UCLA-ENG-7382
FEBRUARY 1974

TRANSONIC CONICAL FLOW

K.G. AGOPIAN

) TRa
(Californja Univ,) ;sgngg :gl‘:)té:u FLOW

CSCL 20p




UCLA-ENG-7382
FEBRUARY 1974

TRANSONIC CONICAL FLOW
by

Kaloust Gregory Agopian

SCHOOL OF ENGINEERING AND APPLIED SCIENCE
UNIVERSITY OF CALIFORNIA
LOS ANGELES, CALIFORNIA



Page Intentionally Left Blank



N

ACKNOWLEDGMENTS
The ;uthor wishes to express his sincere gratitude to Professor
Julian D. Cole for his guidénce,>support and encouragement throughout
the research and preparation ofAthis report. He also wishes to thank,
Professor J. A. Krupp for hié assistance during the critical stages
of formulating the numericél algorithm and 'Dr. Earll M., Murman of NASA

Ames for initial suggestioms.

The research was partially supported by NASA under Contract Number

—

4-442560-23223 and ONR under Contract Number 4-482560—2593239
S e—— X

o
SHEI Sy s . JeleX e
[N b e .
0

Lt .

111




Page Intentionally Left Blank



ABSTRACT

The problem of inviscid, steédy transonic conical flow formulated
in terms of the small disturbance theory.is studied. The small distur-
baﬁce equation and similarity rules are presented, and a boundary value
problem is formulated for the case of a supersonic freestream Mach
number. The equation for the perturbation potential is solved numer-
ically using an elliptic finite difference system. The difference equa-
tions are solved with a point relaxation algorithm that is also capable
of capturing the shock wave during the iteration procedure by using the
boundary conditions at the shock. Numerical calculations, for shock
location,_pressﬁre distribution and drag coeffiqient, are presented
for a family of nonlifting conical wings.

The theory of slender wings is also presented and analytical

results for pressure and drag coefficients are obtained.
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~ SYMBOLS (Cont'd)

S : y - 6f
U freestream magnitude of g
u, vV, W perturbation velocity components in the x, y, z

directions respectively

Xy, Vs 2 cartesian coordinates
"X, ¥, Z transonic coofdinates
Y, 2  transonic conical coordinates
Y ratio of specific heats
28 thickness of wing at x = 1
Ge equivaient body of fe&olution radiﬁs at x =1
E,N transonic conical elliptic cylinder coordinates
P density '
] | exact potential
1% perturbation potential
¢ conical perturbation:poﬁential
w relaxation parameter
Subscripts
i,j mesh point indices in tﬁe £ and n directions,
respectively :
o freestream conditions
Superscripts
* outer expansion variable

inner expansion variable
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CHAPTER 1
INTRODUCTION

Transonic flows are"chéracferized by the presence of a region where
the local flow speed is close to the local speed of sound. in flows of
this nature shock waves are generally present in the supersonic region
or at the downstream supersonié—subsonic'1ﬁterface. Mathematically
this probleﬁ is described by 'a nonlinear equation which is elliptic if
the flow is subsonic or hyperbolic if the flow is supersonic.

Intense theoretical an& experiméntal work started in the late
forties and resulted in a good undefstandiﬁg of the physical phenomenon.
Newman and Allisori1 give a listing‘df over 300 theoretical papers and
Cole2 gives a brief historical survey leading to problems of current
interest, Those problems are of great ‘engineering interest beqause
they occur in a number of»practicai'situations'such as flows in nozzles, -
over helicopter rotors, propeiiers and over airplanes flying close to
Mach number one. |

. The method of the hddograph~transformation, which makes the
equation linear, was the first to yield quantitative information about
transonic flows over two dimensional bodies. The hodograph method is
ﬁseful in the case of the'stfaight we&ge and can aiso yield a solﬁtion
valid in the vicinityAOf blunt nosés;' However, its applicability is
hinderéd since boundéry conditioné, inherently given in the physical
plane, usually beéome very dompliéated'in'the hodograph plane. The
limitation is thus in solvihg’difect'problems. Garabedian and Korn3
have found this method useful in computing the inverse problem; the

airfoil for a given flow field.



In computing solutions successfully over arbitrary planar‘shapes':

_two basic approaches have been used. Both approaches, the time depep- m- ffw

dent techniques and the relaxation methods use finite difference techér'gj7} .

niques.and are capable of capturing imbedded shocks. The time dependent
technique (Magnus and Yoshihara)4 integrates the equations of unsteady
;ompressible flow forward in time to approach a steady sta;e. This
method is quite lengthy for general application. A simpler and faster
method for symﬁetric bodies was first developed by Murman and Cole5 who
solved the transonic small disturbance equation for the potential. Sub-
sequent work (Krupé and Murman,_6 Krupp7) improved this procedure and
extended it to 1ifting airfoils. The results have been shown to give -
remarkably good results.

For three-dimensional transonic flows only a few solutions are
-available thus far. One due to Ballhaus.and Bailey,8 extends the relax-
ation procedure of Murman and Cole to solve three-dimensional super-
critical flows over lifting wings_with‘blunt leading edges and non-
rectangular planformé. However, the solutions available are all for
subsonic freestream Mach numbers.

The purpose of this dissertation is to develop on effective
numerical method for computing.three—dimensiopal transonic flowé with
"supersonic'" conditions. .More specifically nonlifting conical wings
with the shock attached to the nose of‘the wing will be considered. .

This disserﬁation will be preseﬁted in three major parts, consist-
. ing of Chapters 2, 3 and 4. Chapter 2 formulates the bOundafy value

problem and gives the basic analytic results_needed for the numerical



computation. Chapter 3 discusses the details of the numerical
computation and presents the results., Chapter 4 presents the slender-

wing theory and compares the results.
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CHAPTER 2

. FORMULATION OF GOVERNING EQUATIONS
2.1 - BASIC EQUATIONS '

| The basic differential equations are statements concerning the
conservation of mass, momeﬁtum and energy for a fluid, plus an equation
of state. Since shock Qaves are present shock jump conditions must be
added. The shéck jump conditions are integral formé of the above con-
servation laws. Bopndary conditions prescribe the flow at upstream
infinity and require the flow to be tangent to the body surface.

The continuity and momentum equétions are as follows:
Vepg = 0 (2.1)
q-V3+ 5V =0 (2.2)

where p is the density, § the velocity vector and p the pressure; the
space coordinates used being non-dimepsional.

The energy equation expresses the fact that total enthalpy is
conserved along streamlines and it can be shown that it does not Jump
across a shock surface. ASSuming_the perfect_gaé law we can write the

energy equation as,

2

2 20 2 a o ’

g ,a  _U | "= :

S Sl S (2.3)

where a = local speed of sound = (gg) =\/YRT
' S

Cp
Y = -~ = constant

AY
U = magnitude of the velocity vector at upstream infinity
a, = speed of sound at upstream infinity.

PRECEDING FAu. BLANK NOT FILMED
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The only mechanism for entropy production and for introduction
of rotation in this inviscid model is a shock wave. The entropy,
though constant along streémlines, does jump across a shock wave. It

bcén be proved that the jump in entropy is of a higher order than the
equation to be considered.9 Hence the flow can be assumed isentropic
and irrotational.

Using the relation”between ﬁhe speed,of<sound and the pressure

we can rewrite the momentum equation as:

2
Vg =-=Vp = - =~ \v) = -« —V 2.4
q-Vq o VP p(dp) p 5 VP (2.4)
" The continuity equation gives a relation between the density and

the velocity of the fluid

Vepq = Q-Vp + pV.E{.= 0 (2.5)
and multiplying the momentum equation (2.4).by'a'enables p to be
eliminated using the coﬁtinuity equation (2.5), giving:

;. 2 2 )

q-V 7= a vV.q ' : (2.6)

Introducing the condition for 1rrotation#lity

Vxqg=20 | ' ‘ | (2.7)
a velocity potential ®(x, y, z) can be defined by the relétion

q =V v (2.8)
The‘componeﬁts of velocity, in equation (2.6), can be substituted by

the appropriate partial derivatives of the velocity potential giving a

scalar equation for the velocity potential.

(32 —~c1>2)c1> ¥ (az - <1>2) o -+ (az - <I>2) )
x] xx y] vy z| “zz

~20y Oy Oxy -~ 20y By Oxz - 20y 8y By, = 0 (2.9)



If the flow at upétfeam infinity is uniform with magnitude U and
Vpérailel to the x axis

d(x, v, 2) = Ux at upstream'infinityb (2.10)
on the surface of the body the flow must be tangent to the solid
surface. This can be expressed as

q'Vs = 0 ' '. : . | ‘(2.11)
where S(x, 'y, z) describes the body surface.

The equation for the potential, together with the above boundary
conditions form the basic system déscribing the flbw field.

2.2 DERIVATION OF THE TRANSONIC SMALL DISTURBANCE EQUATION

The solution of équation (2.9)'gives the exact flow, with the
assumptions outlined in the preceding section. However, there are ho
practical methods available to solve this equation. We must fhen look
for a simpler equation capable of preserving the features of the exact
equation and which could be solved practically.

The equation can be simplified by intfoducing small disturbance
approximations corresponding to flow over thin bodies of thickness
28 (8 << 1),

The small disturbance apprqximation corresponds to an expansion
procedure, for the velocity-potential, valid as certain small param-
eters approach zero.

A special procedure is necessary to derive a suitable small-
disturbancé approximation when the flow is transonic as opposed to the
usual linearized theory.10 Linearizeditheory, which has a singularity

~at M_ = 1, cannot be used in the transonic rahge since the solution it



gives for the streamwise vélocity perturbation becomes infinite as the
upstream Mach number appfoaches one. This violates the assumption of
small disturbance.

In the transonic range the expansion should also be aéymptotic
as the upstreém Mach number approaches one, and it will be shown that
tﬁe quanfities § and Mi - 1 should nét go to zero independently.

The expénsion for three dimensional wings of halfspan b and

thickness 28(Figure 2.1) has the form:

o(x,y,2; M _,8) = Ujyx+ 81(6)¢&(x,?,2) + €,(8)P,(x,5,%) + ...

§ = B(O)y . . o (2.12)

B(S)z

N
L]

Linearized theory, where B(§) =1, fails badly near M_ = 1 because
the ofders of certain terms weré estimated ihcqrrectly. In order to
arrive at the correct.éxpansion let us set M= 1. If a suitable
_expanéion can be obtained for M_ = 1 then it can be extended in the
neighborhood of M, = 1 by considering that M - 1 at a certain rate as
§ » 0.

For M_ = 1 this limit process cannot be carried out in the original
system of coordinates, since this'gives the Same’result as in lineaf—
ized theory. Instead rescaled y and z coordinates are used. Linear-
ized theory indicates correctly that disturbances spread mére rapidly
in the transverse direction of flow hence we can expect B(S) + 0 as
M~ 1.

Keeping only the first correction term to the potential and

dropping the subscript 1
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{1 + e} | | (2.13)

d =

X

¢ =1U ~ ' 2.14
. € B¢ » (2.14)
° =UeBaq o ‘ (2.15)

and the energy equation tékes the form
a® = a - (-ni’eq + 0ehH | (2.16)
Substituting equations (2.13) —.(2.16) in equation (2.9), dividing

by U2 and omitting terms of order 62, we obtain

1 . .
;5 -1- (Y+1)eq§} €f t

[oe]

1 : 2 _ '
;5_— (y-l)eq;} @Psg + @y)eB” = 0 (2.17)

)
If we now set M_ = 1 in the above equation
‘(Y+l)€2¢>¢7 = 5820p~~ + @)
XXX vy zZ
The distinguished limit occurs if B =+ 0 as é - 0, in such a way

that

ep? = &2 or B=vVe | (2.18)

The condition that the flow is tangent to the solid surface,
" equation (2.11), fixes the orders of magnitude of B and €.

' The wing is described by
S(x,y,2) = 0=y - 8£(x, ) (2.19)

and using equation (2.11) gives the boundary condition for the pertur-

bation potential on the body.

| eap§<x,o,§) = 8f_(x, f) (2.20)

10



. A comparison of -equations (2.18) and (2.20) shows that

€ =>62/3 (2.21)

1/3

B=2¢ (2.22)

for the distinguished limit. This gives the equation for sonic flow
DGO =55+ 035 Mo=1 - (2.23)

The concept of the limit process leading to the expansion must
now be widened to consider M_ -+ 1 as § + 0, this can be expressed as

M2 = 14K, V() >0

The quantity K is held fixed in the limit and an order must be found

for the function V(8). To do this we go back to equation (2.17)
' 2

rearrangé it and substitute Kv(§) for M_ - 1. The distinguished limit
exists if . . _

w(s) = §2/3 o ) k , C(2.24)
and results in the transonic equatioﬁﬂ

[K + (y+1><px] G = P55 + P53 - (2.25)

Mi-1 | ' ’
K = 73 (the transonic similarity parameter) (2.26)
s )

The boundary condition on the wing reduces to

- z o
¢§(x,0,z) = fx<¥’ 1/3) - (2.27)
bé
To make the system describing the flow field a complete one we
' must next consider the shock‘jump conditions. These relations can be

derived from the surface integral form of equationv(2.25) applied

across the shock surface plus the requiremént'that the resultant jump

11



in velocity is normal to the shock surface. Using velocity components'
u, v and w to substitute for Pyr O3 and ¢- equation (2.25) can be

written in divergence form.

(— Ku - y+i u2> + Ve + W =0 (2.28)
2 x y z

The above equation can be interpreted as the.transonic continuity
equation since it represents the divergence of the mass flux>vector;
With .

Q = (— Ku—ﬁ2—1u2>§..+ v3.+wI<.

(i,j,k are the unit vectors in the x, y and.z direction respectively)
equation (2.28) can be written as

-

V- =10
.. Across the shock surface, Figure 2.2, the jump in the normal
component of'6 is zero and so is the jump in the tangential component
of velocity. To incorporate these in equation (2.28) let the shock

sﬁrface be given by

G(X, -};9 E) =0=x - 8@, E) ‘ (2‘29)

Then the unit normal to the shock surface is

Reqwer ~T-gT -t
and
[@-1d1=0 - o (2.30)
becomes | o
‘[Ku + ij—l u2]~ +]'[v]g§ + [w]lgy = 0 ' (2.31)

12



" ELEMENT OF
SHOCK SURFACE

)

<s

NS

- Figure 2.2. Shoock Wave Element.
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where
(1=3mp= ()P - (HD

Since the tangential component of velocity does not jump across

the shock
[Tx%d] =0 | | (2.32)
or
- [vlg; + [wlgg = 0 | o | . CED
[ulg; + [w] =0 : | (2.34)
[ulgs + [vl =0 : - (2.35)

y

Substituting equations (2.33) - (2.35) in equation (2.31) gives
) [K“ + “2] [ul + (vi?+ [w1%=0 - (2.36)

Equation (2.32).implies that the potgntial may only jump by a
constént across the shock.l For conveﬁienée we,shéll assume that [¢] =0.
Note that u, v, w are the perturbation velocity components and are all
zero upstream of the shock. On the shock surface the value of the
perturbation potential is taken to be zero.

2.3 FORMULATION OE THE BOUNDARY VALUE PROBLEM IN CONICAL COORDINATES

The flow field.to be analyzed here is conical, that is, flow
properties are constant along radial lines extending from the origin.
For this type of a flow the equatioﬁs defived_in the previous section
assume special forms. Since the potential is constant along rays it

will be a function of the coordinates i-and %-. Thus we can define

conical variables

‘14



z _z

Z = Bx bx
.Y _z
¥ Bx bx

where B = b61/3

In terms of the above conical variables the perturbation potential
assumes the form
o, ¥, 2 =x 92, Y) | (2.37)

and the transonic equation (2.25) becomes

’ 2 ‘ 2 1 '
K+ (y+1) (¢-Z¢Z-Y¢Y>f 2%, + 2200y, + YOyt = 5 (0,5 + byy)
, : ‘ B :
(2.38)
Since the wing is also conical
£(x, 2) = xF(2)
and this makes the boundary condition on the body
¢,(z,0) = B{F(z) - zF'(2)} | | (2.39)
The two boundary conditions on the shock then are
_ vo.)2- YrL N1 62 4 62 = c

=0 _ A L - (2.41)

It proves useful to write the equation for the perturbation:
potential in a curvilinear coordinate system. The elliptic éylinder
coordinates, which were choseh; have the advantage of fitting well

into the numerical scheme.

15



The elliptic cylinder coordinates are given by

Z = cosh & cosn
Y = sinh & sinn
for £ 20 and 0<n<2m

Since the wings to be considered are symmetric with respect to the y

T
2

wing extends from zero to one on the Z axis (£ = 0) and the shock is

and z ‘axes, the range of n is 0 £ n s - as shown in Figure 2.3. The
a curve in the plane; whose shape and location are part of the solution
for the potential function.

In- the new coordinates the equations for the velocity potential

and the boundary condition on the wing become

{K + (Y+1),<% - %-(sinh £ cosh § ¢5 ~ sinn cosn'¢n))}

{%-(%1nh2£ cosh2£ ¢EE -2 sinh.é coeh g sinn c?sn ¢€n + sinznlcoszn¢nn)-

sinh £ cosh & (55- (sinHZE coshZE-— sinzn cos?n) +

.J2 _
1 -3 (stmn’ +.cosh2£)) o +
sinn cosn (25 (sinhZE'coshZE';‘sinzn coszﬁ) +
J .
1+ %'(coszn -.sinzn))¢n}=:§§'(¢gg-+ ¢nn) | (2.42)

where

J = sinhzﬁ + sinzn

énd » ,
¢€(O,n) = ¢Y(cosn, 0) sinn ' (2.43)

16



Figure 2.3. Elliptic Cylinder Coordinates.
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* On the shock surface the boundary conditions take the form

+
- {(Sinhi coshgq)E - sinn cosn¢n)2 - %E% (sinh& coshE_d)g - sinn coan)n)3
.122>.22 2 L2\ '
— + h =0 2.44
+ BZK (¢£ ¢n (81n g cos'n + cosh™ ¢ sin n) ( )
and ¢ =0 on the shock (2.45)

Since the potential and the shock are symmetric with respect to

the Z and Y axis

T ) , :
=0 at  n=0,35 (2.46)
g—% = 0 . at n = 0, % ' (2.47)

Fig. 2.4 gives a summary of_the boundary value problem in the
cross plane.

Various physical quantities caﬁ be derived from the solution of
the transonic potential equation. Two which shall be considered here

are the pressure coefficient C_, and theydrag coefficient CD.

P

The pressure coefficient is defined by

P -p o
= = — - (2.48)
“ -% pwU2 YMi (pw

but
v

e _ [\t
Po  \ a2

and using equations (2.16) and (2.21) we obtain

' X
Cp = _2_2. :(1 - (Y—l)Mi §2/3 (,Dx> L |
AL

18
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SHOCK WAVE

"—(2.46)
‘ (2.42)

(2;‘43)
e

Figure 2.4. Boundary Value Problem for the Cross Plane.
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For small perturbations this expression may be expanded in series the

result to lowest order being

- 2/3
Cp = - 28%" " ¢

In conical coordinates the pressure coefficient on the wing at x = 1

. takes the form

.2/3 | -
Cp = - 26777 (4~ 29) (2.49)

The drag coefficient is obtained by ihi:egrating the pressure
coefficient over the surface of the wing and normalizing to the area

of the wing plan form. o , :
' _/fcP Am -1 : :

dA is an area element on the wing surface and T is the unit vector

normal to the wing surface. In conical coordinates equation (2.50)

becomes
l X
= - ' . o
CD = (Sf CP(F ZF')dz } 5 (2.51)
0 .

20



" CHAPTER 3
NUMERICAL PROCEDURES AND RESULTS
3.1 INTRODUCTORY REMARKS
o The transonic equation for the pérturbation potential (equation
2.42) has the general form

+ a4V= 0 (3.1)

' + b, +
2y bgg * 28y dgn * 33 Oy
where the coefficients ay throdgh a, are function of &, n, ¢E’ ¢n and
the similarity parameters K and B. Depending on the sign of the

quantity

equation (3.1) is elliptic parabolic or hyperbolic if D is negative,
zero or positive respectively. .

For the cases to he considered here, equation (2.42) is of elliptic
type within the region bounded by the.shock'wave (Fig. 2.4) and centered
differences are proper to approximate its defivatives.v g

The shock shape and location are‘not known a priori. They are
part of the solution of equation (2.425. With this in mind a method
has been developed that solves éimultaneoﬁsly'for the shock shape and
loéation, and thé flow potential in an iterative manner. .This is done
by initiélly locating thg shoék near the Mach cone and then proceeding
as follows:

(i) Solve equation,(2.42) subject to the,bpundary conditions on the

Y and Z axes and ¢ = Q on the shock.

(11) Split equation (2f44) in such a way that a new shock location is

obtained using information from step (i)

21



(1i1) Go.back to step (i) with tﬁe shock at thé new location and repeat
the sequence, until the shock location .converges.
Equation (2.44).is split in a way that makes the sedﬁence just presented
a éoﬁvergent one.
The following sections give fhe details of the procedure just
described.
3.2 PRESENTATION OF DIFFERENCE_FORMULAS AND RELAXATION ALGORITHM
Consider thevnumerical solution‘of equation (2.42) with the shock
near the Mach cone. The location of the Mach cone is known from linear-
ized theory; at x = 1 it is given by

1

R =
o " Lk

. where

Rye =VI~ +2

On the Z axis

RMC =27 = coshEMC_

and the initial shock location is taken to be

EMC = cosh_1 L
BVK
‘Two types of boundary conditions occur. On the shock the -
potential is specified and this is incorporated directly into the

difference formulas by taking ¢ = 0 for all j. On the other

imax, j
boundaries derivatives are specified and these are incorporated on mesh

points which are offset one half mesh spacing from the actual boundary.
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This giﬁes a simpler>and more accurate treatmént of ;he boundary
con’dition.7
The grid geometry is rectangular as shown in Figure 3.1 and the

difference eQuations used for the interior points (i=1, j=1, jmax)

are
%ei,9 = ¢i+l’j2;£¢i‘1’i + o(A52> o | (3.2)
Pnig T ¢ili+lzz_m¢i’j_1 * owrdy (3.9
g1,y = P, ” zzz;_j T AL, oed) | .5
.¢nni,j i 4 441 ~ zzri]’zj MRZIE IS + 0(an2) a5
eni,g = ¢i+l¢l — ¢1+1, ‘j-,iA;A,:i-'l’jﬂ bt 0(AgAN)  (3.6)

where the subscripts i,j give the location where the solution»is
computed. These difference equations are second ofdef accurate.

For grid points along i =1, j = l; or j = jmax the difference
formulas are modified to‘incg?porate the specified valuesvof.cbE and ¢n
which are giveﬁ_along £ =0 and n‘= 0, g-, respectively. To illustrate
this gonsider a grid point at i = 1 for all j. This point is a distance
Ag

5= away from the boundary £ = 0 where'¢& is known from equation (2.43),

and is denoted by PC(E).
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With aifictitious mesh'point at i = -1

. AE
- 7

I
|
AL U
5> T rﬂA&*E :
I PR

1% ”"'Q!Ll'-' - zilj—- -+ —

P

¢£ at 1 = 1 can he written as

9,4 " %13 _ %20 T4,y t b m by

Ye1,9 =7 mE 28E
J%2,0 7%y, 1ty T 0
- . 2AE 2 AE
tot LY Bl W RO G
glving ¢, , = AE 7 PCQ) | .

¢£€ is evaluated in a similar fashion, giving

¢ -¢ :
: 21 Li ey ¢ -6
= AE 3 Py L,i 1 .
®ee1,3 T tyv Rl A C U L

AE
For the ﬁixed derivative ¢£n at 1 = 1 three different forms appéar
depending on the value of j. If j =1 or jmax we can make the approx-
imation

o = Ll fenge1
o Enl,j 2An
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and use equation (3.7) to obtain

¢ R S
= __1 . _ s 23j+1 19j+1 2:3'1 1;1'1 )
¢£n1,j = Zan <Pc(3+1) PC(i-1) + AE ‘ > (3.9)

If i = 1 and j = 1 (or jmax), ¢€n is computed by averaging the values

of ¢€n at neighboring points as shown below.

|
| |
2 22
_._.*.__ —_ - 1» _________ —
1
-‘2-.)%1{ ,):( x%—-,g: ]
N Iy
Il 2,1
%’, | #— + _lx,-,_+ e — - — — — —
| 2 l
' '.
IXL .)é..,|_ l €
12 272 )

but

and ¢£n on £ = 0 can be calculated from equation (2.43) and will be

denoted by PCA(j) giving

¢ -6 -6, ,+ 0 .
1 1.3 . %1,1 7% "%t %,
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- Similarly special forms for ¢n and ¢nn, on j=1and j= jmgx for’
all i, and ¢€n for i = 1, j = jmax are dérived with the result summar-
ized in Table 3.1.

| "The differénce equations just presented are used i; equation (3.1)
and a differencé equation fcr,ct)i’j is obtained. This equation is
blinearized, by evaluating the coefficients a;, a, and ay using valués

of ¢, . from the previous iteration, and solved by a point relaxation
1,] *

algorithm whose formula is

¢i(?;f1) = w$§"‘;.’1) + (1 - w)¢§?; (3.11)
'whére ¢£?) is the yalue at the nth iteration '

3 (Dth "

¢i?;l) is the réléxe& valﬁe

w i is the relaxation parameter

3.3 MOVING THE SHOCK
On the shock ¢ = 0 and we can write

¢£ dg + ¢n dn = 0

or

& _ %
dn £

on the shock

‘and ubon substituting the above in equation (2.44) and rearranging it

‘we obtain the relation
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@

sinhzg cosh2£ = =2 dg sinhf coshf sinn cosn + sinzn coszn 13 -
dn e . \dn
- 3 A
%%% ¢£ [sinh& cosh& + sinn éosn(g%)]i: » ‘.
)
+ L 1 +(§§) (éinhzg coszn + coshZE sin2n> (3.12)
s | ‘9"

With the solution just obtained the right hand side of equation
(3.12) is computed and a corrected new shock location is obtained
whose shape is usually non elliptic. Since‘the same number of mesh
points ‘are kept, so that the shock is always on grid points, the new
grid geometry is non—rectangular and A is now a function of n. A

subscript j will be ﬁsed, Ag » to show this dependence. Note that grid

|
points which have the same value for the subscript i are not aligned on
vertical lines any more. | ‘

The values for the potegtialv(with the shock at EMC) are
transferred to fhe new grid points and are used as starting values for
the relaxatioﬁ procedure.

In calculating ﬁ derivatives (at a given i) values of ¢ on a

vertical line are needed, thus requiring interpolated values of ¢ at

points where the solution is not computed. Figure 3.2 shows these

‘points (marked by x's) when the derivative is caiculated'at i,j.

The values of the potential at these points are calculated applying

a second order accurate interpolation formula which uses values of the

potential at the three nearest'grid points. For example the value of

¢ at a point s away from i, j+1 is
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o - - o 8(s+1) _
O,4+41 = %4,341 + 8 (¢i,j+l’— 4’1—1,‘j'+1) T2 (¢i+1,j+1

24 541t ¢i-i,j+1) |

This interpolation formula has the same accuracy as the difference
équatidns. . The solution for ¢ isuanalyticalAin the neighborhéod of the
point i,3+1, therefore the overall accuracy of the numerical scheme is
bpreserved;

3.4 'COMPUTATIONAL DETAILS

Sections 3.2 and 3.3 givé the basié method for solving the
transonic potential equation. In aﬁpiying these principles certain
points must be resolved. Tbese include choice of relaxation parameter,
number of grid points used as well aé the_determination 6f converggnce
of the iterative scheme and;overall éccuracy.

The choice of the relaxation parameter (w) determines the rate of
convergence of the algorithm. For_Laplacé's equation an optimal value
can be found from the spgctral radius of the Gauss-Seidell method.11
The transonic equation is_nonlinear and such a valqe must be found by
experiment since it dqes not péve an:explicit-form. The value of W
th;t gave the fastest convergence (fewest number of iterations) for a
grid with 4OXZO point§, in the £ and n respectively, Bv= .2 and K = 3.0
is 1.93. This value was usgdzfor all the comput;tion since W did not
depend strongly on B and_K. | |

The convergence.of_thehgplpt;qn,.fpr a particular shock location,
is based on thervaluehqf_tbe ?esidue f.thq,differencé in the potential
at a given grid point on two supcgssive'iterations.. When the value of

5

the residue at all points in the field is less than 2.5 x 107”7 the
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| solution is assumed to'have converged. .The same criterion is used
for the shock location with 10_4 as the reference tolerance. Table 3.2
gives the number of iterations needed for convergence (n) and the shock
location (value of f) on n =0, The location prescribed initially to
the shéck wave is 2.65000; the rest are corrected locations obtained
from equation (3.12).

Table 3.2

‘Successive Shock Wave Locations

K = 3.00 B=.2
- _ z
118 2.65000
80 ©2.79355
66 | 2868
62  2.89161
48 | 2.90411
21 ; 2.90925
9 2.91132
5. 2.91216
2 2.91249
1 2.91265

2.91267

The accuracy of thé methods has been tested by mesh vafiation.
For shock locatiéns more than bne span away from the tip of the wing
the grid used has 40 points in the £ direction and 20 in the n direc-
tion. However, for cases with the shock closer to the tip of the wing

a 20 x 20 grid is sufficient.
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In calculating the préssure‘coeffiéient,‘valﬁes‘of the potential
on the wing are needed. These are evaluated by e#tending the solution
" to the wing surface using.a Segond order accurate extrapolation equation
wﬁich has the formula v |
o =0 .-1é'.—¢ )+§G - 20, .+ 0 )
1, 1,] 2\"2,j 1,3 8\"1,] 257 3,]
| 2] ,
The drag coefficient integral, equation (2.51), is evaluated numerically
using'the trapeioidal rule.

This‘section shall conclude with a word about computation times.
Two different time scales appear in.this problem. Consider starting a
computation for one set of conditions (B and K) from the solution to a
different problem. If in the new problem the shock location is signifi-
"cantly different a well cénvefged_solution‘may take 15 cycles (shock
location corrections.) If solutions are sequenced so that shock loca-
tions do nof change by much the same degree of COnvergenée méy take
only 8-10 cycles. A.computation that.requires'lo cycles, on a grid of
40 x 20; takes about 40 seconds on an IBM 360/91 using doﬁble precision
arithmetic. |
3.5 RESULTS

In this section computedAresults Based on the theory of the
prévious sections is présented. Tw§ different conical wings, one of
rhombic cross section the other circular, are considered for various
valﬁes of the similarity parameters K and B. The methods can be used
to compute other wings which are pointed at the tip.

In conical variables the rhombic wing is given by

F(Z) =1-2 0sz<1 _ (3.13)
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This equation corresponds to

'y = 0xF(Z) = &x (1 - f;) ' : . (3.14)

in the physical coordinates and simplifies to

8 <1 -_-]j-)

-

y

at x = 1.
For the circular wing

F(Z) = 1 - z2 0<2z2<1l , "~ (3.15)

and in the physical coordinates it becomes.

2
2z
o2

y:Gl_

at x = 1,
Figures 3.3 and 3.4 give the shape and location of the shock wave in
in the cross plane. Figures 3.5, 3.6 and 3.7 give the pressure coeffi-

cient along the wing surface for the indicated values of K and B.

~
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. Figure 3.3. Shock Waves for a Rhombic Wing at K = 2.0.
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Figure 3.4. Shock Waves for a Circular Wing at K = 3.0.
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Figure 3.5. Pressure Distributions on the Surface of a Rhombic Wing for K = 1.0.

37



3.0 - K=20

2.0 |
"m
Sl
60
1.0 =
1 ] | | J
0 2 4 6 8 1.0

z/b

Figure 3.6. Pressure Distributions on the Surface of a8 Rhombic Wing for K = 2.0,
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CHAPTER 4
SLENDER WINGS
4.1 SLENDER WING THEORY
In this section tﬂe theory of "slender' wings will be presented.

This theory has been studied by several authors, but the formulation

given by Messiter12 for the non-1lifting case is particularly suitable

for our purpose.‘ The proﬁlem cah be defined in several ways, all of
which are equivalent. Ffom a mathematicél point of view the fundamental
assumption is that the solution for the potential near the wing (inner
expansion) is essentially different from the solution near the shock
wave (outer expansion). Uéing a pﬁysiéailpicture‘one.could‘take the
reduced aspect ratio, inMi -~ 1, as a basic parameter and discuss the'
solution as it tends to éero. Another possibility is to start from non-
slender wings aﬁd require theVparameter B té apﬁroach zero with 6,

. . 6 . . :
subject to the restriction that-gkalso approaches zero in order that

‘the wing remain thin. The last choice is the most convenient and is

used to obtain inner and outer expansions for the potential. The inner
expansion corresponds to the solufion_of the Laplace equation in the
cross plane, incompressible flow, and the outer expaﬁsion to axisym-
metric,.non—linear‘transonic, flow about an equivalent 5ody of revolu-
tion.

This equivalent body is defined as the body of circular cross-
section‘which has the same longitudinal distribution of cross;sectional
area as the wing. The equivalent body is defined by

r= Ge E(x) o (4.1)

PRECEDING PAGE BLANK NOT FILMED
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E(x) is the longitudinal cross-sectional area distribution and Ge is
the equivalent radius at x = 1. |

- The cross-sectional area of the wing, at x = 1, expressed in terms
of the equivalent radius is related to'the‘ﬁing dimensions by the con-
stant of proportionality k

62 = mibs = mks?/ 3 _ (4.2)

For the outer expansion

* * _ ' * :
@ (x,r 3 K ) = 6% JE)E' (x) logr + g, (x; K) (4.3)
e e _ 1 e’ (- :
%
r =168
e
M2 - 1
Ke = — (similarity parameter for axisymmetric flow) (4.4)
6 .
e

and for the inner expansion

Px,y,25 K ) = 629, log (b8 ) + 62 3, 4.5)
where

=Y 7-2

YT 2Ty

P;= EGE' (x) | (4.6)
- 8, (x)

7, =+ . h_(x,0)1 \/—2+(~ 2% 40 + g, (x; K (&

Yy = Tk x %20 1ogVy z - g1 (x5 Ke) 4.7)
s, (%)

gl(x; Ke) is the essential unknown part of the pressure distribution

and can only be determined from the solution of the outer problem. The

42
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limiﬁs of the integral describe the wing plan form and y = 6h(x,§)
gives the shape of the wing.

The pressufe coefficient C, is obtained from the inner solution

P

and has the formula12

= - 2(,, 1086 +‘sz)' | ‘ 4.8)

0%+

4.2 CONICAL SLENDER WINGS:
The equations for slender wings presented in the previous section

can be simplified using the properties of conical flows. For conical

wings.
E(x) = x |
h(x,3) = xF(D) , L= s
h (x,0) = F(Z) - I F'(Z)

and since the potential is a conicalAvariable
gl(g; Ke) = - xlogx + xCl(Kc) : v (4.9)
‘With the above information, equation (4.7) can be written as

1

az=% / (F - LF'") ;logx+ log\A2+ (Z-E)2 dz
| -1 '
- x log x + xCl(Ke) . . (4.10)
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and since

A 1 1
1 s _ 4 i}
— / (F - LF)dI = = / Fdf = 1
' -1 : ' 0
1 |
= _x_ _ , _ :
Py = [ (F - IF') log |z-Z| 4T + xC, (K ) (4.11)
_1 -
on Y =.O.
From equation_(4.2) 62 = chSz/3 so
Ke =B » : (4.12)
and
bde _ k1/2 B3/2

The expression for the pressure coefficient at x = 1 then becomes

¢ 7 |
= - :1ogk+310g13+2<p2x

|

%l
o N

or in terms of §

c )
P _ —
; /3 = kB {log k+ 3 log B+ 2 ¢2x$ | (4.13)

For the rhombus k =‘% aﬁd F=1- 27 thus giving

% 2 2 | 2 d o
‘?/3 = - =B {log =+ 3 log B + log(1-27) - 2 + 2C, (K) (4.14)
The result for the circular arc where k = g;-and F=1- 22 is
EZ --& B i EL-+ 3 log B + 22 -1 Z3 lo Q+2) +
52/3° 73w 0 |18 3x 8 2 & a
3 2, _5 | | |
5 log (1-z7) 3 + ch(KeU | (4.15)
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The drag coefficlent can now be éalculated using the above two

equations and performing the integration in equation (2.51) gives:

Rhombus
9 2 2 ,
.g_/B =B {4 - .éog =+ 2l10g 2+ 3 log B) - 2C1(Ke)_ (4.16)
Circular Arc
% —-—8—-3‘—12-.-4‘(10'8 +3 1o 2+3.1‘o'B>—Sc(K)l(417)
55/3 " 3 |18 T3 "8 3w & o8 31 e

In order to make the formulation for the pressure and drag
coefficients cpmplete; we must compute Cl(Ke)' This éan.be done in
several ways. One method of obtaining Cl(Ke) is to integrate the first
order transonic equation for flow past a slender cone.14 A second
method is to use the value of the pressure coefficient, on the surface

of a slender cone from Kopal's table,13

14

in the similarity law given by

the equation

oS 4

- ZCl(Ke) = ;§-+-4 log o - ;

C; is the pressufe coefficient on the surface of the cone, and 0 is the
tangent of the cone semi-vertex angle.

Yet another method is to compare the pressure coefficient obtained
numerically, for a pafticularvshape, witﬁ the siender wing formula for
that particular shape and choose Cl(Ke) such thét the two havé the same
value at a given location on the wing. The location that was chosen is
at Z = 0. This method also serves as a cﬁeck on slender body theory
since the results obtained numerically represent the solution of a

‘higher order equation.
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In Figufe 4.1, 2C1(Ke5 computed using Kopal's table is indicated
by the solid curve whereas the results obtained by matching are shown
by triangles and squares.
4,3 COMfARISON OF RESULTS

The comparison between the results obtained numerically and the
slender wing solution, equations (4.14), (4.15), (4.16) and (4.17), is

. shown in Figures 4.2 - 4.7.
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Figure 4.2, Pressure Distributions on the Surface of a Rhombic Wing for K = 1.0.
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Figure 4.3. Pressure Distributions on the Surface of a Rhombic Wing for K = 2.0,
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CHAPTER 5
CONCLUDING REMARKS

The method presented in this diséertation falls in the general

category of shock fitting techniques. It is simpler than conventional
methods mainly because the state on one side of the shock is known.
The results of the computations indicate that, generally the method has
a wide range of applicability. The limitation of the algorithm is best
expresséd in terms of the location of the shock wave, i.e. it must not.
fall on the wing.

For wings which have rounded tips, such as conical wings of
elliptic crosé section, the same algorithm can be used provided that the
numerical solution is modified in the neighborhood of the tip in order
to recover the correct singularity. The coniéal solution in the neigh—_
borhood of a fdunded tiﬁ is given by the solution, in the hodograph
plane, of two diﬁensional transonic flow towards that tip.

The agreement between slender body theory and the numerical cal-
culations indicates the usefulness of equations (4.14) - (4.17); (11-5)
and (II-6). These equations are applicable for values of Ke for which
_Cl(Ke) has a similarity form. Expressed in terms of the similarity
~ parameters B and K, Cy (Ky) possesses suéh a form if B < .20 and K < 2.0.
It should be noted that the wiﬁg shapes considered are given by

the family of curves F(Z) = 1 - 7"

,n=1, 2, 3, 4 which have dif-
ferent area distributions along the Z axis. Also, the function

Cl(Ke) does not seem to be particularly partial to any of these

shapes.

PRECEDING PAGE BLANK NOT FILMED
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The computer programlﬁas been written to ease the understaﬁding
of the logic rather than optimizing it for computing speed.

There are many areas in which future work wbuld be beneficial.
One would be to extend this Qéthod to lifting wings. In particular
conical wings with arBifrary afterbodies could be studied. This can be
done by extending the solution from the conical region to the region

over the afterbody using the method of characteristics..
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APPENDIX I
PROGRAM LISTING

The computer program used in this dissertation was written in
Fortran IV for an IBM 360/91. The main program is included here for
reference. |

The following subprograms are called by the main program:
INTERP Computes interpolated values for the potential
OUTPUT Prints out values of the potential
SLEND Computes values of the pressure coefficient using slender wing

theory.
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COM=CP({ JMAX)

CALL SLEND(TK,B,CPM)

GO 10O A03

601 WRITE(6,602)
602 FORMAT(' THE SOLUTION DIVERGED?')
602 CONTINUE '

4000 CONTINUE

sTopP
END
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APPENDIX II
In this appendix two more nonlifﬁing conical wings will be considered
and the functidn Cl(Ke) wili be calculatgd using‘the matching method
deécribed in Section 4.2. |
In terms of conical variables the first is described by the cubic func-
tion
F(2) % 1-2 3 0<z2<1 (I1.1)

which in the physical coordinates corresponds to

3 ' .
= 6x <l 3 3> . (11.2)
: b x
and the second by the quartic function
F(z) = 1 - 2* 0 (I1.3)

7N
N
IA
-

which corresponds to

4 - |
= ] - 2 _ :
y = 8x (l b4x4> o - (II.4)

Formulas for pressure distributions on slender wings can now be
~ obtained using equatioﬁs (4.2), (4.8) and (4.11). The constant of pro-
portionality k, obtained using equation (4.2), is equal to %-for the cubic
énd %% for the quartic. Performing-the integration in equation (4.11) and
the differentiation in equation (4.8) gives

c v
3 3 2 3,2 . 2

=2 = < + = 1-2
E%7§ —BjlogT+31logB+ 32+ 22 3 log ( )

(1-2) 4

3 log &33” log (1rzy ~3 * 20D - (1D
for the cubic and’
¢ - 16 5 liog 16 4 3 10p8 + 2222 +3Z4+log(1—Z)
273 " 5w °8 S & 12
L1 Q- 7 | I1.6
+3 z° log T " + 2C1(Ke) ( )

" for the quartic.
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The values of the function'Cl(Ke) obtained by matching equations (II.5)
and (II.6) with the pressure coefficients obtained numericélly are shown in

Figure 4.1,



