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PREFACE

Final report of Asymmetrical Booster Ascent Guidance and Control System
Design Studies performed under Contract NAS9-13568 are contained in five
separate volumes identified as follows: ’

Volume T - Summary

Volume Il - SSFS Math Models - Ascent

Yolume III - Space Shuttle Vehicle SRB Actuator Failure Study

Volume IV - Sampled Data Stability Analysis Program (SADSAP) -
Users Guide )

Volume V - Space Shuttle Powered Explicit Guidance

.
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ABSTRACT

This report was prepared under contract NAS9-13568 for the Guidance and
Control Systems Branch of the Avionics Systems Engineering Division,
Lyndon B. Johnson Space Center. The report presents an optimum

powered explicit guidance algorithm capable of handling all Shuttle
eoatmospheric maneuvers. Theoretical and practical basis for the
currently baselined Shuttle powered flight guidance equations and logic,
as documentec by MIT, is presented. The development is based on
previous work by JSC, MIT, MSFC, Boeing and others. Detailed flow
diagrams for implementing the steering computations for all Shuttle
phases, including powered Return to Launch Site (RTLS) abort, are
presented. Derivation of the powered RTLS algorithm is presented, as
well as detailed flow diagrams for implementing the option. The flow
diagrams and equations are compatible with the current MIT Shuttie

powered flight document.

KEY WORDS

Guidance Algorithm

Saturn Iterative Guidance Mode (IGM)

Apollo Guidance

Explicit Guidance

Shut.tle Powered Explicii Guidance

Orbiter Main Engine Cutoff (MECO)

Orbiter Maneuvering System (OMS)

Refurn to Launch Site (RTLS) Abort Guidance
Propellant Depietion

Range Thrcttling
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1.0 INTRODUCTION

The original powered flight guidance software proposed for Shuttle ccnsisted
of various specialized routines to handle the various phases of flight (as
Saturn V/Apollo). The Boeing developed Linear Tangent Guidance (LTG)
equations (Reference 1) were baselined for Shuttle nominal ascent. Investi-
gation revealed that Apollo type guidance was inadequate to handle some
phases of Shuttle flight (i.e., low tnrust deorbil). It was later dis-
covered by Long and McHenry of the Mission Planning and Analysis Division
(MPAD) of JSC that the basic LTG_a]gorithm was accurate and flexible

enough to handle some of these difficult phases. Long and McHenry
(Reference 3) then developed the concept of extending the basic ascent

LTG equations to handle all phases of Shuttle powered flight, including
Abort Once Around (AOA) and Return To Launch Site (RTLS) aboit. Brand,
Brown, and Higgins (Reference 2) of the Massachusetts Institute of
Technology (MIT) later developed concepts that made it feasible to extend

the ascent LTG to handle various phases of Shuttle flight.

The basic Boeing guidarce task under this contract was to coordinate with
MPAD, MIT, and Rockwell International (RI) in development of the Unified
Linear Tangent Guidance (ULTG) and to implement this capability in the

JSC Space Shuttle Functional Simulator (SSFS). Emphasis Qas placed on
abort capability. Various candidate abort techniques *iere critiqued. It
was determined that all of the existing candidates for RTLS abort guidance
had certain limitations and disadvantages. As a result, Boeing developed
a complite solution to the RTLS abort problem satisfying all constraints
and compatible with the ULTG as a simple option (Section 5.2). 1In order

to solve the RTLS problem, the original LTG algorithm was significantly

o Ay o — 3
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modified., A unified optimum guidance algorithm (References 8 and 13),
involving higher order accuracy and more flexibility, was developed.

This accuracy and flexibility made range throttling possible (Section 4.2)
and made it possible for the s:eering to modulate to deplete excess pro-
pellant and simultaneously satisfy velocity and position constraints

(Section 5.2).

The guidance work performed under this contract contributes to all phases
of Shuttle powered flight guidance. A technique for handiing the Orbiter
Maneuvering System (OMS) ascent phase (Reference 9) was developed &znd is
presented in Section 4.1. This techniaue has been implemented in the
ULTG of the SSFS and incorporated into the currently baselined Shuttle
powered flight guidance equations (Reference 10). Theoretical background
and development of the unified optimum guidance aigorithm are presented
in Sections 2,0 and 3.0. Techniques for optimally handling various sets
of end-conditions are presented in Section 4.0, (Techniques that were
undeveloped for Saturn’/Apollo technology). Two explicit powered flight
guidance algorithms for RTLS are presented in Section 5.0, Section 6.0
contains a method for implementing the steering computations for all
Shuttle phases. RTLS time-to-go and range throttling equations are

also included. References are listed in Section 7.0, Derivation of
generalized higher order thrust integrals is presented in Appendix A.

A simple gravity model capable of accurately handling all Shuttle powered
maneuvers is presented in Appendix B, However, this is not the model in

the currently baselined eqdations (Reference 10). The RTLS powered flight

option is presently being programmed in the SSFS by NASA/JSC and LEC.
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The guidance algorithm has the following features:

Optimality - A1l necessary conditions for optimality are satisfied to
Jptimaiity

within the accuracy of the guidance algorithm. A1l flat earth assumptions

are eliminated.

Accuracy - This guidance algorithm is an approximate closed-form solution

to the powered fiight trajectoryoptimization problem,

Stability - There ic considerable feedbac the algorithm; i.e., every-
thing is a function of everything else. However, in the final analysis,
everything is a function of final state, costate, and final time. These
final quantities converage to virtually constant values after a few cycles

through quidance.

Flexibility - The algorithm can handie any reasonable set of maneuver end-
conditions in an optimum manner. The number of end-conditions can vary

from one to seven,

Simplicity ~ The basic equations are very clean and simple, e.g., cleaner
and simpler than the Saturn Iterative Guidance Mode (IGM), the original

LTG approach of Reference 1, and the equations of References 2 and 3.

It will be seen in the following sections that the concept presented in
this report actually reprecents a nroblem solution apprcach. The approach,
although numerical integration could be employed, eliminates expensive
(solution time and computer stprage) Newton-Rhapson type iterations,
Desired maneuver end-conditions are expressed as functions of the terminal

velocity and position vectors. The navigator furnishes instantaneous




values of state, time, thrust acceleration and gravity acceleration,
Analytic expressions are employed to represent the magnitude cf the thrust
acceleration time history. The problem is to determine the thrust vector
time history (and issue steering commands and throttle command if ap-
plicable) that maximizes final mass subject to satisfying maneuver objectives
(end-cenditions). Theoretical development furnishes the ontimum form of

the thrust vector (steering parameters) and missing end-conditions necessary
for optimality. The problem solution appreoach is to develop a closed form
approximation for determining values of the steering parameters that

satisfy all necessary and desired conditions. The solution is a predictor/
corrector or recursive type iteration, Sever:1 pre-thrust or pre-guidance

cycles through the equations are assumed necessary to converge the algorithm,

The solution approach is as fol]ows: The solution is linearized in terms

of steering parameters, thrust and gravity integrals and final state. The
steering param2ters are then determined from the linear equations, The
steering parameters and thrust integrals are in turn used to predict final
state in a manner that approximately satisfies down-range conditions. Down-
range conditions already beirig satisfied, cross-range and radial conditions
as well as appropriate magnitudes are corrected if errors exist, i.e., a
discontinuity is introduced into the predicted state to satisfy end-conditions.
A one pass iteration is repeated on the next periodic guidance cycle. The
algorithm is extremely convergent, even for bad guess starting values of
final state, costate and time. An initial estimate of velocity-to-go is

needed to start the algoriihm.
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2.0 THEORETICAL BACKGROUND
The guidance and trajectory optimization problem fits in the class of the problem

of Bolza or more specifically the problem of Mayer (Reference 5, Chapter 4). This
problem can be formulated as follows: cunsider the class of functions

S;({t), i=1, ..., n , where % is the independent variable,
Satisfying the constraints (differential equations)
X i = ~ .:d_s.
¢j(t, S,i, S,i) -'O,J" 1, c ey v ,Wheres-—dt s

which involve n-% degrees of freedem. These functions also satisfy the end
conditions

i ' Ck(tl, Sil) =0, k=1, ...,

C (t,, S

2’ 12) -

I
o
-
o~
i

K ml, ..., S < 2n+2.

The problem is to find that spncial set of these functions (Si) that minimizes
or maximizes

G(t, Si) .
1

This problem can be trew.ted in a :imple and elegant manner by introducing a set
of variable Lagrange multipliers,

xj(t), i=1, ..., & (constraints)
and a set of cons’ant Lagrange multipliers,
mo k=1, oo, e (end conditions),

and employin, the principles and theorems in Reference 6, Chapter 7, and Reference 7,
Chapter 2.

For simplicity the notation of Reference 6 is employed here, e.g.,

n %
: S N
FSi ds; - ;2J %E dsi’ Aib5 = /. As05 -
i=1 - J=1
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The above problem can be reduced to minimizing or maximizing the augmented
functional

f
2

- el = =

= [G]] + uka + f Fdt, where F = AJ.¢J. 0
4

In order to extremize P subject to constraints the first variation, 6P, must vanish.

The following commutative la.s from Reference 7 are used in formulating the first
variation, &P.

2 2
_ dS _ d
(Sft F dx = ft §Fdx, 63-)-(--3755
1 1

where x is the independent variable. It is also shown in Reference 7 that

5(F,/Fy) = (FoF, - F16F2)/F22 as in differentiation.

In order to obtain 211 of the necessary cunditions for optimality shown in
References 5 and 6, the equations are written in parametric form as in Reference 6,

i.e.,

= Si(x) from which it follows that F = F [}(x), Si(x), dSi/dx-] dt .,

t =X,
dt/dx _} dx

6F = 3F 65, +aF ¢ S + 9F st + 3F st (where t = dt, dS = dS/dx) and

33;' -S| ot 3t x dt dt/dx

i
a( [(dt/dx) s(dS/dx) - (dS/dx) s(dt/dx)]/(dt/dx)2
cr

88 = §S - d Gt since § and Q_ are commutative, and &t = 4 &t.

'TT’ dx ’ dt

With the above definitions we are now ready to formulate the first variation, &P.
With the usual integration by parts, removing some terms from the integral, the

first variation is as follows:

8P = T+ I, where

< 2

T=[d6 + (F-SiFS_)dt + stdsi]] + u dC,

e (2 d b SRy e, [ (- SR ) - Fdoty dt
) ,ft] qFe, " s Syl v oife) - Ry

A
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It is necessary for optimality that the coefficients of the differentials vanish.
The vanisning of the coefficients of the differentials in the expression T is called

the "transversality condition". The coefficients of 6Si in the integral are called
the Euler-Lagrange equations.

d_

S FL - Fg =0

‘i i
Inspection shows that

-(F - éiFéi)E H, ca11?d the Hamiltonian -~ the system. The coefficient of &t
in the integral becomes H + F¥1; 0 (called the "first integral"). Consequently,

for problems where F is forma independent of t, the Hamiltonian is a constant
of the system.

H = C (constant), and the transversality condition reduces to

2 -
[dG ~ Cdt + Fsi dsi]l + “kdck = 0.
So, in conclusion, the "transversality condition", the Euler lLagrange equations,

the "first integral", and the constraints and end conditions being satisfied form

the necessary conditions for optimality in the problem of Mayer, stated above.

The above necessary conditions are general and consistent with the problem statement.

[P, 2
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3.0 NECESSARY CONDITIONS APPLIED TO GUIDANCE
For reference, the necessary conditions for optimality are summarized here in
common notation.
d 3F _3F =0,1i=1, ..., n (1)
e
aSi aS1
n 2 5
g dG - Hdt + z OF ds| o+ Z bjdC; = 0 (2)
=1 25 1 =l
H+ 3F = 0, where (3)
v ot

€
n
Pea

n
H=- F-zsi?
as

i=1l i

The exoatmospheric equations of motion are

¥ = ap(t) + G(R) (4)

. |
R=V

m= f7

Where V¥ is velocity, R is radius, m is vehicle mass, and G is gravity.

a; = 1, where T is engine thrust.
om
sine cos
p= sin ¢}, a unit vector (5)
COS® COS

defining the thrust direction (when implementing the guidance law the small
thrust vector control oscillations may be ignored).

’
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An ingenious method for handling gravity in the problem formulation has been
developed by Jezewski (Reference 4). The approximation is made that the
gravity vector is a linear function of the radius vector, i.e.

- o 3
G (u/RZ) R where R is a

constant radius magnitude chosen judiciously. It is seen that
u/R3 = V2 /R2 = wz where w is the angular rotation rate of a circular
orbit at radius R This leads to
- 2
G = - wR.

It will be seen in the fo]]ow1ng formulation that this approximation eliminates
flat earth assumpt1ons in the gu1dance law. The augmented functional becomes:

F—_A_.-[v-aT +w_R]+oz"(R-V)+6(m-f7)

v where for constant thrust m = f7 = constant, and for constant acceleration
f7 = -ma./lsp where ac is the value of acceleration and Igg is engine/
! propellant specific impulse (assumed constant in this pro em), and

(r:a:B) = 3 (V R m) S and (V:R:m:e:y) = S;pd=1l e, 7 i=1,...,9

The typical powered f11ght traJectony and gu1dance problem* is to determine the
thrust direction, P(t), time history that satisfies final conditions,

(Vo:R2), and 51mu1taneous1y maximized final mass, my. Therefore, G =
Tﬂe e—ﬁ conditions, in general, are not explicit functions of t, m, andlg
The number of end conditions, s, can be anything from one to seven. In general,
the initial conditions are fixed.

Applying equation (1)

- —r——

; (@) a=-2
< () g=wlrsa+u?2r=0
- (c) &=-(ap) 21-820
. m am
. . ] 3
" (5 P- =0-p= N3

* The problem here is restricted to a single burn maneuver, i.e., no long coast
arcs between stages.
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Referring to equation 3

(e) H = C = constant

since F is formally independent of time. Therefore, the term H
disappears from the transversality condition for variable initial
and final conditions; i.e.,

(f) HtZ-Ht].:C-C:O

For simplicity it is assumed here that initial conditions are fixed
and the initial differentials vanish, therefore, the transversality
condition becomes

(9) 82 = -1
s S
aC. oC.,
(h) A, =- ZE: us; 2, 84, = - :E: R j_ since
2 Y] ¥j iR 2
J=1 J=1
n aC.,
dc.. = Je gs. s .
j2 3§T£ i2 (end conditions are independent of t, m, & andy).
i=1

Conditions ¢, e, and g furnish superflous information f¢ the problem
as stated, since they can be satisfied without controlling anything.

The solution to the differential equation of condition b (i.e., i""z_’i = 0) is

A = 2(0) cos wt + MO) i ut
w
j_= -wA(0) sin wt + i(O) cos wt

In most low earth orbital maneuvers » is approximately the range angle rate.
Since this is a homogeneous set of equations (i.e., one of the components is

arbitrary) the above equations can be expressed as

A cos w(t-K) + é sin w(t-K) = A(t) (7)

'C- lC

- wd sin w(t-K) + & cos w(t-K) = A(t) (8)

where t is veferenced to K = (1/2)tp, t; = 0, A = A(K) 1s a constant unit
vector and A = A(K) is a constant rate vector.” Equation 7 is the key to the
simplicity and accuracy of this guidance algorithm, and replages equation 4
of Reference 1. In general the quantity A - _i_ is small and I_A_l = w, therefore
u is approximately a urit vector.

10
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The thrust unit vector is expressed as

p = u/ju] (condition d) (9)

. Expanding equations 7 and 9 and dropping terms of order higher than three, p
5 can be approximated as

| p=a(1-Tx-338) + 2 (x - 8 - /6 W% (10)
‘4 where x = t-Kand T=2 -1, T =7 (1- 7/68x%), o = .5, and ] = 32 - 2.2 .
‘ The equation of motion becomes
ap=Y-8 (11)

The left hand side of equation 11 can be integrated twice in closed form using
the generalized thrust integrals defined in Appendix A to yield

= L+

e —
L4

oo

Yoy = L2

-
)

R

Ry Sp5,+ QPL where

] ]
Ly=L- T -1/2 miJz, where J, = J, - 7/6w2d

P 3

w
]

=5 - Tq, - 1/2 w2q, , where Q) = Q; - 7/6u%Q,

s
]

2
p =) - Ty - 1/6 U3,

- 2
Q= Q) - TQ, - 1/6

Equation 10 is probably adequate for all Shuttle maneuvers. However, if more
accuracy is desired, a constant factor, f, can be introduced into equation 10,
as in Reference 8. Then the average value of p is forced to unity, i.e.:

K

L
ZK‘{.BlE dx = 1

-K

The above equation is a quadratic function of f, i.e., of the form

¥ 2

af" + bf + ¢ = 0.

An alternate approach is to use equations 7 and 9 and employ numerical integration
to integrate (a;/[uf)cos wx and (aq/fu|)sin ux.

Ko n



e e T . - sstegtiare -

The right side of equation 11 can be handled as:
T

GO
r V. -\ - =
.((.L‘E)dt‘lr y -\ig"y-GN
¢
Y 2
(V-G)dt® = Ry - R - VT, - R =R
Y0 Yo g G0 T =g T -GN

where &T and BT are terminal values of velocity and position. Gravity integrals

(!g an:i Bg) are defined in Appendix B. The velocity and position equations
are expressed as two linear equations in ) and i.

Lpi + Jpl = Yon (12)

Sph + QA = Ry (13)
Solving equations 12 and 13 simultaneously and forcing A to unity it follows that
A = Unit (Voo - B_GNJP/Qp) = unit (Vgq) . (14)

A scaler equation used to force Rny (i.e. Ry) to be consistent with Tp,
(time-to-go) is obtained by performing the dot product of A with equation 13.

Sp + QpT = AfBGN’ where T = A<)

This constraint can be satisfied by defining BGN as

. _ S K} Q T
RaN '[{K—P—J (Rgy) » (15)
=GN
from v4ich it follows that A-R'cy = Sp + QpT.*

wubstituting the right side of equation 15 into equation 13 (for Ry )
A= (SF/QP) [(BGN/_A_BGN)'?:J + T(BGN/AB-GN) (16)

*T:.1s same approach could be used in equation 12, possibly speeding convergence.
First guesses for Vgy and Rgy could have any magnitude as long as the directions
were somewhat reasonable,

12




Equation 16 can be bypassed if there are no position constraints. Inspection
of equation 16 shows that |R\ /ARy | is the secant of the angle between Re,
and A (i.e., Vo) and that (BGN/A;RGN):A_is normal to A and has the magnitude
of the tangent ..f the same angle. So A has a component normal to ) and a
component along Ry, equal to the product of T = -1 and the secant of the angle
between BGN and yGO.

We now have values of ) and i, therefore the value of yGo can be defined for the
next guidance cycle (from equation 12)

!GO = yGN - in + (L - Lp)g_ (17)

Time-to-go (TGO) is determined from

L= [Vl -

Referring to the definitions of V.y» BGN’ and Equations 12 and 13, the predicted
values of V. and R, are obtained“ggz

Vopep = tpr ¥ AtV Voo Vg (18)

BPRED = Spl + Qpl + R+ !IGO +-Bg > Bq (19)
quantities to be used in the end-condition routine in a predictor/corrector manner.

Having determined p(t) it is possible to employ numerical integration to solve
equation 11 yielding any desired order of accuracy for state extrapolation and
gravity effects. This would eliminate the generalized integrals of Appendix A
and the need of an approximate gravity model¥ possibly simplifying the algorithm.
However, this is not necessarily recommended. It would possibly result in an
increased cycle time.

* e.g., the model of Appendix B.

13
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3.1 Transversality Conditions

The following set of end conditions is defined to be used in development of
the transversality conditions:

Ey = V2 - 2R (Energy), V = |V], R = |R|, and V% = y.y .
E, = (RV)2 - (351)2 (Angular momentum magnitude) (20)
E; = (Rxv) - gy (Angular momentum vector)

Where R is radius vector, V is velocity vector, u is the gravity constant

and Uy is the desired value of the angular momentum unit vector. These conditions
are to be satisfied at the end of a maneuver. For convenience, final sub-

scripts are dropped. The general transversality condition from the last

section is:
S
S

j=1

S
S

J=1

(21)

Where s is the number of end conditions (condition h).

Case 1

Consider the case where energy is the only end condition (i.e., s=1, C 1)
Using equations 20 and 21

us=-2y
. (22)
u=-26
Where G = - __%5 is the gravity vector.
R

Equation 22 implies that the final value of u is parallel to the velocity vector
and the final value of u is parallel to the gravity vector.

14
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Case 2

—————

Consider the case of two end conditions, energy and angular momentum.

s =2, C1 = El’ C2 = E2

Using equations 20 and 21

RSV R
Where N, = V X(RXV)and Np = R X(RXV)

!.‘é | !.’!R tu,u¥=0
from which the two necessary conditions result
Y-ub=0 (23)

(24)

|: - |=.
:‘.72

- u-N =
u-Zy 0

15
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us= (g-__/éu-l)éﬂ (23)
Sy = = (V/Ru )u S | (24)
where Qu = Unit (Q}, &m = léj » S, = sin (é, G),
Yy = |u] sy, = unit (Ny), and
S, = [unit (w)] - Uy = sin (angle of attack -a).

Inspecting equation 24 it is seen that the turning rate vector is rotated from
the terminal gravity vector (negative radius vector) by an angle (g) that is
proportional to the terminal anole of attack. In many maneuvers

(V/Rﬁm) u, = 1, when V = w (anjular rotation rate),
R

3
114
0| <

, and U = 1. In this case

Se = Sa or 6 = a-

Equation 23 provides magnitude information and equation 24, direction information.

Case 3

Consider the case of three constraints

S=3’C1=E1,C2=E2;CB=E3

Using equations 20 and 21 and performing the necessary algebraic manipulation,
it is seen that equations 23 and 24 are the necessary conditions for optimality
as in Case 2. It can also be shown that these are the transversality conditions
for a velocity vector constraint (i.e., V, y, A7) with no position constraint.
E3 can be considered an azimuth constraint rather than a position constraint.

Case 4
Considering the case involving position constraint(s) as well as velocfity

constraint(s), it can be shown that equation 24 is the transversality condi-
tion and equation 23 is not used.

16
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In summary, three modes suffice to handle all sets of end-conditions (i.e.,
end of thrust.ng maneuver constraints):

Mode 1 - Energy constraint,
Mode 2 - Velocity vector constraints, no position constraint(s), and

Mode 3 - Position constraint(s).

The transversality conditions are implemented in_ the LTG algorithm with very
simple modifications. Terminal values of u and u require several pre-guidance
jiterations as do TGO’ !T’ and BI (time-to-go, terminal velocity and position

vectors). However, after several iterations all the terminal conditions
converge to virtually constant values (i.e., to within the accuracy of the
guidance algorithm). The following definitions are made:

RD = IETI

yy = Unit vector normal to desired orbit plane, input or calculated inflight.
Y, = unit (R;)

Y = LY

A1l of the above defined quantities are defined and available in the LTG

algorithm. An arbitrary manner of implementing the transversality conditions

is shown here. For convenience, final subscripts are dropped. From equations
7 and 8 where t = 2K:

A cos wK + (X/w) sin oK (7-a)
(8-a)

n

e - =

- wA sin wK + A cos wK

The various modes are handled as follows:*

MODE 1 - Energy
yu, = unit (V)

= -!.. y,v

)
)

e - |e

= (y*

A= I

U
—x

*A reasonable first guess estimate for X (for all modes) results from equation 7-a

assuming that u = unit(V), f.e., final angle of attack is small.
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MODE 2 - Velocity

éu = unit (1'1_)

'g = (y_-ﬁ/ﬁu'y_) !u or*_i_u = unit (1) and
. A (G cos wK + Vu sin uK) .

2 -_iu- [V cos «K - (G/w) sin wk] *u
Q = ~d $in WK + § cos wK

MODES 2 and 3 - Velocity or Position

[~
"

n = Yl

wn
"

[unit (W)] - U, + u - (!yxl)/‘.‘mkn 0

.g= _I:i+ S, [;‘m Y, - (_I_.J_°_llz)l.l_] (small angle approximation)

and finally, i is obtained for all modes by solving equations 7-a and 7-b simul-
taneously

A= ucos ok + wusin oK (25)
The quantity X is.practically a function of K= (1/2) T 0 only, since 51 and u
cc])nverge to virtually constant values after a few passe§ through the guidance
algorithm.

Equation 25 should be evaluated before and after the transversality computation.
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4.0 END-CONDITIONS

It is simple to implement this guidance algorithm to handle any reasonable set
of end conditions in an optimum fashion. For example let the desired end
conditions be velocity magnitude (VD), radius magnitude (RD). flight path
angle (y,), and orbital ipclination (i,). i.e., there are four end conditions
and the Hownrange angle and nodal ang]B are free. A position constraint (R;)
is involved and it will be seen that the transversality condition is hand]eg
as in mode 3 in paraaraph 3.1. A simple iterative manner of handling

this problem is as follows:

Using equations 18 and 19:

V=1V Unit (

V=V, Unit (

Vorep)* R = Rp Rorep!

U, = Unit (R), U, = Unit (¥X,), U, = UXU

Define an error term:

S, = a4 (g - yy + €OS iD) where 2, is a damping coefficient (a1 < 1/cosy)*
empirically chosen, and £ is the earth rotation unit vector.

Then the solution proceeds as follows:

1-5%
€

o
n

T
L{j sin vy Ce
| :

X
v se '

D=y =R

U~J cos YpC

- D”e
L

+
p Unit (R spsegy)
vd
When Se + 0 end conditions and the transversality condition are satisfied.

Another example is in Reference 9 where the magnitude of apogee radius (Rz) s
the only constraint. The transversality condition is Mode l-energy. This
end-condition scheme makes use of the relationship

Rp = [RD(Ra'RD)]/[(Ra/C°SZYD)'RD]’ where Ry is perigee radius.** Another
relationship that could be used to develop end-condition schemes is

RP[Z'(1'°°59)(RD/Ra)] - RD(1+cos 8) = 0 , where @ is true anomaly.

* Where ¢ {s terminal latitude.
**Rp and vy are computed from predicted values, Rppen and Yoren:
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4.1 Ascent Orbiter Maneuvering System (OMS) Burn (one constraint-
Apogee Control)

A present ground rule for OMS ascent burn is to have a separate OMS guidance
and targeting stage. During main engine burn guidance is targeted explicitly
for Main Engine Cutoff (MECO) conditions to accommodate external tank (ET)
impact. After MECO guidance is rastarted and the OMS is targeted for
different conditions. There is a very low acceleration during OMS burn

( =.06 g's); therefore velocity direction change and altitude constraints
could be very expensive in terms of performance and guidance and control
(G&C) systems stability. (e.g., a velocity change of one degree at a velo-
city of 25,000 FPS costs about 450 FPS, compared to a total nominal OMS
propellant loading of 600 FPS. An altitude constraint could also be very
expensive and produce erratic attitude and attitude rate commands).

The guidance and targeting scheme, presented herein for implementation in

the SSFS, produces an optimum (minimum AV) OMS burn to achieve a desired
target apogee altitude (or radius). Perigee altitude is not explicitly
constrained but is implicit in terms of desired apogee altitude and OMS
cutoff altitude and flight path angle. Predicted values of cutoff altitude
and flight path angle are obtained by enforcing a near gravity turn
trajectory for the OMS burn, until a velocity magnitude is attained that sat-
isfies apogee altitude. The problem is to determine the desired velocity
magnitude as a function of desired apojee altitude and predicted cutoff
altitude and flight path angle.

The three following orbital mechanics equations are used to express perigee
radius (R ) as a function of desired apogee radius (Rp), burnout radius (RD),
and burnolit flight path angle (vp)-

a=.5(Ry+R) (26)
e = (R, - Rp)/(RA + Rp) (27)
coszyD = [a?(1-e2)/R(2a-R)] (28)

Substituting equations 26 and 27 into ecuation 28 results in
- 2 2
Rp [RD(RD-RA)cos yD/(RDcos yD—RA)] .

Then desired velocity is as follows

2 _1.%
Vp = [u(ﬁg 3] or

V. = [2uR,(R.-R.)/R(R% cos®y.-RC )]‘5 (29)
p = LeuRplRp=Ra )/RpIR [COSyp=K- o
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The value of COSZY is"obtained from values of cutoff position and velocity

vectors (R; and yT .
2
cosy, = 1 - [Unit (R;) * Unit (¥;)] (30)

R, is expressed as

D
Ry = IRyl (31)

This guidance option is implemented in the following o“der:
(1) Rp is obtained from equation 31, '
(2) cos2YD comes from equation 30,
(3) Vp is obtained from equation 29, and
(4) The desired velocity vector is expressed as !: = VD Unit (MJ)

In Section 3.1 it is shown that a necessary condition for optimality (for the
one constraint protlem) is that the final thrust direction be parallel to the
final velocity vector (V7). This condition is satisfied by the following
equatic  (if the simplyfying approximation that 21 = 0 is made).

A= (w/tanuK)[(Vy/2:Vr)-2 ]

where

w = u/VR®

and V and R are initial values of velocity and radius magnitude.
This guidance option was described in Reference 9 and implemented in the
SSFS. The option has also been implemented in the Unified Powered Flight
Guidance of Reference 10.
An approximation of the above egquation is

A= cwunit [(Rey/A-Rey) - A
which is essentia’ly what is implenented in Reference 10.
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4.2 Range Throttling

For Shuttle mission 3-B, it is a requirenment to determine a constant thrust
level to achieve a prescribed reference trajectory (for rendezvous pur-
poses). Also, for Return to Launch Site (RTLS) abort, it is desirable

to throttle to a constant thrust level to achieve a prescribed range

from the landing site at Main Engine Cutoff (MECO).

Equation 13 of Section 3.0 is used to develop a throttle equation.

A Sph + ik A= =Ry - R- VT - R (13)

Ren = Bt =g
where R. is ihe fixed, desired terminal radius vector.

A description of the method is simplified by making the assumption that
Tz A 0. Performing the vector scalar product of ) with equation 13

\ . results in

(32)

- > w e

S, = A-Rey -

In order to satisfy equation 32, it is necessary to know the proper value
of thrust, mass flow rate, and T, 50 (time-to-go). Thrust (F) and mass
8 flow rate (m) are constant and directly proportional to each other, i.e.,

F/m = Vo (constant exhaust velocity).

o

TGO is inversely proportional to thrust, or visa versa.

M

13 Py, .
. ;r”t. BN
'

The authors of Reference 10 developed the concept of analytically
determining the time-to-go (TG ) to satisfy a range equation (similar to
equat1on 32) They then used™ this new value of T., (along with the old
value, T 0 to define a proportionality constant (ﬁ? relating desired
values ofOF and m to prescribed reference values (F and mR), i.e.

-

L]
R i I YIRSV A s e vt ) TIADINRRAREE . < -

F = KFp and m = KmR. (33)

- -
tr o

The value of K is initialized és K' = 1.00 and on subsequent iterations
is altered as

. s
e

K = K‘Té/TB and K is reset as K' = K, (34)

where T, is the burn time until an acceleration limit is attained, or

B = TGO if an acceleration limit will not be atta1ned TB is the value of

T, on the previous iteration and T TB + ATGO' where ATGO

is the des1r§d increment in TG to satisfy thg

range equation. The value of RTGO is obtained from a Newton-Rhapson
iteration employed in satisfying the range equation. Each guidance
pass represents one iteration, however, the solution is virtually converged
after a few passes.

R
.
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The approach described in the above paragraph is taken here; however, the
solution for ATgp to satisfy the range constraint is approached in a
different manner. A value of TGO = Téo + ATGO is found to satisfy
equation 32, i.e.,

‘R

‘ Sp = ARy ore =S '(AJBGN)*O’ ‘ (35)

P

where ¢ is an error to be driven to zero.

. § For small values of ATgp, a very good approximation for Sp is .
- ¢ _T! K [ -
| Sp = Sp + .SLp (TGO TGO) vhere Sp is the uncorrected value. L
; ’ Another good assumption for variable thrust is
oL .
b STB = 0, since Lp is essentially an average acceleration multiplied 2
GO

by TGO’ and if the acceleration is changed by a given factor, TGO is
changed inversely by the same factor.

Therefore a good approximation is

3 -
i p_= .SLp
x 3Tgo
I : Another approximation used here is
f oR
_3%§b = !g’ where gg and !g are gravity integrals. *i

Equation 35 is expressed as

=S, 1 (gT-g-lTGo-gg) . (35)

Differentiation of equation 35 yields

o€
= 5L - ac(-V-V ) .
' 3TGO p L(——g) (36)
Adding A-V, to equation 36 and substracting the same quantity yields §§
26 o 5L - A (VieV-V ) + AV .
3Tg0 p ==T-==¢g" ==
2




Using the identity -

Vi - !-"!g = Ven © Lp, it follows that
S5— = 2N - 5L (36)
60 P
And finally,
d€
aT., = -/ =5, (37)
GO 3Teo :

Where ¢ is defined by equation 35 and 3%5“ » by equation 36.
GO

Equation 34 is used to define K (where Tg = Tg * ATGO) and the desired
value of F and m are obtained from
equation 33.

The only modifications necessary to implement this method into the range
throttling routine of Reference 10 is to make the following definitions.

goz P
Bratgo = 2 ¥y = -SVgo, = 2e/3Tgg
br, = LRy - R - VTgoR) = S = e
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5.0 RETURN TO LAUNCH SITE ABORT (PROPELLANT DEPLETION CONSTRAINT)

The objective of Return to Launch Site (RTLS) abort guidance is to precvide
closed loop pitch and yaw commands to achieve explicit burnout conditions
at External Tank (ET) fuel depletion. The explicit conditions at Main
' Engine Cutoff (MECO) are relative velocity (VR), relative flight path
angle (vp), altitude (h), relative flight azimuth (Azg), range from
landing site (Rys) and burnout weight (Wpg). A 3G acceleration limit is
also imposed. The RTLS targeting algorithm is not presented in this report
. since it is presented as one of the targeting options in Figure 5-11
(} of Reference 10. Equations to constrain vehicle attitude at MECO are :
‘ easily developed, should this become a reguirement. -

%
!

This Section presents two powered flight guidance algorithms capable of
handling the burn to MECO portion of Shuttle RTLS abort. Thrnttling
o capability is provided to constrain range from the landing site at MECO. ,
I , However, throttling is not necessary should it be desirable to relax i
fiJ the range constraint. The work presented in Section 5.1 is based on the

concept developed by Russ Sievers (Reference 11), called Launch Abort
Guidance Simulation (LAGS). LAGS is presently being used in the Space
Vehicle Dynamic Simulator (SVDS) for RTLS performance and targeting
studies, and is currently being programmed in the SSFS.

The LAGS guidance concept is to have a constant attitude maneuver before &
the nominal guidance maneuver, and the value of the constant attitude is
computed explicitly, simultaneously with the parameters of the nominal
guidance phase (i.e., the constant attitude phase is not open-loop).

The duration time of the constant attitude phase is proportional to the
excess velocity or excess propellant. Time-to-go is an explicit function
of desired burnout weight.

LR 15

The guidance algorithm presented in Section 5.2 requires no constant
attitude maneuver to expend excess propellant. The algorithm represents

an explicit solution to the seven constraint guidance problem (with
constant thrust level befcre acceleration limit)--burnout weight is ex-
plicitly constrained as well as terminal po~ition and velocity vectors.
Burnout weight is controlled by burn time, the steering modulates to
expend excess propellant (while satisfying radial and crossrarge position
and velocity constraints), and a constant thrust level (before acceleration
limit) is determined that satisfies the downrange constraint.

The "single maneuver" algorithm of Section 5.2 has advantages over the

. "two maneuver" algorithm of Section 5.1. It is much simpler to implement
as a guidance option in the nominal guidance (with the addition of a
negligible amount of equations and logic). It also eliminates most of
the disadvantages of other candidate powered flight RTLS guidance schemes
(a comparison of candidate schemes is out of the scope of this report).

Atmospheric terms are not explicitly included; however, an empirical

velocity bias term (that ranges from full value to zero at MECO) is intro-

duced to insure that enough propellant is available to achieve desired

velocity and burnout weight simultaneously. This bias term also compensates —
for other approximations in the guidance algcrithm. Time-to-go (Tgg) is :
computed explicitly as a function of nominal desired burnout weight.

If more propeliant is available than required to achieve the velc.ity,

the steering modulates to deplete the excess propellant.
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5.1 Derivation of Constant Attitude Equations

The RTLS guidance equations will be developed here in the order of
computation. The following definitions are made:

Vex - Engine exhaust velocity

a - Measured acceleration

o - Acceleration limit (e.g., 3 g's)

T = Vexla

W - Current vehicle weight (onboard estimation)

Wgo - Nominal MECO burnout weight (input)

Time-to-go is computed as follows:
T = r(l—a/aL) - (Time of constant thrust)
TLS = (vex/aL) Tn (wa/wBOaL) (Time of constant acceleration)

Teo = Tp + Tis (Time-to-go)

Additional parameters are computed as follows:
Velocity available:

Va = Vex]n [T/(T-TP)] + aLTLS - Le

where Le is the velocity increment during the reorientation maneuver
(computed later in the order of computation). Le is initialized as zero
on the first pass. Velocity required is updated as:

!REQ = !REQ - A!sensed where A!sensed is the measured veiocity increment

since the last guidance pass. The excess velocity is now computed.

Le=V, - '!REQI and the time of the constant attitude maneuver is
computed as T; = 1 [1 - exp (-Lc/Vex)].
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The equations of motion assuwme the following form:

e
I

= a,C +§,0g{ﬁ(tistmﬂ

-1 1=1

s 2 2 2 3.

!2 = 3 { [1 - 1/2u"(t-K)"Ix + [(t-K) - 1/66°(t-K) ]A_} + 6
0 <t<T,whereT, =T, -T,.

Where

3, = (F/m)]

32 = (F/m)z

F - Thrust (function of time)

m - Vehicle mass (function of time)

€, - Unit vector defining constant attitude phase

G - Gravity (function of radius vector)

A = Unit vector defining mid-point of nominal guidance phase
X - Pitch rate vector during nominal guidance phase

For simplicity the following constraints are introduced into the above
equations

The expression for 22 was derived in Section 3.0 (assuming that Afi.= 0).

The following integrals are defined:
T

.
apdt = L, (excess velocity)
0
T] t
s, = ffa]dt dt = (T) =<)L *+ VT
00 |

Where a; = Vex/(r-t)
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The following integrals are defined in Appendix A.
T

L= fazdt

"¢ '
s=ffa2dtdt '
) .

T | .
_ _ m
3y = faz(t K)"dt L

0
Tt

Qm =ffa2(t-K)mdt dt, m=], ceey 3 "(
00

Where Ty = -c-T] and a, = Ve)J( 12-1:) or a, = 3
K= 1/2(TG°-T.|).

Gravity integrals are defined in References 2 and 3 and Appendix B.

>
1]
-~
ST
mﬂ
o
ﬁ
[«
(a4
Fay!

Using the above integrals the equations of motion are integrated twice to yield

Ly + b= Y - L Y

A=
p—

ey * S

Where

- 2
Lp-L-IIZwJZ

3

e’

S - 1/2 w2,

3y - 1/6 w2l

0, = 0 - V6% 0,

P
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V; is terminal velocity vector (at MECO)

Ry 1s terminal radius vector

R is current radius vector
V is current velocity vector
The integral Sc can be redefined as

The above equations now assume the form

Lely + Loh = Vgy . (38)
ch:_1 +Sp_x_+ QplngGN (39)

The unknown scalar factor f is introduced because it is assumed that the
direction of BGN is known but the magnitude is an unknown function of the
thrust integrals. The desired terminal radius magnitude (RD) is an input,
however, the down range component of the terminal radius vector (BJ) is
unknown. Even if throttling is used to constrain down range position, it is
assumed to be unknown in solving equations 38 and 39. At another point in
the equations, the thrust level is corrected to correct the difference
between desired radius vector and predicted radius vector (based on
equation 39),

Equations 38 and 39, in component form, represent six linear equations in

* ten unknowns (g], A, X, and f). However, four scalar equations are

introduced, making the solution possible in a recursive manner. Equation 38
is solved independent of equation 39 for C, and A. Then values of C, and A
are substituted into equation 39 from which 5_ is solved. Performing the
appropriate vector dot products the following scalar equations result.

L% + Alpi = Ly * L2 = Yoy * Yoy = Vg

Lot lpr- '91" Yan = VenCo

Lk« & + Lp =20 Vgy = VG,

Sk« &y *Sp = X - Rey

since C; *Cy =1, A a=1,andr - i=0.
29
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Defining Ca =) e 9_] it follows that:

. 2 _ 2
ca 1 - [(Lc + Lp) v GN]/ZLCLP (40)
Co = (Le + L)y . (41)

- (42)
CA (Lcca * l'p)/VGN
f= (Scca + Sp)/(i . BGN) (43) ‘P
A solution to equation 38 is constructed by making the following assumptions:
€4+ A, and 3 a1l 1ie in the plane defined by
Yy = Unit (yGN) and
L= Unit [(Rgy/l, * Roy) - 1.
Another assumption is that €y - N>0and ) - N<0. Itfis seen that Cu

&

is the cosine of the angle between ) and C,, C, is the cosine of the angle

between C, and yGN, and ¢ is the cosine of the angie between A and !G_N'

The value of Ca is determined fV‘OI;I equation 40 and substituted into
equations 41 and-42 for C. and C,. Then the solution for C, and ) follows

as:

= d - 2
.(.:.] Ceg.v + ( 1-C g).'.‘.
= 2
A=CU, - (VA-c N

The steering command during the constant attitude phase is
ip= G- (45)
Now that ) is known the value of f is determined from equation 43.

f= (S0, +S)/(2 - Ry)

(44)

In solving equation 39 for 3:_ it is desirable to force the radfal magnitude
constraint, [R ;| = Ry. This is done in the following manner: .
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R = R+ Yig, + By
R

Rp = Ry Unit (fRgy + R.)

Ran = By - R !

f=($cccl + Sp)/(A;BGN)
The solution for i_(from equation 39) follows as

ﬂﬂ.’*&

£ =(fRgy - Sc&y - S/,

The following parameters are now computed for the next guidance pass:

T

we |4l |
{Initial guidance command of nominal guidance)
P, = cosuK - (3/w)sinuK

Cos = B 4y

tunit vector halfway between P, and C,.)
9_2" (_E0+Q-,)/v2(1+cos) _ &

(Duration time of reoriéntation maneuver)

T, = [1/2 - sin”] (Cog) /ey

Nhefe w is pitch rate limit (e.g. 10°/sec)

(velocity increment during reorientation phase)
Le = Vex]n[(r 'T])/(T ‘T] - Te)J

(velocity loss factor due to turning-approximate)
a1 o 2 2
d=1-1/6u5 (T,/2)
The expression for d is exact assuming constant average acceleration (a = Le/Te)

T
0
a, = g a1 - /247 (t - To/2)23at,

The velocity required is row computed for the next guidance pass.

Yoo u Yy -V -Yg-dfe -1

Yreq = Yo = dofs + Ygias

2 .
where Vg ¢ = B[TGOI(TGo +T- To)] Unit (!Go). B s an empirical bias and
T, 15 a reference time.
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5.2 Derivation of Steering Modulation Equations (for fixed burnout weight)

In the fo]lowing analysis, Tgp and the thrust integrals L, S, Jj, Q4

(i =1,..., 3) are fixed (for a fixed thrust level), since the burnout
weight is f1xed Therefore, the steering must modulate to burn up excess
propellant, as well as satisfy position and velocity constraints. It is
assumed that excess propellant is available, whether the amount is con-
siderably large or approaches zero (the amount converges to virtually
zero at thrust termination).

The fol]ow1ng equat1ons are developed in a second order manner (rather

than third order) in order to be compatible with the equations of Reference 10,
which are the currently baselined Shuttle powered flight guidance equations.*
The author feels that second order accuracy 1s adequate to perform the

RTLS powered flight maneuver.

These equations also supercede the equations presented in Section 3.0 of
Reference 12. In Reference 12 it was assumed that T = A-A = 0. However,
since the writ1ng of Reference 12, the author feels that the steering rate
must modulate in direction as we]l as magnitude (i.e., T# 0). The value of
T is determined to satisfy velocity and position simultaneously.

Dropping third order terms, the steering equations from Section 3.0
(equations 12 and 13) are written as

Lpd + 9ok = Yoy (46)
2 * G = Ry (47)
where
Yoy = Von * Ygias (Ygpps 15 defined on page 31 )
=L - . 532
L, = L= T - .53, (48)
=S - - 532
Sp S - TQ '.SA Q, (49)
% =0 -1 ©(51)
where A% = id.

The above equations are simplified by the original LTG constraint
Jy*Jd-LK=0,0rK=J/L.

The above relationship is defined on page A-4 of Appendix A. Equations 48
and 50 become

* The furerunner (nresented in Reference 14) of the current steering law
was developed as a second order algor{thm.
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L - 588, (48)

%

-19, (50)

With the proper substitution equations, 46 and 47 become

2

(L - .5390,) A+ (-Tdy) & = Ve (46)

(8 - TQ; - .58%0,) 2+ (Qg - TQp) & = fRy,, (47)

where f is a scalar quantity to enforce downrange position.

\

Performing the vector scalar product of A with equations 46 and 47 it

o follows that .
‘ 32+ 218 = 2 (LY )9, = wg (52)
s - .5(3%212)Q,z5 - .5w§Q2 = fa-Rey (53)

The value ofw% is a well defined quantity and is the first RTLS steering
computation, i.e.,

wg = 2(L-2-Vgy )19, - (54)

The present estimates of Ry @nd A are available and RaN is updated as
= (S - 5l .
f=(S .5wp02)/(A_BGN) (from equation 53)

Ren = Ran (55)
(. :
i B Equation 55 provides a stable and accurate prediction of BGN' for a
-4 fixed thrust level.
| { Two relationships come from equation 52: assuming that the value of T is
i known,
¢ s 32 < wg - 212, and (56)
» aai assuming that the value of A2is known,
! PR
Tes [.s(mi - 3% (57)
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If both T and A%

are known, the values of L_, S_, J_, and Q_ are determined
Trom equations 48 through 51. P

PP P

Now, equations 46 and 47 (incorporating equation 55) are solved simul-
taneously for A and A, i.e.,

A = Unit (Vo - BGNJp/Qp)’ and (58) f
A= (Rgy - S, (59) -
| '
So, the value of.izfrom the position equation (equation 47) is ;
' G U (60)
and the desired unit thrust vector is ,
i\ . ’
| if = Unit [(2-Tx - .5 xz)x + (x- Tx2)_], (61) ;
I where X = at-K, and At is the time increment since the present values of
A and A were computed.
It is obvious that to have a solution the values of iz from ecuations 56 and -
60 must be equal, i.e.,
5.3 2 32 = W2 - 212
. 4 - P
!'{‘ .
,; This relationship can be forced in an iterative manner, e.g.; ;
P 32 = 5(ud - 217 + xz) (62)
.k where ig = 1-A (equation 60).
‘ f Given this value of iz. the value of T can be determined as
L& . lﬁ
'1 : T = -[.5(u - 1)1 (equation 57) . (63)
{ -
¥

It is obvious from equation 57 that two solutions exist to this probliem:
P a positive value of T, and a negative value. The minus sign in

‘ equation 63 is arbitrarily chosen.

Values of T and iz must be assigned in order to start the algorithm.
Arbitrary values dre:

s2 2
T= d A . 64
0 an A= (64)
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Using the above equations, the solution can proceed in the following order:

1.

How N

10.
11.

1f the steering vector routine is implemented in the proper manner,
steps 1 through 4 are the only additional steps required for powered

wg (equation 54).

If the first RTLS guidance pass, T = 0, and xp

32 (equation 62)

T (equation 63)

Sp, Jp. and Qp (equations 49, 50, and 51)
BGN (equation 55)

A (equation 58)

A (equation 59)

G (equation 60)

i

A

(eguation 61)

—"

= 32 (for next guidance pass)

TN

flight RTLS capability (as in Section 6.0).
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6.0 GUIDANCE IMPLEMENTATION

In this section, emphasis is placed on implementation of the Return to Launch
Site (RTLS) "single maneuver" abort option, Repeated reference will be made
to Reference 10, the currently baselined guidance equations, since the RTLS
equations presented here are tailored to be compatible with the Reference 10
equations., The intent is to implement this RTLS option in the SSFS deck in

which Rockwell incorporated the Reference 10 equations.

The nomenclature used in Reference 10 (different than that in this report)

is defined here:

‘ %o=.%0 rgr‘a\v=Rg
r=R vgrav = Vg
v=1YV _

Van © Yon
: rgo - RbN

| P:Q

' _ 2
Vgo © V6o

H=1J
- 2

‘ 4 RD

‘ _ Q=Q]
V4 VD

C -TH = JP

' ’ L - «83°H = Ly

The various maneuver modes are defined in Reference 10:

Smode = ] Standard ascent

Smode = 2 Reference trajectory - range throttling

Smode = 3 Intercept

Smode ™ 4 Gravity turn/apsis control (OMS ascent)

Smode = 5 Return to Launch Site (RTLS) - range throttling
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The changes to the Reference 10 equations necessary to implement the RTLS

option will be listed block by block referring to thg flow diagrams of

Section 5 (Reference 10).

(1)

(2)

Block 1 Initialization

After r is defined,

—grav
Yarav © ngrav
T=0
A=0
In S = 5 initialization (RTLS)

mode

after Yy is defined,

_1'_x = unit (fd)

Do Block 3.521 vdequation

Y= Yt sy
Ipassz]
to =t
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A
Block 3.1 Time-To-Go

On the line between (Do until i > n-1) and (If n > 1), ;

If S oge = 5» do the following computations: ;

. 3
B ‘ § -

- i

Ty =7 - Vex,k/aL 4
i

If Ty< 0, T, = 0

THEN ] Ve = Voy kM0 [ry/ (g = Tp)

If T]> TB

A\'] = Vex’k]n [Tk/(Tk - T]) ;Z

ELSE i f

‘ BV2 = Vou 10 (meggay  /gg2,) y
-

vgo = AV, + AV, :

= B[T,/(T, + 2 %

Vbias = BLTp/(Tg + t - to) §

wBO is input desired burnout weight. i

9% is reference gravitational acceleration,

B is an input empirical bias (possibly, B=0)

to is time RTLS is initiated.

Block 3.2 Integrals

After K = J/L

P=P - 20K+ K2
H=H- JK
Q=0Q- 5K




o~

- ——

Ifv _#0, 2 =unit (v 0)
. 2 _ 22
If Smode 1,2,3, wy = A
If Smode =4, A= u/vr
_ 2
o " 547 L !ﬁgo —grav (tgo/ 'go)
!gn Yg- X —grav (t / t! )
If lpass =1, A = unit (v_)
Yoo = 12
!gn —gn + Ybias unit (vo,)
-— 2 = L]
If Smode =5, —JI> o p " 2(L - 2 )/H
. 1/2 .
If IpaSS 1, A ( p) Note:
Ipass =2
5 = [.5 (2 - 21 + 32)71/2
1/2
+2 2 _ . 2)
If 2 p’ A= {w b
= o[ .5 ( 2 -2)]1/2
2 - B .
=§-TQ - .5\A"P
Sp Q
QP = Q - TP
if Smode ~ 4, rgo = Sp_ + A Q unit gx - (r /x . rgo)]
If spode = 1923305« I [(s - 5w P)/(x - o0l g0
6
= = 10
1f Qp 0, Qp
If Spode = 5, A = unit (!g + Tr H/Q )
A= (rgy - SAVQ
X o= Al ‘
ie = unit [(1 +TK- .5 £2k2) A - (K + TK9)4)
2 _ 22
If Smode 5w p° A

Block 3.3 Turning Rate

39
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Block 3.4 Predictor
v = (L - .5 %%H) - TH3
~thrust ‘ - -
Lthrust = r-go
N ‘ 3 - -
Eliminate the Thias computation.
Block 3.53 Range Throttling
. 2
Vgoz =L -.5 mpH
If S ode = 2 or5 (i.e., only one ATytg0 computation),
Afptgo 2" Y9 - -5 Vgoz
- 2
arz=he (rg-r-yty -ro,) - (- .5upP)
T Y
.
)
{

I

>y
P
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APPENDIX A

(;5 GENERALIZED THRUST INTEGRALS

Derivation and implementation of the LTG guidance concept requires the definition
and evaluation of the following integrals:

TF5 Tg.
| Ip = fai(S-K)mdS : f‘ai(mo -K)"dt
04
Ty S T rt
Q = f ffa (s-k)™ds fdt = b [ a.(s+T_ -K)"as | dt
' Pmi [< 7 B a{‘ J voooy
. To, T°i 0 Lo
t=S-T
1 Oi
] m=0,171, ..., 3
§ P =
i ‘ . I_KS’ ooo.NS
o
| ‘\ g Where m denotes the order of the integral, K¢ is-.the number of the first
N R thrust phase and N¢ is the number of the last thrust phase.
! | X
§ a; = (F/M)i = Thrust acceleration of phase i

} T,. = Initial time of phase i
i ) i
Y

O TF = Final time of phase i
yE |
b )

o T, = Burn time of phase i (T, = T, -T_ )

) B; By Fy o

t and S are variables of integration
K is the time about which the LTG expansion is made,
(K is approximately the midpoint of the maneuver,)

Evaluation of K will be shown later in this appendix,

,«:mmms%




For the Space Shuttle vehicle it is assumed that either 3, (thrust acceleration)
js constant or Fi (thrust) is constant, therefore, these integrals can be evaluated
in closed form, After the above integrals are evaluated the total integrals of

phase i are evaluated as:

" J . =4d m=0,1, ..., 3
mi Pmi ’
‘ i = % . * Yo, Thi

, i-1

: Where J°m1‘ = 2 ij
T J=Kg
y Then the total integrals for the maneuver are:

Ns

; Jm"_' Z Jmi m=0’ ], 00093
' i=Kg

i NS
te }
i¥ (:; O = :%; Qs
vd i= s
l

This results in a total of eight integrals.

e g

For constant thrust, the acceleration of phase i is of the form:*

i L
.

,J.é 4, = F = Ve,
. R i m_ - m(S-T_ ) -
} ‘ g _ +] °i Ti't
i Where t = S-T_
BE 1'
I F = Constant thrust
mo = Initial mass
m = Constant mass flow rate
Vo = Engine exhaust velocity
i
G Ty = Molh

*For convenience, the subscript "i" is dropped on F, m, and fu.

A-2
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The first constant thrust integral is:

T
Bi m
J = Vei(t"'To.-K) 1 = 0’ ]. so0 3
Pmi Jﬁ L dt
T1,~t
0 1

The following identity makes all the integrals recursive in terms of JP

bz

and Q
o1 Poi

,‘-t

Therefore, ( )m m

T T T -K
dp = (14T K, - Ve, | Byt oK - (™)
mi i (m-1)i m

X Qp = (14T -K)Q
(:? P H 05 P(m-'l)i

1 m+1
ve, | (1, +T. -k)™! _ (1K)
-1 [ Bi % o (T k)™
o Bi .

m M i

p

The integrals are recursive in terms of:
T

B,

b = Jp =f‘ Ve, dt = Vg.In[ T }and

i oi -t 1 ‘ti-IB
0 i i

T t

- = B; = -

i 20 [ VeydS | dt = (Tp -ty +V, Ty .
0 0 T

-K)m=0 = ]

since (t+T°

m

i m - m-1 !
Ve, (t+T, ~K) = (T -K) f Ve, (t+T -K) Ve, (t+T -K)"
f T --1:~| dt dt- 1 0

(1)

(2)

3
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For constant acceleration a, = a = constant and
i

Tg
J = i m
P f a,_i (t+T°_:-K) dt
0
1 m+1
Jo =a (T, +T_ -K)™ _ (T k)
Pri Li[ B; o4 04 (3)
oy
a
L m2 m+2 m
Q = L | (T, +T. -K)™2 C (1. ™2 (1. k™7
Poi T { By o o o By (4)
e

- 2 _
Qp = .saLiTBi = .SLPiTBi

K is evaluated from the LTG constraint
J-LK EJ]=00
From above equations

Ns N Ty
= = 1. -
3 Z %, Z [ a, (4T ~K)dt
i=K ik 0

\ ',
= :;: in - K;ZJ LPi - J-LK,
i=Kg i2Kg

from which K = J/L. (Jp is defined on next page).

i
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For constant thrust

T
B. -

in = f i Vv 1(t+T°1) 0 = (11+T0i)LPi veiTBi
0 7yt

and for constant acceleration
T

J =fBia(t+T )dt = .5a, T, 2+ T, T

Ps Lyt o L; 8 "Ly oy By

0

= L, (.5T, +T_)
Pyt By 0y

Where L, =4 T
Py Ly By,

K is evaluated as above before the remaining integrals are eva]uated since
K is needed in the integrals w..... m > 0.

From inspection of equations 1, 2, 3 and 4, it is seen that the constant thrust
integrals and the constant acceleration integrals can be put in the same form
by making the following definitions.

If Constant Thrust If Constant Acceleration
E=0 E=1
F= Ti-Toi-K F=0
A=-Y A=a
e Ly
! m+E
P (T81+T01-K)
Pl = (T _K)WE
04

In the following equations, the m+l subscript is used to avoid the zero subscript,

for computational purposes (e.g.» Jp = Jdp 5 .. dp = Jp

04 14 3 T4i

A-5

§. v 4. W

:M

et sia ook




3.

- e

- . 7]

P!, -P, i
= FJP + A(—-——-E-—-') (5) .

Sp
(m+1)d
P

Py =Py
Py = P!y (Tg #T, =K)

B‘i 0,

i

i\
Q =FQ, + [ A\|pPy-P
P1)i P (‘nTIE) [ifl‘m“z" P3TBJ (6) ‘,

m=1. -.0’3

- sl o

The following integrals are also used
Ng

B s vt e 3

=Ks
N 1-1 .

S-Qo= z(SP + Tg Z _ij) |
i=Kg B e

A-6
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APPENDIX B
GRAVITY INTEGRALS

A simple, untested gravity model is presented here. The model is probably adequate
for all Shuitle maneuvers, and could have advantages over existing models.

Assume that a quantity (e.g., radius vector) can adequately be represented as a
third order polynomial in time.

. *
R(t) = R+ Vt + 172 §t% + 176 Ve (1)
Differentiation yields
V() = V+ Ut + 172 Vt? (2)

Initial conditions R and V are known as well as final conditions Te,, R; and V..

Substituting final condition into equations 1 and 2, coefficients V and V are
readily obtained.

Using these coefficients and defining

T

R, = 2 R(t)dtdt » = '

60 p(t)at

it follows that

Ry=R+1/2V oo+ 1/2 (Ry - R - ¥Tgg) - 1712 (¥g - V) Tgg

and

Ry = R+1/3V Toy + 3/10 (Ry = R = ¥Tgp) = 1/15 (Vg - V) Tpp

_R
Rearranging these equations results in
BR = 1/10 (351 + 7R) -~ 1/15 (!J -3/2V) TGo (4)

These are mean values of R to be used in gravity computations since gravity can be
approximated as: :

* For convenience, parentheses are omitted on fractions in the following
equations in this section, e.g., 3/2V = (3/2)V.
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6(t) = _u_R(t), where u and R, are cunstants and

3 ‘.’
R
[ f G(t)dt and 1/2 G, :fo f G(t)dtdt “

From the above equations it is seen that

T

gv = _%%_ BV and gR = —%—-BR are good approximations and gravity effects L;;
are expressed as L
- 2

Hluever, simulations were conducted by the Guidance and Dynamics Braiich of MPAD*

using the above model. It was determined that deriving V and R, in cartesian ,
coordinates as above is not adequate for leng, low thrust burn aFcs such as 4
Shuttle de-orbit.

The above model is quite accurate for short, high thrust burn arcs; however, i
the “generalized" g avity model presented here makes use of polar coordinates :

in order to more adequately handle long burn arcs. It could be thought of as ;
a third order “conic + thrust" solution. Using the method described above, the -
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gravity model is as follows.

Transforming initial and final state to polar coordinates

Rl
p= {sin* (X-
Ty
RD RT
By = |0 }=fvr
0 $T

Expressing the nean values in polar coordinatec (equations 3

Yy
Y,

)
)

ol a- VY : h lz(t”m:t g:_)xu)
tlyvf »p=1| ¥V Y=}y |, where = unit
¢ vo | R | vezxg
vy YoGRRY
. {yrge R
» Pr° 1 = W{
Yrbz Ry [ o)
and 4):

By = 1/2 (py*p) - 1/12 (py-p)Tgqs and

Bg = 1/10 (35 7p) - 1/15 (py - 3/2p)Ty -

*Mission Planning and Analysis Division
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Transforming polar mean values to cartesian coordinates.

P
{

R, = [cos p, (U, cos p, +U sinp, )+ U sinp,] p, » and
v v, =X vy 2 V' Sy v, Py

R, = cos p . .
<RI Ry (Uy cos pp + U, sin pR3) + U sin PRz] P

3 1
Gravity losses are now expressed as follows:
o
B = F(Ry) ., Y= GTg,
6o = f (Ry) » R, = 1/2 GTZ i
Sp= T (RR) » Ry = 1/2 ol f"
where f (R) is an accurate gravity model or & simple spherical gravity
model (i.e., G = - . R). It is possible that an accurate gravity model is
5 -
R _
more adequate for low thrust (OMS) burns (for accurate state extrapolation). =3
3
|
)
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