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FOREWORD

This report summarizes the results of design, fabrication, and testing

`	 of a baseline laboratory prototype of an integrated, zero-g dry incineration

subsystem for processing human wastes on board spacecraft. The work was

conducted for the Ames Research Center of the National Aeronautics and

Space Administration, under Task II of Contract No. NAS 2-6386, by the

General American Research Division of the General American Transportation

Corporation during the period April 1974 to June 1974 (GARD Project No. 1523).

The NASA Technical Monitor was Dr. Phillip D. Quattrone, Chief of

the Environmental Control Research Branch; the program was comonitored by

Dr. John Manning of Stanford University under a NASA University Consortium.

Personnel in the Environmental Controls Systems Department at GARD performed

the activities: Mr. Philip A. Saigh served as Program Manager and

Dr. Stephen F. Fields served as Project Engineer. Messrs. Lawrence J. Labak

and Robert J. Honegger participated in the designing, fabrication, and

testing of the subsystem. Mr. Edwin K. Krug assisted in the testing and

performed the chemical analyses of the end products.
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ABSTRACT

A program was performed to develop a baseline laboratory prototype of
r

an integrated, six-man, zero-g subsystem for processing human wastes on

f	 board spacecraft. The program included the development of an operational

i
specification for the baseline subsystem, followed by design and fabrication

of the subsystem.

The program was concluded by performing a series of six tests over a

period of two weeks to evaluate the performance of the subsystem. The

results of the tests were satisfacotry; however, several changes in the

design of the subsystem are required before completely satisfactory per-

formance can be achieved.

i
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Section 1

INTRODUCTION AND SUMMARY

1.1 Introduction

In the overall operation of manned spacecraft, proper management of

wastes is essential to sustaining life within the closed spacecraft environ-

ment. Several factors influence the selection of a spacecraft waste manage-

ment system, but foremost among these are crew safety and, in particular,

system and end-product sterility. Also, the waste management system must be

crew-acceptable both with respect to operation and man-system conta,;;t; it

should be self-regulating and easily controllable with a minimum of crew par-

ticipation, designed such that minor repairs or corrections can be readily

carried out, and based on well-established physical, chemical, and biological

principles. Finally, the system must be reliable and its use psychologically

acceptable.

Of the various systems that have been contemplated for treating space-

craft wastes, the dry incineration system appears to be most suitable for the

following reasons:

1. All end products -- water, ash, and gases -- are safe and

permanently sterile, with no capability to provide or support

biological growth or to support combustion.

2. All wastes from the bodily metabolic and elimination processes

and from spacecraft housekF^ping can be transformed to usable

and/or storable products that are psychologically acceptable

with no odor or disagreeable appearance. Product storage for

indefinite periods is possible, and accidental leakage or

spillage at any time into the cabin presents minimal safety

or health hazards to crew members.
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3. The basic dry incineration process is simple in principle

and safe, with operations occurring at essentially ambient

pressure and controlled temperatures up to 650°C (1200 0F).

4. The weight of the solid ash after dry incineration is 5-10%

of the original weight of the wet wastes. Product water is

of a purity suitable, if needed, fe- recycling to the basic

spacecraft water recovery system. Also, product gases --

oxygen, nitrogen, and carbon dioxide -- are suitable for

direct return to the cabin atmosphere for partial make-up

of overboard leakage or for storage and possible use in space-

craft control and/or propulsion systems.

The need for power to heat the incinerator, for an oxidant gas, and for

a mechanically operating system appear to be compensated for by the above

desirable system characteristics.

Since the dry incineration process produces sterile, innocuous, and

conveniently managed end products, and since it lends itself to the develop-

ment of a safe, esthetically acceptable system, it has been subjected to con-

siderable investigation by the General American Research Division. Basic

Ili	 concepts and principles of human waste incineration for spacecraft use have
's

been defined and a prototype incineration unit has been fabricated and success-

fully tested.

Under a previous NASA Contract, No. NAS 2-4438 (GARD Project 1437), test-

ing and evaluation were conducted on microwave treatment and incineration of

human feces, with characterization of the effluent products
*
 Subsequently,

i

under Contract No. NAS 2-5442 (GARD Project 1493), an experimental study was

performed on the dry incineration of human fecal matter and urine distillate

residue, and a prototype hardware incinerator was constructed and tested. The

* Superscript numbers denote references which may be found on page 45.
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effects on dry incineration of operating pressure, oxygen concentration,

power input, sample configuration, and catalytic oxidation of gaseous products

t	 were evaluated; and the concentration, identity, and sterility of liquid,

gaseous, and solid end products were established.2

The four-man prototype, dry incim ration system developed under Contract

No. NAS 2-5442 did not require manual handling of the wastes, but it did en-

tail manual handling of a waste-filled incinerator/canister. Since no manual

handling of any type was desired, Contract No. NAS 2-6386 was awarded for the

development of an automatic, zero-g waste transport subsystem that would trans-

fer human and nonhuman wastes from a collection site to an incineration unit

on board spacecraft. Concurrently, the need arose for greater system capacity

to accommodate six men instead of four.

Contract No. NAS 2-6386 (GARD Project 1523) initially consisted of seven

phases (A-G) and included development and in-depth testing of additional com-

ponents and subsystems to provide a totally integrated waste management system.

A study of the autoclave method of waste treatment was included in the program,

since this technique appeared to be applicable to short-duration space flights.

The waste transport system developed early in the program utilized pneu-

matic drag to collect and transfer waste materials

eration unit. Since pneumatic waste transport was

waste management systems for spacecraft, and since

lytic afterburning was a viable technique for trea

spacecraft, the need existed to adequately develop

the technologies associated with these processes.

from a commode to an incin-

being utilized in other

dry incineration with cata-

ting human wastes on board

and characterize,in detail,

To accomplish this objec-

tive, the activities under Phases A-G were modified in October 1973,and the

program was divided into four major tasks:

GAVNEnAL AMC-FMAK W.e! FEWPCO CSgM'IO
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Task I	 -- Development of Subsystem Components

Task II -- Development of an Integrated Subsystem

Task III -- Evaluation of an Autoclave Waste Management System

Task IV -- Documentation

Task I was concerned with the technology development and prototype hard-.	 `

ware design and testing of a particle size reduction mechanism, a pneumatic

waste transport system, a rotating-paddle incinerator, and a catalytic after-

burner for processing human wastes on board spacecraft. A summary of all

activities performed under this task may be found in Reference 3.

The activities performed under Task II were concerned with the technology

characterization and prototype hardware development of an integrated waste

management subsystem to provi de a suitable basis for flight system trade-off

studies,flight hardware design, etc., including the effects of zero-gravity

operation; a subsystem was formed by integrating the four major components

developed and characterized in Task I. This report documents the results of

testing of this integrated subsystem. It also includes the operational

specification and design drawings for the integrated subsystem (see Appendices

A and B).

The objectives of Task III were to:

1. Adequately evaluate a waste management system based on the

autoclaving method of sterilization,

2. Analyze the system to determine optimum design requirements,

and

3. Compare the optimized autoclave system with other spacecraft

	

^	 waste management systems.

The results of this task are presently being summarized in a separate report.

	

I^	 a!
i
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1.2 Summary

The baseline integrated waste incineration subsystem is designed to

convert, on a cyclic basis, the typical daily waste load from six men

into innocuous, sterile end products. The subsystem is designed to provide

pneumatic transport of the wastes through a waste transport tube to an

incineration unit for retainment and size reduction through the action

of a rotating paddle arrangement, and eventual conversion to vapors, gases,

and an inorganic ash.

Conversion of the wastes in the incinerator takes place in three steps:

(1) boil-off of volatiles and water by heating from ambient temperature

through 100 OC (2120 F), (2) pyrolysis (thermal destruction in the absence

of oxygen) of the dehydrated residue by heating from 100 6 C (212°F) to 540°C

(1000°F), and (3) final combustion with oxygen of the carbonaceous pyrolysis

residue at 540°C (1000°F) to 650°C (1200 0F).

The generated gases and vapors pass through a catalytic afterburner for

further processing with oxygen and then through a condenser for collection

of all condensible vapors. The final inorganic ash is removed from the

incinerator to storage by reverse air flow through the incinerator into an ash

collector.

Under Task II, an operational specification for the baseline subsystem was

developed (see Appendix A) and translated into detailed design drawings

(see Appendix B). After fabrication and assembly, a preliminary check-out test

and a series of five tests were conducted in the laboratory to investigate

the performance of the baseline subsystem.
t
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The results of these tests indicated the need for several changes in the

design of the subsystem. These design changes include an increase in the

motor power available to rotate the paddle blade assembly, relocation of

the transport air blower, the addition of a technique of filtering particulates

from the incinerator exhaust, and the addition of a technique of cooling the

catalytic afterburner during pyrolysis.

The results of the analyses of the output products generated during the

test series compare favorably with similar results documented in Reference 2.

Oxygen consumption per gram of waste solids was approximately one gram, or

twice the value reported in Reference 2.

On the basis of power and energy consumption figures for the test

series, the required daily energy consumption by the subsystem is estimated

to be approximately 2 kwhr per man.
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Section 2

DESCRIPTION OF LABORATORY TESTING

2.1 Laboratory Test Setup

A schematic of the laboratory test setup for the baseline subsystem

is shown in Figure 1. Primary components in the subsystem included a waste

transport tube, rotating-paddle incinerator, catalytic afterburner, and

oxygen controller. For a full description of these components, the reader

is referred to Appendices A and B.

Photographs of the rotating-paddle incinerator are shown in Figures 2

and 3, the transport tube plug/seal in Figure 4, and the catalytic afterburner 	 'I

in Figure 5. The assembled baseline subsystem is shown mounted in its support

frame in Figure 6. (This support frame allowed the subsystem to be operated
i

with the incinerator axis of rotation either vertical or horizontal.) The

main control panel is shown in Figure 7.

The laboratory condenser arrangement consisted of threw separate condenser

lines in parallel. Each condenser line passed through two cold-water condensate

traps in series and then a dry ice-acetone condensate trap to insure removal

of all condensible vapors. Output gases from this condenser arrangement

were ducted into a gas collection envelope (a five-foot diameter mylar balloon).

The rotameters shown in the photograph of the main control panel (Figure 7)

were used simply to monitor oxygen flow rates to the incinerator and catalytic

afterburner and the flow rate of carbon dioxide through the bearing housing

to the incinerator. The actual quantities of oxygen delivered to the incinera-

tor and catalytic afterburner were measured separately with wet test meters,

while the quantity of carbon dioxide delivered was measured with a Sprague

meter.
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Figure 6 ASSEMBLLU BASELINE SUBSYSTEM - INSULATION REMOVED
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Figure 7 14AIN CONTROL PANEL
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In order to monitor temperatures throughout the subsystem,thermocouples

were placed at eight different locations and their output recorded on a strip

chart recorder. Thermocouple locations mere as follows:

Incinerator inlet end plate (adjacent to sh(•11)

Incinerator inlet end plate (adjacent to labyrinth seal)

Incinerator inlet end plate (adjacent to waste transport tube)

Incinerator exhaust end plate (adjacent to shell)

Catalytic afterburner catalyst

Catalytic afterburner exhaust line

Oxygen sensor inlet line

Exhaust line to condenser

2.2 Laboratory Test Procedure

For a descJ ption of the basic operation of the subsystem, the reader is

referred to Appendix A. The operational procedure described in Appendix A

was altered a number of times during the test series, and these alterations

are noted as they occurred in the description of the individual tests in

Section 2.3.

At the end of each test,the product ash, condensate, and gas were analyzed.

The weight and color of the collected ash were determined. The collected

condensate was subjected to both physical and chemical analysis. Physical

analysis included the determination of weight, color, and total solids

concentration. Chemical analysis included the determination of electrical

conductivity, pH, concentrations of organic and inorganic carbon, and con-

centrations of ammonium, chloride, and sulfate ions.

Gas analysis included the determination of total collected gas volume

and identification of constituent gases. Gas samples were injected into

a gas chromatograph fitted with molecular sieve and poropak columns to determine

01ENERAL Ah LRICASs' RESEARCH ! ìf VE.AKM

15

ii

I

'I



IJ	 ^'I	 ', 	 ill	 -

V

i

1!

the volume percentages of carbon dioxide, hydrogen, oxygen, nitrogen, carbon

monoxide, methane, acetylene, and ethane. Gas detector tubes were employed

for determining the concentrations of hydrogen sulfide, sulfur dioxide, ammonia,

and nitrogen dioxide.

Sterility tests of the end products were in general not performed since

normal operation of the subsystem completely satisfied the requirements

described in Reference 2 for total end product sterility. Sterility tests

(a description of the procedure can be found in Reference 2) of the end

products for Test Number 1 were performed, and all end products were found

to be sterile.

2.3 Individual Tests

Check-Out Test, 31 May 1974

A check-out test was conducted prior to the two-week test series to

establish test procedure as fully as passible and to identify potential

problem areas in the operation of the subsystem. While ash, condensate, and

gas collection were carried out, no detailed analysis of the end products for

this test was planned or performed.

The check-out test was run with the subsystem oriented vertically (with

the rotational axis of the incinerator and the waste transport tube oriented

vertically). The rotational speed of the paddle blade assembly was maintained

at 300 rpm. The carbon dioxide gas flow rate was maintained at .85 fpm through

the bearing housing and the labyrinth seal between the paddle blade assembly

drive shaft and the inlet end plate of the incinerator. The catalytic

afterburner heaters were controlled to maintain a catalyst bed temperature

of 427°C, while the gas line tape heaters were adjusted (through the use of

standard variacs) to maintain gas line temperatures between 371°C and 427°C.
^i

The incinerator was loaded in the prescribed fashion (see Appendix A) with

the following waste materials:

Ij
^^	 Cs FQS^6ida'L P,R.^^`dd SÈ : 4	 ,`_.^.1Lair:G3 ty ^ f̂f b^^:i 4D6i'	 '^
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a

j	 Human Feces	 900 gm

j	 Urine Distillate Residue*	 900 gm
I I

Rinse Water	 320 gm

Toilet Tissue	 20 gm

`	 Disposable Liner	 11 gm

Total	 2151 gm

The disposable liner used for this particular test was fabricated in the

+j	 laboratory from "48#1 Dry Wax" manufactured by Central States Paper and Bag Co.,

St. Louis, Missouri. This liner material was tested and recommended as

satisfactory for use under Task I (see Reference 3).

Lohding of the wastes into the incinerator was performed with a blower

ji	 connected to the catalytic afterburner exhaust line just upstream of the

laboratory condenser arrangement. The blower produced a pneumatic transport

air flow rate of approximately 700 fpm. This air flow rate was marginally

sufficient for satisfactory pneumatic transport of waste materials and also

lowered the catalyst bed temperature to 107 0Co At the end of loading, the

disposable liner was released to the incinerator; this caused jamming of the

paddle blade assembly against the shear bar and stoppage of rotation. Rotation

was quickly restored after manually rotating the paddle blade assembly slightly

in the reverse direction. The waste transport tube plug/seal was then brought

,I into position, and the blower was shut off and removed.

After the catalyst bed temperature had fully recovered, the incinerator
I'

heater power was set at 1500 watts (the maximum possible) to initiate the

incineration cycle (time zero). It soon became apparent that the proportional

controller in the oxygen supply line to the catalytic afterburner was not

functioning properly (it would open the oxygen supply line valve as required,

j	 * Approximatel y 50% solids, by weight.

"	 17
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but it would not operate at all in the reverse direction). Because of this,

the valve operated by the proportional controller was left open, and control

of the oxygen flow rate to the catalytic afterburner was achieved by manually

adjusting the valve at the rotometer in this supply line. Adjustments were

made as required to maintain oxygen sensor readings for the afterburner exhaust

gas equivalent to 5 to 6% oxygen by volume in this gas.

Gases and vapors produced during the process of boil-off led to a reduc-

tion in the catalyst bed temperature to 277 0 C. This temperature reduction

was followed by an increase in catalyst bed temperature to 749°C early in

the process of pyrolysis, corresponding to excessive demand for oxygen within

the afterburner (greater than 5 1pm, the maximum possible flow rate through the

rotameter). Simultaneously, the rotational speed of the paddle blade assembly

began to decrease, eventually stopping altogether about half an hour after the

end of boil-off (this stoppage resulted in twisting of the flexible drive shaft).

The incinerator heater power was reduced to 600 watts at an incinerator

temperature of 216°C and shut off altogether at a temperature of 371°C in

an effort to control the catalyst bed temperature while supplying the required

amount of oxygen. After failing to do this, it was decided to abandon further

oxidation within the afterburner (238 liters of oxygen had been supplied) and

to heat the incinerator to 538°C at a heater power setting of 900 watts. Once

this was accomplished, the incinerator heaters were shut off, and oxygen was

supplied to the incinerator as required to maintain an excess of oxygen in

the subsystem exhaust gas of 5 to 6% by volume. A total of 87 liters of

oxygen were supplied to the incinerator in 45 minutes, producing an increase

in incinerator temperature of about '40°C. The incinerator oxidation process

ended 245 minutes after time zero.

18
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After cool down of the subsystem, the paddle blade assembly was manually

broken free to restore rotation. The resulting gray ash, primarily in the form

of large chunks, was removed by reverse flushing of air through the incinerator

with a vacuum cleaner and by using probes to break up and remove the large

chunks of ash. Since no damage to the incinerator proper was observed, the

flexible drive shaft was replaced, and the subsystem was reheated and purged

with oxygen to oxidize any remaining unoxidized wastes.

As a result of the check-out test, a number of alterations in the procedure

for operating the subsystem were adopted for the subsequent test series. First,

it was decided to abaondon operation of a transport air blower and to load

the waste materials (feces and urine distillate residue) in the form of a

slurry. The air flow rate realized with the blower was simply not sufficient

for satisfactory pneumatic transport of the wastes, and it produced cooling

of the catalyst bed which could clearly lead to the production of unsterile

end products. Much higher (satisfactory) air flow rates could have been

realized and cooling of the catalyst bed could have been avoided by connecting

the blower to the incinerator exhaust line upstream of the catalytic after-

burner. However, this modification in the design of the subsystem would

have severely reduced the time available to perform the test series and was

therefore not made.

Second, use of the proportional controller in the oxygen supply line to

the catalytic afterburner was abandoned for the test series in favor of the

previously described procedure of manual control of the oxygen flow rate.

This decision was made after it was established that the proportional

controller could not be made to operate properly in the laboratory.

For all tests in the test series, the rotational speed of the paddle

blade assembly was maintained at 300 rpm, the carbon dioxide gas flow rate

was maintained at .85 1pm through the bearing housing and the labyrinth

FAFtSrUL ANILR 6'AW RESE-ARCH DIVISION
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seal between the paddle blade assembly drive shaft and the inlet end plate of

the incinerator; the catalytic afterburner heaters were controlled to maintain

a catalyst bed temperature of 371°C; and the gas line tape heaters were adjusted

to maintain gas line temperatures between 316°C and 427°C.

Test Number 1, 4 June 1974, Vertical Orientation

The incinerator was loaded with the following waste materials:

Human Feces	 835 gm

Urine Distillate Residue* 	 900 gm
I

Rinse Water	 320 gm

Toilet Tissue	 29 gm

Disposable Liner	 7 gm

Total	 2082 gm

The disposable liner used for this test was fabricated from a lighter material

than that used for the check-out test, 11 20# White #84600 M.G. Kraft - 4# Waxsorb"

manufactured by Thilmany Pulp and Paper Co., Kaukauna, Wisconsin. This liner

material was also tested and recommended as satisfactory for use under Task I

(see Reference 3).	 '

The disposable liner was pushed with some difficulty into the incinerator

after loading of the wastes, but with no apparent effect on the rotation of

the paddle blade assembly. After positioning the waste transport tube plug/

seal, the incinerator heater power was set at 600 watts (time zero) in an

attempt to avoid producing the large demand for oxygen within the afterburner

encountered during the check-out test. The catalyst bed temperature decreased

to 332°C during boil-off and then increased sharply during the early part of

pyrolysis. At incinerator temperatures of 191°C and 210°C, the incinerator

heater power was reduced to 450 watts and 300 watts, respectively,in a

successful attempt at controlling the demand for oxygen within the afterburner

* Approximately 50% solids, by weight.

20

r



I(

u	 4	 ^	 I	 Iii	 I	 y	 _	 i

as well as the catalyst bed temperature. The catalyst bed temperature increased

to 732°C at an incinerator temperature of 260°C and remained between 704°C and

760°C until the incinerator oxidation process, during which it eventually

decreased to 538°C.

In a fashion similar to the check-out test, the rotational speed of the

paddle blade assembly began to decrease at an incinerator temperature of 121°C,

eventually stopping altogether at an incinerator temperature of 268°C (this

stoppage resulted in twisting of the flexible drive shaft). After approximately

10 minutes (with all other operations proceeding normally), full rotational speed

was restored by manually rotating the paddle blade assembly to break it free.

Rotation continues unaffected throughout the remainder of the test.

Power to the incinerator heaters was increased without difficulty to

450 watts, 600 watts, and 750 watts at incinerator temperatures of 332°C,

366°C, and 399°C, respectively. Once an incinerator temperature of 538°C

was attained, the incinerator heaters were shut off, and the incinerator

oxidation process was carried out as for the check-out test. This process

lasted 95 minutes, producing an incinerator temperature increase of 56°C.

It ended 440 minutes after time zero.

After cool down of the subsystem, ash was removed from the incinerator

in a similar fashion to that used after the check-out test. The collected

ash was gray and consisted of 92 gm of chunks and 58 gm of powder.

The flexible drive shaft was again replaced, and a leak in the gas

collection envelope was repaired in preparation for the next test. (This

leak had been detected and repaired as best as possible during the latter

6	
part of pyrolysis.)
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Test Number 2,_6 June 1974, Horizontal Orientation.

Loading of the wastes into the incinerator for this and subsequent tests

(all of which were performed with the subsystem horizontal) was performed

with the support frame slightly inclined with respect to the horizontal in

order to make favorable use of gravity. In addition, because of the difficulty

encountered in pushing the disposable liner into the incinerator during

Test Number 1, the disposable liner was simply removed after loading of the

wastes into the incinerator. After positioning the waste transport tube

plug/seal, the subsystem was then placed in a completely horizontal orientation

in preparation for initiation of the incineration cycle.

The waste load for this test consisted of the following materials:

Human Feces	 900 gm

Urine Distillate Residue* 	 900 gm

Rinse Water	 350 gm

Toilet Tissue	 20 gm

Total	 2170 gm

At time zero the incinerator heater power was set at 500 watts. The

catalyst bed temperature decreased to 327°C during boil-off and then increased

in much the same fashion as for Test Number 1. `At the end of boil-off,

at an incinerator temperature of 107°C, the incinerator heater power was

reduced to 250 watts. As in Test Number 1, the rotational speed of the

paddle blade assembly began to decrease at an incinerator temperature of 121%,

eventually decreasing to about 100 rpm before returning to normal at an

incinerator temperature of 243°C. (Additional external air cooling applied

to the motor housing during the course of this test apparently prevented total
	 y

loss of rotation speed.)

* Approximately 50% solids, by weight.
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Power to the incinerator heaters was increased without difficulty to

400 watts, 500 watts, 600 watts, and 750 watts at incinerator temperatures

of 249°C, 271°C, 293°C, and 391°C, respectively. However, at an incinerator

I
temperature of 410°C, the test had to be stopped when it was detected that

the incinerator exhaust tube connection to the catalytic afterburner had

melted and been destroyed just downstream of the afterburner oxygen supply

line fitting. The test was stopped 350 minutes after time zero with the

temperature of the catalyst bed at 732°C. (The temperature at the inlet

end of the afterburner was obviously very near the melting point temperature

for Hastelloy X. This region of the afterburner was found to be bright

orange upon removal of the insulation at this location.)

After cool down of the subsystem, ash was removed from the incinerator

as before. The collected ash was gray and consisted of 186 gm of chunks

and 151 gm of powder.

The catalytic afterburner was removed from the subsystem and rebuilt

with a new inlet end plate, inlet tube, oxygen supply fitting, inlet catalyst

retaining screen, and catalyst. In addition, the thermocouple sensing the

catalyst bed temperature for the recorder was repositioned 2.5 cm f;;)m the

afterburner inlet end plate in order to be more sensitive to temperature

variations in this region. The afterburner was then reinstalled in the

subsystem with considerably less and looser insulation around it than before.

The new oxygen supply fitting made it possible to supply oxygen axially

in the direction of, and at the center of, the gas flow exhausting from the

incinerator into the catalytic afterburner. This new arrangement was designed

primarily to reduce the possibility of regions of gas having high oxygen

concentrations coming into contact with Hastelloy X. (The original fitting

simply supplied oxygen at the wall of the tube connecting the incinerator and

afterburner in a radial or cross-flow direction.)

Yi cti :Y2A ^. Arir^C?tlC Aug, nv;=C:1^^ f.&^ Oi8V9YON
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Test Number 3, 11 June 1974, Horizontal Orientation

The waste load for this and the remaining two tests was reduced to

approximately half that used previously in an effort to maintain continuous,

full paddle blade assembly rotation and thereby prevent the formation of chunks

of wastes within the incinerator during pyrolysis. The waste load for Tests

3, 4, and 5 consisted of the following materials:

Human feces	 450 gm

Urine Distillate Residue* 	 450 gm

Rinse Water	 160 gm

Toilet Tissue	 10 gm

Total	 1070 gm

At time zero the incinerator heater power was set at 500 watts. The

catalyst bed temperature, measured 2.5 cm from the afterburner inlet end

plate, decreased to 210°C during boil-off. (The temperature at the center

of the catalyst bed, which was mon'tored with a separate thermocouple as before

to control afterburner heater power, remained above 320°C during this and the

remaining two tests.) At the end of boil-off, at an incinerator temperature

of 110°C, the incinerator heater power was reduced to 250 watts. It was

later increased to 500 watts, 750 watts, and 1000 watts at incinerator tempera-

tures of 260°C, 316°C, and 4540 C,respectively. During the course of pyrolysis,

insulation at the catalytic afterburner inlet was removed and replaced as

required to control the temperature in this region. A peak catalyst tied

temperature of 838°C was measured at the new thermocouple location, but no

apparent damage occurred as a result of this temperature. In addition, paddle

blade assembly rotation was maintained without difficulty during the course

of this test, although definite chunk break-up could be heard at various times

during pyrolysis.

* Approximately 50% solids, by weight.
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The incinerator oxidation process lasted 53 minutes, producing an

incinerator temperature increase of 33°C. It ended 410 minutes after time

zero.

After cool down of the subsystem, ash was removed by reverse flushing

of air through the incinerator with a vacuum cleaner. The collected ash

was gray and consisted of 44 gm of powder. (No chunks were found within the

incinerator.)

Test Number 4, 12 June 1974, Horizontal Orientation

The procedure for this test was basically identical to that of the

previous test. (The incinerator heater power was reduced to 250 watts

at a slightly higher incinerator temperature of 1270C.)

The catalyst bed temperature, measured 2.5 cm from the afterburner

inlet end plate, decreased to 202°C during boil-off. During the course of

pyrolysis, a peak catalyst bed temperature of 638 0C was reached at the same

location due to somewhat better adjustment of the insulation around the after-

burner inlet than that performed during the previous test. The incinerator

oxidation process lasted 57 minutes, producing an incinerator temperature

increase of 19°C. It ended 397 minutes after time zero.

During the incinerator oxidation process, pressure within the subsystem

increased to about 1.3 atmospheres and was restored to normal by flaming

the catalytic afterburner , inlet. After cool down of the subsystem, the

afterburner was disconnected from the incinerator for inspection. Fine

ash was found to be blocking the holes in the catalyst retaining screen

at the inlet end of the afterburner. The holes were cleaned out and the

subsystem ^eassembled. ( No damage to metal parts in this region was

observed.)
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Ash was removed as after Test Number 3, although in this case a much

higher air flow rate through the incinerator was attained because the afterburner

was disconnected from the incinerator at the time of ash removal. The

collected ash was gray and consisted of 61 gm of powder.

Test Number 5, 13 June 1974, Horizontal Orientation

The procedure for this test was again basically identical to that of

Test Number 3 except that the reduction in incinerator heater power to 250

watts was omitted. The catalyst bed temperature, measured 2.5 cm from the

afterburner inlet end plate, decreased to 218°C during boil-off and reached

a peak of 713°C during pyrolysis. A slight increase (less than .1 atm)

in subsystem pressure occurred at an incinerator temperature of about 400°C.

Subsystem pressure returned to normal about half way through the incinerator

oxidation process (flaming of the catalytic afterburner inlet failed to relieve

the excess pressure in this case). Paddle blade assembly rotation was again

very smooth throughout the test.

The incinerator oxidation process lasted 51 minutes, producing an incinera-

tor temperature increase of 11°C. It ended 318 minutes after time zero.

Ash was removed as after Test Number 3. The collected ash was gray and

consisted of 41 gm of powder.
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Section 3

TEST DATA

3.1 Final Condition of the Subsystem

°	 The subsystem was disassembled immediately after the 	 test series for

visual inspection and determination of the quantity of residual ash (ash not

j	 removed by the normal evacuation procedure) remaining within the incinerator.

The following residual amounts of ash were collected:

I^	
Paddle Blade Assembly 	 25 gm

Inlet End Plate	 25 gm

Shell and Exhaust End Plate 	 100 gm

Total	 150 gm

This residual ash and the condition of the interior of the incinerator

can be seen in Figures B through 10. It should be noted that the condition

of all pieces of hardware appeared to be excellent throughout the subsystem.

In particular, the bearing housing was completely clean, indicating effective

operation of the labyrinth seal between the incinerator inlet end plate and

the paddle blade assembly drive shaft; there was no evidence of permanent

bending or torsion of the paddle blade assembly; the catalytic afterburner

showed no signs of metal erosion in the vicinity of the new oxygen supply

fitting; and all gas lines were for the most part free of any tar or ash.

The only exception to this was the tube connecting the incinerator

to the catalytic afterburner, which contained a small amount of fine ash.

The holes in the catalyst retaining screen at the inlet end of the after-

burner were also partially blocked with ash, and some fine black ash was found

within the catalyst bed itself.
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Figure 8 RESIDUAL ASH WITHIN INCINERATOR SHELL AND ON

EXHAUST END PLATE AT END OF TEST SERIES

GMERAt AMERICAN RESEARCH DIVI'SiON

28



t

I  u

''fir r •
r -

Vim Q	 A

i

Figure 9 RESIDUAL ASH ON PADDLE BLADE
ASSEMBLY AT END OF TEST SERIES

29



Figure 10 RESIDUAL ASH ON INCINERATOR INLET END

PLATE AT END OF TEST SERIES
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3.2 Oxygen Consumption Through &rolysis

Figures 11 and 12 summarize for each of the five tests the history of

oxygen consumption within the catalytic afterburner through pyrolysis as a

function of incinerator temperature. The sharp changes in the curves for

Test Numbers 2 and 3 correspond to audible break-up of chunks of wastes within

the incinerator during those tests. Heating rates are also shown on the figures

for completeness, Of particular interest is the initial lag in oxygen consump-

tion for Test Number 5 over that for Test Number 4 apparently caused by the

higher rate of heating employed during part of the last test.

A slightly larger waste load was used for Test Number 2 than for Test

Number 1; hence, the somewhat higher oxygen consumption for this test (up

to the point of shut-down) in comparison with Test Number 1. Test Numbers 3

through 5 were run with identical waste loads which were approximately half
e

those used for the first two tests. The somewhat higher oxygen consumption

and also the chunk break-up observed during Test Number 3 can most likely be

attributed to processing of residual chunks of wastes remaining within the

incinerator after the first two tests.

3.3 Gas and Condensate Analyses, Mass balances

Tables 1 through 4 present the major portion of test data gathered during

the five tests. Table 1 summarizes the input quantities for each test, Table 2

the primary output quantities, Table 3 the trace output gases, and Table 4

the condensate. All of these tables should be interpreted with the knowledge

i

	 that gas collection for Test Number 1 was incomplete due to a leak in the

gas collects n envelope, and that Test Number 2 was aborted toward the end of

pyrolysis due to burn out of the Hastelloy X tubing connecting the incinerator

and catalytic afterburner (just downstream of the afterburner oxygen supply

fitting). The large deficit between total input and total output for

3;AENERA. Ah9MCAV &^ESCrX@#4119 9y9 P^u44yBd
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INCINERATOR HEATER	 POWER ^. Wottc

Test N t Ik+--^---6000 ------1 550 ----= XUw=	 450-{-6001-	 - Y50w-- ---

Test Nt 2	 500w	 +----->250w-----44005OOt--600w---475®w D off.

0	 50	 100	 150	 200	 250	 300	 350	 400	 450	 500	 550

INCINERATOR TEMPERATURE	 °C

Figure 11 CATALYTIC AFTERBURNER OXYGEN CONSUMPTION THROUGH
PYROLYSIS VERSUS INCINERATOR TEMPERATURE; TEST
NUMBERS 1 AND 2
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INCINERATOR HEATER POWER ^-^ Walls.

Teel Nei I+--500w	 250w--=,=-500w	 750w-	 - 	 IOOOw-+I

Test N E 4 {--500w	 i--250w ---- =500w -I	 750w-----i— IOOOw-+I

Teel N e 5 -	 --	 500w	 -	 - 750w	 h	 IOOOw- l

He 3

He 4
He 5
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INCINERATOR TEMPERATURE - HOC

Figure 12 CATALYTIC AFTERBURNER OXYGEN CONSUMPTION THROUGH
PYROLYSIS VERSUS INCINERATOR TEMPERATURE: TEST
NUMBERS 3, 4, AND 5
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Table 1

INPUT QUANTITIES

Test Number 1 2* 3 4 5

Feces (gm) 835 900 450 450 450

UDR** (gm) 900 900 450 450 450

Toilet Paper (gm) 20 20 10 10 10

Disposable Liner (gm) 7 -- -- -- --

Water (gm) 320 350 160 160 160

Total Waste Load (gm) 2082 2170 1070 1070 1070

Incinerator 02 (liter) 144 -- 109 87 87
(gm) 190 144 115 115

Afterburner 02 (liter) 394 348 256 220 216
(gm) 522 461 340 291 286

Total 02 (liter) 538 348 365 307 30$
(gm) 712 461 484 406 401

CO2 (liter) 313 297 315 301 238
(gm) 573 544 575 550 434

Total	 Input (gm) 3367 3175 2129 2026 1905

* Test aborted during pyrolysis at an incinerator temperature of 410°C.

** Urine Distillate Residue (501 solids, by weight).
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Table 2

i

PRIMARY OUTPUT QUANTITIES

°	 Test Number 1* 2** 3 4 5',{'

a	 CO2	 %) 64.5 57.2 75.0 68.0 65.5
liter) 278 335 404 389 330

gm) 508 613 738 711 604

H 2	%) 2.9 2.0 0 0 0

liter) 13 12 0 0 0
gm) 1 1 0 0 0

02 (%j 13.7 21.5 10.4 16.1 14.8
59 126 56 92 75

^

liter)
gm) 78 167 74 122 99	 i

17.7 17.3 14.4 15.7 19.5N
22	

liter) 76 101 77 90 98

gm) 89 118 90 104 114

CO	 (%) 1.2 2.0 0.2 0.2 0.2
(liter) 5 12 1 1 't1

(gm) 6 13 1 1 1

Total Gas	 %) 100 100 100 100 100	 {

titer) 431 586 538 572 504
gm) 682 912 903 938 818

Condensate (gm) 1670 1733 917 847 856

Collected Ash***(gm) 150 337 44 61 41

Total Output (gm) 2502 2982 1864 1846 1715

Total	 Deficit (gm) 865 193 265 180 190

(Input-Output)

*	 Gas collection incomplete due to leakage in gas collection

i;

envelope.

**	 Test aborted during pyrolysis at an incinerator temperature of 410°C.

_	 ***	 Residual ash (150 gm) remaining in incinerator after test series not
included.
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Table 3

TRACE OUTPUT CASES

Test Number
	

1
	

2	 3	 4	 5

NH3 (ppm)
	

<5
	

<5
	

<5
	

<5
	

<5

S02 (ppm)
	

<1
	

<1
	

20
	

1
	

1

H2S M
	

>.64
	

.02
	

<.005
	

<,005
	

<.005

NO2 (ppm)
	

25
	

50
	

300
	

100
	

100

Table 4

CONDENSATE ANALYSIS

Test Number 1	 2 3 4 5

'i	 ht e11ow
Liquid Color yellow yellow

gre en
yellowy green

Sediment Color*
light
brown

dark
brown

none
light
brown

light
brown

PH 8.0 6.6 1.3 6.8 3.2

Electrical Conductivity 15 10.2 11.8 7.2 11.6

(mmhos)

NH, Concentration (ppm) 	 4900	 2500	 950	 3200	 2800

CL	 Concentration (ppm) 6120 3195 1534 123 4580

SO4 Concentration (ppm) 738 1125 850 863 1375

Inorganic Carbon	 (ppm) 286 451 123 1560 180

Organic Carbon	 (ppm) 836 723 29 1690 4770

Total Carbon (ppm) 1122 1174 152 3250 4950

Total	 Solids ( q ) 1.410 0.630 0.414 0.442 0.987

* Condensate for all tests contained small amounts of black soot.
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Test Number 1 is therefore entirely reasonable, and it is also reasonable to

expect the results of both Tests 1 and 2 to have been affected to some degree

by the erosion undergone by the Haselloy X tubing. [loth of these tests yielded,

for example, uncharacteristically high concentrations of hydrogen, carbon

monoxide, and hydrogen sulfide in comparison with the remaining three tests.

No evidence of methane, acetylene, or ethane was found after any of the
	

a

tests.

The total deficits noted in Table 2, for Tests 3 through 5 in particular,

remain unexplained. Leaks in the subsystem certainly could have led to such

deficits although the subsystem was thoroughly leak-checked just prior to the

test series. These deficits are also not substantially altered by the addi-

tion of the 150 gm of residual ash found within the incinerator after the

test series.

3.4 Power and Energy Consumption

Approximate power and energy consumption during the test series are

summarized in Tables 5 and 6, respectively. These tables do not include warm-up

operations which lasted about one hour prior to each test and involved the

catalytic afterburner, gas line tape heaters, oxygen sensor, and miscellaneous

controls. Power and energy consumption during warm-up were therefore 800 watts

and .800 kwhr, respectively.

Comparison between Test Number 1 and Test Numbers 3 through 5 shows that

for a reduction of approximately 50% in the waste load, energy consumption was

reduced by 10% for Test Number 3, 14% for Test Number 4, and 24% for Test

Number 5 (a higher rate of incinerator heating was employed during the first

half of Test Number 5 in comparison with Test Numbers 3 and 4). These results

indicate that the subsystem operates more efficiently in terms of energy

consumption when processing the waste load for which it was designed.
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Table 5

POWER CONSUMPTION

Elapsed Incinerator Incinerator Afterburner Tape Motor Power 02 Sensor,

Test Temperature Heater	 Heater Heater Paddle Blade Miscellaneous

Time Power	 Power Power Rotation Power

(minutes) ( oC) (watts)	 (watts) (watts) (watts) (watts)

(Test Number 1)

0 Ambient 600	 500 200 300 100

138 121 off

159 191 450	 -
163 210 300	 -
251 332 450	 -

pC

272 366 600	 -
290 399 750	 -

345 538 off	 -
440 END OF TEST

(Test Number 2)

0 Ambient 500	 500 200 300 100

130 107 250
195 121 off
280 249 400	 -
292 271 500	 -
302 293 600	 -
343 391 750	 -
350 END OF	 TEST (Test Aborted)

(Test Number 3)

0 Ambient 500	 500 200 300 100

80 110 250
95 121 off

234 260 500	 -
264 316 750	 -
329 454 1000	 -
357 538 off	 -
410 END OF TEST

r

i!
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Table 5

POWER CONSUMPTION

(Continued)

Elapsed Incinerator Incinerator Afterburner Tape Motor Power 02 Sensor,
Test Temperature Heater Heater Heater Paddle Blade Miscellaneous
Time Power Power Power Rotation Power
(minutes) ( o C) (watts) (watts) (watts) (watts) (watts)

Y

(Test Number 4)

	

500	 500
off

	

250	 -

	

500	 -

	

750	 -

	

1000	 -

	

off	 -
END OF TEST

	

0
	

Ambient

	

78
	

121

	

80
	

127

	

220
	

260

	

250
	

316

	

307
	

454

	

340
	

538
397

200	 300	 100

(Test Number 5)

	

0
	

Ambient	 500	 500	 200	 300	 100

	

84
	

121	 off

	

180
	

316	 750	 -

	

235
	

454	 1000	 -

	

267
	

538	 off	 -

	

318
	

END OF TEST

Table 6

ENERGY CONSUMPTION

Test Number

1

2

3

4

5

Incinerator Heaters
(kwhr)

3.085

2.369

2.838

2.763

2.721

Afterburner Heaters Other Total
(kwhr) (kwhr) (kwhr)

1.150 4.400 8.635

1.625 3.500 7.494

.792 4.100 7.730

.650 3.970 7.383

.700 3.180 6.601
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This is true primarily because an increasingly more significant portion of

the power for heating is consumed purely in heating the subsystem itself for

smaller waste loads.

However, for comparative purposes, the motor power for rotation of

the paddle blade assembly should really be increased to 600 watts for Test

Number l,reflecting the increase in motor size most likely required to maintain

satisfactory rotation with a full waste load. This would increase energy

consumption for this test by 2.200 kwhr to 10.835 kwhr for the test time

recorded. Total energy consumption figures for Test Numbers 3, 4, and 5 are

less than this figure by 29%, 32%,and 39%,respectively.

Based on a total energy consumption figure of 10.8 kwhr for the subsystem

operating with a full waste load,together with energy consumption during

warm-up equal to .800 kwhr,daily energy consumption for the subsystem would

be somewhat less than 2.0 kwhr per man.

3.5 Prorated Oxygen Consumption

The consumption of oxygen per gram of waste solids for each of the

five tests is summarized in Table 7. This table has been formulated on

the basis that for each test the feces contained 25% solids and the urine

distillate residue contained 50% solids. The input solids for each test were

therefore 686 gm for Test Number 1, 695 gm for Test Number 2, and 348 gm for

the remaining three tests.

The high value of oxygen consumption for Test Number 3 is most likely

due to processing of residual wastes remaining within the incinerator after

the first two tests.

The values of total oxygen supplied in Table 7 are approximately twice

the equivalent values reported in Reference 2. This increase in oxygen

requirement is most likely due to more complete processing of the wastes
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during the five tests as a result of their break-up within the incinerator.

(The tests reported in Reference 2 were performed without mechanical break-up

of the wastes.)

Table 7

OXYGEN CONSUMPTION PER GRAM OF WASTE SOLIDS
i

Test	 Oxygen Supplied Oxygen Supplied Total Oxygen Oxygen in Total Oxygen
Number to Afterburner 	 to Incinerator	 Supplied	 Exhaust Gas	 Consumed

( gm)	 (gm)	 (gm)	 (gm)	 (gm)

1	 .76	 .28	 1.04	 .11*	 .93

2**	 .66	 --	 .66	 .24	 .42

3	 .98	 .41	 1.39	 .21	 1.18

4	 .84	 .33	 1.17	 .35	 .82

5	 .82	 .33	 1.15	 .28	 .87

* Gas collection incomplete due to leakage in gas collection envelope.

** Test aborted during pyrolysis at an incinerator temperature of 410°C.
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Section 4

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

On the basis of the test results obtained during Task II, the following

conclusions can be made concerning the design, operation, and performance

of the baseline integrated waste incineration subsystem.

1. The conclusions reached at the end of Task I (Reference 3) leading

to the design of the baseline subsystem remain basically unchanged, However,

Ia. It shoula be added that a paddle blade assembly rotational

speed of 300 rpm is not only necessary for adequate shearing of the waste

materials during waste loading and creating a sufficient centrifugal force

field for retainment purposes, but it is also necessary for preventing

formation of hard chunks of waste materials during pyrolysis.

lb. Location of the transport air blower downstream of the sub-

system is not desirable for two reasons. First, the restriction imposed on

the air flow by the catalyst bed prevents the attainment of an adequate flow

rate for satisfactory pneumatic transport of waste materials into the incinera-

tor. Second:, cooling of the catalyst bed by this air flow could lead to the

production of unsterile end products.

lc. While filtering of the exhaust gases and vapors emanating

from the incinerator is required, the catalytic afterburner should not be

used to perform this function. The afterburner provides inadequate filtering

(small amounts of fine black particulates were found in the condensate after

each test). In addition, ash build-up at the inlet to the afterburner, in

particular on the catalyst retaining screen, can lead to blockage of gas
e

flow through the subsystem and subsequent pressurization significantly

above ambient.
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ld. Whilu the catalytic afterburner appears to be of suitable

size and configuration for use in the subsystem, external cooling is required

during pyrolysis to maintain safe operating temperature levels within the

afterburner. This requirement is in addition to the requirement for oxygen

introduction to the afterburner through a supply fitting--arrangement such as

that used for the last three tests in the test series.

2. The motor power provided to rotate the paddle blade assembly is

inadequate for maintaining a rotational speed of 300 rpm during pyrolysis

of the typical daily waste load anticipated from six men. It is adequate

for half this waste load.

3• Since the proportional controller in the oxygen supply line to the

catalytic afterburner was not used, verification of satisfactory oxidation

within the afterburner with this arrangement was not made. However, manual

control of the oxygen flow to the afterburner in response to variations in

the oxygen concentration in the afterburner exhaust gas was readily carried

out once incinerator heating rates were used which did not produce excessive

afterburner oxygen demands. In particular, large or rapid fluctuations in

oxygen demand were not observed as long as the phenomenon of chunk break-up

within the incinerator was avoided.

4. Results of the analyses of the output ash,condensate, and gas

collected after each test (particularly for the last three tests) compare

favorably with similar results documented in Reference 2.

5. Based on the energy consumed by the baseline subsystem during the

test series, it is estimated that daily energy consumption by the subsystem

would be about 2.0 kwhr per man.

6. Oxygen consumption per gram of waste solids was approximately one

gram, or twice the value reported in Reference 2.
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4.2 Recommendations

Based on the observations and conclusions drawn from Task II, it is

apparent that the design of the baseline integrated waste incineration sub-

system should be revised in a number of areas.

1. The motor power provided to rotate the paddle blade assembly

should be doubled to allow proper processing of the typical daily waste load

anticipated from six men.

2. The transport air blower should be connected to the subsystem

between the incinerator and catalytic afterburner, thereby allowing the

transport air flow to bypass the afterburner.

3. Methods of filtering the exhaust gases and vapors emanating from

the incinerator prior to their entrance into the catalytic afterburner should

be investigated and the most promising technique incorporated into the design

of the subsystem.

4. Methods of cooling the catalytic afterburner in a controlled fashion

during pyrolysis should also be investigated and the most promising technique

incorporated into the design of the subsystem.

It is recommended that an extensive series of laboratory tests be

conducted with the design of the baseline subsystem revised as outlined above.

These tests would provide a large and meaningful set of data which would

permit subsystem performance, especially with regard to long-term operation,

to be thoroughly investigated and which would also permit proper operational

procedures to be fully established.

It is further recommended that (1) some of these tests be performed

with different catalysts in an effort to obtain the most satisfactory output

products possible and (2) some of these tests be conducted with waste load

compositions which include plastics typically found in spacecraft wastes.
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Appendix A

BASELINE INTEGRATED WASTE INCINERATION SUBSYSTEM: OPERATIONAL SPECIFICATION

Basted on the results of Task I and on the conclusions drawn from these

results', an operational specification for a baseline integrated waste

incineration subsystem was prepared and included in the report documenting

work under that task (Reference 3). The operational specification is re-

peated here for continuity, beginning in Section A.I. The operational

specification is divided into the following categories: purpose, mode of

operation, configuration, performance requirements, operating constraints,

sequence of operations, and primary specifications.

A.1 Operational Specification

A.1.1 Purpose

The baseline integrated waste incineration subsystem shall collect,

transport, and convert solid and liquid human wastes into innocuous, sterile

end products. It shall be capable of processing, on a cyclic basis, the

typical daily waste load anticipated from six men:

Human Feces (25% solids)

Urine Distillate Residue (50% solids)

Rinse Water

Toilet Tissue and Liners

TOTAL WEIGHT

900 grams (2.0 pounds)

900 grams (2.0 pounds)

320 grams (0.7 pounds)

45 grams (0.1	 pounds)

2165 grams (4.8 pounds)
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A.1.2 Mode of Operation

Human wastes shall be collected in a waste transport tube fitted with a

disposable liner and transported pneumatically to an incineration unit in

which the solid wastes shall be physically reduced in size and the entire

waste mass converted to vapors, gases, and an inorganic ash.
a

The wastes -- including the liner and used toilet tissue -- shall be

retained within the incinerator through the action of an artificial force

field created by a rotating paddle arrangement within the incinerator. All

transport and generated gases and vapors shall be discharged from the central

rotational axis.

Conversion of the wastes shall take place in three steps as follows:

1. Boil-off of volatiles and water by heating from

ambient temperature throunhA 100°C (212 °F),

2. Pyrolysis (thermal destruction in the absence of

oxygen) of the dehydrated residue by heating from

100°C (212 °F) to 540°C (1000 0 F), and

3. Final combustion with oxygen of the carbonaceous

pyrolysis residue at 540°C (1000 °F) to 650°C (1200°F).

The generated gases and vapor shall pass first through a catalytic after-
,

burner maintained at 370-480°C (700-900°F) for further processing with oxygen

and then through a condenser for the collection of all condensible vapors.

The final inorganic ash shall be removed from the incinerator to storage by

reverse air flow through the incinerator into an ash collector.

A.1.3 Configuration

The baseline integrated subsystem configuration shall be as depicted in

Figure Al. The subsystem shall consist of a waste transport tube, incinera-

tion unit, catalytic afterburner, oxygen controller, condenser, blowers, and

OFNERAL AMERIgt: b.' :{6i+ t?X C:ki r,?` 9 ,fwas
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necessary interconnecting piping, valves, thermocouples, gauges, controls,

wiring, and insulation for proper operation of the subsystem.

Waste Transport Tube - The waste transport tube shall be cylindrical --

^i	 6.4-cm (2-1/2-in) ID, 30.5-cm (12-in) length, stainless steel -- and fitted

at its inlet end with an 11.4-cm (4-1/2-in) diameter stainless steel waste

acceptance funnel. The tube and funnel shall be fully lined with a suitable

disposable liner material exhibiting the following features:

i

6	 • Nonabsorbent (water-resistant or water-repellent)

• Resistant to oils and greases

9 Easily torn or shredded

• Combustible with no objectionable off-gases

• Lightweight and flexible

The waste transport tube shall be permanently attached to the incinera-

tor and shall accept a Hastelloy-X plug to seal the waste transport tube during

processing of the wastes.	 This plug/seal shall be inserted into the tube

inlet manually after the collection of a waste load.

The waste transport tube shall also be fitted with a 1.9-cm (3/4-in) ID

stainless steel take-off tube located at the intersection of the waste trans-

port tube and the incinerator and positioned 30 0 to the waste transport tube

axis to provide for final ash removal from the incinerator.

Incineration Unit - The incineration unit shall be a cylindrical shell --

20.6-cm (8-1/8-in) OD, 21.6-cm (8-1/2-in) length, 0.16-cm (0.063-in) wall

thickness, Hastelloy-X -- fitted externally with cylindrical electrical re-

sistance heaters and embedded within suitable insulation. The waste transport

tube shall be attached to the incinerator on the main detachment flange adja-

cent to the incinerator wall and parallel to its central axis.
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The inner volume of the incinerator shall cotta±n a rotating assembly

consisting of a 3.5-cm (1-3/8-in) OD Hastelloy-;( centrll tube located along

the axis of the incinerator and fitted with four 0.24^cm (0.093-in) thick

Hastelloy-X paddle blades; these blades shall be permanently attached along

the length of the tube'and'shall be at right angles to each other. Each

paddle blade shall be 6.4 'cm (2-1/2 in) wide and fitted along its outermost

edge with seven 0.64-cm (1/4-in) wide "fingers", which shall extend to within

0.16 cm (1/16 in) of the inside wall of the incinerator. The "fingers" shall

be made integral with the paddle blades and shall be positioned 2.5 cm (1 in)

apart on a blade and 0.64 cm (1/4 in) from the adjacent "finger" on the next

blade as depicted in the following drawing.

2.5 cm	
"Finger" location cn next

/-	 paddle blade

0.64 cm	 {^

0.64 ^ ^ "Finger"

cm

Paddle blade

Within the incinerator, the central rotating tube shall contain a large

number of 0.64-cm (1/4-in) diameter holes through its wall to permit discharge

of the transport and generated gases. This tube shall be rotated by an ex-

ternal 1/2-horsepower electrical motor fitted with a flexible drive shaft to
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provide a maximum paddle blade rotational speed of 350 rpm The rotational

drive shaft shall be common with the central tube and shall be contained with-

in two roller bearings located within a sealed housing attached to the main

detachment flange of the incinerator. The drive shaft/central tube shall

penetrate the main detachment flange of the incinerator through a labyrinth

seal having clearance gaps of 0.013 cm (0.005 in) or less.

The incinerator end plate shall be 0.24-cm (0.093-in) thick Hastelloy-X

and fitted at its center with a 2.5-cm (1-in) OD Hastelloy-X gas and vapor
is

exhaust tube. This tube shall penetrate into the center of the rotating cen-

tral tube for a maximum distance of 7.6 cm (3 in); it shalt not touch the

rotating tube. The opposite end of this exhaust tube shall be connected to

the inlet end plate of the catalytic afterburner; the overall length of the

tube shall not be less than 10.2 cm (4 in) or more than 15.2 cm (6 in), The

exhaust tube shall be wrapped with an electrical tape heater and embedded

within suitable insulation.

The main detachment flange of the incinerator shall be 0.64-cm (1/4-in)

thick Hastelloy-X and bolted to the incinerator shell; a spiral-wound stainless

steel/asbestos gasket shall be used to seal this flange. A Hastelloy-X cutting

mechanism shall be provided within the incinerator at the intersection of the

waste transport tube and the main detachment flange.

Catalytic Afterburner - The catalytic afterburner shall be -a cylindrical

shell -- 9.5-cm (3-3/4-in) OD, 16.5-cm (6-1/2-in) length, 0,08--cm (0.032-in) wail

thickness, Hastelloy-X -- fitted externally with cylindrical electrical resis-

tance heaters and embedded within suitable insulation. It shall contain

approximately 1200 gm (2.65 lb) of catalyst consisting of 0.32-cm (1/8-in)

diameter by 0.32-cm (1/8-in) long cylindrical alumina pellets coated with 0.5%

palladium. Hastelloy-X fine mesh screens shall be fitted above and below the

catalyst bed to prevent loss of the catalyst.

C,!`..Pv^PAtat. Ah1^%ilr.,h• :y riGSC:if,^i:`r{ Cris"QRrR47fZ
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The catalytic afterburner shall be fitted with a 0.64-cm (1/4-in) thick

Hastelloy-X detachment flange fitted at its center with a 1.9-cm (3/4-in) OD

Hastelloy-X exhaust tube, which shall be connected at its other end to a con-

denser. This exhaust tube shall contain two tee's to provide a 1.0-cm (3/8-in)

OD Hastelloy-X gas sample line. The sample line shall pass through a Thermo-

Lab "Thermox" WDG Oxygen Sensor to monitor the oxygen concentration of the

final exhaust gas. The signal from the sensor shall go to a Thermo-Lab "Ther-

mox" WDG Analyzer, whose amplified signal shall go to an API Model 228-21

Double Output, 2-Mode Controller. This controller shall signal an API Model

5001 Current/Position Converter, which shall operate a Barber-Coleman Propor-

tional Motorized Operator, which, in turn, shall drive an oxygen valve feeding

oxygen to the catalytic afterburner.

Other Components - Other components in the subsystem shall include a

condenser and a properly sized blower located downstream of the condenser.

This blower shall provide the necessary air flow for pneumatic transport of

the waste materials into the incinerator and shall provide for continuous re-

moval of vapors and"gases generated during processing of the wastes.

A second blower shall be provided for the removal of the final inorganic

ash from the incinerator. This blower shall be located downstream of an ash

collector .attached to the ash removal tube previously described.

Miscellaneous components shall include, but shall not be limited to,

thermocouples, recorders, temperature controllers, pressure/vacuum gauges, and

flow meters.

A.1.4 Performance Requirements

Waste Transport Tube

• Must accept whole fecal matter and used toilet tissue and allow

pneumatic transport of these materials to the incinerator.

_.7.
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• Must not physically plug with wastes

Must not allow isolated stray waste particles to collect

outside of the liner

• Must be easily cleaned after use or kept clean during use

Incineration Unit

• Must reduce size of whole waste materials and protective

liner to be readily accepted by rotating paddle blades

e Must confine all liquids and solids within the annular space

between the inside wall and the rotating paddle blades

• Must completely reduce wastes to vapors, gases, and an

inorganic ash

• Must completely sterilize all waste particles

• Must accept pneumatic transport gas flow

• Must allow for complete discharge of transport and generated

gases and vapors without the loss of liquid or solid particles

• Must not leak solids, liquids, or gases into drive tube

housing

• Must allow for adequate removal of the final inorganic ash

by reverse air flow

• Must provide for adequate oxygen distribution during final

combustion step

Catalytic Afterburner

• Must accept flow rate of transport and generated gases

and vapors

• Must oxidize all unoxidized gases and vapors

Must physically filter any entrained particulates from

the incinerator exhaust gas
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• Must provide sterilization of low-temperature volatiles

and water vapor

A.1.5 Operating Constraints

Waste Transport Tube

• Must operate between waste acceptance funnel at ambient

temperature and incinerator up to 650°C (1200°F)

Transport gas flow must entrain all waste materials and

transport them to the incinerator with no detrimental

build-up of back pressure and no contamination of tube

walls

e Transport gas flow rate must be minimum feasible

Incineration Unit

• Must operate between ambient temperature and 650°C (1200°F)

'i	 • Must exhaust all transport and generated gases and vapors

to catalytic afterburner

• Must not drive gases and vapors back into waste transport

tube or into bearing housing

• Must accept whole waste materials and adequately reduce their

size

• Must operate under both reducing and oxidizing atmospheres

Catalytic Afterburner

• Must operate continuously at 370-480°C (700-900°F)

jj	 • Must prevent generated gases and vapors from short-circuiting

{	 through the catalyst bed

w
9 Must operate continuously under a strong oxidizing atmosphere

ICI
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A.1.6 Sequence of Operations

During operation of the waste incineration subsystem, the following

operations will be performed continuously:

e Rotation of the entire paddle blade assembly

• Bleeding of an inert gas (carbon dioxide) into the bearing

housing at a prescribed flow rate for cowling of the bearings

and positive pressure differential across the labyrinth .seal

• Heating of the catalytic afterburner to 370-480°C (700-900°F)

• Heating of the exhaust tubes to a minimum of 260°C (500°F)

• Monitoring of the oxygen concentration of the exhaust gas

from the catalytic afterburner and maintaining a minimum of

5% oxygen in this gas

• Operation of the transport and vapor removal blower

e Operation of the downstream vapor condenser

Upon activation of the entire integrated subsystem, a preformed dispo-

sable liner will be inserted into the waste transport tube and clamped in

place at the waste acceptance funnel inlet. Whole wastes and toilet tissue

will be deposited in the funnel and pneumatically transported into the incin-

erator where they will be reduced in size by the cutting mechanism. The

macerated wastes will then be distributed uniformly within the annular region

between the rotating paddle blades and incinerator wall. The "fingers" will

continuously rake through the waste mass to keep it from sticking and caking

on the incinerator wall.

After the addition of wastes equivalent to that generated daily by six

men, the prescribed amount of urine distillate residue and rinse water will

be supplied through the waste transport tube. The disposable liner will then

be released, and the plug/seal brought into position.
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The incinerator heaters will then be activated at the prescribed power

input to begin the therm8l reduction process. When the waste mass remaining

in the incinerator attains a temperature of 540°C (1000°F) as sensed by a

thermocouple, the incinerator heaters will be shut off, and oxygen will bu

admitted at a prescribed flow rate to the bearing housing, downstream of the

bearings. When all oxidizable materials have been oxidized within the incin-

erator, the oxygen concentration in the final exhaust gas will increase, and

the oxygen controller will shut all heaters and all oxygen flows off. After

the necessary cool-down, the ash removal blower will then be activated, and the

plug/seal will be positioned to clear the opening to the ash removal tube;

ash will then be "vacuumed" from the incinerator for a prescribed period of

time, after which the entire subsystem will be shut down.

A.1.7 primary Specifications

Waste Transport Tube:

Waste Acceptance Funnel:

6.4 cm (2-1/2") ID x 7.0 cm (2-3/4")

OD x 30.5 cm (12") tong, 316 L S.S.

Papered, 11.4 cm (4-1/2") die. x

6.4 cm (2-1/2") die. x 10.2 cm (41')

long, 316 L S.S.

Plu Seal:	 6.4 cm (2-1/2") die. .x 6.4 cm (2-1/2")

long, Hastelloy-X

Liner Material:	 20# White #84600 M.G. Kraft with 4#

Waxsorb.(Thilmany Paper Company) or

equivalent

Cutting Mechanism: 	 Shear bar, 0.64 cm (1/4") wide x

19.4 cm (7-5/8 11 ) long, Hastelloy-X

i
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Incinerator Exhaust End Plate:

"Fingers":

Incinerator Shell:

Central Rotating Shaft/Tube:

Paddle Blades:

Incinerator Heaters:

Incinerator Main Flange Gasket:

Cylindrical, 20.6 cm (8-1/8") OD

x 0.16 cm (0.063 11 ) wall

x 21.6 cm (8-1/2") long, Hastelloy-X

20.6 cm (8-1/8") dia. x 0.24 cm

(0.093") thick, Hastelloy-X

29.8 cm (11-3/4") dia. x 0.64 cm

(1/4") thick, Hastelloy-X

1.0 cm (3/8")-16NC x 2.5 cm ( 1 11 ) long,

316 S.S. on 22.9 cm (9") b.c.

3.5 cm (1-3/8") OD x 0.11 cm (0.045")

wall, Hastelloy-X

6.4 cm (2-1/2") wide x 20.3 cm (8")

long x 0.24 cm (0.093") thick, with

7 integral "fingers", Hastelloy-X (4)

0.64 cm (1/4") wide x 1.8 cm (11/16")

long x 0.24 cm (0.093") thick, inte-

gral with paddle blade, Hastelloy-X

(B)

Model 50821 Quarter Cylindrical

(Lindberg Hevi-Duty) around shell (4),

Model 50116 Flat (Lindberg Hevi-Duty)

on end plates (2)

Spiral-wound, 316 S.S./asbestos,

20.8 cm (8-3/16") ID x 21.7 cm (8-

17/32") OD (Flexitallic Gasket Co.)

Incinerator Main Detachment
Flange:

Incinerator Flange Bolts:

CFNFAAL AM LPilCAK, NES&.,XPs H GIV:SiON
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Speed Reduction Mechanism:

Rotational Drive Motor:

Motor Coupling to Drive Tube:

Bearings:

Bearing Housing:

Gas Exhaust Tube:

Catalytic Afterburner:

Catalytic Afterburner Detachment
Flange::

Catal st:

Catalytic Afterburner Heaters:

1/2-HP, 1725 rpm, with SCR adjus

ble speed control, 115 V, 60 Hz

(Dayton Manufacturing Company)

Model S-133-MC56-5-A "Uniline",

right-angle, 5:1 reduction ratio

(Ohio Gear Company)

Model 50FC flexible coupling (Stow

Manufacturing Company)

Model JH2O16 cylindrical roller bear-

ings (2) (Torrington Manufacturing

Company)

Cylindrical, 3.5 cm (1-3/8") ID x

0.16 cm (1/16") wall x 12.7 cm (5")

long, 316 L S.S.

2.5 cm (1") OD x 0.12 cm (0.048")

wall, Hastelloy-X

Cylindrical, 9.5 cm (3-3/4") OD x

0.08 cm (0.032 11 ) wall x 16.5 cm (6-

1/2") long, Hastelloy-X

12.7 cm (5") dia. x 0.64 cm (1/4")

thick, Hastelloy-X

0.5% palladium on 0.32 cm (1/8") dia.

x 0.32 cm (1/8") long cylindrical

alumina pellets, 1200 gm (2.65 lb)

(Englehard Industries, Inc.)

Model 50411 Half Cylindrical (Lind-

berg Hevi-Duty) around shell (2)

r
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Ox en Concentration Sensing

^iystem

Oxygen Control System:

Condenser (lab only):

Main Pneumatic Transport &
perationa 8 ower•

Ash Removal Blower & Ash
Gol ector:

Thermocouples:

Line Tape Heaters:

Model WDG "Thermox" sensor, Model

WDG "Thermox" analyzer (Thermo-Lab

Instruments)

Model 228-21 double output, 2-mode

controller with Model 5001 current/

position converter (LFE-API Instru-

ments); Model 35-569 proportional

motorized operator (Barber-Coleman);

and suitable valve

Vacuum collection bottles cooled

with dry ice/acetone, sized to ac-

cept anticipated vapor flow rates

Centrifugal-type, sized to accept

anticpated gas flow rates

Vacuum cleaner (Kirby Manufacturing

Company) or equivalent

Model SS-188-K-9 (Claud S. Gordon)

Model S-40854-10 (Sargent-Welch

Scientific Company)
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Appendix B

DESIGN DRAWINGS

	

	
i
I

The preceding operational specification for a baseline integrated
e

subsystem was translated into a set of eleven detailed design drawings

for subsystem fabrication and assembly. This set of drawings is presented

in figures 51 through B11.
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