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1. INTRODUCTION AI;LD SUMMARY

Because of the possible launch configurations required to boost a space shuttle
into orbit, it is anticipated that « large number of control effectors, including both
aerodynamic surfaces and gimballed rocket engines, will be required to control the
vehicle during ascent through the atmosphere. One objective in controlling the vehicle

s to.defermine the deflection angle settings of the control effectors required to trim the

. vehicle for headwind and sidewind disturbances, and for bias torques due to solid rocket
motor misalignments, Because of the launch configurationand the large number of controls,
the control engineer is faced with two challenging problems. - First, to compute the trim
s;oluf_l'on may entail solving o system of coupled, nonlinear equations. Second, if the
"nu.‘mber of conirol variables exceeds the number of independent trim equations to be

‘Iscn‘isF_ied, the trim solution is not unique. ’

To solve the uniduer;ess problem, additional constraints must be imposéd.. ‘A logical
‘thoice for the additional constraints.is the minimization of a performance criterion that
penalizes the degradation in vehicle performance caused by large trim deflection d'ﬁgles.
The performance criterion used in this investigation penalizes the fc.:llowing ei';fects:

o e Thrust loss (gain) by‘gimbcllfng the engines dway from their nominal condition.
® Thrust loss due to drag couséd by deflecting aerodynamic surfaces.

e Excessive hinge moments on aerodynamic surfaces.

@ Large movement of fhe-cctudrors for trim which hampers the flexibility"

needed for dynamic response.
- The inclusion of a performance criterion in the problem formulation results in an
optimization problem with equality constraints to be solved for the trim solution. | This

-

formulation eliminates the uniqueness problem but the control engineer is still faced with*
the prcr:»blemr of expl'icirly solving the equations for the trim solution. Furthermore, the
control engineer is likely to want to perform the trim compufafions many times in‘order to
consider changes in the following: * |
" o Flight regime (dynamic pressure)

e Desired trim conditions

e Launch vehicle configuration

‘@ Set of control effectors

e Steady-state wind disturbances

e Performance criterion.

]



To serve this need, a computer p%grom entitled TRIMS was developed to solve the trim
problem numerically. The equations for the trlm solution are based on the method of Lagrange
multipliers and in general are nonlinear. Two standard numerical metnods, steepesf-descent
and Newton-Raphson, are available for solving the nonlinear equations. Application of
these methods yields a pair of iterative algorithms for computing the trim solution that are
included in the TRIMS program. The program user canselect the desired method at the tHme
of program execution. The Newton-Raphson method is more efficient for linear or nearly-~
linear equations, but may fail to converge in severely nonlinear problems unless started
near the optimum solution. If the trim equations are linear and the performance criterion
is quadratic, then the trim problem can be solved explicitly. For this case the Newton-
Raphson method converges to the exact solution in one iteration. The current version of
the TRIMS program for a Space Shuttle during ascent (described in Appendix C) solves
the lateral trim problem. The lateral-directional dynamics are in the program and the
required data (stability derivatives, moments of inertia, and etc.) supplied by MSFC are
stored internally in the block data subroutine. The program permits multiple-case runs
and the cost of computing a trim solution is minimal. The program is in a modular form

that facilitates changes in the data and/or the equations defining the trim problem.

In computing the trim solution, the control engineer must specify the particular
performance criterion to be used. There is no rule or theory for determining a unique
performance criterion. The usual procedure is to vary the performance criterion and examine
the different trim solutions that result. In the TRIMS program there are fourteen relative
weighting factors in the input data that can be varied in the performance criterion. By
varying these a family of acceptable trim solutions can be obtained for more detailed

examination.

Two methods for determining which of the acceptable trim solutions is prefercble were

considered.

One possible mérhod for selecting from among several trim solutions is based on
controllability. If the trim problem is nonlinear, then the controllability of the linear
vehicle dynamics about trim will depend on the particular trim solution. In this case, the
trim solution that results in the most controllable system could be used. The notion of a

controllability index is developed. This index provides a criterion for ranking the trim

solutions according to the degree of controllability. The controllability index is computed



from a symmetric, positive semi~definite confr,g')‘llla'g;lify matrix and is defined as the ratio
of the maximum eigenvalue to the minimum eigenvalue of the matrix. This ratio has a.
minimum value of unity for an orthogonal matrix. For an uncentrollable system, the
confrqllaBilify matrix is singular and the value of the controllability index is infinite.

A difficulty with using the controllability index is that the controllability matrix is not

unique and the value of the controllability index varies with the choice of this matrix.

The controllability Grammain 7171 is one possible choice for this matrix. Other controllability

‘matrices are also considered in the development of the controllability index. A second
‘method for se'ec’ring a trim solution is based on comparing the trim solution to the maximum
allowable deflections. The rocket engines and aerodynamic control surfaces can only
rotate a cektdin maximum angle. For particular flight times, a maximum hinge moment
réquirement can reduce the maximum deflection angle of an aerodynamic control surface
below its physical limit. OBv.iéusly, the trim séiuﬁpn must be within these deflection
limits. Moreover, to permit freedom of movement, a control deflection should not be
too closé(to its angular fimit, Hence,_'the‘ requirement that all deflection angles be within
their limits by @ specified margin could be used to select the trim solution. For linear trim
equations, a quadratic performance criterion with a diagonal ‘weighting'mctrix can always be
found for which the frim solution meets this requirement if such a solution exists at all.
(This property of a diagonal weighting matrix might extend to nonlinear trim equations,
but the more-general case has not been studied.} The search for a trim solution satisfying
this requirement can be accomplished by vérying the diagonal elements of the weighting

matrix using the penalty function method discussed in Section 3.2.

‘For the lateral trim problem of the Space Shuttle, there are two aerodynamic control
surfaces (aileron and rudder) and five rocket engines (three orbiter engines and two solid

rocket motors). The physical or hard limits on the aileron and rudder deflection are

] + 15°
aileron .

~ 40°

rudder + 30°

and, as noted earlier, maximum allowable deflections can be less than these limits due to

hinge moment restrictions which vary with flight time. The physical limits on the rocket



L

engine deflections were assumed to be = 30°. The maximum control deflections computed
by the TRIMS program for the lateral trim problem exceeded the limits when the solid
rocket motors are not gimballed. In numerous instances, a deflection angle exceeded
100 degrees. When the trim constraint of zero net side force is removed, the maximum

deflection angles decrease by an order of magnitude and are within the limits.

In addition to the trim problem, the capability of the control system to damp out

perfurbations about trim must be considered. This can be identified as the dynamic response

problem. In order to solve the dynamic response problem, it must be determined if the vehicle
has sufficient dynamic control authority after trim conditions have been achieved. An

approach to this problem based on the controllability Grammain used in defining the

controllability index mention previously is studied. The controllability Grammain is used
to compute the energy expended by each control in damping out errors from the trim
conditions. This approach is limited, however, since it does not directly examine the peak

deflection angles nor does it consider the realization of the feedback control sysfem.

it is advantageous to have a single method for solving both the trim problem and the
dynamic response problem. The method should minimize the total control deflection
required both to trim the vehicle and to damp out initial errors and random disturbances.
I the vehicle dynamics are linear, optimum control theory provides the desired method .
In Section3.4 the equations for the solution of the optimum control problem are derived
for the case of bias inputs (trim problem) and random inputs {dynamic response problem).
In Section 4.3, this theory is used to design an optimum feedback system for the lateral
control of the Space Shuttle, and the closed-loop performance is simulated for a step
change in side-slip angle. The computations for this example of the optimum control
approach were performed with the aid of the Linear Systems Design (LSD) program
developed at Singer-Kearfott under its Independent Research and Development program

concurrent with this investigation.

It is recommended that further investigation of the trim problem for the Space Shuttle
be performed with the aid of the TRIMS program for different combinations of controls (i.e.,
gimbal solid rocket motors), performance criterion, and trim constraints. In addition, a
more extensive design effort using the optimum control approach would merit further

consideration.



2. PROBLEM DESCRIPTION

The objective of this study is to determine how the control effectors for the Space
Shuttle can be op’rlmally used to achieve trim and dynamic control in the presence of wind
disturbances and bias torques due to misalignment of rocket engines. Launch vehicles have
in the past been primarily controlled by gimballing the rocket engines. Various Space
Shuttle configurations now under investigation indicate that engine gimballing will not
provide sufficient control to trim the vehicle for headwind and sidewind disturbances.
Consequently, it may be necessary to use aerodynamic surfaces in conjunction with engine
gimballing to achieve trim. " Because of the severe cross-coupling problems encountered in .-
the launch configurations, it appears that a large number of control effectors may be used. -
If the Humber of control effectors exceeds the number of quantities to be controlled, .'rhe"r)
the sef of deflection angles to achieve trim is not unique. Thus, the control engineer in
this case has a family (most likely an infinite set) of possible trim solutions to choose from .
However, different trim solutions will result in different levels of performance and dynamic
control. Consequeﬁtly, the objective of the control engineer is to select the trim solution
that provides the highest level of performance and dynamic control. To achieve this a per-
formah‘ce’-icriferion, which ranks the trim solutions according to level of performance and
dynamac conrrol, is defined. The probiem then becomes, "What is the umque trim solution’

whlch ophmazes ’rhe performcmce criterion ?"

The algebraic equations for computing the trim solution are derived from the differential
equations describing the motion of the vehicle by substituting the desired trim conditions. If
the number of control vuriableg exceeds the number of (independent) algebraic equations, ’rh'ein‘
the trim 50!u'ricln\is not unique. By addition of the performance criterion mentioned 'dbove, a |
meaningful optimization problem which can be solved for a unique trim solution, is obtained.
This secfion develops the general problem in Qreufer detail showing how the trim equations are
derlved from the equations of motion and the mathematical form of the performance criterion.

The genercl equations for studylng the dynamic response about trim are also derived.

2.1 Trim Problem

In general the motion of the vehicle is governed by a set of nonlinear, time-varying, .

differential equations of the form

% =albe, ) b6, x, 0 ek, z, 0 +v() ', e
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where x(t) = nx 1 vector defining state of the vehicle motion at time t

6(t)

z(t) = &.x | vector of bias disturbances

m x 1 vector of control deflections

v(t) = nx 1 vector of random disturbances
o{x,t) = nx 1 vector function of x and t
b( &,x,t) = nx 1 vector function of &,x, andt

e(x,z,t) = n x 1 vector disturbance function of x , z,and t.

The trim problem is to find the set of control deflections Gd that yield the desired steady
state trim conditions X4 in the presence of bias disturbances z, - The bias disturbances
model the effects of a steady wind and misalignment torques. The trim problem ignores the

random disturbances, i.e., v(t) = 0 is assumed. Therefore, the trim solution must satisfy

P =O=a(xd,)+b(6 P )+c(x z,t (2.2)

d d’"d” %

Let
0 = alx,,t) + B 84r%gr ) +"E’(xd, z,1) : (2.3

represent the subset of (2) required to calculate the trim deflections 6 where a, b

and c are nx1 vector functions with n<n . In orther words, in obtcfning the algebraic
equations in (2.2) from the differential equations in (2.1, it is possible that some of the
equations in (2.2) are satisfied by X independent of Gd . These equations, although
used in {2.1) for computing the dynamic response, are not used in computing ﬁd and may
be eliminated from (2.2). This elimination which results in (2.3) replacing (2.2) will be

illustrated by the lateral control of the Space Shuttle in Section 4,

If m <n then no set of control deflections 6 exists that satisfy (2.3. If m>hn
then a solution 04 exists but is not unique. If m=n, there exist a unique solution, but

b i i =
unless isa lmecr function of Gd {i.e., b( 6d, X g7 1) B(xd, t) 6

. it may be difficult

to find.

For the case of infinitely mony possible trim solutions (m>h), certain solutions are
preferable over others. An example of the latter is a solution in which each deflection angle
is smaller in magnitude than for another frim solution. Trim solutions in which any of the

deflection angles exceed the maximum allowable deflection should be excluded since such



solutions cannot be realized. Suppose additional constraints in the form of a performance
criterion are included in the problem formulation. The solution that satisfies the trim
conditions {2, 3) and minimizes the performance criterion is unique. For this approach the

~ trim design problem reduces to the appropriate selection of the performance criterion, .

The performance criterion denoted by r is a scalar function of the control
r=r(s,) - (2.4)

In the case m =n the trim problem is to find the set of control deflections.
.-6_d = [5] 62, e e ey Bm]

that satisfy (2.3) and minimize the performance criterion (2.4). In general, (2.3) and
{2.4) are nonlinear functions of 8, and the resulting optimization problem with equality
‘constraints can not be solved analytically. Numerical methods for solving the nonlinear
trim problem are developed in Section 3.1. o

If the trim equation (2.3) is a linear function of Gd

0 = alx 1) +B(x ;1) 8, +clx ,2,1) S (2.5)

where B isa n by m matrix and if the performance criterion is a quadratic form

(8 = 1/2(6,-6)'R(5,-6 ) I 2.6)

where r is a positive definite matrix and where 50 is the desired trim solution (in most

instances 60 =0) then the trim problem is said to be linear. The linear trim problem can be

solved analytically and the equaﬁoﬁs are derived in Section 3.2.

2.2 GENERAL CONTROL PROBLEM

The trim problem is only part of the vehicle control problem'. In.addition to bias —
disfurbuncés, the control sys;fem‘ must be able to damp out sudden de\}iufions. from trim
and to sustain proper vehicle motion in presence of fluctuating disturbances. An example
‘is a sudden change or rapid fluctuation in the side wind velocify or equiva!enflyrfhe sideslip
angle B . The capability of the control system to handle rapid fluctuations in 8 ,
example, is commonly determined by simulating the performance for a step change, |mpuls|ve
change, or random noise with a specified frequency spectrum. The control system must be

designed to maintain the control deflections within the physical limits and to return the vehicle

7



to trim within an acceptable setting time. This problem can be identified as the problem of
‘dynamic response about trim. The first step in studying the dynamic response of the vehicle
is to linearize the equations of mofion about trim. Let Ax , A8, Az denofedéviaﬁons of

the state, control deflections, and bias disturbances, respectively, from trim.

Bx =X =X

- d | — (2.7) .
A6=6-6d :
Az =z-z

Expanding in a Taylor series the nonlinear functions a, b, and c in (2.1) about trim

conditions results in the approximations

alx,t) = a(xd,t) + [ 3a/3x 1A x
b(x,f):b(xa,r)+[ab/ax]Ax+[ab/36]A6 (2.8)
clx,t) = c(xd,f) +[3c/3xJAx + [ x/ = ]Az

Substracting (2.2) and (2. 1) and substituting (2.7) and {2.8) yields the linearized equations

of motion
Ax = AAx +BAS+C Az +v

where |
A = da/3x + 3b/3x +.ac/ax o ' 2.9)
B = ab/ 26 | (2.9)
C =23/

Note that the partial derivatives are evaluated abaut the trim conditions and that for

particular values of Gd P Xy rZgot the matrices A, B, and € are constant.

If the totai motion (trim + dynamic response) is governed by linear differential

equations then (2.1) becomes

>‘<_= Ax +B§+Cz +v (2.10)

which has the same form as (2.9). The matrices A, B, C in (2.10) are in general a function

of time t . By considering only a number of fixed points along the trajectory the problem



reduces to a set of matrix equations of the form (2.10) with constant coefficients.

There are two general approaches for studying the general control problem including

trim and dynamic response.

Approach 1: First solve the trim problem for a sef of acceptable trim solutions
by varying the performance criterion (2.4). From this set select
the particular trim solution that leads to the best dynamic response.
Methods for determining the particular trim solution are developed
in Section 3. 3. '

Approach 2: Formulate a single performance criterion for the general control
problem and solve for the optimum combination of trim solution
plus dynamic response. This differs from the first approach in that
two performance criteria are used in the former—one for the trim
problem and one for the dynamic response problem.
Consider all possible combinations of forces and moments that can be generated by
the controls of the Space Shuttle. This set defines the control authority of the vehicle.
The restrictions on the control auvthority are of the form of bounds on the deflection

angle, i.e.,

6, . <6 <0 =1, ..., m ALY

imin imax

For most of the controls the maximum deflection and is the same in either direction .

oy 0= by L LR

The primary problem is to find a control solution that satisfies the restrictions (2.11). The
 restrictions (2,11) are in terms of the fofa!"defle.cﬁon angles resulting from both trim and |
dynamic response requirements. Hence, the second approach is preferable to the first
approach. However, the second approach in general presents more difficult computation
prbbiems. If the equations governing the total vehicle motion are nonlinear then it may be
- ne.cesscry to use the first approach; the second may lead to an intractable problem. If, on

- the other hand, the equations for the total motion are linear, as is the case of the space |

shuttle dynamics in Section 4, then a design method in the category of the second uﬁproach

| results from the application of optimum control theory. The use of optimum control theory
to solve the general control problem with both random and bias input disturbances is

devéloped in Section 3.4 and the application to the lateral control of the Space Shuttle

+



is described in Section 4,3,

Even when the control design is fo be performed using optimum control fheory, there
are advantages to first solving the trim problem. The trim solution is-much easier to compute,
and sufficient control authority must exist to handle at least the trim problem. Furthermore,
the solution to the trim problem can aid in the formulation of the optimum control problem.

The correlation between the trim solution and the optimum control solution is considered
in Section 3.4.1,

10



3. ANALYTICAL METHODS

3.1 ITERATIVE SOLUTION OF NONLINEAR TRIM PROBLEM

3.1.1 Lagrange Multipliers

From (2.3) and (2..4) in Section 2 it was shown that the computation of the control
deflections required to trim the vehicle for bias disturbances can be modeled as a problem

of the following form:

Find the vector § of dimension m which minimizes a scalar function of 6 -

min r{ §) (3.1)
6
* subject to-a set of n equality constraints
= a + b(8) o 3.2

For simplicity, the subscript "d" has been dropped from 8, and (2.3) has been rewritten
as (3.2) where ' ‘

a Ec-(xd,, f)+c(xd , 1
b EE(BF xdl i‘)
n=n

For a bdrficulor point in time t along the rraiecfory'and for a particular set of desired
trim conditions: X4 and bias disturbances z , the vector a in(3.2) isa constant and
the vector b ia a function of § only.
In order to achiéve o well-defined optimization problem the performance criterion
‘(&) is assumed to have the following properffes: assume that r is differentiable and
let & * be the value of & that minimizes r(8) . (Here the subscript d Ahu's been
_dropped from § ) since just the properties of rHe performance criterion r are of intevest

irrespective of the trim equation (3.2).)

{8) = H(6%) = 0 o (3.9)

1



Then in-some neighborhoods of §* , the performance citerion has the property that the
groddient satisfies '

. =0 for &5 = &* ' '
ar /26 . . } (3.4) .
‘ #0 for 6 # &* '

where ar/36= (o / 66] R 4 aam] . Furthermore the second partiat

derivative of the performance criterion or Hessian matrix satisfies $

>0 for 6= 5%

B2r/662 { ‘_ (3.5)

>0 for § # 6*

2
U=Br/66,baﬁ

where ( Bzr/ 652) 7

The basic approach faor solving the nonlinear trim problem given by (3.7} and (3.2 is to

apply the well-known method of Lagrange multipliers.
Define a new scalar function h  (the Hamiltonian) by
h(8, X) =r(8) + X (a+b(8)) | (3.6)

where X is a vector of n unknown parameters, commonly referred to as the "Lagrange
multipliers". The fundamental idea underlying the method of Lagrange multipliers is that
if 8%, A* is the solution that minimizes h then 6% is the solution that minimizes r

. und.saﬁsfies (3.2).

Assuming that the functions 1{8) and b(8) are differentiable, the equai;ions for
the minimal solution 6% , A* can be obtained by differentiating h and setting the

derivatives to zero. This gives

ar /36 +)'2b/ 236 =10 | B89

I
o

a +b(6) ' (3.8)

} The notation " > 0" means the matrix is positive definite and " 20" means the matrix is
positive semi-definite. For reference purposes see Appendix A for a discussion of

differentiation by a vector.

12



This is a system of m+n equations in m+n unknown 6 and X . Only in special cases
i

can (3.7} and (3.8) be solved explicitly. In general, numerical methods must be used to
solve (3.7) and (3.8). Ilterative numerical methods for determining the solution 6% ,
X* that minimizes h given by (3.6), start with an initial guess’ 6;) ‘ Xo and then

proceed to compute a sequence of solutions’

6],62,...,6k,.

A]'XZ""’AI("_‘"

which converge to the exact solution &* , 3 *.
- R%
| ﬁk 0
- 3k
Ak A |
Two such numerical methods are described in Sections 3.1.2 and 3.1.3.

3.1.2 Numerical Solution by Steepest Descent Method

One numerical method, in common use for many years, for finding the minimum of a
function is that of "steepest descent". The steepest descent method is a 1st order gradient
‘method and uses an iterative algorithm for improving the estimate of the solution so as to

. come closer to satisfying the zero slope conditions
3h/386 =0 and 3h/3x =0

The method computes 6k+T ’ Kk+'| from ak ; the value of >‘k is not use§ to continue

the iteration. The method partitions the vector 6 according to

n m-n
where the subvectors x and u are computed separately.

- Application of the steepest descent method gives the following steps for computing

X Uk-’l-l fromr X, 0 oY -

13



1) From x_,u Eompure the column vector b{#é) .
2) From X 0 Y compute the matrices @ / 3x , 3b/3du .

3) Compute the new estimate of subvector x accord_irig to

ax, = = (3b/3x)7 (@ +b(8))

Xt = X TAX

4) From X417 Y compute the row vectors, ar/ax , ar/ du.

5) Compute the vector of Lagrange multipliers according to

AL_H = = ( ar/3xX ab/ax)']

6) Compute the gradient of h with respect to v using

ah /3u = ar / du +k1'(+](ab/au)

7) Compute the new estimate of subvector v according to
TS -g(ah/3u)’
Uit T Y +A U

8) Repeat steps 1} through 8) wifh the updated solution X141 * Yk until

the total error is very small
2 2
) o, 12+ o, I <€
where the norms are given by
. )
| o 17 = & o,
I av ||2 = Ay Au
k k™ "k

A flow chart showing the basic steps required to implement the steepest descent
method for solving the trim control problem on the computer is given in Figure 3.1. A

graphical interpretation of first order gradient methods is given on p, 200f [ 2 7.

14



: Fill;sr order gradient methods usually show substantial improvements in the first few
iterations but have poor convergence choract\erisrics as the optimal solution is approached.
A second-order gmdtenf method, which uses the "curvature" as well as the ! 'slope” a.t.'rhe;
nominal pomi', is dlscussed in the next section. Second order gradient methods have |
excellent convergence characteristics as the optimal solution is approached but unless the
initial guess is in the region of convergence then the method may not converge or may

converge to the wrong solution.

3.1.3 Numerical Solution by Newton-Raphson Method-

Newton-Raphson method (or second-order gradient method) for locating the minimum
point of a function uses both the first and second derivative at the nominal point to extrap-
olate a new estimate of the solution. A detailed description of the Newton-Raphson

method is given in [ 1 7.

~ Using the Newton=Raphson method to find the minimtjm.solufion of h{ 6, X) given
by (3. 6) yields an iterative aigorlthm for computing the trim solution. To obtain the
equahons for computing 6k+'| ' )Lk i from ﬁk p ?\k , first expand h(6, ) ina Taylor
serles about 6|< ' )‘k '

’ 1
, h .
(6, %) = s ,Ak)+[ .hJ LLR 55'-9’*_ L
. |
| S, am BA| | byt hyy | [ 82
(3.9)
where
| AG=6-8 -
| | (3.10) -
BAr =

Dilffe:‘reni‘iaf'ing (3.6) gives the following set of equations for evaluating the derivatives
in (3.9) '

ho= dh/26 = 3r/36 +X(2b/26)

hy = 3h/a=a” +b'(8) - (3.11)

15



Figure 3.1 Flowchart of Steepest Descent Method for Solving the Trim Control Problem

INITIAL GUEfS ,xk ' Y
(m ‘ b(6) =
)
(2)
db/ax , 3b/du
¥
(3) Ax = - (3b/3x)" (a+b(8
x =x +Ax
)
-(4) ar/ox , ar/ v
¥
(5) A= -(ar/ax)(ab/ax)']
R |
(6)
th/3u = Br/au +A' (3b/ )
L
,(7) Au = -g{h/3u)
u =u-+Au
. (8)

TERMINATE

16



h s = 2h /362 = 2 /262 + n( 9% /560

h& = azh/aaaA =(3b/36)

hka=a2h/axaa=ab_/aa . o (3.12)

_ 2 2 _
hn—ah/a,\ =0

From (3.9) the equations for computing the new estimate of the solution. are:

Bst = O + 80, |
| (3.13)
Myl S A TBA

where the incremental corrections A By » BN are the solution of a system of linear

equations
- : .
hes : "o A% hél o
R EE I EECEI N CEE - (3.14)
Pt P BN Y -

Note that the derivatives are evaluated about the nominal point Gk r A c

To summarize, the steps in the Newton-Raphson method for computing 6k+l ,

. )'I-'('-;-T.: from ﬁk , ')Lk are as follows:

1} From 8, compute the column vector b( §) .
2) From 5k compute the matrix ab/36 .
3} From Gk compute the tensor azb/BGZ .
4) From 5. compute the row vector ar/26 .
5) From 6k. compute the symmetric matrix azr/aﬁz .
6) Compute the first-order gradient terms hG' h)\ according to (3.11).
. 7) Compur_e the second~order gradient terms hﬁﬁ , hX\ , hAG according to
‘ (3.12). (Note that h»t = 0.) ' .

8) Compute the incremental correction to the solution by solving (3. 14) which gives

i
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- - - - - “tnrs -11-1 f
RN S S TS P VR T MU ST

(3.15)
ax, = - [BR™B)TBR™T b+ BR TR ke ;
k 6 A
where the matrices R and B are defined by
R = h66
(3.16)
B=h6"Mex |

9) Update the solution according to (3.13).

10) Estimate the error in the solution by computing the norms
2 ‘
i a6, 1" = 85, Ab
I o 12 =ax ax
' k k =%k

11) Repeat steps 1) through 11} with the updated solution Ry )‘k+'| untit

the sum of the norms is very small as given by
2 2
hag, 1+ fan, | <

A flowchart showing the basic steps required to implement the Newton-Raphson

method on the computer is given in Figure 3.2.

18



Figure 3.2 Flow Chart of Newton-Raphson Method for Solving the Trim Control Problem
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3.2 SOLUTION OF LINEAR TRIM PROBLEM

3.2.1 Explicit Formulas

In the previous section the general nonlinear trim problem defined by {(3.1) and (3.2) -

was discussed. The case of a linear trim equation
a+B6=0 ' - _ (3.17)
and a quadratic performance criterion

f(6)= 1/2(8-6)"R(6-8) L @ae

is referred to as the linear trim problem and can be solved explicitly. The scalar Hamiltonian

function corresponding to (3.17) and (3.18) is

h(6,)) = 1/2(6-60)’12(6 -60) + A\ {a+B8&) : - (3.19)

The vectors and matrices in the right-hand side of (3.19) ore defined below

§ = m - vector of control deflections.
50 = m - vector of desired control deflections.

X = vector of Lagrange multipliers of dimension (m-n).

@ = constant vector of dimension n .

B = constant matrix of dimension nxm .

R = constant positive definite matrix of dimension mxm .

The trim solution is computed by determining the values of & and ) that minimize

the scalar function h . Differentiating (3.19) and setting the derivatives to zero gives _

(3h/28)" = R(6-5 ) +B'A=0
(3.20)
(3h/3)) =a +Bd
The vector-matrix form of (3.20) is
R B 6 6 | _
= o : (3.217)
B 0O by -G )

Premultiplying both sides of (3.21) by the inverse of the square matrix on the right hand side

20



“of (3.21) gives that the optimum trim solution is

§={7-8%815_-Bla . | (3.22)

where

B#=R'1B.'(BR"B')"' . , (323)

Note that B# isa 'righi" inverse of B (i.e., BBY = 1) . Substituting (3.22) and (3.23) intor

(3.18) and (3.19) gives that the minimum values of performance criterion and Hamiltonian

function are
h=r=1/2(c486) (B8 B) (a+B5)

Consider the example of triming sidewind induced roll and yaw momen ts using aileron, -
rudder, and the yaw deflection of a single rocket engine. Setting the rolling and yawing

moment coefficients fo zero (CL = Cn = 0) gives in vector form

LY 4R o ' 1 w8l -
| ~nY nR nA nB
or in slightly different form
po 6 -y
. EY
A S Ci8
8e = B (3.25)
Sy S Gaa Cag
6
L. A -

The trim equations gwen by (3.24) or (3. 25) are o set of 2 linear equations in three
h‘unknowns aEY , GR ; 6A . Smce there is one more unknown than equations, (3. 24) has

an infinite family of possible trim solutions.

A graphical representation of the péssible_ trim solutions can be seen by depicting
(3.24) in the yow-rol! moment coefficient plane as shown in Figure 3.3. The four vectors
formed by the stability derivatives are represented by solid arrows where the fotlowing

numerical valves were chosen for the example
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The dotted curve in Figure 3.3 represents one of the trim solutions for the case, B=1° ,
and is the vector diagram corresponding to the left hand side of (3.24). The valves of the

defiection angles are

5

EY

= -0.5 by =2.807 8, = 4.133

and are equal fo the lengths of the dotted arrows divided by the lengths of the corr;e.spo'hding
{parallel) solid arrows. The sign of the deflection angle is positive if the dotted arrow and
the corresponding solid arrow point in the same direction, and the sign is negative if the

directions are opposite.

The addition of a performance criterion to be minimized will yield a .unique solution

for (3.24), For illustration, one possible choice might be
H8) = (6o /15°) +(6 /20°)2A+(6 /10°)2 (3.26)
EY R A S

where 15° , 20° , and 10° are the corresponding maximum deflections. From {3.25) it

follows that for B = 1°

B = -0.20 0.10 0.07 _ g = - 0.67 (3.27)
0.80 -0.10 0.08 0.35 '

and from (3.26)

1/225 0 0 | ‘
R=| 0 /400 0 5, =0 . (3.28)
0 0o 1/100 ' |

=

Substituting (3.27) and (3.28) into (3.22) and (3.23) gives the solution

Sy 0.10°

6= | & |= |57 ' (3.29)
5 1.72°
A1 L
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Figure 3.3 Yaw/Roll Coupling Characteristics
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As an example of how changes in the performance criterion effect the minimal solution

suppose in place of (3.26)

(8) = (g /2077 + (8/20°) + (8, /20°)°

then
_ .‘ _ G.
5EY 0.10
6 = GR = 5.70° (3.30)
I 6A | i l.72°-
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3.2.2 Performance Criterion Selection

When infinitely many trim solutions are possible, certain solutions definitely require
* more- control authority than other solutions and should not be used. In particular, given : .
a trim solution & , if it is possible to find another trim solution &* such that for each

control
|6’£|s\6t| 'L='|,'2,....,m_ (3.30)

‘where the strict inequality holds for some controls then § should not be used. Property
(3.31) partitions the possible trim solutions into. two disjoint sets. [f § satisfies (3.31) it

will be referred to as an unfavorable trim solution and if & does not satisfy (3.31) it will

be referred to as a favorable trim solution. The problem of selecting @ form of the performance

criterion that guarantees a favorable trim solution has been solved.

At this point a simple ekample is helpful in studying the properties of the trim -

problem. Suppose there is a single trim equation
0=65-26.|+52 ' : C (3.32) .

with two controls 8, and &, . The general form of the performance criterion for the case

of two controls is

Ry 2 2
r = 1/2r]5] +1/2 r25.2 +r3 61 52 (3.33)
where
"3
R=1[
'3 T2
and

>0., r2>0 . .r3<r1r2

1
One approach for graphically representing the trim problem is to consider § = [ by v R T
: m
as defining the coordinates of a point in an m~dimensional space which shall be referred to

as the solution space. This approach is different from the graphical representotion in

Figure 3.3 where each coordinate corresponds to one of the scalar trim equations and hence

25



might be referred to as the equationspace representation. For this example the loci of

possible trim solutions in the solution space is the straight line defined by (3.32) and shown
in Figure 3.4. The segment of the straight line between points P and Q defines the set.
of favorable trim solutions and the remaining two segments on either side of P and Q

define the set of unfaverable trim solutions.

For each fixed value of the performance criterion, there corresponds ¢ closed contour
curve in the solution space. For (3.33), r = constani defines an ellipse centered at the
origin of the solution space. By parametrically increasing the value of r o family of
concentric ellipses of increasing size is generated. One of these ellipses will be tangent
to the straight line passing through P and Q . The point of tangency is the opfimum
solution. For example suppose e, T 1 and ry = 0 then the loci of constant performance
are circles as illustrated in Figure 3.4(a) for r = 0.5 and r = 3.6 . The circle with
r = 3.6 intersects the straight line at the single point B = 2.4 ond 52 = -1.2
This is also the optimum solution obtained using the formulas (3.22) and (3.23). For the
=4, r = 0 the optimum ellipse is

case 1, and r

1 2 - 3

18 = 45"1’ +5§_

and is tangent to the straight line PQ at 5.{ = 1.5 and 62 = =3.0

The above example illustrates how varying the weighting matrix R in the performance
criterion leads to different trim solutions. However, there are more ways of varying R
(degrees of freedom) than necessary. This means different choices of the R matrix can

lead to the same optimum trim solution.

The redundancy in the selection of R suggests that R can be restricted to a diagonal
matrix without disregarding a favorable trim solution. This assumption simplifies the selection
of R . For the example illustrated in Figure 3.4, the principle axes of the ellipse will
coincide with the coordinate axes in the solution space when and only when R -is diagonal
(i.e., ry = 0) . Asa consequence, the optimum frim solution for a diagonal R matrix will
always lie on the line segment PQ (region of favorable trim solutions). The optimum solution

point in Figure 3.4 will move from point P to point Q as the ratio of the diagonal elements

2 /r2 increases from 0 to = . Thus increasing the weighting on 61 relative to the
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weighting on &, causes | 8 | to decrease and | & | to increase.

This example illustrates the following general properties of the weighting matrix
in the performance criterion:

Property 1: The optimum trim solution for a diagonal R matrix is always
a favorable trim solution.

Property 2: Any favorable trim solution is the optimum solution for some diagonal
R matrix.

The general proof of the first property is not difficult. Let & be the optirﬁpm

trim solution for

R = Dlag[r,...,r]

m

then the minimum value of the performance criterion is

. 2 2 o S |
e =120y 65 4. . by 52) (3.34)

Suppose & is an unfavorable trim solution, then there exists another trim solution &

satisfying (3.31) for which the value of the performance criterion is

o, ) S
® w* * .
r* = V?(rlﬁl_ ook b ) | (3.35)

Compari'ng' (3.34) to (3.35) term by term, it follows from (3. 31) and r, > 0 that

Vo<

But r is the minimum value and hence a contradiction! Therefore, & cannot be an

vnfavorable trim solution,

Given a favorable trim solution & it should be possible to find a diagonal R matrix
in the performance criterion for which the optimum solution is & . A general method for
- constructing such an R matrix or equivalently, o general proof of the second property has

not yet been found.

The formulation of trim control problem given by(B. 17) and (3.18) is an optimization
problem with equality constraints. However, as pointed out in Section 2, inequality constraints
also exist due to the physical limitation on the control deflections. For a symmetric control,

these will have the form
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Figure 3.4 Example of Trim Problem and Solution Space Representation
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£§ it=1 ...,m. ' o (3.36)

lﬁt‘ T Timax

= maximum allowable deflection of the tth control
1 max
The inequality constraints are not included explicitly in the prob-{em formulation since an
optimization problem with both equality and inequality constraints is difficult to solve.

Instead, the inequality constraints are hundled by the penalty function me_fh‘gd-.‘ 7

The basic idea of the penalty function method is to repeat the computation of the ..
optimum trim folution for different R matrices in the performance criterion:until each ratio -

14 .
provide the additional control required to solve the dynamic response problem. The

‘ Gt \/5_L max less than one and the difference § max | 6'L | I; sufficiently large fo
procedure for varying. the elements of R is simplified if R is resiricted to be a diagonal. .-
matrix. From the properties of a diagonal R matrix discussed previously, this restriction
does not-exclude any favorable trim solutions but does exclude all unfavorable trim solutions.
As an illustration of how to vary the diagonal elements of R , suppose the optimum .

solution for : . . o

R = Dlag[r.l, e ey rm]

results in one of the deflections 5'& exceeding its limits. The next step is to increase the *

corresponding weighting factor r,  and solve the problem again. Repeat this procedure

12

until &, is smaller than the maximum deflection. An increase in the weighting factor r

i
will cause the magnitude of §

(4
to decreose at the expense of increasing the magnitude

i
of other deflection angles. If no adjustment of the weighting factors results in all the control
" deflections being within their corresponding limits then the launch configuration does not
possess sufficient controf auvthority. If the limits are exceeded for every control then from

Properties 1 and 2, mentioned earlier, no acceptable trim solution exists.

The modification of the performance criterion to produce a more desirable frim solution
can be facilitated by realizing that for small perturbations the change in the optimum trim
solution is proportional to the change in the weighting factors of the performance criterion.

‘Computing the differentials of (3.22) and (3.23) for the case 5, = 0 gives
d6=-dB* . a | (3.37)

_dB¥ = (7-BIBR™'. R - BF | (3.38)

29



The derivation of {3.38) makés use of the identity -
d®R7 = -R7 R R
From (3.23) and (3.38) it can be shown that
B d6 =0

~ which also follows from computing the differential of (3.17). Equations (3.37) and (3.38)
showthat for small perturbations dé varies linearly with 6R . Let ds, denote the change

in the trim solution due to th Y-

dR‘L-.db'L

Substituting
dR = Ewtc:th

into (a24) where w, "is an arbitrary scalar results in

1
dé = Zwtdﬁt

Thus, replacing R by R +dR causes the optimum trim solution to become &+ db .
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3.3 CONTROLLABILITY AND DYNAMIC RESPOINSE

3.3.1 Controtlability Grammian

The use of the controllability Grammian for studying dynamic r‘es‘pons.e about frim
is developed below. The trim solution uses part of the control authority. If the vehicle
deviates from trim due to random disturbance or a sudden wind gust thén it must be
determined if the control effectors have sufficient authority in reserve to return the vehicie .
to trim. By using a different trim solution, better dynamic response performance could
possibly be achieved with respect to the control limits. The problem of de'rermmmg whlch
controls are most effective in zeroing out deviations is also of m'rerest. If there are more
‘confrol effectors available than requured it may be possible to dlsregard those con'rrols o

* whose effectiveness is small,
Basic Theory

In vector-motrix notation the linearized equations-of motion about trim rhuve the general

form
x = Ax + Bu : : ' o (8.39)
where
i
x = state vector of dimension n
u = control vector of dimension m

 The :'eqhdfion for the solution is
t ‘ : ) .

x() = @) x(©) + [ @(t-7)Bu(r)dr o ' {3.40)
0 _

where the transition matrix is

o) =M | 3.4
The control -sig.nui .fhc:t will dri\}é the error to zer.o uf tilme T. is a N
o) = - B (-HW 'x(0) e
where | | | }
W =W(T) = [ &(-1)BB @’ (-t | (3.43) -
o .-
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- The matrix function W(t) is referred to as the “controllability Grammian" [ 17 -

Substituting (3.42) into (3.40) and using (3.43), it can be shown that x(T) = 0 .

A useful criterion for indicating the amount of control effort is given by the integral -

T
E = J{‘) v'udf - _ (3.44)

| Yenergy" expended by the control effecfors

which may be viewed as proportional to the tota

in returning the vehicle to trim, Subshfuhng (3 42) into (3.44) and using (3.43) yields the resulf

E= X 0)W 'x(0) |  (3.49)

Thus the controllability Grammian W(t} provides a means for computing E

Let E, denote the "energy” expended by the Lth control effector, then

T
e, = [ ddt t=T...m @)
0 .
where
0, () = B& (- W 'x(0) (3.47)

and B, “is the tth column of the B matrix, subs}ifufing (3.47) into (3.46) results in

E, = x’(O)W-]W{’W"x(O) - : (3.48)
with | |
W, = g ®(-1)B, B, &' (-t) ot | (3.49)

The ratio E?L/E is o .convenient measure for determining the relotive effectiveness of the

tth control effector, Upon substituting
= B B A ’ 3.50
| BE' = BB + 3252 . +B B | o 3.50)
into (3.43), it follows from (3.45), (3.48), and (3.49) that

W=W, +W, +,..+W ' (3.51)
T2 m
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and

E=E, +E

]

' | - (3.52
gtee o tE | | | ( )

Another approach for computing E and E, is obtained by 'f"ewr'if_i“'g'(3-'44)"“3"‘"“" '

0

; .
E = trace {‘J‘ uu’dt} : . v (3..53)

Substituting (3.42) into (3.53) gives

= trace { BFMB} - : - (5.54)
‘v)here
T -1 | -1 R -
M= [ &EDW x(0)x ()W &(-t)dt - (355)

, Repeati'ng this approach for (3.46) and (3.47) ieads to

Ei« - B%-*MB?'/ ¢ = 1: 2! AL - ! | ) 7- (3‘56)

The advantage of using (3.56) in pla‘ce of (3.49) is that instead of computing W] , W2' coe Wm '
only have to compufe M . The disadvantage is that if the initial state vector x(0) changes |
then M must be recomputed where as the matrices ‘WL are not a function of x(0) and hence

do not change.

Computation of Controllabiiity Grammian

Several methods for computing the matrix W = W(T) defined by (3.43) are discussed below ._

- Eigenvector Transformation

Suppose a new set of state variables g(t) are introduced that are reloted to x(t) by

q = Qx , _ ‘7 ' (3.57)

where by assumption Q is a nonsingular matrix,

 Substituting (19) into (1) gives

g = Aq +Bu \ - (3.58)
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where

X - QAQ”

B= QB
" Let W(t) denote the controllability Grammian computed from (3.58) then deflnlng
W =W(T) ond applying the definition (3.43) to (3.58) results in

W=QWQ o W= Q'.‘WQ"' ' (3.59)

If
A = Diag [A.],)\?_, ...,)Ln]

whelre J\,L are the eigenvalues of A then the columns of C.‘z-I form the gorresponding set
of eigenvectors. In this development it is assumed that the eigenvalues are real and distinct,
The method can still be applied to the complex and the multiple eigenvalue case but the
computations are more complicated, This method will not be generalized because it is
intended only for illustration purposes ond as & means fo‘r checkfng the other methods, If
A isa diagonal'mufrix then the transition matrix is ¢ diagonal matrix with diagonal |
elements, |

At .

‘;'Du(t) = e

= 1,0..,n

which upon substitution into the definition of the controllability Grammian (3.43) gives i‘hat

the element of matrix W in row % ‘and column J s

W.'!»J= ijjt;e S AT | B S (3.60)

where tﬂ is the vééfor of dimension m formed by the tth row of B, i.e.,

r = T g
bﬂ C bfrl' e biam]



Integrating (3.60) gives

et Pt

(3.61)

Wiy ™ Pibs [e- B AT ]]‘/'_(ALJ”‘J) t,J =1 n

1y = "oy
Combining (3.59) and (3.61) defines the eigenvector transformation method fof ﬁbmpuﬁng W

To illusfrate_; consider the example

Il
P‘
(3]

2 0 s -1 T

Numerical Integration

Let ‘F(f) represent the infegrand of (3.43), i.e.,

'35

. A=lo -3 0o | 8= -4 2 - m = (3.62)
1 2.0 -10.5 - -25 n= )
If th_e transformation matrix and its inverse are
-2 -2 0 -0.5 -1
‘@= | 025 0o =-025 | Q= | 0 1
0 | 0 | -05 -4 - |
then |
AT IR A 0 5 -2
A= | 0o -2 B = 3 6
0 o -3 -4 2
: ‘ L L
Substituting into (3.61)
‘ 24,92 3,48 . -38.33
W= 3.48 71.88 0,0
L-ss.sa 0.0 63.62
and next substituting W into (359)
31,51  -44.45 38.48
W= | -44.45 63.62 - 44,45 - {3.63)
‘ | 38,48 -44.45 1195.47



T |
W = g F dt T (3.64)

Differentiating F results in the matrix differential equation

~F = AF +FA'

Integrating both sides of the above equation from 0 to t gives the following linear

matrix differential equation for computing the controllability Grammian W(t)

-W = AW + WA’ - BE' , W(0) = 0 7 (3.65)

The solution to (3.65) at t+ = T is the velue of the integral (3.43}. Similarly, the lingdr

matrix differential equation for computing Wt(f) is

= AW, + W A" - B, B, , W, @=0 (3.66)

-w (AL

{

Lz],-oqm‘

A computer program for calculating the controllability Grammian by numeric_aﬂ.y
integrating (3.65) was developed. The output form the program for the example (3.62) is
shown below and required 0.43 seconds of cpu on the IBM 370.

MATHT Y &
UOU "”oJUOOUUL‘ Ol 0.0
HelNDODOUE 01 C.200000F Ul -0,200000 01
MATRTX R
G.1500006 U1 =0.100000k U}
=N.400000€ 01 U,200000E Ul
-0.1030005 Oz fO.?SUOUUE 0z
O MATHIX w
D.31R1PEE U2 =N.444507E 02 0.384759¢E 02

~-l.444507E U2 0.63617T7TF U2 ~N.444507e 02
Ue3k4759 (2 =0.46a507E 02 O.IIQS4§t Oa

The computer solution of W agrees with the solution (3.63) calculated by hend.
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From (3.69) it can be shown by répeated substitution that

Recursive Algorithm

Suppose the objective is o compute the controllability Grammian for t =T,2T,

3T,..., NT . Let W(n} denote solution of ‘(3.65). for t + nT and definé
Q=&(-T)

A recursive algorithm for computing W(n), n=2, 3, ..., N from W(I) and 0 is
-'developed below, From (3,64) '
aT+T T4 nT | -
W) = [ Fdt= [ Fdt+[ Fdt : (3.67)
0 nl 0 ) ‘

Let £=t - nT and from

@(-t) = B(-£-nT) = Q'B(-£)

" it can be shown that

o T I D
-nIT F(*)fit=\‘£F.(£+nr)d§=-n {)F(g)deg e

Substituting (3.68) into (3.67) and using the definition (3.43) results in

W) = Q"W d +we) o (.69

Wh+l) = Q'wma” +. ..+ awe +wQay S (3.70-)
-F‘rom” (370) it can be. readily proven that |
WintH) = QW) S + W() | B

Formula (3.71) can be used t6 reduce the amount of numerical integraridn. To compute W(t) at

t + NT instead of numerically integrating (3.65) from 0 to NT, only integrate (3.65) and
~o=A0 , ®0) =1

from 0 to T and then use (3.71)
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3.3.2 Index of Controllability

When the general vehicle dynamics are nonlinear, then.the linear equations (2.9)

for the dynamic response about the trim solution &  are @ function of §, . Hence, the .

confrolluBilify of the linear system (2.9) varies wi:}: the choice of the fri:i solution.
Quontification of controllability provides a measure for determining the trim solution that
results in the most controllabie linear system. In the previous section, the controllability
Grammain W(P at t=T is used evaluate the integral (3.44) for the scalar E which may
be viewed as the energy expended by the control éffecfors in refurning the vehicle to trim
during a time span of T seconds. One possible means of quanfifica'rion is the use of E

to indicate the degree of controllability. In this section another means of quantification

is developed. An index of controllability is defined as the ratio of moximum to minimum

eigenvalues of W(T) or some other controllability mairix.

The time-invariant linear s);stem (3.39) is said to be controllable, if it is possible to
find an input v which reduces an arbitrary initial state to zero in finite time T . A
necessary and sufficient condition for the system to be controllable is that the controllability
Grammain W(t) . defined by (3.43) be nonsingular for some finite + . If W = W{T)- is
nonsingular, then (3.42) defines one of the many possible inputs u that satisfy the definition

of controllability. Another matrix often used to study controllability is

. |
P0)==J &( 7)BB’ &( T)dt _ (3.72)

where &(t) is the transition matrix (3.41). VThe matrix P(i) is related to W(t) by

P(t) = &(HW(t) & (1) | o (3.73).

and 'ﬁun be identified as the covariance matrix of the state x(t) when uft) is white noise
having a spectral density of unity. It follows from (3.73) that the system is controllable
if and only if P(t) is_nonsingulcf for some finite t . If the system (3.39) is stoble, then
the integral for P(t} existsas t = « and the asymptotic value
P = lim P() | - (3.74)

b=

is the solution to the algebraic equation



AP +PA’ +BB’ =0 : |  (3.75)
It is well known that P(t) or W(t} is nonsingular if and only if the matrix
—(B,AB, ..., A8 (3.76)

has rank k = order of the system. The rank of K is equal to the rank of kxk symmetric

matrix ,
Q = KK = BB +ABB'A” +. . . + A Tppr(an)<! (3.77)

which is more convenient than K for testing controllability.

Indices of Controllability

" The necessary and sufficient conditions for controllability of a time=invariant system is
that a certain matrix be nonsingular. _Pogsible choices of the test matrix that are symmetric,
positive-semidefinite include W(t) , P, and Q . This control Iabilif); is a property that a
given system theoretically either possesses or does not possess. In practical applicaﬁons,
however , there may be instances in which a system may be nearly uncontrol loble in fhe sense
that certain initial states may be much harder to reduce to zero than others Evndence of such
situations is thur the matrices tested for controtlability are nearly smgulor, i.e., poorly-
conditioned. It is thus appropriate to use conditioning of « relevqnt matrix as an index of

controllability. A useful measure [4, 5] of the conditioning of a matrix F is

K(F) = || F Il 1 FT - @7

where || F || denotes the norm of the matrix F defined by

LEI = s ll Al

Axli=1

“where || x || is a suitable vector norm, When the Euclidian norm, i.e.

| x || = V>

is used, then, for a symmetric matrix F,



k(F)=| A /A (3.79)

min l

wh and . are the eigenval f Jest i : H
ere kmux n Amln e 2ig ves of largest and smallest mggnlfude, respectively,

Clearly k{(F) > 1 and reaches the lower limit only when | X g | = |x , 1.e.
3 x -

minl
when all eigenvalues are equal in magnitude. The condition k{F) = 1 also holds for other

norms, as shown in [57,

R

The quantification of controllability (and/or oBservgbilify) was considered earlier
by several investigators. Kalman, Ho and Narendra [ 5] considered using the trace or
the determinant of the inverse of the controllability matrix as indices of controllability,

and Johnson [7] considered the determinant as an index of controllability in greater detail.

The shortcoming of the earlier indices of control lability is that they depend on
the scale of the variables used in the problem. For example, mullfiplying earch control
varioble by a constant say c , is equivqlénr to multiplying the B motrix by the same
constant and hence the contfdlldbilify matrix’ Q as defined by (3.77) or P os defined
by (3.74) is multiplied by c2 . Hence the trace of P-_.| or Q-I is multiplied by ,c-2k .

On the other hand the conditioning number is cbviously independent of a scale change,
either of the control variables or of the state variables. The conditioning number, how -

ever, does depend on the choice of state variables, as the following examples indicate.

Example - Consider the system having the transfer function

_ YY) __ sta
HE) = Us) ™ (s + 1)(s +2)

It is clearthat if c=1 or 2 the system is either not observable or not controliable or
both, The objective of this example is to show the behavior of the controllability .

indexas a = 1 or 2 .

In order to examine the controllability and observability of the system it is
necessary to define a suitable set of state variables. In this example the state variables
are defined as those of two canonical forms. The Jordan normal form and the companion

form. .



Jordan Form - The Jordan form can be obtained by expanding H{s) in rporﬁal fractions:

_a-1 _a-2
HE) = s+'| s ¥ 2

Two block diagram representations of H(s) are given in Figure 3.3. For Figure 3.5(a),

the state and output equations are

%= x o | a9 I_.l‘
| A= 1o -2 .B=l1}

-Zx +tuv
2 2

.
Ll

~
I

@Nx - @2)x C = [a-1, ~-2)7

For Figure 3.5(b} the state and output equations are

% = -x +(a-1)u [-1 o] {a-l | l
1 1 A = B = .
, Lo -2 ~(a=2)

X = <2x - (@-2)u
2

Yy = %X +x C
l 2 . .
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It is thus séen that the A matrix of bofh‘representdtions are identical and also

A= A" . Moreover, B’ of Figure 3 .5(a) equals C of Figure 3.5(b) and C’ of

. Figure 3.5(a) equals B of Figure 3.5(b). Hence it follows that observcb:hty of Figure 3. 5(0)
corresponds to controllability of Figure 3. 5(b), and vice-versa. Accordlngly, examining
the controllability of Figure 3.5(b) is equlvoleni' to examining the observablhfy of

Figure 3.5(a).

The controllability matrix K of the systém of Figure 3.5(_5) is

a-1 —(u—])
@2 26e-2)

4]



Hence

2(a-1¥ -3(a=1)(a=2)
Q= KK'={ 30-)@-2)  5(-2Y
The characteristic equation of Q s

A -2(rA)+ A} =0

where trA = 2(&:1-])2 + 5(::|-2)2
|A|= (@-1(@-2)

There is a characteristic root at 3= 0, for a=1 or a=2, and these are the
values of @ for which the system is not controllable, as expected. The condition

number of Q , as defined above, is

(@) = wQ+V(rQP-4| Q|
Q- V(rQP -4 Q|

A curve showing the behavior of k(Q) vs the parameter a is shown in Figure (3.6), It is
observed that k(Q) tends to infinity as a -1 oras a - 2. It is interesting to note,
howeve.r, that k(Q) reaches (local) minima of 37.9 at a = 1.6] and a= 3.72. This would
suggest that if a were adjustable, the controllability {or observability) can be optimized,

in the sense of minimizing k(Q) by using a=1.61 or a=3.72.

Instead of k(Q) we can determine k(P) after solving for P by use of (3.77)
The solution of the latter is’

(a-1)2 (a-1 2)
T _f(a-) .)
: _ (@-1){a-2) (0-2)?

3 x
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(a) - (b)

FIGURE 3.5:  joRpDAN CANONICAL FORMS OF
TRANSFER FUN CTION IN EXAMPLE

(a) - (b)

FIGURE 3.8: COMPANION FORM OF TRANSFER FUNCTIONS



ep o @=1F | (a-2Y
thence trP % + 7

|P| = -7'.2 (@=1)}(a-2Y

The resulting curve for 'k(P) is also shown in Fig. 3.6. It is observed that k(P) attains
minima of about 34.0 at a . -1.5 and a 1.4,

It is noted that the minimum value of the conditioning number is almost equal for
P and Q and one minimum occurs (as expected) between a=1 and a=2, The
locations of the other minima are quite differerit, but the general shapes of the curves are

remarkably similar.

It is of interest to examine the effect of adding another independent input on the
controllability of the system, Suppose, for example, another input say v, was added to

the first state, resulting in the gquof'ioris

)E" -xy + (G-I)_U] + Uy

=2x9 = (@~2) uy

X2
The corresponding B matrix is now

a-1 ]

~{a=2) 0

_ The controllability matrix is now

a-1 -1 | "l'(CI-]) -_1

-(a-?) -0 - 2(a-2) 0

and
2(a-1Y2+2 -3(u-j)(a'—2)

-3{a-1)(a-2) 5(a-2)2



likewise

{@-12+1 -(o-l)(u-2)

. S et
_ (o-=1){a-2) (@-2)
L =

P and Q@ are now singular for only one value of a , namely a=2; obviously

%y is not controllable for a =2,

The curves of I<(P) and k{(Q) are shown m Fig. 3.7. It is noted that the addmon N
of input us has the effect of reducing the condlhonlng number for all values of a- , as

would be expected.

'Compamon Form Two alternate companion forms that realize the transfer function H(s)

are shown in Flg. 3.8 (@) and (b). The corresponding matrices are as Follows

Figure 3.8(0) 0 I 1]
A= | = c= [ 4
2 -3 a-3 | |
Figure 3.8(b) 0 ! 0] o
A= . B = ‘ C= [a T]
R I 1] |

Smce the C matrix of Flg 3.8(a) is mdependenf of o it is natural to examine the: behuwor

of ’rh|s realization for controllability. Likewise, it is natural to examine the realization of

Fig.3.8 (b) for observa_blllfy.

_ For the system of Fig. 3.8 (a) it is found that -

K‘= ’ ] ’ a "3
' a-3 -3a+7
| o [a2-6a+10 ~3a2+170 -2
hence Q= KK = 7 -
v [—302+170—24 1002 - 48a 58



and hence tr Q = 11a?~540+68

|Q| = (a=17(a-2)

Solution of (3.75) for P gives

a?+2 _1
12 2
P=1  of-6a+1]
7 -
with tr P =%-(c12-4c|+8)

|P| = o5 la=1F @2

Curves showing k{P) and k(Q) as functions of a are given in Figure 3.9,

noted that olfhough local minima occur for both  k(P) und k (Q) for 1 ca0¢2 , the minima

attained exceed 1000 and hence would indicate that operation with @ in this interval i is

undesirable. A very sharp local minimum in k(Q) of about 1.4 occurs at « ~2.7 , and

would indicate tha'r operation at this value of a is, ina sense, op’rimum, k(P) on the

other hand does not have any other minimum, but tends fo unity as a =+, This corresponds

to the case in which the "feedforward" gain (to x; ) is neg||g|ble in comparison to the

direct gain (a-=3).
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3.4 OPTIMUM CONTROL APPROACH

3.4.1 Optimum Control Computation

If the general control problem described in Section 2.1 can be formulated as an optimum
stochastic control problem for a linear process with & quadratic pérformance criterion than «
linear feedback system can be designed to solve both the trim problem and the dynamic response
problem. The theory to compute such a feedback system is developed in this section and will |

be applied in Section 4.3 to the lateral control of the Space Shuttle.

The linear stochastic optimum control proBlem with bias inputs ‘is defined by the follawing

equations in vector=-mairix notation

Process Dynamics:

x = Ax+Bu+Cz +v ~ z = constant _ - (3.80)
E{vl =0 : E{w'l =V
Observation Equation:
y = Hx +w S
(3.81)
E{w}l =0 Efww'} = W
Performance Criterion:
Jo) = Ef [(x'Qx +o2u’Ru)ds | y(n for 7 <t} (3.82)
t ) .

“ g = scalar parameter

where -
x = state vector
u = control vector
y = output vector
-z = bias vector
" v = input noise vector to process dynamics
W = sensor noise vector

Equation (3.80) is identical to (2. 10) except the vector of deflection angles is denoted by u

instead of § . The stochastic optimum control solution is denoted by u in order to distinguish
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it from the control solution & obtained by solving the trim problem. This distinction is
helpful in the next section when the correlation between u and 6 is developed. In the
usual problem formulation, the scalar parameter ¢ is not présen'r in {3.82) since it can be
incorporated in the R matrix. In this case, .however, the scalar parameter o i;s;useful

" in deriving the correlation between u and & .

If the "bias term" Cz was not presenf, then the optimum control problem defined by
(3.80) - (3.82) would be in the standard form. By defining z as :pdri‘ of the state vector,
{3.80) - (3.82) may be rewritten in the standard form. The resulting ougmented dynamics are

x=Ax +Bu+v ' (3.83)
¥ =ﬁ;+w : . (3-84)
J=E j(;'5;+ 0-2 v’ Ru)ds Iy(‘r) for T < 1} (3.85)
h .
where
s Ac|  |s Q 0
X = K= B = 6:
| z 0 E 0 0 -0
el v o] - - .
v = V = . H = [H- 0]
fl. Lo 3 3 |

The solution to the optimum control problem defined by {3.83) - (3.85) is given by the

equations

Deterministic Quadratic Optimum Control:

off) = - Fx(H - ' (3.86)
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where F = (1/02)R-1§’M ' . (3.87)

MA +ATM - (I/OZ)MFR"B'M +Q@=0 A . (3.88)
Kalman Filter: . |

X = Ax +Bu + K(y-Hx) : | (3.89)
where _ ‘

K = PRPW™) . ~ (3.90)

0=AP+PA" - PH'W TP +V - (3.971)

The feedback control system defined by (3.86) - (3.91) is divided into two pclrfs in i-ondem.
First, a Kalman filter computes the optimum estimate of the augmented stote x from the
sensor measurements y . Next, feedback gains multiply the estimated state x to yield the
control signal. In the event that the augmented state vector- X can be measured perfectly,
i.e.,

X

Y

&

(3.88) where x = x .

then, the Kalman filter is not reqwred In this case the conirol system is defined by (3.86) -

Partitioning the augmented state vector into: x and z simplifies the equations (3.86) -

-(3.91) for the control design. The deterministic quadratic optimum control is considered first.

By partitioning the matrix M according to

" - M? M2
:M2 .Ms‘ :

the optimum control solytion (3.86) can be rewritten as

) = v ) +u_ () a9
‘where

o (1) = - 1/a? R_IB’M]x(t)' = - F %01)

X

0 = - 1/02R“B'M22 = - F (1
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The symmetric matrix M] is the positive definite solution of ‘
M, A AM, - I/UZM]BR"‘B'M] +-Q =0 o o '(3.94)
and the matrix M2 is computed from M] according to

M, =-(A’-I/02M}BR-]B’)-]MTC | | _ (3.95)

In the derivation of (3.94) and (3.95) it is assumed that E =0 in A which corresponds - -

to the assumption z = constant .

Similarly, by partitioning the matrix P according to

Py P
p= |
r .
Py P

the equatfons (3.89) - (3.91) for the Kalman filter become

% = A% +Bu+CE +K (y-Hx) | . (3.96)
2 = Ez + Kz(y-Hx)
and
| e}
K =P HW :
x 1 _ :
(3.97) -
. . -1 o
= P'HW.
K, =PH'W

The parhhonmg of the P matrix does not simplify the computation of the submatrices Pl and

P2 as in case of the matrix M . Hence, P] and P2 are compufed by solving (3.91) for the

positive definite covariance mafrix P . In the computation of P it is assumed E 75 0 and
"$£0 . If*F=0 then P2 = P3 = 0 . This implies that the bias disturbances z can be
determined perfectly which is not reolisti-c A small amount of damping (E #0) is mcluded

in the noise model of bias disturbances in order to yield a finite value of P3 .
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3.4.2 Correlation Between Trim Solution and Optimum Control Solution

There is a relationship between the optimum control dpprc.:ach and the trim control
approach. This relationship relates the optimum steady state control value u(=) to the trim
solution § for the case when the control weighting matrix R in fhe.performcnce criterion
(3.82) of the optimum control approach and in the performance criterion (3.19} of the trim

control approach are the same.

The derivation given below is for the case of complete state feedback for which (3.92)
holds. It appears that the proof extends to the more general case in which the optimum .
control system includes the Kalman filter to estimate the state. A detailed proof, however,

has not been developed for the more general case.

Substituting (3.93) into (3.80) yields for the case of complete state feedbdrck the closed
loop dynamics ‘ |
%= Ax +Cz _ . - (3.98)

where

A=A-1/? BR-]B’MT

T=c- 1/023R“1B'M2

Since the matrix A is asymptotically stable, setting % = 0 in (3.98) results in the formula
=1~

x(®)=-A"Cz © (3.99)

for compu’rmg the steady sfafe value of fhe state vector. In turn, subshfuhng (3.99) c:nd

(3 95) into (3 93) glves that the steady state value of the control vector is

u(=) = u (=) +u (=) | S ~ (3.100)
where

o (=) = oM @281 B (3.101)

u (=)= R"B'(c?K')"MTcz . | (3.102)
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Next we will consider how u(=) varies with the scalar parameter ¢ in the
performance criterion (3.82). In particular what is the limiting value of u(=) as g
approaches zero. In determining the limiting solution, we must take into account the variation
of the matrices Ml and M2 with o . A solution of (3.94) is sought in the form of a series in |
ascending power of ¢ :
‘M

=N, +oN

1 0 1

+cr2N2+. . - ‘ (3.103

5

In papers by Friedland [8 ] and Hutton [97, it is'shown that the following equations:

N.B = 0 o (3.109)

0
’ & np=1 ’ =
NOA*"ANO+Q-N]BR BN!-—O_ .
: _ : (3.105)
’ -1, - -1 —
N]A +A N'l -:.N2BR. B N] N]BR B N2 =0

must be satisfied if (3.103) is a solution to (3.94). The above equations are formed by
substituting (3. 103) into (3.94) and equating matrix coefficients of like powers of o . By
matrix manipulations of {3. 104) and (3.105), it is shown in (8] that. N0 is the positive semi-

definite solution of
, _ ' : ) o _'1
0= NOAEI - B(B'QB) jB’Q] +{7 - QB(B'QB) ]B’]A'NO +Q-QBE'QBE BFQ N
| '- o ' (3.106)
- NOAB(B’QB) B’-_A'No )

After solving (3.106) for NO , we can solve {3.105) for the positive semi-definite rriaffix_ N.I

Consider the asymptotic value of

]

@21 = @A -BR" M) - (3.107)
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as ¢ approaches zero. For all nonzero g , the matrix M.' is positive definite. From
(3. 104), the matrix MT
q-zA in (3.107) decays to zero more rapidly than the second term, fhen

is positive semi-definite at ¢ = 0- . However, if the first term

Ay - - M7 (BR” 8y T asa~0 " (3.108)

provided BR IB' is positive definite. Substituting (3. 103) into (3, 107) and using (3 104)
gives that

%217 = [o?a - BRaIB’(crN‘ +cr2N‘2 ... )]"’ . (8.109)

The dominant term in (3.109) is BR"'B’N.I which is derived from the second term in (3.107)
and indicates that (3. 108) is valid.

Substituting (3. 108) into {3.95) and (3.98) gives

fim M’2 = - (BR"B’)"C - (3.110)
-0 : :
lim C =0 - | - @1
g—0 ‘

Further substituting (3.108) into (3. 101) and (3.102) and using (3.111) yields the results

lim u(®) = lim y (=)= =R Tor or™ B’) Cz . | o (3.112)

0~0 g-0 * '

lim v (°°) =0 : : . (3.113)

o—'o ' o o '

The trim control problem is to find the set of controls & satisfying

0=Cz+B5 B R R 17

and minimizing the performance index

J=1/26F6 - o T (3.115)

56



The solution to (3.114) and (3. 115) is

6 = -ﬁ-]'B(Bﬁ—]B')_-]CZ (3.118) '

Comparing (3.116) to (3.112) provides the fundamental result that

6 = limu(=) if R = kiR | | @
o0

where k is an arbitrary scalar, Thus the steady state value of the optimum control solution
in the case of unlimited control authority {control weighting matrix R in the performance
criterion goes to zero) is equal to the trim solution provided the relative control wgu’ghting
matrices are the same in both cases. This provides a correlation between the optimum

" control solution and the trim solution.
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4. SPACE SHUTTLE CONTROL

Control of the Space Shuttle is stidied during ascent when more coni'rolA effectors
are available than required. The analytical methods developed in Section 3 are applied to
the lateral control problem. An illustration of the Space Shuttle configuration, given in
Figure 4.1, shows the two aerodynamic surfaces and five rocket engines available for control,

For purposes of later reference these controls are identified as follows:

1) top orbiter rocket engine
2) right orbiter rocket enéine
3) left orbiter rocket engine |
4) right solid rocket motor

5) left solid rocket motor
6) aileron,

7) rudder

By vorying the angular position of these\controls, seven independent means of lateral confral
are achieved. But on!y three independent controls are required, leaving four redundant
controls. If rhe\solid rocket motors (SRM) are not gimbalted then the number as indeéendénf :
controls is reduced to five, leaving ~i‘wo redundant controls. The results in this report are

~ for the latter cgse. However, the equations and computer programs used to perform the

caleulation of the control deflections include the possibility of gimballing the SRM.

4.1 Space Shuttle Dynamics

‘A mathematical model describing the lateral motion of the Space Shuttle is given in

this section. This description entails an extensive number of the parameters defined in *

Appendix B together with a tabulation of their numerical values .

The set of.differential equations describing the translational and rotational motion of the

vehicle are based on summing the forces and moments along the body axes of the vehicle *.
The bedy axes are defined as a Cartesian coordinate system fixed to the vehicle and whose

‘origin is located at the center of mass as shown in Figure 4.2. The attitude and rotational rate

* The notation and definitions used for the aerodynamic terms in the report are in accordance
with [ 17. |
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' Figure 4.1 Ascent Control Configuration of Space Shuttle




of the vehicle are defined by the Euler angles and the components of the angular velocity

vector along the three body axes. Specifically

¢ = roll angle

8 = pitch an_gle

p = yaw angle
p = roll rate
q = pitch rate

r = yaw rate

Figure 4.2 Body Axes and Nofation
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The positive directions are as shown in Figure 4.2. Upper case letters denote the total motion
(Nominal and Perturbation) of the vehicle. The velocities, forces, and moments about the

. three body axes are defined as follows:

U, X = forward velocity and force
V, Y = side velocity and force

W, Z = downward velocity and force

L = rolling moment
M = pitching moment
N = yawing moment

The kinematic and dynamic equations describing the lateral motion of the vechile are
Y = m[V +RU - PW = gcos © sin®)
L=IP-I R+ QR(IZ-Iy) - IszQ ' | o _ (4.1)

N=-7 P+IR+ PQ(IY'Ix) +IXZQR

.and .
$d =P+ Qsin d?fcm 0 + Rcosdtan€
.(4‘2) ‘
¥=(Q sin®+R cosd) sec €
where the moments of inertia are defined by
Ix = ‘r(y2+'z2) dm I = J'(xz-l-zz) dm o
| -7 o 4.3
I = I(X2+y2)dm I = [xzdm |
z - .

For this investigation no data was available-on Ixz ¢ thus the approximation Ixz' =0 is
used. The (total} vehicle motion modeled by (4.1) and (4.2) can be partitioned into nominal

plus perturbation motion by substituting

U=U +vu P=P +p E=€C +8

o o 7 o .
V=VV°+v o Q =Q° +q tIJ=¢I>°+<p : (4.4) .
WeW +w R=R +r v="¥ +§

° o : o 3
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where the capital letters with éubscripr "o" denote the nominal motion and the lower
case letters denote the perturbation motion. For the nominal motion along the trajectory

it is assumed that

U #0 P =0 e #0
yo =O Ro=0 ¢°:0 | . (4.5)
WO#O QO#O ‘ \T:)=0

The nonzero values are tabulated in Appendix B for each of the twelve flight times along
the ascent trajectory for which the perturbation motion is to be studied. Substituting (4. 4)
and (4.5) into (4.1) and (4.2) results in the following linearized equations of motion for

small perturbations from the nominal trajectory: -

Y = m[v+Uor-gcos®°cp]

L = pr + (Iz_Iy) Qor |
N = Izr + (Iy-Ix)Qop | (4.6)
@=p +Q°tan®0(p+ Tdn@or

D= (Qo(p+r) sec @o '

Adding the equation y = v to (4.6) and reqriting in the sfafe space formulation
‘results in the vector-matrix equation | |
% = Ax +Bf . | 4

where the state and forcing vectors are -
x=ly @, b, v o, Y

and

F=[Y,L,NY

The constant matrix B 'has' the form
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where

A= D|C|g|:m,_ff')< ,Iz]

(4.8)

The forcing vector f represents the lateral forces and moments acting on the vehicle and

can be modeled by

Y Y
Li=| L

v
N N

Y Y v
p r

LP ‘Lr 1 p

NP NrJ N r

1

aerodynamic forces and control
moments

forces

and

moments

.

bias disturbance

(4.9)

forces and moments

Sﬁbstit‘utirig -(4.9) into (4.7) givé; the desired vector-matrix equation for the dynumi'cs of

the vehicle

where

% =Ax +B5+Cz
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0 0 0 1 0 0o |
0 ay 0 0 | ! 926
0 032 0 0 0 <_:|36
0 app 0 9y 95 9y
o0 0 0 954 %5 956
0. 0 0 94 %5 % ]
959 = Qo‘fan @o 026
dapy = Qosec 89 Aoy
92 T 9‘?‘”®o
% = p Y46
a55 = LP 95
ogs = Ny + QL ~L)/T, g

tan €

sec ®
)

Y -U
r o

I'r +Qo(Iy-Iz)/ Ix

N
r

(4.10)

(4.11)



and

. 3 3
e e ] e
= [--Q-_|y 3  C= .--?:-- 3 (4.12)
I 3 Klc 3

In the remainder of this section, the formulas for computing the matrix elements in (4.9),

which are required for (4.10), are developed.

The formulas for the matrix elements corresponding to the aerodynamic forces and

moments are

Y -Q cys/uo Y, =0 | Y = chyr/z u_
L, =QcC WUO L, = QhbC, /2U, L =QbC, /2U_ C(4.13)
N, =QC JU, N, = szcrp/zuo N, =QbC_/2U
where 7
Q =q5/m - Q =‘qu/1x Q_ = qsb/I,

q = dynamic pressure

Uo = nominal velocity in x-direction

S reference area

b

]

reference length

it

c = length of mean aerodynamic cord

Next the expressions for the forces and moments generated by gimballing the rocket
engines are derived. The location and nominal direction of each rocket engine with respect
to the Cartesian coordianate system fixed to the vehicle is shown in Figure 4.3 * . The rocket
engines are numbered 1 through 5 as indicated in Figure 4.3 and in agreement with the list

of controls at the beginning of Section 4. Let x_, , z, denote the coordinates of the
ARe) |

i
¥ The location of SRM was not included in the information received from MSFC. This data

was not required since it was assumed the SRM could not be gimballed. However, the equations
and corresponding computer programs include the posibility of gimballing the SRM.
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vehicle center of gravity where Yeg = 0 . The (position) vector from the center of gravity

to the ith rocket engine is, therefore,

[xcg”t-’yt’zcg”ﬂ _ o : (4.14)

The thrust vector with magnitude F, has the components

1

(forward) . X, = Ft(cos 8,c0s ), - cos @ sin "btﬁeyt -sin 8 cos I‘btaept)

(sideward) Yf, = F-gfc"’s 8,sin b, +cos€ltc05 wt‘seyf,-s;n Btsm;btﬁepi) ' o (4.15)

(downward) Z

. Ft(sm 6, +cos Btaepg
where the angles defining the direction of the thrust vector are

97!. = nominal pitch angle of the ith rocket engine.

'zbt = nominal yaw angle of the ith rocket engine.
aept = pitch deflection of the ith .rocket engine.
5eyf, = yaw deflection of the ith rocket engine.

as shown in Figure 4.4. The arrows in Figure 4.4 indicate the directions of positive angles.
The nominal directions of the rocket engines are shown in Figure 4.3 and listed in Table 4.1,

The derivation of (4.15) assumes that the deflection angles are small.

Table 4.1 Nominal Directions of the Rocket Engines

% ¥y
1| -18° 0
2| -12° - 3.5°
index 1 3 -12° ' 3.5°
4 0 - 15°
5 0 15°
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Figure 4.3 Location and Nominal Direction of Rocket Engines
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The moments induced by the ith rocket engine are given by the cross product of the position -

© vector (4.14) with the thrust vector which results in

(roll) - L, =¥, " -(zcgﬂi.) Y,
(pitch) Mt = (zcg+zi,)x'b - (xcg+xt)_'z‘6
(yaw) N_L= (xc +x )Yt yt .

(4.16)

Substituting (4. 15} into (4. 16) expresses 'rhe moments as a linear function of the deflection

angles.

Having derived the general equations for modeling the rocket engines, the next step

is to derive the equations corresponding to the term B5 in (4.9).

The elemenis of the control vector are

% = Oey'l'

8 = bgyp = %(Gey3 Sey2)
8 = 6;p3 - %( ep3 ep2)
‘64= : 4—%(6 ey5 ey4)
65 B 6 %(5ep5 .ep4)
6 = o,

where the deflection angles are defined as follows:

] 1= yuvﬁ angle of top orbiter engine

8oy
'aey2 = yaw angle of right orbiter engine
Gep2 = pitch angle gf right orbiter engine
6ey3 = yaw angle of left orbiter engine

&7

| (4.17)



6ep3 = pitch angle of left otbiter engine

6ey4 = yaw angle of right SRM
8,4 = Pitch angle of right SRM -
Bey5 = yaw angle of left SRM
6ep5 = pitch angle of left SRM

The elements of the constant 7x 3 matrix

byy by bz By By by by
B= | by by By by, bys by by (4.1
_ba1 by b3z Py Pas Py by
are computed from the following set of formulas:
b” = Fecos 18°
, b2] = - F(z.l -zcg) cos 18°
b3.| = F(x]-xcg) cos 18° |
b|2 = 2F cos 12° c0s 3.5° |
b22 = = 2F(22-zcg) co; 12° cos 3.5'{
byy = 2F[(xz-xcg)cos3.5°-yzsin3.5° Jeos 12° |
by = 2Fsin 12 cos 3.5°
byg = 2F [yycos12°~(zy =z )sin12°sin3.5° ]
,b33 = 2F [y2 cos3.5° +(x2—xcg)sin3.5° 1sin 12°
(4.19)
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— [+ ]
I':a14 = ZFSRMcos 15

b

_ - (3
ng = 2F5RM(Z4 zcg) cos 15

- - . - LT r JRO .
|.:\34 = ZFSRME(X4 xcg) cos 15 y4sin 15° 7
b15 =0
bys = 2FspmYs
b35 =0
b,, = q5C
16 y6_
l-’26 - quref(C.Lﬁa)cg
b36 - quref(Cnéc)cg .
' (4.19 continued)
b7 = Gy
byy = quref(cwr)cg
b —

37 quref(Cnér)cg

(C{,ﬁ )cg =Cw t Cyﬁ (zcg-;mrp)/ bref
a o a ‘
(C.) =C, -C, (x_-x_)/b_
_nﬁa cg nﬁa ybq cg T mrp ref ‘ -
: . o : (4.20)
(Cbﬁr)cg B CLGr. +Cy6r(;cg - 'zmrp) /bref -
, (Cnﬁr)cg - Cnﬁr - Cyﬁr(xcg_xmrp)/bref

The formulas in (4.19) are grouped by column, The ith corlumn of the B matrix in (l4.9)
defines the values of Y, L., N corresponding to § . The formulas for the first five

columns are derived from (4.14) - (4.17) . The last two columns corresponding to the aileron
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and rudder, respectively, are ‘compufed using the standard formules for aerodynamic control

surfaces. The data for the stability derivatives received from MSFC were with respect to the

moment reference point locatedat x_ , y where y =0.
mrp * Ymrp 7 Fmep

of data from the moment reference pomf to the center of gravity is given by (4 20).

The translation

The force and moments in (4.9) due fo the bias disturbances is modeled by the term

Cz. The elements of the vector z or bias inputs are
z, = B = side slip angle due to a steady side wind

2y = T = roll bias torque due to SRM misalignment

i
._‘
it

yaw bias torque due to SRM misalignment

The constant 3x3 matrix C has the fdrm

=3 - -

Cjy 0 0
¢ = Cpyy 1 0 | . . (4.21)
1€ ©

where the elements in the first column are computed from

= aSCY 8

o .
o1 qu(Cwlcg

Cyy = qu(C*ﬁ) .

* * _ ‘
ﬁ)cg C +C (z‘:g zmrp)/b

* =C* - (C*® -
(cnﬁ)cg CnB CyB(xcg xmrp)/b

'C* =.C + C
YB y8 A y8

(4,22)

3 C'LB AC&B'

* —
Cag = Cng H{AC Iarr + (88 JrorwarD
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The last three equations in (4.22)account for the change in the stability derivatives due
to the addition of a pair of dorsal fins o the Space Shuttle configuration as indicated in

the sketch below.

<

forward dorsal fin "’?\—l o \—J‘* aft dorsal fin

To summarize, the lateral dynamics of the spdce shuttle is governed by the vector
“metrix equation (4.10), The coefficient matrices A , B, C in (4.10) are computed using
(4.8), (4.9), (4.11) -(4.13), (4.18)- (4.22). The values of the parameters feé;uiréd by

: these equations are given in Appendix B.
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4,2 TRIM PROBLEM AND SOLUTION

When bias disturbances generate forces and moments thq.t cause the vehicle to deviate
from the nominal tajectory, the rocket and cerodynamic controls must be deflected in such
'a way as to counterbalance these forces and moments. For the lateral trim problem of the space
shuttle, the bias disturbances are due primarily to steady side winds and SRM misﬁlignments.
The state vector x in (4.7) defines the deviation of the vehicle from the nominal trajectory -
in the lateral-direction. Hence, the trim condition is to maintain x = 0 . On substituting

x =0 into (4.10) one finds that the trim solution & must satisfy the matrix linear equotibn
0 = B8 +Cz | |  (4.23)

For a given value of the bias vector z , (4.23) represents six equations in seven unknowns.
However, the equations are not all linearly independent. From (4.12) the first three equations

are identically zero independent of & and the last three equations have the form
0=A'85+4  (4.24)

where A is the diagonal mairix defined by (4.8). Premuﬁiply (4.24) by A gives
0=B5+T2 : (4.25)

which is equivalent to setting Y =L = N = 0 in (4.9). In other words, (4.25) states that

- the trim control must provide zero net side force,. rolling moment, and yawing moment in the

" presence of a steady side wind and SRM misalignments. Replacing (4.23) by (4.25) has reduced

the number of trim equations from six to three. In terms of the notation introduced in Section

2.1, the dimensions of the trim problem are

=7 : number of controls.
n==6é : number of state variables
n =13 .+ number of linearly independent trim equations

In order to determine the optimum trim solution, a performance criterion of the following

form was selected:
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1 21 LA

S

where
8, max | Maximum deflection angle allowed for the yth confrol because of physical
limitations or excessive hinge moments,
q ‘ " Dynamic pressure -
y : . Reference area corresponding to the drag induced by the ith control
C Coefficient of drag cormresponding to the ith control,

The numerical values of the above parameters is given in Appendix B.

The seven components of the vector § of control deflections are defined according ’
to (4.17). The first term in {(4.26) penalizes the movement of the actuators for trim'in order
fq leave maximum flexibility for dynamic response. The second term in (4.26) penalizes the
thrust loss{gain) caused by'éimballing the rocket engines away from their nomiﬁol :position.

The third term in (4.26) penalizes the thrust loss due to drag caused by deflecting aerodynamic

surfaces.

“Substituting the approximation

1
1 -cosg 55
| 5, %39

73



into (4.26), the performance criterion can be written as the quadratic form
r(g) = 56 R§ . (4.27)

where R is a diagonal matrix whose elements are given by

W2 /R W | =1,...5 4.28
Ry = Wi/ max * Wy v - s

= W2 /gl +W2 (gS C W =6, 7 ' (4.29) -
R ™ Wit/ 8 max ™ W 5, %p,) ¢ 429

The fourteen {relative) weighting factors WI'L and Wz' are selected by the user to achieve
: 1
the best performance within the restriction imposed by the problem, This best performance is

a judgement evaluation unless additional criteria are used.

The lateral trim deflection angles are the solution to the optirﬁization problem defin ed
by (4.25) and (4.27). The objective is to solve the trim problem for the maximum expected
~values of sideslip angle and for different combinations of roll and yaw misalignment torques
' that encompass the worse case situation. The sideslip angle is computed from the mean side

wind velocity and the vehicle velocity according to
8= sin_l(V)/\/)

~ The values of Vy and V for each of the twelve trajectory points are listed in Appendix B
and result in the values of sideslip angle listed in Table 4.2. Plotting the values of B
as a function of flight time yields the sideslip profile shown in Figure 4.5. Eight different

~ combinations of yaw and roll bias torques due to SRM misalignments were provided by MSFC

for studying the trim problem and these are listed in Table 4.3,

A computer program entitied TRIMS for computiﬁg lateral trim of the Space Shuttle was
developed. The TRIMS program solves the trim problem given by (4.25) and (4.27) using the
numerical methods described in Section 3.1. The program user can select either the steepest
descent method or the Newton-Raphson method at execution time. Although the trim pfoblem
given by (4.25) and (4.26) is linear, these numerical methods have the capability to solve the.
~ nonlinear problem. The TRIMS program is coded to facilitate changes in the trim problem

including the replacement of the linear trim problem by a nonlinear #rim problem.
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Table 4.2 Sideslip Angle for Different Flight Times

e, :
(sec) (rad) (deg)
25 .020%6 1.201
40 .05996 3.436
50 .07887 4,519
60 09942 5.696
65 .10642 6.097
70 11124 6.374
75 .11635 6.667
80 . 11404 6.534
90 . .06169 3.535
100 0 0
1o 0 0
140 0 0

Table 4.3 Biaos Torques Caused by SRM Misalignment

| CASE

- ROLL BIAS

YAW BIAS
(New. -m)x 106 (New, -m)x 108

] 3 0.

2 2,50 0.70
3 0. 0.87
4 250 0.70
5 -3.07 0.
6 -2.50 -0.70
7 0. -0.87
8 2,50 -0.70
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Sideslip Angle B (deg)

Figure 4.5 rSideinp Angle vs Flight Time Due to Mean Wind Disturbance

25 35 45 55 65 75 85 g5 10%
Flight Time (sec)

_ The formulas devel’opgd in the previous section for computing the matrix elements in
(4.25) are coded into the TRIMS program. The numerical data required by these formylas

and tabulated in Appendix B is also stored internally in the program. Similarly the formulas

A (4.28) and (4.29) used to com;;ufe the performance criterion (4.27) are coded into the

program together with the required numerical data. Only those input parameters with values
that are likely to vary from run to run are entered as input dota at execution time. These are

the fourteen weighting factors wy, and wo, in the performance criterion and the values of

the roll and yaw bias torques, z, and Zy respectively. A more detailed description of

2 .
the TRIMS program including flowcharts, listing, instructions showing how to use the program

is given in Appendix C.

76



.r

The trim angles for the eight different combinations of yaw and rofl SRM bias torques in'
Table 4.3 were computed in a single run of the TRIMS program. Each case entailed 'r:.orr:puiir;gj
the trim angles for the twelve trajectory points or flight times which totals to 96 trim solutions.
The total cpu time was 5.29 seconds onlthe IBM 370/165 computer which averagés to 0.055 |
- second per trim solution. For this run rhe second order gradient method and the weighting

factors i in the performance criterion were chosen to-be

3000 for i# 6
187 4000 for 16

'w2t=0 i='|,....,7A

~ The lateral trim solutions for the eight cases in Table 4.3 are shown in Figure 4.6
where the trim angles are in degrees. The trim-angles 64 and 65 for the SRM engines are '
always zero since in the current TRIMS program the SRM engines are not gimballed. However,
~ the provision for gimballing the SRM engines has been included in the development of the

development of the TRIMS program.

For most of the trajectory points in Figure 4.6, especially those with high dynamic .
pressure, some of the deflection angles exceed the allowable limits by an order of magnitude. "
This indicates that the Space Shuttle configuration does not have sufficient control authority

. to meet.the trim conditions Y= L =M =0 when the SRM engines are not gimballed.

A check of the TRI‘M.S program aga inst @ lateral trim solution computed at MSFC was
made. The MSFC solution is for the case of zero net rolling and yawing moments, but,
unlike in the TRIMS program the requirement of a zero net side force (i.e., Y = O)Iis'_n_cit_
imposed . Also the MSFC solution does not consider the deflection of the aileron. A special -
.rnod'-ification of the TRIMS program for including or disregarding the trim condition Y=0
~ and/or the aileron deflection was made and is described in Appendix C. Alfhbugh the actual
‘modlflcatlon of the TRIMS program to eliminate the constraint Y = 0 is minor, it is bused on .
a novel procedure derived in Appendix D. A compurlson of the trlm solutions compufed by each
program for (supposedly) the same trim problem showed that the deflection cmgles hava ubout o
the same. magnitude but are not equal. A more detailed discussion of the comparison mcludmg

plots of the trimsolutions is given in‘Appendlx E.

&
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Figurs 4.6 Lateral Trim of Space Shulile
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Figure 4.6 (Conlinyed)

————— —————— B et - ¥aw nlas Turlde = =30TWUU0,.0
HOLL Hias TOxrOUE = 0.0
PERFORMANCE CHRITERIUN PARAME [ErS
e m e e m— e o ——————— : Wil =34000,00. wil = D.0
wle =3000.00 weg = 0.0
wE [GRTING wl3d =4pud.no we£ld = 0.0
FAaCTO=s Wi SHR00.00 weh = 040
wls =Juula.ll weh = Be0
wle =ag0u.00 wee = 0.0
Wl7T F30Uu.U0 wey = 0.0
TRIM DEFLECTION ANGLES
e m——————— - - ———— THad. FLIRAF PELTA
HT. TiHe {1) (2) (3 1£3] (5] 6 T
CIOOIDOCIOOIIDICII.CIDG!IA!.DI!.'Cﬁ-llIllll-lllnl‘.'l.‘.‘.l""‘.l"'l'll'.lll
. 1 25,0 de,.lé -3.29 AT bH Y] [ ] 17432 =3L.90 N
. 2 40,0 ak, 1Y =daln 94,411 ] G.0 4,31 =3],42 .
. 3 Sb.i 8U.21 =b.10 1ll,»% ted 0.0 S0.27 -38.40 .
. “ Y] ldbode  -ld.a) 2u3.dl bald 0.0 104,48 =20.81 .
. L1 859 163,33 =~2b.9d 234,99 440 0.0 la7,65 -53,68 N
. ) 0.0 119,04 17,75 1s8l,.20 0,0 0.0 20.4) ~8l.H85 .
. 7 T5.0 . lon.ef 1.94 249.98 Uad 0.0 23,7) =-8B2.,37 .
- -] BU.0 léd .4 =fl,42 A77,02 Ga.0 Q.0 4Q,89 -93,801 N
. v GhaU 204,37 23.3d  2d%.03 ta0 0.0 T2.07 =33.16 .
. 19 LJu.Q —5.d4 B dg.ol datd 0.0 G.HS  =2A.04 .
. il 1lGed =la,.ls 10,09 42,49 G,0 0.0 =685 =b6l.32 .
. ke 140,00 «120.74 SH.37T 121l.7e Yo 0.0 ~59.36 ~112.48 .
IR RN R NN NN RN L N RN R R Y N N N NN N R NN NN R N RN NN N RE NN
Tue YAW PLITCH Yaw PITCH  AILERON  RUODER
€====  URBITEA mreedCmere SR ====3
CASE & , t‘

SYSTEM DYNAMICS PARA-ETERS
e T YA 2145 TOWMWUE = =2500000.0
HOLL BIAS TumIUE = =700000.0

FPERFORMANCE CRITERION PARAMETERS

e m——— Wll =3uv0.00 w2l = 0.0
Wiz =3000.00 w22 = 0.0
WEIGHTING Wil =3060,.00 Wzl = 0.0
. FACTORS Wla =3000,00 LF-C 0:0
Wls =3U00,00 we5 = 0,0
Wle =afug,po wég = 0.0
w17 =3000.00 w27 = 131 hy
€.
TRIM DEFLECTION aNGLES ' :
hiahbalan b b bt e P L T S TrAJa  FLIGHT DELTA
PTa TIME (1) (2) (3) (%) {51 16) (7
:I..l.iuviol..llu-lll!..-llll‘.ll'l.l!d'-.....‘..lllI."OQII..ADIU'l.lctluaon
- 1 Z2h,1) 23.743 -4, 54 3T .25 0.0 0.0 15.,3% =2p.68 .
. £ 4ULY 44y -4 Ul nu,bl Vel 0.0 BeTS  =29.43 .
. El SU.0 T9.b7 =bund 111,49 (] 0.0 49,02 =3s.sl .
. “ 1] l3sose =15,77 cud.se Upth 0,4 L2, 08  =ay,s50 .
. ) LEN; lod.ab -26,0% 292,77 0.0 0.0 les,88 +52,81 .
. 6 Toul 119,33 Fhawl 181,34 [} 6.0 19.7U -uo:sa .
. 7 75,0 189,40 1.8 E£d9.1d Ueu 0.0 23,22 =#4l.13 .
. 8 Bl.O Thaa4d =1}1.97 374,97 ()] 0.0 40,22 ~=Yc.i4 .
. 4 Yu.0 daalt 2lul  2as.70 [P IR] .0 69,92 -9u.c9 .
. 10 1ou,4 —l.on del5 ETT.Y L Q.0 4,23 -El.vT .
. b Pluew ~Tets bat? 37,594 Usv 0.0 =b .29 -47.90 .
. le  i6b.U  =ul.36  «4.1Q  3wess  oo0 0.0 =ab.67 =HT.9] .
lo'-l'-ColCi-.l-l-CCl-ll-.cl.u.“cl--...l..li .
T(JP YA“ PITLH Tﬂ;..‘IL;;E;..;;Il‘l.“!!'l.l.‘..i
LE~UN  HUQDER
Cmmm— LA P —rwA (e apM -

80




Cast 7

-——

Figure 4.6 {Continued)

SYSTEM DYMNAMICS PARAMETERS

A e e A

PERFOHMANCE CHITEWRION FAHAMETERS

THIM DEFLECTION ANGLES

e e e Dk e

CASE _R

SYSTEM DYNAMICS PARAMETERS

TRIM DEFLECTION ANGLES

- - -

YAW HIAS TURWUE = 0.U
WOLL HIAS TUWUUE = ~370000.0
wll =3000,00 w2l = 0.0
Wleg =3Q00,08 w22 = De0
WETGHT ING w13 =30¢0,00 wdld = 0.0
FACTURS wle =3040,00 ‘Weh = 0.0
w15 =3000.00 w25 = - 0.0
wle =4040,00 wi6 = 0.0
wl? =30u0,00 wWeT = 0.0
Teads FLIGAT DELTA
PT,. TimMe (1} 2) [K3) 14} 15) T3 {7
(E R R R R RN N A R I N E A R AR R A N R A AR R RN RN
. 1 2540 GelH  =1,74 14,90 040 0.0 5,23 ~T7.99
. 2 40.0 33.08 e -] 42,70 Vel . 0.0 ba6T =21.94
- 3 50 .0 1.1 -3.34 21,91 sl 0.0 . 41,27 =30.47
. 4 60.0  [20.b4 =]1l.94 [HO,Z24 0.0 0.0 9297 ~—44.74
- L1 B5a.0 148,70 =21.,20 26b.09. [ 1} ‘0.0 133.68 =48.5%1
. [} T0.0 U111 lg.58 166.00 D.0 0.0 18.80 - =75,08
. 7 5 e 145,36 3,76 269,46 V.0 - 0.0 21,97 <76.35
. -] B0 .0 | 182,93 4.4 350,07 Da0 0.0 3T.8% =Bb.62
. 9 HU .0 I9.1% 21.37 249,25 D.0 0.0 61,05 =Tu,bé
- 10 100 .0 J,.82. -2,05% 4,11 Dat 0.0 . =0,b6 L lall
. 11 1100 4,01 -2,18 3.75: Det} 0.0 =D.H8 - 2453
., le 140 .0 Hebl -4, 2% Qa3 D0 0.0 . 2.07 TS
[ A E NS R NN N AN NN A RN AR R R R N A N N N RN N R N AR A A R NN R A R NN N NN N}

" &2 P M 8.8 8 "R 8 OC 8P O

TSR E R R

TOP YawW PITCH Yad PITCH AILERON_ RUDDER
Cnmma OHBITER memmrCmman 5RM  ees=) -
Yad dlas TORQUE = . 250000040
ROLL BIAS TUWQUE = =T700000.0
AETERS
wil =300¢.00 . wal = 0,0
wie =3000,.00 w22 o D0
wEIGHT NG wl3 =30u0,00 w2l .= 0.9
FACTORS wia =30Q0.00 weh = 0,0
wls =3000,00 w25 = 0.0
Wle =4000,00 wih = 0.0
wl7 =23000.00 wi s 0.0
Trade FLIGHT UELTA
FTa TEME t1) 2) (1] &) 1-9) (£Y] (7}
co-----ooo-oo--c-c---uc-----c--o--c--.---c-cco-cc'-----c-‘-occc.o-oo---oc-qcooo
L ] .
. 1 FE] ~he5Y 1ell -9, 7 0.0 0.0 =S.00 10.21
. 2 4l 0 20,28 . 2u.57 24,34 U.0 0.0 4,62, =14,59
. 3 50,4 Se.el O.91 Th.27 Uel 0.0 33.26 =29,58
. % ol ol 109455 =babed - 55,89 (] 0,0 © 83.23 =40,10
. ] 690 133.76  ~15.868 238,09 0.0 D.0 122.93 =44,49
. & 70.40 L 11N 21.11 148,40 Ve Da0 - IBLIT  =09.66
. 1 T340 130,07 69T 24l 3 Uel 00 20,82 =Tl.64
. . Bl.0,  lal,26 =5,05 323,32 [ 0,0 35,53 =dul.20
. 9 wU.0 lo,93 - 2l.22 212.18 .0 0.0 83,52 =89.22
. 10 LUy L0 1,82 =b.4h  =27.65 - Ul 0.0 .29 24,70
. 11 1it.0 13.94 3,97 =31,5% [ 0,0 4,88 51.97
. le  labgy 109.2)1 =50.9% =94,65% Vet 0.0 50,00 95.29
..Il'.ll‘I"‘...IUlIIIl..IIII..I.I..lld.l.'.l...I..ll...ll..l...’....llI'l..l
Tow Yaw PITCH Tha PITCH  ALLENON RUDDER
Cmumm URBITER ©  smee3ge==c 30N =e==>

81



4.3 OPTIMUM FEEDBACK CONTROL AND PERFORMANCE

The vector-mairix equations defining the linear stochastic optimum control problem
and its solution are given in Section 3.4. These equatiohs entail computation of the matrices
F, M, K, P fromthe matricess A,B,C,E, G,H,V 6 W, Q,R defining the optimum
control problem. In order to simplify the feedback design, the matrices F, M, K, P are

partitioned as follows:

M. M 1‘6
F=[Fx Fz] m=| T2
My M3$3
6 3
K 16 PP ia
K = X | P = 1 2 !
KZtS b Py 3

A block diagram ~f the complete closed loop system in terms of the matrices listed above is
given in Figure 4.7. The lower half of the block diagram depicts the optimum feedback

control system.

For the lateral control of the Space Shuttle the state vector x , control vector u ,

bias vector z , and observation vector y are defined to be

- -y ’ B b
1 y | side displacement ' 6] top
@ | roll angle o, yaw } orbiter
_ Y | yaw angle :
* = 5 itch
v | side velocity 3 P
p | roll rate u = 64 yaw | SRM
L r yaw rate
- 55 pitch
56 aileron
67J rudder
o ey
31 side slip .y 7
z = T aw bias torque
Yb Y q @
Tr roli bias torque Y- b
[ 5] P
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Figure 4.7 Block Diagram of Closed Loop System with Opti mum Feedback Control
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The vehicle dynamics used in the optimum control design are for the first trajectory point
(flight time =25 sec). The elements of the matrices A , B, C were computed from the data
in Appendix B using the equations in Section 4.1, It should be noted that the results in this
section are for the case of no dorsal fins and the results in Section 4.2 include the effect of
the dorsal fins. For the first trajectory point the difference in the two cases is minor. Since
y is assumed to be a subvector of x , the elements of the observation matrix H are either
O or T where a value of 1 in column i indicates that Xy is one of the measured quantities.
The relative weighting matrices Q and R in the performance criterion (3.82) are selected by

the confrol designer with the goal of optimizing the closed loop performance. The particular

approach adopted for this problem is to select Q and R of the form

M2 2 2 2 2 =2

Q = Diag {me * Crax ' ¥max 7 Ymax * Pmax ’ " max J
o =2 -2

R=D|ag{u1max:---ruqux}

The parameter ¢ in the performance criterion (3.82) is voried until an acceptable "trade
off" is achieved between the closed loop performance and the level of control effart. For
this example ¢ =1 and the maximum values of the state variables and control deflections

used in the performance criterion are listed below.

Ymax 10m
@oax = 0.0% rad
U, = 0,2rad
$  =0.0lrad J max
max
_ J=1,...,7
Y ax 5 m/sec
P onax 0.1rad/sec
Moo - 0.1rad/sec

The matrix V defining the state excitdtion noise spectral density is assumed to be diagonal

with
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o
ft-

v,,=0

L 1,2,3‘

. 2
V44A— (zvmax)' _

Cu

0 1. )2
v 5" (0'1pmax)
. 2
V66 = (O'Irmux)
For this example the matrices G and E defining the noise model associated Qith the bias.
inputs are -

Diag [0.1, 0.1x 107, 0.1x 10'4]

I

G

E = Diag {-0.01, -0.01, 0.0)]

The tth diagonal element of G is roughly equal to the maximum value of .z, squared. The
negative diagonal elements in E provide a small amount of damping in the noise model which
is required in order that the covariance matrix P:3 corresponding to the bias vector z does

" not become infinite. The observation noise spectral density matrix is assumed to have the form

2
W= Dlugﬁcz,c .cfb,crzfo]

The standard deviation o, defines the level of noise associated with i-he measurement of y
- and the other standard deviations are similarly defined, By varying the standard deviations o_f'
the sensor noise as part of the design procedure,different Kalman filter designs are obtained.

For the final Kalman filter design in this example
o, = 0.1 Yo
d‘p = 0.1 O nax
7 = 01 .
cp =_0'O‘-pmax
0'!;' =  O;Q'l LA
;fhe numericai values of f_hese mo‘frices, ,‘definin‘g the opt'imurn control f)rob..ém dre givén in |

Figure 4.8(a).
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A computer program entitled Linear Systems Design (LSD) was used to design the
optimum feedback system. The LSD program solves the equations for the optimum control
solution given in Section 3.4.1. The resulting matrices My M2 , Fx , Fz used to design
the deterministic quadratic optimum control are shown in Figure 4.8b). Similarly, the

resulting matrices P] , P P K , Kz used to design the Kalman filter are shown in

2737 x
Figure 4.8(c).

The performance achieved by the feedback control system was simulated for the
different designs. The control deflections as a function of time were plotted and are shown
Figures 4.9 and 4.10. Note the SRM deflections 64 and 65 are not plotted since in the
current investigatio~ it is assumed that the SRM are not gimballed. The dynamic response in

Figures 4.9 and 4.10 is for the case where the vehicle starts from the trim condition for

g = 1.20°

T =3.02x 10° N-m
iy
b

T = 0. N-m

4N

to which correspond the deflection angles

61 = = 6.63
52 = 7.35°
63 = =-11.27

— Q
66 = 2.65

67 = - T12.11°

The initial trim solution shown above is indicated by the straight lines in Figures 4.9
and 4,10, The effect of a 2° step change in the sideslip angle causing an increase .Frorn
B =1.20° to B = 3.20° was simulated. The transient response curves show the performance
of the control system in achieving the new trim solution. The curves in Figure 4.9 (a) are
for the case of complete state feedback which assumes that the state of the process can be
estimated perfectly (i.e., H =7, V=W =0 , X =x). This is not realistic but provides an

upper bound on the performance as the estimation capability of the Kalman filter improves.



Observe in this case that the control deflections change discontinuaously due to a step change
in 8 . This does not occur when the Kalman filter is included. . The curves for the remaining

_cases show the performonce when différent Kalman filter designs are used. The different

designs correspond to different values of the W matrix as shown below

2 2 2 2 2 ..
W = D. r I 4 r @
Diag [ Oy 1 Gy r Byr Op 1 O, ]
Fi -
gure cy Cl'(p nl,b o'p _ crr

4,106 10 .01 .01 K K
4,10¢ | 10 .01 .01 .01 .01
4,11 1 .00l .001 .001 .00

The vatlue of W in Figure 4.8 {a) and the matrices in Figure 4.8 (c) correspond to the Kalman

filter design used in Figure 4.9 .

In Section 3.4.1 a convergence property relating the optimum control approcch and the
trim control approach is given by (3.117). A demonstration of this hroperty for the lateral
control problem of the Space Shuttle is given below. Trajectory point number 1 occurring at
25 seconds ofter launch is shown in which the roil and yaw bias torques due to misalignment

of the solid rocket motors are assumed to be

roll bias torque = 3.02 x 106 (N-m)

yaw bias torque = 0 .
The control vectors v ( ) , v ( @} , and u( =) obtained by the optimum control qppronbh
have been compufed in this case for three different values of ¢ (1., 0.1, 0.01) and oi'e listed in-

Table 4.4, The computations were performed according to (3. 94) (3.95), (8. 98)-(3 '!02) where

the control weighting matrix R was chosen to be and where I denotes the identity matrix.
"R =251

The trim solution or limiting solution for .0 =0 was computed using the TRIMS program and is
also listed in Table 4.4. An examination of Table 4.4 illustrates that the steady state control

level u( @) for the optimum céntrol solution approaches the trim solution as ¢ approaches zero.

87



Figure 4.8 Numerical Value of Matrices Used in Optimum Control Design

{a) Definition of Linear Stochastic Optimum Centrol Problem
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Figure 4.8 Numerical Value of Matrices Used in Optimum Control Design, (Continued }
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Figure 4.9 Dynamic Response for a 2° Step in Sideslip Angle
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Figure 4.9, continued - 2 -
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Figure 4.9, continued ~ K
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Figure 4.7, continved - 4 -
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Figure 4.9, continved - 5-
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Figure 4.10 Dynamic Response of Optimum Control with Improved Kalman

Filter for a 2° Step in Sideslip Aqgle
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Figure 4.10, continued - 2 -
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Figure 4,10, continued -3 -
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Table 4.6 Convergence of Optimum Steady State Contro! Level to

o=) =

Trim Control as Control Weighting Decreases

= O

- -
-7.38

98

o = 0.01

- 0.02
- 0.01
-0.01

0.01
- 0.03

-7.36
7.35
-12.39

2.06
- 10.96

7.33
- 12.40 |

2.07
- ]0'99J

(trim solution)

a=0

o O o O O O O

-7.3%
-7.34
- 12.42

2.06
| - ]0'96J
-7.39

7.34
- 12.42

2.06

- 10.96



5, CONCLUSIONS AND FUTURE WORK

Solutlons to fhe trim problem can \ be effluenﬂy calculated by the TRIMS progrqm
usi.ﬁg the numerical methods described in Sechon; 3.1. The results of this |nveshgc|f|on e
indicate that numerical solution by rhé, Newfon-Raphson method is preferab|e‘ to the
‘sfeepesr descent method because it yields faster convergence and does not require the .
user fo specify an iteration step ‘s“ier a . If the initial guess of the solution used to stdrt .
the Newton-Raphson method is not in the region of convergence then the method may not
converge or may converge to the wrong solution. In this case the steepest-descent method
should be used for the first few iterations 'ro1gene'rate a good starting solution -to the :
Newton-Raphson method. This hybrid method could be impleme‘nfed'in'the TRIMS program °
with minor modifications. However, it appears that for most pt"Clci'iccﬂli'rim problems an

_ iniiiq‘ guess of §=0 is always in the region of convergence.

For tHe linear trim problem, a diagonal weighting matrix .R in the quddrqfic per-
formance criterion is sufficient in finding the "best" trim solution with respect to the - =~
" limits on the deflection angles. Introducing nonzero values for the off—diagénqi; elements
of R complicates the selection of the performance criterion and does not‘leéd to a better
trim solution than could be obtained by use of g diagonal matrix. Starting from the trim
solution for a given diagonal R matrix, consider the problem of searching for a more
desirable trim solytion.. The penalty function method for varying the-ld‘iclgonul elements
of R ‘- is a ‘vicb‘ie approach for improving the trim solution that is easy to use. The
penalty function method would be consfderably facilitated if the computer .‘compu'rotic.:.n'
of the frlm solution is performance in a conversational mode of operation rafher than a
‘. batch mode in the former cuse, the user can examine the frim soluhon and then lmrnedmfely
try @ new R matrix. The process can be repeated in a smg_fe sitting as many times as is

necessary.

The laterdl trim solution in Figure 4.6 indicates that the Space Shuttle configuration
does not have sufficieﬁr control authority when the SRM engines are not gimballed. (The
impfovemen'r in the trim solution obtained bygiﬁlballing the SRM engines is an area for future
study which can be performed by the TRIMS program with minor modifications fo the block
data subroutine.) If fhexconsf"raint,of zero net side force (i.e., Y =0) iseliminated and

the vehicle is only trimmed in roll and yaw, the maximum conirol deflections decrease by
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roughly an order-of-magnitude. In this case the trim solution is within the deflection
limits. Hence, the control requirements increase significantly with the addition of the trim
requirement Y =0 . Maintaining Y =0 is not as critical as zero net roll and yaw torques
because angular errors are multiplied by the vehicle velocity in computing the displacement
from the nominal trajectory. This suggests removing the trim condition Y =0 entirely or
replacing it by | Y | <€ . The value of € depends on how much side displacement error
ia acceptable. By varying the weighting matrix R in the performance criterion with fiight
time rather than holding it constant, significant improvement in the trim solution might be
achieved. The problem of realizing a trim solution for a time-varying R matrix must also

be considered,

Only the steady-state performance of the control system for bias inputs is considered
in the trim calculation. The dynamic or transient response of the controls for fluctuating
inputs must also be considered in the overail system design. For the nonlinear trim problem,
the index of controllability defined in Section 3.3.2 is a quantitative measure for selecting
the trim solution thatresults in the most controllable system with respect to the dynamic
response problem. An integrat E proportional to the control energy is defined in Section
3.3.1 and is computed using the controllability Grommian W . Another measure for
selecting the trim solution is given By the value of E . If the trim problem is linear, then

the value of the controllability index or E does nof vary with the trim solution.

The basic question in studying the dynamic response problem is: "What is the maximum
deflection of each control for the possible fluctations in the disturbance inputs?" One

possible approach to the dynamic response problem is to examine the values of E where

:
EL denotes the energy expended by the ith control to return the vehicte to frim.tThe values
E?: can be readily computed from the controllability Grammain ‘W . Although this approach
'hqs‘po’renfiqi in gaining insight into dynamic response problem, it possesses two major
limitations. First, there is no simple relationship between the enefgy Et and the maximum
valve of the transient response curve showing the variation in the control deflection angle

with time. Second, the control signal corresponding to E, cannot be realized by a linear

i
feedback control system. The trim problem concerns only the static performance and can be
studied without considering the detailed design of the feedback control system. The dynamic
response problem, however, concerns the closed-loop tronsient response and is strongly

dependent on the design of the feedback control system.
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The most realistic method and possibly the only practical method for studying the
dynamic response problem is to design the control system and simulate the closed-loop
performance. The application of optimum control theory provides a method for the design of a
linear feedback control system that can solve _b_olh_rhe trim problém and the dynamic response
problem. The correlation between the trim salution and the optimum control solution derived
in Section 3.4.1 indicates how the solution to the trim problem can be used to select the
proper control weighting R in performance criterion of the optimum control approach.

This saves design time since the trim problem is easier to solve. A computer program
entitled Linear System Design (LSD) was developed at Singer-Kearfott that is capable of
computing the optimum feedback system and simulating the closed-loop performance. Since
LSD is a conversational program with an automated plotting capability, many different
designs can be studied efficiently. An e:xample. illustrating the use of LSD to design an
optimum feedback system for the lateral control of the Space Shuttle during dascent s
described in Section 4.3. |t is recommended a more extensive désign effort be pursued

using the optimum control approach.
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APPENDIX A VECTOR NOTATION AND DIFFERENTIATION

In this appendix the notation used for handling differentiation with respect fo vector
-quantities is reviewed for reference purposes. This notation is useful in describing the solution

" to the trim control problem.

Let x and y denote an n dimensional and an m dimensional (column) vector,
respectively. Further, let o denote a scalar function of x and y and let f denote a

vector function of x and y where the dimension of f is p .
x =1 v=l o f = flx,y) o = dx,y)

xn Lym

Differentiation of a vector by a scalar results in a (column) vector defined by

= -
dxi/df
x = dx/dt =

dxn/df

On the other hand, differentiation of a scalar by a vector results.in a row vector defined

by
da/d3x = [am/ax], Bm/axz, c e ey ao:/axn]

The second partial of the scalar & with.respect to x and y

Bza/ dx 3y = 3/ vyl da/ dx)’

isan n by m matrix whose 1 th element is defined by
(Bza/axay) = B2d/'ax 3y,
: iJ 1771

Differentiation of the vector function f with respect to the vector x is @ p by n

matrix whose 1 jth element is defined by

(af/éx)_ld, = afa/axj
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Consider the scalar formed by the inner product of f and a constant vector A of

dimension p . The second partial of this scalar with respect to x and y

Bz(l'f)/ax ay = X(Bf/ax 3y)

jsan n by m matrix whose {jth element is given by

vk _ af |
A (axayﬂ f'J'— g :\k( axay)kU

The quantity of 3f/3x dy is a tensor whose ki,jth element is defined by

(af/ox ay)ktj = afk/axta Yy
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APPENDIX B PARAMETERS OF SPACE SHUTTLE DYNAMICS

The equations defining the lateral-direction dynamics of the Space Shuitle during
“ascent through the atmosphere were derived in Section 4.1. The parameters required to
compute the matrix coefficients in the linear equations of motion (4. 10) are given in this
oppendix. The list of parameters qppeuring below indicates the parameter symbol, value,
units, and a brief description. The data is given for twelve different points or flight times

along the ascent trajectory and was furnished by Dr. S. Winder of MSFC.

In the column labeled VALUE, there appears either the numerical value or the word
able® or is left blank. The word "table” denotes that the numerical value varies with
flight time and the twelve different values are listed in the tables at the end of this appendix.
A blank denotes that the value of the parameter has not been specified. The unspecified
parameters are the location and thrust of the SRM engines and the stability derivative Cy
Most likely C is small and is assumed to be zero in this investigation. It is b

further assumed & yhat the SRM engin es are not gimballed but the provision for including

the SRM engine deflections is incorporated into the equations.

The stability derivatives C, , C ,C ,C , C  were not included in the data
Ip np nr :

yr 4r
furnished by MSFC. Their values listed below are rough estimates based on the vehicle
configuration. These stability derivatives are not used in computing the trim solution but

are required for the study of dynamic response.
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LATERAL TRIM PARAMETERS

SYMBOL  VALUE UNITS . DESCRIPTION

X 0 m

Y1 0 m X, Y, z positions of (fbp, orbiter) engine 1
z, 0 m \

Yo 1.346 m X, Y z positions of {right orbiter) engine 2 |

- 6.68 m

" ¥g - 1.346 m X, ¥, z positions of (left orblfer) engme 3

-~ 6.68

Ys m %, y, z position of (left SRM) engine 5
z5 m
x table m
cg
Yeg 0 m X, Y, z position of center of grcwuty
- table m
cg
P 21.6 m
mrp

x, ¥y, z position of moment reference point

X4 ' | m | ‘ '
Y4 m X, y, z, posm'ons of {right SRM) engine 4



AC

(Acnﬁ) AFT

(AC, JFORWARD

table

317.73
28.322
table
table

table

table
table
table

table

table

. table

table

table
table
table
table
table

-.01

- 0.03

new./m

2

m
m
m/sec

m/sec

New,
New.

106

dynamic pressure

reference area
reference length
velocity of the vehicle relative to the air

side component of V (side wind velocity)

thrust per orbiter engine

thrust per SRM engine
stability derivative
stability derivative
stability derivative

change in C due to dorsal fins
y8

change in C,, due to dorsal fins

18

change in Cn due to aft dorsal fin

8

change in Cn due to forward dorsal fin

B

stability derivative

stability derivative
stability dérivctive
stability derivative
stability derivafi-vef
stability derivative |

stability derivative .
stability derivative

stability derivative




ol

O

a 0

np

O _O

¥yr

a0

nr

0.022
-0.H

20.
table
table

table
table

table
table

table
table
table

fable

fdble

table

- 0.1
-0.03
0.0
0.022

-0.11

Kg
I(g-m2

_ Kg-m2

Kg-m2

m/sec

ro.d/sec
m/seé

m/sec

stabil ity derivative
stability derivative

length of mean aerodynamic cord
vehicle mass

vehicle moment of inertia abouf x axis
vehicle moment of inertia about y axis
vehicle moment of inertia about z axis

acceleration of gravity

cosine of nominal pitch angle
sin;e of nominal pitch angle
nofninal pitchr rate

nominal velocity along x axis

nominal velocity along z axis

maximum allowable rocket engine deflection (=1, ...

maximum allowable aileron deflection

maximum allowable rudder deflection

reference area for drag induced by aileron control

‘reference area for drag induced by rudder control -

drag coefficient for aileron control

drag coefficient for rudder control o

 stability derivative

stability derivative
stability derivative
stability derivative

stability derivative
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801

DATA:

Stability Derivatives

(all data/radian)

:: :f: f Cyaa L6a C“aa C”ar CLGr C“ar v 8 “ng
(sec)

25 .0 0430 L0458 504 273 _ 510 -1.66 283 | .302
40 0 0458 0444 408 265 _ 489 | -1.68 285 | .315
50 0 0487 0430 462 259 _473] -1.70 286 | .325
60 .0 0544 .0358 394 215 _ 388 | -1.83 291 | 404
65 0 0630 0344 319 181 - 310 -1.99 208 | 468
70 0 0630 .0301 300 173 - 345 | -2.05 326 | .460
75 0 0544 0258 292 206 - 340 | -1.97 384 | 344
80 0 0458 0244 217 186 _ 254 -1.92 356 | .266
90 .0 0286 0172 32 105 a7 | -1.93 299 | .238
190 .0 .0215 00286 0961 055 -.105| -2.03 246 | .269
110 .0 .0158 - .00286 0749 0406 _ 077 | -1.98 96 | 207
140 .0 00859 | -.0T14 0573 .0286 _ 061 | -1.60 122 | - .0284




601

DATA: Vehicle Parameters

flight  m | I : T : I x_ . F

tre, @ (Kend)  (Ked  (Kgd  (m) () (New.)
25 | .218E47 .953E+8 .526E49 .591E49 23.345 - 1.58 1.650E+6
40 L201E47 .856E48 (49049 .547E49 23.42 | ~1.5847 1.760E46
50 .190E+7 794E+8 L 468E+9 51949 23.47 ~1.5914 1.825E46
60 179E47 .733E48 A45E49 491E49 23.52 - 1.5953 1.885E46
65 174847 .702E+48 434E49 478849 | 23.545 ~1.5979 1.920E46 -
70 169E47 671E48 423E49° ABAE+9 23.57 ~1.60 1,940E+6
75 . 160E+7 (629E48 38349 42049 24.13 -1.4626 | . 1.970E+6

80 154847 606E8 | .372E49 | .405E49 24.18 ©-1.455 1.980E46
90 V44E47 559E48 .348E49 . 375E49 24.33 ~1.440 | 2.025E4
100 (133E47 .512E+8 \306E+9 34649 24,535 - 1.4327 2., 040E 46
110 122E47 L4668 J303E49 | L317E49 24.74 _1.4255|  2.060E+6
140 914EH .329E48 \234E49 .228E49 25.62 ~1.400 2.070E+46




-~ 0Lt

DATA: Trajectory Parameters

flight A \Y g cos B sin 8 Q U W g
time (m/sec) / 2 ° ° ° ° ° p
(sec) {m/sec) (m/sec”) . (rad/sec) (m/sec) ( m/sec) (New/m ")
25 95.4 2.0 9.8 - .012 1.0 - .203E-1 95.4 L279E40 .482E+4
40 150. 9.0 2.8 .050 .999 - .512E-2 149. .149E+3 .987E+4
50 190. 15.0 9.79 125 .992 .450E-2 186. . 186E+3 L134E45
60 241. 24.0 2.78 .222 .975 M| 12IE—2 232. .232E+3 174E45
65 272, 22.0 9.78 274 . 962 - .158E-1 257. 257E43 194E45
70 305, 34.0 9.78 , 329 .944 .687E-1 283, .283E+3 .212E45
75 343. 40.0 Q.77 . 384 .923 - . 103E40 310. .310E+3 L226E+45
80 385. 4.0 Q.77 . 449 .893 A12E-1 337. ht L337E+3 .233E+5
90 486 . 30.0 9.76 .566 .824 1 - .227E-2 392. .392E+3 217E45
100 612. 0.0 9.74 664 748 .301E-3 445, .445E+3 . 165E+D
110 768. 0.0 ?.73 .681 732 | - -851E-2 498. AFBEH] L117E45
140 1520. 0.0 9.68 874 486 - .100E-2 673. L673E+3 L23VE+4




Lt

DATA: Deflection Limits for Aerodynamic Surface Controls and Change in Stability Derivatives Due to Dorsal Fins

7 max B4 ax {all data / degrees)

flight rudder hinge aileron hinge
tiz:zc) m(c;r:;;\t limit m?;;egr;f fimit M:YB | A C»LB (ACnB)AFT (A Cng FORWARD
25 no hinge limit nohinge limit |- .011 .0031 .0064 - .,004
40 42.0 | 71.8 |- .012 .0032' .0067 - .0044
50 - 30.8 52.6 - .013 .0033 .0074 - .0048
60 23.5 40.0 - .015 .0036 .0085 - .0056
65 14.7 25.1 -.016 | .o0038 .0094 - .006
70 8.19 | 14.1 - .017 .0042 .0104 - .006
75 | 554 947 - - |-.0165- {  .o042 | .01 - | --.0058-.
80 5.23 8.91 - .014 .0035 0088 | - .005
90 6.27 " 10.69 - .0105 .0027 .0075 - .0044
100 10.23 17.5 -.008 | .o017 | .005 - .0028
110 19.67 | 33.64 - .006 .0014 .004 - .0022
140 ‘nohinge limit nohinge limit |- .004 | .001 0028 - .0015

* hard limits £30 40 up-15down |

* Hard deflection angle Ii_mif.is used when less than
hinge moment limit. '

forward dorsal __/ ‘ \cﬂ dorsal

Cfin (400 D) |  fin (400 %)



APPENDIX C TRIMS COMPUTER PROGRAM

1. PROGRAM USAGE

[nput

The input dota to the TRIMS program consists of punched cards. The data deck
is divided into cases where for example each case computes the trim solution for
different values of roll bias torque. There are seven punched cards per case with the
first card containing the case title and the last card indicating whether another
case follows or whether this is the last case to be run. A description of the information
and format for punching these seven data cards per case is given in Table 1. A somple

of an input data deck for a single case run is shown in Figure 1.
Qutput

The computer printout from the TRIMS program is a single page per case, The
printout resulting from the data deck in Figure 1 is shown in Figure 2. The first part
of the printout lists the information contained on the data cards and used to compute
the trim solution, The trim solution is printed in a convenient tabular form with each
row listing the seven trim angles in degrees for a particular flight time, The number
of iterations required to compute the trim solution at each trajectory point is also

indicated,
Options

Special options have been added to the program since the original development
date of February, 1973, The purpose of these options is described in Table 2 including

the modifications to the input data required to exercise these options.
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TABLE 1:

CARD

TRIMS PROGRAM INPUT DATA .

COLUMNS VARIABLE FORMAT DESCRIPTION
TITLE CARD '
i 1-72 LINE 72A1 Descriptive case title.

CONTROL CARD

1 1-5 IGRAD  I5
1 11-20 EPS E10.3
1 21-30 STEP E10.3

TRAJECTORY CARD

1 - 160 JPT 1275

CARD CONTAINING BIAS TORQUES

o 1-10 Y8BT E10.0
1 11-20 RBT E10.0

CARDS CONTAINING WEIGHTING FACTORS

1 1-70 wl ~ 7E10.0

2 1-70 w2 7E10,0°

CASE PARTITION CARD

] . 1 16g 55

= 1, use lIst order gradient method;
= 2, use 2nd order gradient method,

Upper bound used in the convergence criterion.

Step size used in the st order gradient method;
leave blank if 2nd order gradient method is used.:

If trajectory point no. k, k=1, .-..., 12, is to be
used then puncho 1 in column 5k ; other-
wise puncha 0 in column 5k,

Yaw bias torque.

Roll bias torque.

Seven weighting factors in performance criterion’
for adjusting maximum deflection angles,

Seven weighting factor in performance criterion
for adjusting aerodynamic (drag) and thrust
losses due to trim,

= 1, another case follows .
= 2, last case.

FIGURE 1: EXAMPLE OF INPUT TO TRIMS COMPUTER PROGRAM

STUDY OF LATFRAL TRIM FNY SEACE SHUTTLF

? 0,000} 0.
1 | I | 1 1 1
Ne - 0.
3nnn, anan., 3nan,
0, LI ) 0.
F

NOQ SRM RIAS

1 1 1 1 1 -

- 3000. 3000, 3000, 3000,

0)a " Da .
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FIGURE 2: EXAMPLE OF OUTPUT FROM TRIMS COMPUTER PROGRAM

CASF 1 STUDY OF LATERAL TRIM FOR SPACE SHUTTLE NG SrM BIAS

----------------------------- USE 2ND ORDER RRADIENT METHOD

UPPER BOUND USED IN THE CONVERGENCE CRITERION = 0,100E-Q3
TRAJECTORY POINTS
------ e ————— 1 1 1 1 1 1 1 1 1 1 1 i
SYSTEM DYNAMICS PARAWETERS
s e e —m—————————————— Yaw BIAS TORAUE = 0.0
‘ ROLL RIAS TORGUE = 0.0
PERFORMANCE CRITERION PARAMETERS
- o e e - Wll =3000.09 W2l = 0,0
Wiz =3000.00 W22 = 0.0
wii [GHTING Wl3 =3000,00 W23 = 0,0
FACTORS Wis =23000,00 wea = 0.0
‘ Wis =30060.00 wehn = 0.0
wle =3000,00 W26 = 0,0
wWl7 =3000.00 w27 = 0.0
TRIM NEFLECTINN aNGLFS
e S e —— TaAd, FLIGHT CDELTA NO, OF
PT. T1IME () 2) (3) (3] (5) (6) (n [TERATIONS
...ll..l.l...'III..'V.IIII..III...lI..III..'.lII'Ill'...ll....ll...lll......l..
L] . -
. 1 29.0 0,09 -0,00 0,13 0,0 0.0 0,10 -0al0 - 1
. 2 40,0 0.45 ~0,04 0.99 0.0 0.0 0.14 ~}a26 . 1
. 3 50,0 0,87 -0.,13 l.24 0.0 0.0 Da51 =0.26 . 1
. 4 6040 1.5¢ -0,31 2.40 0.0 0.0 l.43 -0.36 . 1
. S 69,0 Z.04 UL 3,50 0,0 0.0 l.88 -0.39 . 1
N A 70.0 1a71 0,02 2.57 0.0 0.0 0.25 -0,.88 . 1
. 7 75.0 Z2a.26 -0,2% 4,03 0.0 0.0 0.39 -0.89 . 1
. a 80.0 2oan2 -0,39 5,15 0.0 0.0 0,78 -1.03 . 1
. 9 90,0 .54 0.12 3,48 0.0 0.0 1.31 =0,94 . 1
. 10 100,0 =0,00 ~0,00 0.00 0,0 0.0 0.00 =0.00 . 1
. 11 1i0,0 0,00 0. 00 -0,00 0.0 0.0 0,00 0.00 . 0
. 12 140.0 0,00 0,00 -0.00 0.0 0.0 0.00 0.00 . 0
L -
[ A R R N AR NN NN N NN N RN NN P N F E N N N R N N NS RN NN R N NN NN NN
ToP Yaw PITCH Yaw PITCH AILERON RUDDER

<=+—=  DRHITER mm==3¢—=== SRAM . mmm=>



TABLE 2: PROGRAM OPTIONS

Option 1 - The program has the cqp_cbiiify of disregarding the first trim equality constraint.
This equation corresponds to the trim condition of zero net force in the y=direction. To
exercise this option change the nonzero values of JPT on the trajectory data card from

positive numbers to negative numbers.

Option 2 - The program has the capability of computing the trim solution for the case
where the aileron is not used. To exercise this option change the nonzero values of JPT
on the trajectory data-card from a magnitude of 1 to @ magnitude of 2 (i.e., replace

1by 2 and replace - 1 by - 2).

Option 3 - The program has the capability of replccmg the performance criterion stored

internally in the program with the quadrahc performance criterion
10 = (/e +. . +(6,/c)?
[ | o 7" 77

~ where Cpre- s 'c7 are seven constants specified by the user at execution time. To
exercise this option replace the fourteen weighting factors in the inpluf data with the

values

wi(z) = -c;

W2(1) = 0.

s -



2. PROGRAM DESCRIPTION

TRIMS is a FORTRAN IV computer program composed of a single main or
executive routine and many subroutines. The program subroutines may be viewed
as divided into two main groups. The first group is cqmprised of the main rm-.lfine,
entitled TRIMS, plus seven basic subroutines which form the heart of the program,
These are listed in Table 3 together with a brief description of their function. The |
second group contains the utility subroutines which perform a specific motrix operation
such as invert a matrix or print out a matrix. There are thirteen of these subroutines
which are listed in Table 4, With the exception of GMSYMM, all of the utility

subroutines are found in the 1BM Scientific Subroutine Package *

In addition to the calling lists, the transfer of information into and out from
the subroutines is achieved by means of five named CEMMIZNS, Their names are
listed in Table 5 together with a brief functional description, The innerconnection
between the main routine, the seven basic subroutines, and the five named C@MMEZNS
summarizing where each is used is shown in Tableé. The vcricbies; in each of the
named C@MMBMS are listed and defined in Table 7. The other variables in the
program not in a named COMMBN are listed in_Toble 8.

in the following pages the FORTRAN source listing of each subroutine is given,
The beginning of each [isting contains comment cards describing the subroutine which
includes the purpose, input variables, output variables, and the subroutines called,

Flow diagrams are also given for each of the subroutines with the exception of the

1BM SSP subroutines,

* System/360 Scientific Subroutine Package, Version 777, Programmer's Manual,
|BM publication GH20-0205-4, Fifthe edition, August 1970, '
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TABLE 3 : MAIN ROUTINE AND BASIC SUBROUTINES

COST

GYSYMM
MCPY
MSTR
LgC
GMSUB
 GMPRD
GMTRA
MPRD
ceut
MINY
SINV
MFSD
 MX@UT

main routine controlling the basic computational steps.
block data subroutine for storing data internally in the program,
subroutine used to read in and print out the input data.
subroutine used to print out the results of the program,

subroutine for computing the deflechon angles usmg the lst order
gradient method.

subroutine for computing the deflection angles using the 2nd order
gradient method,

subroutine containing the equcmons demeg the sysi'em dyncmlcs
and the corresponding equafions for evaluating the derivatives
required by the gradient methods,

subroutine containing the equations defining the performance
criterion and the corresponding derivatives,

TABLE4 : UTILITY SUBROUTINES

symmetrize a matrix

matrix copy

storage conversion of o matrix

location in compressed~stored maf.rix
subtract two general matrices

product of fwo-genera! motrices

transpose of a general matrix

matrix product

partition a matrix by coiumn

matrix inversion

invert a symmetric positive definite matrix
triangular factorization of a symmetric positive definite matrix

print a matrix

1"z



TABLE5 : NAMED COMMEINS

/COBN/ dimension and accuracy parameters
/ ARRAY / values of trim equation, performance criterion, and
their derivatives
/TRAS/ trajectory information
/SYST/ data derived from the space shuttle configuration for
computing the system dynamics and trim equation
/PERF/ data used to compute the performance criterion
TABLE 6: INNERCONNECTION OF SUBROUTINES AND NAMED COMMONS
—_ -
WEEEEIEEE 233
e | T o800z gETEX
requires | N
TRIMS X X X X D 4
BLOCK LX X X X
INPUT L X X
@GUTPUT I
GRAD1 X X X X
GRAD2 X X1 X X X
SYSTEM : X X
CAST : X X
1
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TABLE7:  Variables in Named C@MMIN

Progrom ‘ ' .
Symbol - Dimension  Symbol Explanation
/CGN/ '
M ce m Number of trim angles.
NS “e n Number of trim equations.
KMAX ‘e Kmax. Maximum number of iterations allowed.
EPSO e € Relative folerance used in subroutine SINV,
MPT R e - Maximum number.of trajectory pointsallowed,
/ ARRAY / ‘ ‘
' AV 6 a Constant terms in trim equations.
BV 6 E (8) & Terms in trim equations varying with trim angles,
BM 60 3b /3 First derivatives of trim equations,
BT 6,60 3% / a6 Second derivative of trim egquations,
RS PN r _ Performance criterion,
RV 10 ar/ 30 First derivative of performance criterion,
RM 100 o’ / aéz Second derivative of performance criterion,
/TRAJ/ ‘ :
JPT 12 Cos Index vector determining which trajectory
: points to use (see program input data),
TF 12 L e Flight times corresponding to the differenr
' possible trajectory points,
/SYST/ o
Y BT cue © e Yaw bias torque (see progrom input data).
RBT “ae ... Roll bias torque (see program input data).
S ‘o S : Reference area.
BREF ce rof | Reference length,

S XLYLZY . .x],y'],iz.[ Coordinates of (top orbiter) engine 1,
X2,¥2,22 ... Xo1¥grZs Coordinafgs of (right orbifer)l engine 2,
X3,Y3,Z3 v e Xg:YrZg Coordinates of (left orbiter) engine 3.

7 X4,Y4,Z4 X40Y 4124 Coordinates of (right SRM) engine 4.

. X5,Y5,Z5 ... x5,y5;.25 " Coordinates of (left SRM) engine 5,
XMRP . xm'p ‘ o
Y MRP ' cee ymrp Coordinates of moment reference point,
ZMRP ‘e Zm ' |
XCG 12 xcg ‘ Coordinates of center of gravuty
ZCG ' 12 zCg (Y =0)
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TABLE7 :

Variables in Nemed COMMBN, Continued

Program

Szmbol

/SYST/, Continued

Q
vV

VY

F
FSRM

CYB
CLB
CNB
DCYB
DCLB
DCNBA
DCNBF
CYA
CLA
CNA
CYR

CLR
CNR

/PERF/
W1

W2

DAMAX
DRMAX

QQ
DMAX

SA
SR

CDA
CDR

Dimension  Symbol
12 q
12 N
12 \'
b4
12 F
12 FS RM
12 C
YB
12 C
28
12 C ”
12 aC,q
12 AC,,
12 (ﬁCnﬁ)AFT
12 (A<, g FoRwARD
12 C
¥ba
12 C
: 160
12 Cnaa
12 C
yor
12 C
. AT
12 Cnar
7 W]
7 W2
12 B9 max
12 O max
12 9
S
a
; Sr
. Coa
CDr

120

Explanation

Dynamic pressure,
Vehicle velocity relative to air.
Side wind velocity.

Thrust per orbiter engine,
Thrust per SRM engine.

Stability derivative,

Stability derivative.

Stability derivative.

Change in Cy due to dorsal fins,
Change in C{,B due to dorsal fins,
Change in Cn due to aft dorsal fin,
Change in Cn due to forward dorsal fin,
Stability derivative.

Stability derivative.

Stability derivative,

Stability derivative,
Stability derivative

Stability derivative.

Vector of relative weighting factors

(see progrom input data).

Vector of relative weighting factors

(see program input data),

Maximum deflection angle allowed for aileron.

Maximum deflection angle allowed for rudder.

Dynamic pressure,

* Maximum deflection angle allowed for

orbiter rocket engines.

Reference areo correspondmg to the drag
induced by the aileron.

Reference area. corresponding to the drag
induced by the rudder.

Coefficient of drag corresponding to the aileron,

Coefficient of drag corresponding to the rudder,



TABLE 8 : Variables not in Named C@MMZN

Program | o

Symbol Dimension  Symbol Explanation

T CASE - .‘ . Number of the current cose.

IGO .. voe Index controlling sequence of cases.

z ‘e Do loop index. |

L .. . Number of the trajectory point,

I GRAD .. .o Order of the gradient method to be used.

K .. k Number of the iteration, |

EPS . € Convergence bound in gradient methods.

TIME .. t Flight time of the current trajectory point,

STEP - o Iteration step size used in first order gmdienf merhbd.

DELTA 10 [} Vector of trim angles. |

LAMDA é A Vector of Lagrange multipliers.

J ‘e . Do loop index,

DET . Determinant of a matrix

MNS . . Difference between number of trim angles and trim

equations S

N@RM . N Quantity for. determining trim solution accuracy,
. RU 10 r, Subvecro-r of 3r/36.

RX 10 r Subvector of 31/ 38.

X 10 x Subvector of § (subroutine GRAD1).

X 10 ces Dﬁmmy vector (subroutine GRAD2),

BX 40 Bx Scjuure nonsingular submatrix of ab_/ 38.

DU 10 Ay Correction to subvector u of §.

BU 60 Bu ‘Submatrix of a_lg/ag_.
-Jd7 . ‘oo Matrix element index
‘M2 .. vee = m{m+1)/2, _

TER - .ee Index used to indicate érrqrs in inverting

a positive definite matrix, 7
HL ].0 h?\' Derivative of hamiltonian with respect to Al '
R 100 hd& Second derivative of hamiltonian with. respect to Q. |
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TABLE 8 : Variables not in Named C@MMPB N (Continued)

Program
Symbol Dimension  Symbol Explanation
Y 10 ce Dummy vector
DEL 10 Ad Correction to §.
BR 60 BR™! Matrix product.
LAM é AA l Correction to™ A,
8RB 36 BR'E  Matrix product.
HD 10 h6 Derivative of hamiltonian with respect to §. -
D 60 N Dummy matrix,
60 h)\ 5 Mixed second derivative of hamiltonian,
CYBCG e Stability derivative C  about cg .
"8
CNRCG e e Stability derivative C_ about cg .
: o
CLBCG cae “e Stability derivative €  about cg.
LB :
CNBCG e . Stability derivative < about ¢g .
B8
CLACG . o Stability derivative CL about cg .
a
CNACG “ee ‘s Stability derivative Cn about cg .
a
CLRCG _— Ce stability derivative CL about cg .
r
cl Cos 18°,
C2 " . « COS ]20.
3 ces e Cos 3.5¢
C4 ces cen Cos 15°,
S1 Sin 18°,
52 e . Sin 12°,
$3 e e Sin 3.5°,
s4 e Sin 15°,
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TABLE 8 : Variables not in Named C@MMBN (Continued)

Program _

Symbol Dimension  Symbo) Explanation

Il .o cen Matrix element index.

Qs cen Product g5 .

QSB ¢ e a s . Pl’oducf quref "

RAD ‘e .o Conversion factor from radians to degrees.
BETA .o B Side slip angle.

Ir P e Vector element index.
.C PR van Dummy vector,
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#ew  TRIMS COMPUTER PRNGRAM #ae

DEVELOPED RY: M HUTTON THE SINGFR CO. FERRUARY 1973
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PURPNSE MAIN ROUTINE FOR EXECUTION OF COMPUTIONS OF LATERAL

------- TRIM ANGLES FOR SPACE SHUTTLE.

INPUTS {(SEE SURROUTINE TNPUT),

OUTPUTS {(SEE SURROUTINE OQUTPUT), -

SURROUTINES CALLED INPUT & GRAD> » GPRADZ2 + OUTPUT .

REAL LAMD A
NIMENSION DELTA(LD) « LAMDA(SK)
COMMON /CON/ M + NS s KMAX « FPS0 « MPT

ITNITIALIZATION
TCASE = 1

NG 10 I=leM
DELTAL(IY = 0,
DO 20 T=1+NS
LAMDA(T) = 0,

ENTER INPUT DATA
CALL . INPUT(IGRADIEPSSTEPIGOs ICASE)

COMPUTE TRIM SOLUTION FOR EACH OF THE SELECTED POINTS ALONG
THF TRAJECTORY
NO 60 L=1sMPT

DETERMINE COMPUTATIONAL METHOD TO BE USED
IF(IGRAD-1}) 50440450

COMPUTE TRIM SOLUTION USING 1ST ORDER GRADIENT

CALL GRAD1(KsLsTIME+DELTASLAMDA+IGRANSEPSsSTEP)
GO TO &0

COMPUTE TRIM SOLUTION USING 2ND ORDER GRADIENT

CALL GRADZ2(KeL+TIME+DELTAsLAMDASIGRADWIEPS)

PRINT RESULTS
CALL OUTPUT(KsL+sMeTIMEIDELTAIMPT)

TEST IF END OF COMPUTER RUN
IF(160=1) B0O+s70+R0
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TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM

- TRM

TRM
TamM
TRM
TRM
TRM
oM
TRV
TRM
TAM
TRA™
TRM
TRM
TRM
TRM™
TRM
TRM
TRM
TRM™
TRM
TRW
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM

TRM

TR™

TRW

TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM
TRM

0010
0020
0030
0040
0050
0060
0070
0080
00990
0100
o110

0120

0130
0140
0150
0160
G170
0180
0150
0200
02140
0220
0230
0240
0250

0260

0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590



C aea
70
€
RO

GO TO THE NEXT CASF
TCASE = TCASE + 1
G0 TO 30

caLL EXIT
EMND
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TRIMS Flow Diagram

START

ICASE =1

I ion
noon
o o

~ g m i

70

r—— ="

ICASE =
JTCASE +1

o IGD, TCASE

7

k NO
JGRAD =]

KLt &M\
I GRAD, €
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BLK

SURPRNGRAM RLOCK BLK

- BLK

------------- -.-------}---—------———-——----—-——_—-----—w---—-ﬁ——‘--‘-'--QLK_"

ALK

PURPOSE RLOCK DATA SUBROUTINE FOR STORING DATA INTERNALLY IN THE BLK

------- PROGRAM, THIS 1S THE AERODYNAMIC DATA REQUIRED TO COMPUTEBLK

COFFFICIENTS OF LATERAL TRIM EQUATIONS. BLK

BLK

COMMON R NCKS /CON/ o /TRAJ/ o+ /SYST/ o /PERF/ . ALK

- . . : BLY

. BLK

P A B # & o8 B & B 4 8 % # # # # 4 @ # # b # & & ¥ ALK

* # % & # # B OB B o# # LR 2R B A R # & # & ALK

BLK

ALOCK DATA BLK

BLK

_ BLK

COMMON ZCON/ M s NS » KMAX FPSO » MPT BLK

COMMON /TRAJ/ JPT(12) » TF(12) _ BLK

COMMON /5YST/ YRTs RBT. Xle X2¢ X3s Xbs X59 XMRPs BLK

. Se BREF Yle Y29 Y32 Yas Y59 YMRP.. BLK

’ Zls Z2s 739 Zids ZSs ZMRP, : BLK

XCG(12)» ZCG(12)» Q12 Vil2)» VY{l12)s RLK

F(l2)s FSRM(12)» CYR{12)« CLR{(12).: CNB{(12)+ RLK

DCYR(12) DCLR{12) DCNBA(]12)« DCNBF(12) . CYA(12)s BLK

CLA{12) s CNA(LI2) CYR({12)» CLR(12)» CNRI(12) BLK

COMMON /PFRF/  W1(T)es W2(T}o DAMAX(IE)cQRMAX(lE)u‘QQ(lE); ‘ 8LK

1 DMAXs SAs SRe CDAs CDR Bl

: BLK

: . _ BLK

DATA MyNSeKMAXSERSOsMPT / Ts 39 3o 0,00001s 12 / ALK

: BLK

DATA TF / 25,0 & 40.0 » 50,0 » 60,0 s 65,0 o T0.0 ALK

1 ‘ 75.0 + 80,0 s 90,0 » 100.,0 » 110,0 » 140,00 ~/ BLK

. ‘ BLK

DATA xl!Yl’Zl / 0.9 0. . "9.34 Vd BLK

‘DATA. X2eY29Z2 / O, 1.346y ~6.68 / BLK

DATA X3¢Y39Z2Z3 /7 Ous ~1.346s =6.68 / ALK

DATA X&sYaeZ4 / (.0 O, s D / BLK

DbTA x'SOYSQZS / _D.. O. L] 0. / BLK

. BLK

"DATA XC6 /23,3459 23,42 9 23,47 » 23.52 + 23.545, 23.57 » RLK

) 24,13 s 24,18 » 24.33 ? 244535y 24,74 » 25.62 / PRLK

) . - . ' : RLK

DATA 2ZCG / =1.,58 +=1eS9B4T 0=1,55144=]1,59539=]1,59T79+=1,60 BLK"

1 =l ,86263=1,455 9=1,440 +=1,43279=1.4255+=1,400 / BLK

o BLK

‘ DATA XMRPsYMRPsZMRP / 21.69 Dos =1,47 / BLK

- . RLK

DATA Q /  +4B2E+4 + J98TE+4 v +134E+5 s +1T4E+S o RLK

1 «194F+5 v +212E+5 s J22BE+5 s JZ233E+5 ’ BLK

rd +21TE+S ' +165E+5 » J11T7E+S » «231E+4 / BLK

’ BLK

DATA S « BREF / 317,73 » 28.322 / ALK

. : . RLK

NATA V 7/ 95.4 » 150. o 190, » 241, s 272. 305. ¢  BLK
1 343, v 385. + 486. 1+ 612. ¢+ 768, 1520, /

ALK
s

?

. 0010

0020
0030
0040
0050
0060
0070
0080
0090

0100
0110
0120
0130
0140
0150

0160

0170
0180
0190
0200
0210 .
0220
0230
06240
0250
0260
0270
0280

02990

0300
0310
0320
0330

0340

0350
0360
0370

0380

0390
0400 -
0410

0420

0430
0440
0450
0460
0470

0480
0490

0500

0510

0520
0530
0540
0550
0560
0570
0580
0590



e}

O

[sReNe Ny

NaATA
DATA
NATA
NATA
NATA
DATA
NATA
DATA
NATA
NATA

NATA

NATA
DATA
DATA
NDATA
DATA
DAfA
DATA
DATA

DATA

FSRM

cYa
CLR
CNR
NnCYR
DCLR
NDCHRBA
NCNBF

CYa

CLA

CNA

cvye

CLR

CNR

DAMAX

DAMAX

DRMAX

Qg

/

S

’ 15.
+ 30.

G4E+6

s=1.70
v=],.93

s=,286
0_0299

s +325
s .238

!-.01_3
9-90105

s 0033
s 00287

+ 40074
L] '0075

1= 0048
1=,0044

o=, 0487
’-00286

L) 0043
* -0172

L] -462
L] 3132

L4 .259
¥ .105

=473
Q-.137

+ 40,
L] 10.69

? 15.
b 10069

+ 23.5
L] 6.27

2- L 9-
40. L} 44.
1065E*6 L4 1-76E*6
1.92F+6 s 1,94E+5
2.025E+6 ’ 2-
12%0., 7/
-1166 ,-1068
=197 +=1,92
=+2R3 +-.2R5
-2 384 9-.356
«302 + L315
¢3A4 L] .266
~«011 »-,012
=.0165 +=-,014
«0031 » L0032
«0042 » L0035
«0064 o« ,0067
«01 v +00BR8
004 +-,0044
=+, 0058 +-,005%
12#0, /
=+0430 +-,0458
-+0844 +~-,0458
0458 » 0444
«0258 + 0244
0504 ’ 0408
292 ¢ L217
«273 » 4265
«206 » L1B6
=510 +-,489
~e340 4-,254
400 * 40-
St 7 v 5,91
15. L 150
9.47 ¥ 8-91
30. 9, 30.
5.54 + 5,23
+4B2E+4 o SBTE+«4

«194E+5 y JZ212E+5
«217F+5 v J165E+H
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s 24, s 29, v 34, [}
vy 0. y 0O, v 0, /
’ 1.825E‘6 * ]-8855+6 L}
v 1.97E+6 v 1 .9RF+6H .
s 2,06E+6 v PL,07E+6 /
1183 41,99 +=2,05
9-2.03 !-1.98 1-1-60 /
1=¢29]1 9= ,29R +=,326
1-‘246 9-.196 9'.122 /
2 L4004 9 L46R 9 L4B0 »
] .269 1} .207 ’-.0284 /
r—.015 s=,016 =017 ]
+=,008 +=.,006 +=,004 /
v L0036 s L0038 » ,0042 »
v 40017 » L0014 » ,001 7
v 0085 s D094 s L0104 »
v L005 » 004 o ,002B /
"o 0056 s=.006 +-,006
s=,0028 +=.00722 +-,0015 /
1= 40544 +=,0630 +=,0630 »
1=,0215 +=.0158 »-,008%9 /
s L0358 » L0344 o 0301 »
s ,00286+=,002RGe=,0114
1} .394 L} 0319 14 .300 L}
s L0961 » L0749 ¢+ 0573 /
v «215 o 181 v L1733 »
» J05%5 o+ ,0406 » 0286 /
#=,388 +=.310 +=~,345
124105 4=,077 4+=,061 7/
+ 40, s 25,1 s 14,1 s
’ 17-5 L ] 33.64 ] 40- /
s 15, s 15, y 14,1
L 15. L] 15- * 15. /
s 14,7 » B.19 » 8.19
10.23 » 19,67 » 30,0 7/
] .13‘E+5 . -174E*5 ]
v J226E+S » .233E+5 ’
s J1LTERS !/

v J23lE+a

ALK
RLK
RLK
RLK
BLK
RLK
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RLK
RLK
ALK
BLK
BLK

- BLK

ALK
RLK
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BLK
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8LK
ALK
BLK
BLK
BLK
BLK
BLK
RLK
RLK
8L K
BLK

8LK

BLK

0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860

0870

08a0
0890

0900

0910
09720
0930
0940
0950
0960
0970
0980
0999
10600
1010
1020
1030
1040
1050
1060
1670
1080

1090

1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
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OO0 0OD OO0 00N

INT

SURBROUTINE INPUT{IGRADIFEPSsSTEP+IGOs ICASE) INT

INT

------------------------------------------------------------------ INT

INT

PURPOSE SURROUTINE USED TO READ IN AND PRINT OUT THE INPUT DaTa, INT
—om——— INT

. INT

TNPUTS ICASE = NO, OF CURRENT CASE. INT
______ ‘ ©INT

. ' INT

NUTPUTS IGRAD = ORDER OF GRADNIENT METHOD TO BE USED. INT
------- EPS = CONVFRGENCE ROUND. INT

STEP = STEP SIZE IF 1ST ORDER GRADIENT METHOD USED. INT

160 = INDEX CONTROLING SEQUENCE OF CASFS, INT

: INT

SURRQUTINES CALLFD NONE _ INT
----------------- . : INT

. INT
ﬂ'ﬂ‘%ﬁ'###ﬂ'ﬂﬁﬁﬁ##**###ﬁﬂﬁﬁ####ﬂ####ﬂI~T
'H-H‘ﬂ'ﬂ'*i*%ﬂﬂﬁ'#ﬂ-*ﬂ-*%*%*ﬂﬁ#*ﬂﬁ##‘ﬂ'#ﬁﬁﬁﬁINT
INT

SUBROUTTINF  INPUT (IGRADEPSsSTEP» IGOsICASF ) INT

INT

' . INT

1000 FORMAT(72A1) : : INT
1010 FORMAT({1H]1 sOXs4HCASEST398Xs 7241 / 10XsbH=nw= ) INT
1020 FORMAT(//5Xs30HCOMPUTATION CONTROL PARAMETERS) INT
1030 FORMAT(IG+5X+2F10,.3) : INT
1040 FORMAT(S5XeJ0H-===memecamer e cca e ca—cmecc~ v10Xe61IHUSE 1ST ORDERINT
1 GRADIENT METHOD ITERATION STFP SIZE = »E10.3 / 50Xs3H=~-=) INT
1050 FORMAT [SX s 30H==~scmc e m e e rcr e rrrem e n - - 210X e31HUSFE 2ND  ORDERINT
1 GRADIENT METHQD / 50X 4 3H===} ’ INT
1060 FORMAT(SBX +48HUPPER ROUNDR USED IN THE CONVERGENCE CRITERION = INT
1 F10.3) INT
1070 FORMAT(5Xs17HTRAJFECTORY POINTS ) INT
1080 FOPMAT(1215) INT
1090 FORMAT(5Xs1TH-—memcmme e e —e 213X%X41215 ) INT
1100 FORMAT (//76X+26HSYSTEM DYNAMICS PARAMETERS) INT
1110 FORMAT{2F10.,0) INT
1120 FORMAT (SX s PhH-~wwrerccmcarrre e rmrenmeaa +9Xs INT
1 18H YaWw RAIAS TORQUE =+Fll.1 / INT

2 40X e 1RHROLL BIAS TORQUE =+Fll.1 ) INT
1130 FORMAT (//5X+32HPERFORMANCE CRITERION PARAMETERS) INT
1140 FORMAT(7F10,0} INT
1150 FOPMAT (5Xy3P2Hemracra e e et c—c—— - ——————— . INT
1 : 13X eSHNLI] =oFT7.2215X+S5HWZ2] =4FT,2 / INT-

2 BOXsSHWLIZ =eFT742315XsSHWPZ2 =9FT.2 / INT

3 35X+IHWFIGHTING+6X«SHW1 3 =aF 7,20 15X sSHW23 =4FT7.2 / INT

4 3SX+GHFACTONRS  +6XsSHN1A =sF 7,24 15X +SHW24 =4FT,.2 / INT

2] S0Xs5HWIS =eF7.2¢15XsSHW2S =oFT.2 / INT

6 S0XsSHWIE =oFT,.2+15XsSHW26 =yFT.2 / INT

7 S0XsSHW1T7 =4F7e2¢15Xs5HW2T =9FT7.2 ) INT

1160 FORMAT (T1) INT
1170 FORMAT(//GX+66H% # # ERROR IN THE INPUT DATA =~ COMPUTER RUN TEINT

IRMINATED # # # ) INY
| | INT
DIMENSION  IDP(50) « ICP(50) » LINE(72) : INT
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0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
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0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
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0520
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0540
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0580
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s e Nel

o

o0

COMMON /CON/ M s NS o KMAX o« EPSO o MPT

COMMON /TRAJ/ JRT(12) s TFL1Z2)

" COMMON /SYST/  YRY, RART

42

22

10

20
30

#44%

LE-E -

LA L)

1
2

LA 4

260

210
220

COMMON /PERF/ W1(7)s wW2(T)

FNTER CASE TDENTIFICATION TITLE
READ(S5,1000) (LINE(I)sI=1472)

WRITE(He1010) TCASE o (LINE(I)sI=

1¢72)

ENTER COMPUTATIONAL CONTROL PARAMETERS

WRITE (A21020)

READ(S+1030) IGHAD » EPS « STEP
TF(IGRAN=2) 10+20010 '
WRITE(641040) STFP

GO TO 30

WRITF {6+1050) ,

WRITF (6+1060) EPRS

ENTER POINTS 8LONG TRAJECTORY FOR COMPUTING TRIM

WRITE{6+41070)

READ(S.10R0) {(JPT(I) s I=1+MPT)

WRITE (6+1060) {JPT{I)»I=1eMPT)

ENTER SYSTEM DYNAMICS PARAMETERS
WRITE(6¢1100)

REBAD(S+1110) YRT o+ RAT

WRITE th6s1120) YRT o RART

ENTER PERFORMANCE CRITERION PARAMETERS

WRITE{64+113D) :
READ(501140) (W1{I)eIzm)lsM)
READ(S5e1140)° (WPII)el=1aM)
WRITFi6+1150) W1(1) s W2{l) o
' Wlla) o« W204)
W1{7} s W2LT)

ENTER END OF CASE CARD
READ(S21160) 16O

TFII6GN=1) 20042202200 -

JFLIGO-2) 2104220:210
WRITE{(6+1170)

CaLL EXIT

CONT INUE

RETURN
END

wicz)
W1{5)

13N

y WZ2(2)

INT
INT
INT
INT
INT
INT

INT

INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT

INT

INT
INT
INT
INT
INT
INT
INT
INT
INT

CINT
INT

0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
6729
0730
0740
6750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060



INPUT Flow Diagram

( EINTER ’

(1000) y (1 10.)

( LINE Y BT, RBT
r'(IOIO) . _ J (1120) -

I CASE,
LINE

Y BT, RBT

TGRAD, EPS,
STEP

(1080)
JPT
210 (1170)
l (1090) - (170
ERROR IN
THE INPUT

DATA
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C“ ———————— - . - D S R - o - - -w.-----_-.----'-'OUT
c ouT
C SUBROUTINE OUTPUT(KsLsMsTIMESDELTAsMPT) ouT
c ouT
c R Y D E LT SR ——————— cmmmmemesmmcmsemmeme=eQUT
c _ : . , ) OUT
¢ PURPOSE SUBROUTINE USED TO PRINT OUT THE RESULTS OF THE PROGRAM. OUT
. —————aa : - . .. OuT
‘. ouT
¢ INPUTS K = NO, OF ITERATIONS. - OUT
C  =mn———- L = NO. OF ‘THE TRAJECTORY POINT, ouT
c M = NO. OF TRIM ANGLES, ' out
. - TIME = FLIGHT TIME OF THE TRAJECTORY POINT. ouT
c DELTA = VECTOR OF TRIM ANGLES. our
C MPT = INDEX USED TO DETERMINE LAST THlJECTORY POINT.OUT
c . our
c QUTPUTS NONE - ouT
c ——————— OUT
c ouT
C  SUBROQUTINES CALLED NONE out
c SHmms—m——f. essee- - our
C , : ~ , ourT
c ## % ¢ & ¥ # & # 8 & ¥ 4 £ 8 4NN NSNS RN RN RN OUT
C L - B - R BN K K BEE Y BEE- JEE - BN AR R K 25E . JEE TEN BN NEE NN K NN NEECDEE JEE BEN BEE BEE B 3 OUT
c o ; ' Out¥
SUBROUTINE OUTPUT(KsLsMsTIMESDELTASMPT) . ouT

c : o ouT
C o ' ouT
1010 FORMAT(////5X+22HTRIM DEFLECTION ANGLES ot ouT-
1 ‘ /5X 9 22Hm=wrnmmm e e nnem—ae s TXs 1 3HTRAJ.  FLIGHT 26Xy OUT

2 YHDELTA932X96HNO. OF / 35X+8BSHPT, TIME. - (1) (2) A3) ouT

3 - (&) (5) (6) (7) ITERATIONS ) ouT
Cl020 FORMAT(35XKeI342X9F6.101XeTFB.2+7Xs]S) ‘ ouT
1020 FORMAT(31XslHes3XoI392XeF6a101XsTFBe294X0 Ha92X915) ouT
1030 FORMAT{ 48X+55H TOP YAW = PITCH  YAW PITCH AILERON RUOUT
 1DDER » /48Xs40HC==-~ ORBITER —wneymemm= SRM  ====> ). - OUT
1040 FORHAT(31X’77HOCU.t...........-‘..l..‘...'.......'.....'.........QOUT

’ l0..0.0...!0.0.0...'!‘...' , OUT
1050 FORMAT(31XslHes75Xs1Ha) . OuUT
c out
DIMENSION DELTA{(1) » ANGLE(10) ouT

DATA RAD / S57,2957795 / ouy

. ‘ ouT

. ) . ) ‘OUI

S IF(L=1) 20510420 S ouT

10 WRITE(6»1010) ouT
WRITE(6+1040) . QUT.
WRITE(621050) - QUT

. 0010
0020

0030
00490
0050

0060

0070
00890
00%0
0100
ollo
0120
01390

0140 .

0150
Dle0
0170
0180
0190
0200
0210
0220
0230
0240

0250

0260
0270
0280
0290
0300
0310

0320

0330
0340
0350

0360
0370

0380
0390

0400

0410

0415

0420

0430
0440

0450
0460
0470



20
35

40

50

- 60

IF(K) 40930430

DO 35 I=1sM .
ANGLE(1) = RAD # DELTA(I)
WRITE(6+1020) L » TIME
IF(L=MPT) 60350560
WRITE(691050)

WRITE (691040

WRITE (6+1030)

RETURN

END

{ANGLE (I)oI=1eM) s K

ouT
ouT
ouT
out
ouT

~ouT
_ouT

ouT
ouT

- QUT

0480

0485

0486
0490
0500
0510
0520
0530
0540
0550



@UTPUT Flow Diagram

10
top

table
- heading

L, TIME,
DELTA, K

bottom
table
heading

RETURN
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-———---———--hd'--———--—-——-"——-—---—-5--. ------------- - b A A ONE

ONOMOO00O00O0000a000n0O00000 00

ONE -

SURROUTINE GRADL (ReLsTIMEsDELTAsLAMDAS IGRADIEPSISTEP) . ONE

. ' ONE

o e e e e T o R T L S S S e e ONE
ONE

PURPOSE SUHROUTINE FUR CUMPUTING THE DEFLECTION ANGLES USING THE ONE
------- 15T ORDER GRADIENT METHOU,. : ONE

_ : ‘ ' © ONE

INPUTS K = NO, OF ITERATIONS, ' - ONE
------ L = NO. OF THE TRAJECTORY POINT, ONE
TIMe = FLIGHT TIME OF -THE TRAJECTORY PUOINT. ONE

DELTA = INITIAL GUESS OF TRIM ANGLES. ONE

LAMDA = INITIAL GUESS OF LAGRANGE MULTPLIERS. ONE

16RAD = 1 . ‘ " ONE

EPS = CUONVERGENCE HOUND. . - ONE

STEP = 3Te® SIZE. _ : ONE

' . o ONE

QUTPUTS DELTA = VECTOR OF TRIM ANGLES. ONE
------- LAMDA = VECTUR OF LAGRANGE MULTIPLIEKS. ONE

. . : ONE
SUBRQUTINES CALLED SYSTEM 9 COST » MCPY ¢ CCUT » MINV » GMPRD .ONE
----------------- ONE

A o ‘ T ONE
T I R R I I N TN N N N R T L R 113
'4ﬁ-ﬁvﬁ-ﬂ--*{}#ﬂv-ﬂ-ﬁ-'ﬂ*######ﬁ####*ﬁ*i##ﬁﬁ*ONE
ONE

SUBROUTINE GHADItn9L-TIMEoDELTAaLAMDAvIGRADoEPSsSTEP) : ' ONE
C . ONE
C ONE

1000 FORMATA(//S5XsTSH#® wARNING ®# 15T ORDER GRADIENT ALGORITHM USED THONE

1E MAX. NO+ OF ITERATIONSsI4 /20XKs6HNORM =sE10.3s10XeSHEPS =sE10,3)ONE

C ' 'ONE
C L] . . [ ] . - L] TYPE AND STOQAGE. ALLOCATION [ ] L] - [ ] » - L] @ .ONE
REAL  LAMDA s NORM : _ - : ONE
DIMENSION  DELTA(L10)s LAMDA(B)s BX(60)s BU(B0)s RX(10}s RUC10}» ONE

| A COX(10)s DX(10)e DUCIO)s LB(1O)» MB(10) ' ONE
COMMON /ARRAY/ AV(6)s BV(6)s BMI60)s BT(6960)s RSy RV(10)s RM(100)ONE
COMMON /CON/ M s NS 3 KMAX » EPSO 9 MPT . ONE
COMMON /TRAJ/ JPT(12) o TF{12) . ONE

c : : ' - ONE
c - _ o ONE
¢ #aw TEST WHETHER THIS TRAJECTORY POINT IS TO BE USED = . ONE
IF(JPT(L)) Seles ' ONE

1 K = ~1 _ : _ : "ONE

GO TO 130 _ o , ONE

c , S o - ONE:
C ##+¢ COMPUTE THE TIME OF FLIGHT : o ONE
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OO

(s Ne}

o0 00

oo

00

o0

Wiy

TIME = TF (L)

START INITIAL ITtHATION
K = 0

CMNS = M .= NS

10

B2

it

30

41

ik 4
50

L.A-2- N

60

. b5

L
To
80

& 43

-4 X

4

‘90

CONTINUE

COMPUTE GRADIENT TERMS CORRESPONDING TO SYSTEM DYNAMICS
CALL SYSTtM(KvLoNbpMQDELTAoIbRAD}

PARTITION ThE MATRIK BM INTO MATRICES BX 'AND By
IF (MNS) 30+30s40 : : . '

CALL MCPY(BM;HK;NS;H;U)

G0 TO 50
J = NS + ]
CALL CCUT(BMsJsBXsBUSNSsMs0)

COMPUTE THE INVERSE OF THE MATWIX BX
CALL  MINV(BXsNS9DET»LHsMB)

COMPUTE VECTOR X

DO 60 I=1lsNS

DUCI)Y = =~ AV(I) = BVI(]}

CALL bMPRU(BXiUU’UX!N&;NS!l)
DO A5 I=1eNS

X{I) = X(1) + UX{I)

CUMPUTE GRADIENT TERMS CUORRESPUNDING TO PERFORMANCE CHITERION

DO 70 I=1+NS
DELTACL) = X(I)

IF (MNS) 130+130s80

CALL COST{KsLsMsDELTAs IGRAD)

PARTITION THE VECTOR RV INTO VECTORS RX AND RU.
J o= NS o+ ] . ‘
CALL. CCUTIRVoJ!RK'RU:loM!O)

COMPUTE THE VECTOR LAMDA
CALL GMPRD (RXsBXeLAMDAS19NSINS)

COMPUTE THE NEW ESTIMATE OF DELTA

CALL . GMPRDiLAMDA’BUvDUolsNS-MNS)

0"”“ = 0.

DO 90 I=1eMNS

DULI) = ( DUCI) = RU(I) ) * STEP
NORM = NORM '+ DU{I)##g
DELTA(NS+I) = DELTA(NS+I) + DUCD)
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ONE
ONE

ONE

ONE
ONE
ONE
ONE

© ONE
' ONE

ONE

. ONE
ONE

ONE

- ONE

ONE
ONE
ONE
ONE
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ONE
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ONE -

ONE
ONE
ONE
ONE
ONE
ONE
ONE
ONE

.ONE

ONE
ONE

" ONE

ONE
ONE

 ONE

ONE

-~ ONE

ONE

ONE.

ONE

. ONE’
 ONE.
" ONE
ONE

0490
0500
0510
0520
0530

0540

0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
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0700
0710
0720
0730

0731

0732
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0770

0780
0790

0800
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0900
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a0 o0

OO

95

LR

100

s
110

~12v
130

D0 95 I=1eNS

NORM = NURM + DA{I)®®2

TEST IF THE NEw ESTIMATES ARE SUFFICIENTLY ACCURATE
IF (NORM=EPS)

CHECK FOR EACESSIVE NUMBER OF ITERATIONS

13091309100

IF(K=KMAX) 110+1205120

PERFORM ANOTHEw ITERATION

K = K + 1
GO TO 10

WRITE(6e1000)
RETURN
EN{

Ke

NORMy

EFS
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ONE

-ONE

ONE
ONE
ONE

. ONE_
" ONE

DNE
ONE

ONE-

ONE

'ONE

ONE

0941

0942
0950
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0990
1000
1010
1020
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1670
1080



GRADI1 Flow Diagram

K=1
TIME = TF(L)
K=20
MNS = M-NS|
o ¥
Compute

a,b,3b/38

30

B =BM=23b/25

M
"‘-——-'—.—-I-'
BM=[B B ]
X U
. 3
NS
50 1
- !
X

-5 (a +b(8)

]
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X
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GRAD 1 Flow Diagram {(Continued)
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Compute
ar/ 38
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OO0

1030 FORMAT (//5Ke6THE% WARNING ##

'annnnohnnnnnonnnnnnnnnnnd

1016 FORMAT(//5Xe65H#%# WARNING w2

--—-----i*-------—-------7-f——---r--ﬁ--—4--f--4----f—ﬁ--ff-------'TUO

SUBROUTINE

L S g

1 K =31305%sSHEPS =9E12,3 /)

ATRIX R

1 K =el3eSXeSHERS =eE1Z2.3 /)

L LTRIX BRB.

1040 FORMAT (//5X»68H%# WARNING ##

1050

c 1060

BoR A B E BB AR d S d R R R RE RN RN THO

' . ‘ ‘ ‘ TWO.

GHADZ2 (KoL o TIMESDELTASLAMDAS IGRADEFS) TwWO

. ' o TWO
1000 FORMAT(//5Xe55%H%# FRROR #% MATRIX R 1S NOT POSITIVE DEFINITE' - TwWo
TwO

LOSS OF SIGNIFICANCE IN INVERTING MATWO

_ K-=eJ3eS5XeSHEPS =9E12.3 /) TWO
1020 FORMAT (//5K¢57Ha4 ERROR -#% MATRIX 8RB IS NOT POSITIVE DEFINITE TwWO
Two

LOSS OF SIGNIFICANCE IN INVERTING MATWO

K =+]3+5X+SHEPS =9E12.3 /) TwWo

2ND ORDER GRADIENT HETHOD USED HAX. TwWO

INO, OF TTERATIONSsI3+5X95HERPS =9E12,5¢5X16HNORM =9E12,.5 /) - TWO

TWO

FORMAT(/1O0X+20HMATRIX R (INVEHbEl)_ TWO

‘ ‘TWo .

FOHMAT(/IOK-IIHMATRIX BrB )} Two

TWO

TWO

1070
1080

FORMAT (/10XsSHMATRIX K )

FORMAT (/10Xe9HMATRIA 8 )

DIMENSION
1

. REAL LAMUA v LAM » NORM

DELTACLCG)s LAMDA(SB) s DEL(10G)s LAM(B)

"R(100}s BU(60)s BR(60)s BRB(3I6)s D(60)s X(108)s Y(10) . THWO
COMMON /ARRAY/ AV (6)s BV(H) BM(60)y BT(6+460)9s RSy

141

¥

TWO

SURRQUTINE  HRADZ (KoL e I IME2DELTA+LAMDAY IGRADYEPS) TwO
. - - . Two

emem e m——— ————————— ——m—e——— —————— e e e— .- ———————————— e mm——————— TWO
. "TWO
PURPUSE  SUBROUTINE FOR COMPUTING THE DEFLECTION ANGLES USING THE TwO
memmmme  ZND ORDER SRADIENT METHOD. TWO
- THO

INPUTS K = NO. UF ITERATIONS. TWO
------ L = NO. OF THE TRAJECTORY POINT. TWO'
TIME = FLIGHT TIME OF THE TRAJECTORY POINT, - TWO

DELTA = INITIAL GUESS OF TRIM ANGLES. - TwWO

LaMbDa = INITIAL GUESS OF LAGRANGE MULTPLIERS. Two '

IoRay = 2 . Two

ERS = CONVERGENCE BUUND. TWO

: TwO

OUTPUTS DELTA = VECTUR OF TRIM ANGLES. TWO
------- -LAMDA = VECTUR OF LAGKANGE MULTIPLIERS, Two
) ‘ . TWO
SUSKOUTINES CALLED SYSTEM s COST s SINV 9 MXOUT s MPRD Two
----------------- GMTRA « GMPRD s GMSYMM s MSTR 4 GMSUB ,. -  TwQ
: TWO '

* e oa & * TWo

HD(10)s HL{10)sTWO

RV(10)v-RM{100)TWO

6010
0020
0030
0040
0080

0060

0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180

0190

0200
0210
o228
0230
0240

0250

0260
0270
0280
0290 .
0300
0310.

0320

0330
0340

0350

0360
0370
0380
0390

0400
0610
0420°
0430 -

0440

0450 -

0460
0470
0480



(o e e

A
1
N
C [ X ¥
b
C
C= -
o owdrw
6
C— -
PG
C
C 4% Sk 4F
20
C
C owes
36
c
C s
40
c .
C wua
C .
C
C

o]
. -]
%
%

COMMON /CON/ M s N5 » KMAX » EPSO o MPT
COWMON Z/TRadZ  JPT(12) » TF{12)
FGUIVALENCE  (R(1)sBM(1))

TEST wHETHER THIS TRAJECTORY POINT IS TO BE USED
IF(JPT(L)) Seiebh ‘

K = -1

G0 T 164

COMPUTE THe TIME OF FLIGHT
TI»e = TF{L)

GPTION FUR DISREGADING ATLERON
[F(JRTIL)+2) 1096010
[GrAD = = [iGRAD

- - - - -~ - - - - - - -— - - - - T - - -

CALL SYSTEM(KaL aNSsMeDELTAs [GRAD)
CALL COST(KsLemaDELTA IGRAD)

COMPUTE THE DERIVATIVE OF THE HAMILTONIAN WITH RESPECT TO
DO 20 I=lem

HD(T) = wv (1)

N0 20 J=laNs

JI = Jd v (TI-1)#NS :

RULE) = ADCI) + LAMUA(J)#BMIJIY

COMPYTE THE DERIVATIVE OF THE HAMILTONIAN WITH RESPECT TO
DO 30 J=1eNS : '

HL {J) = AV IJ) + BV )

HDD

COMPUTE THe 2ND DERIVATIVE OF THE HAMILTONIAN R
MZ = MiE{M+]1}/2 .

DG a0 I=leMe

RII) = km{T)

00 40 J=lisns

RIIY = RII) + LamDA(JI#RT{Js 1)

COMPUTE THE 2ND DERIVATIVE OF THE HAMILTONIAN B HL.D

( SEE EQUIVALENCE STATEMENT )

COMPUTE INVERSE OF MaTWRIX R

CALL SINVIReMeEPSU [ER)
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DELTA

LAMDA

TWO
TWO
TWO
TWO
TWO
TWO
TWO
TWO
TWO

- TWO

Two
T&0
TWo.
TWO

0490

0500

0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620

TWo#(3621
Two*®g622
TWO#(0623
TWO®0624
TWO®0625
TWO#G626
TWwo*(e27

TwWO
TwWO
TWO
TwO

TwWO.

TWO
TWO
TWo
TwO0
TWO
TWO
TWO
THO
Two

- TwO
TwO
. TwWo

TWO
TwO
TwO
Two

TWO
TWO

TwWO
TwWO

- TWO'

TWO

0630
0640
0650
0660
0670
0680
0690
0T00
0710
0720
0730
0740
07S0
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
¢880
0890



50
- 60
(R.2X]
10

88

C #us

IF(IE=} %0+70e60 _
WRITE (e 1000) K o EPSU

CMRITE(Aei050}

cali. M&UU[(I-&;MqulvoU 14831)
CaALL eXIT

WRITE (651010) ® » EPSO

WRITE (6+1050) ,
CAaLlL ﬂXUUT(quoMoM’lsﬁOvl329137

COMPUTE MATRIX AR
CALL. MPHII(HaReHRINSsMeDsloeM)

COMPUTE MATHIX BHH

CaLL GMTRA(HsDaNS M)

CALL  OGMPRDOHEsDsHRH NS s MaNS )
CALL  GMSYMM{BREsDeNS)

Cact MSTR(DeBRBRINSeUs]l)

COMPUTE INVERSE OF MATRIA 8RB

CALL  SINV(HRBsNSeEPSOs [ER)

Y

20

CIFLTIER) HOe10U 90

WRITE (delUuZU} K o EFS0

"WRITE(621060)

CaLL HXOUT(19R9M§M!1960 13291)
WRITE(61070) .

CALL MXOUT(ISRQNSQMQOQbUO13&91)
WRITE(As1040)

CALL MXUUT(l:HHHQNb!Nb!l!GO!lJEQl)
caLL EXIT .
WRITE (6+1030) K ¢ EPSU

WRITE (6+1060)

CALL MXOUT(I09!M9M91100013£91)
WRITE(&21070)

CALL MXOUT(IQHQNS!M!U!bovlidQI)
WRITE (61080}

.CALL  MXOUT(I9HHB¢M50N5¢1:6001$291)

- - - - - - - - L - - - -t - - . - - -

OPTION FUR DISREGARUING IST THIM EQUALITY CONSTRAINT -=-

EQUATION REQUIRING ZERO NET FORCE IN Y-DIRECTION
IF(JPTIL) )} 98s9b996

CAV(L) = BRE(Z)4AV(Z2). + HRB(41%aV(3)

HL(1)Y = BV(l) - AV(1)/BRE(]1)

CONTINUE

COMPUTE CORRECTION TO LAMDA
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TWO
TWO
TWO
TWO
TWO
TWo
TWO
TWO

. TWO
. TWO

TwWO

TWO

TWO
TWO

- TWO

TWO
TwO
TWO
TwO

Two
- TWO

Two

- TWO
Two

WO

. TWO

Two
TWO
WO

" Two

TWO
TWO
TWO
TWO
WO

.TRO

Two

- TWO

0900
0910
0920
0930
0940
0950
0960
0970
0980

0990

1000
1010
1020,

1030

1040
1050
1060
1070
1080
1090
1100

1110 -

1120

1130
1140
1150,

‘1160

1170
1180
1190
1200:

1210 .
1220

1230
1240
1250°

1260

1270

TWO*1271

- TWO*1272
. TWO*1273

TWO®1274
TWO#1275

TwO

- TWO#31276 .
TWO*1278
TWO*1278 -
"TwOo®12719
1280 .



ipRe!

w35 i

4

110

4% 3

120

130
140
150
160

CALL GMPHRD{BRsHDIXsNSsMel)

CALL MPHD (FRBsAsYoeNSanSele0s])
CALL MPHD(HRBeHLs2sNSyNSs190e])

CALL GMSUS (KeYoLAMINSe1)

COMPUTE COHRECTION TO DELTA
CALL GMPRO(YsRBHReDELaleaNSeM)
CatlL  MPRD{KRoHDsYoMoMelalial)
CALL GMSUB(DELsYsDELIMel)
CALL GMPRD{XsHRsYslonSem)
CALL GMSUB{DELeY3IFLeMel)

COMPUTE NEW ESTIMATE OF DELTA
NOHM = 0.

DO L106 I=lew

NORM = NORM + DEL(L)##2
DELTACEY = QELTAC(IY + pRELC(I)

COMHUTE NEw ESTIMATE OF LAMDA
Do ¥20 Jd=1e NS

NORM = NOWM + | AM(J)#5¢

LAMDA (U} = LAMDA(J) + LANM{J)
IF (NDRM=EPS) 160Uslalel30

IF (K=KkMAX) 140015091090

K =K + 1

60 10 10 ‘
WRITE(he1040) K o FPSU » NORM
RE TURN

END
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TwO
Two
Two
TWO
TWO
TRO
TWO
TWO
TWO

- TWO
TWO.
TWO

THO
Two
Two

CTWO

TwO
Two
TWO
TWO
TWO
TWO
TWO
TwWO
RO
TWO
TWO
TWO
THO

1290
1300
1310
1320
1330
1340
1350
1360
1370
1380

‘1390

1400
1410

1420

1430
1440
1450

1460

1470
1480
1490
1500
1510
1520

1530

1540
1550
1560
1570



GRAD 2 Flow Diagram o

_ ENTER

TIME = TEQL)
K=0

0
[LSYSTEM

fL, NS, M,
6, IGRAD

Compute .
a,b, /38, 3%/

COmpufe' .
r,ar/d8, 3% /38% |

l Hamiltonian

h=r+x(ath)

C R=h, = 23%/387+)'(a%/38%)

l 145



GRAD2 Flow Diagram (Continued)

1

R

-1

50 (1000) 60 (1010
MATRIX R - lLoss oF
IS NOT SIGNIFICANCE]
POSITIVE IN INVERTING
DEFINITE MATRIX R
l "ﬁ-—_-‘
I

BR™'B’

(BR-] B )"

MATRIX BRB
IS NOT
POSITIVE
DEFINITE

100

IN INVERTING
MATRIX BRB

LAM = ax = - [ (8R7' o) R i+ 1R8I

DEL=A6= -[ R -p7 1w (BR']B')-] R Thy = Re (BR-I 8~ TH]

146



GRAD2 Flow Diagram (Continued)

DELTA
6=g+

1&

LAMDA =
A= A+aA

e

NZRM =
1 a8 12 + Jjarl)?)

140

K= K+1

K, EPSO,
N@RM

RETURN

147
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100
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SUHKOUTINE SYSTEM(KsLeNSsMeDELTAY IGRAD)

PURPOSE  SUBROUTINE FOx COMPUTING THE COEFFICIENTS IN THE
------- EWUATIONS OF THe LATERAL DYNAMICS DEFINING THIM,.
ALSO EVALUATES THE CORRESPONDING DERIVATIVES REQUIRED

HY THE GHRADIENT METHODS.

INPUTS K = NOe OF ITERATIONS.
------ L = NO, OF THE TRAJECTORY POINT,

NS = NO, UF TRIM EQUATIONS.,

M = NOo UF TRIM ANGLES.

DELTA = VECTUR OF TRIM ANGLES.

IGRAD = URDER OF GRADIENT METHOD TO BE USED.’
SUHRQUTINES CALLED NONE

4 4 4 W o W o @ F 4 # 4 4 B # % 4 ¥ ¥ ¥ B & & B BB W

B o4 B o B B # 4 B 3 % F 4 % & 4t S 3 % @ # #F 4 ¥ & & & % & & B @ @

[« SRELEE N SV Fl

SUHROUTINE SYSTEM(KsLeNSeMyDELTA IGRAD}

DIMENSION DELTa(l)
COMMON /ARRAY/ AVIG)s BVI(6)s BM(60)y BT(6+60) s RSey RVI10)s RM{100)

COMMON /SYST/ YBTs HBTs ~ Xls X2 X3s X4 XSe AMEP
- S HREF Yle Y2+ Y3+ Yas YSe YMRPy
‘ Zly 220 Z3y Z4s ZI5+ LZMRPy _
XCG(lz)a LCB12) . W(l2) vilz)» VY(1l2) s
F(l2) FSRM(1Z2}) CYB(12)» CLB(1l2) CNB{(12)
pCYB{12) pcLB(lzZ)» DCNBA(12) DCNBF (12) CYA(12)»
CLA(LI2) . CNALLZ)» CCYR(12)» CLR(12) CNR(12)
C DATA  RAD  / 5742957795 7
IF(K) 30021004300
COMPUTE VECTOKR A
CONTINUE
Qs . = QL)Y # §
QSH = QS ¥ HREF
BETA = AKSIN(VY(L)/V(L))
CYBCG = CYB(L) +(DCYB((L))#*RAD
CLBCG =

CLE(L) +(DCLB(L))#*RAD

148

5YS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS

. 8Y§

SYS
SYS
SYS
SYS
SYS
SYS
$YS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
5YS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS

0010
uo20
0030
(Guv40
0050
0060
0070
0080
0090
0100
0110
0120
6130
0140
0150
0160

0170

0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0365

0370 -

0380
0390
0400
0410
0420
0430
0440
0450
0460
0470



Y Xx

L2 2 -

sS4

RAD = $T7,295779%
Cl = £0S{18./KaD)

Sl = SIN(lu./RAD)
€2 = CUS(1Z./RAD)

S2 = SIN(1ZW/RAD)

C3 = COS{3.5/RAD)

83 = SIN(3.5/RA0D)

C4 ‘= CUS(15./RAD)

= SIN(LIL,/RAD)

"CLACG = CLA{L) + CYA(L)®(ZCGI(L)~=ZMRP) /BREF
CNACG = CNA(L) = CYAIL)#({XCG(L)~XMRP) /BREF
CLRCG = CLR(L) + CYR(L)#{ZCG(L)~ZMRP) /BREF

- CNRCG = CNR{L) = CYR(L)#(XCG(L)=XMRF) /BREF
BM(l)Y = FI(L) % Cl
BM(2) ==FiL) # 'Cl # (Z1 =~ Z2CGi(L))

HM({3) = F(L) # Cl # (X1 - XCG(L}}

"BM(4) = 24 % F(L) # Cz # C3 .

CBM(9S) ==2, % F(L) % Ce % C3 % (Z2 - 2CGI(L))

o BMiB)Y = 2, # F{L) # ((X2=XCG(L))#C3 ~ Y2#S3) &

BM(T) = 2. % F(L) # S # 53
BM(8) = 24 % F(L) # (Y2%(2 = (Z2=2CG{L))*#52453)
BM(3) = 2. # F(L) # ((Y2#C3 + (X2=-XCG(L))®SI)
BM(l0) = 2. % FSRM(L) * Ca4 .

"BMTL11) S=2. % FSRM{L) & Ca4 # (24 = ZCG(L))
BM(12) = 2, ¥ FSRM{L) # ((X&4=XCGI(L))#C4 = Y&#54)
BM(13) = 0, ' .
BM(l4) = 2. % FSRM({L) # Ya
BM(1%) = 0, -

S BM(le) = @5 # CYA(L)

BM(17) = QS * CLACG

SBM(1B) = QSH * CNACG
BM(19) = WS # CYRI(L)

BM(20) = @sSH * CLRCG
UM (2]1) = Q%4 *

CNBCG

- CLACG

CNBCG

AV(LD)

AV (2)
AVi(3)

it un

CNH{(L)  +(DCNBA(L) + DCNEF(L))*RAD

CLBCG + CYHCO¥ (LCGUIL)Y-ZMRP}/BREF
CNBCG = CYHBCG®*{XCG(L)=XMRP)/BREF

us

* CYBCOG ® BETA <
WSy # CLH8C6G * BETA + RBT
GSH ¥ CNHCOL # BETA +  YBT

COMPUTE COEFFICIENTS IN VECTOK &

CNRCO

149

SYS
5YS

SYS

SYS
SYS
SYS
S5Ys

- SY§
- 5Y§
"SYS

SYS
SYS

SYS

SYS

" SYS

SYS
SYS

. 8YS

SYS

SYS.

SYS
SYS
SYS
SYS
SYS
5YS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
SYS
5YS

. SY$
. 5YS
"8YS
. SYS

5Ys

- SY§
SYS
S5YS

5YS

SYS’
. SYS,
SYS

SYSs

0480
0490
0500
0510
0520
0530
0540
0550

0560
0570

0580
0590

0600

0610

0620

0630
0640
0650
0660
0670 -
0680
0690

0700

0710

0720

0730
0740

0750
0760
0770
0780
0790
0800
0810
0820
0830

0860

0850
0860
0870
0880
0890 |
0900 |

0910

0920

0930 : .
0940
0950 .



L= = = = = = = = = = = = = = & = = = = = = = = = §Y5#0951
C ##¢ OPTION FOR DISREGARULDING AILERON | SYS#0952

IF (16RAD) £90+3002300 ‘ SYS#0953

290 WM{lby = U. - ' SYS#(954
HM(1T7) = 0. ' ; SYS*#0955
HM(1Hd) = U ; . SYS#(956
IGRAD = = IGKAD : SYS#(957

Co = = = = = = = = = = = = o =« = = '= = = « .= = = 5Y5#(958
C : ' : - SYS#(0959
C ##s COMPUTE VECTOR B : o : - ‘ - SYS. 0960
300 CONTINUE : SYS 0970
DO 310 I=1enNS ' SYS 0980

BY (I} = 0, : ; SYS 0990

DO 310 J=1sM ' o SYS 1000

IJ = 1 + (J~1)#NS ' _ . SYS 1010

¢ 310 BV(I) = BVII) + BMILIJI®DELTA(J) ‘ .SYS 1020
c : o SYS 1030
C =### COMPUTE THE 1ST DExIVATIVE OF VECTOR 8 . SYS 1040
C . , ' “ SYS 1050
c {=== CONSTANT MATRIX COMPUTED ABOVE ===) _ SYS 1060
C ' - ‘ SYS 1070
c * - , SYS 1080
" IF(IGRAD=Z2) 6005004600 ' SYS 1090

c ‘ : i SYS 1100
C #®%# COMPUTE THE 2ND VERIVATIVE OF VECTOR B ... SYS' 1110
500 CONTINUE : - ' . 8YS 1120
M2 = MB(Mel)/2 : ~8YS. 1130

DO 510 J=1sNS . .. SYS 1140

DO 510 I=leM2 a A . SYS 1150

510 BT(Jel) = 0. .. SYS 1160
600 RETURN ' L SYS 1170

END _ ... SYS 1180

150



SYSTEM Flow Diagram

ENTER

Trim Equation

a+

i o
A_ —
o 1on
St R
fl 1
= O
lor

NO

joo

Constant Term in Trim Equation

1

BM = B
Coefficients in Dependent Term
b(§) of Trim Equation

s !

i

Bv =b(8) = B

Depen&ent Term of Trim Equation

1

BM = ab/ 36 = 8

First Derivative of Trim Eq_uaﬁon

500
BT = a%b/367=0

Second Derivative of Trim Equation

600

151 RETURN _
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SUSROUTINE COST(KsLsMsDELTAY IGRAD)

- e S = e SO T A D o g S e e e e P S D A e S e g e D o e

PURPOSE SUBROUTINE FOR COMPUTING THE COEFFICIENTb IN THE

1

——————— PERFORMANCE CRITERION,.
ALSO EVALUATES THE CORRESPDNDING DERIVATIVES REQUIRED

BY THE GRADIENT METHODS.,
INPUTS K = NO. OF ITERATIONS.
------ L = NO. OF THE TRAJECTORY POINT,
v = NO. OF TRIM ANGLES.
DELTA = VECTOR OF TRIM ANGLES.,
IGRAD = ORDER OF bHADIENT METHOD TO BE USED.
SUBROUTINES CALLED NONE

O B % s W OB O# B O B W B 8B W R R W F R BB R R R B R
#4888 o 3 B B 3 e o B W R % & W o # B BB OB W #

SUBROUTINE COST(KyLoMeDELTA2IGRAD)

DIMENSION - C(T) o DELTA{L)

COMMON /ARRAY/ AVIG)e BV (HB)e BM(BU)s BT(Hs6D) s RSy RV(10) RM(IOO)

COMMON /PEHF/ W1({7)e W2(T)s DAMAX(12)+sDRMAX{12)s G(12)
DMAXs SAs SRs CDAs CDR

ITF{K) 100+200+300

COMPUTE MINIMUM VALUE OF THE PERFORMANCE CRITERION
CONTINUE :

RS =‘0l

DO 110 I=1eM

RS = RS + C{I}) % DELTA({I)*®#2

RS = RS / £.

60 TO S4046

COMPUTE THE COEFFICIENTS IN THE PERFORMANCE CRITERION
CONTINUE

DO 210 I=1s+5.

ClI) = (W1(I)/DMAX)#s2 + W2(])##g ‘

Ce6) = (W1(6)/DAMAX(L})I#%2 + (W2(6)*Q(L)*SA*CDA)u#®2"
Ct7) =

(wl(?l/DRHAX(L))**Z‘* (w2 (T)*QR (L) HSRE¥CDR) #482

152

csT
cST
cST

- ¢sT

CST
csTY

- €CST

CST

cST

CST
cST
cST

CST-

csT

CST.

CcST
CST

. CST

cST
csST
cSsT
csT
csT
csT
csT

CST

€sT
csT

. CST

CST
CST

CST.
CST

csT

CST:
“CST

0010
0020
0030
0040
0050
0060
0070
0080
0090

0100

0110
0120’
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370 .
0380
0390 -
0400
D410
pa20 -
0430
0440
0450
D460
0470
0480



. 211

2lz

230

L2 4

L300

310

o0 o

L2 20
400

500

DO 212 T=)oM

CIFIWILI)Y 2lle212e212

CtI) = 14 7 Wltl)®s2 -
CONT INUE

M2 = Me{M+l) /2

DO 220 I=]sM2

RM(T) .= 0,

D0 230 I=lsm

IT = [#(f+l)/2

HM(II) = C(I

COMPUTE THE 1IST DtRIVATIVE OF THE PERFORMANCE CRITERION 

CONTINUE ,
DO 310 I=leM

RV(IY = C(]) # DhLTA(I)

IFCIGRAD=2) 500+400e500

COMPUTE . THE 2ND DERIVATIVE OF THE PERFORMANCE CRITERION
CONTINUE

(=== CONSTANT MATRIX COMPUTED ABOVE ===)

RETURN
END
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CcST
CcSsT
CsT
CsT
CcST
CcsT

g podt

csT

. ¢sT

¢ST
CST

- CST
- CST

€SsT

- €57

cST
CcsT

-CST
‘CST

€sT
CST

CST-

CcsT

€8T

cSsY

0481
0482
0483

0484

0490
0500
0510
0520
0530
0540

0550

560

0570
0580
0590
0600
0610
0620
0630
0640
0650

0660
0670 -
0680

0690



C@ST Flow Diagram

100 Y

Coefficients in the
Performance Criterion

300 l

Minimum Value of the
Performance Criterion

RV =2r/38= R§ -

First Derivative of the
Performance Criterion

400

e

RM = a2r/ 3% = R

Second Derivative of the
Performance Criterion

500

RETURN
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SUBROUT INE

------- -—-------l-----—--------------ﬁh——------ymnﬁ-----h---------hsvn

PURPOSE
- oy o ACCOQDING
INPUTS A

- - N

OUTPUTS a8

SURROUTINFS CALLED

N D Y AR W D AR D ey s

® % 8 4 4 B B & B
LI SR B

L L

R4

°

GMSYMM (AsBaN)

COMPUTES A SYMMFTRIC MATRIX B

TO

R= (A + AY)
SQUARE MATRIX
N0, OF ROWS AND COLS.

SYMMETRIC MATRIX FORMED FRO“ A

MODE = 0),

NONE

# B BB B BN B4 B
& % 4 & B OB OB OB &

 SUBRQUTINE GMSYMM (AsBeN)

19
20

30

"IF (N1)

NIMENSION A (L)

N =1
2042045
NO 10 J=1+NI1

Jl o= 0 o+ ]
DO_lOVI?JloN

I = (J=1)8N + I
JI = (I=1)#N +
B{IJ)
R{J1) =
Do 30
IJ =
R{IJ) =
RETURN
END

Nl =

B(1J)
I=z1leN.
(I-11#N + 1

A(IN)

= 05 % (A(IU)

¢« R{1)

+ A(JI))

155

(STORAGE MODE =

FROM A SQUARE MATRIX
/2

0),
IN A AND B,

(STORAGE

.

SYM
SYM
SYM

J - o - - - -— - o - - - T e S -—-—-"--'—-----------SY“

SYM
SYM
SYM
SYM
SYM

- SYM
‘SYM

SYM
SYM
SYM
SYM

- SYM

SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM

“SYM
SYM™

SYM™
SYM
SYM

SYM
SYM

SYM

SYW

SYM
SYM

SYM
SYM
‘SYM
SYM

- SYM

0010 .

0020
0030
0040
0050
0060
0070
0080
0090
0100
0110

ol20

0130
0140
0150
0160
0170
0180
0190
0200
0210

0220

0230
0240
0250

0260

0270
0280

0290

0309
0310
0320
0330
0340
0350
0360

0370 .

0380

0390

0400
0410
0420



GMSYMM Flow

Diagram

ENTER - '

NT=N -1

Compute
nondiagoniol
elements of B

Tl= (J-1)xN+T
JI = (IT-1)xN=+J

B(ZJ) = 0.5%(A(I)) + A(JI))

B(JI) = B(ZJ)

20

r—— '

Compute

DI = (I-1) N +T

B(ZJ) = A(TJ)

diagonal
elements of B

" RETURN
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o000 000

¥CPY

.."...l.I.-l..I....C..l‘..C...l,...............l.l“..’....".ncpv

.-SUBRUUTINE MCPY

PURPCSE |
CCPY ENTIRE MATRIX

USAGE
CALL MCPY (AR yNyM,NMSH

TESCRIPTICN CF PARAMETERS
A = NAME CF INPUT MATRIX
R - NAME CF OUTPUT MATRIX

N - NUMBER OF ROMWS IN A CR R
M - NUMBER CF COLUMNS IN A QR R
MS - CNE CIGIT NUMBER FCR STORAGE MODE of FATRIX A [AND Rl

C - GENERAL
1 - SYMMETRIC
2 - LCIAGONAL

" REMARKS
NONE

SLBRGUTINES AND FUNCTION SUBPROGRAMS REQUIRED

Loc
METHCD
ELEMENT CF MATRIX R

EACH ELEMENT -OF MATRIX A IS MOVED TD THE CORRESPUNDING

MCPY
MCPY

- MCPY

MCPY
PCPY
MCPY
MCPY

- MCPY.
MCPY

NCPY
MCPY
NCPY
MCPY
MCPY
MCPY
MCPY
MCPY
MCPY

MCPY
MCPY

mcey
MCPY
MCPY

MCPY

MCPY
#CPY
MCPY

_MCPY

MCPY

..‘....O......‘..'.....C..l.....‘.l.-‘.'...l...‘Il.‘........l;;.liﬁcpy

© SUBROUTINE MCPY(A,R,N,M, rs:

CIMENSION A(1}R(1)
COMPUTE VECTCR LENGIH. 17

" CALL LOCIN,MsIToNsMoMS)

CCPY MATRIX

CC 1 121,17
RUI)=A(T)

RETURN.

~ ENC
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MCPY
MCPY
MCPY
MCPY
MCPY

- MCPY

MCPY
MCPY
MCPY
MCPY

NCPY

MCPY

MCPY
MCPY.

10
20
3¢

5¢
60
10
80

100

110

120
130
140

150

160
170

180
190 -

200

210

220
230
240
250

260
270
280

290
300

310
320

X1
340
350
360

370 - o
11
390

400
410
420
430
440

450
“60 . |



MSTR

'I...lID-.l........C..I'.........C.......II...'...'...............MSTR

SUBROUTINE MSTR

PURPOSE

CHANGE STCRAGE MODE OF A MATRIX

USAGE -

CALL MSTR{A,R4NyMSA,MSR)

DESCRIPTION CF PARAMETERS
A - NAME CF TINPUT MATRIX
R =~ NAME CF OUTPUT MATRIX
N - NUMBER QF ROWS AND CGLUMNS IN A ANO R
MSA ~ ONE CIGIT NUMBER FOR STURAGE MOOE OF MATRIX A

0 - GENERAL
1 - SYMMETRIC
2 - CIAGONAL

MSR - SAME AS MSA EXCEPT FOR MATRIX R

REMARKS
MATRIX R
MATRIX A

SUBROUTINES
Loc

METHCD
MATRIX A
 MSA MSR

0 o0
0 1
0o 2
1 o
1 1
1 2
2 ¢
2 1
2 2

MSTR

MSTR

MSTR
MSTR
MSTR
MSTR

MSTR .

MSTR
MSTR
MSTR
MSTR
MSTR
MSTR
MSTR
MSTR

"MSTR

MSTR
MSTR

" "MSTR

CANNOT BE IN THE SAME LOCATION AS PATRIX A
MUST BE A SQUARE MATRIX

AND FUNCTION SUBPROGRAMS REGUIRED

IS RESTRUCTURED TC FORM MATRIX R.

MATRIX & 1S MOVED TQ MATRIX R

THE UPPER TRIANGLE ELEMENTS OF A GENERAL HATRIX
ARE USED TO FCRM A SYMMETRIC MATRIX

THE OTAGONAL ELEMENTS COF A GENERAL MATRIX ARE USED
TO FORM A DIAGONAL MATRIX :
A SYMMETRIC MATRIX 1S EXPANDED TO FORM A GENERAL
¥ATRIX :
MATRIX A IS MCOVED TO MATRIX R - _

THE DIAGONAL ELEMENTS OF A SYMMETRIC MATRIX. ARE
USED TO FORM A DIAGONAL MATRIX

A DIAGONAL MATRIX IS EXPANDED BY INSERTING HISS!NG
ZERD ELEMENTS. TD FORM A GENERAL MATRIX

A DIAGONAL MATRIX IS EXPANDED BY INSERTING MISSING .
ZERQ ELEMENTS TC FCRM A SYMMETRIC PATR!X

MATRIX A 1S MOVED TO MATRIX R

MSTR

MSTR

MSTR

MSTR
MSTR

"MSTR

MSTR
MSTR
MSTR
MSTR

. MSTR
‘MSTR

MSTR
MSTR
MSTR
MSTR
MSTR
MS5TR
MSTR
MSTR
MSTR
MSTR
MSTR

,MSTR

MSTR
MSTR

.‘;...'..‘...IO‘O-C.'...II..-...0‘.'-...I.....l.,.‘..O“..ll‘l.'....."sTn
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150
160
170
180
150
200
210
220
230 -
240

250

260
270
280
290
300
310
320

330
340 -

350
360 °

370.

380
390
400
410
420
430 -
440
450
460

470 -

480 :



o

OO0 o000

fo0 0o0n

OO

SUBRCUTINE MSTR{AyR,NyMSA,MSR)
DINENSION AL1),R(1}

B0 20 1=1,4N

15

18

DO .20 J=1,N

"IF R IS GENERAL, FORM ELEMENT -

IF(MSR} 5,1045

IF IN LOMER TRIANGLE OF SYMMETRIC OR DIAGONAL Ry BYPASS

IfF(I-4) 10,10,20C
CALL LOC(I+JyIR4NiNsMSR)

IF IN UPPER AND OFF DIAGONAL OF DIAGONAL R, BYPASS
IFLIR) 20,20,15

GTHERWISE, FCRM R(I:J).
R{IR)=0.0

CALL LOC{IsJslAyNoNyMSA)

IF(1A) 20,20,18
R{IRI=A(IA} -
CONT INUE

RETURN

END

" IF THERE IS NC A(LyJ}, LEAVE R(I,J) AT 0.0

159 .

NSTR
MSTR
MSTR

 MSTR

MSTR

MSTR

MSTR

'MSTR
“MSTR
- MSTR

MSTR
MSTR
MSTR

MSTR

MSTR
MSTR
MSTR

- MSTR

NSTR

“MSTR

MSTR
MSTR
MSTR

T MSTR
MSTR.
"MSTR

MSTR

- MSTR
‘MSTR

MSTR

490
£00 !
510

520

%30
540
550
560
5710
580
$90
400
610
620
630
640 -
€50
660
610
680
690

700
‘110

720
730
740
750
760
170

180
ASTR
CMSTR

790
800 -
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OO OAROOON00NNN0O0

...d. 4_

" 10

20

22

24

30

<32
36

LOC
l.....I'.IC....".....II.IC..'...i.I....."...‘....‘......-.'.‘....LOC
‘ LoC

SURRNUTINE 1LOC ' . . : LOC
‘ : | LoC
PURPNSE £ 0C
COMBUTE A VFCTOR SURSCHIRT rOH AN ELEMENT IN Y MATRIX QF LOC
SPECTIFIFD STORAGE MODF LoC

: _ ‘ ) LOC

US A GF ] ) _ LOC
CALL LUC (ledsIteneMeMS) ) . LoC

L ] ‘ . LOC

NESCRIPTINON OF PARAMETFRS ‘ LOC
1 ~ ROW NUSRFw OF ELEMENT . : Loc¢

o - CULUMN NUMHER QF ELEMENT S LOC

TH - KRESULTaNnT VECTOR SUBSCRIPT . LOC

N - MUMRF« OF ROwWS IN MaTRIX , C ~LGC

™ ~ NUMHER OF COLUMNS IN MaTrRIX : LOC

M3 o= ONE DTGTT NUMRBER FOR STORAGE MODE OF MATRIX . LOC

¢ = GENEHAL _ : LoC

1 = SYMMETHIC . Log

z = LTAGONAL ' ' TLoc

C . : LocC

HEMARKS ‘ LOC
MOINE . o LoC

‘ . . LoC
SURROUTTINES ANy FUNCTION SUBPRUGRAMS REQUIKED : ] LOC
NONE ‘ ' , - -, Loc

' ‘ ' - ©LocC
METHOD , , : LOC

MG=10 SURSCRIFT IS COMPUTED FOR A MATRIX WITH N#M ELEMENTS LOC-
IN STOREGE (HENFRAL MATRIX) ©oLoC
MS=] SUBSCRIPT IS COMPUTED FOR A MATRIX WITH N*(N+1)/? IN LOC

STORAGE (UPPER TRIANGLE OF SYMMETRIC MATRIX), IF L0C
ELEMENT 1S IN LLOWER TRIANGULAR PORTIONS SURSCRIPT IS -LOC
CORRESPONDING ELEMENT IN UPPER TRIANGLE. LOC

MS=7 SURSCRIPT IS COMPUTED FOR A MATRIX WITH N ELEMENTS LocC
IN STORAGE (DTAGONAL ELEMENTS OF DIAGONAL MATRIX). LOC
IF ELEMENT Is NOT On DIAGONAL (AND THEREFORE NOT In LOC

STORAGE) s IK IS SET TO ZERO. LoC
- Loc
D'..l...'.'..t.I......O.....I.O‘..'I..l.........ll‘.....l.l...‘ﬁ....Loc
. ‘ o LOoC
SUSROUTINE LOC(IsJs IR aNaMyMS) , - LoC
: . , LOC
TX=1 ' - : LoC
JxX=J : , ' © LOC
TF{MS—1) 10420930 . : : _ - LOE .
TRX=N® (JX=1)1+1X . LOC
GO0 TO 36 : C L0C
IF(IX=UX) 22924424 ' _ : ) Loc
IRX=T X+ (JXK#IX= dX)/& E : _ ‘ Loc
50 TO 36 : C : .. LoC .
TRX=JX+ (IX#IX=1X)/2 ' : Loc
6N TO 36 _ _ ‘ : LOC
1RX=0 . , “ _ LoC
IF(IX=UX) 36932436 - LocC
TRX=TX ‘ o : LoC
IR=IRX ’ LOC
RETURN - LoC

END . ‘ Loc
o : ' 160 '

10
20
30
40
50
60
70
80
90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240 -

250

260

270

280

290

300

310

320

330 -

340

350
360
370
380

390 .
400

4190
420
430
440

450 -
460

470
%80

490

500
510

‘520

530
540
550
560

- 570

580
590
600
610
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GMSU

......lioooioiill'.t....‘0...‘...l;llii.‘ﬁll'D.Gl...l....I..ll..'.GNSU

SUBRCUTEINE GMSLB

PURPCSE
SUBTRACT CNE GENERAL MATRIX FRCM ANUTHER TO FORM RESULTANT
MATRIX

USAGE ‘
CALL GNSLE(A;B RyNsM)

CESCRIPTION CF PARAMETERS
A - NAME CF FIRST INPUT MATRIX

B - NAME CF SECOND INPUT MATRIX
R ~ NAME CF OUTPUT MATRIX

N - NUMBER CF ROWS IN A,B,R

M - NUMBER OF COLUMNS IN A.B,R.

REMARKS
: ALL MATRICES MUST BE STORED AS GENERAL MATRICES

SUBROUTINES "AND FUNCTIUN SUBPRCGRAHS REQUIREL
: NONE

METHCD

ELEMENTS

SUBRCUTINE GMSLE(A+ByReNyM)
CIMENSION A(11,B(1),R{1}

CALCULATE NUNBER OF ELEMENTS

 NMENEY

10

SUBTRACT MATRICES

CC 10 I=1,NM : o
R{I)=A{L)=-BLI)

RETURN
END

161

GMSU -

GM5SU
GMSU
GMSU
GMSU
GMSU
GMSU

" GMSU
‘GMSUY
‘GMSU

GM5U
GMSU

_GMSU
GMSU

GMSU
GMSU
GMSU
GMSU
GM¥SU

"GMSY

GMSU
GMSU

| 6N SU
' ' GMSU-
MATRIX R ELEFENTS ARE SUBTRACTEL FROM CGRRESPUNDING MATRIX AGMSU

GM3U

. GMSU

-D.'.'..'I....l.Ill..III..........'.I...‘....I.."...‘I..........C.GFSU

GMSU
GMSU
GMSU

‘G¥SU

GMSU
GMSU

GMSU

GMSU

GMSU

GMSU
GMSU

GMSU

GMSU

GMSUY

10
20
30
40
50
1+
70
80
90
100
110
120
130

140°

150
160
170

180

1350
200
210

220

230
240
250
260
27¢
280

-290.
300
310.
320

330
340
350

380

370
380

3%0 -

400

410

440

420
430

et -



GMPR

l..'l.‘il.ll.ﬂh.-.a.l'l.."l!l...."..l'.t...I..C.OOOQGCI.I-.I.'.CQGyPR

SLBRCUTINE G¥PRD

PURPCEE
MULTIPLY TWC GENERAL MATRICES TO FDRM A RESULTANT GENERAL
MATRIX

LSAGE
CALL GNPRU (A, B'RQN Myl

CESCRIPTICN CF PhRAMETERS

- NAME CF FIRST INPUT MATRIX

- NAME CF SECOND INPUT MATRIX

- NAME CF QUTPUT MATRIX

NUMBER CF ROWS IN A

- NUMBER COF COLUMNS IN A ANP RCWS IN B
- NUMBE® CF COULUMNS IN B

rTEZom>
i

REMARKS
ALL MATRICES MUST BE STOREC AS GENERAL MATRICES
MATRIX- R CANMOT 8E IN THE SAME LCOCATICN AS PATRIX A
MATRIX R CANNGT BE IN THE SAME LOCATICON AS MATRIX B

GMPR
CMPR
GMPR
GNPR
GMPR
GMPR
GVMPR

" GMPR
GMPR

GMPR
GMPR

GMPR

GMPR

GMPR

GMPR
GNVPR
GMPR
GMPR
GMPR
GMPR

. GMPR

GMPR

NUMBER [OF CCLUMNS OF MATRIX A MUST BE EQUAL TO NUMBER OF ROWGMPR

OF MATRIX B

SUBRCUTINES ANC FUNCTIDN SUBPROGRAMS REQUIRED
NCNE

METHECD

AND THE RESULT IS STOREN IN THE N BY L MATRIX R. .

GMPR

GMPR.

GMPR
GMPR
GMPR
GMPR

THE M BY L MATRIX B IS PREMULTIPLIED BY THE N BY M MATRI* A GMPR

GMPR
GMPR

.-..I.....'..l-..........'I.l.‘..'......‘...'.......-..."...'..-.....GEPR

SUBROUTINE GNMPRE(8,ByRyNyM, L)

DlMﬁNSIGN A(L)4B(1),R(L}

1R=0
IK==-¥
€0 10 K=1,L

K=K +M

CO 10 J=1.N

"IR=1R+1

JIsJ=N
IB=IK
R{IRI=0

162

GMPR
GCMPR

GMPR

GVMPR
GMPR
GMPR

" GMPR.

GMPR
GMPR
GMPR
GMPR
GMPR

GVMPR

8¢

30
40
50

60
7C
80
30

100

110

120

130

140"

150

160.

170

180

196G .

20¢C

210.

220

230

240

250

260
270
28Q
290
300
310,
320
330
340
350
360
37C
380
390

400

410
420
430
440
450
460
470
480
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GFMTR

-"..‘..QO'I.I.I.Q.....I.l.l'.......l..................‘...'....I.GPTR

SUERGUTINE GPTRA

PLRPCSE

TRANSPCSE A GENERAL MATRIX

USAGE -
CALL GMTRALA,RyNyM) -

DESCRIPTION GF PARAMETERS

A - NMAME CF MATRIX TO
R - NAME CF RESULTANT
N - NUMBER OF ROWS OF
M - NUMBER OF COLUMNS

 REMARKS
MATRIX R CANNCT BE IN
MATRICES A AND. R MUST

SUBRCUTINES AND FUNCTION
NCNE

METHOC

BE TRANSPCSED
VATRIX

A AND COLUMNS OF R
CF A AND ROWS OF R

THE SAME LOCATION AS MATRIX A
BE STORED AS GENERAL WATRICES

SURPROGRAMS REGQUIRED

TRANSPOSE N BRY M MATRIK A T0O FORV M BY N HATR!X R

00..!...COI...ll.'.t...‘l'.l.........".'......l..‘........l....‘

SUBRCUTINE GMTRALA,RyNyMI
CIMENSION A(1),R(1}

" IR=Q

OC 16 I=14N

1S T=N
DL 1C J=14M

1J=[J+N
IR=IR+1
R{IRY=ALTI)
RETURN
END

163.

GMTR

- GMTR -

GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR
GMTR

‘GMTR.

GMTR

" GMTR
GMTR
GMTR
GMTR
...G"TR
© GMTR
GMTR
GM¥TR
GMTR
GHTR
CGMTR

GHTR

GMTR
GMTR
GMTR
GMTR
GMTR
GMTR

10
20
30
40
50
60
70
80
30
100
il10
120
130
140
150
160
170
180
190
200

210
220 - -
230

240

250

260
270
280

290

30¢

310

320
330
340
350
360 -

370
380

390
400

410



10

CC 1€ I=1,M
JT=J1+N
[B=18+1

RITRI=R({IR)+ALJII)I*E(IR)

RETURN
ENE

164

GMPR
GMPR
GMPR
GMPR
GMPR
GMPR

490
500
510
520
530
540
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MPRE

.'.‘.."......'.'..........l...........l'....'-I........'..l.......NPRD

SUBRCUTINE MPRD

PLRPC

MLLT[°LY TWG MATRICES TO FCRM A RFSULTANT HATRLX

USAGE

CALL MPRC(A,ByRyNIM,MSA,VSH, L}

DESCRIPTIUN CF
A = NAME CF
. H ~ NAME CF
R MAME CF
N
M

PARAMETERS‘

FIRST INPUT MATRIX
SECOND INPUT MATRIX

CUTPUT MATRIX
NUMBER GF ROWS IN A AND R
NUMBER OF COLUMNS IN A AND ROWS IN B

‘MSA - CNE DIGIT NUMBER FOR STORAGE MGOE OF NATRIX A

c-cC
1 -3
2 -0

ENERAL
YMMETRIC
[TAGUNAL

MSE - SAME AS MSA EXCEPT FCR MATRIX B
L - NUMBER OF COLUMNS IN B AND R

REMARKS

MATRTX R CANMOT BE ‘IN THE SAME LGCATION AS MATRICES A DR B
- NUMBER OF COLUMNS OF MATRIX A MUST BE EQUAL TG NUHBER OF . ROWMPRED

OF MATRIX B
SUBRCUTINES AND
‘ LGC
FETHGD

G
G
"G
5
S
)
C
o
D

FUNCTION SUBPRCGRAMS REQUIRED

A
ENERAL
ENERAL
ENERAL
YMMETRIC
YMNETRIC
YMMETRIC
TAGDNAL
TAGONAL
TAGONAL

8

" GENERAL
SYMMETRIC

DIAGONAL
GENERAL
SYMMETRIC
C1AGONAL
GENERAL

SYMMETRIC' 

DIAGONAL

165

THE M BY L MATRIX B IS PREVMULTIPLIED BY THE N BY M HATRIX A
AND THE RESULT IS STORED IN THE N BY L MATRIX R,
‘RCW INTC. CCLUMN PRODUCT.

.THE FOLLCWINC TABLE SHOWS THE STORAGE MODE CF THE DUTPUT

- MATRIX FCR ALL COMBINATIONS OF INPUT MATRICES

R
GENERAL
GENERAL
GENERAL
GENERAL
GENERAL

GENERAL

GENERAL

' GENERAL.
DIAGONAL .

THIS IS A

MPRT -

MPRC
MPRD
MFRE
MPRD
MPRC
MPRD

"MPRD
¥PRD

MPRD
MPREC
MPRD
MPRD

'MPRD

MPRD
MPRC
MPRD

 MPRD
MPRD

MPRD

~ MPRD

MPRD

MPRD
MPRD -

MPRD

. MPRD
MPRD

FPRD
MPRD
MPRC

MPRD

MPRD
MPRD
MPRD
MPRO

MPRC
‘MPRD

MPRD

“MPRD

MPRD

"MPRD.
MPRD
- MPRD

MPRD

HPRD:

350
360 .

370

380

390 -
400

410

420 -
430

44Q

450 -
460"

470
480 -



N aEelel

HaXals

10
20

0

40

50
€qQ

70

. B8O

50

MPRE

I...I‘.I'l.--...-..‘..'-....l...'.I........‘Il'.'...I..'l.....‘....NPRD

SUBRCUTINE MPRC{A,ByRyMNsMy,MSA,MSEB,L
CIMENSIGON A{L),BLL1),RIL) : .

SPECTAL CASE FOR OTAGONAL BY DIAGONAL

MS=MSAX]C+MSE
IF(MS=22) 304+1C,30
CC 20 I=1.N
RIIN=ALT)*B(I)
RETURN

ALL QOTHER CASES

[R=1

DC S0 K=1,L

DC 9C J=1.N

R{IRI=0

CC BC I=1,M

IFtMS) 40,60,4C

CALL LOC(JsITANM,MS4A)
CALL LOC({I4R,yIB,¥,L4MSR)
IF(IA)Y S5C,8C,5C

IFLIB)Y T70,R0N,7C
TA=N®*({[-1}+J
IR=ME(K=1)+1 )
RIIRI=R{IRI+A(TAYAXR(IEB)
CONTINUE

IR=IR+1

RETLRN

END

166

MPRC

MPRC

MPRD
MPRE
MPRD
MPRLC
MPRD
MPRD
MPRD
MPRE
MPRD
MPRD
MPRD
MPRC
MPRD

MPRO

MPRD
MPRC
MPRD
MPRD
MPRD
MPRD'
MPRD
MPRD
¥PRD
MPRD
MPRD
MPRD
MPRD
MPRD

. MPRD -

490
500
510
520
539
540
580
560
570
58C
590
60C
610
620
630

64C

650
660
67¢C
680
&80
700
T10
720

730

740
750
760
170
780
790 |
80O
810
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HEAD SUMeOUTTIMNF CCUT

SUMAOUTIeFE CCUT

PURPOSE

RESULTANT MATHICES

USanf.

CalL ccut

NESCRIRTTiING OF PASAME TERS

PACTITION 4 MATHIX HFThEtN SPtCIFItD COLUMNS TO FOKM TwWD

(AslLoa=aSanioMaMs)

A& = NavE OF INFUT ~ATRIX
L = COLUMN OF & TO TRE LFFT OF xHILH PARTITIONING TAKES

PLACE

Y = MEMF OF mMATHIX TO HF FOHMEU FROM LEFT PORTION OF A
S = NaMmF OF 4AT~IX T HE FUHMtU FHUM RIGHT PORTION OF a
N = NLUMARER (OF HONS IN & i )
M = NUMHER DF COLUmMNS IN a
MS =~ UNE DIGIT NUmRER FOR STORAGE MODE OF MATRIX A

0 = GENFRAL

1 = SYMMETRIC

2 = DTAfRDNAL

RthRKH : ’ :

MATRIX R CANNOT RE IN SAME LOCATION AS MATRIX A
MATWIX S5 CANNMOT HE IN SAME {QCATION AS MATHIX A
MATHIX R CanNOT g8f IN SAME LOCATION AS MATRIX S
MATRTIX R AND MATRTIAL S

SURROUTINES

Loe

ME THON

ELEMENTS (OF MaTRIX 4 T0 THP LEFT OF COLUMN L AWE MOVED TO

AND FUNCT LON

AME ALWAYS GENERAL MATRICES

SUHPHOGRAMS REQUIRED

FOsxms MATRIK K OF M w0wS aND L-1 COLUMNS, ELEMENTS. OF

MaTHIX & IN COLUMN L AND TO THE RIGHT OF L ARE HOVED TO FORMCCUT

187

ccurt

‘.Ql.l...llll.ll.'l..‘......l.l..l..-I...I.-'....l..l...l.‘........ccUT

ccur

CCUT

cCurT

CCUT

ccur

ceurt
ccur
ccut

cCcuTt

CCUY
- gCcuT
ceuT

ccut

‘CCUT

ccuT
ccuT

CCUT:

ccur
ccuT
ccuTt
ccuT
CCuT
cecur
ccurT

ceuT

ccur
ccur
ccuTr

-~ CQUT
. CCuUT

ccur
ccuT
Cccur

CCuT

CCUF

- MATRIX S OF &8 QROWS AND M=L+] COLUMNS. CCuUT

‘ - CCUT
...‘I.....I.'.O.........I-......l.....I.....'..........-..........CCUT.
CCcuT

T OSURKOUTINE CCUT(asl e eSeNeMamMs) ccuT
NIMENSTON AC1)eR(1)aS(1) : eecur

_ & , o ceuT

=0 . ceuT

10
20
30
40
50
60
70

B0
90

100
110

l20 .

130
140

150
180

170
ia0
190

210

220

230

240

250 -
260
270

280
290

300 - ¢
310.
320
330

340
350

360
370
380
390

400
4l0

%20

430

G40
450
460

R TSI



o NeRe! OO0

OO0

20

30

40
50
A0
70

15=4
N T gzl em
iy 70 F=lam

FIND LocaTTon IN ouTPuT maTwIX AND SET TO 2FERO

TE(J=L)Y 20glbeldi
TS=19+1
SiTsi=0,.10

360 TO 30

TusTH+1
R{TRY=0,1

LOCATF FLEMENT FOR ANY MATR]X STOHAGE MODFE
Calll LNC{TedeTdeneMsms)

TEST FOR £6=0 ELFMENT In DTAGONAL MATRIX
IF(JJ) 408T0Dsal)

DETERMINE WRETHER ®IGHT O# LEFT OF L
TF(J=L) mliesDeqN
S{TS)=a (T}
GO T0T0
R{TH)=a(]J)
cOMT INUE

QFTURN
Frin

168

Cccurt
ccut

ccuT
ccuT

ccufv
CCuT
ccuT
ccuT
ccuTt

cCcut

ccuT
ccuTt
ccut

ccutT

ccurt
ccuTt
ccuTt
CCuT
ccurt
ccuTt
ccuTt
ccut
cCcuT
ccurt
ccuT
ccuTt
ccuT
ccuT
ccut

_CCuT

470
480
490
500
510
520
530 -
540
550
560
570:
580
590
600
61¢

620

630
640
650
660 .
670
680
690
700
710 -
720
7130
740 .
750
760
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MINV
! ..DDOOIOOOOOOOO6..lb..‘.'..'.'.‘....‘...ll.....l‘i..OOOOC.CCOOCUCOMINv
© .. MINY
SUBRCUTINE RINV - . MINV
o ' ' ' ' - - . MINV
~PURPOGSE . : ‘ : S U MINY
INVERT A MATRIX : _ : - MINV
: e - MINV
“USAGE : S - MINV
CALL MINV{A,NyDybL M) : : . - RINV
| : o : - ' . . MINV
CESCRIPTICN CF PARAMETERS : S MINV
A - INPUT MATRIX) DESTROYEC IN COMPUTATION ANC REPLACEC BY MINV
: RESULTANT INVERSE. A _ . MINV
N - ORCER CF MATRIX A : : - MINV
D - RESULTANT DETERMINANT . . MINV
L - WORK VECTCR OF LENGTE N | - C o MINV
M -~ WORK VECTCR OF LENGTH N . _ MINV
' : . S MINV
REMARKS ST “MINV
MATRIX A MUST BE A GENERAL MATRIX | ~ MINV.
: S .. PINV..
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED ' o MINY
NONE ' . B MINV
' : . MINV
VETHCD MINV

THE STANLARE GAUSS-JORDAN PETHOD 1S USED. THE: DETERHINANT MINY
1S ALSC CALCULATED. A DETERVMINANT OF 2EROD INDICATES THAT . MINV

THE MATRIX IS SINGULAR. _ MINV
- - MINV
.Q‘....‘.....‘..C....'..C.......-...C........-.I........'.........”INV

' _ . MINY
. SUBRCUTINE MINV(AsNsDoloM) , . MINV
CIMENSION A(1)4L(1),M(1}) & T MINV:

C ~ : S KINV

5-o--crouo-io!ooo-o-oio--o;-oo.o-.ooo;oqoo...oto'&oitooloocburcooo_ooi"rlN_v

' . o HINV
1F A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE MINV

'C_IN COLUMN 1 SHOULD BE REMOVED FROM THE COUBLE PRECISION MINV
 STATEMENT WHICH FOLLOWS. . MINY

- _ _ | S MINV
DOUBLE PRECISICN A,D,B1GA,HOLD o . O MINV

. KINV
THE € MUST ALSO BE REMOVED FRCM DOUBLE PRECISION STATEMENTS = NINV
APPEARING IN CTHER ROUTINES USED IN CONJUNCTION WITH THIS . . MINV
ROUTINE. |  MINV

L MINV

THE DOUBLE PRECISIUN VERSION CF THIS SUBRGUTINE HUST.ALSO. © MINV

189

230 -

240

260
270

280

29¢
300

310
320

330
340
350

390
400

360
e
380

i

410 ¢

420 |

430 y
440
480

4460
470

480
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10

20

25

30

35
Y

40

CONTAIN CCUBLE PRECISION FORTRAN FUNCT[ONS.

1C MUST BE CKANGED TC DABS.

ABS IN STATEMENT

MINV
MINV
MINV

I..‘Ol.rli...‘l....‘....-.IIC.ICOl‘..‘.!..I..‘..........‘.l‘..l..!'Hle

SEARCH FOR LARGEST ELEMENT

£=1.0

NK=~N

CC 80 K=1,N

NK=NK+N

LIK)=K

¥(K)=K

KKaNK+K

BIGA=A(KK)

CC 2€ J=sK4N

12aN*(Jj~-1)

L0 2C I=K,N

IJ=12+1 :
IFtL ABS(BIGA)=- ABS{A{LJ))) 15,20,20
BIGA=AL{LJ)

LIK)=1

M{K)=J

CONTINUE

INTERCHANGE RCWS

J=L{K)

IFtJ-K) 35,35,25
KIzK-N

CC 3C I=1.N
KIsKI+N
HOLC==A(KI])
JIzsKI-K+J
A(KEI=A(J])
Af{JI}y =HOLD

INTERCHANGE CCLUMNS

I=M(K)

IF(I-K) 4%5,45,38
JPaN*{[-]1)

CO 40 J=1,N
JEK=NK+J

JI=JP+y
HOLC==A(JK)
AlJIKI=ALJI])
A(JT) =HOLD

170

MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MEINV
MINV
MINV
MINY
MINV

-MINV

MINV
MINV
MINV
MINV
MINV
"HINV
MINV
FINV

- MINV

MINV
MINV
MINV
MINV
MINV
 PINV
MINV
MINV
MINV
W INV
HINV
MINV
WINY
MINV

MINV

MINV

MINV

 MINV
MINV
MINV

450
500
510
520
530
540
550
560
57¢
580
590
600
610

620

630
640
650
4640
670
680

490

700
710
720
730

T40

750
760
770
780
790
800
810

820
830

840

8460
870
880
890
$00
910
920
930
540
$50
960



cooo

o0

Veo*

213120

oLt OO0

oon

45

46

48

.50
55

62
65

70

15

CIVICE COLUFMN BY MINUS PIVDT (VALUE OF PIVOT ELEMENT IS

CONTAINEC IN BIGA)

TFLBIGA) 4B,46,48
0=C.0

"RETURN

CC 55 [=14N

IF(I-K) 50:55;50
IKsNK+]

ACIK)=A(IK) /(- BICA!
CONTINUE

RECUCE MATRIX

BC 65 I=1,N

TKaNK + ]
HOLC=A{ IK)
Jusl-N

CO 65 J=1,N
Lde[.J+N

JFLI-K) 60,85,84C

TF(J=K) 62465,62
Kdo[J=T+K -
ACTJ)sHOLE*A(KJI+ACTY)
CONTINUE .

CIVICE ROW BY PIVUT\.
KJ#K=N |
CC 75 J=1,N
KJeKJ+N :
IF(J=-K) 70,75,7C
AlKJI=A(KI}/BIGA
CONTINUE
PRODLCT OF PIVCTS
D=0¥B1GA
REPLACE PIVCT BY RECIPROCAL

AlKK)=1.0/BIGA .
CONT INUE

FINAL ROW ANC COLUMN INTERCHANGE

K=N

171

MINV STO :

MINV 980
KINV 950
MINV1000

. MINY1IO010
- MINV1Q2C

MINV1030

MINV10&O

" MINV10TO

MINV108O
MINV10SO

. MINV11G0

MINVi11O

- MINV1120

MINV1130

-MINV114O

. MINV1040
‘MINV1050

MINV11S0
NINVIiGO

MINV1180

MINVI200
MINVIZ210
MINV1220

. MINVILTO
MINV119C

MINV1230

MINV1240
MINV1250

MINV1260 |
. MINV1270
MINV1280

MINV129C

MINVI3QO

MINV1310
MINV]320 .

MINV1330

© MINV1340
 MINV13SQ |

MINV1360 |

MIKVIITO

MINV13SE

. MINV1380 |

1

MINV14O00Q ir‘

T MINV1ALO

MINV1&20 |

MINV1430 |
 KINV1A4O

+



1¢c
1C8
108

110
120

125

130

150

Ke{K=1)

IF(X) 1%0,15C,1C5
[=L{K)

IF(I-¥) 120,12C,1C8
JEuN*(K=~1)
JR=N*{I-1)

CG 110 J=1,N
JK=JG+J
FOLE=A(JK)
JIsJR+J
AlJK)1==A(JI)
A{Jl) =HOLD
JEM(K) ,
IFt{J-K) 100,10C,125
KI=sK~N

CC 130 Is=lsN
KI=KI+N
FOLO=A(KI)
JI=KI~K+J
AMKIY==A(JI}
A{JI)} =HOLD

GO TC 100

RETURN

ENC

72

MINV1450
KINV1460
FINVI4TC
MINV1480
MINV1450
MINV1500
HINV1SL0
#INV1520
MINV1530
KINV1540
MINV1550C

MINV157C

MINV1580

MINV1590Q

. ¥INV1EOQ

MINV1610
MINV162Q
MINV1E3C
MINV1E40

MINV1&50

MINV1&S0

MINV1IGTO

MINV1SEO

" MINV1S5E0 -
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SINV
.Qt!Olllt...OOOOUOCQOCQCltnt.l.l...t..o!...Cll...'l..‘.‘.l..lCICOISINV
, SINV

SUBRCUTINE SINV ' ' : © SINV
o : . - ‘ - STNV

PURPOSE ) SINV
‘ INVERT A GIVEN SYMMETRIC PCSITIVE DEFIN!TE MATRIX SINV
' . : SINV

- USAGE : : SINV
CALL sruv(A.M.EPS,IERI o : o ' - TSINV.

: ' - .SINV

CESCRIPTION CF PARAMETERS - ' o SINV
A - LPPER TRIANGULAR PART OF THE GIVEN SYMMETRIC SINYV
PCSITIVE DEFINITE N BY N COEFFICIENT MATRIX. SINV

ON RETURN A CCNTAINS THE RESULTANT UPPER SINV

‘ TRIANGULAR MATRIX, ‘ : SINV

N - THE NUMBER OF ROWS (COULUMNS) IN GIVEN MATRIX. = SINV
EPS = AN INPUT CONSTANT WHICH IS USED AS RELATIVE' - SINY

: ‘ TCLERANCE FCOR TEST ON LOSS OF SIGNIFICANCE. - SINV
TER - RESULTING ERRCR PARAMETER CODED AS FOLLOWS. SINV

' IER=0D =~ NO ERRCR T SINV
IER=-1 = NO RESULT BECAUSE OF WRONG INPUT PARAME-~ SINV

TER N CR BECAUSE SOME RADICAND IS NCN- SINV

POSITIVE (MATRIX A IS NOT POSITIVE SINV

DEFINITE, POSSIBLY DUE 7O LDSS OF S!GNI— SINV

. FICANCE) SINV

TER=K - WARNING WHICH INDICATES LOSS OF SIGNIFI- SINV.

CANCE. THE RADICAND FORMED AT FACTORIZA- SINV
TION STEP K+1 WAS STILL PGSITIVE BUT NO SINV
LONGER GREATER THAN ABS(EPS*Q{K+1,K+15!; STNV

SINV

REMARKS SINV
THE UPPER TRIANGULAR PART CF GIVEN MATRIX IS ASSUMED TO BE SINV
STORED CCLUMNWISE IN N*(N+1)/2 SUCCESSIVE STORAGE LOCATIONS.SINV
IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU~ SINV
LAR MATRTIX IS STORED CCLUMNWISE TCO. ‘ SINV

"THE PROCECURE GIVES RESULTS IF N IS GREATER THAN O AND ALL SINV

" CALCULATEC RACICANDS ARE PCSITIVE. SINV
SINV'

SUBROUTINES AND FUNCTION SUBPROGRAMS REOUIRED - . SINY
MFSD & : - SINV

| ' - | SNV

METHCD - SINV
“SOLUTION 1S DONE USING THE FACTORIZATION BY SUBROUTINE MFSD.SINY

, - SINY
.'..l...........‘..‘.I......'.........OI....‘.............‘.'...IOSINV
STINV

SUBROUTINE SINV(A(N,EPS)IER) j S . SINV

173 o

10
20

" 30

40
56
60
70
80
90

100

110

120

130

140 -

150

160

170

180

150

200

210

220

230
240
250

260

27¢
280 .
290

300
310,
320

330
340

350

370
380
399

410

420

430
440
45¢

460

470 .
480

400



O

SIKNV 490

' : SINV 500

DIVENSICN A{l) SINV 510
COUBLE PRECISICN DIN,WORK ‘ SINV 520
: ‘ SINV 530

FACTORIZE GIVEN MATRIX BY MEANS OF SUBROUTINE MFSD SINV 540

A = TRANSPCSE(T) = T ' SINY 550
CALL MFSU{AN,EPS,IER) . ‘ SINV 560
IF(IER) 941,41 . - SINV S7C
. - _ , : - SINV 580

INVERT UPPER TRIANGULAR MATRIX T ~ SINV 590
PREPARE INVERSION~LCGP SINV 600
IPIVaN®*(N+1)/2 ' : SINV 61C
IND=TIPLV : , SINV 620.
‘ SINV 630

INITIALIZE INVERSICN-LOCP : . : " SINV 640

CO & I=1,N _ ~ SINV 650
CIN=1,00/CBLE{A[IPIV)) : SINV 660
A{IPIV)=CIN ‘ o SINV 670
MIN=N : ' SINV 680
KENC=1-1 : SINV 650
LANF=N-KEND ' SINV 7Q0
IF{KEND) 54542 ' : SINV 710
J=IND SINV 720
\ : ‘ - SINV 730

INITIALIZE RCw-LUQP ' : SINV 740

CO 4 K=1,KEND ' ' ‘ SINV 750
WORK=0.CO : ' SINV 760
MIN=MIN-1 ‘ o SINV 770

LECR=IPIV . SINV 780

174
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MFSD

.‘d.....I....O...-.'....'...-.I.III...........‘........-...I‘.....MFSD

SUSRDUTINE YFSi

© PURRASE
FACTNF & GIVFN SYMMETHIC POSITIVE DEFINITE MATRIX -

»TJSAhF 7
CALL MFSO{AeNsERPSYIER)

NESCRIPTION OF PARAMETERS . ' : :
A - UPEFK TRIANGULAR PART OF THE GIVEN SYMMETRIC
COSTITIVE DEFINITE N 8Y N COEFFICIENT MATRIX.
ON “ETURN & CONTAINS THE RESULTANT UPPER
TRIANGUL AR MATRIX. :

nn = THE NUMBER OF ROWS (COLUMNS) IN GIVEN MATRIX,
FPS = AM TNPUT CONSTANT wHICH IS USED AS RELATIVE
_ TOLYWANCE FOR TEST ON LOSS OF SIGNIFICANCE,.
TER - RFSULTING EWRQO® PARAMETER CODED AS FOLLOWS
IER=0 = NO ERROR )

IF~==1 = NO RESULT BECAUSE OF WRONG INPUT PARAME-
TER N OR BECAUSE SOME RADICAND IS NON-
POSITIVE (MATRIX A IS NOT POSITIVE

DEFIMITEs POSSIHLY DUE TO LOSS OF SIGNI- -~

‘ FICANCE) .
JFR=K = WAWNING wWHICH INDICATES LOSS OF SIGNIFI-
' CANCE. THE RADICAND FORMED AT FACTORIZA-
TINN STEP K+1 WAS STILL POSITIVE BUT NO
-LONGER GREATER THAN ABS{FPSHA(K+1lyKel}),

REMARKS
THE UPPER TRIANGULAR PAHT UF GIVEN MATRIX IS ASSUMED TO 8E

MFSD
MFSD
MFSD
MFSD

MFSD

MFSD
MFSD
MFSD

.MFSD

MFSD
MFSD

- MFSD-

MFSD
MF5D

- MFSD’

MF5D
MFSD

"‘MFS5D
" MFSD
‘MF5D

MFSD
MFSD

MFSD

MF 3D

MFSD

MFSD
MFSD
MFSD

« MFSD
MFSD
MFSD

. STORED COLUMNWISE IN N#(N+1)/2 SUCCESSIVE STORAGE LOCATIONS.MFSD

JIN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU=
LAR MATRIX IS STOWED COLUMNWISE 100,

THE PROCEOURE GIVES RESULTS IF N IS GREATER THAN 0 AND ALL
CALCULATED waDICANDS AwE POSITIVE, ‘

THE . PRODUCT OF RETURNED DIAGONAL TERMS IS EWUAL TO THE
SQUARF=ROOT OF THE OFTERMINANT OF THE GIVEN MATRIX,

SUHPUUTIN&S AND FUNCTION SUBPHROGRAMS REQUIHED
NONF

METHOD
SOLUTION IS NONE UbING THE SQUARE ROOT METHOD OF CHOLESKY,

MFSD
MFSD
MFSD

MFSD
MFSD

MFSD

MFSD
MFSD

MFSD

. MFSD

MFSD
MFSD

THE GIVEN MATRIX IS REPRESENTED AS PRODUCT OF TwWO TRIANGULARMFSD

. MATRICESs WHFERE THWE LEFT HAND FACTOR IS THE TRANSPOSE OF
" THE RETURNED RIGHT HAND FACTOR,

SUAROUTINE MFSD(AsNeERPSTER)

DIMENSTON a(l)

‘DOVBLE DRFC!SION NPIVsDSU

TEST: ON WRONG INPUT PARAMETER N

C TF(N=1) 1Zalsl

175

MFSO

MFSD
MFSD

”iri.ll.tottot.‘.‘tt.t.ttt....tolt-tt.'o0.‘!.-.l‘.-.d..-.‘:-oo.Q......;QQV.‘PMFSD

MFSD
MFSD
MF S
MFSD

- MFSD
- MFSD
-MFSD

MFSD
MFSD

10
20
30
40
50
60

.10

8o
90
100

110

120
130
149
150
160
170
180

190

260
210

220
230

240
250

260,
270

280

290

300
310
320
330

340

350

360

370
380

390
400

410
420
030
440
450
460
470
480
490
500
510
520
530 -
540
550
560

570 .

580
590
600



cF 3

a0

OYnD

X~ >r 5

10

11

TER=0

~ INITIALIZE: DIAGONAL=LOOP
KOTVY=0

PO 11 ®x=lat

KOTVIKRIV+K

IND=KPTY

CLEND=K=-1

CALCULATE TOLFRANCE
TOL=ARS(FPS*A(KPIV))

STakY FaACTORIZATION«-LOOF QOVEHR kK=TH ROW

N 11 T=Kari
PSUM=0,N0
TF{LEND) 2Peé&s2

START TNNEw LONP

NN 3 L=1lsLEND

LANF=KO I V|

LIND=INO~-{

NSUM=DSUM+DRLE (A{LANF)Y#A(LTND))
END OF TINNER LOO#

TRAMSFORM ELEMENT A CIND)
NSUM=DALE (A (IND) ) =D5UM
JF(I=K) 105410

fEST FNR NEGATIVE PIVOT ELEMENT AND FOR LUSS OF SIGNIFICANCE

TF{SNGL {DSIUMI=TOL} Gshe
IF{NDSUMY 12e1297
IF(IER) BeHdes 9

IER=K=-]

COMPUTE PIVOT FELEMFENT
DPTV=DSART (hSUM)
AlKPIVY=DPIV
NPTIV=1.N0/DPLV
GO TO 11

CALCULATE TERMS IN ROwW
A{TND) =DSUMSDP IV
INII=IND+ ]

END AF OTAGONAL-LOOP
RETURN
IFR==1
RFETURN

- END

176

MF 5D
MFSD
MFSD
MFSD
MF SD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MF5D
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MFSD
MF5D

610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830

840

850
860
870
880
890
900
910
920
930
940
950

960 - -

970
980
990

MFSD1000

MFSD1010-
MFSpl020
MFSD1030
MFSD1040

- MESDL050

MFSD1060

. MFSPD1070

MFSD1080
MFSD1090
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MAOU
..il'I..i..c..Dl..ltl....'l.lllllll.l...l..-.l..-.ltt....i.‘ll.l..MxUU
o MXOU

SURRDUT INE MXDUT : o MXQU
- S ' . MXO0U
PURPOSE o o MXOU
PRODUCES an DUTPUT LISTING OF ANY SIZED ARRAY ON MX0U
LOGTICAL UNIT & , _ ) MXOU

. - R ' - ; MXOU
USAGE - - MXOU
CaLL MxnuTtIconF.A.N.M.MS-LINS.IPOS;ISP) o ‘MXOU

. SR MXOY.

NESCRIPTION OF PARAMETEWS ‘ MXOU
' TCONE~- INPUT COUE NUMRER TO BE PRINTED ‘ON EACH OUTPUT PAGE 'MXOU
A=NAME (}F ODUTPUT MATRIX MAQU
N=NUMPBER OF R0wWS IN A ' - S MXOU -
M=NUMHEK OF COLUMNS TN & : . , MXOU
MS=STOGRAGE MNDE OF a4 wHERE MS= : ‘ -~ MXOU
V=GENERAL _ . ' MXOU
1«SYMMETRIC o S : ' . MXDU

2-0TAGONMAL B .. MXou
LINS=NUMBER OF PRINT LINES ON THE PAGE (USUALLY 60) - MXO0U
IPOS~-NUMBER OF PRINT POSITIONS ACKOSS THE PAGE (USUALLY 132)MXOU’
ISP-LINE SPACING CODEs 1 FOR SINGLE SPACEs 2 FOR DOUBLE = MXOU
SPACE : MXOU .

o - MXOU

JREMAHKS ' : MXOU -

THIS SURROUTINE HAG" HEEN MODIFIED BY M.HUTTON ON 11/27/71 ‘MX0U
TO REDUCE THE aMOUNT OF EXTRA PRINTOUT. TO RETURN THE : MXDU

SURROUTINE TO ITS ORIGINAL FORM MUDIFY CARDS 2B0+480+590s  MXOU
6509004920 ACCORDING TO THE SSP MANUAL AND REMOVE CARDS °  MXOU
281-2664+591, MXOU

e \ : ' : L MXOU
. /SURROUTINES AND FUNCTION SUBPROGRAMS REQUIRED : - MXOU
LOC . C MXOU

o | ' : , : : : . MXOU
LMETHOD : ' I MXOU
THIS SUBROUTINE CREATFS A STANDARD OQUTPUT LISTING OF ANY MXOU

STZED ARRAY WITH ANY STORAGE MODE. EACH PAGE IS HEADED wITH MXOU
" THE COUE NUMBERSDIMENSIONS AND STORAGE MODE OF THE ARRAY, MX0U

EACH COLUMN AND ROW IS ALSO HEADED WITH ITS RESPECTIVE MXOU
NUMRER, | . C MXOU

: _ - MX0U
Q...l.....loot..0....‘..."...l...l..!..!'.l.l.'.....l...'........nxou
I _ MXOU

SURROUTINE MAQUT tlconE.A,N.M.Mb,LINssIPos.ISP) ' S . MXO0U.
DIMENSION A(1)eR(8) : MXOU.
FORMAT (1H1+GXs THMATRIX ;I%qﬁXaIS-bH RONS;&X.IB;BH COLUMNSs - MXQU
1RX+1IHSTORAGE MODF +I193Xs5HPAGE s12e/) - o MXOU
FORMAT (12X« HHCOLUMN 37 (3X+1310X)) o : . MXoU
FORMAT (1K ) : _ ' COMXOU .
FORMAT (1H s4XeT(F1646))" S - S MXOU
FORMAT (1HOeaXe T(E16,6)) : R : ‘ MXOU
FORMAT(1H ¢164Xa6(F18,4}) = - - MXOU
FORMAT (1H0s14Xe6 (F18,8)) ‘ : .. MX0U
o : ‘ . . - . MX0U
J=1 ‘ . : : , o ' © MXO0U
: : _ ‘ \ ‘MX0U

WRITE HEADING ‘ ‘ . MX0U

: . - : ' MXO0U

177

10
20
30
40
S0
60
T0
80
90
100
110
120
130
140
150

160

170
180
190
200 -
clo
2290

230

240
250
260
270
280

281

282
283
284

290 ..

300
310
320
330
340 -
KLY/

360

370
380
390
400
410
420

430 -

440
450

460

470
480 .
490
480

490

500
510
520
530
540



000 oo0o O0o 000

OO0

10
2n
20

31
32

- 33

35
40

45
50

n
81}

60
65

T0

-T5

A0

NFAND=TPOS/16=]
LEND= (1. INS/TSHY =2

TRAGE=]

LSsTRT=1

WITTE (A1) TCOUE sNeMeMS e [PAGE
CONT INUF '

JATZ JeNFND~-]

IPAGE=TPARE+]

TFEUNT=MY 3343337

JNT =M

CONT INUE

WRITE{(He2) {JCURSJCURZ o JNT
IF(ISP~1) 35435440 :
WRTTE (Aa3)
LTEND=LSTRT+LEND=]

NO A0 L=LSTRT +LTEND

FORM OQUTPUT ROW [ INF

N 89 K=1sMFNT;

KK=K

JT = Je=] )
Catl LNC(LoedT s TUNT etamgMi)
A(K)=0,0

JFITIUNTIBO+ 5 ettS
R{K)=a(TJnT)

CONT INUF

CHFEOK IF LAST cOLUMN, . IF YES GO TO 60

TFtJT=M) B5460+60 .
CONTINUF

ENA OF LINEs NOW WHITE
TF(ISP=1) 6% e65 470
WRTITE (Aed) {(R{JW) adW=]1eKK) -
60 TO 75 \
WRTTE(A35) (R (JW) edw=1 oKK)

TF FND OF RDWSeG0 CHECK COLUMNS

JFAN=LYES e« BB o B 1}

CNNTINUE

END OF PAGEs NOW CHECK FOR MORE OUTRUT

LSTRT=LSTRT+LEND

B5
90

95

GO TFO 29
END OF COLUMNSs THEN RETURN

IF(JT=-MION 495,495
J=JT+1 '
GO0 TO 10

RETURN

SEND

MX0U 550
MXO) 560
MXOU ST0
MX0U S840
MX0U S90
MXOU 591
MX0OU 600 -
MX0OU 610
MX0OU 620
MXOU 630
MXOU 640
MX0U 650

- MX0OU 660

MAOU 67D
MA0U 680
MX0OU 690
MXOU T00
MAX0U 710
MX0OU T20
MX0OU T30
MXOU 740
MX0OU 750
MXOU 760
MXOU TTG -
MXOQU 780
MXOU 790
MXOU 800
MX0OU 810
MXOU 820
MXOU B30

 MXOU 840

MXQU 850
MXOU B6O -
MXQU 870
MXOU 8B0
MXOU 890

MXOU 900
MXOU 910
MXOU 920

MXOU 930

MXOU 940
MX0U 950
MXOU 960

MXOU 970

MXOU 980
MXOU 990
MXDU1000
MXOU1010
MX0OU1020
MXOUL030

. MAOUL040

MXOU1080
MX0U1060
MXOU1670

MXoulogo
T MXOULl090

MXOUL100



APPENDIX D PROCEDURE FOR ELIMINATING CONSTRA INT
'EQUATIONS IN TRIM PROBLEM |

For linear dynamics and a quadratic performance criterion the trim problem can be

written in the form

0=a+B6 - M

r=1/2 5RO ' | (2)
with | ’

a = constant vector of dimension n

&

control vector of dimension m= n
B = nxm coefficient matrix

R = mxm positive definite weighting matrix

The objective is to find the set of control angles & that satisfy (1) and minimize (2). The

trim solution is given by -

=“;B*‘;,f | A o @)
= R er ey o @

¥

The mxn matrix B# is a right inverse of B , i,e., BB

. I .
Consider the new trim problem that results from eliminating k of the . n eﬁuulif).f
constraints, Suppose that the first k constraint equations in (1) are to be disregarded, The

proB[em can always be written in this form by reordering the equations if necessary, Partitioning

(1) gives that the new trim problem is

0= ay + B26n : ) (5) -
r=1/2 6';1R6n | _ o : 6)
‘where l | |
k B, k |
Q= B= |~-- 7)
n-k B, ' n—+k
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The solution to the new trim problem is
5 = -R7'B@ R a (8)
n- 242 2’

The following question is of interest: Without starting the problem over again,
is it possible to compute ﬁn using the solution for 8 ? The answer is affirmative and

-a procedure for computing Gn is developed below.

From tha partiticning (7) of the B matrix

|
Rer = rR"B'1 | R7E | @)
L l .J _
IS T A
o BRTB 1 BRTBY .
BR B = [-ma-- ]----:-----]--- | (10)
LR | oy
B,R B :B2R B

Taking the inverse of (10) results in

]
1
ST - : % )
BRIV = e | an
I l ’
Qz : Qa n-k
where
: A
Q'l = E
SRS PR ER SO
Q, = -E B.RTB,(B,RB)
[P BN B S [t IS R . I
Qy = (B,R7'B) "B RTBET B R BB R 32) +(BR7B)T
and
E=8R8 -8R 8 (8RB B.R B
SRR B RN BGR B BR By

Premultiplying (11) by (9) yields the right inverse of the B matrix in portitio'r-'u_ed form
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|
r oF
]

where . L
o _plar -1, -1 -1, -1 .
B1-— [I R .52(32R B2) Bz]R ,B]E S (1)
# -1, , T W SRS U IO RO fes I
32 [I R 52(32R B ) B }R B'TE B]R_ 32(32R BZ) + R BZ_(B.‘ZR 32)

Substituting (12} into (3) and using (7) gives that

o . | |
§ = B]c:.I B2a2 . | . ‘ (13) .
If we substitute .
a; = BR B’(BR B’) a | " (14)

into (13) then from (8) ar;d (12} it Fbllows that

5-5 - - )

n
This result states that if the first k elements in the vector a-are replaced by the vafues

computed from (14) then the soluhon to the original trim problem becomes the soluhon to

the new trim problem created by eliminating the First k constraint equohons

1t is apparent from comparing (11) to (14) that (14) can be replaced by
- -q’'q | 16) "
9 T TRy M% L

' This is a more useful equation for computing the new value of a]I since Q]' and Q,
are submatrices of o matrix computed in the solution of. the original problem. ‘

To summarize, the steps for computing 6 are as follows: -

1} Start the computation of & using (3) und (4) in the. usual wcy.

2) After computing (BR™ B') -l
3) Replace subvector a, in o by the value computed from (16),

 form the subrna'rrtces Q] ‘and Q2 accordlng to (”)

4) Conhnue the computation oF 8 in the usual way. The resulr will be 6= 6

- The above procedure for computing 6 does not offer any parhcular ndvanrc:ge over

o usmg (8) if the caleulations are to be done by hand. - If a computer program, on the other hand,

hes been developed to compute § then the above procedure minimizes the amourit of program

modification required to compute 6n
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APPENDIX E VERIFICATION OF TRIMS PRO‘GRAM

Lateral trim of the Space Shuttle is an example of the linear trim problem. The linear

trim problem is to find the control deflections & satisfying the equality constraints

a+B65=0
and mfnimizing
J = 1/20'Ré
The solution is
#
§==-Ba

-1

B¥ = -R™'B’(BR™ ')

The problem of Space Shuttle trim in roll and yow (two constraint equations) using the

following four control deftections:

e yaw deflection of orbiter engine 1
o yaw deflaction of orbiter engines 2 and 3

e pitch deflection of orbiter engine 2
(negative of the pitch deflection of orbiter engine 3)

e rudder deflection
was solved at MSFC. The control deflection angles vs flight time for the case when the R
matrix is

R = Diag [0.49, 0.49, 0.49, 1.00 ]

and the bias torques due to misalignments are

rotl torque = 0.87 x 108 - N-m

yaw torque = 3.02x 10° N*m

" are plotted in Figure E1,

The solution to (supposedly) the same trim problem was also computed usiﬁg the TRIMS .
program as a check of the program. The resulting plot of control deflection angles vs flight

time is shown in Figure E2, The TRIMS computation was repeated except without the dorsal
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‘fins and the trim solution is plotted in Figure E3.

~ The re;ﬁlts in Figures E2 and E3 computed by TRIMS do not agree with the results in
EFigure E1 othiﬁéd by MSFC. A r;on-_:parisc;n of the résults_does not ir_xd_icot'e_ the reason for
the difference.  The computation of & land B¥ from a, B, and R in -fhé TRIMS program was
_checked against hand calculations. Most l.ikely, the area of difficulty is in the computation

of the vector a and matrix B from the equations of motion.

183



¥8l

CONTROL DEFLECTION, $ (deg)

Figuré ET Trim Soltuion Computed at MSFC

J = YAW DEFLECTION ENGINE 1

= YAW DEFLECTION ENGINE 2 8 3

V = PITCH DEFLECTION ENGINE 3, AND
{NEGATIVE OF PITCH DEFLECTION ENGINEZ)

O= RUDDER DEFLECTION

Qg

BIAS TORQUES
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85

T
105
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. Fig:ure E2 Control Deflections vs Fligfnr Time for Space Shuttle Trim in Roll and Yaw with Addition of Dorsal Fins
24, o o C . AR

(R A e P TR bias.lorques due to misalignments_ , _ ‘
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contro! deflection, & (deg)

Figure E3 Control Deflections vs Flight Time for Space Schuttle Trim in Roll and Yaw
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Rear View @ @

yaw deflection engihe 2&3
N

© -0

ru_dder deflection

yaw deflection engine 2&3
{]

pitch deflection engine3, and the (negative of
pitch deflection engine 2)

V

! I I 1 I i

25 45 65 85 105 125 145

‘ flight time (sec)
bias torques due to misalignments - roll .fB?_x\_lO? N-m yaw 3.02 x TOéN *m .



REFERENCES

Brockett, R., Finite Dimensional Linear Systems, John Wiley and Sons, Inc,
New York, 1970.

. Bryson, A. and Ho. Y , Applied Optimal Control, Blaisdell Publishing Co.,
Waltham, Mass,, 1969,

Etkin, B., Dynamics of Flight-Stability and Control, Joh'ﬁ Wiley & Sons, Inc.,
New York, 1959.

. Faddeev, D. K. and Faddeeva, V. N., Computional Methods of Linear Algebra,
W. H. Freeman & Co., San Francisco, 1963 , _

. Householder, A. S., The Theory of Matrices in Numerical Analysis, Blaisdell
Publishing Co., New York, 1964, .

Kalman, R. F., Ho, Y. C.,‘ and MNarendra, K. 5., "Controllability of Linear
Dynomical Systems, ¥ Contributions to Differential Equations, vol. 1, No. 2,
1961, pp. 182-213.

. Johnson, C. D., "Optimization of a Certain Quality of Complere Confrollabflny
and Observcblllty for Linear Dynamic Systems," J. Basic Engineering, Trans. ASME,
ser. D, vol. 91, June 1969, pp. 228-238,

Friedland, B., "Limiting Forms of Optimum Stochastic Linear Regulators," Trans.
ASME Joumai of Dynamic Systems, Measurement, and Control, Sepfember 1971,
. 134-141,

. Hutton, M. F., "Solutions of the Singular Stochastic Regulator Problem, " to be
published in the Journal of Dynamic Systems, Measurement, and Control .

187



