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EVALUATION OF A METAL SHEAR WEB

SELECTIVELY REINFORCED WITH FILAMENTARY COMPOSITES

FOR SPACE SHUTTLE APPLICATION-FINAL REPORT

By J. H. Laakso and J. W. Straayer

Boeing Aerospace Company

1.0 INTRODUCTION

This report presents the component testing and evaluation results of a program for the

development of a practical advanced composite shear web concept which is a candidate for

near-term application to primary flight vehicle structure. The program consisted of three

phases:

Phase I Shear Web Design Development

Phase II Shear Web Component Fabrication

Phase III Shear Web Component Structure Testing and Analysis

In Phase I [ 1 ], the Space Shuttle orbiter main engine thrust beam structure was selected for

the shear web application study area because of (1) the high shear loading occurring in this

area and (2) the potential importance of weight savings to the Space Shuttle System. The

high shear loading and beam bending strains in this area, with the structure at essentially

room temperature, makes the use of B/E reinforcement advantageous. In addition, the

thrust structure has large total weight and is located in an area where weight savings assist in

vehicle balancings The center-loaded thrust beam was selected for study from an early

orbiter configuration and has basic dimensions of 40 in. deep by 200 in. span (1 m x 5.1 m).

Design development was then performed which involved computer-aided design and

analysis, detailed design evaluation, testing of unique and critical details, and structural test

planning. Particular emphasis was placed on computer-aided design to screen candidate

concepts. Various web design concepts having both boron/epoxy reinforced and all-metal

construction .were synthesized by a computer-aided adaptive random search procedure

programmed as the Boeing OPTRAN code.

A practical shear web was identified by the design concept evaluation study in Phase I. This

concept has a titanium-clad ±45° boron/epoxy web plate with vertical boron/epoxy

reinforced aluminum stiffeners.



Preliminary detailed thrust beam drawings using the B/E reinforced design concept and an

. all-titanium construction were prepared in Phase I; weight trades and cost analysis were

conducted using these drawings. These studies showed a 24% savings with the selected

concept relative to an all-metal construction. Cost per pound of mass savings was estimated

to be less than $250 (551 $ US/kg). Critical details and reliability considerations for the B/E

reinforced design were identified and structural element tests were made to substantiate the

design details. Cyclic load and temperature design environments were simulated in some of

the element tests. A significant outcome of the element test program was the determination

of titanium cladding reinforcement required to preclude failure at joints land fastener holes.

Two small scale shear web elements 18 in. by 25 in. (45.7 cm x 63.5 cm) were also tested to

demonstrate the performance of the basic web laminate details.

Phase II [2] activities were oriented primarily toward the fabrication of three large scale

B/E reinforced shear web test components. The test webs were 36 in. high by 47 in. long

(0.9 m x 1.2m). Test fixtures for the shear web test elements and the large scale web

components were also fabricated during Phase II. The center-loaded beam test fixture was

configured so that the test web components could be installed in one half of the beam for

each test. The test fixtures were fabricated from available standard extruded aluminum

sections and plates.

Phase III [3] was concerned with structural analysis and testing of the three B/E reinforced

shear web components. The first web design was established from the baseline B/E

reinforced shear web design developed in Phase I. Slight changes were made in web depth

and stiffener details to simplify fabrication of the test web. Based on the static test results

of the first test web, improvements in analysis and fabrication procedures were made to

enhance shear buckling resistance.

The second test web was tested to demonstrate fatigue resistance; 400 loadings to a

simulated limit load level were applied with no apparent fatigue damage resulting in spite of

high prebuckling deformations. After post-test analysis, the second test web was delivered to

the Langley Research Center.

The third test web, shown in Figure 1 was redesigned using an improved computer-aided

design procedure. Provision for longitudinal stiffening and buckling analyses based on

discrete stiffening were added to the OPTRAN code used in Phase I; weight trades

conducted with the code indicated that longitudinal stiffening would be beneficial. The
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static strength test results for the third web indicated that performance of the design

concept was significantly improved by the additional stiffening and was strongly dependent

on shear buckling resistance qualities.

Because of the importance of prebuckling deformations to load carrying performance, an

approximate prebuckling analysis procedure was studied and incorporated in the OPTRAN

code for the B/E reinforced web concept. Weight trades were then conducted using the

OPTRAN code to establish correlation with the third test web and final weight comparisons

between the B/E reinforced concept and all-metal construction. The final weight trades for

production hardware load conditions indicated the B/E reinforced web concept offers a

theoretical nominal section weight saving of 31% compared to conventional stiffened

titanium construction; with edge joint and other design detail weight penalties considered,

the B/E reinforced web concept offers weight savings on the order of 24%. Several design

configuration options were also studied including the use of all-aluminum stiffeners, instead

of B/E reinforced stiffeners, to stiffen a B/E reinforced web plate; use of all-aluminum

stiffeners was found to reduce theoretical nominal weight savings from 31% to 28% in the

cases studied (a lower-bound on stiffener effectiveness was assumed in these design concept

variation studies).

This report presents a summary of test and evaluation results which were selected on the

basis of their importance to a future production program. All program data and results may

be found in the respective references for the three program phases [1,2,3].



2.0 SUMMARY

Large scale structural testing was conducted on three 36 in. high by 47 in. long

(0.9 m x 1.2 m) shear web components having titanium-clad ±45° B/E web plates stiffened

with vertical B/E reinforced aluminum stiffeners and, in the case of the third web, a

longitudinal aluminum stiffener. The results of the shear web tests are summarized below:

TEST WEB o RESULTS

1 540,000 Failed by composite panel fracture

(2.4) in postbuckling condition.

2 530,000 No failure at maximum load after

(2.36) loaded 400 times to 400,000 Ib

(1.78MN).

Web had large prebuckle strains during

fatigue loading

Web was in postbuckled condition in

final loading

3 575,000 Failed by composite panel fracture in

(2.56) a panel that was in a prebuckled

condition

The third web had significantly more stiffening than the first and second webs and displayed

what can be called "shear resistant" response which allowed higher loading. The integrity of

the fatigue test web, test web 2, was unaffected by the degree of prebuckling strains that

occurred during the cyclic limit loading. Based on analyses of the test data and other

computed optimum design cases, the ultimate allowable composite strain in prebuckled

panels will generally govern the strength of highly loaded stiffened composite shear web

configurations of the type studied in this program.

Based on the results of the large scale component testing and analysis, the shear web

concept is evaluated to be practical and efficient for the application that was studied.

However, because of the importance of prebuckling deformations and related hazards of low

post-buckling strength, the composite reinforced design concept will require more

sophisticated structural analysis than in the case of conventional metal web for a production

hardware application.
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3.0 SHEAR WEB TEST COMPONENTS

3.1 FABRICATED COMPONENT DESIGN DETAILS

The design concept and details of the test web components are illustrated in Figures 2, 3

and 4. These illustrations show in general how local web laminate reinforcement and

composite load transfer were provided for.

An objective in selecting the actual test web configurations was to have large size and

realistic design details so that evaluation of the design concept could be'made without

scaling problems. Consequently, the test web laminates were sized 36 in. high by 47 in. long

(0.9 m x 1.2m). The web laminate cladding reinforcement scheme is highlighted by the

completed laminate section shown in Figure 5 and dimensioned in Figure 6; except for the

transverse stiffener spacing and the presence of the longitudinal stiffener, the general details

of the test web laminates were similar. The cladding skins, as shown in Figure 6, had three

thicknesses formed by chem-milling: ( l ) a "nominal panel cladding thickness" of about

0.020 in. (0.51 mm) forming a nominal panel height of 25 in. (64 cm), (2) a "reinforced

cladding thickness" of about 0.050 in. (1.3 mm) which extends from the nominal panel

edge to the beam chord members giving a clear web height of 29 in. (74 cm), and (3) a "full

stock sheet cladding thickness" of 0.063 in. (1.6 mm) in the web edge and end bay areas. It

is the reinforced cladding thickness that provided local reinforcement to the web laminate

along stiffener lines and in step-lap joint areas as shown in Figures 3 and 4. A close-up view

of the typical laminate edge joint details is shown in Figure 7.

The typical stiffener subassembly parts are shown in Figures 8 and 9.

The test web components were assembled in one-half of a center-loaded test beam fixture

for testing; the three test beam assemblies are shown in Figures 10 (test web 1), 11 (test web

2), 1 (test web 3) and 14 (test web 3). Longitudinal stiffener details associated with test web

3 are presented in Figures 12 and 13.

The materials used in the test web components are listed in Figure 15. Aluminum (7075-T6)

was used in the test beam framework and conventional high strength steel fasteners were

employed for assembly of all test beam parts.
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Figures: TEST WEB 3 LAMINATE SECTION
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Figure 13: TEST WEB 3 LONGITUDINAL/TRANSVERSESTIFFENER CROSS-OVER DETAILS
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ADVANCED COMPOSITE AVCO RIGIDITE 5505/4 BORON/EPOXY
PREPREGTAPE

WEB LAMINATE ADHESIVE PLIES NARMCO METLBOND 329

WEB LAMINATE METAL PARTS 6 AI-4VM.A. TITANIUM

TITANIUM BOND SURFACE
PREPARATION

FACE SHEETS-PHOSPHATE FLOURIDE
COATING PROCESS
STEP-LAP DETAILS-VACU-BLAST &
SI LANE RINSE
ALL PARTS-3M EC 2333 PRIMER

METAL STIFFENER PARTS 7075-T6 ALUMINUM (EXTRUSIONS
FORMED IN THE 0 CONDITION)

STIFFENER ADHESIVE PLIES MODERATE TEMPERATURE CURING
EPOXY BOEING MATERIAL SPECIFICA-
TION BMS 5-51 FOR LOW STRESSED
STIFFENER PARTS ASSEMBLY

Figure 15: TEST WEB COMPONENT MA TERIA LS
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Detailed test web component designs and material specifications are given in References [2]

and [3]. Reference [2] presents the test beam framework detailed design and test web

component manufacturing plans. Dimensions of the test web details needed for structural

analysis are given in Section 6.3 of this report.

3.2 TEST WEB MASS SUMMARY

The test web component masses are summarized in Figure 16. The masses are calculated

based on average measured material thicknesses (after bonding) and in some cases are actual

masses. In the case of the third test web, the mass of B/E material is only 14% of the total

web assembly mass of 59.1 Ib (26.9 kg). The masses of the test webs are considered to be in

excess of flight mass because of the use of "full stock sheet cladding thickness" at the edges

of the web laminate. The use of the "reinforced cladding thickness" instead of the full stock

sheet thickness is desirable for flight hardware and would reduce the total test web 3 mass

to 56.0 Ib (25.5 kg).

20
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4.0 COMPONENT TEST PROGRAM

The shear web components were tested at room temperature with the loadings listed in

Figure 17. Test webs 1 and 3 were tested to failure and test web 2 was tested as a low-cycle

fatigue test component. The second test was terminated in the 411th loading when strain

gage data indicated that proportional limit strain was reached in the titanium cladding of the

web laminate. This web was then examined for fatigue damage and later shipped to

NASA/Langley.

The test webs were instrumented to record panel buckling displacements, strains, vertical

and lateral deflections and acoustic emissions. A summary of the test instrumentation used

in the first test is given in the test plan contained in the Phase I Report [ 1 ]; the

instrumentation used in the second and third tests was essentially the same as in the first

test.

The general test set-up is shown in Figures 18 and 19. The test beam was laterally supported

at the ends and at the center where the loading was applied. Rollers were used to provide

simple supports at the beam ends.

The test web buckling responses were monitored by the Moire fringe technique [4].

Equipment used to acquire Moire fringe data appears in front of the test beam in Figures 18

and 19 and is described in Reference [3]. A light source (the box with focusing lens)

directed a strong light beam to a mirror located on the floor which reflected the beam to a

mirror mounted on the glass Moire grid panes mounted on the test web component. A

camera was positioned in front of the web to record the Moire fringe patterns that appeared

during testing.

22
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5.0 TEST DATA SUMMARY

The shear web component test data are summarized in this section with respect to observed

deflections, and strains and failure characteristics. The test data are presented in greater

detail in Reference [3].

5.1 LOAD/DEFLECTION DATA

The load/center deflection responses are given in Figure 20. In comparison with the initial

load/deflection responses, load/deflection stiffnesses predicted by finite element analysis of

the test webs using the NASTRAN code are within 5% of the actual test values [3]. The

non-linear response is due to slippage in the test beam assembly and web buckling

deflections. The stepped response of test web 3 is a result of time-dependent lateral web

deflections which occurred in load holding periods during the final loading; this response

was investigated [3] and was found to be non-critical for the application assumed in this

program. The time-dependent response was concluded to be primarily due to inter-laminar

shear creep in the polymeric parts of the web laminate and, to limited extent, to slippage at

stiffener interfaces.

5.2 STRAIN DATA

Principal strain data from strain gages at or near critical panel deflection areas are shown in

Figures 21 to 23. The strain data reflects the increase in buckling resistance obtained in

going from test web 1 to 3. Web laminate bending (buckling) deformation is indicated in the

plots by a deviation of the respective strains from the back-to-back gages. The influence of

initial imperfections is apparent in the data for test web 1 (which had the highest initial

flatness imperfection) where the web out-of-plane bending response initiated at low load.

Test web 3 was relatively buckle resistant until near the failure load.

5.3 MOIRE FRINGE PATTERN DATA

The Moire fringe (interference) pattern photographs at selected load levels are presented in

Figures 24 to 26 for test web 2 and Figures 27 to 31 for test web 3. The Moire fringe

instrumentation parameters for each test are defined in Reference [3]. The essential

parameter for structural analysis is the fringe order calibration defined as the panel surface

displacement per one fringe order. Each fringe order appears in the patterns as a dark
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Figure 24: TEST WEB 2 MOIRE FRINGE PA TTEfffll A TZERO LOAD A FTER LOAD CYCLING
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>M*

TEST WEB 2 AT 400fiOOLB (1.78 MN) AFTER LOAD CYCLING
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Figure 26: TEST WEB 2 AT 530,000 LB (2.36 MN) AFTER LOAD CYCLING
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Figure 27: TEST WEB 3 MOIRE FRINGE PATTERN AT ZERO LOAD
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Figure 28: TEST WEB 3 AT400,000 LB (1.78 MN)
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TEST WEB 3 AT 500,000 LB (2.22 MN)
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Figure 30: TEST WEB 3 A 7550,000 LB (2.45 MN)
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Figure 31: TEST WEB 3 AT 575,000 LB (2.56 MN)
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topographic line. The respective fringe order calibration factors for test webs 2 and 3 are

0.01875 inch (0.476 mm) and 0.01730 inch (0.439 mm).

Some aspects of the Moire fringe instrumentation can be pointed out in the pattern

photographs. The attachment points of the glass grid panes can be seen in the photographs;

a three point mounting arrangement was used for each pane to isolate the pane from the

central web centerline. Glued pane splices were used and they can be seen along the web

centerline. The shadows from these splices are indicators of the buckle deflections. In the

second test, horizontal tape stripes and short posts bonded to the stiffeners cast shadows

which assist in defining the deflection state. The post shadows indicate stiffener rotation in

terms of shadow movement from an initial reference mark.

The second test web is shown in Figure 24 at zero load after load cycling. Initial flatness

imperfections were introduced in this web during final assembly and these imperfections

grew very slightly during load cycling to about level of ±0.014 in. (0.356 mm) deviation

from a mean flat surface. This growth in imperfection is attributed to slippage between the

stiffeners and the web laminate (the fasteners were non-hole filling and were torqued to low

level to avoid laminate crushing). At the cyclic load level of 400,000 Ib (1.78 MN), the

maximum prebuckling panel deflection is on the order of ±0.1 in. (2.54 mm) or about

one-half laminate thickness. Coupled plate/stiffener pre and postbuckling is clearly

displayed in Figures 25 and 26, respectively. Significant stiffener rotations are indicated by

movement of the post shadows.

Test web 3 displayed high stability during loading until about 500,000 Ib (2.22 MN) when

buckle-like deformation initiated in the upper parts of the two right most panels (Figure

29). As loading proceeded to failure, the critical prebuckling deformation developed in the

second right panel with evidence of coupled plate/stiffener response. The estimated initial

imperfection in this area is ±0.003 in. (0.076 mm) based on measurements and the initial

Moire fringe data. There was a slight thickness underrun of the web laminate in the critical

buckle area [2] and this, along with the proximity to the loading area, is believed to have

triggered the buckling response.

Non-linear strains were recorded on test web 3 by a strain gage on the reinforced laminate

area just above the third panel from the right. These strains and the Moire fringe patterns

shown in Figure 34 indicate that buckling type deformations were extending into areas near

the chord angles; e.g., the effective panel height was greater than the nominal laminate panel

height.

39



5.4 ACOUSTIC EMISSION DATA

High and low frequency acoustic emissions were recorded during the web component tests.

Unlike the results obtained in tension element testing in Phase I [ 1 ], the web component

emission data was difficult to interpret. Emissions having a signature like composite fracture

did occur momentarily at failure. The test beam assembly was noisy during loading due to

local slippages and the webs responded as microphones to background laboratory noise.

These annoyances made analysis of the recorded emissions difficult but it is believed that

damaging composite fracturing did not occur in any test except at the moment of failure.

5.5 POST-TEST INSPECTIONS

Inspections of the web components after testing revealed no areas where local design detail

improvements would be necessary. The joint and reinforced laminate areas appeared to have

functioned properly. Figure 32 shows the third web after failure. The "brittle" nature of

failure of this type of construction is apparent in the figure. The fractures of the first and

third webs appear to have originated in the buckled panel areas. Some fractures extended

into the edge joint areas. The nature of damage in these tests indicated that failure did not

initiate in the joint areas, based on failure mode studies of the element tests in Phase I [1 ].

Ultrasonic scans were made of the second test web before and after fatigue testing and the

scan recordings indicated essentially no differences in the signatures except for those due to

a change in sonic scan power level. Some edge delaminations were produced when the edge

holes were drilled [2]; testing did not aggravate any of these delaminated areas. X-rays

taken of the corners of the third test web indicate that the step-lap joint details performed

satisfactorily. The B/E reinforced transverse stiffeners also appear to have functioned

without premature failure in all testing.
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6.0 TEST DATA ANALYSIS

6.1 FAILURE MODES ANALYSES

The shear web components responded to testing as summarized in Figure 33. Based on

analysis of the strain and Moire fringe data, the first and third web components failed by

composite fracturing in the critical laminate panel areas. The strains in the extreme B/E plies

in the principal compression direction due to membrane and bending exceeded the assumed

design allowable B/E strain of 6000/ue. The associated surface strains caused the

titanium-cladding to slightly exceed the proportional limit for biaxial strain conditions.

6.2 FORCE/STRAIN ANALYSES

The force/strain (F/S) data plotting procedure was employed to define the linear bifurcation

buckling loads of the test webs; these buckling loads are correlated with analytical

predictions in the next section (Section 6.3). This procedure is also referred to as the

force/stiffness technique [5]. Bifurcation buckling (sudden buckling) did not actually

develop in the first and second webs because large deflection effects produced a smooth

transition from prebuckling to postbuckling conditions. The use of the F/S technique

allowed definition of the classical bifurcation buckling load in these tests. The F/S plots also

served to define the bifurcation buckling loads in the third web test in which a postbuckled

condition did not develop.

Figures 34 to 36 are the F/S plots for the web components that serve to define the

respective bifurcation buckling loads. P/eg is plotted against P where P is the beam load and

eg is the web laminate bending strain determined from the principal compression strain data

recorded by strain gages closest to the largest panel buckling displacement area. The

bifurcation buckling load is defined as the linear extrapolation of the prebuckling response

to the load axis for the initial load condition. As shown by the F/S plots, the bifurcation

buckling total beam loads are defined as:

Test Web 1

Test Web 2

Test Web 3

370,000 Ib

425,000 Ib

580,000 Ib

(1.646MN)

(1.89MN)

(2.60 MN)

These test buckling loads are correlated with computed buckling loads in the next section.

In defining the test buckling loads, F/S data for the initial load condition was used wherever
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possible rather than the final loading. The final loading response is generally different (gives

a higher extrapolated buckling load) because of cyclic load effects on initial imperfections

and internal load distributions. The development of large deflection and postbuckling

response is clearly displayed where the F/S plots diverge from the linear prebuckling

condition.

The F/S plot and equivalent definition of bifurcation buckling load can also be obtained

directly from Moire fringe data; Figure 37 is a force/moire fringe plot for the third test web.

The plot was constructed by counting fringe orders (Njyjp) from a reference point to the

critical buckle peak and then using Nj^p as an index in place of bending strain in place of

the eg used for the preceding F/S plots.

6.3 LINEAR BUCKLING ANALYSES

The results of the three web tests were correlated with the results from computer-aided

buckling analysis of simplified web configurations. In computing structural stiffnesses

needed for the buckling analyses, detail dimensions shown in Figures 38 to 40 were used.

Dimensions were determined from measurements of the fabricated hardware. The values

shown for laminate part thicknesses are average values; small variations occurred due to

chem-mill tolerances, resin flow and stock material tolerances. Since the variations were

small, the structural analysis results reported herein are based on the dimensions shown.

The computed structural stiffnesses used in the buckling analyses are presented in Figure 41.

These stiffnesses were computed by classical laminate analysis and conventional engineering

analysis. Bending stiffness tests were conducted on specimens cut from the first and third

test webs to verify selected computed values. Also, bending tests were performed on

selected stiffeners from the test webs to verify the computed bending stiffnesses. The

calculated torsional stiffness for the stiffeners on the first test web was verified by torsion

testing. In calculating stiffener stiffnesses, none of the web laminate nor web-to-stiffener

eccentricity effects were included.

An existing Ritz energy buckling solution was modified for analysis of the test webs. This

solution was developed in support of the Boeing SST Program for use in computing

bifurcation loads of simply supported, transversely stiffened, orthotropic shear webs [6].

Coding for this solution was extended to treat beam bending and longitudinal stiffening

such as used on the third test web; the modified code is called the WEBBUC code [3].
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Numerous analyses were performed using the WEBBUC code in which the height of an

effective, simply supported web was varied. Figures 42 to 44 show the computed critical

shear buckling loads versus effective web height for the respective test webs. Also shown are

the test shear loads given by dividing the bifurcation buckling loads, defined by the F/S data

(Section 6.2), by the total web height.

Both test webs 1 and 2 appear to have effective web heights on the order of the nominal

laminate panel height. The reason for this is buckling occurs in the central portion of the

high aspect ratio panels and is not significantly influenced by the web edge conditions.

Test web 3, having a longitudinal stiffener, had smaller panels and the test data indicates

panel deflections occurred near the beam chords, therefore the effective web height lies

between the nominal laminate height and the clear height between chord angles. Because of

the large cut-outs that were present in the longitudinal stiffener, the stiffness of this

stiffener was not fully effective. Assuming a 50% longitudinal stiffener effectiveness results

in an effective web height of 29 inches when comparing the test versus the predicted

buckling loads in Figure 44. This correlation is, of course, subject to interpretation. In a

future analysis situation, one would be conservative to compute the buckling load based on

the full clear web height and some reduced effective longitudinal stiffener stiffness.

In all of the correlation studies, it was found that satisfactory correlation could only be

obtained when stiffener stiffnesses were calculated on the basis of an uncoupled stiffener

section, neglecting the web laminate parts and web-to-stiffener eccentricity. An explanation

of this is that the stiffener/web assembly fasteners were non-hole filling and were not tightly

torqued (to preclude damaging the web laminate) which does not provide a strong shear-tie.

During buckling deformation, slippage probably occurred between the stiffeners and the

web so that the stiffeners were loaded primarily in bending. In a production program,

studies of fastening methods should be undertaken to improve stiffener/web interaction.

Beam bending loads were included in the buckling analysis of the third test web, as shown in

Figure 44. In a separate shear/bending interaction study, the effects of the test beam

bending on the critical shear buckling load was found to be insignificant because of the low

magnitude of chord strain due to beam bending. While the test webs had low beam bending

loads, the effects of load interaction must not be neglected in buckling analysis of "shear

resistant" production webs which can have high beam chord strains.

53



JLH9I3H S3M UV310

V

I

I

&

'1HOI1H 93M UV310

** 1HOI3H 31VNIWV11VNINON
13NVdH

O

«

5

• 1
« 2iu

z
ft

K
Ul H

I*

IO
<o

8
I

i

Ml/an - AXN avoi UV3HS OAV ivouiuo

54



5
i
«C M
iu 2

2
5;

8 /-

fc
0 - 5

s
1HOI3H 31VNIWV11VNIMON

-g

V
E

C
T
I

E
F

F
E

- Q

H
e I

NT

!

I

T
C3

I
00

Ni/ai _ AXN avoi yviHS OAV ivoiimo

55



I I
s
s

V

8in

§

1H9I1H 83M UV313

NI/Bl

ovoi UVIHS ivoumo

1HOI3H
1VNIMON

O

ft 2
MJ

HI

iUl
u.

8 U.
Ul

8

I
I

1

|

I

56



In Figure 43, some linear buckling analysis results from the STAGS code [7] are shown.

The STAGS code is based on a finite difference energy solution approach; its use in analysis

of production hardware is recommended. A particularly useful feature of the STAGS code is

its capability to perform non-linear pre and postbuckling analyses in an efficient manner.

For the STAGS analyses shown, the input structural properties (orthotropic laminate

stiffnesses, etc.) were the same as used in the WEBBUC code analyses and web

configurations having four panels were treated.

6.4 BUCKLED PANEL STRAIN DATA ANALYSES

The Moire fringe data was used to compute peak strains in the critical buckled panel areas.

The computed strains were compared to measured principal strains and a correlation was

found for the prebuckling strains of the test webs. In the case of the third web, the strain

data computed from Moire fringe data was useful in establishing failure strain conditions in

the critical panel where strain gages were not located.

The Moire fringe patterns from the .web tests were analyzed by a curve fitting procedure to

establish the strain conditions precisely at the critical buckle peaks. This strain data was

characteristically similar to the strain data obtained from the strain gages in close proximity

to the critical buckles and was used in subsequent analysis activities.

Figure 45 shows the critical buckle area in the third web at the failure load. The deflected

surface was surveyed in the principal compression strain direction to establish coordinates of

the fringe orders; both manual surveying and electronic data digitizing equipment (Bendix

Digitizer) were employed in the surveys. The coordinate and fringe order calibration data

were fitted to a deflection function of the form shown in the figure; the fitting was done by

manual and computer aided methods. A wavelength of >/2 times the stiffener spacing was an

assumed deflection function parameter. By differentiating the deflection function twice, the

panel bending curvatures were established; local strains at a laminate material point were

computed as the product of bending curvature and the coordinate of the material from the

neutral laminate surface.

Figures 46 to 48 show strains computed for the test webs. As shown in the figures, the total

strain at a given point in the laminate is the superposition of membrane strain and bending

strain computed from Moire fringe data. Good qualitative agreement was obtained between

the computed strain response and the strain gage data in the prebuckling strain region. In
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general, the computed strains are higher than the measured data. The reason for this is

considered to be due to the strain gages not being applied exactly at the peaks of the panel

buckles. In tests one and two, the membrane strain response was taken as the initial linear

strain gage data. For test web 3 [3], the membrane strain response was computed from data

generated using the NASTRAN code; this was done to account for increased internal loads

near the loading area where strain gages were not applied. The NASTRAN code, level 15

[8], Boeing Computing Services version with SAIL input preprocessor was used for this

purpose.

Test webs 1 and 3 failed by B/E fracture in their respective peak buckling areas. This

conclusion is based, in the case of the first web, on the strain response sfiown in Figure 46

and the data from the companion back-to-back strain gage (Figure 21). These data were

used to compute the strains at the extreme B/E plies in the web laminate. The peak B/E

strains were in excess of 6000/ne, the typical design allowable strain for the particular B/E

material used in the web.

An estimate of the "membrane" strength of the third test web can be made from Figure 48

by projecting the linear strain response plot from the NASTRAN analysis to the 6000jue

level; this gives a failure load of about 680,000 Ib (3.02 MN) based on the assumed critical

strain of 6000jue for the B/E material. The membrane strength, or the strength of a fully

stabilized web laminate, gives an indication of the effectiveness of the web stiffening system.

In the case of the third web, the actual failure load was 16% less than the estimated

membrane strength which is indicative of a high degree of stiffening performance. Any

improvements in stiffener/web interaction in a production web, as discussed in Section 6.3,

would serve to improve stiffening performance and allow a reduction in stiff en er weight.

Test web 2, during the 400 cycle loading to the "limit" load level, displayed panel surface

strains shown in Figure 47 slightly in excess of 4000jue in the peak pre-buckled panel areas.

This level of cyclic loading produced no apparent damage in the second test web.
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7.0 STRUCTURAL ANALYSIS OF TEST WEB 3

Results from a structural analysis of test web 3 are presented in this section. The analysis

model and methods used, while preliminary in nature, serve to identify the various analysis

considerations that pertain to the metal-clad composite shear web design concept.

The shear buckling resistant qualities that are desired for shear web efficiency, introduce

complexities in the analysis to the extent that the analysis is very configuration dependent.

Therefore, the structural analysis presented here is intended to show failure mode sensitivity

and structural parameters only for the third test web. Structural analysis of other

configurations of the design concept will require different or modified analytical techniques,

although the primary objective should not change—analysis of strains in prebuckled panels

to establish composite fracture and/or metal yielding failure mode margins of safety.

7.1 STRUCTURAL ANALYSIS MODEL

The structural model used for analysis simulated test web 3 with respect to details for the

nominal web laminate section, laminate cladding reinforcement for stiffener fasteners, and

transverse and longitudinal stiffeners; the structural analysis details and equations are given

in Reference [3]. The analysis model was coded as a special version of the Boeing OPTRAN

code [3] which was operated in an "analysis only" mode to analyze the third test web. The

analysis was conducted with a prescribed set of structural dimensions for test web 3 given in

Figures 38 to 40. Because of the highly skewed form of the panel buckling mode (refer to

the Moire fringe pattern in Figure 31), a "long" web simulation of the test web could be

adopted.

Figure 49 shows the "shear resistant" web loads (shear load and beam chord strain) that

were input data to the OPTRAN code. The bending strain loads at the beam chords are

corrected linearly to levels at the assumed edge of the nominal laminate panel and at interior

panel points for use in structural analyses. The loads used in the structural analysis were the

test loads at failure: a shear load of 287,500 Ib (1.28 MN) and an average chord strain of

1500/ue which was established by finite element analysis.

The pre-buckled panel strains were analyzed at a location shown in Figure 50; this location

was selected based on recognition of beam bending loads and their possible influence on

shifting the panel buckle towards the compression chord (as occurred in the third web test,
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see Figure 31). In addition to the buckle peak area, strain analysis was conducted at the

assumed effective nominal laminate panel edge where the membrane strains are maximum.

Out-of-plane web plate bending strains were assumed to be zero at the effective nominal

laminate panel edge. The assumed prebuckled panel deflection mode parameters for wave

lengths (LX and Ly) and skew angle (0) shown in Figure 50 were estimated from the Moire

fringe pattern at the failure load [3]; the estimated values used were L^ = 5.0 inches (12.7

cm), Ly = 14.0 inches (35.6 cm) and 0 = 60°. The prebuckled panel initial deflection was

defined by an assumed initial imperfection magnitude of 0.003 inch (0.076 mm). This

magnitude is within the fringe order sensitivity for the Moire fringe pattern in the critical

panel area at zero load shown in Figure 27. After web assembly, surveys made with a feeler

gage and a straight edge in the critical area indicated that the deviation from flatness was on

the order of the assumed imperfection level.

An effective panel height of 25 inches (63.5 cm) was assumed for the structural analysis.

This height, which was the actual nominal web laminate panel height, is less than the

effective panel height defined by the linear buckling analysis described in Section 6.3. The

assumed panel height value was necessary to produce a positive margin of safety for web

buckling using the analyses given in the Appendix of Reference [3]; these buckling analyses

are conservative in the case of the third test web.

7.2 STRUCTURAL ANALYSIS RESULTS

The margins of safety computed for the various possible failure modes of test web 3 are as

follows:

Buckled nominal laminate panel area:

Cladding yielding +0.09

Composite strain +0.01

Unbuckled nominal laminate panel edge area:

Cladding yielding +0.19

Composite strain +0.18

General web instability +0.11

Web tearing at stiffener fastener holes +0.15

The critical computed margin of safety is for composite strain in the pre-buckled panel area;

a higher positive margin of safety exists with respect to failure by titanium cladding

yielding. These results are in agreement with the test strain data analysis in Section 5.2
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which indicates that failure of test web 3 occurred by fracturing of the B/E in a pre-buckled

panel.. The structural analysis assumed a critical B/E strain of 6000pte and the test data

analysis shows the actual strain at failure was slightly in excess of that value. The computed

margin of safety for general web instability is positive and is in agreement with the

pre-buckling conditions developed in the test.

Adequate margin of safety was computed for the web laminate in the edge area and along

the reinforced stiffener fastener holes.
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8.0 EVALUATION CONCLUSIONS

The titanium-clad B/E reinforced shear web design concept is considered to be practical and

efficient for the specific application that was evaluated. The test web components used for

evaluation generally performed satisfactorily under low-cycle loadings.

The first and third test webs failed in mid-panel areas due to panel buckling conditions; in

future production hardware, the failure conditions can be predicted with the aid of existing

analysis tools [3] but not without difficulty. The results from the first test indicate the

concept has a lack of postbuckling strength since postbuckling strains are limited by the

brittle nature of the composite laminate material. The benefits of a shear buckling resistant

design approach to web efficiency is evident from the results of the third test. The third web

failed at a load just below the classical linear buckling load; the failure load was only about

16% less than the theoretical load capability of a fully stabilized web laminate. Confident

load capability prediction and laminate/stiffening optimization for shear resistant design in

future hardware will require that special analytical and element test techniques be developed

and employed. Specifically, convenient prebuckling analysis methods and design aids must

be developed before the concept can be easily applied in structural designs.

The structural details of the second test web were apparently unaffected by application of

just over 400 "limit" load cycles. Based on this low-cycle fatigue test (a "worst" case test

due to a high level of prebuckling panel deformation that occurred during cyclic loading)

and structural element fatigue tests [ 1 ], the high-cycle fatigue resistance of the concept will

probably be determined by the fatigue properties of the web laminate's metal cladding.

The metal-clad web laminate is an attractive concept because of the protection offered by

the cladding to the polymeric laminate parts and the low-cost tooling and inspection

operations needed in its fabrication. The metal cladding, because of its exterior location,

provides effective material in the prevention of panel buckling. This is reflected by the low

B/E content in the test web assemblies; the third test web had only 14% of its total web

assembly weight as B/E material. In other words, the titanium-clad B/E material concept

offers good weight savings, (31% theoretical nominal section weight savings compared to

all-metal construction [3]) with only a small amount of B/E composite material required.
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An area that requires further investigation in a production program is the method of

stiffener attachment. Non-interference fit steel bolts were employed in the test web

assemblies and these fasteners were not tightly torqued to preclude damaging the web

laminate. The test data analysis indicates the stiffeners were not fully shear-coupled to the

web laminate. The use of interference fit fasteners will make the stiffeners fully effective in

both bending and extension which will result in increased stiffener efficiency (increased

shear buckling resistance). Further studies may also identify stiffener configurations more

optimum than used on the third test web as a consequence of the production stiffener

attachment method [3].
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