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ABSTRACT

The problem of inviscid, steady transonic conical flow formulated

in terms of the small disturbance theory is studied. The small distur-

bance equation and similarity rules are presented, and a boundary value

problem is formulated for the case of a supersonic freestream Mach

number. The equation for the perturbation potential is solved numer-

ically using an elliptic finite difference system. The difference equa-

tions are solved with a point relaxation algorithm that is also capable

of capturing the shock wave during the iteration procedure by using the

boundary conditions at the shock. Numerical calculations, for shock

location, pressure distribution and drag coefficient, are presented

for a family of nonlifting conical wings.

The theory of slender wings is also presented and analytical

results for pressure and drag coefficients are obtained.

V



Page Intentionally Left Blank



TABLE OF CONTENTS

FIGURES ix

SYMBOLS xi

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. FORMULATION OF GOVERNING EQUATIONS . . ' 5

2.1 Basic Equations . 5
2.2 Derivation of the Transonic Small

Disturbance Equation 7
2.3 Formulation of the Boundary Value

Problem in Conical Coordinates. 14

CHAPTER 3. NUMERICAL PROCEDURES AND RESULTS 21

3.1 Introductory Remarks 21
3.2 Presentation of Difference Formulas

and Relaxation Algorithm 22
3.3 Moving the Shock. 27
3.4 Computational Details 31
3.5 Results 33

CHAPTER 4. SLENDER WINGS 41

4.1 Slender Wing Theory 41
4.2 Conical Slender Wings 43
4.3 Comparison of Results 46

CHAPTER 5. CONCLUDING REMARKS 55

BIBLIOGRAPHY . 57

APPENDIX I. PROGRAM LISTING 59

APPENDIX II 69

PRECEDING PAGE BLANK NOT FILMED.

vii



FIGURES

Page

2.1 Wing Geometry. 9

2.2 Shock Wave Element 13

2.3 Elliptic Cylinder Coordinates 17

2.4 Boundary Value Problem for the Cross Plane 19

3.1 Grid Geometry for the Shock Wave at ̂  24

3.2 Variable Grid Geometry 30

3.3 Shock Waves for a Rhombic Wing at K = 2.0 35

3.4 Shock Waves for a Circular Wing at K = 3.0 36

3.5 Pressure Distributions on the Surface of a Rhombic
Wing for K = 1.0 37

3.6 Pressure Distributions on the Surface of a Rhombic
Wing for K = 2.0 38

3.7 Pressure Distributions on the Surface of a Circular
Wing for K = 3.0 . . 39

4.1 The Function Cn (K ) 471 e

4.2 Pressure Distributions on the Surface of a Rhombic
Wing for K = 1.0 48

4.3 Pressure Distributions on the Surface of a Rhombic
Wing for K = 2.0 . 49

4.4 Pressure Distributions on the Surface of a Circular
Wing for K = 1.0 50

4.5 Pressure Distributions on the Surface of a Circular
Wing for K = 2.0 51

4.6 Pressure Distributions on the Surface of a Circular
Wing for B = .2 52

4.7 Drag Coefficients for Rhombic and Circular Wings
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CHAPTER 1

INTRODUCTION

Transonic flows are characterized by the presence of a region where

the local flow speed is close to the local speed of sound. In flows of

this nature shock waves are generally present in the supersonic region

or at the downstream supersonic-subsonic interface. Mathematically

this problem is described by a nonlinear equation which is elliptic if

the flow is subsonic or hyperbolic if the flow is supersonic.

Intense theoretical and experimental work started in the late

forties and resulted in a good understanding of the physical phenomenon.

Newman and Allison give a listing of over 300 theoretical papers and

2
Cole gives a brief historical survey leading to problems of current

interest. Those problems are of great engineering interest because

they occur in a number of practical situations such as flows in nozzles,

over helicopter rotors, propellers and over airplanes flying close to

Mach number one.

The method of the hodograph transformation, which makes the

equation linear, was the first to yield quantitative information about

transonic flows over two dimensional bodies. The hodograph method is

useful in the case of the straight wedge and can also yield a solution

valid in the vicinity of blunt noses.' However, its applicability is

hindered since boundary conditions, inherently given in the physical

plane, usually become very complicated in the hodograph plane. The

limitation is thus in solving direct problems. Garabedian and Korn

have found this method useful' in computing the inverse problem; the

airfoil for a given flow field.



In computing solutions successfully over arbitrary planar shapes

two basic approaches have been used. Both approaches, the time depen-

dent techniques and the relaxation methods use finite difference tech-

niques and are capable of capturing imbedded shocks. The time dependent

technique (Magnus and Yoshihara) integrates the equations of unsteady

compressible flow forward in time to approach a steady state. This

method is quite lengthy for general application. A simpler and faster

method for symmetric bodies was first developed by Murman and Cole who

solved the transonic small disturbance equation for the potential. Sub-

sequent work (Krupp and Murman, Krupp ) improved this procedure and

extended it to lifting airfoils. The results have been shown to give

remarkably good results.

For three-dimensional transonic flows only a few solutions are

Q

available thus far. One due to Ballhaus ;and Bailey, extends the relax-

ation procedure of Murman and Cole to solve three-dimensional super-

critical flows over lifting wings with blunt leading edges and non-

rectangular planforms. However, the solutions available are all for

subsonic freestream Maeh numbers.

The purpose of this dissertation is to develop on effective

numerical method for computing three-dimensional transonic flows with

"supersonic" conditions. More specifically nonlifting conical wings

with the shock attached to the nose of the wing will be considered..

This dissertation will be presented in three major parts, consist-

ing of Chapters 2, 3 and 4. Chapter 2 formulates the boundary value

problem and gives the basic analytic results needed for the numerical



computation. Chapter 3 discusses the details of the numerical

computation and presents the results. Chapter 4 presents the slender-

wing theory and compares the results.

Ylteno&natni
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CHAPTER 2

FORMULATION OF GOVERNING EQUATIONS

2.1 BASIC EQUATIONS

The basic differential equations are statements concerning the

conservation of mass, momentum and energy for a fluid, plus an equation

of state. Since shock waves are present shock jump conditions must be

added. The shock jump conditions are integral forms of the above con-

servation laws. Boundary conditions prescribe the flow at upstream

infinity and require the flow to be tangent to the body surface.

The continuity and momentum equations are as follows:

V-pq*= 0 (2.1)

•q.Vqf + ~ Vp = 0 (2.2)

where p is the density, <f the velocity vector and p the pressure; the

space coordinates used being non-dimensional.

The energy equation expresses the fact that total enthalpy is

conserved along streamlines and it can be shown that it does not jump

across a shock surface. Assuming the perfect gas law we can write the

energy equation as,

O O - O —

^+a
2_=U^ + _

a^_

/U._, /
where a = local speed of sound :

CP
Y = TT" = constant

CV

U = magnitude of the velocity vector at upstream infinity

am = speed of sound at upstream infinity.

PRECEDING
NOT FILMED
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The only mechanism for entropy production and for introduction

of rotation in this inviscid model is a shock wave. The entropy,

though constant along streamlines, does jump across a shock wave. It

can be proved that the jump in entropy is of a higher order than the
Q

equation to be considered. Hence the flow can be assumed isentropic

and irrotational.

Using the relation between the speed of sound and the pressure

we can rewrite the momentum equation as:

o

(2.4)

The continuity equation gives a relation between the density and

the velocity of the fluid

V-pq" = cf-Vp + pV.qf = 0 (2.5)

and multiplying the momentum equation (2.4) by <f enables p to be

eliminated using the continuity equation (2.5), giving:

2
q.V 4- = a2 V.q (2.6)

Introducing the condition for irrotationality

V x q = 0 (2.7)

a velocity potential $(x, y, z) can be defined by the relation

q-= W (2.8)

The components of velocity, in equation (2.6), can be substituted by

the appropriate partial derivatives of the velocity potential giving a

scalar equation for the velocity potential.

zz
/ 9 2\ / 9 ?\ / ") 2\
\aT - $)$ + [a - <T $ + [a - $
\ x/ xx \ yj yy \ z/

$x z - 2$y $z $z =0 (2.9)



If the flow at upstream infinity is uniform with magnitude U and

parallel to the x axis

$(x, y, z) = Ux at upstream infinity (2.10)

On the surface of the body the flow must be tangent to the solid

surface. This can be expressed as

"q-VS = 0 (2.11)

where S(x, y, z) describes the body surface.

The equation for the potential, together with the above boundary

conditions form the basic system describing the flow field.

2.2 DERIVATION OF THE TRANSONIC SMALL DISTURBANCE EQUATION

The solution of equation (2.9) gives the exact flow, with the

assumptions outlined in the preceding section. However, there are no

practical methods available to solve this equation. We must then look

for a simpler equation capable of preserving the features of the exact

equation and which could be solved practically.

The equation can be simplified by introducing small disturbance

approximations corresponding to flow over thin bodies of thickness

26 (6 « 1).

The small disturbance approximation corresponds to an expansion

procedure, for the velocity potential, valid as certain small param-

eters approach zero.

A special procedure is necessary to derive a suitable small-

disturbance approximation when the flow is transonic as opposed to the

usual linearized theory. Linearized theory, which has a singularity

at M^ = 1, cannot be used in the transonic range since the solution it



gives for the streamwise velocity perturbation becomes infinite as the

upstream Mach number approaches one. This violates the assumption of

small disturbance.

In the transonic range the expansion should also be asymptotic

as the upstream Mach number approaches one, and it will be shown that

2
the quantities 6 and M^ - 1 should not go to zero independently.

The expansion for three dimensional wings of halfspan b and

thickness 26(Figure 2.1) has the form:

*(x,y,z; M̂ .6) = U Jx + e;L(6)(p1(x,y,z) + £2(6)<P2(x,y,z) + .,

y = 3(6)y , (2.12)

z = 3(6)z

Linearized theory, where 3(6) = 1, fails badly near M^ = 1 because

the orders of certain terms were estimated incorrectly. In order to

arrive at the correct expansion let us set M^ =1. If a suitable

expansion can be obtained for M^ = 1 then it can be extended in the

neighborhood of M^ = 1 by considering that M^ •*• 1 at a certain rate as

6 -> 0.

For M = 1 this limit process cannot be carried out in the original

system of coordinates, since this gives the same result as in linear-

ized theory. Instead rescaled y and z coordinates are used. Linear-

ized theory indicates correctly that disturbances spread more rapidly

in the transverse direction of flow hence we can expect 3(6) •*• 0 as

Moo * 1-

Keeping only the first correction term to the potential and

dropping the subscript 1 .
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$ = U{1 + eco-} (2.13)
X J\.

$ = U e B <P~ (2.14)
y y

$ = U e B (p~ (2.15)z z

and the energy equation takes the form

.2 _ .2 ,.. ,x»2 + g^ (2.16)

Substituting equations (2.13) - (2.16) in equation (2.9), dividing

2 2
by U and omitting terms of order e , we obtain

x

If we now set M^ = 1 in the above equation

xx yy zz

The distinguished limit occurs if B •*• 0 as £ ->• 0, in such a way

that

eB2 = e2 or B = vT (2.18)

The condition that the flow is tangent to the solid surface,

equation (2.11), fixes the orders of magnitude of B and e.

The wing is described by

S(x,y,z) = 0 = y - 6f(x, ̂) (2.19)

and using equation (2.11) gives the boundary condition for the pertur-

bation potential on the body.

,0,z) = 6f (x, f) (2.20)
A U

10



A comparison of equations (2.18) and (2.20) shows that

e = 62/3 - • • . . . . ' (2.21)

0 = 61/3 (2.22)

for the distinguished limit. This gives the equation for sonic flow

(y+l)<̂  (p = (p— + <j>~~ M = 1 (2.23)
' /rx^xx ^yy Tzz • °° • .

The concept of the limit process leading to the expansion must

now be widened to consider M^ -> 1 as 6 -»• 0, this can be expressed as

M2 = 1 + Kv(6), v(6) -> 0

The quantity K is held fixed in the limit and- an order must be found

for the function v(6) . To do this we go back to equation (2.17)

2
rearrange it and substitute Kv(6) for M^ - 1. The distinguished limit

exists if .

v(6) = 62/3 (2.24)

and results in the transonic equation.

< P - < + (2.25)

M - 1
K = — o7T~ (the transonic similarity parameter) (2.26)

6 '

The boundary condition on the wing reduces to

<rf Ix, — ^J (2.27)
x

To make the system describing the flow field a complete one we

must next consider the shock jump conditions. These relations can be

derived from the surface integral form of equation (2.25) applied

across the shock surface plus the requirement that the resultant jump

11



in velocity is normal to the shock surface. Using velocity components

u, v and w to substitute for ip , y>~ and (p~ equation (2.25) can be

written in divergence form.

(- Ku - ̂ ~- u2] -f v~ + w~ = 0 (2.28)\ i I y z\ /x

The above equation can be interpreted as the transonic continuity

equation since it represents the divergence of the mass flux vector.

With .

Q - (- Ku - 3±I u
2 J T + vj* + wk

(i,j,k are the unit vectors in the x, y and z direction respectively)

equation (2.28) can be written as

V-(f = 0

Across the shock surface, Figure 2.2, the jump in the normal

component of Q is zero and so is the jump in the tangential component

of velocity. To incorporate these in equation (2.28) let the shock

surface be given by

G(x, y, z) = 0 = x - g(y, I) (2.29)

Then the unit normal to the shock surface is

_. VG. - - —
n = 1WT ~ i " 8y j " sz k '

and

[Cf • n] = 0 (2.30)

becomes

|Ku + ̂ u2] + [v]g? + [w]g5 =0 (2.31)

12



ELEMENT OF
SHOCK SURFACE

STATE
n

STATE
(2)

Figure 2.2. Shock Wave Element.
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where

[ ] = jump = ( )(2) - (

Since the tangential component of velocity does not jump across

the shock

[q* x n] = "0 (2.32)

or

- [v]g~ + [w]g~ =0 (2.33)z y

[u]gs + [w] = 0 (2.34)

[u]g~ + [v] = 0 (2.35)

Substituting equations (2.33) - (2.35) in equation (2.31) gives

Ku [u] + [v]2 + [w]2 = 0 (2.36)
2

Equation (2.32) implies that the potential may only jump by a

constant across the shock. For convenience we shall assume that [<£>] =0.

Note that u, v, w are the perturbation velocity components and are all

zero upstream of the shock. On the shock surface the value of the

perturbation potential is taken to be zero.

2.3 FORMULATION OF THE BOUNDARY VALUE PROBLEM IN CONICAL COORDINATES

The flow field to be analyzed here is conical, that is, flow

properties are constant along radial lines extending from the origin.

For this type of a flow the equations derived in the previous section

assume special forms. Since the potential is constant along rays it

will be a function of the coordinates — and %- . Thus we can define
x x

conical variables

14



— = —Z = Bx ~ bx

Y = i- = 2-
Bx bx

1/-3

where B = b6 '

In terms of the above conical variables the perturbation potential

assumes the form

<p(x, y, 2) = x <fr(Z, Y) (2.37)

and the transonic equation (2.25) becomes

1 ( 2 2 ) l
K + (Y+D (<}>-Z<J>z-Ycj>Y) Z>zz + 2ZY<j>YZ + Y^J = ±- (c^ + (fr^)

; ( • ) B
(2.38)

Since the wing is also conical

f (x, ̂) = xF(Z)

and this makes the boundary condition on the body

<j>Y(Z,0) = B{F(Z) - ZF'(Z)} (2.39)

The two boundary conditions on the shock then are

2- I±i (Z^Yc).3 +K(Zcj)+Y<J>)- (Z^Yc). + ( + cf > ) = 0 (2.40)
B

z Y .
'

4> - 0 . . . (2.41)

It proves useful to write the equation for the perturbation

potential in a curvilinear coordinate system. The elliptic cylinder

coordinates, which were chosen, have the advantage of fitting well

into the numerical scheme.

15



The elliptic cylinder coordinates are given by

Z = cosh £ cosn

Y = sinh £ sinn

for £ > 0 and 0 < n < 2i\

Since the wings to be considered are symmetric with respect to the y

TT
and z axes, the range of T] is Q £ r\ £ -^ as shown in Figure 2.3. The

wing extends from zero to one on the Z axis (£ = 0) and the shock is

a curve in the plane; whose shape and location are part of the solution

for the potential function.

In the new coordinates the equations for the velocity potential

and the boundary condition on the wing become

JK + (y+1) (<f> ~ T (sinh £ cosh £ 4y ~ sinn cosn <f> ))}
( V J ^ n /)

(1 / 2 2 2 2 \
— (sinh £ cosh £ <(>,.,. - 2 sinh £ cosh £ sinn cosn 4>r + sin n cos n<t I-'J \ K .. v\ nny

2 2 2 2
sinh £ cosh £ ( -^ (sinh £ cosh £•- sin n cos n) +

1-4 (sinh2C + cosh2?) ) 4>r +
J / ^

? o o o
sinn cosn f ̂ 7 (sinh £ cosh £ - sin n cos n) +

j (cos2n - sin2n)4)n= ̂
 (*K + <(>nn) (2'42)

where

and

J = sinh2? + sin2n

, n) = <(>Y(cosn, 0) sinn (2.43)

16
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Figure 2.3. Elliptic Cylinder Coordinates.
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On the shock surface the boundary conditions take the form

2 Y+l 3 )
,. - sinn cosn<L ) - oF7 (sinh£; cosher - sinn cosn* )
c, TI -ilxJ c, ' )

cos2n + cosh
2£ sin2n) - 0 (2.44)

B2K ^

and cj) = 0 on the shock (2.45)

Since the potential and the shock are symmetric with respect to

the Z and Y axis

at n-o. (.2>46J

= 0 at n = 0, \ (2.47)

Fig. 2.4 gives a summary of the boundary value problem in the

cross plane.

Various physical quantities can be derived from the solution of

the transonic potential equation. Two which shall be considered here

are the pressure coefficient Cp and the drag coefficient CL.

The pressure coefficient is defined by

P " P°°
C2'48)

but
Y

/ 2 \Y-l
P /a V-C— a / 1

P 2 )fco \ a /- i d /
\ 00 /

and using equations (2.16) and (2.21) we obtain

18



SHOCK WAVE

(2.46)
(2.44)-

(2.42) (2.45)-

(2.43) (2.46)

WING

Figure 2.4. Boundary Value Problem for the Cross Plane.
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For small perturbations this expression may be expanded in series the

result to lowest order being

In conical coordinates the pressure coefficient on the wing at x = 1

takes the form

Cp - - 262/3 (<f>- Z<f>z) (2.49)

The drag coefficient is obtained by integrating the pressure

coefficient over the surface of the wing and normalizing to the area

of the wing plan form.

JjCL dA n • i
T (2.50)

dA is an area element on the wing surface and n is the unit vector

normal to the wing surface. In conical coordinates equation (2.50)

becomes

C_ = 6 / r(F - ZF')dZ (2.51)E°-sl

20



CHAPTER 3

NUMERICAL PROCEDURES AND RESULTS

3.1 INTRODUCTORY REMARKS

The transonic equation for the perturbation potential (equation

2.42) has the general form .

ai% + 2a2^n + a3*nn + a4 = 0 (3>1)

where the coefficients a. through a, are function of £, r|» <f>£» $_ and

the similarity parameters K and B. Depending on the sign of the

quantity

D = a2 - Sl S3

equation (3.1) is elliptic parabolic or hyperbolic if D is negative,

zero or positive respectively.

For the cases to be considered here, equation (2.42) is of elliptic

type within the region bounded by the shock wave (Fig. 2.4) and centered

differences are proper to approximate its derivatives.

The shock shape and location are not known a priori. They are

part of the solution of equation (2.42). With this in mind a method

has been developed that solves simultaneously for the shock shape and

location, and the flow potential in an iterative manner. This is done

by initially locating the shock near the Mach cone and then proceeding

as follows:

(i) Solve equation (2.42) subject to the boundary conditions on the

Y and Z axes and <f> = 0 on the shock,

(ii) Split equation (2.44) in such a way that a new shock location is

obtained using information from step (i)

21



(ill) Go back to step (i) with the shock at the new location and repeat

the sequence, until the shock location converges.

Equation (2.44) is split in a way that makes the sequence just presented

a convergent one.

The following sections give the details of the procedure just

described.

3.2 PRESENTATION OF DIFFERENCE FORMULAS AND RELAXATION ALGORITHM

Consider the numerical solution of equation (2.42) with the shock

near the Mach cone. The location of the Mach cone is known from linear-

ized theory; at x = 1 it is given by

RMC =
•r - i
oo

where

On the Z axis

RMC = Z

and the initial shock location is taken to be

f .-1 1t, = cosh — —
MC

Two types of boundary conditions occur. On the shock the

potential is specified and this is incorporated directly into the

difference formulas by taking <f>. , = 0 for all j . On the other

boundaries derivatives are specified and these are incorporated on mesh

points which are offset one half mesh spacing from the actual boundary.

22



This gives a simpler and more accurate treatment of the boundary

condition.

The grid geometry is rectangular as shown in Figure 3.1 and the

difference equations used for the interior points (i^l, j^l, jmax)

are

* (3'2)

<3-3)

(3.4)

2

°(An } (3'5)

where the subscripts i,j give the location where the solution is

computed. These difference equations are second order accurate.

For grid points along i = 1, j = 1, or j = jmax the difference

formulas are modified to incorporate the specified values of <£,. and <f>

which are given along £ = 0 and n = 0, -j , respectively. To illustrate

this consider a grid point at i =1 for all j. This point is a distance

•=— away from the boundary E. • = 0 where <)>,. is known from equation (2.43),

and is denoted by PC(£).

23



4J-T

**j

1
e\i •

1
I PV is

~^ <

..+ — 4___i.__^._i i i i
. .4. .... .A. -A. _ A ,

I 1 1

1 1
. _A- ..A- -. . .A ... .4...

1 1 1 1

1 1

1 1

--•*- • * - - * - - * -•-*• T 4" T
1 1 1

* 1 ~ 1 ~~ 1

— f -f -f + -
1 1

• — f 4- f- r-f- -

1 1

1 1 I I

1 1 1

.4 A. , .. , A, . . AY^ T^ T f
1 1 1

1 1 1 1
A ^ -^ •*•

T i l l
CVJ x

•**»
n.

3 "~ *

-•i—- 1— -4-.-
1

_^. _4._ ^,_

1

1 1
A . 4 . 4 . .

1

1

1 1
A X A

^ ^ -" ^" "'

1

1
— f-— f--4--

1 I
- -f- f- fr- -

1 1 i
--*- 4. 4.-

1 1

"*" 1 "*" '

4 i 4.f f T --
1 1

1 1
- - * . - * . 4-

i i i

ro oj —

X
o
.£
u

CM

u

fO
M

— CVJ
— II

II

u

(0

ôo
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With a fictitious mesh point at i = - 1

AC
2

-i!

v

i

1

h-AV ir?! i
i l 1
1 i
I 1 >
h : Ip : 1

--+ -—+-J- -f -

» I 1 i

at i = 1 can >>e written as

2A?

.. , ..
2

giving <j> •»-] 4. ±
2

(J5,.,. is evaluated in a similar fashion, giving

(3.7)

(3.8)

For the mixed derivative <j>- at i = 1 three different forms appear

depending on the value of j. If j * 1 or jmax we can make the approx-

imation

2Ari
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and use equation (3.7) to obtain

4An

If i = 1 and j = 1 (or jmax) , <(>,- is computed by averaging the values

of 4>c-n
 at neighboring points as shown below.

1

1
1
! I 2-iLJ

~ T

X
y

. . ^

:- +"•£
1

1

1

IP 2
-ATLL" T

iI
33"!
?'F,

^_^J_

1
I

I -!- -l-.J-1,2 £'2

1 Yrr-3
2

but

<)) . = 0 since <J> = 0 on n = 0
cm, n

and <jy on ^ = 0 can be calculated from equation (2.43) and will be

denoted by PCA(j) giving

PCA(1) +
2 2 2

?

26



Similarly special forms for (j) and <j> , on j = 1 and j = jmax for'

all i, and <(>,.. for i = 1, j = jmax are derived with the result summar-

ized in Table 3.1.

The difference equations just presented are used in equation (3.1)

and a difference equation for <J> . is obtained. This equation is
i»J

linearized, by evaluating the coefficients a.. , a- and a- using values

of <f>. . from the previous iteration, and solved by a point relaxationx> J

algorithm whose formula is

Ofn+l) = +̂1) + (1 . „)*(») (3.11)
ijj ijJ -L»J

where < J > . j is the value at the nth iteration

" (nfl)th "
»J

<(). . is the relaxed value

w is the relaxation parameter

3.3 MOVING THE SHOCK

On the shock <}> = 0 and we can write

• <f>£ d£ + 4>n dn - o ' ".

or

dri ~ (ft on tne shock

and upon substituting the above in equation (2.44) and rearranging it

we obtain the relation
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/J£"\ • 9 9
2(-pjsinhC cosh£ sinn cosri + sin r\ cos r\Idn

/n>- \ *
sinr)

B2K Vdn
(sinh2C cos2n + cosh2£ sin2n)| (3.12)

With the solution just obtained the right hand side of equation

(3.12) is computed and a corrected new shock location is obtained

whose shape is usually non elliptic. Since the same number of mesh

points are kept, so that the shock is always on grid points, the new

grid geometry is non-rectangular and A£ is now a function of r|. A

subscript j will be used, A£ , to show this dependence. Note that grid

points which have the same value for the subscript i are not aligned on

vertical lines any more.

The values for the potential (with the shock at tL, ) are

transferred to the new grid points and are used as starting values for

the relaxation procedure.

In calculating ri derivatives (at a given i) values of $ on a

vertical line are needed, thus requiring interpolated values of <J> at

points where the solution is not computed. Figure 3.2 shows these

points (marked by x's) when the derivative is calculated at i,j .

The values of the potential at these points are calculated applying

a second order accurate interpolation formula which uses values of the

potential at the three nearest grid points. For example the value of

(f> at' a point s away from i, j+1 is
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*a.J+l

This interpolation formula has the same accuracy as the difference

equations. The solution for <f> is analytical in the neighborhood of the

point i,j+l, therefore the overall accuracy of the numerical scheme is

preserved.

3.4 COMPUTATIONAL DETAILS . . . . . . . .

Sections 3.2 and 3.3 give the basic method for solving the

transonic potential equation. In applying these principles certain

points must be resolved. These include choice of relaxation parameter,

number of grid points used as well as the determination of convergence

of the iterative scheme and overall accuracy.

The choice of the relaxation parameter (to) determines the rate of

convergence of the algorithm. For Laplace's equation an optimal value

can be found from the spectral radius of the Gauss-Seidell method.

The transonic equation is nonlinear and such a value must be found by

experiment since it does not have an explicit form. The value of to

that gave the fastest convergence (fewest number of iterations) for a

grid with 40x20 points, in the ? and r\ respectively, B = .2 and K = 3.0

is 1.93. This value was used, for all the computation since w did not

depend strongly on B and K.

The convergence of the solution, for a particular shock location,

is based on the value of the residue - the difference in the potential

at a given grid point on two successive iterations. . When the value of

the residue at all points in the field is less than 2.5 x 10 the
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solution is assumed to have converged. The same criterion is used

for the shock location with 10 as the reference tolerance. Table 3.2

gives the number of iterations needed for convergence (n) and the shock

location (value of —) on n = 0. The location prescribed initially to

the shock wave is 2.65000; the rest are corrected locations obtained

from equation (3.12).

Table 3.2

Successive Shock Wave Locations

K = 3.00 B = .2

n

118

80

66

62

48

21

9

5.

2

1

z
b

2.65000

2.79355

2.86181

2.89161

2.90411

2.90925

2.91132

2.91216

2.91249

2.91265

2.91267

The accuracy of the methods has been tested by mesh variation.

For shock locations more than one span away from the tip of the wing

the grid used has 40 points in the £ direction and 20 in the r) direc-

tion. However, for cases with the shock closer to the tip of the wing

a 20 x 20 grid is sufficient.
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In calculating the pressure coefficient, values of the potential

on the wing are needed. These are evaluated by extending the solution

to the wing surface using a second order accurate extrapolation equation

which has the formula

L . ' »1.J - 1̂ 2.1 - +l.j) + f (+1.J - 2*2,j + *3.j).
2
*
2

The drag coefficient integral, equation (2.51), is evaluated numerically

using the trapezoidal rule.

This section shall conclude with a word about computation times.

Two different time scales appear in this problem. Consider starting a

computation for one set of conditions (B arid K) from the solution to a

different problem. If in the new problem the shock location is signifi-

cantly different a well converged solution may take 15 cycles (shock

location corrections.) If solutions are sequenced so that shock loca-

tions do not change by much the same degree of convergence may take

only 8-10 cycles. A computation that requires 10 cycles, on a grid of

40 x 20, takes about 40 seconds on an IBM 360/91 using double precision

arithmetic.

3.5. RESULTS

In this section computed results based on the theory of the

previous sections is presented. Two different conical wings, one of

rhombic cross section the other circular, are considered for various

values of the similarity parameters K and B. The methods can be used

to compute other wings which are pointed at the tip .

In conical variables the rhombic wing is given by

F(Z) = 1 - Z 0 < Z < 1 (3.13)
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This equation corresponds to

y = 6xF(Z) = fix (l - f-) (3.14)
\ bx/

in the physical coordinates and simplifies to

y = 6 (l -

at x = 1.

For the circular wing

F(Z) = 1 - Z 2 0 < Z < 1 (3.15)

and in the physical coordinates it becomes

at x = 1. . . .

Figures 3.3 and 3.4 give the shape and location of the shock wave in

in the cross plane. Figures 3.5, 3.6 and 3.7 give the pressure coeffi-

cient along the wing surface for the indicated values of K and B.
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CHAPTER 4

SLENDER WINGS

4.1 SLENDER WING THEORY

In this section the theory of "slender" wings will be presented.

This theory has been studied by several authors, but the formulation

12given by Messiter for the non-lifting case is particularly suitable

for our purpose. The problem can be defined in several ways, all of

which are equivalent. From a mathematical point of view the fundamental

assumption is that the solution for the potential near the wing (inner

expansion) is essentially different from the solution near the shock

wave (outer expansion). Using a physical picture one could take the

/ 2reduced aspect ratio, byM^ - 1, as a basic parameter and discuss the

solution as it tends to zero. Another possibility is to start from non-

slender wings and require the parameter B to approach zero with 6,
r

subject to the restriction that -r- also approaches zero in order that

the wing remain thin. The last choice is the most convenient and is

used to obtain inner and outer expansions for the potential. The inner

expansion corresponds to the solution of the Laplace equation in the

cross plane, incompressible flow, and the outer expansion to axisym-

metric, non-linear transonic, flow about an equivalent body of revolu-

tion.

This equivalent body is defined as the body of circular cross-

section which has the same longitudinal distribution of cross-sectional

area as the wing. The equivalent body is defined by

r = <S E(x) (4.1)

PRECEDING PAGE BLANK NOT FILMED
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where

f~2 2~r = Vy + z

E(x) is the longitudinal cross-sectional area distribution and 6 is
e

the equivalent radius at x = 1.

The cross-sectional area of the wing, at x = 1, expressed in terms

of the equivalent radius is related to the wing dimensions by the con-

stant 'of proportionality k

2 9/3
ir6 = irkbfi = TTk6 ' B (4.2)

e

For the outer expansion

JE(x)E'(x) logr* + g;L(x; Kj} (4.3)

r* = r6
e

K = y— (similarity parameter for axisymmetric flow) (4.4)

e

and for the inner expansion

(̂x.y.I; Kg) = 6
2 ̂  log (b6£) + fi

2 <p2 (4.5)

where

^ =b ' ̂  = b

=̂ E(x)E'(x) (4.6)

, /1(X)

+ (z - a) da + gl(x; Ke) (4.7)

g.. (x; K ) is the essential unknown part of the pressure distribution

and can only be determined from the solution of the outer problem. The
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7
limits of the Integral describe the wing plan form and y = 6h(x,T-)

b

gives the shape of the wing.

The pressure coefficient Cp is obtained from the inner solution

12and has the formula

(4.8)

e

4.2 CONICAL SLENDER WINGS

The equations for slender wings presented in the previous section

can be simplified using the properties of conical flows. For conical

wings .

E(x) = x

h(x,a) .

h (x,a)

and since the potential is a conical variable

g^x; Kg) = - xlogx + xC1(Kc) (4.9)

With the above information, equation (4.7) can be written as

fe /

'

log x+ log/Y2 + (Z - Z)2

- x log x+ xCK (4.10)
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and since

a.

±- f
TTk I

•'

(F - EF')dI A- /"
= 7rk ./

FdE = 1

*- tTTk /
''-I

(F - EF') log |Z-E| dE + xC1(Ke) (4.11)

on Y = 0.

From equation (4.2) 6 = kB<5 so

Y - K
Ke ~ kB

(4.12)

and

b6 =k 1 / 2 B 3 / 2

The expression for the pressure coefficient at x = 1 then becomes

C,,
log k + 3 log B + 2 <f>+ 2 <Pn2x

or in terms of 6

/3
log k + 3 log B + 2 (4,13)

For the rhombus k = — and F = 1 - Z thus giving

-|/3 - - f B log |+ 3 log B + log(l-Z2) - 2 + 2C1(Ke) (4.14)
6 . ( J

8 2
The result for the circular arc where k = -5— and F = 1 - Z is

log - + 2C1(Ke) (4.15)
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The drag coefficient can now be calculated using the above two

equations and performing the integration in equation (2.51) gives:

Rhombus

- (log I + 2 log 2 + 3 log Bj - 2C1(Kg) (4.16)

Circular Arc

JTT - 7 (10g ̂  + 3 log 2 + 3 log B) - § Cl(Ke)J(4.

In order to make the formulation for the pressure and drag

coefficients complete, we must compute C, (K ). This can be done in1 e

several ways. One method of obtaining C1 (K ) is to integrate the first
-L G

14order transonic equation for flow past a slender cone. A second

method is to use the value of the pressure coefficient, on the surface

13of a slender cone from Kopal's table, in the similarity law given by

14the equation

- 2C. (K ) = - + 4 log a - 1
1 e a -

Cp is the pressure coefficient on the surface of the cone, and a is the

tangent of the cone semi-vertex angle.

Yet another method is to compare the pressure coefficient obtained

numerically, for a particular shape, with the slender wing formula for

that particular shape and choose C. (K ) such that the two have the same

value at a given location on the wing. The location that was chosen is

at Z = 0. This method also serves as a check on slender body theory

since the results obtained numerically represent the solution of a

higher order equation.
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In Figure 4.1, 2C-(K ) computed using Kopal's table is indicated

by the solid curve whereas the results obtained by matching are shown

by triangles and squares.

4.3 COMPARISON OF RESULTS

The comparison between the results obtained numerically and the

slender wing solution, equations (4.14), (4.15), (4.16) and (4.17), is

shown in Figures 4.2 - 4.7.
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CHAPTER 5

CONCLUDING REMARKS

The method presented In this dissertation falls in the general

category of shock fitting techniques. It is simpler than conventional

methods mainly because the state on one side of the shock is known.

The results of the computations indicate that, generally the method has

a wide range of applicability. The limitation of the algorithm is best

expressed in terms of the location of the shock wave, i.e. it must not

fall on the wing.

For wings which have rounded tips, such as conical wings of

elliptic cross section, the same algorithm can be used provided that the

numerical solution is modified in the neighborhood of the tip in order

to recover the correct singularity. The conical solution in the neigh-

borhood of a rounded tip is given by the solution, in the hodograph

plane, of two dimensional transonic flow towards that tip.

The agreement between slender body theory and the numerical cal-

culations indicates the usefulness of equations (4.14) - (4.17), (II-5)

and (II-6). These equations are applicable for values of K for which

C,(K ) has a similarity form. Expressed in terms of the similarity

parameters B and K, ̂ (K̂  possesses such a form if B < .20 and K < 2.0.

It should be noted that the wing shapes considered are given by

the family of curves F(Z) = l - Z n , n = l , 2, 3, 4 which have dif-

ferent area distributions along the Z axis. Also, the function

C,(K ) does not seem to be particularly partial to any of these

shapes.

PBBCEDING PAGE BLANK NOT FILMED
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The computer program has been written to ease the understanding

of the logic rather than optimizing it for computing speed.

There are many areas in which future work would be beneficial.

One would be to extend this method to lifting wings. In particular

conical Things with arbitrary afterbodies could be studied. This can be

done by extending the solution from the conical region to the region

over the afterbody using the method of characteristics.
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APPENDIX I

PROGRAM LISTING

The computer program used in this dissertation was written in

Fortran IV for an IBM 360/91. The main program is included here for

reference.

The following subprograms are called by the main program:

INTERP Computes interpolated values for the potential

OUTPUT Prints out values of the potential

SLEND Computes values of the pressure coefficient using slender wing

theory.
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CPM=CPf J.MAX
CALL SLEND(TK,B,CPM)

GO TO
601 WRITE(6,602)
602 FORMAT{' THE SOLUTION DIVERGED')
603 CONTINUE

rnNT t NUF _
STOP
END
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APPENDIX II

In this appendix two more nonlifting conical wings will be considered

and the function CL (K ) will be calculated using the matching method

described in Section 4.2.

In terms of conical variables the first is described by the cubic func-

tion

F(Z) = 1 - Z 3 0 < Z < 1 (II.1)

which in the physical coordinates corresponds to

/ 3 \
y = 6x 1--^

\ b * /

and the second by the quartic function

F(Z) = 1 - Z4

which corresponds to

0 < Z < 1

6x 1 -
b x

(II.2)

(II.3)

(II.4)

Formulas for pressure distributions on slender wings can now be

obtained using equations (4.2), (4.8) and (4.11). The constant of pro-
3

portionality k, obtained using equation (4.2), is equal to - for the cubic

and -̂ r6- for the quartic. Performing the integration in equation (4.11) and

the differentiation in equation (4.8) gives

-V--1
T2/3 TT

B log -1 4 3 log B + -| Z +

1 (1-Z) nt
3 log (1+Z) ' ."

2Z3 + | log (1-Z2)

f (1-Z) 4 , ,
108 (1+Z) 3 ' "C1(V

(II.5)

for the cubic and

C
p _ 16

T 2 7 3 " - 5^T
log + 3 log B + Z + 3Z + log (1-Z)12

for the quartic.

(II.6)
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The values of the function C, (K ) obtained by matching equations (II.5)

and (II.6) with the pressure coefficients obtained numerically are shown in

Figure 4.1.


