
TWR-10075

FINAL REPORT

SPACE SHUTTLE SRM INTERIM CONTRACT

PART II

28 Junei-1974

(NASA-CR-120405) SPACE SHUTTLE SRM N74-32297
INTERIM CONTRACT, PART 2 Final Report
(Thiokol Chemuical Corp.) 240 p HC
$15.00 CSCL 22A Unclas

G3/31 46911 J

WASATCH DIVISION -.

A DIV/SION OF THIOKOL CORPORATION

Publications No. 74334



TWR-10075

FINAL REPORT

SPACE SHUTTLE SRM INTERIM CONTRACT

28 June 1974

By

THIOKOL/WASA TCH DIVISION
A Division of Thiokol Corporation

P.O. Box 524, Brigham City, Utah 84302

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

George C. Marshall Space Flight Center

Contract NAS8-30754

4 
7

M ro h



CONTENTS

Page

1.0 INTRODUCTION AND SUMMARY ................... 1

2.0 DESIGN REQUIREMENTS ...................... 5

3.0 SRM PRELIMINARY DESIGNS ..................... 19

3 1 Motor Performance ...................... ... 19

3.1.1 Preliminary Design Data for Space Shuttle SRM

Configuration 1 Model TU772/40A ................... 26

3.1.1.1 Basic Motor Description ........ ......... 26

3. 1. 1.2 Performance . ..... ...... ** ... . ....... 27

3.1.2 Preliminary Design Data for Space Shuttle SRM

Configuration 1-1 Model TU772/42C ............. ... 33

3.1.2.1 Basic Motor Description . . .... . .............. 33

3.1.2.2 Performance ................................. 39

3.1.3 Preliminary Design Data for Space Shuttle SRM

Configuration 1-1A Model TU772/42D ..... ...... . 39

3.1.3.1 Basic Motor Description . ................ ...... 39

3.1.3.2 Performance . ...... ................ .... .. .. 42

3.2 Case and Structural Analysis ....... .. .... ...... 48

3.2.1 Case ........ .. .. . ... . ............ . .. 48

3.2.1.1 Case Wall Thickness Calculation ................. 50

3.2.1.2 Grit Blast........... * **...... ........... . .. 51

3.2.1.3 Analytical Procedure . ...... . ............... 51

3.2.1.4 Skirt Attachment Joints ....... . .. .......... 55

3.2.1.5 Aft ET Attach Ring.. . . .... .... . . ........ 59

3.2.1.6 Water Impact .......... ... .... ...... ... 62

3.2.1.7 Slapdown. ........ .. .. ... .... .. ...... 70

3.2. 18 Cavity Collapse ........ ..... . 70

3.2.1.9 Penetration ............ .*..... ... .. ..... 78

3.2.1.10 Aft Dome ........... ....... .... ........ ** 78

3. 2.1.11 Nozzle .. .......... ......... .... ... .....* 81

3.2.1.12 Aft Peaking Loads ............ ....... ... 81

3.2.1.13 Forward Peaking Loads ..... .......... 91

3.3 Nozzle ............ ** ** * * * * * * * 93

3.3.1 Nozzle Material Selection .... ......... 93

3.3.1.1 Mat Tape ............ *.... * .. *. . ** *... 101

ii



CONTENTS (Cont)

3.3.1.2 Hybrid Tape ................................. 102

3.3. 1. 3 Molding Compound ............. .... . ... . . . .... 102

3.3.2 Plastic Materials Safety Factor Interpretation.... . ... .. 117

3.3.3 Aft Skirt and Actuation System Interface. ............ ... 123

3.3.4 Nozzle Field Joint ......... ......... . . ...... 134

3.3.5 Nozzle Cutoff ......... .... . ............... 136

3.4 Propellant ................. . . ........... ....... 140

3.4.1 Crain Design ............. ................... 140

3.4.2 Motor Specific Impulse ........................... 147

3.4.3 Minimum Specific Impulse ...... ........... .... 152

3.5 Insulation and Liner ........... ... ......... . 156

3.5.1 Case Internal Insulation Temperature Study ........... . . 156

3.5.2 Aft Case Insulation Thickness ......... .. .. .. .. .... 159

3.6 SRM Design Study.. ......... ...... ........... 160

4.0 VIBRATION AND ACOUSTIC DATA .................. 180

5.0 LAUNCH SITE ASSEMBLY AND STACKUP TOLERANCE .... 182

6.0 SRM DDT&E Schedule............... ............. 188

APPENDIX A

iii



ILLUSTRATIONS

Figure Page

2-1 Water Impact and SRM/ET Attach Requirements ......... 6

2-2 SRM Requirements - Geometry .......................... 9

2-3 SRM Requirements - Performance ................... 10

2-4 Representative SRM Performance Data ............... 12

2-5 Residual Force and SRM Thrust Shape Data, RI Case 370 ... 14

2-6 Residual Force and SRM Thrust Shape Data, RI Case 371 . . 15

2-7 Residual Force and SRM Thrust Shape Data, RI Case 372 . . . 16

2-8 Residual Force and SRM Thrust Shape Data, RI Case 373 . .. 17

3-1 Case Fabrication Constraints at 146 In. Diameter ........ 21

3-2 Case Fabrication Constraints ........................ 24

3-3 Motor Layout, Configuration 1 ...................... 28-29

3-4 Thrust Versus Time Configuration 1 .................. 34

3-5 Motor Layout, Configuration 1-1 .................... 35-36

3-6 Thrust Versus Time Configuration 1-1 ................. 41

3-7 Motor Layout, Configuration 1-1A ................... 43

3-8 Thrust Versus Time Configuration 1-1A .............. 47

3-9 Weight Versus Pressure ......................... 53

3-10 Clevis Type Attachment Mechanism for
Forward Skirt (SK50183) ......................... 56

3-11 Clevis Type Attachment Mechanism for
Aft Skirt (SK50184) .................. .......... 57

3-12 Aft Attach Ring Frame Analysis (Configuration 1-1) ....... 60

3-13 Aft Attach Ring Results of Discontinuity Analysis
(Configuration 1-1) ............................ 61

3-14 ET Attach Ring - Liftoff Condition Plus 861 psi
Internal Pressure (Configuration 1-1) . . ............. 63

iv



ILLUSTRATIONS (Cont)

Figure Page

3-15 Combined Stress Distribution in SRM Case on the

Meridian Containing Strut Load "P 2 "t (Configuration 1-1) .... 64

3-16 SRB Cavity Collapse - STAGS Analysis Results .......... 66

3-17 Slapdown Results, t = 0. 486 ....................... 71

3-18 SRM Case Buckling Parameters (Slapdown 8 = -10 Deg) .... 72

3-19 BOSOR Slapdown Results ......................... 73

3-20 SRB Slapdown - STAGS Analysis Results .............. 74

3-21 Cavity Collapse Summary ......................... 76

3-22 Cavity Collapse BOSOR 4 Results ................... 77

3-23 Aft Dome Buckling Calculations Summary .............. 82

3-24 Nozzle Analysis (Max Pitch, 0 = 0 Deg) ............... 83

3-25 SRM Nozzle Buckling Analysis - Configuration 0 (Max Axial

Acc, 0 = -10 Deg - Initial Undeformed Structure)......... 84

3-26 Nozzle Showing Char Line ........................ 85

3-27 SRM Case Aft Peaking Loads Analysis NASTRAN Model .... 89

3-28 Stress Distribution (psi) - Aft Peaking Loads
(Ref: S & E-ASTN-AS (74-15)) ..................... 90

3-29 Effect of Forward Peaking Loads (Configuration 1-1) ...... 92

3-30 Baseline Low-Cost Nozzle - Configuration 0 ............ 95

3-31 SRM Nozzle - Configuration 1 ...................... 96

3-32 SRM Nozzle - Configuration 1-1 ................... 97

3-33 SRM Nozzle - Configuration 1-1A ................... 98

3-34 Small Motor Firings........................... 107

3-35 Poseidon C3 First Stage Low-Cost Nozzle (Tested

5 July 1973) .................................. 110

3-36 Low-Cost Materials Test Performance Comparison........ 112

V



ILLUSTRATIONS (Cont)

Figure Page

3-37 Material Matrix Subscale (C3 Size) Motor Tests ......... 114

3-38 Development Schedule .......................... 115

3-39 Plastic Material Safety Factor Interpretation ........... 118

3-40 Baseline Low-Cost Nozzle ......................... 119

3-41 Revised Baseline Design Low-Cost Materials - NASA
Safety Factors ........... .................... 120

3-42 Baseline Design High-Cost Materials - NASA Safety
Factors ............................................ 122

3-43 Submergence Comparison ........................ 126

3-44 Field Joint .................................. 135

3-45 Nozzle Cutoff Device .............................. 137

3-46 Penetration and Cut by RDX Core Copper Sheath LSC ...... 138

3-47 SRM Requirements - Performance .................. 141

3-48 Comparison of Surface-Web Histories ................ 142

3-49 Vacuum Thrust Versus Time ....................... 144

3-50 Grain Configuration (TC-526-04-01A) ............. ... 145

3-51 Grain Configuration (TC-526-04-01B) ................... 146

3-52 11-Point Star Geometry ................... ... 149

3-53 Comparison of Vacuum-Thrust Time Performance........ 150

3-54 Delivered Specific Impulse Versus Nozzle Length-to-
Throat Radius Ratio ............................ 153

3-55 SRB Water Entry at Splashdown (Case Insulation
1.5 In. Thick Exposed 80 Seconds) ................ 157

3-56 Design and Optimization Program .......... . ........ 162

3-57 Case Segment Configuration* ....................... 170

3-58 Case Fabrication Constraints ....................... 171

vi



ILLUSTRATIONS (Cont)

Figure Page

3-59 Comparison of Propellant Loading in Three Aft Closure

Designs for Configuration 1 ...................... 173

3-60 Delivered Specific Impulse Versus Nozzle Length-to-
Throat Radius Ratio ............................. 174

3-61 Maximum G* as a Function of Increased Propellant

(AWp) Configuration 1........................... 175

5-1 Total Offset From True Centerline .................. 183

5-2 Maximum Offset Due to Angularity Variation Between
Segments ................................... 184

5-3 Rotational Maximum Misalignment .................. 186

6-1 Preliminary Schedule E ......................... 189

vii



TABLES

Table Page

I Dimensional, Weight, and Performance Data ........... 3

II Comparison of SRM Designs Generated by RI and TC ...... 18

III Summary of Motor Dimensions (Configuration 1) ......... 30

IV Weight and Center of Gravity Summary (Configuration 1) ... 31

V Nozzle Characteristics and Design Criteria

(Configuration 1) .............................. 32

VI Summary of Motor Dimensions (Configuration 1-1) ....... 37

VII Weight and Center of Gravity Summary (Configuration 1-1) . 38

VIII Nozzle Characteristics and Design Criteria
(Configuration 1-1) ............................. 40

IX Summary of Motor Dimensions (Configuration 1-1A)....... . 44

X Weight and Center of Gravity Summary (Configuration 1-1A). . 45

XI Nozzle Characteristics and Design Criteria
(Configuration 1-1A) ............................ 46

XII SRM Buckling Summary - Water Impact Loads .......... 65

XIII Slapdown BOSOR Summary Sheet ................... 75

XIV Cavity Collapse BOSOR Summary Sheet ............... 79

XV Penetration BOSOR Summary Sheet .................. 80

XVI Nozzle Buckling Analysis ......................... 86

XVII Nozzle Summary Data ........................... 94

XVIII Actuator Torque Summary........ .............. 99

XIX Material Properties From Thiokol Laboratory Tests ...... 109

XX Submergence Comparison ........................ 125

XXI Results From RI Analysis of SRM Designs ............. 148

XXII Specific Impulse Losses ......................... 151

XXIII Performance Interchange Summary ............... 155

viii



TABLES (Cont)

Table Page

XXIV Summary ........................... ....... 165

XXV Impact of Design Changes From Configuration 0 to 1 ...... 167

XXVI Mass Properties Summary (Weight-Lb) ............... 168

XXVII Case Weight Change Due to Water Impact and Revised
SRM/ET Attachment .................. ......... 169

XXVIII SRM Configuration Comparisons ................... 176

XXIX SRM Configuration Comparisons ................... 177

XXX Angular Offset ............................... 187

ix



3.4 PROPELLANT

The SRM propellant formulation has remained basically unchanged through-

out the interim contract, i. e., same aluminum level and solid loading. Design

ramifications have created different web thicknesses and motor operating pressures

which have necessitated small changes in the required propellant burning rate at

1, 000 psia. However, the SRM burning rate remains well within the range demon-

strated in the Poseidon and Minuteman first stage motors. Any change in propellant

burning rate can be accomplished readily by a slight modification in the oxidizer

particle size distribution. The ballistic and mechanical properties of the propellant

remain unchanged from the baseline (Configuration 0).

3.4.1 Grain Design

Early in the interim contract the propellant grain configuration was subjected

to minor alterations as required to reflect changes in propellant weight. A departure

point was reached when the performance requirements shown in figure 3-47 were

replaced by a residual force requirement (see Section 2, figure 2-4). The definition

of residual force is "that force delivered by the SRM to the ET" (drag losses are

included). The total SRM thrust is thus the sum of the residual force plus the product

of the SRB mass times vehicle acceleration. Vehicle payload capability is relatively

sensitive to the SRM thrust-time performance. Therefore, using this performance

requirement approach ties SRM performance much more directly to vehicle per-

formance than was previously realized.

A subroutine has been incorporated into Thiokol's Automated Design

Program (ADP) which calculates the vacuum thrust time performance required to

yield the residual thrust-time history requested. Basic inputs are the residual force-

time, acceleration time, ambient pressure time histories, and SRB inert weight.

This routine also calculates the required burnrate and burning surface area

versus web history. It accounts for pressure drop due to mass addition, throat

erosion, a burnrate that varies as a function of web distance burned, and a pressure

dependant C*. Figure 3-48 presents the target surface area-web history required
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to satisfy the RI case 373 residual thrust history. The surface-web history for two

potential design solutions (TC-526-04-01A and TC-526-04-01B) are also shown.

Five potential design thrust-time histories were generated in a limited time

and none perfectly matched the desired surface web requirements generated by the

ADP from RI residual force data (Case RI, No. 373).

Figure 3-49 presents the five thrust-time histories and the basic features of

each are outlined below.

Identification No. Design Features

TC-526-04-01A Based upon an actual grain design. Has
456,100 in. 2 of initial surface area and
1, 102, 000 lb of propellant.

TC-526-04-01B Basically the same design as configuration A
except that the star was shortened (and the
forward segment CP section length corre-
spondingly increased) to reduce the initial
surface area to 440, 000 in. 2

TC-526-04-01C Not based on an actual grain design. The pro-
pellant weight was assumed to be 1, 095, 000 lb
and the surface areas were reduced by the
ratio 1, 095, 000/1, 102, 000. The web thick-
ness was assumed to be the same as
configuration A's.

TC-526-04-01D The grain geometry was assumed to be that
of configuration A. A burning rate correction
factor was applied to the nominal rate of A.
This factor rose linearly from 0. 94 at 0% web
to 1.04 at 50% web back to 0.96 at 100% web.

TC-526-04-01E Modified -01A performance by assuming 1/2
the progressivity of A up to 20 seconds. The
impulse at 20 sec was made eq1al to that of A.
The remainder of the curve was the same as
that of A.

Figures 3-50 and 3-51, respectively, depict the grain design of configura-

tions A and B. A single SRM motor hardware design was provided for all five of

these ballistic performances.
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RI conducted flight analysis for motors containing each of these grain

configurations. By comparing the respective payload margins, a thrust shaping

assessment can be made (i.e., by comparing A and E margins, the initial progressivity

impact can be ascertained). These results show that payload gains can be achieved

by proper thrust shaping initially and near web burnout. Table XXI lists the payload

margin for each of these designs. All designs violated either maximum allowable

dynamic pressure or acceleration. Results of this analysis are more fully detailed

in the motor performance section of this report.

Additional work was conducted on grain design refinement. This work con-

sisted of investigating the feasibility of replacing the 9-point dogbone star cross

sectional configuration used in both A and B with an 11-point constant star thickness

design. Figure 3-52 shows the basic cross sectional configuration of this design.

It was determined that this design would yield a performance that is equal or

superior to the 9-point dogbone. It also possesses superior manufacturing charac-

teristics. Figure 3-53 compares the vacuum thrust performances of A with a motor

containing the 11-point star.

The results of the limited study effort indicate the 11-point star will provide

the desired performance with more desirable processing characteristics. Therefore,

the 11-point star design will be further refined to provide the desired burning surface

area versus web thickness relationship using RI case 373 as a design goal.

3.4.2 Motor Specific Impulse

Optimization studies conducted during the interim contract period have altered

the SRM configuration in areas which affect motor performance such as nozzle geom-

etry. Improvements in the analytical techniques have been continuous since the base-

line design effort, resulting in changes in predicted nozzle losses. The baseline

design SRM nozzle is compared to Configuration 1-1 in Table XXII. As is evident,

the nozzle geometry is similar. The change in predicted vacuum specific impulse

between the baseline design and Configuration 1 (as shown at the bottom of Table XXII)

is due to the improved analytical method of evaluating the various loss mechanisms

and a more efficient (although longer) nozzle on Configuration 1-1.
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TABLE XXI

RESULTS FROM RI ANALYSIS OF SRM DESIGNS

TC Design Max Q Total Margin*

No. (psf) Max G F/W (Ibm)

TC-526-04-01A 675 2.91 1.45 7, 200 (4, 200)

TC-526-04-01B 657 3.02 1.39 6, 280 (3, 280)

TC-526-04-01C 670 2.90 1.45 6, 440 (3, 400)

TC-526-04-01D 685 2.89 1.34 5, 650 (2, 650)

TC-526-04-01E 670 2. 91 1. 53 7, 290 (4, 290)

Required Value 650 3.0 1.5 7, 000 (4, 000)

*Parenthetical numbers denote margin provided by the SRM
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TABLE XXII

SPECIFIC IMPULSE LOSSES

CONFIGURATION
NO. 0 NO. 1-1

NOZZLE PARAMETERS

INITIAL EXPANSION RATIO 6.0 6.0

INITIAL ANGLE, DEGREE 23.6 23.6

TURNBACK ANGLE 11.23 9.7

INITIAL LENGTH-TO-THROAT RADIUS RATIO 4.475 5.0

LOSS CONTRIBUTORS

DIVERGENCE LOSS 2.6 2.9

TWO-PHASE OSSES 3.7 4.2

KINETIC LOSS 0.8 1.4

FRICTION AND HEAT LOSSES 2.3 2.6

TOTAL LOSSES 9.4 11.1

PREDICTED AVERAGE VACUUM SPECIFIC IMPULSE 260.5 258.9



The motor optimization program evaluates motor performance for various

nozzle parameters, i.e., initial turning angle (0.), turnback angle (AO), and nozzle

length-to-throat radius ratios. Since the performance loss contributors are influ-

enced by the nozzle design, a method of analyzing the losses for a given nozzle

design was required for the optimization studies. TC found a convenient method of

relating total losses (or delivered specific impulse) for various nozzle configurations

as shown in figure 3-54. These curves were fit by a series of equations which have

been implemented into the automated design program and are used in motor optimi-

zation studies. (The specific impulse and nozzle geometry parameters given in

Table XXII are a combination of initial and average values. Thus, a comparative

specific impulse obtained from figure 3-54 is not possible.)

3.4.3 Minimum Specific Impulse

Specific impulse predictability and reproducibility have been evaluated to

establish the minimum expected motor specific impulse. Motor predictability

accuracy involved evaluation of historical data for analytical and empirical relation-

ships for specific impulse prediction. The analytical analysis evaluates the various

loss mechanism including two-phase losses, divergence loss, heat and friction losses,

and kinetic losses. TC has conducted efficiency analyses for in excess of 50 motors

which have been static tested. Comparison between predicted and measured specific

impulse for these motors results in a mean of 0.11 points (i.e., predicts 0.11 points

higher than measured) and a standard deviation of 1.58. The analytically predicted

motor specific impulse for the baseline design was 261.5 lb-sec/lb.

An empirical evaluation of motor specific impulse using the TC-developed

motor efficiency versus propellant flow rate curve yields a motor specific impulse

of 260.5 lb-sec/lb. By performing a curve fit of the measured motor data and

establishing limits about this curve, the predictability limits can be determined

statistically. The results of such an analysis indicate that the probability is 90 per-

cent that at least 95 percent of the distribution will be greater than:

[(Isp vac)] nom -1.33% or [Isp vac] nom -1.33% = Isp vac] min
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(Similar statistical treatment of the analytically evaluated specific impulse results

in 1.23 percent versus the 1.33 percent.) This represents the expected maximum

limits on predictability for motor specific impulse. Table XXIII summarizes the

predictability study.

Once the motor design has been established and performance data becomes

available, the motor will have reproducibility limits the same as demonstrated on

previous programs, i.e., Minuteman and Poseidon. Hisotrical data have established

specific impulse limits as 0. 20 % for one standard deviation. Combining the repro-

ducibility and predictability error, the following statement is applicable:

The probability is 90 percent that at least 95 percent of the distribution will

be greater than

Isp vac) nom or sp vac mm sp vac) nom-1.

3.4.4 Maximum G*

The effects of erosive burning are not always reproducible or predictable

and, thus, can create problems particularly at or following web burnout. The

effects of erosive burning are amplified at burnout, and the performance difference

between two motors could be most pronounced during tailoff operation. Minimization

of this tailoff variation can be assured if erosive burning is eliminated. Using the

Saderholm erosive burning model and evaluating all large motor data available, the

most severe erosive environment was experienced by the Titan III M, seven seg-

ment motor. This motor had a maximum mass flow rate per unit port area (G*)

of 3.1 lb/sec-in. 2 and no erosive burning was experienced. Therefore, it was con-

cluded that the SRM will not experience erosive burning if a G* of 3.1 is not exceeded.

A maximum G* limit of 3.1 lb/sec-in. 2 was thus added to SRM internal ballistic

design criteria. The port-to-throat area ratio of 1.3 was maintained while motor

length to diameter values were allowed to vary until the G* limit was reached.
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TABLE XXIII

PERFORMANCE INTERCHANGE SUMMARY

* MOTOR SPECIFIC IMPULSE EFFICIENCY

* THEORETICAL EVALUATION OF VARIOUS LOSS MECHANISMS

* EMPIRICAL EVALUATION OF TEST DATA

* MOTOR EFFICIENCY DETERMINATION

THEORETICAL CALCULATION OF LOSSES-- nom = 0.975

EMPI RI CAL EVALUATION--lnom = 0.972

PROBABILITY IS 90% THAT AT LEAST 95% OF THE DISTRIBUTION
WILL BE GREATER THAN:

rlnom -1.33% =rmin = 0.959



3.5 INSULATION AND LINER

The primary chamber insulation is an asbestos-silica-filled nitrile butadine

rubber (NBR), and the liner is an asbestos-filled HC polymer. No insulation or

liner material or process changes have resulted due to the interim study contract.

However, two areas have undergone studies to evaluate conditions which could

either modify the insulation design or have significant effect on other aspects of the

SRM. These two areas of study are: (1) evaluation of internal case insulation

temperature at water impact and the probability of generating sufficient steam within

the case to result in the case sinking after the steam has condensed and, (2) the

cost and schedule impact associated with increasing the case aft dome insulation

thickness for the first two demonstration motor (DM) tests.

3.5. 1 Case Internal Insulation Temperature Study

This study was expanded to include the case, nozzle, and internal case

insulation heat content at splashdown. The thermal analysis considered the heating

during motor operation, aerodynamic heating, and the added heat content due to

reignition of the internal insulation as the spent case re-enters the atmosphere.

The case insulation was divided into several areas of differing material thickness

and exposure time. Each area was thermally analyzed and temperature-thickness

plots were prepared. Figure 3-55 presents a typical temperature profile. The

area under the curve times, the material density, and specific heat gives the heat

content per inch. The heat content for each area was then determined by multiplying

the heat content per linear inch by the length. The same process was applied to

the nozzle materials to determine their heat contents. The results of the thermal

analysis indicate a maximum internal insulation temperature of approximately 3000 F

and a maximum nozzle material temperature of 16000 F at splashdown.

The total internal case heat available is 771, 543 Btu above a 2120 F reference

temperature.

A conservative SRM vertical velocity of 80 feet per second was used to

determine the depth of SRM submergence and the flow rate of water entering the
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spent case as a function of time. (A vertical velocity greater than 80 feet per second

increases the quantity of water which enters the case for a given time interval.)

Water will enter the case at a rate of 115, 600 lb/sec for the first second. As the

water passes over the hot nozzle and into the case these components will be cooled

with very little or no steam being generated. The only location which may not be

cooled by this deluge of water is the forward closure insulation area. The residual

heat in the forward closure could cause a minimal amount of steam generation.

However, it is felt that the quantity of steam generated will not adversely effect

the case buoyancy unless the nozzle end clears the water for an excessive time

prior to the steam condensing, thus allowing the air-steam mixture to be exhausted.

Many factors remain unresolved such as the amount of steam which will be

generated, submergence depth and time, height which entering water covers internal

case, and case internal air temperature at splashdown. Also, review of the 120-inch

case drop films reveals the tendency of a cool case to exhaust air. The exhasut-

ing process appears to be generated by the wave action within the case.

Water entering the case with sufficient velocity will cover all the internal

case surface and very rapidly cool these surfaces. Steam which may be generated

will be trapped and will not escape until the nozzle again clears the water at which

time the steam may be condensed. The time the spent case remains submerged

coupled with the entry velocity will determine the amount of steam, if any, and the

temperature of the trapped gases. If sufficient time and quantity of water for cool-

ing are provided prior to the nozzle end of the case coming out of the water, the

case will behave like the cool 120-inch drop test cases. The temperature of the

internal case insulation will have any effect on the case buoyancy. To fully analyze

this complex problem, additional heated drop tests with considerable internal in-

strumentation will be required. Based on the analytical studies conducted by TC,

it is concluded the booster will not contain sufficient water to sink.
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3. 5.2 Aft Case Insulation Thickness

Concern about the insulation thickness requirement analysis for the aft dome

has been expressed by MSFC. Alleviation of this concern can be accomplished by

increasing the insulation material thickness in the first two DM tests. The remaining

DMs will incorporate a design modified as a result of analyzing these full scale

test data.

The resulting modified aft dome insulation for the first two DMs represents

consideration of a constantly vectored nozzle duty cycle, material thickness con-

sistent with the greater thermal environment which would exist if the vortex flow

field did not occur aft of the nozzle nose (condition much more severe than antici-

pated), and a safety factor of 2. The resulting increase in insulation thickness

has a corresponding weight increase of approximately 2, 000 pounds.
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3.6 SRM DESIGN STUDY

During the interim contract period many SRM designs were generated by

Thiokol's Automated Design program (ADP) for the purpose of evaluating the effect

of varying selected design parameters on motor performance, length, inert weight,

and SRM program cost. The design requirements used in this study are listed below

for reference purposes. The requirements were held constant for all the designs

except where special constraints were applied to investigate the effect of selected

design parameters on SRM weight and cost. The results of this design study were

reported at the SRM Project Design Review on 9 April 1974 (Reference TWR-10046).

The aspects of this study that are related to motor performance are summarized

in this section.

The design requirements for all the SRM designs were those specified in

the RFP except as modified by direction or coordination with MSFC.

The requirements that varied from those in the RFP are listed below:

1. 100 ft/sec Vertical Velocity at Water Impact

2. 0-45 ft/sec Horizontal Velocity at Water Impact

3. 0 + 5 deg Water Entry Angle.

4. SRM/ET Attach Loads/Interface Changes

5. 2 percent Inert Weight Added

6. G* Constraint in Addition to A /A t

7. Nozzle Exit Cone Jettisoned Prior to Water Impact

8. SRM Total Allowable Length Increased (KB 1,951 in.

to 1,989.6 in.)

9. SRM OD = 146 in.

10. 1. 25 Factor of Safety Using Nominal Dimensions

for Water Impact Loads

In addition to the above requirement changes, other criteria were established

by MSFC which differed from those used to design the baseline (Configuration 0).

160



These additional changes are as follows:

1. Grit Blast Allowance for 20 Uses

2. MSFC Nozzle Safety Factor Interpretation

3. Nozzle Configuration Based on Low-Cost Materials

4. Nozzle Weight Based on High-Cost Nozzle Materials

5. SRM Size and Delta Cost Based on High-Cost

Nozzle Materials

6. Ring Weight for SRM/ET Aft Attach Not To Be

Included in SRM Inert Weight

The approach used in the SRM design and optimization program was to couple

the SRM Automated Design Program with a comprehensive SRM project cost model.

The principal constraints imposed on the SRM designs were as follows:

1. Water Impact Constraints and Weight Increases Due

to Local Wall Thickness Increase and Stiffeners

2. G* Upper Limit of 3. 1 lb/in. 2-sec at 900 F

3. Nozzle Expansion Ratio Lower Limit at 5.5:1

4. 0. 010 In. Delta Case Thickness Provided for Grit

Blast Losses

5. 2 Percent Inert Weight Included

6. SRM Performance and Configuration Based on High-

Cost Nozzle Material Weight

7. Optimized for Minimum SRM Project Cost Using Low-

Cost Nozzle Materials

8. Costs Adjusted for High-Cost Nozzle Materials

The flow logic for the Automated Design Program (ADP) is presented in

figure 3-56 showing the optimization loops incorporated to develop minimum cost

motor designs for selected constraints in the motor evaluation block.

The required total impulse (total) is calculated using the SRB inert weight

partials specified in the RFP. Thesteps in the routine are as follows:
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INPUT

* DEFINE INDEPENDENT AND DEPENDENT PARAMETERS

* MATERIAL PROPERTIES

MOTOR DESIGN

* NOZZLE * BALLISTICS

* CASE * IGNITER

* INSULATION

MOTOR EVALUATION

* THRUST-TIME TRACE

* REQUIRED I TOTAL = f (WI )

* ENVELOPE CONSTRAINTS

MOTOR COSTING

* ENGINEERING * SUBCONTRACTS

* MANUFACTURING * SUPPORT

* RAW MATERIALS

OPTIMIZATION

PRINTOUT

Figure 3-56. Design and Optimization Program
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RFP Partials

AW = 16 x (DE - 141.3)
SRBE x(E

AWRBE 2 = 0.07 x (W - 115,430)
SRBE2  SRM

W = 1. 82 x [(AW SRBE + AWRBE ) + (WS - 115,430)

AW
Required Itotal(del) = 257. 02 x 10 6 (1 + W

Required Itotal I otd + fPA d T*

W IP total /I
ac) SP(vac )

*677.13 lb-sec/in. 2

where

D = exit diameter, in.e
WSR M  = SRM inert weight, Ibm

AWRBE 1 = change in SRB inert weight due to exit diameter, ibmSRBE 1

AWSRBE 2 = change in SRB inert weight due to SRM, lbm

AWp = change in propellant weight, Ibm

The major features of the model used for motor costing are as follows:

1. Component cost broken down as follows:

a. Case (By Segment)

b. Nozzle (By Component)

c. Insulation (By Segment)

d. Propellant (By Mix)

e. Igniter

2. Labor cost by work breakdown element and Thiokol

cost center
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3. Refurbishment included for case, nozzle and igniter

4. RFP partials for DDT&E and operational flights used

to determine added cost to SRB due to SRM design

parameters

" $SRBE = (14,300 + 100,500) (De = 141.3)

A $SRBE = (260 + 770) (WSRM =115,430)
SRM1

The general and specific ground rules for optimizing the SRM design reported

as Configurations 1 and 2 were as following (See table XIX):

General Ground Rules

1. Concept Changes From Configuration 0

a. New Water Impact Requirements

b. NASA Safety Factor Interpretation on Nozzle

Materials

c. Weight Increase Applied to Nozzle to Account for

High-Cost Nozzle Materials

d. Add 2 Percent Inert Weight for Contingency

Specific Ground Rules

1. Configuration 1 - Minimize Cost of SRM (including

SRB Effects)

2. Configuration 2 - Maximize Performance Within

Increased Envelope

The independent parameters varied during the optimization were the following:

1. Chamber Pressure

2. Nozzle Expansion Ratio

3. Propellant Weight

4. Nozzle Contour (Bi and A.)

5. Nozzle Submergence

The principal performance parameters for Configurations 1 and 2 are compared

with Configuration 0 in Table XXIV.
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TABLE XXIV

SUMMARY

CONFIGURATION CONFIGURATION CONFIGURATION
0 1 2

* DIAMETER (IN.) 146 146 146

* OVERALL LENGTH (IN.) 1,438 1,454 1,496

* TOTAL DELIVERED IMPULSE 259.9 265.8 276.4

(LB-SEC X 106)

* PROPELLANT WEIGHT (LB) 1,035,860 1,072,300 i, 128,700

* TOTAL INERT WEIGHT (LB) 121, 188 134,300 145, 630

* MEOP (PS IA) 839 865 890

* EXPANSION RATIO 6:1 5.5:1 5.5:1

SPECIFIC IMPULSE LBF-SEC 260.5 256.6 253.4SSPECIFIC IMPULSE \ LBM /

* MASS FRACTION 0.895 0.889 0.886

* DELTA COST ($ MILLIONS) 0 +77.5 +100.4



The impact on cost of design changes introduced since the proposal design are

tabulated as cost deltas from Configuration 0 on Table XXV.

The weight and cost partials with respect to small changes in propellant weight

are presented for both Configurations 0 and 1 are presented below.

Configuration 1
Configuration 0 (SRM Baseline 18 April)

ASRM Weight lbm
1.170 1.197

APropellant Weight ' Ibm

.ASRM Program Cost $ 385 397
APropellant Weight ' lbm

Both the weight and cost partials are lower for Configuration 0 than for Configuration 1.

(The Configuration 1 referred to here is the SRM Baseline (18 April) discussed in

Section 3.1.) This occurs because Configuration 0 has a thinner case wall thickness

and lower G* than Configuration 1, resulting in a lower increase in inert weight

per unit increase in propellant weight.

The mass properties for Configurations 0, 1, and 2 are presented for comparison

on Table XXVI. The reasons for the difference between the case weights for Config-

urations 0 and 1 are detailed on Table XXVII to expalinthe increase of about 8, 000 lbm.

The case segment arrangements for Configurations 0, 1, and 2 are illustrated

for comparison on figure 3-57. The case and casting segment lengths for all three

configurations are the same, forward of the attach segment. Configurations 1 and 2

both have an additional case segment in the aft casting segment because of the shorter

attach segment caused by incorporation of dual flanges to react SRM/ET attach loads.

The fabrication constraints for 146-inch diameter cases are illustrated in

figure 3-58. The maximum pin-to-pin length for a cylindrical segment with thick-

nesses up to 0. 581 inch and no upsets for flanges is 156 inches. The length of a

case segment with an upset for ET attachment depends upon the distance of the double

flange from the joint. If the double upset is 6 inches from the joint, the segment

can be up to 135 inches long; however, if the double upset is 36 inches from the

joint, the maximum segment length is only 100 inches.
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TABLE XXV

IMPACT OF DESIGN CHANGES FROM CONFIGURATION 0 TO 1

A COST
$M

2% INERT WEIGHT CONTINGENCY 2.31"

REVISED F.S. FOR NOZZLE PLASTIC PARTS 6.89

INCLUDED IN ESTIMATE OF NOZZLE LOSSES 4.96

REVISED WATER IMPACT LOADS 17.35

31.51

CONVENTIONAL NOZZLE PLASTIC MATERIALS 45.95

TOTAL A COST 77.46

SDELTA COST FOR PERFORMANCE.
COST OF INERT WEIGHT CONTINGENCY
NOT INCLUDED



TABLE XXVI

MASS PROPERTIES SUMMARY (WEIGHT-LB)

CONFIGURATION CONFIGURATION CONFIGURATION
COMPONENT 0 1 2

CASE 90, 548* 98, 460 106, 950

INSULATION, LINER, AND
INHIBITOR 13,281 13,630 13,940

NOZZLE 16, 401 18, 510 20, 780

IGNITER, RACEWAY, AND
ATTACH HARDWARE 958 1,070 1,100

CONTINGENCY 0 2,630 2,860

TOTAL INERT WEIGHT 121, 188 134,300 145, 630

PROPELLANT WEIGHT 1,035,860 1,072,300 1, 128,700

TOTAL MOTOR WEIGHT 1,157,048 1,206, 600 1,274,330

*INCLUDES 1, 010 LB SRM/ET ATTACH RING



TABLE XXVII

CASE WEIGHT CHANGE DUE TO WATER IMPACT

AND REVISED SRM/ET ATTACHMENT

GRIT BLAST 1, 740

1 ADDED JOINT 760

PENETRATION (2 AFT SEGMENTS) 530

CAVITY COLLAPSE (ONE STIFFENER) 320

INCREASE IN MEOP 3, 765

WATER IMPACT (AFT DOME) 885

TOTAL WEIGHT INCREASE 8,000



S AFT CASTING SEGMENT
358 IN. LONG

I I

Sf CONFIGURATION 0
1 44 156 156 156 156 156 156 144 156 58

FORWARD CASTING SEGMENT CENTER CASTING SEGMENT 1511 AFT CASTING SEGMENT
356 IN. LONG 312 IN. LONG 372 IN. LONG

CONFIGURATION 1

44 156 156 156 156 156 156 100 107 107 58

FORWARD CASTING SEGMENT CENTER CASTING SEGMENT AFT CASTING SEGMENT
383 IN. LONG 312 IN. LONG 429 IN. LONG

CONFIGURATION 2
44 113 113 113 156 156 156 156 135 118 118 58

*DIMENSIONS IN INCHES

Figure 3-57. Case Segment Configuration*



CYLINDRICAL SEGMENT 156 INCH PIN-TO-PIN
UP TO 0.581 TH ICKNESS

ATTACH SEGMENT
C

II

D

A B C D
(IN.) (IN.) (IN.) (IN.)

6 12 135 0.581 (MAX)
13 12 112 0.581 (MAX)
36 12 100 0.581 (MAX)

Figure 3-58. Case Fabrication Constraints



Two alternated aft closure designs (2:1 ellipse and cone) are compared in

figure 3-59 with the hemispherical closure design employed on all the configurations

discussed in this presentation. The 2:1 ellipse permits an effective increase of

about 210 pounds in propellant loading in the same overall length, while the conical

design results in a 1, 980 pound decrease in effective propellant weight due to the

increased wall thickness.

The delivered specific impulse for SRM designs generated in this study was

determined from the plot of Isp versus nozzle length-to-throat radius ratio for

constant expansion ratios plotted on figure 3-60. The data required to plot these

curves was developed by generating a family of nozzle contours and then performing

a detailed analysis to determine the losses contributed by the following factors for

each contour:

1. Divergence

2. Two-Phase Flow

3. Kinetics

4. Friction and Heat

The increase in propellant weight possible by increasing the maximum G*

was determined for Configuration 1. The results of these calculations are plotted

in figure 3-61. The plot shows that an additional 50, 000 pounds of propellant could

be cast in the motor if the maximum G* were increased from 3.1 to 4.0 lbm/in. 2-sec.

Some of the SRM designs generated by the ADP for the purpose of evaluating

the effect of varying selected design parameters on motor performance, length,

inert weight, and SRM program cost are presented on Tables XVIII and XXIX, the

constraints listed below were held constant for all the designs except as noted to

investigate the effect of selected design parameters on SRM weight and cost.
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HEMI SPHERE 2:1 ELLIPSE CONE

16.5 31 DEG

0.410.5

.._ .. --1 T

S _111.5 DIA _1111_.5 DIA 111.5 DIA

45.76 e 45.76 4576

PROPELLANT VOLUME (IN.'3) 208,300 258,800 227,500
PROPELLANT WEIGHT (LBM) 13,220 16, 430 14, 440
A PROPELLANT WEIGHT (LBM) -0- 3,210 1, 220
A INERT WEIGHT (LBM) -0- 1,500 1,600
IA EFFECTIVE PROPELLANT
WEI G HT (LB M) - -0- +210 -1,980

Figure 3-59. Comparison of Propellant Loading in Three Aft Closure Designs for Configuration 1



CHAMBER PRESSURE = 600 PSIA

EXIT CONTOUR INITIAL ANGLE = 23.6 DEG

R2/Rt= 0. 60 Rt =28.2

276
E;= 10

272

E=
268

= 7

264
6-,

L 260

C-)
I= /
w 252

248

244

240
0 2 4 6 8 10 12 14

LIRT

Figure 3-60. Delivered Specific Impulse Versus Nozzle

Length-to-Throat Radius Ratio
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5.0

4.0

3.0

t=

0

-)

3.0

2.0

0 20 40 60 80 100
CHANGE IN PROPELLANT WEIGHTS, 1,000 OF LB

Figure 3-61. Maximum G* as a Function of Increased
Propellant (AWp) Configuration 1

175



TABLE XXVIII

SRM CONFIGURATION COMPARISONS

DESIGN NO. 1 2 3 4 5 6

FIXED G* FIXED G* FIXED FREE
FREE G* AND AND Dc = 148 Dc

CONFIGURATION 1 = 5.5 8 = 6 8 = 7 E= 5.5 E= 5.5

DIAMETER (IN.) 146 146 146 146 148 149

OVERALL LENGTH (IN.) 1,454 1,479 1,458 1,461 1,432 1,422

TOTAL DELIVERED IMPULSE
(LBF-SEC X 106) 265.8 264. 6 266.4 266. 3 265.6 265.4

G* (LBM/SEC-I N. 2) 2.79 2.63 2.79 2.79 2.64 2.62

PROPELLANT WEIGHT (LBM) 1, 072, 300 1,070,990 1, 068, 100 1,063, 440 1,074, 650 1, 068, 600

TOTAL I NERT WEI GHT (LBM) 134, 300 131,600 137, 100 137, 100 133, 900 133, 400

MEOP (PSIA) 865 815 886 871 817 812

EXPANSION RATIO (INITIAL) 5.5 5.5 6 7 5.5 5.5

NOZZLE LENGTH-TO-THROAT
RADIUS RATIO 4.45 4.25 4.86 4.99 4.37 4.92

ISP (LBF-SECILBM) 256. 6 256. 1 258. 7 261.7 256.4 257. 7

MASS FRACTION 0.889 0.891 0.886 0.886 0. 889 0.889

DELTA COST, SRM ($M) -- -0.9 +1.5 +2.7 +1.6 +2.0



TABLE XXIX

SRM CONFIGURATION COMPARISONS

DESIGN 1 7 8 OFF-LOADED TO
CONFI GURATI ON. 1

CONFIGURATION 1 CONFIGURATION 2 e= 7 REQUIREMENTS

DIAMETER (IN.) 146 146 146 146

OVERALL LENGTH (IN.) 1, 454 1, 496 1,496 1, 496

TOTAL DELIVERED IMPULSE
(LBF-SEC X 106) 265.8 276.4 275. 7 270.6

G* (LBM-SEC/IN. 2) 2.79 2.78 2.81 2.78

PROPELLANT WEI GHT (LBM) 1,072, 300 1, 128, 700 1, 108, 950 1, 105, 700

TOTAL I NERT WEI GHT (LBM) 134, 300 145, 600 146, 250 145, 600

MEOP (PSIA) 865 890 907 890

EXPANSION RATIO (INITIAL) 5.5 5.5 7 5.5

NOZZLE LENGTH-TO-THROAT
RADIUS RATIO 4.45 3.44 4.24 3.44

I SP (LBF-SEC/LBM) 256.6 253.4 259.3 253.4

MASS FRACTION 0.889 0.886 0.884 0.884

DELTA COST, SRM ($M) -- +23 +24 +18



Parameter Value Reason for Constraint

lbm-sec
Mass Velocity, G* 2.79inbm-se 2 MSFC/TC agreed to limit based on

(at 600 F) Titan III data.

Overall SRM Length, 9 1,495.6 in. MSFC change XB for exit plane from
LSRM 1,951 in. to 1, 989. 6 in. permitting an

(forward flange-to- increase of 38. 6 in. in SRM length.

exit)

Minimum Case Wall 0.466 + 0.010 = Minimum case wall required to survive
Thickness 0.476 in. slapdown loads + allowance for 19 grit

blast cleanings.

Aft Case Segment _ 0.51 in. Minimum wall thickness required to
Thickness react launch pad loads.

Stiffener Weight on - 300 lb Assumed weight of ring stiffener
Aft Case Segment required on aft case segment to survive

cavity collapse loads.

ET Attach Segment - 100 in. Requirement for double flange on
Length attach segment reduced length from

142.7 to -100 inches.

Number of Case Joints 10 Additional case segment had to be
added in aft casting segment due to
decrease in attach segment length.

Nozzle Expansion 5.5 Lower limit specified as any cost/
Ratio, E weight variations are small below this

value.

The exceptions to these constraints are listed separately to identify the

objective of each design.

Design No. 1 - (Configuration 1)

G* = 2.79 lb-sec/in. 2

Design No. 2 - (Free G* and E = 5. 5)

None

Design No. 3 - (Fixed G* and E = 6)

G* = 2.79 lb-sec/in. 2

E = 6
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Design No. 4 - Fixed G* and e = 7)

G* = 2.70 lb-sec/in. 2

E=7

Design No. 5 - (Fixed D = 148 and = 5.5)
c

D = 148 in.
c

E = 5.5

Design No. 6 - (Free Dc and E = 5.5)

D = free variable
c

E = 5.5

Design No. 7 - (Configuration 2)

LSR M = 1,495.6 in.

Idel = maximum possible

E = 5.5

Number of Case Joints = 11 (additional case segment necessary
to load increased propellant weight)

Design No. 8 - (E = 7)

LSRM  = 1,495.6 in.

Idel = maximum possible

E= 7

Number of Case Joints = 11

Design No. 9 - (Off-loaded)

Design 7 off-loaded to meet Configuration 1 performance requirements.

The principal observation that can be made relative to the designs presented

on Table XXVIII is the rather small difference in the SRM program cost. The delta

cost for these designs range from -$0. 9 M to +$2. 7 M. This represents a variation

of only $3.6 M which is a fraction of one percent of the total program cost.
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4. 0 VIBRATION AND ACOUSTIC DATA

A compilation of measured vibration and acoustic data on solid propellant

rocket motors ranging in size from 52 in. to 156 in. in diameter is located in

Appendix A.

A list of motors showing the type of data reported is presented below.

Diameter
Motor Designation (in.) Vibration Data Acoustic Data

156-1 (TU-412) 156 X X

156-7 (TU-393) 156 X X

156-8 (TU-312. L. 02) 156 X --

156-2C-1 156 X X

156-3 (LPC-L71) 156 X X

UTC-DVXL5-1 120 X X

AGC 100 FW-1 100 -- X

Minuteman Stage I
(TU-122) 65 X X

Minuteman III
Stage III 52 X --

Minuteman Missile
(FTM 403) 65 -- X

A limited amount of vibration and acoustic data exists for solid propellant

rocket motors. Combustion instability and its attendant vibrations is an area

which was largely ignored until recently. The inclusion of aluminum early in the

history of solid propellants eliminated most of the problems and until recently

major emphasis was not directed at the problem.

Vibration and acoustic data measurement and analysis techniques have been

improved significantly during the past few years. Also, engineers and technicians

are currently more cognizant of combustion instability indications and are able to

identify the modes. In the past, potential instability modes were often incorrectly
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diagnosed as structural modes. Early solid motor program instrumentation was

often not adequate to fully assess motor dynamic environment.

The data presented in Appendix A result from researching published

reports, Thiokol engineering files, and, in some cases, reanalyzing the FM

recorded motor firing data. Analysis of the limited data available indicates

combustion instability was not present in any of the 156-in. motors fired at

Thiokol. A detailed investigation of non-Thiokol fired motors is possible, but

access to the original raw data is necessary.
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5.0 LAUNCH SITE ASSEMBLY AND STACKUP TOLERANCE

The SRM assembly tolerance analysis was reviewed to determine the max-

imum possible displacement of the SRM centerline. Results indicate that the

maximum lateral displacement could be as much as 0.625 in. for Configuration 1-1

if the case segment tolerances were stacked in the worst possible manner. A

statistical treatment of the tolerances, assuming a random ordering of the tolerance

combinations, indicated a more probable lateral displacement would be 0.177 in.

The maximum offset of the true centerline of Configuration 1-1, due to

angular offset, diameter offset, and runout tolerances, is shown on figure 5-1.

The simplifying assumption made in the calculations is that the case segments are

rectangular in cross-section rather than circular. This reduces the analysis to

a two-dimensional problem thus ignoring the complexity of including the location of

the dimensional variations relative to the axis of the segments. The maximum

centerline offset due to the maximum possible difference between segments is

shown on figure 5-2. The dimensions used in these calculations are tabulated below:

At O-ring Groove Area

Tang ID 144. 613 + 0. 004

Clevis OD 144. 603 + 0. 004

Offset Calculation No. 1 144. 617 max tang ID

144. 599 min clevis OD

0.018
- 0. 009 max diametral offset2

Angularity Calculation No. 2: Total runout of one horizontal locating

surface to the one on the opposite end

equals 0. 010 total angular offset

Runout (Eccentricity): O-ring surfaces at ends of each segment

0. 010
2 - 0.005 per segment joint
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0.6249 -INCLUDES TOTALS FOR

MAX ANGULARITY, OFFSET,

AND ECCENTRICITY

10

0-~

INTERFACE ANGULAR DIAMETER

NO. OFFSET OFFSET

11 0.0104 0.009
10 0.0962

9 0.0855
8 0. 0748
7 0. 0641
6 0. 0534
5 0.0427
4 0.0177
3 0. 0174
2 0. 0087

1 0.0000 0.009

TOTALS 0.4709 0.099

ANGULAR OFFSET = 0.4709

DIAMETER OFFSET = 0.0990

RUNOUT (ECCENTRICITY)
0. 005 X 11= 0. 0550

TOTAL 0. 6249

Figure 5-1. Total Offset From True Centerline
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0.4708 -

-soft 0.010389

0.096155

0.08547 0.010

0.174787'P

0. 0641040.010

--0.053419 TAN = 2 . 010
146.0

15.17 --- 0.0427357 . 146.0- P2 = 0.003924

-- -0.0176695 DIA
NO.11

NO. 10 NM 0. 01740 2 . 2 = P3 = 0..007848'

156.0
15 W - - 0.008698 CP2 3 = 4P = 0.0117720

NP29 4 =p5 = 0.015696 0

56.0 02 5 = 6 = 0.0196200

NO. 8 CP2  6 = P7 = 0 .0235440

N156. I2 8 7=¢P8 = 0.0274680

NO. 7 P2 8 = CP9 = 0. 0313920

156. P2 9 = P10 = 0. 0 3 5 3 1 6 0

NO. 6 P2 10 = 1 1 = 0.039240

No. 1, =0

NO. 5 No. 2, SIN 0.0039240 • 127.0 = 0.008698
No. 3, SIN 0.0078480 • 127.0= 0.01740

156.0 No. 4, SIN 0. 011772 " 86. 0 = 0.0176695
NO. 4 No. 5, SIN 0.0156960 • 156. 0 = 0.0427357
86.05 No. 6, SIN 0.0196200 * 156. 0 = 0.053419

127.01 \p3 No. 7, SIN 0.023544' * 156.0= 0.064104
NO. 3 No. 8, SIN 0. 0274680 • 156. 0 = 0. 074787
0. CP2  No. 9, SIN 0. 0313920 . 156. 0 = 0.085471

127.0 No. 10, SIN 0. 0353160 • 156.0 = 0.096155

N1. 1 18.55 No. 11, SIN 0. 039240 • 15. 17 = 0. 010389

TOTAL = 0.470828

Figure 5-2. Maximum Offset Due to Angularity Variation Between Segments
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The maximum rotational displacement of the assembled SRM is shown

in figure 5-3. The following calculation was used:

True Positional Tolerance

of Rotational Index Slot or

Skirt Index Holes to Index

Pin.
0.010

For each segment: 2 - 0.005

The angular offset, diameter offset, and runout tolerances and maximum

sum given in figure 5-1 are repeated below, along with the random or statistical

combined sum in a parallel column.

Summed Combined Random
Tolerances (in.) Sum (in.)

Angular Offset 0.4709 0.1735

Diameter Offset 0. 0990 = 0.'009 x 11 0. 0299 = 0. 0990 + 11

Runout 0. 0550 = 0. 005 x 11 0. 0166 = 0. 055+ 11

Total 0. 6249 0.1768

Since the summed tolerances are linear sums, the random combinations

are simply the square roots of the respective sum of squares, assuming each item

is independent of all other items. The angular offsets, for each segment computed

in figure 5-2, are based on the sum of the angles affecting all the preceding segments

in the buildup. Identical angular offset values are obtained by considering separate

angles affecting summed SRM segment lengths. However, the proper technique

for computing the random combination of independent items is to consider the

separate angles affecting the summed SRM segments. The results of these calcu-

lations, as shown on Table XXX, indicate the more probable angular offset for the

stacked SRM case components is 0.1735 in. instead of 0. 4709 in.

It is recognized that both treatments of the maximum offset question

are quite cursory, and the results are only adequate for initial evaluation purposes.

A much more detailed analysis, probably involving a Monte-Carlo simulation,

will have to be conducted to determine the expected variation in offset during SRM

assembly at the launch site.
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TABLE XXX

ANGULAR OFFSET
(IN.)

Segment Segment Sum of Sum of Lengths
Number Length Lengths x (0.010/146)

11 15.17 15.17 0.0010

10 156 171.17 0.0117

9 156 327.17 0.0224

8 156 483.17 0.0331

7, 156 639.17 0.0438

6 156 795.17 0.0545

5 156 951.17 0.0651

4 86 1,037.17 0.0710

3 127 1,164.17 0.0797

2 127 1,291.17 0.0884

Sum 0.4709

Square root of sum of squares 0. 1735
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6.0 SRM DDT&E SCHEDULE

SRM project planning and development of DDT&E Schedules during this

interim contract are based on MSFC supplied milestones, discussions with major

component suppliers, and modifications to the RFP or the Thiokol proposal baseline

schedule. The major changes which have occurred to influence the schedule include

SRM ATP slip, PDR and CDR slip, FMOF slip, increase in the number of development

and qualification motors, decrease in the number of ground test articles, and increase

in component lead times.

The SRM case represents the most critical path, and case lead times paces

the SRM project. Discussions with potential case subcontractor and forging suppliers

have supplied current lead time outlook which is incorporated into the schedule shown

in figure 6-1 . This schedule reflects case steel being placed on order in April 1974.

The Ladish Company has placed D6AC steel billets on order with Latrobe and Republic

Steel Companies. Commitment of dollars to support these orders is not required

until September-October 1974 time period.

Nozzle steel material lead time is the second most critical path and lags

the case by approximately one month.

During the interim contract period, NASA-MSFC and TC jointly agreed to

incorporate conventional high-cost nozzle ablative materials in the first development

motor static firing (DM-1). The newer low-cost materials, which will be thoroughly

tested in laboratory and subscale motors (up to 38, 000 pounds of propellant) over

a 26-month period are scheduled for the second development motor test (DM-2).

Five development motors and four qualification motors are now planned with

development motor testing being conducted from December 1976 to December 1977,

and qualification motor testing accomplished from April 1977 through October 1978.

The twelve DDT&E flight motors begin fabrication in October 1977, and the last

motor is supplied in May 1979.
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Techniques used to develop the schedule include application of Industrial

Engineering standard hour cycle times for tasks defined by SRM manufacturing

plans. The following assumptions and ground rules were used:

1. Nozzle material data from DM-1 (standard materials)

and DM-2 (low-cost materials) static testing to be

reviewed and final material selection made prior to

start of assembly of DM-3 nozzle

2. Demonstrate the refurbishment and reuse of cases,

nozzles, bearings, and ignition system components

during both development and qualification motor test

series

3. Refurbish and reuse GTA hardware (post CDR) for

flight motors

4. Demonstrate dual processing and dual motor loading

in the development, and qualification motor series.
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A PPE NDIX A
MEASURED VIBRATION AND ACOUSTIC DATA

ON LARGE SOLID PROPELLANT ROCKET MOTORS

1.0 INTRODUCTION

This report is a compilation of measured vibration and acoustic data obtained

from static firings of large solid propellant rocket motors. Much of the data dates

back five to ten years, particularly that of the 120- to 156-inch diameter motors.

The test objectives of only a few of the motors included obtaining vibration and

acoustic environment. In most cases, cost considerations limited the use of vi-

bration transducers to a few locations on a motor nozzle or case as an aid in

failure analysis.

The data in this report were gleaned from memoranda and final reports.

The reports are referenced when only a summary of their data is presented in

this report. A list of references, not received by Thiokol in time for this report,

is included.

The motors included in this report vary in size from 52 inches in diameter

to 156 inches in diameter. Aerojet-General Corporation fired 260-inch diameter

solid propellant motors, but Thiokol has received no data from these tests.

Table I is a list of motors and the type of data reported. For some motors,

data are limited to one channel.

Motor descriptive parameters are presented in Table II and individual sections

when available to permit scaling of data. Classified data are excluded intentionally.

A-1



TABLE I

MOTORS REPORTED ON

Diameter
Motor Designation (in.) Vibration Data Acoustic Data

156-1 (TU-412) 156 X X

156-7 (TU-393) 156 X X

156-8 (TU-312. L. 02) 156 X --

156-2C-1 156 X X

156-3 (LPC-L71) 156 X X

UTC-DVXL5-1 120 X X

AGC 100 FW-1 100 -- X

Minuteman Stage I (TU-122) 65 X X

Minuteman III Stage III 52 X --

Minuteman Missile (FTM 403) 65 -- X
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TABLE II

MOTOR PARAMETERS

Port Dia Port Length Propellant Weight Mass Flow Rate Avg Thrust Vac

Motor (in.) (in.) (lbm) (lbm/sec) (lbf)

156-1 (TU-412) -66 -784 690,500 5,311 1,408,000

156-7 (TU-393) -59 -155 128, 800 1, 124 331, 900

156-8 -76 -598 492,600 3,979 1,068,000

(TU-312. L. 02)

156-2C-1 -96 -988 798,100 10,953 3,279,000

156-3 (LPC-L71) -103 -737 423,600 3,800 975,200

Stage I Minuteman -30 -245 45,800 747 221,200

Stage mI Minuteman -11 -72 7, 300 121 34, 600



2.0 VIBRATION AND ACOUSTIC DATA

2. 1 156-1 (TU-412. 01)

The Thiokol TU-412. 01 (AF designation 156-1) was successfully static fired

at Thiokol/Wasatch on 12 December 1964 in Test Bay T-24 in a horizontal, pin

supported, multi-component test stand.

The motor consisted of three case segments of 18-percent nickel maraging

steel; an omniaxes gimballed, thrust vector controlled nozzle; and a segmented,

cylindrically perforated (CP) propellant grain. The rocket motor utilized an aft

end ignition system. The motor configuration and descriptive parameters are

shown in figure 1.

2. 1. 1 156-1 (TU-412) Vibration Data

Five accelerometers were mounted on the motor system as follows:

Accelerometer No. Location

A201 Nozzle Exit Cone, Vertical, Near
Exhaust

A202 Nozzle Exit Cone, Vertical, Near
Mounting Flange

A001 Motor Case Center, Radial

A002 Aft Harness, Radial

A003 Aft Harness, Vertical

A summary of the composite peak acceleration values for these accelerometers

follows:

Acceleration Peaks (G-Units)
(All Values Plus and Minus Values)

A001 A002 A003 A201 A202

Average during ignition 1 2 1 20-25 12-25

Peak at ignition 15 8.5 3.5 80 82

Peak at 30 seconds 2.5 3.2 1.8 70 43

Peak at exit loss 3 10 6 Lost at 40
(loss of nozzle exit cone) 37 sec

Peak at tailoff 15 19 6 Lost at
$ 99.6 sec
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TU-412
126-KS-1,275,000
156-INCH BOOSTER

156.0

939.0

CASE PROPELLANT

Material 18% Nickel Maraged Steel
Minimum Ultimate Strength, psi 240, 000 Propellant Designation and Formulation TP-H-1011

Minimum Yield Strength, psi 230, 000 PBAA/AN - 14% Type III

Hydrostatic Test Pressure, psi 850 Al - 16%
Yield Pressure, psi 1,260

Hydrostatic Test Pressure/Maximum Pressure 1. 13 PROPELLANT CONFIGURATION

Yield Pressure/Hydrostatic Test Pressure 1. 48
Nominal Thickness, in. 0. 496 Type Segmented, Cylindrically Perforated

Web, in. 44.0

Web Fraction, % 0. 57

NOZZLE Sliver Fraction, % I. 31

Body Material 4130 Steel Propellant Volume, in. 3 10,790,000

Throat Insert Material Graphite Cloth Phenolic Volumetric Loading Density, % 79

Initial Throat Area, in. 2 1,134 Web Average Burning Surface Area, in. 2 242,000

Exit Area, in. 2  9,070 Initial Surface to Throat Area Ratio (Kn) 194

Expansion Ratio 8. 0

Expansion Cone Half Angle, degrees 17. 5 PROPELLANT CHARACTERISTICS

Type Omniaxial Gimbaled
Number of Nozzles 1 Burn Rate @ 1000 psia (rb), in. /sec 0. 379

Burn Rate Exponent (n) 0. 21

Density, lbm/in. 3 0. 064
LINER Temperature Coefficient of Pressure

Type HC Polymer-Asbestos ( Tk), %/F 0. 102

Density, lbm/in. 3 0.0357 Characteristic Exhaust Velocity (C*), ft/sec 5,173
Adiabatic Flame Temperature, *F 5, 814

Effective Ratio of Specific Heats (Chamber) N. D.
IGNITER (Nozzle Exit) 1. 18

Thiokol Drawing Designation TU37067-01
Type Aft End Pyrogen with S&A CURRENT STATUS
Minimum Firing Current, amperes 4.5 Feasibility Demonstration Complete

Circuit Resistance, ohms 0.22

No. of Squibs 2

Figure 1. 156-1 (TU-412) Motor Description

A-5



The duration of the ignition transient was approximately 0. 5 second. The

g level decreased when the igniter left the nozzle. Instrument A201 was lost after

37 seconds, but examination of the other accelerometers shows no incident at this

time.

Instrument A202 indicated that, after approximately 30 seconds of ignition,

high transient spikes occur frequently throughout the remainder of firing. These

spikes could result from material breaking away from or impacting against the

nozzle exit cone. Instrument A202 indicated that the average magnitude of g values

increases with ignition time. This could be attributed to a temperature rise of

the accelerometer due to radiant heat exposure.

A high-speed runoff of the A201 trace shows that at T + 0. 6 second a

wave of 10 g's magnitude at 11-Hz is superimposed on the normal high frequency

signal. This corresponds to a double amplitude motion of 1. 5 inches at the exit

plane of the divergent cone. These data are corroborated by an examination of

the increased nozzle cyclic torque values. The 11-Hz wave is noted prior to

T + 0. 6 second, but it is obscured by the high ignition transient.

The 11-Hz frequency is thought to be the rigid body fundamental resonance

of the nozzle and actuation system.

A spectral analysis of the accelerometer data acquisition tapes (FM type)

has resulted in the following gravity root mean square (Grms) levels at the pre-

dominant frequencies and time periods noted.

Frequency
Accelerometer Time Filter Range (Hz) Grms

002 2-7 50 600-1,200 0.61

002 2-7 50 2,000-2,300 0.33

201 2-7 50 400-1,200 2.77

201 26-35 50 400-1,400 3.64

001 105-111 50 2,000-2,600 0.84

002 105-111 50 600-1,200 1.22

002 105-111 50 1,600-2,200 1.0
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Frequency

Accelerometer Time Filter Range (Hz) Grms

002 105-111 50 2,400-3,000 1.0

201 26-35 50 2,400-3,000 2.24

202 2-7 50 400-1, 800 2. 87

FM tapes for the above data are located in Thiokol archives.

2. 1. 2 156-1 (TU-412) Acoustic Data

Air Force WADC personnel were to monitor the near and far field Sound

Pressure Level (SPL), but their power supply malfunctioned. The acoustic

Sound Pressure Level was measured at only one location, 8,900 feet from the motor

at an angle of 104 degrees from the thrust centerline. The data are tabulated below.

SPL

Frequency Pass (dB ref 0.0002 dynes\
Reading No. Band (Hz) cm

1 20-37.5 103

2 37.5-53 106

3 53-75 102

4 75-106 106

5 106-150 106

6 150-212 108

7 212-300 104

8 300-425 104

9 425-600 102

10 600-850 103

11 850-1,200 100

2.2 156-7 (TU-393)

The Thiokol TU-393 (AF designation 156-7) motor was successfully static

fired in a horizontal attitude at Thiokol/Wasatch on 13 May 1966 utilizing a 10-

foot diameter by 82-foot long diffuser for altitude simulation. The motor was

fabricated of a flightweight 156-inch diameter fiberglass reinforced plastic monolithic

case, a submerged fixed nozzle, with a 34 to 1 expansion ratio, and an N2 0 4 Liquid

A-7



Injection Thrust Vector Control:(LITVC) system. The motor configuration and

descriptive parameters are shown in figure 2.

2.2. 1 156-7 (TU-393) Vibration Data

Accelerometers were mounted on the N2 tanks and the nozzle exit cone.

The following accelerations were experienced on the N2 tanks (accelerometers

A601 and A602):

80-to 100-gs peak at 50 Hz for 10 cycles

1.5 grms in 500-to 600-Hz range (predominant frequency)

Accelerometer A201, mounted vertically on the nozzle exit cone, experienced

increased magnitudes as a function of fluid injection rate at the predominant fre-

quency of 575 Hz as shown below.

Fluid Injection Rate Frequency (Hz) Grms

1 burst/second 575 7

5 bursts/second 575 22

Sustained burst 575 30

No injection 575 2.5

FM tapes of the above data are located in Thiokol's archives.

2.2.2 156-7 (TU-393) Acoustic Data

Two microphones were used to monitor the SPL. One, located 50 feet to

the side and 25 feet aft of the diffuser exit plane, recorded the following:

160 to 170 dB in the 10-to 300-Hz range.

Less than 160 dB beyond the 300-Hz frequency range.

Greater than 180 dB at ignition and at diffuser burnthrough

(occurring at 70 seconds), then dropped below 160 dB.

The recording system for the above instrument was limited to a 20-dB

range from 160 to 180 dB.

The second microphone was located at 90 degrees to the thrust centerline,

9, 000 feet from the motor. Results are shown in figure 3.
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TU-393
110.0-KS-331,900
156-7
156-INCH BOOSTER

- 253.32

CASE PROPELLANT

Material (FRP) Fiberglass Reinforced Plastic Propellant Designation and Formulation Type II TP-H-8163
Minimum Ultimate Strength, psi (Composite) 128, 000 AL - 16%,
Minimum Yield Strength, psi Not Available AP - 6917r
Hydrostatic Test Pressure, psi 775 Binder - 15%
Yield Pressure, psi Not Available PROPELLANT CONFIGURATION
Hydrostatic Test Pressure/Maximum Pressure 1. 1
Yield Pressure/Hydrostatic Test Pressure Not Available Type Cylindrical Perforate
Nominal Thickness, in. 0. 592 Web, in. 47. 82

Web Fraction, % 62

NOZZLE Sliver Fraction, % 0
Propellant Volume, in. 3 2,025,456

Body Material 18% Nickel Steel Volumetric Loading Density, % 91
Throat Insert Material Graphite Cloth Phenolic Web Average Burning Surface Area, in. 2  42,350
Initial Throat Area, in. 2 314.47 Initial Surface to Throat Area Ratio (Kn) 110.2
Exit Area, in. 2  10,694.0
Expansion Ratio (Average) 32. 53:1 PROPELLANT CHARACTERISTICS
Expansion Cone Half Angle, degrees 15
Type Fixed Semi-Submerged Contour Burn Rate @ 1000 psia (rb), in. /sec 0.428
Number of Nozzles 1 Burn Rate Exponent (n) 0. 38

Density, lbm/in. 3 0. 0636

LINER Temperature Coefficient of Pressure
( k), %/oF 0.12

Type HC Polymer-Asbestos Characteristic Exhaust Velocity (C*), ft/sec 5,164
Density, Ibm/in. 3 0. 0357 Adiabatic Flame Temperature, *F 5, 713

Effective Ratio of Specific Heats (Chamber) 1. 14

IGNITER (Nozzle Exit) 1. 18

Thiokol Drawing Designation 7U-37635 CURRENT STATUS Inactive
Type Head-End, Four-Nbzzle Pyrogen
Minimum Firing Current, amperes 2
Circuit Resistance, ohms 39
No. of Squibs 2

Figure 2. 156-7 (TU-393) Motor Description
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TU-393 (156 IN., DIFFUSER)
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Figure 3. 156-7 (TU-393) Acoustic Sound Pressure Levels



2.3 156-8 (TU-312.L.02)

The Thiokol TU-312. L. 02 (AF designation 156-8) was successfully static

fired at Thiokol/Wasatch on 25 June 1968 under Contract AF 04(611)-11603. The

motor was fired in a horizontal attitude.

The motor consisted of three fiberglass case segments (forward dome,

center segment, and aft dome), cylindrically perforated propellant grain, and a

fixed ablative nozzle. The motor descriptive parameters are classified confidential.

2.3. 1 156-8 (TU-312. L. 02) Vibration Data

Accelerometer data were taken to document the motor vibration characteristics

during static test and to aid in analysis in case of failure. Data from three accel-

erometers are tabulated below. A spectral analysis was performed with a filter

bandwidth of 10 to 50 Hz with the crossover frequency of 100 Hz.

2.4 156-2C-1

The Thiokol 156-2C-1 (Contract NAS3-6285) was successfully static fired

at Thiokol Corporation, Brunswick, Georgia on 27 February 1965. The motor

exhaust was directed vertically upward.

The motor consisted of four case segments of 18-percent nickel maraging

steel, a fixed nozzle, and a continuous star perforated propellant grain. The

motor configuration and descriptive parameters are shown in figure 4.

One of the objectives in this program was to measure acoustic and vibration

data to verify theoretical predictions of rocket environment and/or to improve

such predictions. The program was conducted with technical direction provided by

NASA Vibration and Acoustic Branch, MSFC, Huntsville, Alabama.

A complete data analysis of the test results can be found in reference 1.

A summary of the instrumentation locations and test results is reported

here.
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TA- M -1

58.7- KS-2,970,000
156 -2C-1
156- INCH BOOSTER

156.0

- 1206.1

CASE PROPELLANT

Material 18'/ Nickel Maraging Steel Propellant Designation and Formulation TP-H-8163

Minimum Ultimate Strength, psi 240, 000 AP - 691' Fe 2 0 3 - 1/

Minimum Yield Strength, psi 230, 000 AL - 167 Binder - 149

Hydrostatic Test Pressure, psi 960

Yield Pressure, psi 1,260 PROPELLANT CONFIGURATION
Hydrostatic Test Pressure/Maximum Pressure 1.1

Yield Pressure/Hydrostatic Test Pressure 1.31 Type Six-Point Star

Nominal Thickness, in. 0.484 Web, in. 28.62

Web Fraction, 7 37. 3

NOZZLE Sliver Fraction, 7. 86
Propellant Volume, in. 3 12, 489,000

Body Material 18" Nickel Maraging Steel Volumetric Loading Density, 7 71.2

Throat Insert Material Graphite Cloth Phenolic Web Average Burning Surface Area, in. 2  402,100

Initial Throat Area, in. 2  2,948 Initial Surface to Throat Area Ratio (Kn) 128

Exit Area, in. 2  20,990

Expansion Ratio 7. 12:1 PROPELLANT CHARACTERISTICS
Expansion Cone Half Angle, degrees 17. 5

Type Fixed Burn Rate @ 1000 psia (rb), in. /sec 0. 568

Number of Nozzles 1 Burn Rate Exponent (n) 0. 38

Density, Ibm/in. 3 0. 0639

LINER Temperature Coefficient of Pressure
( "k) %/oF 0.12

Type HC Polymer-Carbon Black Characteristic Exhaust Velocity (C*), ft/sec 5,240

Density, lbm/in. 3 0.0399 Adiabatic Flame Temperature, *F 5,734

Effective Ratio of Specific Heats (Chamber)

IGNITER (Nozzle Exit) . 1.18

Thiokol Model Designation TX-359 CURRENT STATUS

Type Pyrogen - S&A Feasibility Demonstration Complete

Minimum Firing Current, amperes 4. 5 per Squib

Circuit Resistance, ohms 0. 12 to 0. 22

No. of Squibs 2

Figure 4. 156-2C-1 Motor Description
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TABLE III

VIBRATION DATA SUMMARY

Accelerometer Predominant PSD
Location Direction Frequency (Hz) (G2 /Hz)

Nozzle Exit Cone Tangential 40 0.00028

100 0.00014

200 0.00045

375 0. 0002

470 0.00026

560 0.0004

700 0.0008

Nozzle Exit Cone Radial 40 0.00048

100 0.0002

200 0.0018

375 0.0055

460 0.006

On Case at Longitudinal 250 0.0014
Aft Attach Ring

430 0.00028

600 0.0005

Above data tapes are located in Thiokol Archives.
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2.4.1 156-2C-1 Vibration Data

Six channels of vibration data were recorded at select locations on the motor.

The locations of the accelerometers are shown in figure 5. Results of the data are

summarized below.

Initial Steady Predominant
Accelerometer Acceleration (g's) Acceleration Frequencies

No. First Second g's (Hz)

19 43 13 to 7 20, 350, 3,500

20 46 13 20, 350, 3,500

21 5 5 (unsteady) 20

22 (No data, -- --

open circuit)

23 (No data, -- --
shorted circuit)

24 35 6 20, 350, 3,500

2.4. 2 156-2C-1 Acoustic Data

The microphone locations are shown in figure 6. Note that Balloon No. 2 was

not used. The weather conditions for the firing (from Brunswick Flight Service

Center) are shown below.

Clear with 15 miles visibility

Temperature: 600 to 60.30 F

Wet Bulb: 47%

Humidity: 33%

Wind Direction at Ground Level: 3000

Wind Velocity at Ground Level: 4 knots

Wind Velocity at 1, 000 feet: 8 knots

Dew Point: 31* F

Barometer: 30. 27 in. Hg

Results of the acoustic data are shown below.

The sound pressure spectral density profiles were nearly the same with

time throughout the firing. The LPC firing at Redlands was similar.
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24
19

21 HOLE REF N 24 021

6.5 IN.

20 240"

REF
40 FT

22
2120

1200 1800
REF REF "X"

ACCEL NO. ORIENTATION LOCATION

19 LONGITUDINAL NOZZLE

20 RADIAL NOZZLE

21 TANGENTIAL NOZ Z LE

/ +/ 22 LONGITUDINAL C/L MOTOR

VIEW FROM 1800 TRUE 23 TANGENTIAL C/L MOTOR VIEW FROM 900 TRUE

24 RADIAL NOZZLE

Figure 5. 156-2C-1 Accelerometer Locations



BALLOON NO. 1
ELEVATION

BALLOON NO. 2 MICROPHONE NO. 11 1,000 FT
(NOT USED)

NO. 18

NO. 17
MICROPHONE NO. 10 675 FT

NO. 16

NO. 15 MICROPHONE NO. 9 475 FT MICROPHONE NO. 3

NO. 14 
\ MOTOR

MICROPHONES NO. 1

AND NO. 2

NO. 13 MICROPHONE NO. 8 175 FT
BLAST

MICR1OPI[)NE NO. 6 MICROPHONE NO. 5 PRESSURE

ELEVATION 10 FT IELEVIAATION 10 FI'T MICROPIIONE NO. 7 GROUND LEVEL
GROUND LEVEL

ELEVATION VIEW

1, 120 FlT 8MICROPHONE NO. 4

,-- _________ 800 FT
560 FT

500 FT MICROPHONE NO. 1

BLAST PREISSURE 200 F

O- ___ O__ -_____ __ _ __1 - 4I

PA 10 DEG MICROPHONE NO. 2

PLAN VIIEW ,
' :  

"" 'I

MOTOR

2.06 MI

NO. 1

CABIN BLUFF

4. 64 MI OFAR FIELD STATIONS
NO. 2

Figure 6. 156-2C-1 Acoustic Microphone Locations



156-2C-1 SOUND PRESSURE LEVELS AT MICROPHONE LOCATIONS

(dB re: 0. 0002 Microbar)

Distance From Height Above (A)

Microphone Nozzle Center Below (B) Nozzle Sound Pressure

Number (ft) Exit (ft) Level (dB)

1 15.17 0.58 (A) No data

2 15.17 0. 58 (A) No data

3 6.99 18.93 (B) 146

4 6.66 59. 78 (B) 148

5 560.0 -- 145

6 1,120.0 -- No data

7 500.0 425.0 No data

8 500.0 600.0 144

9 500.0 900.0 No data

10 500. 0 1, 100. 0 No data

11 500.0 1,425.0 No data

Far Field

1 2.06 -- 103-107 (greater decrease at

Miles frequencies beyond 700 Hz)

2 4. 64 -- 100-104 (greater decrease at

Miles frequencies beyond 400 Hz)

A-17



2.5 156-3 (LPC-L71)

The Lockheed Propulsion Company (LPC) 156-inch solid propellant rocket

motor was successfully static fired on 28 May 1964 near Beaumont, California.

The motor consisted of three segments with a fixed nozzle using jet tab TVC. The

motor was fired with the exhaust directed vertically upward.

The Air Force Flight Dynamics Laboratory, Vehicle Dynamics Division,

made a series of acoustic and vibration measurements during this test. The

results are completely documented in reference 2.

A summary of the instrumentation locations and test results is reported here.

2.5. 1 156-3 (LPC-L71) Vibration Data

Seventeen channels of vibration data were recorded. The transducer

locations and measurement directions are shown in figure 7. A summary of the

vibration data is shown below.

Vibration Data Summary

Predominant
Accelerometer Overall Grms Frequency

No. Location Direction Ignition Steady (Hz)

1 -- -- -- -- --

2 -- -- -- -- --

3 Aft Attach Ring Tangential 1.3 0.4 --

4 2-3 Segment Tangential 2.4 0. 24 376

5 2-3 Segment Radial 12.0 0.35 376 (12 g)

6 Center Mid segment Thrust 0.35 0.12 376

7 1-2 Segment Tangential 3.1 0. 22 376

8 1-2 Segment Radial 12.0 0.31 376 (10 g)

9 Fwd Attach Ring Tangential 0.55 0.3 --

10 Fwd Attach Ring Radial 0.6 0.3 --

11 Fwd Attach Ring Thrust 0. 98 0.4 376

12 Exit Plane 00 Tangential 12. 0 (lost after few seconds)
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NORTH (0")

SEAST (90 )

_ _ (A) LOCATION AND ORIENTATION

---Q-~

R - RADIAL

T - TANGENTIAL

9I r/-16

4 /

ST T

(B) LOCATION OF MOTOR CASE (C) ORIENTATION OF MOTOR CASE

TRANSDUCERS TOF ,RANSDUCERS

Figure 7. 156-3 (LPC-L71) Transducer Locations
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Predominant

Accelerometer Overall Grms Frequency

No. Location Direction Ignition Steady ~ (Hz)

13 Exit Plane 00 Radial 12. 0 (lost after few seconds)

14 -- --

15 Exit Plane 2700 Tangential 16. 0 (lost after few seconds)

16 Exit Plane 1350 Radial 8.0 (lost after few seconds)

17 Exit Plane 1350 Tangential 11.0 (lost after few seconds)

The peak loads occur within the first second after ignition with a periodic

response at 376 Hz. The periodic response appeared on all unrestrained portions

of the motor case, i. e., transducers located at the 1-2 segment joint, the center

of the mid-segment, and the 2-3 segment joint. The most severe vibration appeared

in the radial direction at the 2-3 segment joint at the 376 Hz predominant frequency.

Accelerometers, numbers 12 through 17, were lost during the ignition transient,

consequently, acceleration levels might have reached much higher levels than those

tabulated.

2.5.2 156-3 (LPC-L71) Acoustic Data

Seventeen channels of acoustic data were recorded. Seven microphones

were located on the motor as shown in figure 7. The locations of eight field micro-

phones are shown in figure 8. The remaining two microphones were located in the

recording van used by Air Force personnel. A summary of the acoustic data is

shown in the following table.

The far field acoustic data resulted in sound power levels ranging from

204 to 207 dB.

TVC action increased the motor noise levels by about 8 to 9 dB.

2.6 RECENT SPECTRAL ANALYSIS OF 156-IN. DIAMETER MOTOR
VIBRATION DATA

The longitudinal closed-closed acoustic mode of large solid propellant rocket

motors could fall in the frequency range where POGO is experienced (5 to 25 Hz).
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NORT ( ) INDICATES VERTICAL
ANGLE FROM EXIT PLANE.

7030' 30 + ABOVE, - BELOW

691 FT

O (+4020')
686 FT

(+0'36')

6'41'
344 FT 60

345 FT

G (-o024')

204 FT 334 FT
(-5 54') (+3035')

68 FT

(-0-30')

S N 90 ° EAST
178 FT

(+0' 15')

Figure 8. 156-3 (LPC-L71) Field Microphone Locations
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LPC-L71 ACOUSTIC DATA SUMMARY

Overall 1/3 Octave Band
Sound Pressure Level

(dB ref 0 .0 002dyne
Acoustic _m_ _)-

Channel Location Vertical Angle Peaks Steady

1 Aft Attach Ring 150 142

2 2-3 Segment Joint 148 139

3 1-2 Segment Joint 149 142

4 Fwd Attach Ring -- --

5 Exit Plane North 158 --

6 Exit Plane West 160 --

7 Exit Plane 1350

8 900 178 ft +00 15' 148 144

9 300 204 ft -50 54' 146 143

10 600 168 ft -00 30' 148 145

11 600 334 ft +3o 35' 145 142

12 300 345 ft -00 24' 145 141

13 300 686 ft -00 36' 139 137

14 60 41' 344 ft -50 8' 141 140

15 70 31' 690 ft +40 20' 138 136

16 Top of Van 139 135

17 In Van 125 121
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Preliminary analysis indicates that the longitudinal mode will be significantly damped

(reference 3). To substantiate this conclusion, data from three large motor firings

were reexamined recently for evidence of low-frequency response.

High-speed oscillograph traces were made on all thrust, pressure, and

accelerometer channels on the 156-8 (TU-312), 156-1 (TU-412) and 156-7 (TU-393)

motors. Strain channels on the TU-412 were also investigated.

Only two areas indicated any low-frequency data. At ignition of the TU-412

there were several cycles of data at about 6 Hz on the pressure trace. This data

could not be correlated to a corresponding thrust nor was any indication given on

the accelerometers during this same period. Both CEC traces and shock spectrum

plots were made of the data with no indication of this frequency. It did, however,

excite the accelerometers at the apparent natural frequency of the dome, at about

89 Hz. Due to the nature of the igniter on this motor it appears this pressure

characteristic was caused by the ignition transients.

The only other area where low-frequency data could be deteced was on

the TU-412, where a frequency of approximately 10 Hz was noted on the axial

accelerometers between 1 and 2 seconds of firing. This frequency could not be

detected on the pressure trace but correlated directly with test stand ring as indicated

on the thrust channel. The amplitude of this data was in the order of 0.2 g's. It

was concluded that the accelerometer data were a result of test stand ring and could

not be related to motor performance.

On the TU-393 and TU-312 motors, there was no evidence of any low-frequency

data on any channel. The pressure, accelerometer, and thrust channels were band

passed, filtered, and amplified; but still no data were evident. It was concluded

that the longitudinal acoustic mode was not excited on any of these three motors.

2.7 UTC DVXL5-1 (120-IN. DIAMETER MOTOR)

The DVXL5-1 solid fuel motor was static fired on 20 July 1963, by

United Technology Center (UTC) in Morgan Hill, California. The motor exhausted

upward, with the nozzle canted 6 degrees from vertical. TVC was accomplished

by liquid injection. A-23A-23



Bolt Beranek and Newman Inc. made a series of acoustic and vibration

measurements during the static firing. The results of their data analysis are

completely documented in reference 4.

A summary of the instrumentation locations and test results is reported here.

2.7.1 UTC DVXL5-1 Vibration Data

Seven channels of vibration data were recorded. The transducer locations

and measurement directions are shown in figure 9. A summary of the vibration

data is shown below.

DVXL5-1 Vibration Data Summary

Data Predominant
Channel Frequency Grms (maximum)

No. Measurement and Location (Hz) No TVC With TVC

1 Accelerometer-nozzle at motor- 600-800 0. 6 0. 7
nozzle attachment flange - 2200 5, 000 0. 6 0. 9
(normal)

2 Accelerometer-nozzle 41 in. 800 4.5 5.0
above motor-nozzle attachment 5,000 5.5 10.0
flange (behind pitch and yaw
control box) - 2250 (normal)

3 Accelerometer-mounting frame 400, 700 2.3 5.4
of pitch and yaw control box 1, 400 2.5 3.5
near upper support ring -
2200 (normal)

4 Accelerometer-mounting frame 250 0. 9 0. 8
of pitch and yaw control box 500, 1.15 2.4
near upper support ring - 1,400 0.78 1.1
2200 (axial) 5,000 1.0 2.3

5 Accelerometer-mounting frame 500 3.0 --
of TVC junction box near 1, 000 4.5 --
lower support ring - 2200 2, 000 7.0 --
(normal)

6 Accelerometer-nozzle-upper 250 0.7 1.0
flange 81 in. above motor 800 1.25 4.5
nozzle attachment flange - 5, 000 2. 2 6.3
2250 (normal)

7 Accelerometer-motor case 200 0. 04 0. 04
skirt near nozzle - 00 2,000-4,000 0.3 0.4
(normal) A-24A-24



SIDE VIEW IN NORTH-SOUTtH PLANE

NA

TOP VIEW

900 -EAST
NOZZLE

0 QUADRANTS

N

0 -NORTI I III 180-I OUTH

(TDC)

RELATIVE LOCA-

00-NORTH TIONS ON THE EAST

SIDE OF MOTOR
SOLID MOTOR CASE

2700 -WEST

1800 -SOUTII

O MICROPHONE

OA ACCELERATION (AXIAL)

ON ACCELERATION (NORMAL)

NOTES: CHANNEL NOS. ARE GIVEN IN CIRCLES AND SQUARES.

SKETCH NOT TO SCALE.

Figure 9. DVXL5-1 Near Field Acoustic and Vibration
Measurement Positions
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Vibration data show a definite increase in the measured vibration associated

with TVC action. Since the near field acoustic levels are not affected by TVC, the

vibration increases in the nozzle and equipment are primarily structure borne and

not sound-induced.

2.7.2 UTV DVXL5-1 Acoustic Data

Five channels of acoustic data were recorded, one near field and four

far field. The transducer locations are shown in figure. 10. A summary of the

acoustic data is shown below.

DVXL5-1 Acoustic Data Summary
Sound Pressure Level In

Data 1/3 Octave Band Decibels
Channel (re: 0. 0002 Microbar)

No. Measurement and Location No TVC With TVC

8 Microphone-test stand 2nd Platform - 900 No data --

9 Microphone-test stand 6th Platform - 900 132 135

10 Microphone - 470 ft - 1090 (50)* 128 128

11 Microphone - 700 ft - 1570 (120)* 124.5 126.5

12 Microphone - 650 ft - 210 (60)* 127 130

13 Microphone - 406 ft - 560 (40)* 132 132

*Angles between horizontal plane and lines from microphones to nozzle exit are
given in parentheses.

The sound power level in 1/3 octave band in Db re: 10 - 13 watts was 201 dB.

This value corresponds to 1/4 of 1 percent of the mechanical power in the exhaust

streams. For details, see reference 4.

The near and far field acoustics were not effected by TVC.

2.8 AGC 100 FW-1 (100-IN. DIAMETER MOTOR)

Acoustic data are presented on the Aerojet-General Corporation 100 FW-1

motor. The data are taken from an AGC Test Division sketch dated 7 September 1961.

The near field acoustic data are shown in figure 11. The far field data are shown

in figure 12.
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Oc -NORTl (TDC)

12 650 FT-21' (66)

13 406 FT-56 (40)

-270'_ WEST- 90 -EAST

TEST BAY I
10 470 FT-109 (5

DVXL, 5-1 SOLID MOTOR

EXIIAUSTING VERTICALLY

UPW\VARDS

1700 FT-157' (12")

1800 -SOUTH

NOTES: CHANNEL NOS. ARE GIVEN IN CIRCLES.

ANGLES BETWEEN HORIZONTAL PLANE AND

LINES FROM MICROPHONES TO NOZZLE EXIT

ARE GIVEN IN PARENTHESES.

Figure 10. DVXL5-1 Far Field Acoustic Measurement Positions
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132 DB M-5, 950 FT

"148 DB M-2, 200 FT 139 DB M-7. 400 FT

M-138 D00 FT-M-6. 300 FDB

00 147 D3 M-3. 200 FT

MII-4, NO DATA

RE: 0.0002 DYNES/Cm2

153 DB MT-1. 100 FT LOCATION - SPL
M-1 100 FT-60* 153 DB

M-2 200 FT-45' 148 DB

M-3 200 FT-60. 147 DB

M-6 300 FT-60' 138 DB

M-7 400 FT-60' 139 DB

M-5 950 FT-60' 132 DB

M-4 200 FT-75* NO DATA

Figure 11. AGC-100 FW-1 Near Field Sound Pressure Level



NOZZLE

60 100 FW\-1
FAR FIELD SOUND LEVEL MEASUREMENTS

(WIDE: BAND FREQUENCY)

0 POSITION DISTANCE SPL - DB
NUMBER (FT) MAXIMUM AVERAGE

1 3.500 106 94

2 5.000 112 110

3 4,000 92 86

4 10,000 99 97

5 15. 000 76 72

REF: 0.0002 DYNES/CM 2

Figure 12. AGC-100 FW-1 Far Field Sound Level Measurements
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2.9 POSEIDON (C3) STAGE I

Approval to release Poseidon vibration data has been requested. Upon

receipt of approval from the U. S. Navy, the C3 Stage I vibration data will be

appended to this report.

2.10 TU-122 MINUTEMAN STAGE I MOTOR (65-IN. DIAMETER MOTOR)

The Thiokol TU-122 has a 65-inch diameter monolithic case of ladish D6AC

steel, a star perforated propellant grain, and four movable nozzles (TVC). The

motor descriptive parameters are shown in figure 13.

2. 10. 1 TU-122 Vibration Data

Typical measured vibration environment is tabulated below.

Predominant Peak
Motor Frequency Acceleration

Component (Hz) Density (G2 /Hz) Total Grms

Aft Closure 550 to 700 0. 001 to 0. 004 2 to 3

Case 625 to 900 0. 002 to 0. 005 1. 7 to 3. 2

Blast Tube 6, 800 to 10, 000 0. 007 to 0. 016 5 to 7

Peak accelerations for the above locations range from 17 to 35 g during

the ignition transient.

2.10.2 TU-122 Acoustic Data

Isoacoustic curves of dB versus field location are shown in figure 14 for a

horizontal firing attitude. The plot is limited to a distance of 300 feet. Data for

distances beyond 300 feet are tabulated below.

Overall Sound Pressure Level In
Distance (Feet) Decibels (re: 0.0002 Microbar)

500 137

800 132

1,000 130

1,500 .125

2,000 122
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TU-122

52.6-KS-194,600

M55E1 MINUTEMAN

STAGE I, WING II

294. 87

CASE PROPELLANT

Material Ladish D6AC Steel Propellant Designation and Formulation TP-H-1011
Minimum Ultimate Strength, psi 225, 000 HB/ECA - 14';
Minimum Yield Strength, psi 195, 00( Al - 16'

Hydrostatic Test Pressure, psi 940 N114C104 - 70',
Yield Pressure, psi 9.5 PROPELLANT CONFIGURATION
Hydrostatic Test Pressure/Maximum Pressure 1. 1
Yield Pressure/Hydrostatic Test Pressure 1.05 Type (Cylindro-Conical) Six-Point Star
Nominal Thickness, in. 0. 148 Web, in. 17. 357

Web Fraction, 0 53. 3

NOZZLE Sliver Fraction, %** 5. 93
Propellant Volume, in. 3* 709,400

Body Material AISI 4130 Steel Volumetric Loading Density, % 88. 7
Throat Insert Material Forged Tungsten Web Average Burning Surface Area, in. 2** 38,500
Initial Throat Area, in.2 164.2 Initial Surface to Throat Area Ratio (Kn) 217
Exit Area, in. 2  1642
Expansion Ratio 10:1 PROPELLANT CHARACTERISTICS
Expansion Cone Half Angle, degrees 11. 4
Type Movable Burn Rate @ 1000 psia (rb), in. /sec 0. 349
Number of Nozzles 4 Burn Rate Exponent (n) 0.21

Density, lbm/in. 3 0. 0636

LINER Temperature Coefficient of Pressure
( "k), %/oF 0. 102

Type HC Polymer-Asbestos Characteristic Exhaust Velocity (C*), ft/sec 5,180
.Density, lbm/in. 3 0. 0394 Adiabatic Flame Temperature, 'F 5,790

Effective Ratio of Specific Heats (Chamber) N. D.

IGNITER (Nozzle Exit) 1. 18

Thiokol Model Designation TU-P-122 CURRENT STATUS Production
Type Pyrogen - S&A
Minimum Firing Current, amperes 4. 9
Circuit Resistance, ohms 0. 22 ± 0. 10 **Case Propellant Only.
No. of Squibs 2

Figure 13. TU-122 Motor Description
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Figure 14. TU-122 Isoacoustic Curves of Decibels Versus Field Locations
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Overall Sound Pressure Level In

Distance (Feet) Decibels (re: 0. 0002 Microbar)

2,500 119

3,000 117

3,500 114

4,000 113

5,000 109

6,000 106

7,000 104

8,000 101

9,000 99

10,000 97

15,000 89

20,000 83

2.11 MINUTEMAN III STAGE III MOTOR

The Minuteman III Stage III Motor was originally developed and pro-

duced by Aerojet Solid Propulsion Company (ASPC). It is now being produced

by Thiokol Corporation (TC). The grain configuration is a center perforate with

six forward end fins. The motor utilizes an 88-percent solids, 15-percent aluminum

carboxyl-terminated polybutadiene (PBAN) propellant. Pertinent motor information

is presented in figure 15. The motor exhibited acoustic instability and has been

evaluated extensively both analytically and experimentally. ASPC was funded to

investigate and characterize the oscillatory burning characteristics of the motor, to

identify the influence of propellant raw materials and processing variables on the

stability of the motor (reference 5).

2. 11. 1 Minuteman III Stage III Motor Vibration Data

The motor exhibits two distinct acoustic instability modes. During the first

4 seconds of burning a tangential mode associated with the forward fins is present

(~ 800 Hz). During the time period from 4 to 16 seconds the first longitudinal
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60.1-KS-34,560

STAGE III MINUTEMAN

92.69

52.00

CASE PROPELLANT

Material S901 Fiberglass, EF-2 Resin System Propellant Designation and Formulation ANB-3066

Minimum Ultimate Glass Strength, psi 440,000 CTPB/BITA - 9% Al - 15%

Minimum Yield Strength, psi - Polybutene - 3%/, AP - 730

Hlydrostatic Test Pressure, psi 715.0
Yield Pressure, psi - PROPELLANT CONFIGURATION
Hydrostatic Test Pressure/Maximum Pressure 1.42
Yield Pressure/Hlydrostatic Test Pressure - Type Head End Fins (6)-Stepped CP

Nominal Thickness, in. 0.160 Web, in. 20.43

Web Fraction, 1; 0.79

NOZZLE Sliver Fraction,; 0.11
Propellant Volume, in. 3 115,193

Body Material 7075-T73 Aluminum Volumetric Loading Density, i 94.0

Throat Insert Material Forged Tungsten Web Average Burning Surface Area, in. 2  5,638.0
Initihl Throat Area, in.2 37.122 Initial Surface to Throat Area Ratio (Kn) 104.0

Exit Area, in. 2  874.587

Expansion Ratio 23.55 PROPELLANT CHARACTERISTICS
Expansion Cone Half Angle, degrees (Contoured) 16.5
Type Fixed Submerged-LITVC Burn Rate @ 1000 psia (rb), in. /sec 0.417

Number of Nozzles 1 Burn Rate Exponent (n) 0.30
Density, Ibm/in. 3 0.064

LINER Temperature Coefficient of Pressure

(nk), ("['/F 0.120

Type Asbestos-Filled CTPB SD851-2 Characteristic Exhaust Velocity (C*), ft/sec 5,200

Density, Ibm/in. 3 0.034 Adiabatic Flame Temperature, "F 5,730
Effective Ratio of Specific Heats (Chamber) 1.14

IGNITER (Nozzle Exit) 1.18

Thiokol Model Designation 1128361-149 CURRENT STATUS Production

Type Head End Pyrogen with S&A

Minimum Firing Current, amperes 4.5

Circuit Resistance, ohms 0.22
No. of Squibs 2

Figure 15. Minuteman III Stage III Motor Description
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mode is present in the motor (~200 to 350 Hz). Difficulties were encountered in

measuring the pressure vibrations during the transverse mode operation:

1. The transducer had to be installed near the igniter at

the forward polar boss, thus it is near the pressure

nodal point for the transverse mode.

2. The split flap forms a separate cavity which is

monitored by the standard transducer mounting.

3. The standard operational pressure transducer

(OPT) has poor signal-to-noise ratio, and the

interconnecting channel between the chamber and

the transducer modifies the frequency response

of the measurement system.

A dynamically calibrated helium-bleed transducer system was designed and

installed on two static firings. The system included a tube to provide direct measure-

ment in the main motor cavity. This indicated a peak amplitude of 10. 1 psi which

when corrected to the maximum amplitude position at the fin extremities amounts

to, an amplitude of 100 psi (0 to peak).

Numerous accelerometers have been mounted on the forward and aft domes.

These accelerometers display a wide variation in amplitudes from motor to motor

and between locations. Standardized accelerometer locations were established

and used to monitor and compare individual motor vibrational characteristics.

The standard headend accelerometer (AIGN 30Y) is mounted on the igniter boss

at the 30-degree location. This location was chosen for the following reasons:

1. The forward dome sinusoidal vibrations were more

consistent than the aft dome with much lower random

vibration.

2. The igniter boss provided a rigid mechanical attach-

ment surface.

The FM tape recorded data are processed through an MB Electronics

Model N982 Shock Spectrum Analyzer to determine maximum amplitudes at various

center band frequencies. The analyzer is set at an amplification factor (Q) of ten.
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MINUTEMAN II STAGE III MOTOR VIBRATION
AMPLITUDE AND FREQUENCY SUMMARY
HEADEND ACCELEROMETER (AIGN-30Y)

Amplitudes (g) Q = 10

Frequency PQA Average PQA Average +3 a

Time 0. 100 to 4 seconds

555 37 80

629 40 71

710 56 85

806 161 276

888 140 278

987 73 136

1,116 50 87

1,246 47 75

1,408 51 87

1,594 77 154

1,825 60 120

2,020 48 89

Time 4 to 16. 1 seconds

139 33 60

159 79 159

181 131 252

199 70 110

219 44 70

248 36 54

278 48 65

321 105 161

349 85 120

398 53 74

448 43 65

496 40 69
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The center band frequencies, nominal amplitudes and upper three sigma amplitudes

from 16 PQA motors are presented below. The quality of the data is such that the

values can be divided by 10 to arrive at 0 to peak values.

2.12 MINUTEMAN MISSILE PAD LAUNCH

Acoustic field data were measured by The Boeing Company during a pad

launch of Minuteman Flight Test Motor (FTM) 403. The data cover ignition and

flight.

The data were extracted from reference 6.

The field microphone locations are shown in figure 16. The sound pressure

levels at the various field location are shown in figures 17 through 21. The SPLs

shown in figure 17 are the average of two axes for each distance.
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Figure 16. Minuteman Pad Launch Measurement Locations
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Figure 17. Minuteman Pad Launch Maximum Octave Band
Levels Measured During Launch
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Figure 18. Minuteman Pad Launch Maximum Octave Band Levels (100 Feet)
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Figure 19. Minuteman Pad Launch Maximum Octave Band Levels (200 Feet)
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Figure 20. Minuteman Pad Launch Maximum Octave Band Levels (500 Feet)
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Figure 21. Minuteman Pad Launch Maximum Octave Band Levels
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