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I. SUMMARY

An experimental stress analysis was undertaken to evaluate stresses
within spherically hollow bearing balls proportioned for 40, 50, and 60%
mass reductions. Strain gage rosettes were used to determine principal
strains and stresses in the steel ball models statically loaded in various
orientations.

Dimensionless results are reported for the balls under flat plate
contact loads. Similitude considerations permit these results to be
applied to calculate stresses in\hollow bearing balls proportioned to

these mass reductions.



II. INTRODUCTION
Aircraftlgas turbine engines currently operate in a speed range of
1.5 to 2 million DN (bearing bore in mm times shaft speed in rpm). It
is estimated that engine designs of the next decade will require bearings
to operate at DN values of 3 to 4 million. In this DN range, the re-
duction in bearing fatigue life due to the high centr1fuga1 forces de-
veloped between the rolling elements and outer race becomes prohibitive. (])]
To solve the problems of reduced fatigue life in high-speed ball
bearings various methods of reducing centrifugal force have been pro-
posed. Oné of these is to reduce fhe ball mass by welding forged hollow
hemispheres and finishing the sphereg in a manner similar to solid
balls. Full-scale bearing tests with spherically hollow ball bearings

(2)

have demonstrated that operation is possible. Fracture of spherica11y
hollow bal}s has also been experienced during the operation of the full-
scale bearings.

Analysis of the failures experienced, and the effect of changes in
ball characteristics and configuration on h1gh speed operation has been
hand1capped by the difficulty of application of theory to predict stresses
existing in the balls under bearing loads and centrifugal.fqrces applied
at various Tocations on the balls. It is the object of this investigation
to provide this stress information by determining experimentally the sur-
face stresses in'spherically hollow balls through the use of oversize ball

models of sufficient size to instrument with strain gage rosettes so that

conventional experimental stress analysis techniques may be employed to

TNumbers in parentheses designate references at end of report.



obtain this information.
Strain gage techniques have been used to determine the surface stress
distribution in spherically hollow balls proportioned for mass reductions

of 40, 50 and 60 per cent.



ITT. MODELS

Actual bearing balls dynamically loaded in a full scale ball bearing
would be difficult to instrument for experimental stress analysis. The
models used in this study were selected for ease of fabrication and in-
strumentation. Hemispheres were turned from mild steel bar stock with
a radius cutting tool to a 63.5 (2.5 in) radius spherical contour, and
turned to a spherical internal radius calculated to provide the desired
mass reduction of 40, 50 and 60 per cent. The hehispheres were-strain
gaged inside and out with internal leads brought out through a 7 mm
(0.27 in) hole in the hemisphere opposite the gages. Figure 1 gives
model dimensions. The mild steel materials simplified metal cutting.

Its Tack of hardness was not a problem as cére was taken to insure that
strains were always within the elastic range. The 127 mm (5 in)vmodel
size seemed to be compatible with avai]ab]e 1 mm gage 1en§th strain. gage
rosettes and prdved easy to position and load in a unversal testing
machine. TML ZFRA-1 (1 mm gage length) 45° strain gage rosettes were
mounted on the models in locations shown in Figure 2. -The hemispheres
were bonded with epoxy adhesive. Evaluation of strain gage data seemed

to indicate that the bond line téansmitted forces and moments sufficiently
well that data from rosettes.nearest the bond Tine was indistinguishab]e
from the data of rosettes more distant from the bond line.

The rosettes were mounted with one strain gage of each rosette aligned
along a common great circle of one hemisphere over a quadrant. Other
Strain gages on the rosette backing were then automatically aligned at
45° and 90° to the great circle. A line of rosettes was thus established

along a great circle on the interior and exterior of the model.



Loads were applied statically at four load points by repositioning
the model each time after the rosette indications had been recorded. As
seen in Figure 2 these load points were midway between the externaf
rosettes. Loads were carefully limited to protect the models while
still providing a measurable strain gage response. The models were
positioned by eye to provide load over the desired load point marked
on the outside of the model. Figure 3 shows the models used, and Figure
4 shows a model positioned in the testing machine. Strains proved to

be very sensitive to load orientation for the most highly loaded gages.



Iv. INSTRUMENTATION

A Baldwin-Lima-Hamilton Model 120 strain indicator was used to power .

a Wheatstone strain gage bridge incorporating a temperature compensating
strain gage as one of the bridge arms. The strain indicator scope output
Jjack was used to drive a Mosely 7000 A XY plotter to amplify-and record

the strain indicator signal. The recorder pen deflection was found to be
Tinear with strain indicator unbalance, and the recorder could be calibrated
so that 25.4 mm (1 in) of pen déf]ection corresponded to 100 micro mm/mm
(100 micro in/in) of strain indicator ﬁnbaTance. The recorder then could
provide a +190.5 mm (* 7.5 in) pen deflection and record for a T 750 micro
m/m (* 750 micro in/in) strain unbalance of the bridgé by the active strain
dage. Standard commercial Baldwin-Lima Hamilton and Budd switch and balance
units were used to switch individual gages of the rosettes to the strain
~indicator and to provide initial zero adjustment for each gage. As each
gage was switched to the stréin indicator ahd the gage unbalance deflected
the pen in the "X" direction a record was made by deflecting the pen 2.54 mm
(.1 in) in the "Y" direction.

These records could later be read to .25 mm (.01 in) so that the re-
solution of the recording system was 1 m%cro m/m (1 micro in/in). Successive
records made over the gages of a model while the model was undisturbed in the
testing machine at constant load indicated an overall rebeatabi]ity of t 5

‘micro mm/mm (* 5 micro in/in) for the overall instrumentation system under
this condition.
' Wnen a supposedly identical series of data records were taken on different

days deviations of * 60 micro m/m (¥ 60 micro in/in) could occasionally



" be detected. These were attributed to difficulty in obtaining identical
model-load orientation, and strain gage and adhesive hysteresis effects
superimposed on the above switch contact-strain indicator-recorder
variations. A technique of averaging data was successful in reducing the
effect of this variation.

Figure 5 is a circuit diagram of the instrumentation. Figufe 6 is an

overall view of the physical arrangement of the apparatus.



V. RESULTS AND DISCUSSION

Strains read from the recorder charts were used to compute principal
strains and stresses for each rosette. These are given in Tables 2, 3,
and 4.

In these tables epsilon A is thé latitudinal strain along a great
circle of the model, read from thevoutput of a strain gage mounted along
the great circle. Epsilon B is the strain 45° to epsilon A, and epsilon C
is the longitudinal strain, read from the strain gage mounted at 90° to
epsilon A. The data reads from the top down as the rosette closest to the
symmetry point of thé,strain gaged hemisphere downward toward the joint of
the sphere,.

Epsilon 1 and epsilon 2 are the computed principal strains. All strains
are given in micro m/m {micro in/in) with epsilon 1 always being the alge-
braically larger (most positive) of the principal strains.

The principal strains were calculated from the measured strains using

equations from Dally and Ri]ey.(3)
- L(e,+€) tL (e, -€? +(2€, -€, -€)?
€1,27 2'&p*C) =3 AT C¢ B-SA "¢, (1)

Principal stresses were then computed from:
E

o= .z (€
-V

1t VE,) (2)

E

1 -v

o) 5 (€,+vE)) (3)

2 6 . 2
with values for modulus of elasticity, E, of 207 X 10° N/m=(30 X 10° 1b/in")



and a Poisson's ratio,v, of 0.3 These were then used to detrmine dimen-

sionless stress coefficients from:

9
Ky = (4)
2
T R0
[e)
K, = 92
2 5 (5)
2
T RO

where: R0 = the outer radius of the model
P = the load required to produce the measured strain.

Loads used were 11m5ted to protect the models by observing the out-
put of the gages and stopping the loading when a significant indication
was observed. There was some uncertainty as to the adequacy of the epoxy
vjoints in the models, however, the data obtained proved to be consistent
when a number of measurements were averaged, and the 1oads.reported in
Tables 2, 3 and 4 were found adequate for the purposes of the study.

Five independent sets of data were obtained at each 1oad location over
a number of days. The model was removed from the universal test machine
and repositioned for each data determination. The strain data measured
from the chart records was analyzed by computing the mean values of the:35
determinations of €ps € and €cs the deviation of each determination from
the mean and the standard deviations of €p> Epo and £c - Deviations were
scrutinized carefeully, and chart records reexamined where deviations.were
greater than 15 micro m/m. While this helped to eliminate large errors

in observations, there were still standard deviations of up to 28 micro m/m



in measurements of 144 micro m/m magnitude. The largest variation

occured where rosettes were almost directly below the load location,

and are attributable to the great variation in dimensionless stress co-
efficient with angular orientation to the load, as may be seen in Figures 7, 8 &
9. In spite of large differences in independent data determinations for

some rosettes the averaging of 5 data sets and use of all available

data gave smooth curves that were conéistent with the theory.of e]astiqity
series solution given by Go]ecki(4) and discussed in Section VI of this

report.

While only 5 rosettes inside each mbde] and 3 rosettes on the outside
of.the models were used, the model symmetry and the interlacing of the
indicated-stress coefficients for the load locations used permitted the
curves of Figures 7, 8 and 9 to be drawn. Stress'coefficiénts given in
Tables 2, 3 and 4 were plotted separately for each load location and then
transferred to a single sheet with the aid of a light table.

From Figure 7, 8 and 9 it may be seen that maximum stress coefficients
are 43.1, 75.9 and 142.8 for the 40, 50 and 60% mass reduction balls.

It would seem then that stresses in a 40% mass reduction ball will be
0.568 of those in a-50% mass reduction ball, while stresses in a 60%

mass reduction ball will be 1.88 times those in a 50% mass reduction ball,
all other things being equal. If centrifugal force is the princiba]
Toading factor on the balls a change from 50% -to 40% mass reduction balls
would increase load by 6/5 but reduéé bending stresses by a factor of
0.682. EConversely going to a 60% mass reduction ball from a 50% mass
reduction ball would reduce centrifugal force by 4/5, but increase stress
by é factor of 1.5. Contact stresses will still be greatest for the -

40% mass reduction case.

10



VI. COMPARISON WITH THEORY

Golecki (4) has given a theory of e]astiéity series solution for the
state of stress in "The Sphere Weakened by a Concentric Inclusion of
Different Elastic Properties Under Concentrated Loads". Pih and Vanderveldt ()
have shown that for spheres with ratios of internal to external diameter
of .25 and .33, the series is oscillatory for radial distances greater
than 0.5 times outer radius and actually divérges near the outer boundary.
The series was found to converge for the interior surface stresses of
spheres proportioned for 40, 50 and 60% mass reductions. It was necessary
_to compute and sum 40. terms of the series before the last term of the
series became sufficiently small in the worst case. Table 5 gives the
theoretical values of stress coefficients computed for the three balls
at 10 degree increments in angle O, the angle from the applied force

The coefficients given by the elasticity solution were used to plot
the curves of Figures 7, 8 and 9 on which the experimentally determined
~ non-dimensional stress coefficients are superimposed. Agreement between
the curves and elasticity solution appears to be good.

Rumbarger (6) reported the result of a finite element computer analysis
of a hollow ba]] contacting a flat plate. His ball model had a diameter
of 25.4 mm (1 in), a wall thickness of 2.03 mm (.08 in) and was loaded to
4,450 N (1000 1b). He reported calculated interior beﬁding stresses‘
of 304,800 N (150,000 psi) diréct]y under the load and 34,500 N (5,000 psi)
at 90° to the load. The radius ratio for this case was .84. .

From this it may be inferred that the ball was proportioned to a
59.3% mass reduction and that dimensionless stress coefficients would be

-117.8 and 3.9 at 0% and 90°. These compare with values of -138.1 and 3.09



interpolated between Golecki's series solutions for a 59.3% mass reduction

The values are of an appropriate magnitude, but do not agree as
The reason for the

ball.
well as do the experimental results reported here,

lack of agreement between Rumbarger and Golecki is -not clear.

12



VII.  CONCLUSION ”

The stress distribution in spherically hollow balls proportioned
for mass reductions of 40, 50 and 60 per cent has been determined. A
40% mass reduction ball should experience bending stresses due to cen- -
trifugal loading that are 68% of those experienced by a 50% mass re-

duction ball.

3
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TABLE I

ROSETTE ANGULAR LOCATION ON GREAT CIRCLE
FROM CENTER OF HEMISPHERE

40% MASS REDUCTION MODEL

Interior Exterior
Rosette Angle : Rosette Angle
Number Degrees Number Degrees
1 0 1 0°
2 22.0* 2 30
3 33.4 3 60
4 43.3
5 54.2

50% MASS REDUCTION MODEL

Interior Exterior
Rosette Angle Rosette Angle
Number Degrees Number Degrees
1 0 1 09
2 17.2 2 30
3 34.4 3 60
4 51.7
-5 68.4

60% MASS REDUCTION MODEL

Interior ‘ i Exterior
Rosette Angle | Rosette Angle
Number Degrees Number Degrees
1 -4.9 - 1 ., 0°
2 9.2 ' 2 30
3 24.2 3 60
4 41.3
5 54,1

* Six rosettes were mounted in the 40% mass reduction model, however, a rosette
at 119 was found to be inoperative.
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Mass Reduction
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TABLE 5

DIMENSIONLESS PRINCIPAL STRESS

COEFFICIENTS CALCULATED FROM THEORETICAL SOLUTION

K
-43.12
- 9.64
10.70
13.32
11.80
9.30
6.90
5.06
3.94

3.57

FOR INTERIOR SURFACE STRESSES

K

40%

(o

: P/TrRo

50%

LL

2
-75.95

-34.20
-11.52
5.47

- 4.01
3.84

3.91

3.94
3.92

- 3.89

60%

1
-142.82

33.20
30.04
21.26
.38
.03
.97
.51

w W P o W

.09

NASA-Langley, 1974

-142.82

]
(3]

.79
.48
.13
.70

]
el El o (34

.48
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