approximation to a noise~free channel the
SNR was programmed for 100 dB as computed on a per-bit basis,
i.e., Eb/N6 = 1/02. A single unit pulse was transmitted
and the MSE for this pulse was computed in accordance with
the error criterion (2.3). Simulation runs were made to

study the effects of the following parameters on egqualizer
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performance: the delay (D) between the arrival at the equa-
lizer of the first precurscr of the channel unit-pulse response
and the occurrence of the locally generated reference pulse,
the number of shift-register stages (N) in each filter~section,
and the number of filter-~sections (M) each of which has an
associated tap-gain multiplier Sme It will also prove con-
venient to introduce the notation (M,N,D) to describe the
equalizer defined by these three parametérs. For the study
of D two different sets-of values were used for the para-
meters M and N. In order to obtain as wide a range of D as
possible the relatively large values of 32 and 20 were
initially used for M and N, respectively. The second set

of values was selected so that N = E,;the length of the
unit-pulse response of the particular channel considered,

and M was then set to the smallest multiple of four con-
sistent with the constraint (2.27) i.e., MZ N + £ - 1.

Thus a comparison is obtained between relatively large and
small equalizer structures. For the study of N, M was again
set to 32 and D assigned a nominal value suitable for the
channel considered. Selection of this value will be dis-
cussed shortly. In studying M, N was assigned the largest
value consistent with (2.27) and D was again set to some
nominal value. Finally, the egualized unit-pulse response

of all three channels was determined using (32,20,D) and ~
(M,ﬁ,D) equalizers with M the smallest feasible value and with

D set to the corresponding optimal value.
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Selection of the nominal value of D involves several
considerations. The basic convolution relation describing
the channel is obtained from (2.26), which for the noise=-

free case and filter-section m reduces to

k k
Yok = Z fmn Ikon = z fm,k-—n 9n* (2.39)
n=0 ' n=0

where £, is defined to be zero if x 2 N, and {g_} is the
channel unit-pulse response. If there are i precursors
{9gs 9pse+-95 1} then (2.39) implies that the main pulse

= corresponding to a binary one cannot affect the
equalizer output‘before i shifts of the N-stage register.
It is intuitive to expect the best equalization to occur
when both precursors and postcursors are able to influence
the equalizer output sample corresponding to the transmitted
unit pulse. However, since the MSE (2.3) depends on the
filter-section outputs at each Qf the N+L-1 sample times
required for the channel output sequence to pass completely
through the equalizer, this may not always be true. 1In
general the optimal delay can be expected to be somewhat
larger than i, provided the shift-register length is on

the order of 2i or greater. For shorter lengths the
optimal delay may be less than i in order to retain a

_ sufficient number of precursors in the shift register for

the best equalizer output. Since the equalizer tap-gain
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settings depend on D and the output depends simultaneously
on all tap-gain multiplier outputs, the filter-sections
cannof be treated independently in determining the optimal
D. Consequently, the optimal D must be determined by trial
and error, which is not feasible to incorporate in the
initializing algorithm considered here; therefore, a nominal
delay must be selected for a given type of channel.
Additional insights into the selection of the
nominal delay can be gained by considering the frequency
domain. Sinrce each filter-section is a transversal digiteal
filter with, in general, no symmetry in the set of multipliers
{fmn}, the phase vs. frequency characteristic is nonlinear
and the corresponding delay cannot be expected to be
constant. Rather, different frequencies will be delayed
by different amounts. This same nonlinear phase charac-
teristie ié also typical of analog communication channels

where it produces delay distortion. For example, the

voice~grade telephone lines commonly used in data trans-
mission typically employ such phase~distorting devices as
loading coils and bandpass filters. Delay distortion tends
to cause relativelyllong precursors in addition to an
average time delay of the signal maximum, and alsoc may
cause a skewing of the signal peak which results in either
a small delay or advance of the signal maximum from the

average time delay.
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The transmitted signal also undergoes amplitude
distortion in the channel. This effect iz due to nonuniform
amplitude vs. frequency characteristics in both the channel
passband and stopbands, and it causes dispersion of the
transmitted pulse with the resulting precursors and post-
cursors. Based on these considerations the nominal value
of D for the LPF channel was taken to be approximately
0.25 N since the channel has a nearly linear phase
characteristic over most of the passband. A nominal value
of approximately 0.50 N was chosen for the VSB channel in
view of the loading and modulation, whereas, for the BPF
channel, where the degree of phase nonlinearity is somewhere
between the other channels, simulation runs were made using
each of the ﬁrevious choices.

Results of the study of parameters D, M and N for the
three aforementioned channels are presented in Figs. 2.4, 2.5
and 2.6. Corresponding numerical data is found in Tables 2.1
and 2.2. The effect on MSE when the delay D is varied while
holding M and N fixed is shown in Part (a) of each figure.
The anticipated variation of delay with the channel phase
is apparent, and it can also be seen that the nominal values
of D are reasonable.

It is interesting to note that for the LPF channel
with M set to 32 any value of delay less than six

essentially minimizes the MSE. Because of the large
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amplitudes of the first two samples of the channel output,
either could be considered to correspond to the transmitted
unit pulse. Hence the channel delay is small and could
easily be.zero, depending on which sample the equalizer
chooses to correspond to the unity output. Due to the
nature of the particular filter-section tap-gains computed
for this channel, the smallest residual MSE values'occur
when the channel output sequence begins to enter the shift
register, rather than after most of the postcursors are
included as might intuitively be expected.

The variation in performance with shift—register
length (N) is shown in Part (b) of Figs. 2.4 through 2.6.
Larger values of N produce better performance, as can be
clearly seen. For the BPF channel there is little difference
in the results for nominal delays of approximately 0.25 N
and 0.50 N so long as N is larger than the channel unit-
pulse response length (ﬁl of 11l. However, when N becomes
less than ﬁ, the value of 0.50 N is clearly superior.
This is as predicted, since the short shift-register lengths
cannot hold complete information on both precursors and
postcursors, and a delay of 0.25 N results in a relatively
large absence of postcursors. The improvement in performance
with an increasing number of filter-sections (M} is also

clearly seen from Part (c) of each figure.
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The unit-~pulse response of the respective channel is
shown in Part (d) of each figure both before equalization
and for the smaller equalizer case. Thus the plotted unit-
pulse response represents a relatively small equalizer
structure. Although the resulting distortion is quite
small in all cases, it can be further reduced by increasing
the equalizer size. This can clearly be seen from Table
2.3 which gives the equalized responses for both large
and small size equalizers and the optimal values of D
pertinent to each case. From the table it is also apparent
that the largest deviation of the equalized response from
the desired v&lues is about 0.08 for the BPF channel, while
the corresponding figures for the LPF and VSB channels are
on the order of 0.005 and 0.015 respectively.

The equalizer design developed in this chapter affords
congiderable reduction of ISI for the noise-free channels
considered. All three channels were successfully equalized,
even when N was less than ﬁ,the channel unit-pulse response.
This is an important observation because, as discussed in
C.3, the amount of computation required is proportional to

3

N”. The effects of background noise and channel parameter

variations will be analyzed in Chapter 3.
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ON MSE FOR NQISE-FREE CHANNELS

LPF CHANNEL
M 32 24
N 20 12
-6
D MSE(x10 ™)
0 0.00  26.67
0.01  35.31
4 0.01  4B.54
12.43  67.38
26.27  67.52
10 | 35.31 >10%
12 | 48.54
14 67.38
16 | 67.52
18 >104

BPF CHANNEL VSB CHANNEL
M 32 24 M 32 20
N 20 11 N 20 9
-3 -3
D MSE(x1Q 7) D MSE (=10 7)
2 88.26 100.%0 50.26 49.84
4 20.06 42,39 11,19 11.19
6 13.85 60.04 1.54 1.75
8 17.27 75.73 10 0.30 0.57
10 21.28  204.40 12 0.05 49,59
"12 31.40 14 0.01
14 55.77 16 0.00
16 71.09 18 0.01
18 72.05 20 0.22
20 | 371.70 22 22.27




TABLE 2.2

EFFECT OF SHIFT-REGISTER LENGTH (N)
AND NUMBER OF FILTER-SECTIONS (M)} ON
MSE FOR NOISE~-FREE CHANNELS
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24

CHANNEL
LBY  BPF  BPF  VSB
M| 32 32 32 12
p |0.258 0.25N 0.508 0.50N
MSE
N -6 -3
(x10°%) ~ - —(x107%H ==+
>10°  322.90 139.50
67.23 229.29 108.80
67.03 124.50 83.76 49.84
10 | 67.14 107.30 65.43 48.16
12 |66.88  57.50 60.02 11.19
14 {s50.40 52.71 34.12  9.25
16 |48.35  26.77 32.35  1.54
18 |39.23  22.37 23.98  1.28
20 |35.31  16.83 21.82  0.30
22 13.68 20.31  0.20

0.05

CHANNEL
LPF BPF BPF VSB
N M-11 M-10 M-10 M-8
D 0,25N 0.25N 0.508 0. 50N
MSE
M
: (x10_6) - - —(x10—3) -
16 67.07 229,20 108.80 49. 85
20 50.10 107.3 65.52 11.19
24 35.06 52.71 34.14 1,52
28 24.8B5 22.37 23.97 0,30
32 13.42 13.68 17.02 0.05
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TABLE 2.3

UNIT-PULSE RESPONSE WITH(d ) AND WITHOUT (x ) EQUALIZATION

LPF CHANNEL BPF CHANNEL VSB CHANNEL
M 32 24 M 32 24 M 32 20
N 20 12 N 20 11 N 20 9
) 0 0 D 5 4 D 16 10
x d_(x107) x_ 4_(x107%) x_ 4 (<107
0.00| 0.0 0.0 0.0 0.0
2,11 [1000.0 1000.0 -34.6 -0.8
1.80| 0.0 0.0 5.5 0.0 10.0
1.28 . . -19.1  -92.6 -0.2
0.85 . . -5.3  19.9 0.3 0.0
0.55 ) ' 0.00 | -14.5  -50.6 -0.1  -L.¢
0.34 0.50 | -~9.9 -7.0 ‘0.1 2.7
0.21 1,15 | 986.2  957.7 0.0 -12.6
0.12 0.50 | -12.3  -13.2 0.1  10.5
0.07 . -0.25 | -14.8  -42.6 0.0 - -2:6
0.04 . -0.50 | -14.3  -24.5 0.00] 0.0 3.1
0.02 0.0 -0.35 | -15.7 - -39.7 -0.05| -0.1 -1.8
0.00 -1.6 -0.20 | -16.4  -32.2 0.05| -0.1 . 1.4
. 3.7 -0.10| -17.1  -20.3 -0.20| -0.1  -0.6
. 0.6 -0.15| -18.7  -76.7 -0.05| 0.1 0.5
) 0.0 -0.05] -18.0 -12.6 0.90 | 1000.0  999.4
) 0.00| -22.3  -85.3 0.12| 0.0 -0.8
. : -21.5  ~-80.9 0.15{ 0.0 -~0.4
' - | -22.5  -57.7 0.05] 0.1 8.9
) -21.6  -52.1 0.03{ 0.0 -0.8
—25.0  -6.6 g.00f 0.0 -12.8
-28,7  -23.5 . -0.1 4.6
-16.2  -7.8 B 0.1 0.0
~46,2  -9.3 | -0.9
-48.1 0.0 -0.1
-29.5 . 0.0
-26.3 ' -0.1
-7.3 | 0.0
~10.9 X
—, 2 .
-3.8
0.0




CHAPTER 3

ON-LINE OPERATION OF THE INITIALIZED

EQUALIZER WITH NOQISY CHANNELS

In this chapter the generalized transversal
equalizer design of Chapter 2 is modified so that near-
optimal operation is maintained on noisy channels during
the message transmission which occurs after initialization.
Since it is impractical to compute the exact gradient
VJ(c) of the error criteron (2.3) for noisy channels with
ISI, a computationally simple method for estimating this
guantity is presented. Some convergence properties of the
resulting algorithm are then developed, and an eigenvalue
condition is obtained which insures convergence in a
stochastic sense under a stated set of assumptions. When
~these assumptions are violated the possibility of divergence
exists, and a simple test is then proposed to determine
when reinitialization is desirable. Finally, the effect of
noise on both the initialization procedure and the on-line
tracking is studied by means of a computer simulation using

the same channel models as in Chapter 2.

54
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3.1 THE NOISY ON-LINE ERROR CRITERION

Under the noise-free hypothesis of Chapter 2 the
equalizer initiaiization procedure used a single isolated
initializing pulse and there was only one iteration
of the algorithm (2.2). Tt was feasible to compute the
gradient of the error criterion exactly, at least to within
the limitations of numerical accuracy, since all nonzero
error samples € resulting from the initializing pulse
were available separately for the summation resulting from

(2.3), i.e.,

oD

% V3 (c[0])= Y e Ve .

- k=—o
However, when the equalizer is operated in é decision-
directed mode with a noisy channel, then the situation is
less straightforward. First, because of the channel noise
the equalizer output sample is a discrete random variable.
Consequently, the equalizer output and the error criterion
are random as well, and some type of statistical averaging
is indicated. Second, as the message pulses are ﬁo longer
isolated at the channel output, but rather overlap to
produce ISI, it is necessary to notationally distinguish
between error samples corresponding to different transmitted
pulses. Since the on-line equalizer will be adjusted once

for each transmitted pulse, it will be convenient to
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denote the error sample at iteration k by e[k]. Notice
that in general e{k] depends on the precurscors and post-
cursors of neighboring pulses as well as the kth pulse.
By‘taking the expected value of ezlk] the error criterion

E(E[RJ) for the noiéy on-line case, corresponding to {2.3),

is given by

Ficlkl) = Ble?lk]}, (3.1)
where E is the mathematical expectation operator.
The on-line algorithm for adjusting the equalizer

tap~gains now becomes
clk+l] = clkl - 2y ¥I(elkl), (3.2)

where y is again the scalar convergence factor, and the

gradient expression is

N| =

Vielkl) = & vel e? k13, (3.3)

To simplify (3.3) the filter-section output vector vik] is

defined to be v[k] 4 (vo[k], vl[k],...vM_l[k])T where the

th

compenent vm[k] is the output value of the m filter-

section at iteration k. Notice that v{k] is distinctly
different from Voo defined in (2.28). If the decision-

th

directed estimate d[k] of the k transmitted message pulse

is denoted by dlkl, then the error elk] is given by
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ekl = yIk] - alx) ={elkl, yiki>- aikl,

and upon substitution into (3.3) there results

sve{e®[k]} = E{elklyIk]}

i

E{vik] v'Ik] clk]} - E{a[k]lv(k]}. (3.4)

Although both variables e[k] and v[k] are explicitly
avallable in the equalizer and their product is easily
calculated, taking the expectation of the result on~line
is not practical. To circumvent this difficulty the
gradient (3.4) will be estimated using the so-called
"noisy" estimate method suggested by Widrow [5]. The

resulting expression is

VF(clkl) = elk] vIkl, - (3.5)

N+

which is an unbiased estimate‘since
E{elk] w[kl} = %VE(EIR]).

The algorithm (3.2) is now approximated by the easily

implementable form
cfk+1] = clk] - v elk] vik]. (3.6)

Equation (3.6} involves no explicit a priori
statistical information, but it is based on the decision-

directed hypothesis that the binary sequence of equalizer



58

output decisions closely approximates the transmitted
message sequence. It should also be noted that the
initialization procedure requires a priori information in
the form of the locally-generated initializing pulse replica.
When a priori statistical information is available during
on-line operation more accurate algorithms can be obtained,
although the gradient determination generally involves more
computation. Several such cases are discussed in B.7.

The equalizer structure developed in Chapter 2 can
now be modified for on-line operation using (3.6). Fig. 3.1
shows the complete egqualizer block diagram. All variables
shown correspond to the output sample yl[k], i.e., the
delay caused b; the channel and filter-sections is suppressed
in the notation. . The channel noise n[k] is added to the
deterministic channel output s[k] to obtain the equalizer
input x[k]. A filter-section output vm[k] is the weighted
sum of those N input samples located in the shift register
when ylk] occurs, and the weights are the filter-section
tap—gains éiven by (2.37). The equalizer output is now

given in vector form by

yIxl = { elkl, vIkl) .

The shift to on-line operation involves only two
switchings as shown in Fig. 3.1. First, the equalizer

output decisions rather than the reference generator
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output are fed back to produce the error signal in a
decision-directed manner. Second, since the on-line
computations are considerably simpler than those during
initialization, it may be advantageous to use a set of
digit&l multipliers to compute the on-line gradient
estimate in iieu of the adaptive computer used for
initialization. This is particularly true when the
initialization computation is done by a time-shared general
purpose computér. Of course, if the adaptive computer is
continuously available the second switching operation is
unnecessary.

A final design consideration inveolves the detection
of erroneous operation. One simple method for doing this
is to compare |eIk}| with some predetermined positive
threshold value €max and to reinitialize the equalizer
whenever €n ' is exceeded a given number of times in a

ax

specified period.

3.2 CONVERGENCE PROPERTIES OF THE ON-LINE ALGORITHM

Before investigating the convergence properties of
the on-line algorithm (3.6), several preliminary con-
siderations are necessary. Since the noise. s random, this
convergence must be considered in some statistical sense.
It is also mathematically expedient to model the noise as

a stationary random process with zero mean and finite
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variance. Although some forms of background noise are not
stationary, e.g., switching and impulse noise, other forms
such as thermal noise do fit this model reasonably well,
particularly if the time frame is not too long. Furthermore,
if the equalizer setting deviates too much from the optimal
setting, then the excessive-error test on the resulting
errors ¢[k] will indicate the need for reinitialization.

Taking the expectation of (3.6) under the stated
hypothesis and assuming cl[k] is statistically independent
of v[k] gives

clk+l] = clkl -y (R, clk] - 300, (3.7)

=dv

where va = R__(0) 4 E{g[k] g?[k]} is the filter-section

A

correlation matrix, Edv(n) A E{d[k] g[k]} defines a cross-
correlation vector, and c[k] now denotes the expectation of

the tap-gain vector. A channel output M-vector x[k] at

iteration k consists of the current shift-register contents,
which produce ylkl, for the first N components, and the most
recent M-N samples to have passed through the register as

the remaining components. By now defining the crosscorrela-

Tax = _
E{dlklx[k]l}, and noting that E[k}=§? x{k], it follows that R =

T T : .
F" R ,Fand ro. =F r... Under the mild assumption that the

tion matrix R . = R, (n) 4 E{gjk]g?[k]} and vector

X

signal s[k] and noise n[k] are independent, it is shown in
B.8 that R is positive definite and thus nonsingular. It

can then be shown by the same procedure as in B.4 that Lavy
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lies in the range space of Evv' and consequently (3.7) is
convergent for é = va_I Ygy+ Although this is not, of
course, the exact optimal solution of the original
deterministic algorithm (2.2), it is the optimal expected
solution of the on-line algorithm (3.6) in which the
"noisy" gradient estimates are used.

To study the convergence of (3.7) ; is first sub-
tgacted from both sides of the equation which is then
written in terms of the tap-gain error vector el[k] = cl[k] - é
as

k-

elk] = (L - v R,V F elll. (3.8)

Since R__ is a correlation matrix it is symmetric and
positive semidefinite. Consequently, all eigenvalues'{pi}
are both real and nonnegative and there exists an ortho-
normal set of eigenvectors {Ei}' Letting 0 and © denote the
index sets corresponding to the positive and zero eigenvalues
of va, respectively, a unique orthogonal decomposition

elk] = g+[k] + go[k] exists, so that <:e_+[k], _e_O[k]>= 0.

In this decomposition e[l] is written as

i€g ie®
where'{ai} are the appropriate coefficients for the basis

{Qi}. Substitution of (3.9} into (3.8) now giﬁes
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k-1 '
elk] = g+[k] + e%[k] = : o; (1-ve;) Ly t t_ x84,
: i i€0
1e0 (3.10)
The last term of (3.10) is simply,g?ll] as can be seen from

(3.9), i.e., g?[k] will converge if the convergence factor

v is chosen to insure that

max {l 1

1o I} <1, (3.11)

i

since in this case

Hetoall < ™22 flieyp, D 1L gz Hl<(lem1aall
i€d

Therefore, the condition to insure convergence of (3.7)

is found from {(3.11) to be

Yy < 2/p r

max

where

o 2 Py for all 1.

max

3.3 SIMULATION RESULTS FOR NOISY CHANNELS

To study the combined theory for equalizer initiali-
zation and on-line operation, the computer simulation used
in Chapter 2 was expanded to reflect the theoretical results
of this chapter. In particular, provisions were made for
generating a random binary sequence to simulate the trans-
mitted message, for adding gaussian noise with specified
statistics, for adjusting the equalizer tap-gains at each

bit time, and for detecting erroneous operation. The
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computer simulation is described in some detail in C.1 and
C.2.

The equalizer performance was again evaluated over
the three channels discussed in 2.6, i.e., the LPF, BPF,
and VSB channels, but the SNR was varied from the essen-
tially noise-free value of 100 4B down to 15 dB. At 15 4B
the noise standard deviation is 0.1778 and the probability
of the noise alone causing a bit error is 0.0025. When
this effect is superimposed on the distortion due to ISI,
it is apparent that the equalizer alone should not be
expected to perform well when the SNR is in this range.

In practice such low SNR situations are commonly handled
by coding, and are usually incompatible with the high
baud rate to bandwidth ratios that Justify sophisticated
equalization.

In addition to the equalizer parameter set (M,N,D)
defined in 2.6, the convergence factor y must be specified
for the on-line algoxithm. It was found by trial and error
that a good selection was 0.02, which represents 4% of the
decigsion threshold value. Larger values of y tend to
increase the bit error rate when there is noise in the
channel, and can lead to divergence if the increase is too
large. On the other hand, smaller values result in slower
egqualizer convergence rates. The transmitted message
was simulated by repeatedly generating a 255 bit pseudo~

noise (PN) sequence, and the error criterion was taken to
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be the averagé MSE ez[k] after 500 iterations of the on-line
algorithm. In determining e[k] the transmitted bit dlk} was
used in place of the output device decision aIk] for pro-
gramming convenience. This substitution has no effect when
there are no bit errors, and the effect is considered
negligible for the SNR range considered. Data in which
one or more isolated bit errors occurred is indicated by
an asterisk in the appropriate figures.

The first parameter studied was the delay (D)
between the arrival at the equalizer of the first precursor
of the channel unit-pulse response and the occurrence of
the locally~generated reference pulse for initialization.
Since D depends on such nonlinear effects as the channel
and filter-section phase characteristics, it is impractical
to determine the optimal value analytically. As in 2.6,
simulation runs were made for a relatively large egqualizer
structure, (32,20,D), and for one for which the egualizer
shift-register length N equaled the channel unit-pulse
response, i.e., the structure is (M,L,D). The simulation
results are shown in Part (a) of Figs. 3.2, 3.3, and 3.4,
from which the effect of D as well as channel SNR at 20 dB
and 40 dB can be seen. All three channels were equalized
successfully for a SNR of 30 dB or greater using the larger
equalizer structure. However, the smaller structure was

unable to equalize the BPF channel, and the larger structure
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was ineffective on this channel at 20 4B; consequently, a
value of 30 dB vice 20 4B was used. The curves in Figs. 3.2
and 3.4 indicate that there is no significant improvement
in performance for the larger structures provided D is
properly chosen, and in fact for the VSB channel the smaller
structure perférms slightly better. However, there is a
much wider range of feasible values of D for the larger
structures. Thus the possibility of poor equalization due
to an inaccurate choice of D with a small structure must
be weighed against the complexity and cost of realizing a
larger structure. Since the accurate selection of a
nominal value of D depends on knowledge of the channel, a
larger structure is particularly suitable when the channel
is relatively unknown, or may be expected to change
significantly after initialization. Based on the c¢on-
sideration of 2.6 and the experimental results, nominal
values for D of 0.50 N, 0.25 N, and 0.80 N were selected
for the LPF, BPF, and VSB channels, respectively.

The next parameter studied was the shift-register
length (N). The result of varying N with M set to 32 and
D to the corresponding nominal value is shown for each
channel in Part (b) of Figs. 3.2, 3.3, and 3.4. For high
SNR values performance tends to either improve or remain
nearly constant with increasing N. However, with the LPF

channel the performance degrades slightly with N > 8.
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This may be attributed in part to the increased number of
arithmetic operations, each of which is reduced in accuracy
by the noise; that is inherent in the larger structures.
It is alsoc evident for the LPF and VSB channels that, for
SNR 2 30 dB, there is & lower value of N above which there
is little change in perfqrmance. As previously noted,
this is important since the amount of computation required
for initialization is reduced considerably with N. Again,
however, it should be kept in mind that small values of N
make the selection of D more crucial. It is interesting to
note that‘for the LPF channel equalization was achieved
when the SNR was 20 4B with a shift-register having only
three taps.
' Part (c) of Figs.\3.2, 3.3, and 3.4 shows the effect
of SNR on equalizer performance when both a single
initializing pulse and an average of four such pulses were
used by the equalizer to identify the channel during
‘initialization., It is clear in each case that the use of
multiple initializing pulses is guite benefitial where the
SNR is low and the noise represents a significant percen-
tage of the unit-pulse amplitude. This is not the case at
SNR above 30 dB, so little advantage results from using
multiple initializing pulses.
| The LPF and VSB channels were successfully equalizeé

with a 20 dB SNR; however, 30 dB was needed before the BPF
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channel was equalized without bit errors. As can be seen
from a domparison of the channel unit-pulse responses shown
in Part (&) of Figs. 3.2, 3.3, and 3.4, the BPF channel
‘has more overshoot than the other two, and also has a
number of large, negative postcurscors, Thus it is expected
to be the more difficult channel to egualize. The fact
that no value of N was reached above which the equalizer
performance remained fairly constént suggests that better
egualization ié attainable for larger equalizer parameters
than the maximum of (32,22,D) permitted by the paiticular
computer simulation used. There are a number of tradedffs
in selecting the equalizer parameters which can now be
summarized. First, selecting large values of M and N gives
a larger range of values from which to select the nominal
value of D, which is particularly important if little is
known about the channel a priori, On the other hand,
smaller values of N greatly reduce the amount and time of
computation required for initialization, while smaller
values of M reduce the number of on-line multiplications
required at each algorithm iteration. These considerations
can alsc be thought of as a tradeoff between the accuracy
desired from the equalizer and the cost that must be paid

to achieve it.



CHAPTER 4
CONCLUSIONS AND RECOMMENDATIONS

"The design of a linear digital equalizer for reducing
ISI on digital communication channels has been developed
and evaluated. This design includes an initialization
algdrithm empldying a digital computer, as described in
Chapter 2, and a simplified on-line algorithm, developed
in Chapter 3, which requires only a set of digital multi-
pliers. The effects of the main egualizer parameters
" (M,N,D) and of channel SNR were studied by means of a
digital computer'simulation for three baseband channels.
All channels were equalized succesafﬁlly for a SNR of
30 aB or gfeater, and two were equalized at 20 dB.
Considering a digital computer as a sophisticated digital
filter, the equalizer simulation is quite realistic except
for the relatively long word length of 36 bits,

There are a number of considerations to be taken
into account when realizing an equalizer of the type
presented here. First, the maximum éhift-register length
ﬂ is clearly limited by the digital computer used for the
initialization computation. The amount and speed of

digital hardware available for the shift register,
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multipliers, and summers limits N, and M as well. Another
important consideration is the determination of a nominal
value for the delay D. Good estimates of D will generally
require some a priori knowledge of the channel character-
istics or some preliminary expefimental data. An alter-
native procedure, which might be necessary with a completely
unknown channel, is to iterate the initialization procedure
several times using different values for D, If the nominal
value of D is uncertain, or if considerable variation is
expected in the channel unit-pulse response, then a large
value of N will make the egualizer performance less
sensitive to D. The nominal value of D ranged from 0.25N
to 0.8N depending on the choice of channel model. A third
design consideration is the test for excessive error
indicated in Fig. 3.l1. Since single bit errors are highly
probable when the SNR is low or the channel badly equalized,
some type of averaging is desirable to avoid an excessive
number of reinitialization commands. This could be done,
for example, by keeping a running count of the number of
times |E[k]| exceeds a predetermined limit €nax °Ver the
last m iterations and reinitializing only if it is
exceeded n < m times, where m and n are known integers.
Such a scheme would also prevent short bursts of impulse

or switching noise from causing a needless reinitialization.

This scheme could be easily implemented with digital
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hardware, as could more sophisticated schemes which might
be devised for particular installations.

There are a number of interesting areas which could
provide motivation for further investigation. One
particularly germane area is the equalizer performance on
time-varying channels and the effect of the convergence
factor vy on this tracking. The computer simulation of
App. C 1is easiiy modified for such a study. A second more
theoretical area involves reduction of the amount of
comﬁutation regquired for initialization. More efficient
algorithms for finding eigenvalues and eigenvectors could
perhaps be devised for particular equalizer installations.
The use of a suboptimal procedure to estimate the initial
equalizer settings might also reduce the initialization
time considerably. The third area to be suggested concerns
the effects of short word lengths and the related problems
of truncation and round-off error. There has been some
interesting theoretical work in this area [13], and
experimental simulations could be done using a minicomputer
for which a typical word length is 16 bits. A fourth area
for further investigation is the possibility of further
simplifying the on-line algorithm by using only polarity
information of some of the variables. This type of scheme
has been called "hybrid" by Hirsch and Wolf [10] who studied

.it for transversal equalizers.
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A final comment concerns the feasibility of physically
realizing an equalizer of the type developed herein. Al-
though the equalizer requires a considerable amount of
computing equipment for initialization, the constant
improvement in integrated circuit technology and the
development of faster, more complex components make the
production of such equipment appear feasible. Furthermore,
the proliferation of time-sharing systems and inexpensive
minicomputers makes large amounts of computing facility
widely available. Thus the equalizer design presented

herein is both theoretically and physically feasible.



APPENDIX A
MATHEMATICAL FUNDAMENTALS

This appendix will provide both review and
supglemental mathematical material. It deals first with
selected topics from linear algebra and operator theory
on finite dimensional inner product spaces. This theory
is then specialized to matrices on real and complex vector
spaces, with the subject of pseudoinverse matrices covered
in a separate section, Finally, the classical z—trgnsform
is briefly discussed and some useful properties are

derived.

A.l LINEAR VECTOR SPACES AND OPERATORS

A mathematical field F consists of a set of elements
called scalars which satisfy a particular set of axioms [35].
The only fields used herein are the sets of all real and

all complex numbers. A linear vector space over a field F

is denoted (U,F) or just U when F is clearly understood.
The elements of U, ecalled vectors, also satisfy a certain
set of axioms [36] and are related to each other and to
the scalars by the operations of vector addition and scalar

multiplication. Linear vector spaces are also called
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vector spaces or linear spaces. Vector gpaces are called

real or complex according to whether the field is reai or
complex, respectively. A set of vectors {ﬁl' 52""5K} in
U spans U if every vector y in U can be expressed as a
linear combination of the set, i.e., if there exists a set
of scalars‘{al, uz,...aK} such that

K

Y—"E"‘kik .

k=1
A set'{ﬁm} is linearly independent if the only way that their

linear combination can be made to equal zero is for all of
the scalar multipliers to be zero. Any linearly independent
set that spans U is called a basis of U, and the number of
elements in.any basis is called the dimension of U. Only
vector spaces of finite dimension will be considered here.

Let (U, F) and (V, F} be vector spaces with o, 8 being
arbitrary scalars in F and w, X, y arbitrary vectors in U,
Suppose that to each element of U there is assigned a‘unique
element of V, then the collection of these assignments is
called a map T from U into V. Maps are also called functions,

transformations, or operators, and these terms will be used

interchangeably.

The identity operator I is defined by I x = x, and a

map T-1 satisfying the relation T'_J'T'«:»TT_1 = I -is called the

inverse of T. The inverse operator may not exist; however,

when it does then T is said to be invertible. The set of
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scalars A for which the map (T - X I) is not invertible is

called the spectrum of T and will be denoted ¢[T]. When T
satisfies the relation
Tlaox+ By) =aT(x)+ 8Ty

it is called a linear operator. It is interesting to note

that a field is a vector space, and also the set of all
linear operators from U into V forms a vector space in which
each linear operator is itself a vector gpace [37]!

There are many important maps between vector spaces.

An inner or scalar product is a scalar-valued function of

two vectors, denoted <§_, y_> , Wwhich is defined by the
following three axioms;

RS D R CED

ii, <a5+8y_. _W_> =a.<§, 1_;1_> + B <§Lr y_>

iii, <§, §> 2 0 with equality only when x = 0.
‘A vector space with an inner product defined on it is

called an inner product space. The inner product determines

the relative directions of vectors, and two vectors are

orthogonal if <_:_<_, y_> = 0. The notion of distance in

vector spaces is indicated by a nonnegative scalar-valued
map called a norm, |] x| , which is also defined
axiomatically by
Lo ffexll = ol (x|
oo qfz+xfl<lxll + Hedl
iii. |l§ 1 > 0 with equality only when x = 9.



79

A set of vectors {x_} is an orthonormal get if [fx, [l =1

for any m and any two distinct vectors are orthogonal. A

vector space with a norm defined on it is a normad vector

space. For the finite dimensional vector spaces considered
herein it will be convenient to define the inner product of

T ‘ T
two vectors, say X = (xl, xz,...xK) and y = (yl, yz,...yK) ;
by

K
(xreda L ox ve =X ¥,
k=1

which then defines a norm of x by

Hxlls /< xox)

A map T, not necessarily linear, is called convex if
for every value of a satisfying 0=2q=1, it has the following

property;

T([L -a]l x+ay) €(1-a) T(x) +a T(y.

If the ineguality is striect, then T is strictly,éonvex.

For every linear operator T on an inner produdt
gspace U there exists another operator TA called the

adjoint of T defined by

{tw, gy =<x ™) .

If T = T then T is called a self-adjoint operator, and if

T TA = TA T then T is a normal operator. A projection

operator is one which is both self-adjoint and idempotent,
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i,e., T T =« T. Any map for which the adjoint equals the

inverse is a unitary operator.

A final important notion deals with the geometric
interpretation of a map T from U to V. The set of elements
x in U such that T x = 0 is called the null space, or some-
times the Kernel, of T and is denoted N[TJ.' The set of
elements y in V which can be writtén y =T x for some x in

U is called the range space, or image, of T and is denoted

R{T). The null space of T is related to the range space

of its adjoint TA in the following way: every element

in N(T] is orthogonal to every element of R(TA). To show
this note first that x belongs to N{T} if and only if

<x, X >= 0 for any y in U, and since <X' T5> =

<TA§_; X>then x is orthogonal to every w in U such that
W o= TA y for some y. But this set of w's is just fhe range
space of TA, hence the desired result is proven.

A useful conseguence of this last result is tha£ the
range spaces R(T?) and R{T® T) are identical. This can be
proved indirectly by first noting that if x is in N(TA)
then (T T2 K = T(Tag) =T(0) = 0 so x is also in N(TR ).
Conyersely,if x is in N(TA T) then |{Tx || 2 - <Tgc_, T§>=
<§_' TA Tg>‘=<:_c,g_>= 0, so that Tx = 0 and x is in N(T).
The proof is completed by noting that every elément of R(TA)

and R(TA T) is orthogonal to every élement of N(T) and
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N(TA T), respectively. - Hence R(TA)'ana?R[TA'T) must then be

identical.

A.2 MATRICES

An M x N matrix T is a rectangular array of elements
having M rows and N columns; the element in row m and column
n is denoted by ton and the entire matrix T is sometimes ~
denoted by [tmn]. By defining the sum of two matrices and
the muitiplicatioﬁ of a matrix by a scalar in the usual way,
it can be shown that the set of all M x N matrices, with
elements in the same field F, forms a vector space [38].
The way that matrices are used to represent linear

operators is made precise by the following Représentation

Theorem [39]:

Let (U, F) and (V, F) be real or complex vector
spaces with bases {u;, u,,...u.} and {v), Vgree Yyl
respectively, and let T be a linear map from u

to V. Then, with respect to these bases, T is
represented by the M x N matrix T = [t ,] where

the elements of column k of T are the components

of T(w,) with respect to the basis v}

when M = N then T is a square matrix and U is identical
to V¥, i.e., T maps U into itself. If M = N and
'{il, ﬁgr"'ﬁﬂ} is another basis for U in which i represents

T, then there exists a nonsingular square matrix P that
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relates these representations according to i = p-l

i3

P.

Such a mappihg is called a similarity transformation, and

the matrices T and i are said to be gimilar. Thus similar

matrices represent the same operator in different bases.
For a square matrix T of order N the spectrum

o[T] is that set of scalars for which (T - X I) fails to

be invertable, or egquivalently, for which the determinant

det(T - X I} = 0. This last equation is a polynomial in

A of order N, so that GEE] contains exactly N elements

which may not be distinct. These elements are called the

eigenvalues of T, or sometimes proper or characteristic

values. The spectrum is a property of the abstract
operator T and does not depend on the particular repre-
sentation, e.g., T or_i. This can be seen by recalling

-1

that T = P™" T P so that

det(T- A 1) = det(et zp- 2 P71 P
= det(P™l) det(P) det(T- A I) = det(T- A I).
Any nonzero vector.p such that (T - A I) p =0, with X in

o[T], is called an eigenvector of T corresponding to the

eigenvalue A.

There are a number of special matrices that will
prove useful herein, some of which represent the various
operators defined in Section A.l. The square matrix
representing the adjoint TA of an abstract linear trans-

formation T on vector space U is the complex conjugate



o

83

transpose of T denoted gﬁ as can be seen from the following,
v v
LT * Lt S - S
{z2yd=%x @xn* =x2y¢ ={Ixy¥)-

H

When T is self-adjoint T = T° and T is called a hermitian

matrix. If the vector space U is real rather than complex,
then 2? = I? and T being self-adjoint implies T ='§?. Such

a matrix is called real symmetric. The eigenvalues of an

N x N hermitian matrix T are always real, and there always
exists a set‘{gm} of N linearly independent eigenvectors
which are orthogonal [4g]. In fact, since when p is an
eigenvector then p/ ||p|| is too, then the set {p } can
always be taken orthonormal. Writing the eigenvector equatien

TP, = Am B form= 1, 2,...N in matrix form gives
2[21' Ez"tuoEN] = [El’ Ez,oouEN] diag(}‘l' )LZ'.-.A‘N)
or, more concisely in terms of the matrices § and A,
TEP=EA

Furthermore, since <Em' En> = ‘Smh and a similar relation

exists for the rows of P [41], then gfl = g? which implies

P is a unitary matrix. Conseguently, the similarity

transformation A = g_l T P that diagonalizes T becomes

A = pf

)

TP (a.1)

r

which is c¢alled a unitary transformation. Hermitian

matrices can be easily decomposed into their gpectral

representations by using unitary transformations in the

following way,
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N
T=P AP = I: Ao By B / (A.2)
m=1 '

When the vector space is real and thus T is real symmetric,
the complex conjugate transpose is simply the transpose.
Results analogous to the hermitian case exist for the
general case Where T does not have N linearly independent
eigenvectors, but the theory is considerably more involved
[42].

A projection operator is represented by a projection

‘matrix T which is hermitian and has the idempotent property

Tz = T. It can be shown [43] that all eigenvalues are

either zero or unity, and that the eigenvectors of the
unity eigenvalues span the subspace into which the operator
projects. Thus any. projection operator is similar to the
block diagonal matrix diag(llg} = diag(l,l,...l,'o,...O)
where the sgquare matrices I and 0 are of orders equal to

the number of unity and zero eigenvalues, respectively.

A gquadratic form is a real-valued function of N real

variables {x_} defined by

N N
F(xl, xz,...XN) = r : Ton *n *n | (A.3)

m=1 n=1

which can also be written as
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N N
2
. :rmn X + : : (rmn+rnm) X Xg-
m=1 m=1 n<m

The value of this last expression remains unchanged if the
substitution I 1/2-(3:mn + rnm) is made. By defining
the real symmetric matrix Q 4[q 1 and letting x = (x;,

xz,...xN)T, (A.3) can be written in matrix form as
Fx) =x gx=<x 2x) .

In the more general complex case when Q is hermitian the

function is still a gquadratic form since then

N N
i 2 *
F‘x)*: qn'unxm"'z E(qrrm+qmn)xmxnr
=] m=1l n<m

. *
which is real due to 9n + 9pn = 2 Re(qmn).

A real symmetric matrix Q is positive semidefinite

if, for any choice of x, the gquadratic form F(x) -—-—<5, Q _:_t_>
is nonnegative. If F(x) = 0 only when x = 0 then Q is

positive definite. The eigenvalues of Q are related to

the definiteness in the following way; if Q is positive
semidefinite all eigenvalues are nonnegative, while all are.
strictly positive when Q is positive definite. If Q is
positive definite it is invertible.

The final type of special matrix to be considered

in this section is the Hadamard matrix, which has orthogonal

rows and columns, and is binary in the sense that all
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elements are either 1 or -1, Except for the 2 x 2 case

J__)E
o>
-

1 -1

Hadamard matrices may exist only for orders which are
integer multiples of four, and have been constructed for
all such orders up to 100 [44]. For those orders which are
also powers of two, the construction is done recursively by

starting with H, and using the iterative relation

—Ek

Ek+1 4 l .
The construction of other orders involves the determination
of guadratic residues Fﬁs] and is thus somewhat more involved

in theory but easily_implémented using a digital computer

as discussed in Section C.2.

A.3 THE PSEUDOINVERSE MATRIX

Before defining the pseudoinverse matrix a number of
preliminary notions are necessary. Let the M x N matrix X
represent a linear map from a vector space U to a normed
vector space V of dimensions N and M, respectively. Assume
that the field is the set of real numbers and that M > N.:
Then all eigenvalues of‘the real symmetric matrices‘gﬁa

and §§? are ¥feal and nonnegative. The real property follows
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from symmetry; to show that §T§ has nonnegative eigenvalues,
let v = X u for some arbitrary vector u in U. Then

uTT

0 < [lwlf®=y"y=u" xxu

r

80 §?§ is positive semidefinite from which the desired

result feollows. An analogous procedure holds for 55?. If

the rank of X is R £ N, then it can be shown [46]

that both E?x and §§? have exactly R identical nonzero

eigenvalues, say'{ulz, uzz,...uaz}, with all other

eigenvalues zero. Furthermore, from symmetry it follows
that g?g and gg? each have a set of orthonormal eigenvectors
which will be denoted by the sets {f;, £,/...E} and

A4y, Y5009y}, respectively. These sets are ordered so

2 form=1, 2,...R. The

that im and ym correspond to Mo
rectangular matrix X can now be expressed [47] in the

generalized spectral representation

R .
5:2%%‘513, (A.4)
k=1

When X is real symmetric, hence sguarerthen (A.4) reduces

to (A.2). This cart be shown by noting that §§? = XX = X°

and, from the Frobenius Theorem the nonzerc eigenvalues of
X are'{ul, uz,...uR}. If p is a normalized eigenvector of

X corresponding to u, it is also an eigenvector of E?
correspondihg to uz. To show this note that (X - u I) p=10
implies that (x* - w’L)p = X (X'p) ~nXp=X [(X-uD p

= 0. Consequently, for this case "{p_m},'{g_m}, and {ym} are
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all equal and the desired result follows.

.....

The N x N pseudoinverse matrix X -1 of X is now defined

by

;}_{__Ié E uk-lg—ky”-k . {A.5)

One important application of this definition can be seen

by considering the matrix equation X u = v. If v belongs

to the range space of X then an exact sglution exists, but
is unique only when X is nonsingular in which case it is
given by the usual inveraelgfl as u = X' v. Otherwise
there are more linearly independent equations than unknowns
and an exact solution does not exist. In either case the
pseudoinvefée solutien u =X % v is the unigque best solution
in the sense that, for any other posaible solution ﬁ, it can
be shown [48] that || X u -v|| € |lxd-v|l . Finally,
there are two other properties of the pseudoinverse that
will prove useful, both of which are easily proven from the
basic equations (A.4) and (A.5). The properties are

( §§-I )T = §§"I and XX T X = X. Together they imply that

(xxty = x7L (A.6)
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A.4 THE STANDARD Z-TRANSFORM

A thorough treatment of the z~transform is found in
Jury [49), and its use in the design of digital filters is

diécussed by geld and Radex [50]. The z~-transform is a

linear map from a vector space of sequences, f = {fm}, into
a vector space of functions F(z) of the complex variable z.

It is defined by

F(z) = ¥ £z, (A.7)
k=0

which is a power series in 2”1, thus z~! is taken within the
radius of convergence of the power series. Multiplying

1

F(z) by z - has the effect of shifting the corresponding

sequence'{fm} by one index as is seen from

27t F(z) = E £ g~ (k1) Z £ z 1
k=0

“ne=l

Consequently, z_l is known as the unit delay operator.

The inverse z-transform can be obtained by multiplying both
m~1

sides of (A.7) by =z ; integrating around a c¢losed contour
that encloses the origin of the z-plane and applying the

Cauchy integral theorem to obtain

oQ

1 ~ {k~m+1) _

k=0

It

i%ri' § Flz) 2% taz
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When the sequence'{fm} represents a stable physical
quantity, for example a sampled voltage waveform, then it
must not diverge. If F(z) is rational and contains terms
of the form z/(z-a), then stability requires that [a] < 1,
or equivalently, that all poles of F(z) lie within the unit
circle of the z-plane. Since this result can be extended
to all stable sequences, the unit circle is the smallest
" contour that always encloses all singularities of F(z);
consequently, the unit circle will always be taken as the
path of integration in the z-plane.

There are two important properties which will be

used extensively herein; namely, the multiplication

relation and the Complex Convolution Theorem, known also
as Parseval's Theorem, Multiplication in the z-transform

domain is given by

H(z) = F(z) 6(z) = . Y f.9, g~ (m+n)
=0 n=0

so that from (A.7) it follows that

k

n=0 .

This last expression is the discrete convolution of the
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sequences {fm} and‘{gm}. The Complex Convolution Theorem
can be obtained by consldering the sequence'{dm} obtained
as term~-by-term products qf the two sequences‘{em} and

{fm}, i.e., dk A e £, The z-transform of'{dm} is

0 [+

D(z) = E eksz_k = E ékz-k Z—-—iLr]a-iF(v) vk—ldv
=0 k=0

o0

=%§F(v) : e‘]\;(z/v)"k v lay

-2—1];—5- § r(v) E{z/v) v'ldv, : (A.9)

which is known as the complex convolution of E(z) and F(z).

A particularly useful special case is obtained by first

letting z = 1 to obtain

- 1 -1
}: e f, = ﬁ-j-§F(v) E{(1/v)v —av,

then setting Ek = e for each k, and finally replacing the

dummy variable v with z. The result is

[++]

:'ekz.-'-ﬁ%-—' E(z) E(z 1)z
k=0

1 az. (a.10)

This equation reduces to the classical form of Parseval's
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Identity when the path of integration ig the unit circle.

This corresponds to letting z=el®' which gives

* | T
r ek2 = Z'TJ:I'- f E(jw)E(-ju)dw ,
k=0 LA

where E(jw) is the Fourier transform of the continuous

function e(t) from which'{em} is obtained by sampling at
' the normalized rate of 1 sample per second. Equivalently
w can be considered as an angle defined by w = QT, where
¢ is the actual radian frequency and 1/T is the sampling

freguency.



APPENDIX B

SUPPLEMENTARY RESULTS FOR CHAPTERS 2 AND 3

A number of statements from Chapters 2 and 3 are
proven in this appendix. Although all of the proofs are
important, inclusion in the chapters would have distracted
from the chaptér continuity. Most results are given in
the "statement-proof" form, and the section from which the
statement was taken is found in parenthesis after the proof
number, e.g., "B.l (2.2)" indicates that the first proof in

Appendix B is of a statement in Section 2.2,
B.1 (2.2) The matrix A defined by

1

am = 23 § X2 Fp@ FGTH x67 e
is hermitian and positive semidefinite.
Proof: By letting z = ejw it follows that
T
ann = 725 J XWX (-30) F (G B, (-30)3
-
- ,
* »
- 5 [ 1x0w)? Rowe gua = a7,
=T

93
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which implies that A is hermitian. To show positive semi-

definiteness let ¢ be an arbitrary M-vector, then

e’ acs= % f_q_T v(z) vi(z™t) ¢ 27t az.

Since ¥(z) = gT z(z), it follows that

T _ 1 -1, -1
gég—miy(z)ﬂz)z dz
w
1 . 2 .
= 5= J'| Y{juw) | “ aw > 0.
-7

Q.E.D.

B.2 (2.3) The matrix A defined by taking Em(z) =z ™ in

(2.5) is positive definite.

Proof: Referring to Fig. 2.2, the filter output can be

written as

M-1 | M-1
Y(z) = z: Sn Fm(z) X(z) = I: c. 2 | X(z)
m=0 m=0
= C(z) X(z),

Where C(2) is defined to be the term in brackets. Using

this notation the quadratic form cT

A ¢ can be written

i-%-).-fy(z) viz™Yy 271 4z

ja
I 2
[2
]

m

7 f lewnl 21 xgul 2 a.
-

it
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Now C(jw) is a linear combination of M complex exponentials,
and hence must'always be nonzero on any finite interval
unless ¢ = 0; furthermore, the input signal is converted to
digital form by an A/D converter operating at a sampling
rate which is at least twice the highest éignal frequency
in accordance with £he uniform sampling theorem. Conse-
qguently, the spectrum X(jw) must be nonzero on some
interval of the primary region [-w,7], and therefore,

¢’ Ac >0 for c #0 and & is positive definite. Q.E.D.

B.3 (2.3) One-step convergence can be obtained for the

transversal equalizer using the more general algorithm
clk+1] = ¢lk] - 1/2 T{k] vJI(clk])

where [[k] & diag(y k], ¥y Ikl ...py kD).

Proof: A derivation analogous to that of (2.14) for this

new algorithm gives

k-1 |
elk] = | | tz - rri1.a) elor” -
i=0 '
Letting the definitions of A and Q remain unchanged, the

result corresponding to (2.15) is

M-1

‘ - k-1
T o 2 % . 1*“[ L T
=0 i=0
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which reduces to zero on the first iteration upon adjusting
the diagonal components of T'[0] to gatisfy Tm[O] = Am_l

for m = O'l’oo-M'lo
Q.E.D.

B.4 (2.4)For equation (2.20), the vector b belongs to the
range space R{A) of A,

Proof: Since b = P

F, it is sufficient to

([

band A =E

~

show R(A) = R(E?). Since A is nonsingular and real

~

symmetric it has a square root g}/z which is also nonsingular
and real symmetric; consequently, A can be written as

A= (&}/2E)T (él/zg) & g7t §. Also, b can be written

~ ~

b = E?(&l/z éfl/z) b =g’ (&—1/2 b). Upon observing that

ST is the adjoint of S it follows from A.l1 that R(g?) =

R(g?g} = R(A). However, b is obtained by applying

T2 g? é}/z to the arbitrary vector éfl/z b and since

wn

1/2 i3 one-to-one, then R(§?) = R(E?). Consequently,

[EBR

R(ET) = R(§T) = R(A). Q.E.D.

B.5 (2.5) The map P = XX © defined by (2.33) is a projection
matrix, i.e., it is both self-adjoint and idempotent.

Proof: First, P is hermitian since it is real and

T
N-1 N-1

=L tatn| "L fate "%
m= m=0
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Furthermore, since

N=-1 N-1
R D T N B BT
m=0 n=0

]
|

N-1 N~1
= L L tnmin
m=0 n=0

then P is also indempotent, hence P represents a projection
operator., Q.E.D.
4 L3 T . L] .

B.6 (2.5) The matrix ¥" P ¥ = diag{Iy IQM—N) .

Proof: The result follows directly from the fact that'{ﬂm}

is an orthonormal set:

by"
T

2 N-1 .
T T
Fey=|. L b ¥n [Yor ¥1oeed ]

) =0

8 T

—]'P-M;j-]:

L- -

Iy | °

a = diag(Iy | Oy -
0 | Oy
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B.7 (3.1} If a priori statistical information is available
for evaluation of the grgdient (3.4), then the tap-gain
adjustment algorithm (3.2) reduces to other well-established
algorithms.

In the first case it is assumed that the noisge
statistics are unknown, the transﬁitted signal and noise
are uncorrelated, and that statistical information is known
about the transmitted sequence {d[k]}. Under the decision-
directed hypothesis that dlk] = dlk} for all k, the
gradisnt (3.4) becomes

1 vF(elk)) = Blylkl v'IKI} eIkl - gy

. where clk] is assumed independent of v[k] and
r,, = o, () & Blylk] dlkJ} = BT E(x[X] alxl}.

The result, known as the Griffiths Algorithm, was considered
by Griffiths‘[51] in connection with antenna-array signal.
processing, and some convergence results were developed.

For the second case it is assumed that complete
statistical information is available a priori, so thét (3.4)

becomes

[

> V3 (clk]) = R, oIkl - rao.

with Lav defined as before and the M x M correlation matrix
. _ A - T .
R,, 9iven by R _ = R, (0) = E{z[g] v [k]l}. The result is

the well-known steepest descent algorithm

clk+l] = elk] - ¥ (BVV clk) - Edv)'
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B.8 (3.2) Under the stated hypothesis the matrix Rox is
positive definite.
Proof: Since x[k] = s{k] + n[k] for all k, then the
signal and noise vectors s[k] and n[k], respectively,

corresponding to x[k] are defined compcnent~wise by

x [k]

s{k] + nlk]. It follows from the independence of
signal and noise that Bxx = E {s[k] g?[k]} + E'{g[k]‘g?[k]}
= Bss + Bnn' Now Bss is a correlation matrix, hence positive
semidefinite; also R., can be diagonalized by a unitary
matrix Q to give g? Exx Q = ﬁnn' However, upon defining
m 4 QTE a new representation of the noise results with

. . T T _ AT _
crosscorrelation matrix E{Q n(kln [k]g} = Q Bnn Q= an,
i.e., the crosscorrelation matrix of m[k] is diagonal.
The elements are all variances, thus are all positive,

and it follows that R = and R _ are positive definite.

Q.E.D.



APPENDIX C

COMPUTER STIMULATION

This appendix contains a detailed description of
the digital computer simulation written in FORTRAN to
study the equalizer design which has been developed.

The simulation consists of a main routine, called MAIN,
and a number of subroutines, which together simulate a
transmitter, digital communication channel, and the
equalizer. In addition to using subroutine GRAPH for
producing graphical output of the egualizer performance,
MAIN uses two other subroutines, namely FLTSET and HADGEN,
to compute the initial tap-gain settings in accordance
with (2.37). Each of these in turn calls two or more
subroutines as shown in Fig, C.l. MAIN is described in
C.1l while the remaining subroutines are covered in C.2.
Two numerical methods for finding eigenvalues and eigen-
vectors of real symmetric matrices are described in C.3.
One is used by the IBM library subroutine EIGEN [52] and
the other by the UNIVAC library subroutines TRIDMX, EIGVAL,
and EIGVEC [53]. It is interesting to note here that,
since a modern digital computer is actually a very
sophiscated digital filter in itself, then the simulation
of the equalizer is quite realistic, although not very

efficient from a hardware standpoint.

104 .



MATN

'

FLTSET HADGEN GRAPH
MODE EIGEN TRIDMX EIGVAL EIGVEC DOUBLE QADRES
Fig., C,l1. Hierarchy of Subroutines

TOT
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C.1 PROGRAM MAIN

The program MAIN can be subdivided into two basic
parts. The first simulates the transmission of an
initializing pulse through the channel and performs the
equalizer initialization based on the theory of Chapter 2.
The second part generates the transmitter message sequence
and uzses the initialized egqualizer to track the channel.

A flowchart for MAIN is shown in Pig. C.2, and the program
listing in Fig. C.3. Por reasons of continuity a few
parameters, usually pertaining to small blocks of code,
are set locally as they occur rather than at the beginning
of the program. The listing of key parameters found in
Table C.1 will be helpful in idéntifying and using these
variables.

A concise description of the program is found in
block 0. The program is designed to repeat until no
further data cards are found, at which time it terminates
normally. After reading the simulation parameters and
initializing v&riables in blocks 0-30, the channel output
sequence (X) is formed in blocks 40 and 50 by passing an
initializing pulse through the noisy channel (CHﬁL, G,
CNOISE). Block 60 calls the subroutine FLTSET which returns
in common the eigenvalue and eigenvector information (FSET)
for.céméuting t2.37}1,1n block 70 an M x M Hadamard matrix

(H) is formed by'subroutine BADGEN, and the matrix (F), whose



MAIN

0
DO 500 I=1,15
END =501

Y

READ CHANNEL
AND EQUALIZER
PARAMETERS

'

INITIALIZE
VARLABLES

'

PRINT DATA FOR
SIMULATION

40,50
FORM CHANNEL
QUTPUT SEQUENCE

103

: Y

COMPUTE FILTER-SECTION
SET-UP MATRIX

(CALL FLTSET)

__

GENERATE A HADAMARD
MATRIX OF ORDER M

(CALL HADGEN)

20,30

READ CHANNEL UNIT-PULSE
RESPONSE, SET TRANSMITTER
FOR A UNIT PULSE

80 ‘+

SET FILTER-SECTION
TAP GAINS

O

Y

SET INITIAL TAP-GAINS,
PRINT TAP-GAIN VALUES

Fig. C.2. Simulation Program MAIN
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INITIALIZE

'

DO 112 K=1,MSGLTH

PRODUCE MESSAGE PRODUCE MESSAGE
BIT WITH RANDOM BIT WITH PN
NUMBER GENERATOR SEQUENCE GENERATOR
150 YES
\ EXCESSIVE
ERROR
TRANSMIT
UNIT-PULSE ,
NO DIAGNOSTIC
ADJUST TAP-GAINS

(59

1

130
PRINT  OUTPUT DATA
PASS TRANSMITTED vt

PULSE THROUGH NOISY
TIME-VARYING. CHANNEL

# ( CALL GRAPH >

140
PASS CHANNEL OUTPUT ' @
THROUGH EQUALIZER ﬁ

S D

Fig. C.2. (Continued)
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[rhME NS TON DU32) o X321 e (52) hCHNLI3Z) P IREGIL0) v CL32) 0

1 wid2) sR{A2)iF (32¢032) s DELC(32) » TRANS(32) rPLOTY (OH)
IMTEGER DELAY rUMAXe TRTYPE  TOTLER

COMMORN H(32¢32) 'FSET(32+32)

EWwUIVALENCE (OLLC (1) pCHNL (1) pH{12 1)) s {TRANS (1} H(1r2))
1 ¢ (PLOTY (1) ti(103))

000 THIS PROGRAM SIMULATES AN ADAPTIVE DIGITAL EGQUALIZER
AND ASSOCIATED BASEBAND CHANNEL. THE INITIALIZATION
IS PERFORMED IN BLOCKS 10-90+ AND ON-LINE OPERATION
IS SIMULATED BY BLOCKS 100-150.

OO C OO

THE DATA CARD FORMATS ARE AS FOLLOWS

CARDL M{IS)s NULH)e OELAY(IS)e MSGLTH(IS)» TRTYPE(AB)

CARU2 CMEAR(FLU.5)e CSTOEVIF10.5)r CVFCTR(F10.5)¢ NINIT(ID)
CARD3 CHANNEL IMPULSE RESPONSE LENGTH NG(IS)

CARDY CHANNEL IMPULSE RESPONSE G(8F10,5)

C REPEAT ENTIRE SIMULATION UNTIL DATA RUNS OUT
S LU 500 II=1e15
READ (He 1rEND=501) MeNeDELAY s MSGLTH) TRTYPE»
1 CMEANCSTUEV»CVFCTRYNINIT
1 FORMAT (U415¢4XeAG/3F1045015)

C IMITIALIZE VARIABLES AND ARRAYS
LC 10 I=1le32
CHNL () =U
c(l)=u
ot1i=u
Gll)=u
X110
VO 11U J=l.32
FlL,J}=0
H(LsJ)=U

10 CONTINUE

“ SET THE HNOISE GENERATOR PARAMETERS
1A=1l27329
In=5660387
IC=2+%20
REALC=IC
CVARZ=CSTOEV*CSTLEYVY

C FPROGRAMMING NOTE: CSTDEV MUST NOT BE ZERO
SNR= 20#AL0GL10(1/CSTDEVY)

C PRINT THE INITIAL EGUALIZER PARAMETERS
WRITE (6¢12) MeNyMSGLTHe TRTYPE»CMEAN»CVAR+SNReDELAY »

Fig. C,3. Listing of Program MAIN
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1 CVFCTRYNINIT
ie FURMAT (10d//7/7/710Xe *SYSTEM PARAMETERS'/

1 1UXs "NUMHER OF FILTER SECTIONS (M) ='.I5/
2 LOX¢*LENGTH OF FILTER SECTIONS (i) ='¢15/
3 10Xe 'LENGTH OF TRANSMITTED MESSAGE (MSGLTH) =tel7/
4 1UXe*TYPE OF TRANSMITTER SIMULATED (NTRTYP) ='rAc/
5 10XsTNOISE MEAN ='¢F10,5/10Xs *NOISE VARIANCE =TeFlU.5/
& 10Xe*SIGNAL TO NOISE RATIO IN DR ='sF10.5/
7 10XetTOTAL DELAY =ty 15 /10Xes*CONVERGENCE FACTOR =%»
B F10.5/10Xs "NUMBER OF INITIALIZING PULSES ='»I5)
L .
C020 READ IN THE CHANNEL DESCRIPTION
C

READ (5021) NGr (G(I)rI=1eNG)

21 FORMAT ( IS5/(8F10.5))
WHITE (6ez22) NGe (F2GLI) e IZ1eNG)

22 FURMAT (///77106Xs "CHANNEL KESPONSE G OF LENGTH'+IbL/
1 (LOXr'G(YeI2r*)="sFB.4})

C
C030 1F INITIALIZING SEQUENCES OTHER THAN THE UNIT-PULSE
C AKE USED THEY SHOULD BE DEFINED IN THIS BLOCK.
C OTHERWISE A UNIT=PULSE SEQUENCE IS GENERATED
C
U=l
piir=L
C
LU40  ADJUST THE INPUT SEQUENCE LENGTH
C
. C CHECK FOR EXCESSIVE CHANNEL=RESPONSE LENGTH
-LEND+NG=1
IF (L +LEs M=N+1) GO TO 41
WRITE(GeL2)
b2 FORMAT (1rle10Xe tx**THE OUTPUT 1S TOO LONG**%')
GO0 TO 500 '
C EXTEND THE OUTPUT SEQUENCE LENGTH

41 LEM=iNnt1
CUS0 FORM THE CHANNEL OUTPUT SEQUENCE X(Z)=D(Z)*G(Z)

50 CONT INUE
U0 52 I=1leNG
be CHNL (L1)=0
U0 51 K=1.L
NOM=NG=1
00 B3 1=1¢RGM
%) CHNL (NG=1+1)=CHNL (NG=1)
CHNL L) =D(K)

Flg. C.3. (Continued) Listing of Program MAIN
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X (K)Y=0
DO S4 I=1eNG
by XAKIZATK)HGLT Y +CHNL (L)
C GENERATE A GAUSSIAN RANDOM VARIABLE FOR CHANNEL MOISE
RsUM=U
Do By 1=1e12
IH=MOD(IB* (2x%10+3) 0 1C)
REALG=18
55 RSUMZRSUM+REALB/REALC
CHOISES (RSUM=6 ) «CSTDEV/NINIT + CMEAN
C AULD THE CHANNEL NOISE
XIK)=X(K)+CNOISE
o3 | CUNT INUE
C PRINT THE CHANNEL OUTPUT FOR THE UNIT=PULSE
WRITE {(6e98) Le{IeX(I)eI=1rl)
560 FOURMAT (/7/7/10Xe*CHANNEL OUTPUT SEQUENCE X OF LENGTHY »
1 ISZ{L0XYX{trIZ2e )T eFB.L))

CO0u0 COMPUTE THE FILTER SETUP MATRIX FSET

C

L SELECT TYPE OF EIGENVALUE COMPUTATION
EIGTYP=YUACOBIL? ‘
CALL FLTSET (MeiNe XeEIGTYP)

c

CU70  GENERATE AN MXM HADAMARD MATRIX AND NORMALIZE

CALL HADGEN(M)

REALM=M

SEM=SERT (REALM)

O Tu I=1eM

DG TU J=1eM

FOLeJ)=H(L e J) /5QM
70 CONT INUE

CO80 SET THL FILTER SECTIONS

DO BU J=1eM

DO &80 1I=1+N

FlIed)=D

DO BL KZ1eN
41 FLIedIZFULeJ)HFSETII ek} RHIKeJ)
80 CONTINUE

CU90 INITILALIZE THE FILTER AND SET THE TAP GAINS

DU 91 I=lM
DELC(LI)=0

Pig. C,3. (Continued) Listing of Program MATIN
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91 KUI}=0

AMSEZU
VO 92 K=Z1eM

C LOUAD AND SHIFT THE FILTER REGISTERS
NMM=N=-L

O 93 I=1riimM
95 RIN=14+1)=xt{i4—=1)
FHOLY=X(K) .
L FORM THE FILTER OUTFUT Y
Y=0
DO 94 I=1+M
wl(Il=g
20 95 J=1+N
95 WIII=W (1Y +R(JI%F (Ue 1)
-9y Y=Y+W (I} #C (1)
C COMPUTE THE ©IT ERROR ANL THE TAP ADJUSTMENTS
E=Y
IF (KeGT.DELAY) E=Y=D(K=DLCLAY)
AMSEZAMSE+ (ExE=-AMSE) /K
DO 96 I=leMm
Qs DELCCI)=DELCII+E+*W ()
L CONT iNUE
L SET THE EWUALIZER TAPS
LG 97 I=1eM
97 CUI)=C{I)-DELC(T)
WRITE (.98} (IoC(1)eI=lem)
9y FORMAT (//7/7710Xe"INITIAL TAP GAIN SETTINGS'/
1 (10xetCUreI2rt )= eFB.4))
WRITE (©¢39) MSGLTH
99 FORMAT (1i1»25Xr *THE TRANSMITTED SEQUENCE IS'eIlr
1Y BITS LONG'//7/7/76Xe LIHTRANS/DECNeOXr "NOISE #4X
2 YCHNL QUT " e2Xr "EQLR QUT '+ 4Xs *ERROR* # 3X e YAVE MSE"

3 22X 'TOTAL MSE'r4XetC (L) ==m==D1//)
.
Clul THE REMAINING PART OF TH1S5 PROGRAM IS A LARGE LOOP
L THAT ITERATES ONCE FOR EACH MESSAGE BIT
C

€110 SHIFT TO RUN MODE AND TRANSMIT THE MESSAGE

00 111 I=1.0

THANS (I =D
111 CHNL(ID=0

o 113 I=l.64
113 PLOTY(1)=y

AMSE=D

TMSE=D

TOTLER=U

Pig, C.3, (Continued) Listing of Program MAIN
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oo

121

o

1

122
125
123
l24
1o

C

C
127

C [}
€130

109

NCOUT=Y4%
LL=8
LLmM=LL~]
UMAXZ=2h
ELIMz=Z2.0
HGMZNG=1
NLINEZ]

DO 112 K=1sMSGLTH
GENERATE A TRANSMITTER PULSE

SELECT THE INPUT SEGUENCE FROM EITHER A PN
SEQUENCE (PNSEG) OR RANDOM NUMBER GENERATOR (RANDNO)
IF (TRTYPE.EQ.'"PNSEGQ*) GO TO 122
IF (TRTYPE.EQ.'RANDNQ') GO TO 121
ASSUNE THAT A UNIT=PULSE 1S DESIRED
DD=0
IF (r.co.l) DD=1
GO TO 126
CONT INUE
GENERATE A HRANDOM NUMBER BETWEEN O AND 1 USING
THE POWER RESIDUE METHOD
LASMOOD (IA®(2xxL0+3)»IC)
REALA=IA
RANDIN=REALA/REALC
CONVERT TO BINARY USING A THRESHOLD OF 0.5
ou=0
IF{RANDIN «LT. 045) DD=1
GO TO 126
GENERATE A 2*%*iLlL=-1 8IT PN SEQUENCE FOR THE MESSAGE
IF (KeNE.1) GO TO 123
DG 125 I=1l.LL
IREG(I})=1
LUZIREG(S)
ITEMP2MOD(IREG(2) +IREG(3IV+IREG(4)+IREG(8) r2)
DO 124 I=1.LLM
IREGILL-1+1)=IREG(LL~-I)
IREG(LI=LITEMP
CONTINUE

STORE THE TRANSMITTED SEQUENCE FOR PRINTOUT LATER
DO 127 I[=1+DMAX

THANS (DMAX=I+1)=TKANS (DMAX-1)

TRANS(1)=0D

PASS THE TRANSMITTED PULSE THROUGH THE TIME-VARYING

Fig. C.3. (Contlnued) Listing of Program MAIN
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C CHANNEL
C
150 CUNTINUE
C THE TLIME=VARYLNG CHANNEL SHOULD BE CHANGED HERE

pvo 131 I=1rNGM
131 CHNLING=I+1)=CHNL(NG=1)
CHNL (12D
Xx=0
Du 132 I=ieiG
132 XX=XX+G{I)*CHRNL (L)

¢
C GENERATE A GAUSSIAN RANDOM VARIABLE WITH PRESET
C MEAN AND STANDARD DEVIATION

RSUM=U
DO 133 I=1:12
18=MOD(IB#(2x%10+3) » IC)
REALB=IO
133 KSUMZRSUM+REALB/REALC

CrOISES (RSUM=6) *CSTUEV +CMEAN

C ADD THE CHANNEL NOLISE
AX=XX+CNOISE

“ ,

CLa0  FILTER THE CHANNEL QUTPUT PULSE XX
C

C LOAD AND SHIFT THe FILTER REGISTERS

DO 141 I=1lebM
141 RIN=I+1)ZR{N-I)
R{L)=XX

C FORM THE FILTER QUTPUT Y
Y=0
DO 14e I=1eM
WtL)=U
DO 1483 J=leN

143 WiId=w(I)+rR (I *F(Jr 1)

142 YZY+w(I)*C(1)

C SET UP THE EQUALIZER QUTPUT FOR PLOTTING
I=20%( Y+0.5)1+1.5
IF{I.LT.1}) I=1
IF(L6T«51) 1251
PLOTY(I)=PLOTY{I)+]

¢
CI50 COMPUTE THE ON=-LINE TAP=GAIN ADJUSTMENTS.
C
¢ ESTIMATE THE TRANSMITTED VALUE

ESTL=U

IF(Y.GE.Us5) ESTD=1

ESY~ESTO

Fitg. C.3. (Continued) Listing of Program MAIN
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153
152

154

155

156
157

112
€500
502

500
501

111

AMSEZAMGL + ({E*E=~AMLE ) /7K

TMSE=TMYE +L+L

CHECK FOK DIVLRGERNCE,

IF (ABSIE) «LTe ELIM) w0 TO 153

WRITE (Belbl) K

FORMAT (//7/7/710Xet#%%xTHE ALGORITHM DIVERGES AT STEP'»
1 159" %%%xV)

GU TO 500

ADJUST THE FILTER TAPS USING THE GRADIENT ESTIMATES
DO ibe I=ieM

ClIN=C{I)=ExW (1) *CVFCTR

PRINT EVERY NLINE-TH LINE FOR BREVITY

IF (KeNEK/NLINE®NLINE}Y GO TO 155

WRITE (6r154) KeTRANS(L+DELAY) rESTDCNOISE» XX Yr&r
1 AMSEs TMSEf(C{I}sIz1lenNCOUT)

FORMAT (1iH »I6/FL. 1Y /4, 126Xr4F10.512610.Ue*t %%,
1 4F10.,5/7{84X4F10.5))

CONT I NUE

IF (ABS(ESTD=-TRANS(1+DELAY)) LLT. 0.1) GO TO 157
TOTLER=TOTLER+1]

WRITE (G6rlbo)

FORMAT (1H+»1l Xor'kk¥sxt)

CONTINUE

CONTIRNUE
TERMINATING PROUCEDURE

WRITE (6¢502) TOTLER/MSGLTH

FORMAT (//26X¢*THERE WERE'»I4,? ERRORS IN THE'sIlr
1 ¢ BIT MESSAGE')

CALL GRAPH (=0.5,0.05/PLOTY »51)

CONTINUE

CONTLINUE

STOP

EnD

FPig. C€.3. (Continued) Listing of Program MAIN



Name

AMSE
CHNL (32}
CMEAN .
CNOISE
CSTDEV
CVAR

CVFCTR
D(32}

DELAY
DELC {32)
DMAX

E

ELIM
ESTD

F(32,32)

FSET (32,

G(32)
H(32,32)

J112

TABLE C.1

LIST OF SIMULATION VARIABLES

W oW =™ "W N W

o " W

32) R

.t.
integer,

Description

Average MSE per iteration

Shift-register for simulating the channel

Mean value of channel noise
Channel neoise value

Standard deviation of channel noise
Variance of channel noise

Convergence factor for the on-line
algorithm

Working array for the initializing
sequence

Delay of reference pulse in bits
Tap~gain increments for initialization
Maximum delay

Equalizer output error

Equalizer output error threshold
Decision on egualizer output

Matrix whose columns are the filter-
section tap-gains

Matrix returned by FLTSET used for
computing initial filter~section
tap-gains

Noise-free channel unit-pulse response

Hadamard matrix returned by HADGEN

R indicates a real variable and I indicates an



Name

L

M

MSGLTH

N

NCOUT

NG

NINIT
NLINE
PLOTY (60)

R(32)

SNR
TMSE

TOTLER
TRANS (32)

TRTYPE

w(32)
X(32)

Type

113

TABLE C.l1 (Continued)

Description

Channel output seguence length
Number of filter sections

Number of bits in transmitted message
Length of shift register

Number of tap-gain wvalues to be
printed at each iteration of the

on-line algorithm

Length of noise~free channel unit-
pulse response

Number of isolated initializing
pulses used to set the equalizer

Number of output lines skipped before
printing a line of output data

Contains the egualizer output4va1ue
distribution for plotting by GRAPH

Shift-register for equalizer filter-
sections

Channel SNR on a per-bit basis
Total {cumulative) MSE

Total number of errors in equalimer
output

Array to store transmitted seguence
for later printout '

Transmitter type, either 'PNSEQ' or
'RANDNO' for PN sequence or ¥ardon

number generator,respectively; otherwise
a unit-pulse sequence is transmitted

Pilter~section output vector
Channel output seguence

Equalizer output
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columns are the filter-section tap-gains, is then computed
as the product of FSET and H. The equalizer is now
initialized in block 80 by first computing the equalizer
tap~gain corrections (DELC), and then adding the result
to then existing tap~gains (C) in accordance with (2.2),
and the initial tap-gains are printed in block 90.

The remaining part of MAIN, starting with a
description in block 100, is essentially a large loop
that iterates once for each transmitted pulse. All coding
inside the loop has been done inline, i1.e., there are no
subroutines, in order to reduce the program execution time.
After a number of variables are initialized in block 110,
the loop begins. A transmitter pulse (DD) 1s generated
in block 120 using either a pseudo-noise sequence (TRTYPE =
'PNSEQ') or a random binary number (TRTYPE = 'RANDNO') gen-
erated by quantizing random numbers that are uniformly dis-
tributed between 0 and 1. If nd transmitter type is specified
then a unit-pulse is transmitted. In bleck 130 the pulse
i3 next passed through the channel which is corrupted by
gaussian noise. Since time-variation in communicgtion
channels is rather arbitrary, this effect is simulated by
inserting a user-supplied description immediately after
statement 130. The transmitted pulse (XX) is then filtered
by the egualizer in block 140 to produce the equalizer

output (¥). The average MSE per bit (AMSE) and total



115

(cumulative) MSE (TMSE) are next calculated, and the bit
error (E) is compared against the maximum acceptable error
value {ELIM). If the limit is exceeded an error message
is printed and the equalizer can either be reinitialized
by returning to block 50, or the run can be terminated
by a transfer to 500. Otherwise, at block 150 the
equalizer tap-gains are adjusted in accordance with (3.6)
and, when indicated by a local parameter (NLINE), a line
of data concerning the iteration is printed before
repeating the loop for the next transmitter bit._ After
the indicated number (MSGLTH) of message bits has been
transmitted, the total number of bit errors is printed
and GRAPH is called to plot the frequency of occurrence

of each value of the egualizer output.

C.2 SUBROUTINES

The flow chart and listing for subroutine FLTSET
are found in Figs. C.4 and C.5, respectively. It generates
the convolution matrix (XMX) of (2.2B8} from the channel
unit-pulse response vector (X) that is passed from MAIN.
The N x N real symmetric matrix (SYMX) is then formed and
the ésrresponding eigenvalues and eigenvectors determined
by one of the two methods discussed in C.3. If the Jacobi
'method is used {EIGTYP = 'JACOBI'), then subroutine MODE
is used to convert SYMX into the linear array (EVAL)  form

required by the IBM library subroutine EIGEN. The other
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SUBROUTINE
FLTSET

COMPUTE CONVOLUTION MATRIX
AMX FOR CHANNEL
UNIT-PULSE RESPONSE X

FORM SYMMETRIG
MATRIX SYMX

'"JACOBT' ' CODIAG'

< CALL MODE > < CALL TRIDMX >
< CALL EIGEN > < *
( CALL ETIGVAL >

CALCULATE FILTER <:ﬁ CALL EICVEC :>

SET-UP MATRIX FSET |
RETURN ::) CALCULATE FILTER
. SET-UP MATRIX FSET

Com )

Fig. C.4. Subroutine FLTSET
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Rep roduc‘dbf "’7_ _ \
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SUBROUTINE FLTSET (MeMe XL IGTYR)

UIMENGION X(32) e XMX(32032) s EGVLI32)9D(32) 1501320

I TEMPLIIZ) » TEMP2(32) e SYMX{32y 32) P EVALIS28) P EVCT (1Uu24)
COMMUON EGVC(32,32) FSET(32032)

EGUIVALENCE (STYMX{121) e FSET{Le1) sEVCT(L1))

EQUIVALENCE (EVAL{LI) vEGVL (L) J o (EVAL(33) eD (1))

1 (EVAL(Gb)fSU(l))!(EVAL(Q?)!TEMPU(I]]l(EVAL(lEg)r

2 TEMP21))

FORM THE CHANNEL OUTPUT MATRIX XMX
NG 1 I=leM

DO 1 J=1etd

XMX{LeJ}=0

IF (leGE.J) XMX{TeJ}=X({I=J+l)
CONTIHUE :

CFURM THE REAL SYMMETRIC MATRIX SYMYXZ (XX ) THXMX
O 2 1=Llen '

DO 2 JE1lell

SYMX(1eJd)}z=D

GO 3 K=1leM

SYMX(Erd)= JYMX(I'J}+XMX(K Il*XMX(th)

CONTLNUE

IF (EIGTYP.EQ.*JACOBIY) GG TO 10

IF (EIGTYPLEQ.'CODIAGY) GO TO 5

OTHERWISE PRINT UDIAGNOSTIC AND GO TO 10

WRITE (6+86)

FORMAT (10X» ' *&%+xEIGNEVALUE METHOD NOT SPECIFIED**%%*)
GO TO 10

CONT INUE

COMPUTE THE EIGENVALUES AND EIGENVECTORS OF FSET
CALL TRIUDWX(Ne32:eSYMX2DeSO)

CALL EIGVAL(MNPEGVL DS TEMPL«TEMPZ)

CALL EIGVECINs3I2¢eS5YMX»DrSDeEGVLEGVC«TEMPL TEMP2)

CALCULATE THE FILTER SET=-UP MATRIX FSET
0O 4 J=leN

EGVL (JIZL/SART(EGVL(J))

RO 4 I=1.4

FSET(IeJIZEGVL{J)*EGVC (T ru)

CONT LNUE

RETURN

CONT1IHUE

Fig, C,5. Listing of Subroutine FPLTSET
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¢
CALL MOLE (1 SYMXeEVALD
CALL L1GEN {(EVALPEVCT e ()
.
C CALCULATE THE FILTEK SET-UP MATRIX
DO 11 Jd=leM
Jzm=Jdd+ 1

U0 13 1=1eN
13 FSET(LeJ) =0
GO TO 11
12 K=(Jd=1) #N
KKTJU* (J+1) /2
EVAL (KK)=Z1/SURT{EVAL (KK) )
DO 14 I=1»i
14 FSET(LyJ)ZEVAL (KK *EVCT(K+1)
11 CONTINUE '
RETUKN
£HD

Fig, C.5. (Continued) Listing of Subroutine FLTSET



119

method (EIGTYP ='CODIAG') is that of Householder, which
uses the UNIVAC library subroutines TRIDMX to convert SYMX
to tridiagonal form, then EIGVAL and EIGVCT to compute the
corresponding eigenvalues (EVAL) and elgenvectors (EVCT) .
These subroutines reguire several working matrices (TEMPi;f
TEMP2, SD, D). After the eigenvalues and eigenvectors are
determined, FﬁTSET computes the filter set-up matrix (FSET)
and returns. In the notation of 2.5, the columns of FSET
are given by uknl'gk, k=0, 1,...8-1.

Subroutine MODE places the upperltriangular part of
a given real symmetric matrix (SYM of dimension DIM) in a
linear array (EVAL) columnwise starting with column 1l as
reguired by subroutine EIGEN, then returns. The correspond-
‘ing listing is given in Fig. C.6.

For any order (M) which is a multiple of four and
is not greater than 32, subroutine HADGEN generates a
Hadamand matrix (H) by one of three procedures, depending
on the order desired. The flow chart is shown in Fig. C.7
and the corresponding listing in Fig. C.8. If M is a
power of 2, i.e., 4, 8, 16, and 32, then H is formed in
the manner discussed in A.2 using subroutine DOUBLE to

repeatedly make the substitutions

1 1 -1 -1
1l - and -1 -

1 -1 -1 1

»
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B
Rb?as;'o:"u:i ble ?Y' e

T

SUBKUUTINE MuDE (DIMe SYMPLIN)
Ttils PROCCDURE PLACES THL UPPER THIANGULAR PAKRT OF

SGUAKE REAL SYMMETRIC MATHIX SYM IN LINEAR ARRAY LIN
I MOUE 1 FORM AS REQUIRED Y SURRQUTINE LIGEN

DIMENSTION SYMI32,32) rLIN(528)
1NTEGER OIM

REAL L1K

LUl (UIA+1) /72

pu 1 Izlei

LINCIIZO

DL 2 J=1lhDIM

DO 2 I=led

K=J*(J+1) /2

IF (L.LT.J) Kz=l+(u=-1)*0u/2
LIN(KI=SY#(Ird)

CONT LWUE

Ri_TURN

i)

Listing of Subroutine MODE
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HADGEN

NO IS M
Y FEASTELE
DIAGNOSTIC
+ YES
C RETURN ) *
FIND QUADRATIC
¢EQ RESIDUES OF 13
f M=12,20,24 CALL QADRES
FIND QUADRATIC *
RESIDUES OF 11,19,11 FORM THE
CALL QADRES MATRIX H’
DETERMINE THE
4' POWER OF 2 THAT
' ORM THE EQUﬁ:LS M < CALL DOUBLE >
MATRIX H' L=2
NO YES

YES

y Mo
( CALL DOUBLE) ( RETURN )
< CALL DOUBLE > ;

_._% ! L=JZL
( RETURN )

Fig. C.7. Subroutine HADGEN
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T Juced from
‘ %Zg:cavaﬂakﬂe c?py

SUGROUT [NL HADGEN (1)

Tiils PROCEDURE GENLKATES A BINARY HADAMARL MATHKIA OF
OKDER MZu#K wIlh K<Zde AN CAN EAGILY oE EXTENDEU

10 K>8

Coummon H{b2e32)
INTEGER RESTLU)
LF ((l\'l/u)*4.."IL..|~’1.0P~‘\.|‘"E.Gf.b?,} bo TO 85

IE Mze2s FURM A S1JE 14 MATRIX AND DOUBLE
IF(MeNE « 203) GO TO LU
LJ=13

Call GAORES (LJrbke¢RES)
LuzLJ+l

w0 1 I=l»LJ

U 1L J=IellJ

IF (JelMELL) GO TO 2
itdled)=0

Gu TU 1

IF{lesb. e L) GO 10 O
H{Isd)=1

HiJrId=1

GO To 1L

L 4 K=L1sLK
IF(J=1.2Q@.RESIK))Y GO TO O
CONTLRUE -

fi{ledd==1

HiJeld==1

CONT i nwlE

CALL DOuUbut (LJ}

RETUKN

IF M=12 OR Mz=20 FORM THE MATRIX DIRECTLY
IF Mzz4 FORM A SIZE 12 MATRIX AND DOUBLE

LE (M eNE L2 e AND o Ma NE o 200 AMD e MaNE L 24) GO TO 20
LJ=zil

IF (MJEG.20) LJ=19

CALL WADRES (LJrLK¢RES)

LJ=LJ+l

UC 11 1=ieLd

Lo 11 J=lsLJ

IF(T.E.1) GO (U 13

tHileru)=t :

H{Jr1)=1

GG TO 11

IF(J.NELI) GU TO 15

Fig, C.8, Listing of Subroutine HADGEN
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H{lrddz=1

Gu Tu 11

00 16 K=1rLK
IF(J=leEuRES{KY)Y GO TO 18
CUNTINUE

H{lerJd)==1

HiJr )1

S BU T 11

H{lrJd)=1

Hidrl)lz=1

CONTINUE

IF{M.NE24) 60 TO 19
CALL UOUBLE (LJ)
CONTINUE

RETURN

SINCE M=2+%Kr FORM A SI1ZE 2 MATRIX AND DOUBLE
RECURSIVELY K=1 TIMES

H{lel)=1

H{lr2)Z1

H{2:1)=1

Hi2r2)==1

Ll=1

IF(MEG. &) LiIz2

IF(MEQelo) LIZS

IF{M.EG.d2) LIZH

=2

DU 24 I=1.L1

CALL. DOUBLE (L)

Lzg*L

RETURN

WRITE (H6+26)

FORMAT (L1ifle 742%THE VALUE OF M IS INCORRECT*%%0)
KETURN :
i kD

Fig. C.8. {Continued) Listing of Subroutine HADGEN
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If M is not a power of 2 then the generating pro-
cedure is slightly more complicated, and requires the
notion of the Legendre symbol. If the congruence relation

r? = g(mod p) has a solution for integers p, g, and r, then

g is called a guadratic residue of p, otherwise it is

called a guadratic nonresidune. The Legendre symbol (q/p)

is defined for a prime p to be 1 When g is a quadratic
residue of p, and -1 when g is a quadratic nonresidue.
The remaining values of M now fall into two categories.
Ift M= zk(p + 1), k=0,1,... , for some prime p = 3
{(mod 4}, i.e., M= 12, 20, 24, then the (p + 1) x (p + 1)
array H' is first formed, with each element computed

according to

1° ifi=10r j=1
h,, = -1 if imaqdandio> 1
iJ (3-i/p) otherwise

where the quadratic residues are determined by QUADRES.
If M=p + 1, then H is taken to be H', otherwise

M= 2(p + 1) and DOUBLE is called to generate H before
HADGEN returns. Finally, if M = 2k(p + 1) for prime
p=1l(mod 4), i.e., M = 2B, then H' is computed according

to

1 ifi=1o0or j=1hbut i# i
h = 0 Coa 'S .
i 0 f L= 3
] (3-1/P)  otheriise,
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and again QADRES i3 called to obtain the guadratic
residues. Since M = 2(p + 1), then DOUBLE is called to
obtain H before returning. A detailed treatment of the
generation of Hadamard matrices for all order up to 100,
and many orders greater than 190, can be found in the
literature (44,45). Consequently, HADGEN could be expanded
to handle considerably larger orders than the present

value of 32.

Subroutine DOUBLE doubles the size of a given matrix

H' = [h'ij] with elements 1, -1, and 0, to obtain a new
matrix by making the following substitutions,
1 1 1 -1 -1 -1
- 1 — ] [
1 -1 -1 -1 ‘ -1 1

The original matrix is overwritten by the new matrix H
which is binary, i.e., all elements are 1l or -1. The
listing is found in C.,9, and the algorithm is to simply
test each element hij and make the corresponding matrix
substitution just indicated.

Subroutine QADRES computes the quadratic residues
of a given prime defined in the discussion of HADGEN,
and sorts them in a stack by inc¢reasing value. It then
returns the stack and the number of elements in the stack.
The flowchart and the listing are shown in Figs. C.10

and C.11, respectively.
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Reproduced from
best available copy.

SUBRUUTINE UDOUBLE (L)
THIS PROCEDUKE SUBSTITUTES A PARTICULAR 2%x2 MATRILX
FOR EACH =1sUr+1 ELEMENT OF MATRIX H » THUS
DOLBLING THE SIZE

LK S

CUMMON V{32052)

SET INUEXING SO THAT NO ORIGINAL ELEMENTS ARE ERASED
Do 1 I=l.L

1lzcl=-1+l

I1I=z2*]1

U0 1 J=1lel

Jdzl=d+]

Jud=z*dd

e}

¢ TEST FOR A +1 ELEMENT
IFCVIII»dJ)=0.01) Je2e2
é VIIIIeddJi==1
VviIIledJu-112=1
VIIII=1sJJdJd) =1
VIIII=1»JUud=1)%1
Gu To 1

C TLST FOR A =1 ELEMENT
3 IFAVIII D)) +0UL) LoleS
4 VIIII»JdJJI=1
VIIIIrdJI=1)=-i
VIIII=1,Jdd)==i
VIIIl=«1leJddd=l)z==1
Gu TO0 1

" ASSUME A ¢ ELEMENT BY DEFAULT
) VIIIIvJJJ)I=-1
V{IIledJdu-1)==1
VITI=1rdud)=~1
VIIII=1rJdJU—-1)Z]
1 CONTINUE

RETURN
END

Fig. C,2. Listing of Subroutine DOUBLE.



SUBROUTINE
QADRES

YES 2

RO

COMPUTE QUADRATIC
RESIDUE OF 1

IS
QUADRATIC
RESIDUE IN
STACK
?

PUT IN CORRECT
STACK LOCATION

Y

L=L+1

(o )

Fig. C.10. Subroutine QADRES
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SULIROUT ENL. @ADIRES (1PeL e KL D)
THIS PROCEDURE COMPUTES THE QUADKATIC RESIDULL
OF ANY PRIME B AND STORES THEM IN STACK RES(L)

INTEGER PeQRESyPMeRES(20)

L=0

Py=P=1

Uu 1 1=1Pi

15Q=1*1

IF{ISW.LT.P) GO TO 1

COMPUTE THE QUADRATIC RESIDUE FOR EACH INTEGER
QRESZISA-{1S50/P 1 *p

IF(L.GTL0) G0 TO 4

RES{L)I=ZQRES

GU TO0 3

CONTINVE

CHECK THE STACK RES FOR  LCUPLICATION
DU H JZlei

IF(RES(JY JEQ.QRES) GO TO 1

CONT LHNUE '
ALD THE NEW QUADRATIC RESIDUE TO THE STACK AND
SHIFT POINTER L

RES{L+]}=QRES

DO 2 J=lel

IF{QRES «GTJRES{L=J+1)) GG TO 3
RES(L=J+2 ) =RES(L-J+1)

RESIL~J+]1 )} TQRES

L=+l

CONTINUE

RETURN

ENL

Fig. C,11 Listing of Subroutine QADRES
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C.3 COMPUTATION OF EIGENVALUES AND EIGENVECTORS

The computer simulation described in this appendix
uses one of two methods to obtain the eigenvalues and
eigenvectors of an N x N real symmetric matrix A. Both
methods are iterative, thus adaptable for machine compu-
tation, and both make use of a series of unitary similarity
transformations to reduce the given matrix to a simplified
form.

The first method [54], originally proposed by Jacobi
in 1864, has been revised in recent years for application
to modern digital computers. The original method is based
on applying an infinite series of particular similarity

transformations of the form A, , = S.T A. S. with 50 = A.

=i =i

The matrices gi are plane (two“dimensional)'rotations, and

by properly selecting the plane and angle of rotation, any
particular off-diagonal element can be annihilated, i.e.,
reduced to zero. Although the annihilation of other elements
will in general cause previously annihilated elements to bhe
nonzero, Jacobi showed that all off-diagonal elements tend

to zero in the limit. By defining S and D to be the limits

of 8§, and D;., respectively, it follows that

D=8 AS,

with D diagonal and $ unitary. This implies that the
diagonal elements of D are the eigenvalues of A, with

the corresponding eigenvectors being the columns of S.
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With machine computations the proceSa is, of course,
terminated after a finite number of steps as soon as the
magnitude of the largest off-diagonal elemént becomes less
than some predetermined threshold value; The convergence
rate can also be improved by properly selecting the order
in which the elements are annihilated.

The second method [55] uses a procedure suggested
by Householder to convert a real symmetric matrix into
tridiagonal (codiagonal) form C with a series of N - 2
unitary transformations of the form I~-2u E? where {|u|{=1,
By properly selecting u, any column and the corresponding
row can be transformed to contain only two elements, thus
giving the tridiagonal form. Once A is in tridiagonal
form the eigenvalues of €, hence of A, are found by
noticing that the set of characteristic polynomials
corresponding to the leading principle submatrices forms
a Sturm sequence. Each root of the largest polynomial is
an eigenvalue of A, and the roots are found by obtaining
successively amaller interyals in which each lies. The
eigenvectors are then found for C by applying the inverse
power method [56] which is particularly simple for
codiagonal matrices. These eigenvectors are then transformed
into those of A by u51ng the same series of unltary trans-

formations obtained in computing C initially.
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