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SUBSONIC ANNULAR WING THEORY WITH APPLICATION
TO FLOW ABOUT NACELLES

By Michael J. Mann
Langley Research Center

SUMMARY

Jet engine nacelles have generally been designed with the assumption that the intake
and nozzle can be treated separately. However, advancements in engine development for
subsonic cruise airplanes have tended toward high-bypass-ratio fan engines. This type of
engine usually has a short fan nacelle which necessitates analyzing the complete nacelle.
These nacelles can be treated as annular wings on which the circulation developed deter-
mines both the internal and external flow.

A method has recently been developed for calculating the flow over such a nacelle at
zero angle of attack and at subsonic Mach numbers. The method makes use of annular
wing theory and boundary-layer theory and has shown good agreement with both experimen-
tal data and more complex theoretical solutions. The method permits variation of the
mass flow by changing the size of a center body.

INTRODUCTION

Jet engines have generally been designed with the assumption that the inlet and nozzle
can be designed separately. Advancements in engine technology have recently tended
toward high-bypass-ratio fan engines with short fan nacelles. For these nacelles, the com-
plete nacelle must be examined. A complete nacelle can be viewed as an annular wing, the
thickness and camber of which determine the internal and external flow,

Several methods have been developed for calculating the flow over nacelles or annular
wings. The Douglas-Neumann method (ref. 1) has been used to predict accurately the pres-
sures on the surface of a nacelle inlet. Trulin and Iversen (ref. 2), Geissler (ref. 3), and
Young (ref. 4) have recently published methods which use surface singularities and show
good agreement between theory and experiment for complete nacelles. Geissler's method
includes the effects of angle of attack. A

Young (ref. 5) also examined the accuracy of a method which distributes the singu-
larities along a mean cylinder of constant diameter. However, Young did not present the
details of the theory. Agreement between the theory and experiment is good at low Mach
numbers but is inadequate at the higher Mach numbers.



Mascitti (ref. 6) has developed a rapid numerical technique for calculating the sub-
sonic flow over planar and axisymmetric profiles at zero angle of attack. The method
solves the exact incompressible potential-flow equations written in terms of the stream
function.

Belotserkovskii (ref. 7) and Weissinger (ref. 8) have developed much of the theory
of annular wing flow. Their application of the theory has been the determination of over-
all force and moment characteristics rather than a study of surface pressure distribution.
However, much of their theoretical work has been useful in the present study.

Hess (ref. 9) discusses some of the early solutions for axisymmetric flow which
made use 6f vortex rings on the surface. Keith and others (ref. 10), and Grossman and
Moretti (ref. 11) have developed numerical methods for solving the exact inviscid flow
over two-dimensional and axisymmetric nacelles at subsonic and transonic speeds. Ref-
erence 10 uses a stream-tube curvature relaxation technique, and reference 11 uses a
time-dependent technique. However, the technique of reference 11 was only successful
for subsonic flow. To the author's knowledge, only the present pé.per and references 3
and 10 have included the effects of the boundary layer.

The purpose of the present study is twofold. First, an inviscid theory, which uses
vortex rings to represent the camber and a combination of source rings and vortex rings
to represent thickness has been developed. Three-dimensional sources are distributed
along the center line to control the mass flow through the wing. This method appears to
have some advantage over each of the other methods in terms of either simplicity, a
reduction of computer core storage or central processor time requirements, ease of exten-
sion to more complex flows, accuracy, or quantities computed. Secondly, an analysis of
the importance of including the displacement effect of the boundary layer in the calcula-
tions has been made. A boundary-layer iteration procedure has been included in the com-
puter program.,

Results of the present theory have been compared with experimental data obtained
in tests on four nacelles and good agreement has been found over a range of mass-flow
ratios and Mach numbers.

SYMBOLS
A internal-flow cross-sectional area, m2 (ftz)
c wing chord, m (ft)
. . P =Py
C pressure coefficient,
p 90



Q(¢)

q(£)

Ao

t(£)

intake diameter equals highlight diameter less twice inlet lip radius, m (ft)

average of minimum inner diameter and maximum outer diameter of wing;
when subscripted, refers to diameter of wing, m (ft)

unit vectors in meridional, r- and x-directions, respectively

m/2 '
complete elliptic integral of second kind, g V1 - kzsinzu du, dimensionless
0

dimensionless correction term for Vi (see eq. (32))

shape factor, &*/6

/2
complete elliptic integral of first kind, N S dv, dimensionless

1 - k2sin2v

modulus of complete elliptic integrals (see eq. (11)), dimensionless
complementary modulus, |1 - k2
free-stream Mach number

mass flow through annular wing, kg/sec (slugs/sec); iteration number or
summation index

number of chordwise divisions for numerical solution
static pressure, N/m2 (Ibf/ft2)
thickness function defined by equation (29), dimensionless
source strength per unit axial distance, m/sec (ft/sec)
radial coordinate attached to wing, m (ft)

. . 2 2 9
free-stream dynamic pressure, p V. /2, N/m® (lbf/ft4)

wing thickness, rg ... - Tiner: T (ft)



U (g - £ dimensionless kernel defined by equation (31) for p_= 1
o o,1 o}
Vq(§ - £, 1) dimensionless kernel defined by equation (30) for p o=1
. 3
Vv total velocity, free stream plus perturbation, m/sec (ft/sec)
vV, free-stream velocity, m/sec (ft/sec)
u(£sPo)

perturbation velocity components in x- and r-directions, respectively, induced
at £ ,0 , m/sec (ft/see)
V(ﬁo,po) oo’

u(g - ¢ o’po> dimensionless perturbation velocity influence functions for x- and
r-directions, respectively; these influence functions are for velocity
induced at go,po by a ring singularity at £,0=1 or by a point

x’i(& - ‘g’o,p()) singularity at £,0=0

X inlet length, m (ft)

X, ¥, Z, r coordinates attached to wing (see fig. 1 and app. A for positive directions),

m (ft)
a, slope of mean camber surface with respect to x-axis (wing centerline), radians
oy slope of symmetrical thickness profile with respect to x-axis, (dt/dx) /2
radians
g =11-M2
T o dimensionless bound vortex strength of camber solution, Yo At
Yo dimensionless bound vortex sheet strength of camber solution, ¥y , /Voooz o
Y, bound vortex sheet strength of camber solution, m/sec (ft/sec)
7t vortex sheet strength for thickness, m/sec (ft/sec)
v ratio of specific heats



A() inner minus outer of ( ); A¢ = dimensionless panel length

5 * boundary-layer displacement thickness, m (ft)

€ small positive number

6 momentum thickness, m (ft)

by aspect ratio, D/c

i mass-flow ratio (see eq. (41)

& dimensionless distance along axis, 5;5-2

£ dummy variable form of £

p dimensionless radius, f)—;—-z-; gas density, kg/m3 (slugs/ft3)
v dummy variable

v digamma function (see app. B)

Superscripts:

() incompressible quantity except £' and k'

(") unit vector; velocity influence function

(7) vector, except gq(g)

* critical Mach number condition; boundary-layer displacement thickness
Subscripts:

+ dimensional bound vortex sheet strength of camber solution
o0 free stream

b center body



exp experimenta1

h highlight station (most forward point on inlet lip, x = ¢/2 in fig. 1)

i location of vortex and source singularities

b location of point at which velocity is induced

LE leading edge

m iteration number (see eq. (44))

max maximum

min minimum

o) point at which velocity is induced in £ o'Po’ effect due to camber only without

angle-of-attack or pitching-motion effects in « o Yo and I‘o; zeroth
order in Fourier expansions in ,Uoj also see equation (44)

q due to source ring of thickness solution
T radial direction

TE trailing edge

t thickness solution; tangential

th theory

w wing surface

X wing axial direction

Y due to vortex ring

¢ o axial location

Po radial location



THEORETICAL SOLUTION

The subsonic flow over an axisymmetric nacelle or annular wing with a center body
of revolution will be determined by use of small perturbation theory. This problem is
analogous in many ways to airfoil theory and biplane theory. Linearization of the problem
permits computation of the compressibility effects by transforming the wing coordinates
x and r into an equivalent incompressible wing X' and r' by using the Gothert
transformation

X'=x (1)
r' = f8r (2)

where B =1 - Mozo The incompressible flow over this equivalent wing is then computed,

and the compressible perturbation velocities u and v in the x- and r-directions,
respectively, are found by

= u'/g? 3)

[
1

v'/8 (4)

<
]

while the free-stream velocity V_ remains unchanged. Compressible flow equations
can then be used to determine the pressure distribution. (All primes are dropped from
coordinates and velocities from this point on, and these variables are understood to be
incompressible, unless otherwise stated.)

Also as a consequence of the linearization of the equations of motion and the boundary
conditions, the problem can be broken up into wing camber, wing thickness, and center-body
portions. Furthermore, each of these problems can be solved by superimposing elementary
singular solutions of Laplace's equation, such as vortexes and sources. The linearized
boundary condition on the wing surface at the point £ o'Po is
V(éo,po) = _(Q{) (5)

v dx
00 go’po

where dr/dx is the local slope of the wing and £ o and p o are dimensionless x- and
r~-coordinates, The minus sign arises because the positive x-direction has been chosen
to be upstream (fig. 1). This boundary condition is written in two parts, one part for the
camber and center body and one part for the thickness



v (i;)’p()) . Vb(i;vpo) - o (%”’o) (6)

Vo (£0Po) . Yy (BP0 _
Voo Veo

¥y (£ (7)

where o« o and @, are the slopes of the mean camber line and the symmetrical thick-
ness, respectively. The subscripts y, b, q, and t,y refer to camber vorticity, center
body, thickness source, and thickness vorticity, respectively. Two terms arise in the
thickness equation because sources alone will not produce a symmetrically thick wing.
This point is discussed further when the thickness solution is outlined. When plus and
minus signs are used, the upper and lower signs refer to the outer and inner wing sur-
faces, respectively.

For design purposes it is convenient to separate the problem into its camber and
thickness components. Thus, all singularities (except the center body) are placed on a
cylinder of constant diameter D as shown in figure 1 and the boundary conditions are
satisfied at control points on this same cylinder (counterpart of the planar wing approxi-
mation). A correction for approximating the surface velocities by velocities on this cylin-
der, which is called the Riegels factor, is discussed subsequently.

The strengths of the singularities are found by solving the boundary conditions given
by equations (6) and (7). The solution of these boundary conditions involves evaluating
improper integrals. The technique used is simply to replace the integrals by summa-
tions, thereby replacing the continuous vortex and source sheets and the source line by
distributions of singularities. In the camber solution, proper placement of the vortex
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Figure 1.- Coordinates, geometry, and singularity and control-point location.



singularities and control points will satisfy both the principal value of the integral and the
Kutta condition (ref. 7, p. 106). The same lattice arrangement is used for the sources as
for the vortexes.

Once the velocity expressions are substituted into equations (6) and (7), a set of
linear equations results with unknown singularity strengths. The vortex strengths are
found by solving these equations by the method of successive orthogonalization. The
source strengths for the wing thickness and the center body are proportional to the local
body slopes.

In the following sections the major equations are given. The camber—center-body
solution, the thickness solution, the complete wing solution, and the boundary-layer calcu-
lation are discussed.

Camber—Center-Body Solution

The flow to be calculated is subsonic flow over an axisymmetric mean camber line
at zero angle of attack. Along the center line of this infinitesimally thin wing is mounted
a body of revolution. The mass flow inside the camber surface is varied by varying the
size of the center body.

In order to obtain a unique solution for the flow over a camber surface, the basic
flow conservation equations must be satisfied, boundary conditions on the body and at
infinity must be satisfied, and the circulation specified (accomplished by the Kutta condi-
tion). As mentioned previously, these conditions can be met by distributing a continuous
vortex sheet along a cylinder the length of which is equal to the wing chord. The influence
of the center body can be found by use of a source line along the wing axis,

In this study the influence of the wing on the center body is ignored. There are
several reasons for ignoring this interference. First, owing to the wide variation in inter-
nal structure, such as stings, struts, rakes, and so forth, no attempt was made to simulate
any particular internal structural geometry. Secondly, inclusion of the mutual interference

“would greatly increase the storage requirements of the computer program (see app. A),
thereby losing one of the attractive features of this method. Furthermore, the primary
objective has been to obtain an accurate solution for the external flow. Thus, a simple
body of revolution on the wing axis was selected to represent the internal parts. The size
of this body is selected to either match the desired mass flow or match the internal block-
age (and compute the mass flow). Both methods have shown good success as is demon-
strated in the next section,

The vortex sheet strength is found by first substituting the expressions for the vor-
tex velocities (refs. 7 and 12) and source velocities (refs. 12 and 13) into the boundary
condition, equation (6). When this is done, the result is



2 ' | £ doy (8)\
gl,;f_l N @ (E)y (80, (& - 55,1 ) dk = - (&) -yg:’;“;“ pb(g)( :g >vb(g - g 1)ae (9)

where the influence functions are defined by

. _ (E-g )k 2
%, (&~ £ppg) = - PPTEA R E - 2K ©)
p

o)
2 332 (10)
2&% &) + p;]

and K and E are complete elliptic integrals of the first and second kinds with modulus

‘A’b(‘i B Eo’po) =

4p
K2 = 0 (11)

(£ &) +(1+p,)

The variables £ and p are the dimensionless x- and r-locations of singularities

(0 =1),and ¢ o'Po is the point at which the velocity is calculated Py = 1). The vari-
able A is the wing aspect ratio; y 0(5) is the vortex strength and is related to the usual
definition of vortex sheet strength by

Y1 = Vaolorg

where y_ is proportional to Ap/pV,,.

The subscript o on vy o and o o is used in reference 7 to indicate camber effects
without angle of attack or pitching motion. For the sake of consistency this notation is
retained., When angle-of-attack effects are included, the vortex sheet is no longer of con-
stant strength around its circumference and a trailing vortex system must also be included
(ref. 7). The camber effect alone will give a nonzero radial force; however, owing to
symmetiry the net lift is zero.

Equation (8) is solved numerically by replacing the continuous vortex sheet by N
equally spaced vortex rings. The source line along the center-body axis is replaced by
three-dimensional point sources at the same axial locations as the vortex rings.1 The

1Center-body length can be less than the wing chord c¢. The case of a semi-infinite
center body can be simulated by a constant body radius to downstream infinity because the
local source strength is zero where dp]o /d!; = 0,
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singularity location is 1 and the control-point location is j. When the quantity v o d¢
is replaced by

Fo.

i~ Yoi Ag

equation (8) becomes

] N
D, ity -t Ll bl

=1 i=1

Because the vortex rings and control points are located on a constant-diameter right
circular cylinder of diameter D, then P; =Py oj = 1 in equation (12). 2 Each circular
panel has a chord length of ¢/N. The vortex ring is located at one-fourth of this length
from the panel leading edge and the control point is located at three-fourths of this length
from the panel leading edge (fig. 1).

As previously mentioned, the influence of the wing on the body is neglected. Thus
the body source strengths are given by the body slopes and everything on the right-hand
side of equation (12) is known. Equation (12) is then a set of N simultaneous linear equa-
tions with N unknown vortex strengths T, (see definition of CAM in app. A for dis-
cussion of case when o = 0>.'

The set of equations resulting from equation (12) was solved for the unknown vortex
strengths T oi by the successive orthogonalization procedure outlined in reference 1.
This procedure gave the same results as an alternate matrix inversion technique but has
a great advantage on computer storage requirements. The method of reference 1 requires
storage for a single N-dimensional array, the elements of which are i‘r_y(gi - goj’l)aoi
as opposed to other matrix techniques which require N- by N-array storage.

Once the vortex and source strengths are computed, the perturbation velocities can

be found at each location £ 0] on the cylinder Po = 1 by use of the following expressions

oj ~

u g.,i Na.I". a . .

_L(\'/'OQOL_L Z _%%ﬁy(gi - goj,l) + —291—;—’51 (13)
v_ & .1 N o ..

'y( 0j )= Z 0;7,01 ‘A'y(gi _ goj’1> (14)

2The radius p of a singularity ring always has a value of 1 in this paper; however,
the radius of the point at which the velocity is computed Po varies between 0 and 1 in the
mass-flow computation but has a value of 1 elsewhere.

11



t) X g
11“3(_91__) = z pbi<f2>iab(gi - goj,l) A (15)

Voo dé
i=1
N
it .1 dp
2l D ) s
i=1 L

where the influence functions are

0 (i) < § - o
2
‘7,)/ (51 - 50],1) = —(gl - go])§<—2i:—llz-2- E - 2K> (18)
E,o- £ .
B (% - o) = —l—p (19)

. DN
‘/\I
Faxd
e
1
(aad
=]
R
~——
-+
[ L

AUE fopl) = 7 (20)

[l |

z[(gi - goj)z +

For points off the cylinder3 Pei=1 (necessary when computing mass flow), equa-
tions (13) to (16) apply with the +term dropped in equation (13) and using the influence
functions

2 2
A : k 2"k 1 k
o (& -£ p .): - E -2 (21)
o)l ) ’%
gi-£0j

U (& - fojP0j) = (22)

) [(Ei ] 503-)2 . pojz]s/z

3The variables £ and p locate a singularity, and £ oo is the point at which

the velocity is calculated. When going from integrals and continuous distributions to sum-
mations and discrete distributions, it is necessary to indicate these quantities by si,pi
?,nd ¢ oj’po ., respectively. When p 0j = 1, the location £

when pOj ;g 1, then £

0j,p 0j is a control point; but

oj’p 0] is meant to indicate any arbitrary point.
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vy(gi - ‘on’poj) and f’b(‘gi - goj’poj) as given in equations (9) and (10). Equation (13)
is derived in appendix B by using the influence function in equation (21).

A linear interpolation of the roi was used to find the T 0i° A check of the T oi
distributions showed that the distribution approaches zero at the trailing edge, thereby
satisfying the Kutta condition. Note that the pressure distribution over the camber sur-
face depends on three quantities: camber surface slopes, aspect ratio, and mass flow
(controlled by the size of the center body). '

Thickness Solution

The flow to be calculated in this case is the subsonic flow over an annular wing with
a symmetrical airfoil section at zero angle of attack. The flow must satisfy the same
basic equations and conditions as the camber solution. The tangent flow condition is now
equation (7).

In the case of planar problems, thickness can be accounted for by a distribution of
sources on a plane. Such a distribution has the necessary symmetry property and discon-
tinuous change of sign in the vertical velocity for the planar wing thickness. However, if
two planar source sheets are placed in close proximity to form a biplane, the interference
between the two sets of source distributions will cause a mutual induction of camber. The
vertical velocity at some point on either sheet will no longer depend solely on the local
source strength but will also depend on the complete source disiribution of the other sheet.
This interference problem also exists for an annular wing. The induced camber effects
can be canceled by a vortex distribution, the strength of which is adjusted to just cancel
the interference effects on the wing, Then the total source and vortex radial velocity will
have the necessary discontinuous property across the singularity sheet.

Note that, because of the interference effects, an annular wing with thickness only at
zero angle of attack has a negative radial force; that is, it tends to collapse. The internal
flow area reduction due to thickness accelerates the flow much more than the same flow
area reduction externally. Figure 2 shows the pressure distributions for an annular wing
with thickness only and the same wing with enough camber to make the inside diameter
constant. The radial force changes sign when geometric camber is added, and with the
proper amount of geometric camber the inner and outer pressures can be equalized.

Because the annular wing with thickness only has the effect of camber in its flow,
namely a nonzero radial force, it would be convenient to refer to this effect as an aero-
dynamic camber. Then the variations of the mean camber line from the chord could be
referred to as geometric camber,

The radial velocity induced at &£ o and p 0= 1 by a continuous distribution of
source rings of diameter D (radius p = 1) over an axial length of ¢ is (see app. B)

13
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1

)1 ' X
vq(é:)o >= *qgff(;)‘ 1 ﬁr%vq(g - 50,1)d5 (23)
A

where q(£) is the source strength at £ and the influence function frq(g - 0,1) is
related to the vortex influence function for the velocity u by

(& - 5o1) = 20, (5 - £51) (24)

The integral term in equation (23) is the induced camber due to interference effects.
This integral can be canceled by a vortex distribution the strength of which is determined
by

1
v, (&,1 X ov(8)
X
v
-0 ﬁ%vq(g - £ ,1)ds (25)
x

where 'yt(i;') has the dimensions of y_,and ¥, y is computed by using equation (18).
When this is done, equation (23) can be written as
1 1
Vq(‘go’ >+ Vt,?/(go’ ) q(ﬁo) (26)

=+

The flow constructed in this way will satisfy the required boundary condition in equa-
tion (7). Thus from equations (7) and (26) the source strength is determined by

q(&) = -2V (&) (27.)

where the boundary condition is being satisfied at points ( EPo = 1).

The solution of equation (25) for the unknown vortex strength is the same type of
numerical problem found in the camber solution. An alternate method of finding yt(g)
has been outlined by Weissinger (ref. 8). By examination of the boundary conditions for
a vortex flow, the vortex strength necessary to cancel the integral of equation (23) is
determined by

16



1 1
1 (X WO 10t
2 S% (g)v (5 go’l d¢ = - S 1 A‘Zﬁ_g fo X 1 gq(E)Uo(§ - go’l)dg (28)
A
where
Q(f)‘)\glﬂ%d?:zt_(éﬂ (29)
A
Vgl - 1) = 2 = i : EO?E(I +i2)E- (2 kz)K] (30)
T %o

U (- 5,1) = ?%;{%Kkz - 2)E + 2(1 - kZ)K:] +1 (31)

and t(¢) is the wing thickness and éq(f) is related to the vortex strength by

'yt(‘g) *

SR L ORI TG (32)

(The symbol -'yt(i;)/V is called 8y (¢) in ref. 8. ) The kernel functions V_ and U,
are continuous and antisymmetrical. The solutions of equations (25) and (28) for yt(g)
should require about the same computing time; equation (28) was chosen for this study. In
numerical form, equations (28) and (29) yield

N N
R O e I

i=1 i=1

The source and vortex-ring locations ( gi,p i = 1) and control-point locations
(gOJ,pOJ 1) are the same as in the camber solution. The same method of solution of
linear equations discussed previously was used for equation (33).

Once the source and vortex strengths are computed, the perturbation velocities can
be computed at any point (5 oiPo ]) Equations (13) and (14) give the vortex velocities U,
and vy v when «o o 11"01 is replaced by (7t1 /V )Ag and similarly for o, 1" Recall
that for points off the cylinder P, 0j = 1, the + term in equation (13) must be dropped. The

source velocities at points on the cylinder p 0j = 1 are computed from (refs. 8 and 12)

17



N
Uq(fi:',»l) - z at:;:g ﬁq<€i _ goj’ 1) (34)
i=1

- of 1> oy (35)

N
v gi?.,l)= Z Qs Ag\“rq(gi-g
* i=1

A

where the influence function Yy is given by equation (24) and ﬁq is

o -2kE
a (& ~£¢ .,1) = ——r (36)
alt ~ %oj ) -

Equation (35) can be obtained from equations (23) and (27). For points off the cylinder
defined by p 0 = 1 (necessary when computing the mass flow), equations (34) and (35)
apply with the term F g in equation (35) dropped and by using the influence functions

(4 - &)F

8(& ~ fopPoj) = (37)
(10« (170 o1 )« (120
%q(%i - opPoj) = :
| poj\/(gi - gg)t + (1 ”oj)z
x 11 - 2%03(Poj - 1) E - K (38)

[(51 -~ gog) (1 ”oj)ZJ

Note that the thickness solution depends on two quantities: thickness distribution
t(¢) and aspect ratio.

Pressure Distribution and Mass Flow

Once the singularity strengths are determined, the velocities due to camber, center
body, and thickness can be added to give the total surface velocity and pressure distribu-
tion, The internal flow velocities can be integrated over a surface perpendicular to the
center line at some £-location to calculate the mass flow through the annular wing.

18



In regions of high body curvature, such as the nose, approximation of the surface
velocity by the vélocity on a constant-diameter cylinder is not satisfactory. A correction
for this approximation called the Riegels factor, is shown by Weber (ref. 14) to improve
the calculated velocities in the nose region of a two-dimensional airfoil.

The Riegels factor can be developed from geometry as follows. By writing the

equation for the wing surface4 as

fx,r) =r - rw(x) =0

the unit tangential vector in the meridional direction is

where éx and ér are unit vectors in the x- and r-directions, respectively. Writing
the total compressible surface velocity as

V= (Voo +u>eX + Ve,

the total tangential surface velocity is

Consistent with linear theory the total surface velocity is approximated by

Vo, +u)
V=( )p_l (39)

dr_\2
w
“(‘&}‘)

The quantity in the denominator is the Riegels factor. Equation (39) shows that the
total velocity on the wing surface is found by computing the total x-velocity on the cylin-
der p = 1 and multiplying this result by the -Riegels factor.

4A11 velocities from now on are compressible and coordinates are for the actual
(untransformed) geometric shape. '

19



The surface pressure distribution is computed by making compressibility and Riegels
factor corrections to the incompressible velocities and calculating the pressure from

P ')/MZ v 2

0 0

9 S1.oof, v2Y\Y !
C. = 1+J’-—2-—Moo 1 -2 -1 (40)

where #y is the ratio of specific heats.
The mass flow is computed in the form of a ratio

AL\ [V
po=—= —p% gOﬁ)

= = (41)
PBAVeo  \Poo / A\,

where m is the mass flow through the annular wing, Vio is the total x-velocity at some
4 o location, and Ah is a reference area based on the highlight diameter (diameter at
x = ¢/2 in fig. 1). The area Ago is the internal cross-sectional area of the wing at £_

less the local center-body cross-sectional area. The velocity ratio is computed by divid-
ing the flow area into smaill annuli and calculating the mass flow through each annulus and
summing the result as follows (assuming density constant over the cross section)

v A .
go ) z V(&O,POJ) (éO,pOJ) (42)
Vo 7 Ve AEO ‘
The V(‘g’ oP oj) are the total x-velocities computed at a fixed 50 and the particular p 0j

location. The annulus area A(g o oj) is at the ¢ oP 0j location. The density ratio is
calculated from the one-dimensional relation

(43)

Boundary-Layer Solution

The boundary layer was approximated by a turbulent boundary layer over the entire
chord length. The incompressible turbulent boundary-laye} method of Truckenbrodt
(ref. 15) was used. John B. Peterson, Jr., of NASA Langley Research Center developed
the necessary equations for computing the boundary layer and programed these equations
for the boundary-layer subroutine used in this study.
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The inviscid velocity distribution at the trailing edge is greatly in error since a
stagnation point is computed there. Hence, the velocity was extrapolated to the trailing
edge (ref. 16). A procedure similar to that used in reference 17 was employed. In each
case an estimate was made of the point beyond which the inviscid velocity Became unrea-
sonable because of the trailing-edge stagnation point. Then a least-square-curve fit of
the velocities was made between that point (97-percent-chord station) and the 80- or 90-
percent-chord station. This least-square-curve fit was then used to recompute the veloc-
ities between the 80- or 90-percent station and the trailing edge. The outer surface was
computed first so that the Nth value of the recomputed outer surface velocity (value closest
to trailing edge) could also be included in the inner surface curve fit. A linear-curve fit
was used on the outer surface and a parabolic fit on the inner surface. This procedure
produced smooth and reasonable velocities for the boundary~layer calculation. It was
determined that uncertainties in this method gave 2-percent or less error in . The fig-
ures to be presented indicate the range in which the curve fit was made.

It should be clearly understood, however, that this trailing-edge procedure is simply
an approximate scheme in place of calculating the true effect of the correct wake. (For a
nonzero trailing-edge thickness the total source strength is nonzero, and therefore some
wake is simulated.) It may be possible to simulate the correct wake effect by use of a
wake annular thickness distribution which has just enough geometric camber to cancel the
ACp due to thickness, thereby making the inner and outer pressures equal.

In order to obtain convergence of the boundary-layer displacement thickness, it was
necessary to modify the wing coordinates, on the mth iteration, with the following effective
displacement thickness

Xk . k k3
*=60+261+...+(m+1)6m

b (44)

1+2+...+{m+1)
%
where 9 o is based on velocities computed by using the actual wing geometry. On the
first iteration the wing coordinates were modified by 6;/2, rather than 6: as indicated
in equation (44). When separation occurred during the iteration process (shape factor
H z 2.4), the shape factor was limited to 2.55 to permit convergence.

Computer Program

The complete computer program is described in appendix A. Input and output quan-
tities and the program listing are included. One output quantity is the critical Mach num-
ber, which is determined by an approximate method of von Karman (ref. 18). The printed
value of the critical Mach number is valid only when M_ is low enough for the flow to be
assumed incompressible.
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The number of chordwise divisions N was 150, For the nacelles of this study the
magnitude of the leading-edge suction peak had reached a stationary value by this value of
N. For the mass-flow computation the radial increments were Tinner /170. Since the
velocity generally had a very small variation across the flow area (substantiating the usual

one-dimensional-flow assumption), these radial increments were more than sufficient.

Calculations on a CDC-6600 computer required 2 minutes for an inviscid calculation
and 4 minutes for a viscous calculation. Each additional iteration on the viscous calcula-
tion required about 2 minutes. This time could be reduced by use of a cosine distribution
of singularities which would increase the singularity density in regions of strong pressure
gradients and reduce the density in the center of the body. Such a distribution of vortexes
will produce the same downwash at points midway between the vortexes as a continuous
distribution of vorticity (app. B of ref. 19).

COMPARISON OF THEORY AND EXPERIMENT

Calculations were compared with experimental data obtained in two wind tunnels
(refs. 5 and 20) to provide a check on the present theory. The comparison with the tests
of reference 5 is discussed first. These tests covered a range of subsonic Mach numbers
at primarily zero angle of attack. Figure 3(a) shows a sketch of the experimental setup
and its relation to the theoretical model used to represent it. The mass flow in the experi-
ment was controlled by the insertion of stationary sets of fan blades. The blockage of the
sting, struts, and fan blades was represented in the theory by the blockage of-a center
body. In the experiment, the highest mass flow was obtained without a set of blades
installed. In this condition the experimental setup was more faithfully modeled by the
theory than with sets of blades installed, and the best agreement between measured and
calculated internal pressures would be expected. This expected result was achieved as
will be discussed.

The pressure distribution and mass flow are not sensitive to variations in the diame-
ter D of the vortex and source rings (see fig. 1). The value of D used in this study
was the average of the minimum inside diameter and the maximum outside diameter of the
wing.

Nacelles 2 and 3 of reference 5 were selected for the present study (fig. 3(b)). These
nacelles were designed to have prescribed external pressure distributions and internal
contraction ratios. Comparisons between theory and experiment were made for three
Mach numbers and several mass-flow ratios. The exact sting leading edge and nose shape
were not given. Thus the nose of the center body in the theoretical model was placed at
approximately the position of the sting leading edge and the shape was arbitrarily selected
to be that of a NASA supercritical body of revolution (ref. 21). At the maximum diameter

22



Nacelle
Internal-blockage
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to 14, 17, and 18

(a) Relation of experimental setup to theoretical model. (Not to scale.)

Nacelle 2

/Nacelle 3

(b) Profile shapes for nacelles 2 and 3.

Figure 3.- Geometry of experimental setup and theoretical model.

station of the center body, a constant-diameter cylinder was attached and extended down-
stream. As seen in figure 3(a), the constant diameter portion of the center body extended
to infinity for the high-mass-flow cases of figures 4 to 14. However, for the low-mass-
flow cases of figures 15 and 16 the center body was expanded at the approximate location

of the fan blades. The necessity . of this expansion for the low-mass-flow cases is discussed
subsequently.
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The quoted accuracy of the measured mass flows in reference 5 is 1.5 percent based
on boundary layer and instrument errors. However, Young also states that the presence
of the fan blades tended to separate the flow. Hence, for the lower mass flows tested,
larger errors in the mass-flow ratio ¢ may be present. Errors in p would be reflected
in a lack of agreement of measured and calculated pressures, especially on the inner sur-
face and at the leading-edge suction peak.

In the experiments the transition bands were applied from 6.25 to 10.4 percent of the
chord. Therefore in the theory the boundary layer was approximated by a turbulent bound-
ary layer over the entire chord length, as discussed previously. The Reynolds number
based on chord length was fixed at the experimental value of 2 X 106.

In all the pressure-distribution curves shown herein, with the exception of fig-
ure 2(a), the upper and lower curves correspond to the outer and inner surfaces,
respectively.

A comparison of the theory and experiment is presented in figures 4 to 12, Mach
numbers of 0.3, 0.5, and 0.7 were examined. In selecting the center-body diameter, two
approaches are available, First, if the desired mass flow is known, the procedure is sim-
ply to vary the body size until the desired mass flow is achieved. Only a few trial solu-
tions are necessary to establish a curve of mass flow versus maximum body radius from
which the maximum body radius can be selected to yield the desired mass flow. The
second approach is to match the internal blockage area between the experimental geometry
and a body of revolution and calculate the mass flow. Figures 4 to 7 used the first
approach, and figures 8 to 11 used the second. Each figure gives the number of iterations
on the boundary layer and the chordwise range from which velocities were used to obtain
the least-square-curve fits. The iteration was continued until the maximum change in 5™
on either surface was less than 2 percent of the maximum 8* for the respective surfaces.
Good agreement is obtained between measured and calculated pressures when the boundary
layer is included.

Note that figures 6, 7, 10, and 11 have slightly supercritical flow as shown by the
value of the critical pressure coefficient C;. A weak shock seems to occur near the
leading edge. However, aft of this region agreement is good.

Insight into the effect of the boundary layer on the mass flow is provided by exami-
ning figures 8 to 11. These figures indicate that for a fixed geometry, the presence of the
boundary layer increases the mass flow, contrary to what might at first be expected.
Recall the case of a two-dimensional airfoil where the boundary layer causes an effective
decrease in angle of attack; that is, the boundary layer reduces the lift and therefore the
area under the curve of C_ versus £ (ref. 17). As seen from figures 8 to 11, the
boundary layer has the same effect on an annular wing, only in this case the radial force
is being lowered. As this happens, the leading-edge stagnation point moves more toward
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Figure 4.- Pressure distribution on nacelle 3; M_ = 0.3; by = “exp =
Boundary layer: Six iterations; least square 90- to 97-percent c.
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Boundary layer: Six iterations; least square 90- to 97-percent c.
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Figure 6.- Pressure distribution on nacelle 2; M_ = 0.7; by = “‘exp = 0.74.
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Figure 12.- Summary of calculated mass-flow ratios for cases where internal blockage
was estimated, including effect of boundary layer.

the outer surface. Thus far ahead of the body the capture streamline for the internal mass
flow is at a larger radius and more flow is swallowed by the wing. A summary of the effect

of the boundary layer on the mass flow is shown in the following sketch:

M, fixed

Without boundary layer

ry With boundary layer
,max
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Both methods of selecting the center-body size show good results and neither seems
superior to the other. The center-body size used in figures 8 to 11 was estimated from
information given in reference 5. The accuracy with which the mass flow was calculated
is summarized in figure 12 which shows that inclusion of the boundary layer in the calcu-
lations improved this accuracy.

Figures 13 and 14 compare the present theory with the methods of references 5 and
10 for the flow condition of figure 4. Figure 13 is without the boundary layer and figure 14
is with it. All methods are seen to give very close to the same results; therefore, the use
of surface singularities gives essentially the same result in this case as the present
method, which uses singularities placed on a mean diameter cylinder.

When comparing different theoretical solutions of the flow over a nacelle, caution
must be exercised to ensure that the mass flow from each solution is the same, Because
the mass flow is a function of the circulation, different methods of approximating the Kutta
condition can result in different mass flows on the same geometry.

The experiments of figures 4 to 11 were run without fan blades present (highest
mass-flow runs). When fan blades were present, it was found that the straight center-
body model used previously was not sufficient to calculate accurately the internal nacelle
surface pressures. Hence the center body was modified to approximate the experimental
sting up to the fan-blade location, which was estimated to be at about the 75-percent-chord
location (the exact sting diameter and fan-blade location were not given in ref. 5). In this
region the fan blade blockage was simulated by expanding the center body into an ellipsoid
with a circular cross section (see fig. 3(a)). The ellipse in the x-r plane had a semi-
minor axis of about 13 percent of the chord and a semimajor axis (r-direction), which was
adjusted to give the experimental mass flow. Where the ellipsoid intersected the plane of
the nozzle exit, a constant-diameter cylinder was extended to infinity. Figures 15 and 16
show the results of using this model for two low-mass-flow cases. The external pressure
distributions are well predicted in spite of the discrepancies on the internal surface. Fur-
thermore a fairly reasonable estimate of the internal pressure distribution is obtained. In
figure 16 some large experimental errors may occur in p because of internal-flow sepa-
ration as mentioned previously. This would explain the discrepancy at the leading-edge
suction peak.

Calculations were also compared with experimental data obtained from reference 20,
The investigation of reference 20 was made on several NACA 1-series inlet contours tested
over a range of subsonic and transonic Mach numbers, mass-flow ratios, and angles of
attack. The thickness ratio (t/ C)max of the two nacelles of reference 20 selected for the
present study was much smaller than the thickness ratio of nacelles 2 and 3 (2 percent com-
pared with 11 percent). As shown in figure 3(a), the nacelles were sting supported with a
throttle plug at the rear of the model for controlling the mass flow (the strut arrangement
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Figure 13.- Pressure distribution on nacelle 3; M_ = 0.3;
Pip = 0.76. All theories without boundary layer.
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differed from that of fig. 3(a) in that fore and aft sets of struts were used). The plug was
moved forward and backward to vary the mass flow. As previously, the blockage of the
sting, struts, and plug was represented in the theory by the blockage of a center body.
High-mass-flow ratios were selected for study to minimize the effect of the plug on the
afterbody pressures.

The models of reference 20 consisted of the same afterbody attached to various
inlets. The inlets had NACA 1-series outer profiles and various inner profiles depending
upon the contraction ratio. The two inlets selected for the present study were the NACA
1-81-100 with a contraction ratio of 1.012 and the NACA 1-85-100 with a contraction ratio
of 1.009. The numbers in the NACA designation indicate first the series, then d /Dmax
in percent, and finally X/ Dmax in percent. The quantity d is the highlight diameter
less twice the inlet lip radius; X is the inlet length; and Dm is the inlet (and nacelle,
in this case) maximum diameter.

ax

The nose of the center body in the theoretical model was again placed at the position
of the sting leading edge and had the same shape as used previously. (See fig. 3(a).)

The tests of reference 20 were conducted without artificial boundary-layer transi-
tion. A limited amount of data obtained with a transition band located 2.54 c¢m aft of the
lip (the maximum nacelle diameter was 45.72 cm) showed no difference in pressure when
compared with free transition data. Thus, it again seemed reasonable to assume a turbu-
lent boundary layer over the entire chord length for the viscous calculations. The Reynolds
number was a function of Mach number. For M_ of 0.40 and 0.80 the Reynolds number
was 7.437 X 104/cm and 1.159 X 105/cm, respectively.

The comparison between theory and experiment is shown in figures 17 and 18
for M, of 0.80 and 0.40. The theoretical center-body size was selected to give the
mass-flow ratio measured in the experiment. The data on the inner surface and the data
labeled "other' were obtained from the author of reference 20. The data points labeled
"other' are an average of measurements made at that x/c location on the sting, mass-
flow rake, and inner surface (these measurements were not separately available). Good
agreement was obtained on the outer surface for both cases when the boundary layer was
included. The very large adverse pressure gradient on the inner surface of the inlet in
figure 17 occurs at the higher Mach numbers. The boundary-layer calculation indicated
flow separation in this region. Thus, the boundary layer on the outer surface did not con-
verge to any better than a maximum change in 6* of 12 percent of the maximum &%,
This lack of convergence was due to erroneous changes in the thickness and camber caused
primarily by incorrect values of 6* on the inner surface. Hence, flow separation and a
possible influence of the mass~flow plug on the measured pressures at the trailing edge
could explain the discrepancies. between the theory and experiment in figure 17,

In figure 18 the boundary layer converged on both surfaces to a maximum change in
8* of less than 0.2 percent of the maximum ©&* for the respective surfaces. The
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discrepancy at the leading-edge suction point could be due to inaccuracies in the leading-
edge shape. The pressure in this region is very sensitive to slight errors in the manu-
facture. The inner surface pressures are approximately predicted by the theory. The
calculated velocities in this region are somewhat higher than the actual velocities because
the center-body radius used in the theory was larger than the sting radius.

Finally, figure 19 shows the accuracy of calculating the critical Mach number on
nacelle 2 by using von Karmdn's method (ref. 18). The free-stream Mach number must
be low enough to assume incompressible flow. The critical conditions are based on the
external pressure distribution. The curve labeled "Minimum C_" is from the leading-
edge suction peak. The intersection of this curve and the curve for C_* gives a critical
Mach number for nacelle 2 of 0.632. The method of von Karman yields a critical Mach
number of 0.658.

In the case of a propulsive device the addition of energy to the internal flow will
have an effect on the pressure distribution over the nacelle. Energy addition is treated in
references 10 and 22. Shollenberger (ref. 22) has made a theoretical and experimental
study of a two-dimensional propulsive lifting system. The external pressure distribution
was found to have a relatively weak dependence on the intensity of energy addition to the
internal flow; however, the inner surface pressure distribution was strongly affected. The
theoretical formulation of the present study could be extended to include energy addition by
use of a method similar to that of reference 22.

CONCLUSIONS

A method analogous to classical airfoil theory has been developed for computing the
pressure distribution on an annular wing with a center body at zero angle of attack and
subsonic speeds. The following conclusions are drawn:

1. For the geometries investigated, this method was found to give essentially the

same results as a method using a surface distribution of singularities and a stream-tube
method.

2. Comparison of the results with experimental data for a range of flow conditions
and thickness ratios showed that when the boundary-layer displacement effects are included
in the calculations, the pressure distribution and mass flow can be calculated with good
accuracy. An accurate prediction is dependent on the existence of attached flow and a
fairly accurate modeling of the internal-blockage geometry.
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3. For cases in which the internal blockage was not accurately modeled or flow sepa-
ration may have been present, the inner pressures were not accurately calculated. How-
ever, the outer pressures were still calculated to a fairly good degree of accuracy. If
internal flow separation occurs, the experimentally measured mass flow will be in error,
and this error must be accounted for when comparing experimental and theoretical results.

4, When calculating the boundary-layer thickness, the inviscid velocities were extrap-
olated to the trailing edge. A more accurate calculation would include the effect of the
wake.

5. The method requires modest computer running times and storage and can be
generalized to include such effects as lift and internal energy addition.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., May 9, 1974.
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APPENDIX A
COMPUTER PROGRAM

Input Variables

The input data format is the Namelist method used by the Control Data series 6600
computer system at the Langley Research Center. The input variables are listed in this
appendix and the input format can easily be modified to any other format. The body radius
and wing inner and outer coordinates are each listed in sequential order to correspond with
the x-values listed. The x-values are input from the leading edge to the trailing edge. The
first quantities in the arrays X, RB, RI, and RO are X(1), RB(1), RI(1), and RO(1),
respectively. The positive direction for a radius is shown in figure 1; however x is
- measured from the leading edge, positive downstream. Any length units can be used so
long as the same units are used for all variables. Meters are indicated, however, for
dimensional quantities.

The program uses 1.4 for vy, the ratio of specific heats; however, a gas which has
a value of y different from 1.4 can be treated by changing vy in the pressure-coefficient
equations and the mass-flow equation. Incompressible cases can be run by simply inputting
zero for the free-stream Mach number. Special cases, such as camber with zero thickness
or thickness with zero camber, can be treated by simply inputtiﬁg the correct outer and
inner surface coordinates. Some limitations are discussed. (See CAM.) For no center
body, input all values of RB equal to 0 or set SCALE equal to 0 (both RB and SCALE
must be input).

' 2
AIAM Ay [Ain = (Dh/Dmin)
C wing chord, m
CAM use 1. when there is camber; use 0. when desire all T =0, which is an

inviscid thickness-only case with no center body. Note that zero geometric
camber (all Ao = 0) is just a special case of equation (6). However, because
of the method of defining the vortex strengths, v /Voo would become inde-
terminant if o = 0. Thus the form of the equation for- v, [V, will not
permit use of equation (6) (as given by eqs. (8) or (12)) to account for the
center-body interference for zero camber. Therefore a geometry which

has a center body but no geometric camber (all o) = 0) cannot be treated
by this computer program. Likewise, if portions of a cambered wing have

a mean camber line with zero slope, a very small slope must be used in
these regions. These limitations could be removed by replacing o vy

by
o’o
Y., / V. in the vortex equations (see definition of vy 0) .
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APPENDIX A — Continued

DMAX maximum wing outside diameter, m
DMIN minimum wing inside diameter, m
FINI use 1. for the last data set and 0. for preceding data sets when more than one

set in input; one data set is shown in sample input

ITMAX number of times boundary layer is computed; potential flow is computed
ITMAX + 1 times; use 0. for inviscid solution

M free-stream Mach number

N number of wing panels in chordwise direction (same N wused in text, see
pages 10 and 17); maximum value is 170

NN number of x-stations where quantities in arrays X, RI, RO, and RB are
input; maximum value is 170

NRHO number of annuli internal flow area is divided into to compute mass flow; max-
imum value is 170

RB array of center-body radii; for X = XBN, use .0 for values of RB, m

RI array of inner wing radii, m

RO array of outer wing radii, m

SCALE scale factor to expand or shrink elements of RB so as to vary mass flow;

SCALE is ratio of desired body radius to input body radius

UNRREF Reynolds number per meter

X array of x-stations where arrays RI, RO, and RB are input, m

XBN x-station of center-body nose, m
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APPENDIX A - Continued

XAFT} Between the x/c values of XFOR and XAFT, a linear least-square-curve

XFOR fit is applied to outer surface velocities. Then the outer surface velocities
are recomputed from XFOR to the trailing edge with this curve fit. Simi-
larly, a parabolic least-square-curve fit is applied to the inner surface
velocities between XFOR and XAFT and the Nth value of recomputed
outer surface velocity. Then the inner surface velocities are recomputed
from XFOR to the trailing edge with this curve fit.

Sample Input

The input for the viscous calculation of figure 4 is shown below. If more than one
case is to be run, the complete data set must be repeated by using the proper values for
FINI. The last card is identification information and uses format (6A10).

$GEOM N=150s NN=554 M=,204 =4.4101, NMIN=3,9395, NMAX=5,¢ NRHOz170,
XFOR=.QO’ XAFT='97Q

SCALE=3,125,

ITMAX=6,

ATAM=1,2580,

FINI=1,s CAM=1l,s

X8Nz=,8,
UNKREF=z453500.
X= 0,0000, «0250, e NG4S0, «0700, .0882, «1200 « 1500 1764 2646,

« 3528, 24410 e52G2. «Hh1744 « 7056, e 7TG38, «B000» «ROS7. e8114.
28171 eB228. «RB20., 097024 1,0584s 1,1466¢ 1.,2348+« 132309 1.4112,
1,49949 ]-58760 lc$7qg. ln7640| ].95229 1.94049 2.0286’ 2.11689 ?.?OQIQ
2.,29339 2.42564 25138, 2.6020, 2,7343¢ 2,866, 2.9548¢ 3.0871s 3.2194,
3,35179 3.52R)c 3eah040 347927, 3,991 4,1014s 4,.1896¢ 4.277Hs 4.3660,

4,4101.

2,2093s 2.17584 2.1667¢ 211705 2.1019y 2,0R22s 2.06949 2.0603s 2.0307.

2,0073s 1.988Rs 1497602 169698, 1,9711s 1,97739 1,9782+ 19787« 1,9792,

1.97970 1.98”2! I.QSQZQ 109927. 1.99850 2.0016' 2.0038’ RQOOSF' P.n073.

2,0095¢ P.0117+ 2.0140, 2.0162+ P,0184a 2,020 2.022R89 2.024ks 2.0268.

2,0290« 2.0321e 2.0338. 2.,0360. 2,0396. 2,0427« 2,0449s 2.0480¢ 2.0511,

2,05429 2.05R8A¢ 2.0617e 2:064R, 72,0683 2,07109 2,0723% 2.073Rs 2.0749,

22,0749,

RO= 2,2093e 2,2428¢ 2.77174 2.3010, 22,3153 2,33449 2,34599 2,3537s 2,3811.
?.40100 ?.41740 20“302. 2.4“129 ?.QSOQQ 2.46920 2.4611’ 2.46160 ?.4621'
C.64626¢ 2.4H631a 2:4682, 26757, 2,4823s 22,4876y 2,4920s 2.4956: 2,4982,
2,4995s 22,5000 2.4991e 264969, 2,49349 2,48B9s 2,4832% 2.4761s 2.4686,
2,46029 2,44565 2.4355, 2.4240, 22,4054 2,3855¢ 2,37149 2.3493s 2,323,
2,3020s 2.,2671e 2.73R9, 2,210, 2,1730s 2,1443+s 2,1257% 2.1067s 22,0877,
2.,0785,

Rg= 0,0000s 0.,0000s 04nN00s 0.0000, 0,00005 0,0000s 0.0000s 000005 0.,0000,
0.0000¢ 0.0000« 0+n000« 040000« 0.0N000s 0.,0000e 0,0000+ <0l93s 0243,

.0315’ .035R' 10620' .0840' .0980’ .10809 '1160’ a12301 .IZQOQ
. 1345, 1390, 01415, « 1450, . 1460 214800 e 14950 21498 +1500,
1500+ 1500 1500a <1500, 15004 ,L1500s <1500+ 1500 L1500,
0 1500s 41500 +1500. 1500« 1500« ,1500- L1500 1500+ <1500
21500

R1

$
YOUNGS CcowL 3
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APPENDIX A - Continued
Output Variables

Most of the input quantities are printed and identified with the symbols of the pre-
ceding section. Other quantities have the meanings listed in this section. In the output
for the wing surface solution, all perturbation velocities, including center-body velocities
are for the equivalent incompressible flow and are on the wing surface (p o= 1). In the
mass-flow computation output the perturbation velocities and the RAD are also for the
equivalent incompressible flow. The pressure coefficients, total velocities, terms of
equation (42), MFC and MU are for the compressible flow. Other output sections are
either labeled as to compressibility or the nature is obvious (for example, GQ, etc. are
obviously for the incompressible flow). The coordinate system of figure 1 is used except
in the case of the center-body slopes as noted in the following list. Output which follows
the boundary layer output is for the wing shape modified with the final &* distribution.

ALPHO a, at gi, rad

ALPHOO « o at ¢ 0] in first listing, rad; -277<a 0j + %) in second listing
ALPHQBB left-hand side of equation (33) at & of

ALPT oy at 51, rad

ALPTH oy at £0j, rad

CPO Cp on Wing outer surface

CPI Cp on wing inner surface

CPBA Cp on center body (only approximate because the source strength does not

correspond to the input center-body shape owing to neglect of wing inter-
ference on the center body)

CPBI isolated center body Cp; this Cp would be theoretically correct if the wing
were absent
* *
DDEL 5., =0, 1 ™
* 3 .
DELI 6 from equation (44) on wing inner surface, m
* -
DELO o from equation (44) on wing outer surface, m
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APPENDIX A — Continued

DELST )
DRDX dr/dx of center body at &i, with x positive downstream

DRDXH dr/dx of center body at & of’ with x positive downstream

GAM Toi

GQ 7t /VOo at &

GQB g, at &

H shape factor, 6*/ 0

1 i

IT number of times, boundary layer has been computed; IT - 1 equals iteration
number

J i

LAM A on equivalent incompressible wing

MCR critical Mach number

MFC m[p Ay Ve Where A, = ﬂDrznin /4

MU i

RAD radii of annuli in mass-flow computation, m

RIN RI - DELI (input values of RI used), m

ROUT RO + DELO (input values of RO used), m

RHOO poj

RHOO-BODY p, at £ 0j
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TEMP10 quantity under summation sign of equation (42) at a given value of p 0j

THE 6, m

UOURO V/V, on wing outer surface at X-stations, used to compute boundary layer

UOURI V/V,, on wing inner surface at X-stations, used to compute boundary layer;
for x/¢<0.02, UOURI is set equal to UOURO(1) to obtain more reason-
able values

VTO (V/Voo)2 on outer surface of wing

VTI (V/Voo)2 on inner surface of wing first time printed; [( Vo + u) / Vooj 2 at
Poi second time printed (square of velocity term under summation sign in
eq. (42)) ‘

VIVIN summation of equation (42) evaluated from j= 1 to the value of J listed for

any given value of VIVIN. The summation progresses from wing inner sur-
face toward center line, or center body if one is present, at fixed axial loca-
tion. This sum is evaluated at £ o= 0 (midchord) presently but this station
can be changed by changing card numbers T170, T320, T650, and T870 in
program MASFLOW. The last value of VIVIN equals VI/VIN.

VI/VIN “Vio /VOo of equation (42)

WX1JUOO u,y/Voo at goj on wing outer surface (poj = 1)

WX1JUOI u,y/VOo at £,; on wing inner surface (poj = 1)

WX1JUO summation in equation (13); for points where p 0j # 1 (required for computing

mass flow), this quantity is u, /V at & 0ioj

o
WR1JUO vy/Voo at 'on’poj

WX1QJUO u,c,,y/Voo at goj on wing outer surface (poj = 1)
WX1QJUI ut’-y/voo. at £, on wing inner surface (po]. = 1)

WX1QJU same as WX1JUO only with respect to u, Y/Voo
2
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WR1QJU
WXQJU
WRQJUO
WRQJUI

WRQJU

WXBQJU
WRBQJU
X1

XIO

X0J/C

APPENDIX A — Continued

Y,/ Ve 2E SopPo;

Y Ve Bt Eo3Po;
q /V00 at ¢ 0j 0 wing outer surface ( Poj = 1)
Vg /VQo at £,; on wing inner surface (p 0j = 1)

summation in equation (35); for points where p 0 # 1 (required for mass
flow), this quantity is q /Voo at £ #Poi

Uy Vo Bt £opPo;
vb/Voo at £00Po]
&

on

Xoj/c (x of fig. 1)

Program Structure and Listing

This program is written in FORTRAN IV, Version 2.3 for the Control Data series
6600 computer system with the run compiler and execution routines operating under
SCOPE 3.0. The program requires 65,0008 words of storage.

The program operates in the OVERLAY mode.

The main overlay program is

called ANNULAR and has six primary overlay programs - GEOMTRY, MATRIX,
PRESURE, BNDLYR, CRITM, and MASFLOW. The overlay structure and subprogram
arrangement are shown in the following sketch:

OVERLAY (0,0)
ANNULAR
SKK
FKA
MTLUP
f 1 I I I ]
OVERLAY (1,0)] OVERLAY (2,0)] OVERLAY (3,0)] [oVERLAY (L,0)| PVERLAY (5,0} OVERLAY (6,0)
GEOMTRY MATRIX PRESURE BNDLYR CRITM MASFLOW
SLOPE SSLESO BLYR MCRIT
THICK INT
BODY LSQPOL
MATINV
POLYEL
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APPENDIX A — Continued
The function LOCF(A) used by subroutine MTLUP is a library function which
returns the address of argument A. No listing is provided for LOCF.

Numerous comment cards have been inserted in the main overlay to assist the user
in understanding the flow of the computations. The purpose of each overlay and subpro-
gram is described by comment cards at the beginning of the overlay or subprogram.
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APPENDIX A — Continued

OVERLAY (RING20+:0)
PROGRAM AMNNULAR (INPUT+OQUTPUTTAPES=INPUTs TAPE6=0UTPUTSTAPE10)

PROGRAM ANNULAR EMPLOYS ANNULAR WING THEORY TO COMPUTE THE
SUBSONIC FLOW OVER NACELLES INCLUDING THE COMPRESSIBILITY EFFECTS
AND VISCOUS EFFECTS

ANY ERRORS OR PROBLEMS ENCOUNTERED IN USING THE PROGRAM SHOULD BE
DIRECTED TO DR. MICHAEL J. MANN AT NASA LANGLEY, AREA CODE 804-827
=3711,

A CARD DECK AND DOCUMENTATION FOR THE PROGRAM ARE AVAILABLE FrOM
CoSMICs UNIVERSITY OF GEORGIAs ATHENSs GEQRGIAs 30601,

THIS PROGRAM IS WRITTEN IN CDC FORTRAN IV, VERSION 2.3s TO RUN ON
CDC 6600 SERIES COMPUTERS WITH THE SCOPE 3,0 OPERATING SYSTEM AND
LIBRARY TAPE,

COMMON /CORD/ X(170)sR(170)32CsRAVGeNNINSDMINeT(170),RB(170) ¢XBN
COMMON /ONE/ ROUT¢170) 4RIN(170) oMsDMAXsXT(170)oXI0{(170)+ALPHO(170)
1sALPHOO0(17051) sXBL(170)sALPT(170)3ALPTH(170)sDRDX(170) +DROXH(170),
2LAML ITo ITMAX

COMMON /TWO/ IPsCAMsGAM(170)+GQ(170)+ALPO0O(170+1)

COMMON /THREE/ VOUT(170)sVIN(170)

COMMON /FOUR/ XOVC(170)sRO(1T70)sRTI(170)sDELO(LIT70)sDELIC170)+WLS(40
1),00LDO(170) sDOLDI(170) s UNRREF s SAM» XFOR s XAFT

COMMON /FIVE/ CPO(170),MCR

COMMON /SIX/ NRHOsRAD(170)sVIVINsRXXsRBXI

DIMENSION IDENT(6)

REAL LAMsKSQoeMeMFCoMCR s JOHNs MU

INPUT

NAMELIST /GEOM/ NaNNoMsCoDMINsDMAX s XoRO9RTIsFINI s CAMeNRHO s RB s XBNs ST
1ALEoUNRREF s ITMAXoATAMs XFOR XAFT

READ (S»GEOM)

READ (S,100) IDENT

WRITE (6,80) .

WRITE (6:100) IDENT

WRITE (6990) CsDMINIDMAXsNRHO s UNRREF s ITMAXsNoeMs ATAMy XFURoXAF T (X (1
1)3RO(IISRICI)+sRB(I)9»I=15NN)

DO 20 I=1+40

WLS (1) =1,

CONTINUE

DO 30 I=1sNN

XovC(Iy=X(1)/C

ROUT(I)=RO(])

RIN(I)=RI(D)

DELO(I) =D,

DELI(I)=0,

DOLDI(I)=0.

DOLDO(1)=0.

CONTINUE

SCALE CENTER BODY

DD PP PEDDRPPEPDRPDDPIPDDDEDDPDPIPPRPDDPEPLDEPDDDEDPRPREDEPREERDDEREREDPEPLEDPD DR D D

230
240
250
260
270
280
290
300
310
320
330
140
250
360
370
340
340
400
410
420
430
440
450
460
470
480
490
500
510
s?20
530
540
550
360
370
SR
S90
~00
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Do 40 I=1sNN

RB(I)=RB(I)*SCALE

CONTINUE

WRITE (6+120) SCALEs (X(I)sRB(I)sI=1sNN)

COMPUTE EQUIVALENT INCOMPRESSIBLE CENTER BODY

DO 50 I=1sNN

RR(IV=RB(I)#SQRT(1,~M#s2)

CONT INUE

Ip=-l

SAM=0-

IT=1

COMPUTE NACELLE MEAN CAMBER AND THICKNESS AND EQUIVALENT
INCOMPRESSIBLE SHAPE =~ THEN COMPUTE NACELLE CAMBER AND THICKNESS
SLOPES AND CENTER BODY SLOPES

CONTINUE
CALL OVERLAY (4HRING,1,0s6HRECALL)

COMPUTE CAMBER AND THICKNESS VORTEX STRENGTHS = GAM(I) AND GQ(I)
CALL OVERLAY (4HRINGs2.09+6HRECALL)

COMPUTE NACELLE AND CENTER BODY SURFACE PRESSURES

CALL OVERLAY (4HRINGs3,096HRECALL)

TEST FOR INVISCID ONLY SOLN OR END OF BOUNDARY LAYER ITERATION
Ir (IT.GT.ITMAX) GO TO 70

EXTRAPOLATE FOR TRAILING EDGE VELOCITIES AND COMPUTE BOUNDARY
LAYER. MODIFY NACELLE COORDINATES FOR DISPLACEMENT THICKNESS.

Cal.lL OVERLAY (4HRINGs;4+0+6HRECALL)

Go TO 60

CONTINUE

CRITICAL MACH NUMBER

CALL OVERLAY (4HRINGsS,096HRECALLY

COMPUTE VI/VIN BY NACELLE INTERNAL MASS FLOW INTEGRATION
CaLL OVERLAY (4HRINGs640+6HRECALLY)

CALCULATE MFC

MFC=( (RXX##2-RBX[##2)/ ((DMIN/2, )**2))*VIVIN*((1 t{ 2% (MER2)# (] ,=V]

1VIN##2)))##2 ,5)
Miy=MFC/ATAM
WRITE (6+110) MCReVIVINSMFCsMU

CHECK TO SEE IF THERE IS ANOTHER CASE

IF (FINI.EQ.0.) GO TO 10
STOP

6510
620
630
640
650
660
670
~80
690
700
710
720
730
740
750
760
770
780
790
200
R10
220
830
340
850
860
870
880
RI0
900

>PrrprPpbBPEPPPPPRPRPPBPRPI>DPPIPEDDPREPRPRPRPE>RPEEEREDD

Al110
Ali20
A1130
Al140
A1150
Al1160
Al1170
Al180
Al190
Al200
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FORMAT (1H1)

FORMAT (//16Xs14HINPUT GEOMETRY//4X92HC=9F9,304XsSHDMIN=9FG.3,64X,5
1HDMAXZ9F 9394 X s SHNRHO= ¢ 19/4X s THUNRREF=3E11,494X e 6RITMAX=31304X s 2HN
259 1394X02HM=4F9.494X s SHAIAMZ9F Qo4 34XsSHXFOR=9FT.494X e SHXAFT=4FG,.4/
3/9X91HX98Xs2HRO98X s 2HRIs8X92HRB// (4F10,4))

FORMAT (5A10)

FORMAT (1HO 94X 94HMCR=9F 9, 494Xs THVI/VIN=9F 9 404X s 4HMFC=9F 904 94X s 31
1U=9F9.4//4XsS6HMCR IS CORRECT ONLY IF M IS LOW ENOUGH FOR INCOMP a
2SSUMP)

FORMAT (1H1/2X+29HCENTER BODY EXPANDED BY SCALE sSX96HSCALE=oF10.4/
1//7/79X91HX 98X 2HRB// (2F10.4))

END

Al1210
A1220
A1230
A1240
A1250
Alp60
Al270
A1280
Al1230
A1300
Al1310
A1320
A1330

A1340~
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FUNCTION SKK (2) 10
C 20
c FUNCTION SKK COMPUTES THE COMPLETE ELLIPTICAL INTEGRAL OF THE 30
Cc FIRST KIND K(K) 40
C 50
c S, WAGNERs NASA AMES RESEARCH CENTERs MOFFETT FIELD CALIF. 94035 60
c . 70
o REFERENCE C., HASTINGSy APPROXIMATIONS FOR DIGITAL COMPUTERSs P,172 80
C 90
(> INPUT Z = K##2 100
c 110

IF (2) 10+20,30 120
10 WRITE (6560) 2 130

STOP 140
20 SKK=1.570796326794896

RETURN 160
30 E=1,0-2 170

IF (E) 10+40,50
40 WRITE (6470) Z
STOP
50 SKK=( ((E#,1451196212E=01+.3742563713E~01)%E+.3590092383E=-01)%E+.96

200
210

166344259E-01)%E+1.38629436112~((((E®*,441787012E~02+,3328355346E-01 220
2)#E+,6880248576E~-01)%E+,12498593597)%E+,5)+ALOG(E) 230
RETURN 240
¢ 250
¢ 260

60 FORMAT (1H1s10X921HFUNCTION SKK K##2 = 4F1649)
70 FORMAT (1H1910Xs7THK##2 = 4E16,99¢13HK(K) INFINITE)
END

270
280
290~

—
Ut
(=)
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FUNCTION EXA (2) c 10
c 20

FUNCTION EKA COMPUTES THE COMPLETE ELLIPTICAL INTEGRAL OF THE c 30
SECOND KIND E(K) cC 40
c S0

S. WAGNERe NASA AMES RESEARCH CENTERs MOFFETT FIELD CALIF. 94035 c 60
c 70

REFERENCE C. HASTINGSs APPROXIMATIONS FOR DIGITAL COMPUTERSs P,175 C 80
c 90

INPUT Z = K#%2 C 100
c 110

IF (2) .10+20,+30 C 120
WRITE 16+60) Z C 130
STOP C 140
EXKA=1.570796326794896 C 150
RETURN C 160
E=1,0-27 c 170
IF (E) 10+40,50 C 180
ExKA=1.0 C 190
RETURN Cc 200
EXKA=1.+(((.1736506451E-01%E+.4757383546E~01)%E+.6260601220E~01)%E+ C 210
1044325141463)2E~(((.526449639E~025E+,4069697526E-01)%E+.9200180037 C 220
2E~01)%E+,24998368310) *E#ALOG(E) C 230
RFETURN C 240
c 250

. C 260

FORMAT (1H1910Xs21HFUNCTION EKA K##2 = 4F16.9) c 270
EnND i Cc 280-
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APPENDIX A — Continued

SUBROUTINE MTLUP (XsYsMoNsMAXINTAB2I¢YARI,VARD)

HULTIPLE TABLE LOOK=UP SUBROUTINE, IV COMPUTES Y=F (X) FROM
A TABLE USING M=1 OR 2 FOR FIRST OR SECOND ORDER INTERPOLATION.

BULTIPLE TABLE LOOK=UP ON ONE INDEPENDENT VARIABLE TABLE

USES AN EXTERNAL: INTERVAL POINTER (I) TO START SEARCH
I LESS THAN 0 WILL! CHECK' MONOTONICITY

DIMENSION VARI(1)s VARD(MAXs1)s Y(1)s V(3), YY(2)
LOGICAL EX

IF (M.EQ.0) GO TO 170

IF (NoLE.1) GO TO 170

EX==F.

IF (1.6E.0) GO TO 60

IF (NLT.2) GO TO 60

MONOTONICITY CHECK

IF (VARI(2)=VARI(1)) 20520540

ERROR IN MONOTONICITY

K=LOCF (VARI (1))

LOCF(X) IS A SYSTEM ROUTINE THAT RETURNS THE ADDRESS OF X

"PRINT 1909 JoKs {VARI(J)sJ=1eN)
STOP

MONOTONIC DECREASING

Do 30 J=2sN

IF (VARI(J)=VARI(J=1)) 30210510
CONTINUE

GQ T0 60

MONOTONIC INCREASING

DO 50 J=2:N

IF (VARI(J)=VARI(J=1)) 10+10+50
CONT INUE

INTERPOLATION

Ifr (1.LE.0) I=1
IF (I.GE.N) I=N=-l

LOCATE I INTERVAL (X(1).LEeXoLToX(I+1))

IF ((VARI(I)=X)®*(VARI(I+1)=X)) 1005100570

IN GIVES DIRECTION FOR SEARCH OF INTERVALS
IN=SIGN{1.0s (VARI(I+1)=VARI(I))#(X=VARI(I)))

IF X OUTSIDE ENDPOINTS, EXTRAPOLATE FROM END INTERVAL
IF ((I+IN)L.LE.O) GO TO 90

QO0OUDOOUUDOOUOLDUIUOUOUUVOUODOU00O0D0U00O0O0O0000U00000V00U0D0O0D0 VU000V 0OU0O00O

490
500
510
520
530
540
550
560
570
580
590
600
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IF ((I+IN).GE.N) GO TO 90
I=I<IN
IF ((VARI(I)=X)®#(VARTI(I+1)~X)) 1005100,80

EXTRAPOLATION

EX=aT,
IF (M,EQ.2) GO TO 120

FIRST ORDER

DO 110 NT=1sNTAB

Y{NT)=(VARD{I+NT)# (VARI(I+1)=X)=VARD(I+1eNT)#(VARI(I)=~X))/(VARI(I+
11)=-VARI(I))

IF (EX) I=I+IN

RETURN

SECOND ORDER

IF (N.EQ.2) GO TO 10
IF (I.EQ.(N=1)) GO TO 140
IF (I.EQ.1) GO TO 130 :

PICK THIRD POINT

SK=VARI(I+1)=VARI(])

IF ((SK#(X=VARI(I=1))) LT« (SK#(VARI(I+2)=X)}) GO TO 140

L=I

GO T0 150

L=1-1

V(1)=VARTI (L) =X

V(2)=VARI(L+1)=X

V(3)=VARI(L+2)=X

DO 160 NT=1yNTAB -
YY(1)=(VARD(LsNT)#V(2)=VARD(L*1sNTI#V (1)) /(VARI(L+1)=VARI(L))
YY(2)2(VARD(L+1sNT)#y (3)=VARD(L+24NT)®#V(2))/(VARI(L+2)=VARI(L+1))
Y(NT)=(YY(1)#V(3) =YY (2)#V (1)) /(VARI(L+2)=VARI(L))}

IF (EX) I=I+IN

RETURN

ZERO ORDER

D0 180 NT=1,NTAB
Y(NT)=VARD (1 sNT)

RETURN

FORMAT (1H1,49H TABLE BELOW OUT OF ORDER FOR MTLUP AT POSITION I
15,/31H X TABLE IS STORED IN LOCATION +065//(8G15.8))
END
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- APPENDIX A — Continued

OVERLAY (RINGs1,0)
PROGRAM GEOMTRY

THIS OVERLAY COMPUTES NACELLE MEAN CAMBER RADII AND THICKNESS
FOR THE EQUIVALENT INCOMPRESSIBLE SHAPE. THEN THE SLOPES ARE
COMPUTED ON THE EQUIVALENT NACELLE CAMBER AND THICKNESS SHAPES
AND ON THE EQUIVALENT CENTER BODY,

COMMON /CORD/ X(170)9sR(170)9CoyRAVGINNsNSDMINT(170)+RB(170) 9 XRN
COMMON /ONE/ ROUT(170) sRINC(C1I70) sMeDMAXs XTI (170)eXIO(170)+ALPHO(170)
19ALPHOO(17091) e XBL{170)9ALPT(170)«ALPTH(170)sDRDX(170)sDRDXH(170),
2LAMy ITs ITMAX

REAL LAMsM

COMPUTE NACELLE MEAN CAMBER RADII AND THICKNESS AND
COMPUTE NACELLE EQUIVALENT INCOMPRESSIBLE BODY

DO 10 I=1sNN
R(I})=(ROUT(I)+RIN(I)) /2,
T(D)=ROUT(I)=-RIN(I)
CONTINUE

Dn 20 I=1¢NN
R(I)=R(I)#SQRT (1,-M##2)
T(I)=T(I)#SQART (1 ,=M##2)
CONT INUE

DMAX=DMAX#SQRT (1.-Y4#22)
DMIN=DMIN#*SQRT (1,=Y##2)
RAVG=(DMIN+DMAX) /4,

COMPUTE NACELLE CAMBER AND THICKNESS SLOPES AND CENTER BODY SLOPES

CALL SLOPE (XIeXIOyALPHOsALPHOO)
DO 30 J=1sN
XBL(J)=(C/2.)=(XI0(J)H*RAVG)
CONTINUE

CALL THICK (ALPTSALPTH)

CALL BODY (DRDXsDRDXH)
LAM=(DMAX+DMIN)/(2.%#C)

IF (IT.LF.ITMAX) GO TO 40

WRITE (6450) LAMy (ALPHO(I) sALPHOO (T91) o XI(I)sXIOC(I)9ALPT(I)sALPTH(
lI)oDRDX(I)oDRDXH(I)!I’I 1+N)
CONTINUE

RFETURN

FORMAT (1H1+25X+42HGEOMETRY ON EQUIVALENT INCOMPRESSIBLE BQODY//TX,
14HLAM=9F9,4//5X s SHALPHO 44X s 6HALPHOO 98X 9 2HXT s 7TX 9 3HXI0 96X e 4HALPT 95X s
25HALPTHs6X 9 4HDRDX 95X ¢ SHDRDXHe4X96HI OR J//(8F10.5,110))

END
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APPENDIX A -~ Continued

SUBROUTINE SLOPE (XIsX10»ALPHO,ALPHOO)
THIS SUBROUTINE COMPUTES XI(I), XIO(J)s ALPHO(I)s ALPHOO (J)

THE XI AND XIO ARE FOR NACELLE AND CENTER BODY .
THE SLOPES ARE NACELLE CAMBER SLOPES.

COMMON /CORD/ X(170)sR(170) ¢CsRAVGsNNsNsDMIN
DIMENSION ALPHO(170)s ALPHOO(17041)s XI(170)s XI0(170)
Ip==1

XXX==,25% (C/N)

XX=(C/N) #. TS

DO 30 I=1sN

IF (1.EQ.1) GO TO 10

CALL MTLUP (XXXsRXI152+NNol170s19IPsXsR)
CALL MTLUP (XXsRXIo2sNNypl1T7091sIPoXsR)
TEMP4= (RXI1-RXI)/ (C/N)

GO T0 20

PIP.=0.

POP=(C/N)#.5

CALL MTLUP (PIPsRXI152sNNsl70s1+IPsXsR)
CALL MTLUP (POPsRXI+2sNNol170s1,4IPsX4R)
TEMP4= (RXI1-RXI}/((C/N)#,5)

CONTINUE

ALPHO (I)=ATAN(TEMP4)

XXX=XXX¢ (C/N)

XX=XX+(C/N)

CONTINUE

DO S0 I=1eN

IF (1.EQ.N) GO TO 40
ALPHOO(I+1)=(ALPHO(I)+ALPHO(I+1))%,5
GO TO 50 ,
ALPHOO(Is1)=ALPHO(I) «(,5% (ALPHO(1)-ALPHO(1-1)))
CONTINUE

TEMPS=,5#C/RAVG

TEMP6=(C/N) /RAVG

DO 70 I=1sN

IF (1.EQ.1) GO TO 60
XI(1)=XI(I=1)~TEMP6
X10(I1)=X10(I~1)-TEMP6

GO TO 70

RI(I)=TEMPS=(,25*TEMP6)
XI0(I)=TEMPS~ (. 7TS*TEMP6)

CONTINUE

RETURN

END
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APPENDIX A — Continued

SUBROUTINE THICK (ALPT.ALPTH)
THIS SUBROUTINE COMPUTES NACELLE THICKNESS SLOPES,

COMMON /CORD/ X(170)9R(170)sCoRAVGsNNeN9DMINST(170)
DIMENSION ALPT(170)s ALPTH(170)

{p==1

XXX==q254(C/N)

XX=(C/N)#.,75

DO 30 I=1oN

IF (1.EQ.1) GO TO 10

CALL MTLUP (XXXsTXI192yNN9170s1sIPoXeT)
CALL MTLUP (XXoTXIs2sNNs170919IPeXsT)
TEMP4=((TXI1=TXI)/2.)/(C/N)

GO TO 20

X14=(C/N)#,5

CALL MTLUP (X149TXIo2sNNel7091,IPsXsT)
TEMP4=((0e=TXI)/2e)/((C/N)#,5)
CONTINUE

ALPT(I)=ATAN(TEMP4)

AXX=XXX+ (C/N)

AX=XX+ (C/N)

CONT INUE

DO 50 I=1sN

IF (I1.EQ.N) GO TO 40
ALPTH(I)=(ALPT(I)+ALPT(I+]1))#%,5

GO TO S0 )
ALPTH(I)=ALPT(I) ¢ (,5# (ALPT(I)=ALPT(I=1)))
CONT INUE -

RETURN

END
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APPENDIX A — Continued

SUBROUTINE B0DY (DRDXsDRDXH)
THIS SUBROUTINE COMPUTES CENTER BODY SLOPES.

COMMON /CORD/ X (170)9R(170) sCyRAVGINNsNoDMINsT(170)4RB(170) »XBN
DIMENSION DRDX(170)s DRDXH(170)

Ip==1

XXX==425% (C/N)

XX=(C/N)#,75

DO 30 I=14N

IF (I.EQ.1) GO TO 10

CaLL MTLUP (XXXsRBXI192sNNs170415IPsX9eRB)
IF (XXX.LE.XBN) RBXIl=0.

CALL MTLUP (XXsRBXI929NNesl170s1,IPyXsRB)
IF (XX.LE.XBN) RBXI=Q.

ORDX (1) =(RBXI=-RBXI1)/(C/N)

GO TO 20

X14=(C/N)#,5

CALL MTLUP (X149RBXI42,NNs170s19IPsXsRB)
DRDX (1)=RBXI/{(C/N)* 5)

XXX=XXX+ (C/N)

Xx=XX+ (C/N)

CONTINUE

DO S0 I=1sN

IF (I1.EQ.N) GO TO 40
DRDXH(I)=(DRDX(I)+DRDX(I+1)) /2,

GO TO S0
DRDOXH(I)=DRDX{I)+(,S«(DRDX(I)-DRDX(I~1)))
CONTINUE

IF (DRDXH(1).NE.0.) GO TO 80

DO 60 I=24N .

IF (DRDXH(I).NE.0.) GO TO 70

CONTINUE

DRDXH(I)=0.

CONTINUE

RETURN

END
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APPENDIX A — Continued

OVERLAY (RINGs250)
PROGRAM MATRIX

THIS OVERLAY COMPUTES NACELLE CAMBER AND THICKNESS VORTEX
STRENGTHS = GAM(I) AND 6Q(I)

COMMON /CORD/ X (170)sR(170)sCoRAVGsNNoNsDMINsT(170)sRB(170)sXBN’
COMMON /0ONE/ ROUT(170) ¢RIN(1T0) oMyDMAX, XTI (170)eXI0(170)9ALPHO(170)
19ALPHOO(17091) s XBL(170)sALPT(170) s ALPTH(170)sDRDX(170)sDROXH(170),
2LAM ITo ITMAX

COMMON /TWO/ IPsCAMsGAM(170)9+GQ{170)+ALPO0(170,1)

REAL KSQeLAM,M

DIMENSION WA(170)s WY(170)s GQB(170)s ANS(170)s ALPHGBB(170s1)s RH
100(170)

COMPUTE SECOND ALPHOO WHICH IS PRINTED - DO 20

DO 20 J=1sN

WRBQJU=0,

RHOO (J) =1,

XX=(C/N)#,25

DO 10 I=1sN

CALL MTLUP (XXsRBXI92sNNsl17091,IP4X4RB)

IF (XX.,LE+XBN) RBXI=0,

DELXI=XI(I)=-XIO(L) .
TEMP11=RHOO(J) /(2 # ((DELXI##2+RHO0(J) ##2) ##]1,5))
WRBQJU=WRBQJIU+TEMP11#(RBXI/RAVG)#DRDX(I)#(XI(1)=XI(2))
Xx=XX¢ (C/N)

CONTINUE

ALPOO(Js1)=ALPHOO(Js1)

ALPHOO(Je1)==2,%#3,14159# (ALPHOO(J»1) +WRBQJU)
CONTINUE

SOLVE MATRIX EQUATION FOR THE GAM(I) MATRIX

IF (CAM.,EQ.0.,) GO TO So

REWIND 10

DO 40 J=14N

DO 30 I=1sN

DELXI=XI(I)=-X10(J)

KSQ=4,/ (DELXI##2+4,)

EK=EKA(KSQ)

SK=SKK (K5Q)

WACI)=(( (=1} #DELXI#*SART(KSQ) ) /4,)#((((2.=KSQ)/(1.~KS5Q))#EKA(KSQ))
1= (2. *SKK(KSQ)))#ALPHO(I)

WRITE (10) (WAC(IT)»IT=1oN)sALPHOO(Js])
CONTINUE

CALL SSLESO (Ns1lsGAM)

REWIND 10

Go 10 7o

DO 60 I=1sN

GAM(1)=0,

CONT INUE

CONT INUE

COMPUTE ALPHQGBB - DO 80
Do 80 J=1sN

ALLPHQBB(Js1)=0,
XX=C/N# .25

) e mal peg jud P fued b e Demfl pemi pan] jumd) emd puod o] end b P pemd ] b prmf pef pd pmnf i b} bed peed bl ] ) beed e g e b pemd b b b bl bed bl bt bewd beed fuep pumd bmd bemd G pumg pemd el pemg e fed

310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560



00O ®

90

100

OO0

110

120

130

140
150
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D0 80 I=1sN

DELXI=XI(1)=XI0(J)

KSQ=4,/ (DELX18%#2+4,)

EXK=EKA (KSQ)

SK=SKK (KSQ)

CALL MTLUP (XXeTX929NNs170919IPeXsT)

AL PHQBB (Js1) =ALPHQABB (Jo 1)+ ((TX/C)# (((SQRT11.-KSQ))/2,.)*(~-DELX1/ABS
1(DELXI) ) #{ ((KSQ+2.) #SK) = (2. #(KSQ+]1,)*EK) ) ) # (XI(1)=XT(2)))

XX=XX+ (C/N)

CONTINUE

SOLVE MATRIX EQUATION FOR GQB(I) MATRIX

REWIND 10

DO 100 J=1eN

D0 90 I=1.N

DELXI=XI(I)=XIO(J)

KSQ=4+/ (DELXI#%#24+4,)

EX=EKA (KS5Q)

SK=SKK (KSQ)

WY (I)=(((KSQ=2,) #EK*2,# (1.~KSQ)#SK)}/SQRT(KSQ))#((XI{1)=XI(2))/DELX
11)#(1./7LAM)

WRITE (10) (WY(IT)sIT=14N)sALPHQBB(Js1)
CONTINUE

CALL SSLESO (N»s1+6QB)

COMPUTE 6Q

Xx=C/N#,25

DO 110 I=1sN

CALL MTLUP (XXsTX329NNg170s1sIPsX,T)
GQIIN=((TX/C)/LAM) + ( ((C/(2.%RAVG) ) ##2) #GAB (1))
6Q(1)==6a(1)

XX=XX+ (C/N)

CONT INUE

IF (IT.LE.ITMAX) GO' TO 130

PRINT 140

DO 120 I=14N

WRITE (65150) IsGAM(I),GQ(I)+GQAB(I)sALPHQBB(I+1)9sALPHOO(Ts])
CONTINUE

CONT INUE

RETURN

FORMAT (1H1911Xs1HIs9Xy3HGAMs11Xs2HGQ910Xs3IHGQAB6X s THALPHABB» 7X s 6H
1ALPHOO)

FORMAT (9X91392X9E12.5+4(2XsE11.4))

END
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APPENDIX A - Continued

SUBROUTINE SSLESO (NT9NCFLGsANS)

THIS SUBROUTINE SOLVES SIMULTANEOUS LINEAR EQUATIONS BY
SUCCESSIVE ORTHOGONALIZATION #+#

IF MATRIX ORDER IS = N, AND NUMBER OF RIGHT-HAND SIDES = M, THEN
THE AMOUNT OF CORE THAT MUST BE AVAILABLE FOR EACH ARRAY IS --

R = N+¢My RV = NeM=1ls CV = N=ls V =J(J+1) WHERE J IS THE INTEGER
PORTION OF (N+M)/2

DIMENSIONS BASED ONi THE VALUES N+M .LE. 283, MAX N IS 281

DIMENSION RV(170)s R(170)s CV(170)s V(B100)s ANSI(NT)
REWIND 10

N1=NT+NCFLG

J=N1=-1

READ (10}

READ (10) (R(I)sI=19N1)
Do 10 I=1leJ
V(I)==R(I+1)/R(1)

IN=1

READ (10)

READ (10) (R(I)sI=1sN1)
I12=0

DO 40 I=14J

Rv(1)=0,

DO 30 II=1sIN
I2=12+1

RV(I)=RV(I)+R(II)®*V(12)

N2=1+IN

RV(I)=RV (1) +R(N2)
12=IN+1

NN=J#IN+1

KK=J#12

J=J=1

DO 60 I=1sJ

DO 50 II=1yIN

NN=NN=-1

KK=KK~1

V(KK)=V (NN)

KK=KK~1

DO 70 1I=1+IN
R(IY=V(I)

K=0

Do 90 I=14J
==RV(I+1)/RV(1)
DO 80 II=1yIN
CVv(II)=C#R(I])

NN=K+I1

I2=12+1
V(NN)=CV(II)+V(I2)

K=NN+1

I2=12+1

V(K)=C

IF (J.EQ.NCFLG) GO TO 100
IN=IN+]
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110
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GO TO 20
K=1=NT

KK=0

DO 110 J=1sNCFLG
K=K +NT
KK=KK+NT
CONTINUE

DO 120 J=14NT
ANS (J) ==V (J)
RETURN

END

APPENDIX A - Continued

[ SR SN SR SR S S SR S S SR 4N

610
620
630
640
650
660
70
680
£90
700
710~

67



68

OO0

10

e XoXe]

APPENDIX A — Continued

OVERLAY (RINGs3,0)
PROGRAM PRESURE

THIS OVERLAY COMPUTES NACELLE AND CENTER BODY SURFACE PRESSURES

COMMON /CORD/ X(170)sR(170) 9CoRAVGINNoNsDMINsT(170)sRB(170) ¢+ XEN
COMMON /ONE/ ROUT(170) 3RIN(170) sMeDMAXsXI(170)XI0(170)9ALPHO(170)
19ALPHOO(17091) 9 XBL(170)sALPT(170)4ALPTH(170)+DRDX(170)sDROXH(170),
2LAMs ITo ITMAX

COMMON /TWO/ IPsCAMeGAM(170)+GQ(170)9ALPOO(170,+1)

COMMON /THREE/ VOUT(170)sVIN(170)

COMMON /FIVE/ CPO(170)4MCR

DIMENSION RHOO(170)s CPI(170)

REAL KSQsLAMsM

IF (ITJ.LE.ITMAX) GO TO 10

PRINT 190

PRINT 130

PRINT 140

PRINT 170

CONTINUE

XXX=(C/N)#.,75

Do 120 J=1sN

X0J=XI0(J) *RAVG/C

RHOO(J) =1.

XX=(C/N)#,25

COMPUTE VELOCITIES ON NACELLE SURFACE - DO 20

WX1JUo=9,

WR1JUO=0,

WxliqQJuu=0,

WR1QJU=0,

WXQJu=0,

WRQJU=0,

WXxBQJU=0,

WRBQJU=0,

DO 20 I=1eN

DELXI=XI{(I)=XIO(N)

KSQ=4+/ (DELXI##24+4,)

EK=EKA (KSQ)

SK=SKK (KS5Q)

CALL MTLUP (XXyRBXI»29sNNs17051,1PsXsRB)

IF (XXeLEXBN) RBXI=0.
TEMPL=(14/(2,#SQRT(DELXT#%#244,)))# ((((2.=KSQ)/{1.=KSQ))*EKA(KSQ))~
1(2.,#SKK(KSQ) )= ((KSQ/(1,-KSQ))#EKA(KSQ)))

TEMP2=(((=1.) *DELXI*SQRT (KSQ)) /4 ) # ((((2.-KSQ)/ (1,-KSQ))*EKA(KSQ))
1= (2.%SKK(KSQ)))

TEMPT=(4 ., #EK) / ((SQRT (4, +DELX]I##2))#DELXI)
TEMP8=2,2TEMP] .
TEMP11=RHO0(J) / (2. # ((DELXI®#2+RHO0 (J) #82)##]1,5))
TEMP12=(DELXI) /(2. #( (DELXI®#®2+RHOO () #82) #5] ,5))
WX1JUO=WX1JUO+TEMP1#ALPHO (1) #GAM(T)*(]1,/(2,%#3,14159))
WR1JUO=WR1JUD+TEMP2#ALPHO(I) #GAM (1) ®(1./(2.,%#3.14159))
WX1QJU=WX1QJU+ (TEMPL1#GO(I)#(XI (1) =XI(2)})/(2,%#3,14159))
WR1QJUU=WR1QJU+ (TEMP2#GQ(I) #AXI(1)=X1(2))/(2.%#3.14159))
WXQJUU=WXQJIU=(TEMPT#ALPT (I)#(XI(1)=X1(2))/(2.%3.14159))
WRQAJU=WRQJU+ (TEMPB#ALPT(I)#(XI(1)=XI(2})/(2.%#3,14159))
WXBQJUU=WXBQJU+TEMP]12# (RBXI/RAVG) #DRDX (1) #(XI(1)=XI(2))
WRBQAJU=WRBQJU+TEMP11#(RBXI/RAVG) #*DRDX(I)#(XI(1)=X1(2))
XX=XX+(C/N)
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CONTINUE

IF {J.EQ.M) GO TO 30

TEMP3={ALPHO {J) #*GAMI(J) +ALPHO (J+1) #GAM(JU21) ) #,25# (1,/(XI1(1)=X1(2)))
TEMP31=,25%{(6GR(J) +6Q(J+1))

G0 TO 40

TEMP3=ALPHO (J) #GAM(J) #,50%(1./(XI(1)=X1(2)))*.3333333333
TEMP31=.50#(GQ (J)#,3333333333)

CONTINUE

WX1JUOO=WX1.JUO+TEMP3

WX1JUOI=WX1JUO-TEMPD

WX1@JUI=WX1QJU~-TEMP3]

WX1Q0JUD=W"X1QUU+TEMPO]

WRAJUI=WRAJU+ALPTH (J)

WRQAJUO=WRQAJU=-ALPTH (J)

CALCULATE' TOTAL VELDCITY SQUARED AND APPLY COMPRESSIBILITY FACTOR

VTO={1,+(WX1JUOO+WX1QJIUO +WXQIU+WXBQJIU) /(1 ,~Ma82))#uD
VTI=(1,+(WX1JUOT+WX1QJIUI+*WXQIU+WXBQIU) /(] ,=M#2) ) 382

APPLY RIEGELS FACTOR

VTO=VTO/ (1 + {TAN((ALPOO(Js 1) +ALPTH(J) ) /SART (1 ,=MH##2)) ) =*#2)
VTI=VTI/Z(1a+ (TAN((ALPOO(Js1) =ALPTH(J) ) /SART (1.~MH%22)) ) ##2)
VOUT (J) =SQRT (VTO)
VIN(J) =SQRT(VT1}

COMPUTE CPO AND CPI

IF (M.EQ.0.) GO TO S0

CPO(J)Z(2e/ (1ot (Mu82) ) )8 ( (], ¢ (28 (M#R2)8(],=VTO)))##(]l,4/,4)=1.)
CPI(J) (27 (1ata®(MB82)) )R ( (14 (o20(ME#2)8 (] ,=VTI)))®#(1,4/,4)=10)
GO TO 60

CPO(J)=(1.=VTO)

CPIC(JI=(1.~VTI)

CONT INUE

COMPUTE CENTER BODY SURFACE VELOCITIES = DO 70

WX1J=0,

WR1J=0,

WX1QJ=0,

WR1QJ=0,

WXxQJ=0.

WRQAJ=0,

wxsaJ=0,

WRBQJ=0,

XX=(C/N)#,25

CALL MTLUP (XXX9RBXJs24NNs170+191P9sXsRB)
IF (XXX<LE«XBN) RBXJ=0,

RHOO (J) =RBXJ/RAVG

IF (RHOQ(J).LE.O0.) GO TO 80

DO 70 I=1sN

DELXI=XI(I)=XI0(J)

CALL MTLUP (XXsRBXTs2sNNs17091,IPsX9RB)
IF (XX.LE.XBN) RBXI=0.
KSQ=(4,#RHO0(J) ) 7 ( (DELXI®##2) + ((1,+RHOO(J))#=u2))
EX=EKA (KSQ)

SK=SKK (KSQ)
TEMP1=(1./(2,#SQRT ((DELXI##2)+ ((1.*RHOD(J))##2)) 1) #({((2.-KSQ)/ (1.
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1-KSQ) ) #EK) =2, #SK) =( (1 ,/RHO0 (J) ) #(KSQ/ (1 .=KSQ) ) #EK) )

TEMP2=( ((=14)#DELXI)/ (2,#RHO0(J) #SQRT ( (DELXI#*#2) +{ (1, +RHOO(J)) ##2)

108 ((((2=KSQ)/(1.-K50) ) HEK) =(2,#SK))

JEMP7= (4 #DELXIYEK) /.((SQRT ( (DELXTI®*##2) +((1,+RHOO(J))#=2)) ) ((DELXI*

1%#2)+ ((1.=-RHO0(J))##2)))

TEMPB= (2,7 (RHOO(J) #SQRT ((DELXI##2) + ((1,+RHO0(J))#82)) ) ) #(((1l.={ (2,
1#RHO0 (J) 2 (RHOO (J)=14) ) / ({DELXI##2) + ( (1,~RHOO(J))#82))) ) *EK)=SK)
TEMP11=RHOO0(J) /7 (2. #( (DELX1#%2+RHO0 (J) ##2) #2] ,5))
TEMP12=(DELXT) / (2. % ((DELXI#22+RHO0 (J) #%#2) #4] ,5))
WX1J=WX1J+TEMP 1 #ALPHO (1) *GAM(I)#(]1./(2.%#3,14159))
WR1J=WR1J+TEMP2#ALPHO (1) #GAM(I)#(]1,/(2.%3,14159))

WX1QJ=WX1QJ+ (TEMP1#GQ(T)#(XI(1)=XT1(2))/(2,%#3.14159))

WR1QJ=WR1QJ+ (TEMP22GQR (1) #(XI(1)=X1(2))/(2,#3.14159))
WXQJI=WXQU=(TEMPT#ALPT (1) #(XI(1)=X1(2))/(2.%3.14159))

WRQJ=WRQJ+ (TEMPB*ALPT (1) #(XI(1)=X1(2))/(2,#3.14159))
WXBQJ=WXBAJ+TEMP12%(RBXI/RAVG) #DRDX (1) #(XI (1) =X1(2))
WRBQJ=WRBQJ+TEMP11#(RBXI/RAVG) #DROX(I) & (XI(1)=XI(2))

Xx=XX+(C/N)

CONTINUE

VBA= (1o 4 (WX1J+WX1QU+WXQJI+WXBQU) /(1 ~Mi#t82) ) #5224+ ( (WR1J+WR1QJ+WRQJ+WR
1BQJ)/SART (1l o~Mu®2) ) a2
VBI=(1,+WXBQU/(1,=M%82))##2+ (WRBQJ/SART (1 ,=-M##2) ) 2ap

COMPUTE CENTER BODY PRESSURES

IF (M.EQ.0.) GO TO 90

CPBA=(2,./7 (1,65 (M##2) ) ) ( (L, +( 2% (M##2) 8 (] ,=VBA)) )8 (],4/,4)~1,)
CPBI=(2./(1.48(M#R2)) ) ((1,+( 2% (M282)8(],=VB])))IH#(1.4/.4)"1,)

Go TO 100

CPBA=(1,~VBA)

CPBI=(1.-VBI)

CONTINUE

IF (ITJLE.ITMAX) GO: YO 110

WRITE (65150) JsXOJsCPO(J) sCPI(J)sVTOsVTI4WX1JUOOsWXIJUOT s WX1JUO W
1R1JUO

WRITE (6+160) WX1QUUOsWX1QUUIsWX10JUsWRIQIUsWXQIUsWRQAJIUO, WRQJIUIsWR
1Quu

WRITE (6+180) CPBA,CPBT+WXBQJU,WRBQJU»RHOO (J)

CONTINUE

XXX=XXX+ (C/N)

CONTINUE

RETURN

FORMAT (1XslHJs7XeSHXOU/Ce8X93HCPOsIXs3HCP I +8Xs3HVTO910Xe3HVTI 96X,

17HWX1JUOD 96Xy THNX1JUOT o 7X 9 6HWX1JUDs 7TX9 6HWR1JUO)

FORMAT (19X 7HWX1QJUO 96X s THWX1QJIUT 97X 9 6HWX1QJUs TX s 6HWR1QJU ¢ 8X s SHWX
1QJUs 7TX 9 6HWRQIUQ » 7X s 6HWRQIUT s BX y SHWRQJU)

FORMAT (1XsI393(2XsF10,5)96(2X,E11.4))

FORMAT (13X+8(2XsE11.4))

FORMAT (19X e4HCPBA9OX s 4HCPBI » 7X9 6HWXBQJU s 7X 9 6HWRBQJU 4 X9 SHRHOO~B0D

1Y/)

FORMAT (10X92(2X9F11,5)93X02(2X9E1144)9F10.4/)

FORMAT (1H1,20HNACELLE SURFACE SOLNs»10Xs48HALL PERTURB VEL ARE ON
1EQUIV INCOMP NACELLE SURF+10Xs26HCENTER BODY RHOO AND PRESS//)
END
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APPENDIX A - Continued

OVERLAY (RINGs440)
PROGRAM BNDLYR

THIS OVERLAY EXTRAPOLATES THE VELOCITIES IN THE TRAILING EDGE
REGION OF THE NACELLE AND COMPUTES THE BOUNDARY LAYER ON THE
NACELLE, THEN THE NACELLE COORDIMATES ARE MODIFIED FOR THE
DISPLACEMENT THICKNESS,

COMMON /CORD/ X(170)4R(170)sCsRAVGsNNsNsDMINsT(170),RB(170)+XBN
COMMON /ONE/ ROUT(170) sRIN(170) sMoDMAXsXI(170)9sXI0(170) s ALPHO (170)
19ALPHOO(170+1) sXBL (170) 3 ALPT(170) s ALPTH(170) sDRDX (170) sDRDXH(170) s
2LAMs ITs ITMAX

COMMON /TWO/ IPsCAMyGAM(170)sGQ(170) sALPOO(17041)

COMMON /THREE/ VOUT(170),VIN(170)

COMMON /FOUR/ XOVC(170)4RO(170)sRI(170) sDELO(170) sDELI(170) sWLS (40
1) +DOLDO(170) yDOLDI (170) o UNRREF 9 SAM s XFOR s XAF T

DIMENSION UGURO(170), UOURI(170)s THE(170)s H(170)s DELST(170)s XL
1S(40)s YLS(40s1)s RESID(40s1)s SUM(1)s ALS(3s3)s BLS(391)s CLSO(40
292)s CLSI(4053)s DDEL(170)

REAL JOHNsLAMsM

EXTRAPOLATE OUTER SURFACE VELOCITIES FROM XFOR PERCENT CHORD TO
TRAILING EDGE BY LINEAR LEAST SQUARE FIT OF VELOCITIES
BETWEEN XFOR AND XAFT PERCENT CHORD

L=0

DO 10 J=1sN

JOHN=XBL (J)/C

IF (JOHN.LT.XFOR) GO TO 10

IF (JOHN.GT.XAFT) GO TO 10

L=bLel

XLS (L) =XxBL(J)

YLS(Le1)=VOUT ()

CONTINUE

CALL LSQPOL (XLSsYLSsWLSIRESIDyLsSUMs19sALSsBLS929CLS0940+3)
Do 20 J=1sN '
JOHN=XBL (J) /C

IF (JOHN.LT.XFOR) GO TO 20

VOUT(J)=8BLS(191) +BLE(251)#XBLA(J)

CONTINUE

EXTRAPOLATE INNER SURFACE VELOCITIES FROM XFOR PERCENT CHORD TO
TRAILING EDGE BY PARABOLIC LEAST SQUARE FIT OF VELOCITIES
BETWEEN XFOR AND XAFT PERCENT CHORD AND LAST OUTER SURFACE
VELOCITY FROM ABOVE

L=0

DO 30 J=1sN

JOHN=XBL (J) /C ,
IF (JOHN.LT.XFOR) GO TO 30
IF (JOHN.GT.XAFT) GO YO 230
L=bel

XLS(L)=XBL(J))
YLS(Ls1)=VIN(J)

CONTINUE

L=Le*l

XLS (L) =XBL(N)

YLS (L9 1)=VOUT(N)

CALL LSQPOL (XLS+YLGsWLSIRESIDoL sSUMe19ALS,BLS39CLSTI40+3)
DO 40 J=1leN
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APPENDIX A — Continued

JOHN=XBL (J) /C
IF (JOHN.LT.XFOR) GO TO 40
VIN(J)=BLS(151)+(BLS(2,1)#XBL(J))+(BLS(3s1)*(XBL(J)#52))

40 CONTINUE
C
c INTERPOLATE FOR VEL! AT INPUT X
c
LUG=NN-1
Do S0 I=2.LUG
BLAIR=X (1)

CALL MTLUP (BLAIRsGLOSSs29Ns17091+IPeXBLVOUT)
CALL MTLUP (BLAIRsTIMs2¢Ns170s19IPeXBLIVIN)
UOURO (1) =6LOSS
UQURI(I)=TIM
50 CONTINUE
UQURO (1) =VOUT (1)
UOURI(1)=YIN(1)
UQURO (NN) =VOUT (N)
UQURI (NN)=VIN(N)
DO 60 I=1sNN
JOHN=X({1)/C
IF (JOHN.LT..02) UOQURI(I)=UOUROD(])
0 CONT INUE

COMPUTE OUTER BOUNDARY LAYER AND MODIFY OUTER WING COORDINATES FOR
DISPLACEMENT THICKNESS

OO0

CALL BLYR (XsRO9sNNsUOUROUNRREF s THEsHsDELST)
DO 100 I=1.NN
DELO(I)=((DELO(I)*SAM) + (ITH#DELST(I)))/(SAM+IT)
IF (IT.EQ.1) 70+80

70 ROUT(I)=RO(I)+(DELO(I)/2,.)
Ga 10 90

80 ROUT(1)=RO(1)+DELO(I)

90 DDEL (I)=DELST(1)~DOLDO(1)
DOLDO (1) =DELST(I)

100 CONTINUE -

c FIND NEW DMAX

DO 140 I=1sNN

- 110 ELIZ=ROUT (D)

2

GO TO 140
120 IF (ROUT(I) GTLELIZ) 1304140
130 ELIZ=ROUT(I)
140 CONTINUE
DMAX=2,.#EL.12Z
WRITE (6,230) ITsDMAXs (XOVC(I)oX(I)sUOURO(I)sDELST(1)+DDEL (1),DELO
1(1)sROUT(I) s THECI) sH(I) 9 I=19NN)

COMPUTE INNER BOUNDARY LAYER AND MODIFY INNER WING COORDINATES FOR
DISPLACEMENT THICKNESS

2 s X Xs)

CaLL BLYR (XsRIsNNsUOURIoUNRREFTHEs»HsDELST)
DO 180 I=1sNN"
DELI(I)=((DELI(I)*SAM)+ (IT#*DELST(1)))/(SAM+IT)
IF (IT.EQ.1) 1505160

150 RIN(D =RI(I)=(DELI(I)/2.)
Go 70 170
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APPENDIX A — Continued

RINC(II=RIC(I)-DELI(])

DDEL (I)=DELSY(X3}-DOLDI(])
DOLDI(X)=DELST{T)
CONTINUE

FIND NEW DMIN

D0 220 I=1sNN

IF (1.EQ.1) 190,200
ELIZ=RIN(I)

G0 TO 220

IF (RINCI).LT,ELIZ) 210,220
ELIZ=RIN(I)

CONTINUE

DOMIN=2.%ELTZ

WRITE (6+240) IToDMGNo(XOVC(I)'X(I).UOURI(I)oDELST(I).DDEL(I),DELI
1(I)sRINCI) s THE(I) s H(I) 4 I=15NN)
SAM=SAM+IT

IT=1T+1

RETURN

FORMAT (1H1+4Xs44HOUTER WING SHAPE MODIFIED BY BOUNDARY LAYER./4X,
1SO0HVELOCITIES ARE ONES USED TO COMPUTE BOUNDARY LAYER//4Xs3HIT=s13
294X 9 SHOMAX=9F9 ,4//TX 9 3HX/C 99X s 1HX s SX 9 SHUOURO +SX s SHDELST 96X 4 4HDDEL »
36X 94HDELD 96X s 4HROUT 9 7X ¢ SHTHE 99X 9 1HH// (9F10.4))

FORMAT (1H1+4Xs44HINNER WING SHAPE MODIFIED BY BOUNDARY LAYER,./4Xs
1SOHVELOCITIES ARE ONES USED TO COMPUTE BOUNDARY LAYER//4Xs3HIT=9]13
294X9SHDMIN=2F9,4//7X93HX/C99X9 1HX 9 SX 9 SHUOURI »SX 9 SHDELST 96X 3 4HDDEL »
32X:4HDELI!7X93HRIN'7X’3HTHEo9X9lHH//(9F10 «4))

ND
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SUBROUTINE BLYR (SsRoNXoUOURsUNRREF s THEsH,DELST)

c
c THIS SUBROUTINE COMPUL/ES THE INCOMPRESSIBLE TURBULENT AXISYMMETRIC
c BOUNDARY LAYER USING A SLIGHT MODIFICATION OF TRUCKENBRODTS METHOD
c PAGE 584 ~ 585 OF BOUNDARY LAYER THEORY By SCHLICHTING+4TH EDITION
c
c TRANSITION IS ASSUMED AT THE LEADING EDGE,
c
REAL. IARGs IARGL » IUDURSL
DIMENSION R(200)s S(200)s UOUR(200)s IUOUR(200)s UAOUR(200)s REY(2
100)» CF(200)s ARG(200), IARG(200)s THE(200)s RTHE(200)s B(200)s» AR
26L(200)» IARGL (200)s L (200)s TLi(13)s TH(13)ys H(200), DELST(200)s S
3QRTXI (200)
DO 10 I=1lsNX
IF (VOUR(I)4t.T,.00001) UOUR(I)=0,00001
10 CONTINUE
c
c U AVE OVER U REF
c

CaLL INT (SsUOURsNXs IUOUR)
UAOUR (1) =UOUR (1)
DO 20 I=2.NX

0 UAOUR(I)=IUOUR(I)/S(])

Cr

aoO0N

REY(1)=0,

CF(l)=l.

DO 30 I=2sNX

REY (1) =UNRREF#UAQUR(1)#S(I)
CF(I)=.0745/(REY(1)##,218)+,00072
CONTINUE

THETA

OO0 W
o

DO 40 I=1sNX
40 ARG (IV)=UQURII)I##(10./3,)#R(1)#2(T7,/6.)
CALL INT (S9ARGsNXsIARG)
THE (1) =0, ' '
DO 50 I=2+NX
IF (IARG(I).LE.0.) IARG(I)=0,
50 THE(I) = (UAOUR(I)I®S(1))##(1o/T)#CF(I)/2.#IARG(I)##(64/74)/ (UOUR(I)
1#23#R(1))

SHAPE FACTOR

Xy

OOO0O0

SQRTXI(1)=0.

DO 60 I=1sNX

SQRTXI(I)=(IARG(]))##2
0 CONTINUE

L

o000

00 70 I=19NX

RTHE (1) =UNRREF#UOUR(I)#THE(I)
IF (RTHE(I).LT.1l.) RTHE(I)=1,
B(I)=.07%ALOG10(RTHE(I))=.23

ZXXZTTTZTZITITIZXTITITTTTIZTTITIITTITXITITIZIZTITTTIZIXIZXIITIXZIZITIXZTTIITTXXX

10
20"
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
560
510
520
530
540
550
560
570
580
590
600



70

80
90
100

110

APPENDIX A — Continued

IF (B(I),LT.0.) B(I)=0,
ARGL(I)=(B(I)~ALOG(UOUR(I)))#2 ,4SQRTXI(]I)
CALL INT (SQRTAI+ARGL sNXsIARGL)

L(l1)=0.

DO 100 I=2.NX

IF (SQRTXI(1).FQ.0.) GO TO 80
L(I)=ALOG(UOUR(I))+IARGL (I)/SQRTX]I(])*#2
GO TO 90

L(I)=0.

IF (L(I).GTe1s) L(I2=1,

IF (L(I)eLTe=el9) LKI)=-a19

H AND DELTA STAR

DATA TL/=,183:5-,1729=¢1579=e1319=019"6059,0900590s1043950e791s/9TH
1/20692¢292¢0901:891.64591.4959]1,491433591429591.29141501:12,1,07/4N
2TL/13/7

Ip==1

DO 110 I=1,sNX

TEPI=L(I])

CALL MTLUP (TEP1,TEP2s2sNTLs13514IPsTLsTH)

H(I)=TEP?

DELST(I)=THE(I)#H(I)

CONTINUE

RETURN

END
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SUBROUTINE INT (XsYsNsANS)

THIS SUBROUTINE IS USED BY SUBROUTINE BLYR TO INTEGRATE Y DX FROM
X(1) TO X(I), RESULT EQUALS ANS(I). I RUNS FROM 1 TO No

DIMENSION X(100)s Y(100)s ANS{100)

SUM=0,0

ANS(1)=0,

IF (N.EQ.2) GO TO 90

I=1

GO TO 40

XA=X(I)=X{I~-1)

Xg=X(I+1)=Xx(I)

YazY(I)~Y(I-1)

YB=Y(I+1)=Y (I}

IF (XALEQa0.,0RXB.,EQeQ0-) GO TO- 20

IF (YA/XACGE.2:.%*YB/XBaANDeYA/XA:GE«O.) GO TO 20
IF (YA/XAGLE .2.*YB/XBeAND+YA/XAeLE<O.) GO TO 20
SUMFW=XB# (Y (1) +YB/3.¢ (XARH#Z2RYB4XBRU2HYA) / (6,4 XAR (XA+XB)))
Go 70 30

SUMFW=XB# ((Y(I)+Y(I+1))/2.)

IF (1.EQ.N~-1) GO TO‘SO

I=1+1

XasX{(I)=xX{I-1)

XB=X(I+1)~X (1)

YAa=Y (1))=Y (I~1)

Y=Y (I+1)=¥Y (1)

IF (XAWEQe04,0RXB.EQ.0.) GO TO 50

IF (YB/XBeGE.2.#YA/XA.AND.YB/XBsGEsOe) GO TO S50
IF (YB/XBeLE.2.#YA/XALAND.YB/XB.LELOG.) GO TO S0
SUMBK=XA# (Y (1) =YA/3 .= (XB#E2RYALXA#R2#YB) / (6, #XB# (XA+XB)))
Go TO 60 '
SUMBK=XA#( (Y (I)+Y(I~1))/2.)

IF (I.EQ.2) GO TO 70

SUM=SUM+ (SUMFW+SUMBK) 72,

ANS (1) =SUM

Go TO 10

SUM=SUMBK

ANS (2) =SUM

Go TO 10

SUM=SUM+SUMFW

ANS (N) =SUM

Go T0 100

ANS(2)=((Y(1)+Y(2)) /2,18 (X(2)=X(1))

CONT INVE

RETURN

END
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SUBROUTINE LSQPOL (X,Y,WeRESIDyNoSUMsL sAsBsMsCoNMAX s MMAX)

THIS SUBROUTINE IS A LEAST SQUARE POLYNOMIAL FIT. GIVEN A SET OF
VALUES OF AN INDEPENDENT VARIABLE X WITH ASSOCIATED WEIGHTS W AND
A SET OF CORRESPONDING VALUES OF Y. THE ROUTINE DETERMINES THE
COEFFICIENTS OF THE POLYNOMIAL OF DEGREE M-1 WHICH GIVES THE BEST
F1T IN THE LEAST SQUARES SENSE TO THE SET OF Y.

DIMENSION X(NMAX)»s Y(NMAXsL)e RESTID(NMAXsL)s A(MMAX,MMAX)9s B(MMAX,
IL)ys C(NMAXoM)s SUM(L) s wW(NMAX)

DO 20 I=1sN

C(Isl)=1,0

DO 30 J=2+M

‘DO 30 1I=]1eN

C(Is)=C(lad=1)#X(1)

DO 40 I=1+M

DO 40 J=1l+M

A(IeJ)=0.0

DO 40 K=1oN
A(To)=A(T9J)2CIKsI)#C(KoJ) *W(K)
Do S0 J=lslL

DO SO0 I=1sM

B(IeJd)=0.0

DO S0 K=14N
B(IoJ)=B(IoJ)+CIKeI)#Y(KoJ)#W(K)
CALL MATINV (AsMyBslL sDETERMoRESIDCoyMMAX s ISCALE)
Do 70 J=1lsL

SUM(J)=0,0

KK=M

DO 60 K=14+M

C(Ke1)=B(KKsJ)

KK=KK~1

Do 70 I=1.N
RESID(I9sJ)=POLYEL(X(TI)sMsC)=Y (s D)
SUM(J) =SUM(J) +RESID(TsJ) #8284 (])
RETURN

END
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APPENDIX A — Continued

SUBROUTINE MATINV (AsN,BsMsDETERMs IPIVOT s INDEXsNMAXs ISCALE)

THIS SUBROUTINE SOLNES THE MATRIX EQUATION AX=B WHERE A IS A
SQUARE COEFFICIENT MATRIX AND B IS A MATRIX OF CONSTANT VECTORS.

[eNeNele

DIMENSION IPIVOT(N)s A(NMAXsN)s B(NMAXsM)s INDEX(NMAXs2)
EQUIVALENCE (IROWsJROW)s (ICOLUMsJCOLUM)s (AMAXsTsSWAP)

INITIALIZATION

-000

0 ISCALE=0
R1=10.0##100
R2=1.0/R1
DETERM=1,0
DO 20 J=)sN

20 IPIVOT (U)=0

Do 360 1=1sN

SEARCH FOR PIVOT ELEMENT

000

AMAX=0,0

DO 70 J=1sN

IF (IPIVOT(J)=1) 30+70,30
30 DO 60 K=1sN

IF (IPIVOT(K)=1) 40+60,400

40 IF (ABS(AMAX)=ABS(A(JsK))) 50+60,60
50 IrOW=J
IcoLuM=K

: AMAX=A (JsK)
60 CONTINUE
70 CONTINUE

IFr (AMAX) 90,80+90

80 DETERM=0,0
ISCALE=0
GO 70 400
IPIVOT(ICOLUM) =IPIVOT (1COLUM) +1

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

OO0 W
[~}

Ifr (IROW=-ICOLUM) 10041404100
100 DETERM=~DETERM
DO 110 L=1sN
SWAP=A(TROWsL)
A(IROWsL)=A(TCOLUMyL)
110  A(ICOLUM.L)=SWAP
IF (M) 1640014045120
120 DO 130 L=1M
SWAP=B (IROWsL )
B(IROWsL)=B(ICOLUM,L)
130 B{ICOLUM,L)=SWAP
140 INDEX(1,41)=IROW
INDEX (1+2)=1COLUM
PIVOT=A(ICOLUM, ICOLUM)
IF (PIVOT) 1504809150

SCALE THE DETERMINANT

-0 0

50 PIVOTI=PIVOT
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APPENDIX A — Continued

IF (ABS(DETERM)=R1) 180+160+160
DETERM=DETERM/R1
ISCALE=ISCALE+1

IF (ABS(DETERM)=R1) 210+170+170
DETERM=DETERM/R1
ISCALE=ISCALE+]

GO TO 210

IF (ABS(DETERM)=R2) 190+190+210
DETERM=DETERM#R1
ISCALE=ISCALE=-1

IF (ABS(DETERM)=R2) 200,200+210
DETERM=DETERM#R1] '
ISCALE=ISCALE-1

IF (ABS(PIVOTI)=R1) 240,220,220
PIVOTI=PIVOTI/R1
ISCALE=]SCALE+1

IF (ABS(PIVOTI)=R1l) 270+230+230
PIVOTI=PIVOTI/RI]
ISCALE=ISCALE+]

G0 70 270

IF (ABS(PIVOTI)=R2) 250+250+270
PIVOTI=PIVOTI*R1
ISCALE=1SCALE~-1

IF (ABS(PIVOTI)=R2) 260+260+,270
PIvOTI=PIVOTI#*R]1
ISCALE=ISCALE=-1
DETERM=DETERM#PIVOTI

DIVIDE PIVOT ROW BY PIVOT ELEMENT

A(ICOLUM,ICOLUM)=1,0

Do 280 L=1sN
A{ICOLUM.L)=A(TICOLUM,L)/PIVOT
IF (M) 310+310,290

00 300 L=1+M
B(ICOLUM,L)=B(ICOLUM,L)/PIVOT

REDUCE NON-PIVOT ROWS

D0 360 L1=1sN

IF (L1-1COLUM) 320,360,320
T=A(L1sICOLUM)
A(L1»ICOLUM)=0,0

D0 330 L=1sN
A(L1sL)=A(L1sL)=A(TICOLUMsL) #T
IF (M) 36003605340

DO 350 L=1sM
B(L1sL)=B(L1sL)=B(ICOLUMsL)#T

- CONTINUE

INTERCHANGE COLUMNS

DO 390 I=1.N

L=N+l=-1 .

IF (INDEX(Le1)=INDEX(Le2)) 370,3904370
JROW=INDEX(L,1)

JCOLUM=INDEX (L ,2)

DO 380 K=1sN

SWAP=A (K, JROW)

A Ky JROW) =A (K s JCOLUM)

610
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640
650
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#80
590
700
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720
730
740
750
760

780
790
200
/10
]20
a30
R40
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870
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900
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920
930
940
950
960
970
980
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390
400

80

A (K9 JCOLUM) =SWAP
CONTINUE

CONT INUE

RFETURN

END

APPENDIX A — Continued
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APPENDIX A - Continued

FUNCTION POLYE1l (XsM,C)
THIS IS A FUNCTION USED BY SUBROUTINE LSQPOL
DATA BIG/O377777777777/

DIMENSION C(M)
IF (M=1) 30+40,10

N=M=]

POLYE1=C(1)

DO 20 I=1sN
POLYEl=X#POLYE1+C(1I+1)
RETURN

POLYE1=BIG

RETURN

POLYELl=C(})

RETURN

END

[>E>R»E>EsE>R>R=R>E>E>»E»E>E>3»X» N>
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OVERLAY (RING+5+0)
PROGRAM CRITM

THIS OVERLAY COMPUTES CRITICAL MACH NUMBER

COMMON /CORD/ X(170)sR(170)sCoRAVGINNINsDMINST(170) ¢RB(170) s XBN
COMMON /FIVE/ CPO(170)4MCR

RFAL MCR :

CALL MCRIT (CPOsMCR)

RETURN

END

U VVIVVUVVDODDODODO
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SUBROUTINE MCRIT (CPOwMCR)

THIS SUBROUTINE COMPUTES CRITICAL MACH NUMBER OF THE NACELLE RASED

ON THE OUTER SURFACE PRESSURE

COMMON /CORD/ .X(170)4R(170) 9CoRAVGINNsN.
DIMENSION CPO(170)

REAL MCR
A:O.
DO 30 J=1N

IF (CPO(J)) 10430930

IF (A.EQ.0.) GO TO 20

IF (CPO(J)«LT.A) A=CPO(J)
Go TO 30

A=CPO (J)

CONTINUE

J=1 .

MCR=.999 .
CP=(=2+/MCR)I#((1.~MCR)##],5)#(SQRT(1.+MCR))
IF (CP.LT.A) GO TO So
MCR=MCR~,001

JzJdel

IF (JGE.999) GO TO SO
GO TO 40

CONT INUE

RETURN

END

DN D ANDOVNVNOLDDDVDNVNAD NNV UVANNNWY
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APPENDIX A - Continued

OVERLAY (RING56,0)
PROGRAM MASFLOW

THIS OVERLAY COMPUTES VI/VIN By INTEGRATING THE INTERNAL MASS FLOW
AT SOME X STATION. THE X STATION IS PRESENTLY MIDCHORD BUT CAN
BE CHANGED BY CHANGING CARDS T 170s T 3204 T 650+ T 970,

COMMON /CORD/ X{(170)4R(170)9CsRAVGINNsNsDMINsT(170)4yRB(170)9XBY
COMMON /ONE/ ROUT(170)4RIN(170)sMsDMAXsXI(170)+XI0(170) vALPHO(170)
l’ALPHOO(17091)yXBL(l70)'ALPT(170)!ALPTH(170)’DRDX(‘7OQ!DRDXH(170)’

2LAMs IT» ITMAX

COMMON /TWO/ IP+CAMGAM(170)9sGQR(170)9ALPO0(170s1)
COMMON /SIX/ NRHOsRAD(170)sVIVINIRXXsRBXI
DIMENSION RHOO(170)

REAL LAMJKSQ.M

PRINT 150

PRINT 130

PRINT 140

XxX=C/2,

CALL MTLUP (XXXsRXX92sNNsl170915sIPsXsR)
CALL MTLUP (XXXsTXX92sNNelT70019IPsXsT)
RXX=RXX=(TXX/2,)

TEMPI=RXX/NRHO

COMPUTE ALL RAD(J)

DO 20 J=19+NRHO

IF (JJEQ.NRHO) GO TO 10
RAD(J)=RXX=(JHTEMPY)

GO TO 20

RAD(J) =0,

CONTINUE

VIVIN=0,

Xx=C/2

CALL MTLUP (XX4RBXI92sNN9l70s1,IP¢X,RB)
IF (XX.LE.XBN) RBXI=0,
TFST=RBXI/RAVG

MASS FLOW ~ DO 90
DO 90 J=1sNRHO
COMPUTE THE RHOO(J)

IF (J.EQ.1) GO TO 30

IF (J.EQ.NRHO) GO TO 40

RHOO (J) = (RAD (J=11+RAD (J) )/ (2, #RAVG)
GO TO 50

RHOO (J)=(RXX+RAD(J)) /(2. #RAVG)

G0 TO S0 '

RHOO (J)=RAD (J=1)/(2+#RAVG)

CONTINUE

IF (RHOO(J) .LE.TEST) GO TO 100

VELOCITIES AT RHOO(J) - DO 60

Wx1JU0=0,
WR1JUO=0,
WX1QJyu=0,
WR1QJU=0,
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APPENDIX A - Continued

WXQJU=0.

WRQJU=0,

WXBQJU=0,

WRBQJU=0,

XX=(C/N)#%,25

DO 60 I=1eN

DELXI=XI(I)

KSQ= (4. #RHOO(J) )}/ ((DELXI®##2) ¢+ ((1,.+RHOO(J))##2))

EX=EKA (KSQ)

SK=SKK (KSQ)

CALL MTLUP (XXsRBXIo29NNel170s1,1P,X4RB)

IF (XXLE+XBN) RBXI=0.
TEMPL=(1,/(2.#SQART ((DELXI##2) ¢+ ((1,+RHOO(J))##2))))#((((2.-KSQ)/ (1.
1=KSQ) Y #EK) = (2.8SK) = ((1,/RHO0(J) ) #(KSQ/ (1 +~KSQ) ) #EK))

TEMP2=( ((=1,)#DELX])/(2,#RHOO(J) #SQART ((DELXTI#*#2) +((1,+RHOU(J))#=2)
e (((2.~KSQ)/ (1,-KSQ))FEK)=(2,#5K))

TEMPT=(4 #DELXI®EK) /((SQRT ((DELXI##2) ¢ ((1,+4RHOO(J))&#2) ) )* ((DELXAL*
1#2) ¢+ ({1 a=RHOO(J) ) #82)))

TEMPB8=(2,/ (RHOO (J) #SQRT ((DELXI##2) ¢ ((1,+RHO0(J))*¥#2))) ) *(((1l,-((2.
1#RHOO (J) # (RHOO () =1,)) / ((DELXI#%#2) ¢ {(1.,=RHOO(J)) ##2))) ) #EK) =5K)
TEMP11=RHOO(J) /(2. # ( (DELXI#®#2+RHOQ (J) ##2)82],5))
TEMP12=(DELXI) /(2% ( (DELXI##2+RHOQ (J) #82)#2],5))
WX1JUO=WX1JUO+TEMP1#ALPHO(I)*GAM(T)#(1.,/7(2,%3,14159}))
WR1JUO=WRI1JUO+TEMP2#ALPHO (1) #GAM(I)#(1./(2,%#3,14159))
WX1QJU=WX1QJUU+ (TEMP1#GRII)#(XI(1)=XI{2))/(2,%3.14159))
WR1QJU=WR1QJU+ (TEMP2#GR (1) #(XT(1)=-XI1(2))/(2.%3.14159))
WXQJU=HXQJU~(TEMP7*ALPT(I)*(XI(1)-XI(2))/(2.*3.14159))
WRQJUU=WRQUU+ (TEMPB#ALPT (1) #(XI(1)=X1(2))/(2.%3.,14159))
WXBQJU=WXBQJU+TEMP12# (RBXI/RAVG)#DRDX(I)#(XI(1)~XI(2))
WRBQJU=WRBQJU+TEMP11#(RBXI/RAVG)#DRDX(ID)#(XI(1)~-XI(2))

XX=XX+(C/N)

CONTINUE

WX1JUOT=WX1JUO

WX1QJUI=WX1QJU

VTI=(loe (WX1JUOT+WX1QJIUT +WXQIU+WXBQJIU) /(1 ,=MEE2) )2

SUMMATION FOR MASS FLOW -~ ADD ONE TERM EACH TIME THRU DO 9¥p

XX=C/2. .

CALL MTLUP (XXsRBXIs2sNNs170s1,1IP4XsRB)

IF (XX.LE+XBN) RBXI=0.

IF (J.EQ.1) GO TO 70
TEMP1O0=SART(VTI) # ((RAD(J=-1)#82-RAD(J) ##2) /(RXX##2~RBXI*#2))
Go TO 80
TEMP10=SQART(VTI) & { (RXX##2=-RAD(J) ##2) / (RXX#82=~RBX[##2})
CONTINUE

VIVIN=VIVIN+TEMP10 L

WRITE (65120) JsRAD(J) sRHOO(J) ¢ WX1JUOsWRIJUOIWX1QJUsWRIQIUWWXOJIU W
1RQJU

WRITE (64110) VTIsVIVINSTEMP]10,WXBQJU»WRBQIU

CONTINUE

CONTINUE

RETURN

FORMAT (13Xs5(2XsE11.4)/)

FORMAT (1Xs13+3(2XsF10,5)96(2X9E1144))

FORMAT (1Xs1HJ99Xs3HRAD 98X s 4HRHOO 46X s 6HWX1 JUO » 7TX s 6HWRIJUO s 7X s 6HWX ]
10JUs 7X s 6HWR1IQUU » 8X s SHWXQJU s BX s SHWRQIU)

FORMAT (23Xs3HVTI+BXeSHVIVINs 7Xs6HTEMP10s7X» 6HWXBQIUs TXs 6HWRBUJUY/)
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]380
R90
Q00
Q10
Q20
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940
950
960
970
980
990
T1000
Tilo01l0
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T10R0
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T1100
T1l110
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FORMAT (1H1+21HMASS FLOW COMPUTATIONs10Xs49HALL PERTURB VEL AND RA
1D ARE FOR EQUIV INCOMP GEOM//)
END

T1190
T1200
T1210~



APPENDIX B
DERIVATION OF EQUATIONS (13) AND (23)
The velocity induced in the x-direction at £ o'Ps by a distribution of vortex rings

on a cylinder of radius p = 1 and of chord length ¢ is found by use of equation (21).
The result is ’

ux(é’ P ) 1 A k < -k 1k > |
0o/ _ -— E - 2K/d B1
Ve 21 J.1/» a°(§)7°(£)4 oo\ - K2 Py 1 - k2 ¢ G

Replacing the modulus k by its definition in equation (11) and rearranging the result,
equation (B1) becomes

slafo) L 1 (7 0, LK as
0’7o
Ve 2 ~-VA \/(5 - 50)2 + (1 + 00)2
2]% 3‘1/7\ 010(5)')’0(5) 2(00 - 1)E dt (BZ)‘

-1/x V(i - 50)2 + (1 + Po)2 (£ ) £o>2 * (po ) 1)2

Equation (B2) must now be evaluated at p o = 1 to obtain equation (13). Considering the
first integral, at p 0= 1 and £=¢ o & singularity exists in the term containing the ellip-
tic integral of the first kind K. To investigate this singularity, examine the integral in a
small region extending € on each side of ‘g’o

lim - ot 2 lim Kd:  (B3)
e~0 2T JE -¢ \I(ij _ 50)2 + 4 u €e=0VE ~¢

1 §§°+€ 0 (8) V(K AE -0 (& )y (&) 0

where the terms multiplying K are approximated by setting £ = & . The elliptic inte-
gral K can be expanded in a series as a function of the complimentary modulus k'
(ref. 23) in the following form

mim! k!

K= 20 M 1n<—1-> - w<m + -;-> + :,l/(m + 1) g 2m ((k')2 < 1) (B4)
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APPENDIX B - Continued

k' = 1-k2= _E-_gozL_
(5-50)2+4

and Pochhammer's symbol is defined by
IR CRR R (Lom-1)
(3), =3 1)z 2
)
=) =1
(3),

and ¢ is the digamma function (ref. 24). By using equation (B4) and letting € — 0, and

therefore k' - 0, it can be shown that the integral in equation (B3) goes to 0. Thus the
principal value of the first integral in equation (B2) is found by treating it as an ordinary

where

integral.

For p 0= 1, the value of the second integral in equation (B2) can be determined as
follows. For £ #¢ o’ the integrand is 0 when p 0= 1. Hence the limit must be found as
E- & o simultaneously with p o~ 1

lim zi 1@ o (£)y,(8) 2(p0-1)E
e R S R R R RS

0’§527 }1m S~£+e Py -1 a
E

e—-O )2+(p0-1)2

d¢ .

where E =1 because k = 1, and again the first term in the integrand is approximated
by setting & = & o By defining a new variable

£- ¢,
P, -1

L.

and requiring p 0™ 1 faster than € -~ 0 for a nontrivial solution, it is found that

88



APPENDIX B - Concluded

+€ -1 '

pelfg :o-s (¢- so)pzo* e I:m Spo E)%gﬁ o
so that
i LVl egm DB ) Talte) g
po~1 27 J _1/a \/(5 _ g0)2 + (1 +Po)2 (’g _ 50)2 + (po _ 1)2 2 A
wherel yo(g o) =T, (g 0) /Ag. By substituting equation (B5) into equation (B2) and setting
Py =

5,(72,_1_) _ gl/x 0076® _mox ., %(t) Folt) 56

-1/x 27 W 2 AE

Writing equation (B6) in summation form yields equation (13). Equation (23) is derived by
a procedure analogous to the preceding derivation.
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contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace

- applicarions. Publications include Tech Briefs,

Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obfained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION

Washington, D.C. 20546



