FINAL REPORT

TITLE: ROLE OF ATRIAL RECEPTORS IN THE CONTROL OF SODIUM EXCRETION

SUBMITTED TO: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Manned Spacecraft Center
Houston, Texas 77058

ATTENTION: F. D. NOLIN
GRANTS OFFICER

GRANT NO.: NCR-05-018-122

SUBMITTED BY: JOHN P. MEHAN and JAMES P. HENRY
Principal Investigators

University of Southern California
Department of Physiology
School of Medicine
2025 Zonal Avenue
Los Angeles, California 90033

DATE: April 10, 1973

Rec'd 9/16/74

(NASA-CR-139677) ROLE OF ATRIAL
RECEPTORS IN THE CONTROL OF SODIUM
EXCRETION Final Report (University of
Southern Calif.) 18 p HC $4.00 CSCL 06P

Unclas
G3/04 48151

N74-31570
During the period of 1968-69, an attempt was made to determine whether the cardiac receptors produced a redistribution of intrarenal blood flow. The method of choice was a silicone perfusion technique developed by Dr. Sidney S. Sobin, Department of Physiology and elegantly used by Dr. Barger of Harvard University. Barger and his co-workers had presented evidence that the renal nerves are influential in redistributing blood flow from the cortical to the medullary circulation which might account for significant sodium retention. Both the krypton wash-out technique and silicone casting technique were used to demonstrate this redistribution phenomena.

Stimulation of the cardiac receptors by positive and negative pressure breathing failed to elicit a cast pattern similar to that obtained by Barger and co-workers. Further, there were no significant differences in the casted patterns of innervated or contralateral denervated kidneys (Fig. 1). Then several attempts were made to confirm Barger's observations that direct renal nerve stimulation produced the phenomena. We were unable to reproduce the Barger pattern (Fig. 2). After a relatively long period of failure to elicit patterns comparable to those published by Dr. Barger and co-workers, it became evident that the technique of silicone casting differed. Following in-situ renal nerve stimulation, Dr. Barger and colleagues removed the kidneys from the body, interrupted blood flow, cannulated the renal artery and then perfused the silicone casting material. Dr. Sobin's technique used in our studies consisted of cannulating the abdominal aorta and inferior vena cava with polyethylene T tubes without interrupting flow to the kidneys. After a stabilization period, flow was interrupted and silicone casting fluid was perfused instantaneously at physiologic pressures.
A significant effort was made, following the recognition of the differences in technique, to evaluate whether these techniques of and by themselves could account for the differences in findings. The technique consisted of perfusing one kidney in-situ (Sobin technique) following the excision of the contralateral kidney for subsequent perfusion outside the body (Barger technique). The silicone perfusion pattern in the excised kidney resembled those presented by Barger and colleagues, and could quite readily be interpreted as demonstrating redistribution, while the in situ kidney showed no evidence of a redistributed pattern (Fig. 3). The pattern in the in situ perfused kidney was consistent with all our previous work. It was concluded from these studies that the redistributed pattern of renal blood flow as previously demonstrated by the silicone casting technique was probably artifactual. This work was presented in abstract form at the Federation Proceeding Meetings of 1969 in Chicago. (Abstract is enclosed).

During the period of 1970-71, an extensive effort was made to determine whether the atrial receptors had a pronounced influence on sodium excretion and by what efferent pathways were these receptors affecting renal function. The studies consisted of comparing the response in an innervated to the contralateral chronically denervated kidney to mild positive pressure breathing (PPB) in the saline volume expanded chloralose anesthetized dogs. In the absence of significant changes in arterial pulse pressure or blood gases which exclude any influence of the chemo-receptors and high-pressure baroreceptors, mild positive pressure breathing significantly reduced sodium excretion, urine flow, free-water clearance, and paraminohippuric acid (PAH) clearance. The response in the normal kidney was more rapid and more marked than that in the contralateral denervated kidney when positive pressure breathing was induced. Small but insignificant changes in glomerular filtration rate (GFR) as measured by
creatinine clearance were also in evidence. The reduction in GFR could not account for the changes in urine flow and sodium excretion as fractional urine flow and fractional sodium excretion were as significantly depressed as normal sodium excretion and urine flow (Figs. 4 and 5). After twenty minutes of positive pressure breathing, the response in the denervated kidney was identical to that in the innervated kidney suggesting that the procedure of increasing end expiratory airway pressure (ave. 13.5 cm H2O) caused the release of some humoral agent (natriuretic hormone) which will reduce renal function in addition to the demonstrated change in renal nerve activity. Thus at least three efferent mechanisms are involved in the atrial "volume" receptor effects on renal function: antidiuretic hormone (ADH), renal nerve activity and possibly natriuretic hormone which results in the maintenance of plasma volume. This work was presented in abstract form at the Federation Proceedings Meetings in 1969 in Chicago. Further, a preliminary report of this work has been published in Research in Experimental Medicine, Vol. 157 (1972). Copies of both the abstract and the article are enclosed. A manuscript is also in preparation.

The specific contribution of the left atrial receptors to the antinatriuretic effect of PPB was also examined. In order to evaluate the contribution, a chronically implantable balloon device was developed (Fig. 6). The device consists of an external silastic tube 1/4 inch in diameter and a size 14 (Fr) Foley urinary retention catheter with a 5 cc retention balloon. Two dacron felt stainless steel sleeves are placed over the silastic tube, one is glued at the end which is to be inserted into the atrial appendage. The other is positioned at the point of rib closure to prevent pinching of the outer tube. The Foley catheter is inserted into this previously prepared tube. The device is then sutured into the atrial appendage which has been exposed through the fourth intercostal space in the pentobarbitol anesthetized dog. Following recovery of the animal, experiments were carried out in chloralose anesthetized dogs.
The effectiveness of the device in increasing left atrial pressure, heart rate and urine flow was tested and the response compared to the published reports of others. It was found that our results compared favorably. We observed an increase in heart rate, and urine flow with changes in arterial pressure (Figs. 7 and 8).

The contribution of the left atrial receptors to the P3B antinatriuresis was then examined. It was found that if left atrial pressure was increased with balloon obstruction of the mitral orifice during the P3B episodes, urine flow, sodium excretion and P3B clearance increased. When the balloon was deflated and P3B maintained, renal function was again depressed. The magnitude of the reversal in kidney function indicates that the discharge from more than one set of receptors within the thorax capable of affecting renal function is altered by P3B (Fig. 9).

Further, efforts were made to identify what these additional receptors might be. Very preliminary evidence was obtained which indicates that receptors in the right atrium are more severely affected by P3B than those in the left atrium. The P3B depression in firing rate from left atrial receptors was 33% of control, while the right atrial receptors had about a 60% in their firing rate. The quantitative difference in the response of these two receptor regions accounts for the inability to completely reverse the renal response to P3B with left atrial balloon inflation. In addition, the sensitivity of the atrial receptors was re-examined. It was found that the B type receptors of Paintal decrease their firing with as little as a 1% reduction in total blood volume.
LEGENDS

Figure 1. Effect of negative pressure breathing on the silicone cast pattern of the renal vascular system. *

Figure 2. Effect of renal nerve stimulation on the silicone filling of the renal vascular system. *

Figure 3. Effect of excision on the silicone rubber filling of the renal vascular system. *

Figure 4. Fractional urine flow (UV/Ccreat) during 15 minutes of positive pressure breathing. At 13 cm H2O mean tracheal airway pressure. Dark bars are the innervated kidneys and the white are the contralateral denervated kidneys.

Figure 5. Fractional sodium excretion (CNa/Ccrea) during 15 minutes of positive pressure breathing at 13 cm H2O mean tracheal airway pressure. Dark bars are the innervated kidneys and the white are the contralateral denervated kidneys.

Figure 6. Balloon device implanted into the left atrium.

Figure 7. Effect of balloon inflation in the left atrium on mean aortic pressure (MAoP), left atrial pressure (LAP) and heart rate.

Figure 8. Effect of balloon inflation on urinary parameters. UV = urine volume, GFR = creatinine clearance, C2,a = clearance of para-aminohippuric acid, C2,0 = free water clearance, and UNaV = sodium excretion.

Figure 9. Effect of balloon inflation during positive pressure breathing (CPB) on urinary parameters.

* The light areas are the silicone rubber.
DACRON FELT
POLYVINYL TUBING
STEEL TUBING
POLYVINYL TUBING

HEART RIB CAGE

No Steel Tubing

7/16"

1/4"

1/4" 1/4" 1/4"

Each Element 1/32" Thick
m AoP
100 mm Hg

LAP
15 mm Hg

Heart rate
30 min.

balloon

Change in the functional state of the microcirculation within an organ may be demonstrated by intravascular "physiologic" perfusion of silicone elastomers under controlled experimental conditions which include an undisturbed circulation until the moment of perfusion. These techniques were developed in this laboratory (14th Conference, this Society, Fed. Proc. 23:1749, 1966). Others have recently studied the renal microcirculation using silicone materials in which perfusion was carried out in situ after death or ex vivo after removal from the physiologic stimulus. Our insistence on circulatory integrity was based solely on physiologic considerations, and experimental proof was obtained by comparing in five dogs the filling pattern of in situ perfused and excised ex vivo perfused pairs of kidneys exposed to the same neurogenic stimulus elicited by bilateral carotid artery clamping. The time between clamping and perfusion was 4 and 10 min. in 2 groups of animals in the ex vivo preparation. The pattern of the in situ perfused kidney was severely diminished and chiefly confined to the cortico-medullary junction when compared with the ex vivo kidney where the cortex and medulla were more densely filled. It is concluded that microvascular filling during silicone elastomer perfusion and a physiological stimulus is markedly altered by removal of the kidney from the stimulus prior to perfusion. Supported by L.A. County Heart Assoc. Grant #218 and N.I.H. Grant #HE-11152.

2305

NEURAL EFFECT OF CARDiac RECEPtORS ON RENAL SALT EXCRETION. L.W. Chapman, B.M. Treger*, and J.P. MacIn, Univ. of So. Calif. Dept. of Med., Los Angeles, California 90064.

The contribution of cardiac receptors on the renal response to isotonic saline expansion of the extracellular space has been studied. Normal and denervated kidneys of seven dogs under chloralose anesthesia (150 mg/kg) were compared to determine a neural involvement which has been denied (Crawell, et al., J. Exp. Physiol. 1970). Following L.V. saline expansion (12 ml/kg), inhibition of the cardiac receptors by specific reduction of thoracic blood volume was accomplished by positive pressure breathing (FPB) (5-15 cm H2O and expir. press.) for 50 min. In addition to FPB the left atrium was distended for 20 min. by a chronically implanted left atrial balloon 15 min. after onset of FPB. Aortic pressure, arterial pH, pO2, pCO2 remained unchanged throughout the entire experiment. FPB caused an immediate drop in urine flow, Na & K excretion (20% in 5 min) with a 10% reduction of O2AR in 5 min. by the intervented kidney while no change of these parameters occurred in the denervated kidney at 5 min. Creatinine clearance remained unchanged. Inflation of the balloon interrupted the drop in urine flow and salt excretion suggesting that receptors in the left atrium mediate changes in sodium excretion in the presence of high circulating levels of ANF as indicated by the decreased free water clearance. The immediate response and difference between innervated and denervated kidneys suggest that cardiac receptors affect renal function by neural pathways. Supported by A.F. Contract #53-5137-1730, L.A. County Heart Assoc. #218, NIH #GR-11152.
Neuraler Einfluß von Mechanorezeptoren des Herzens auf die renale Salzausscheidung

Neural Influence of Cardiac Mechanoreceptors on the Renal Salt Excretion

U. Mittmann, L. W. Chapman, J. P. Meehan and J. P. Henry

University of Southern California, School of Medicine, Los Angeles, Calif.

In unseren Versuchen sollte geklärt werden, welchen Einfluß eine verminderte Dehnung der kardialen Mechanorezeptoren auf die renale Natriumausscheidung hat, wenn eine Beeinflussung der Nierenfunktion durch veränderten Perfusionsdruck oder arterielle Baro- und Chemo- receptors ausgeschlossen wird. Der mögliche Einfluß des Nierensympathicus auf die Nierenfunktion sollte durch einen Vergleich von innervierter (IN) und denervierter Niere (DN) untersucht werden.

Methodik. Kontinuierliche Überdruckbestimmung (PPB) gilt als geeignete Methode, um das ITV und damit die Dehnung kardialer Mechanorezeptoren zu vermindern [5]. Die Versuche wurden an 18 geschlechtsreifen, weiblichen Hunden, deren linke Niere 1 Woche vor dem Versuch denuziert worden war, in Chlorolensarkose (100–120 mg/kg) durchgeführt. Die Tiere (20,5 kg) wurden 1 Std lang mit gepuffertem Na-Bicarbonat-Rochsalzlösung vor hydratirt (12 ml/min; pH 7,45; 38°C; 300 mosm/l). Dann wurde die Infusionsgeschwindigkeit dem Harnzeittvolumen (UV) angeglichen. Bei konstanter UV wurden die Hunde intubiert und 15 min lang mit Überdruck von 20–30 cm H₂O inspiratorisch und 5–15 cm H₂O expiratorisch beatmet (Harvard Respirator).

UV, Kreatinin (Cr), und Paraminchipursäure-Clearance (CPA₁) und Harn-Natrium-Konzentration (Flammenphotometer) wurden in Abständen von 5 min gemessen (Technicon Autoanalyser). Unterschiede zwischen der Kontrollperiode und der Beatmungsperiode und zwischen IN und DN wurden mit Varianzanalysen geprüft [8].
Ergebnisse. Während 15 min PPB (9 cm H₂O mittlerer Trachealklappendruck) waren arterielles pH, pO₂ und pCO₂ nicht signifikant verändert. Systolischer und diastolischer Aortendruck blieben ebenfalls unverändert, so daß eine Beeinflussung der Nierenfunktion durch arterielle Barorezeptoren unwahrscheinlich war. Die Drücke im rechten und linken Vorhof und in der Vena cava inferior stiegen um etwa 2 min Hg. Die Herzfrequenz stieg von 119 auf 133 Schläge/min an.

Bereits nach 5 min PPB fiel das UV in der IX von 4,2 ± 0,6 ml/min auf 3,7 ± 0,6 ml/min ab, während es in der DN unverändert blieb (p < 0,05). Nach 15 min PPB war das UV in der IX um 20% und in der DN um 11% vermindert. Der Unterschied zwischen IX und DN war nicht mehr signifikant (Abb. 1).

Ähnlich wie das UV fiel die Natriumausscheidung in der IX bereits nach 5 min PPB um 11% ab, während sie in der DN erst nach 15 min signifikant erniedrigt war. Die Freiwasser-Clearance war in IX und DN nach 10 min PPB erniedrigt und erreichte 5 min nach Beendigung der PPB ein Minimum (42 bzw. 38% des Kontrollwerts).

Die CR₄ war in IX und DN während der PPB nicht signifikant verändert. In den ersten 5 min der Beatmungsperiode fiel CR₄ in der IX signifikant steiler ab als in der DN. Nach 15 min PPB war der Unterschied nicht mehr signifikant.

In unseren Experimenten mit akuter Veränderung des ITV beobachtete der Nierensympathicus offenbar die Depression der Nierenfunktion, ohne jedoch für den Reaktionsablauf verantwortlich zu sein.

Literatur

Dr. U. Mittmann
University of South California
School of Medicine
Los Angeles, Calif. 90033, USA