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EXPERIMENTAL INVESTIGATION OF THE LANDING DYNAMICS
OF THREE-LEGGED SPACECRAFT MODELS

By Sandy M. Stubbs
Langley Research Center

SUMMARY

An experimental investigation was conducted to obtain accurate data from two three-
legged spacecraft landing systems for purposes of validating current and future computer
programs for legged landers. Two landing-gear systems were investigated: an inverted
tripod system and 2 cantilever system, Tests were conducted for eight landing conditions
chosen to obtain stability data, maximum loads, and maximum strokes for correlation
with analytical results. Data from the two models are not directly comparable because
of geometry and mass differences, but both are considered to be typical models of the
respective landing-gear systems,

Results indicate that maximum accelerations for both models, which occurred during
a nearly flat landing on a horizontal surface, were nearly the same (approximately -18g).
Maximum primary strut forces cccurred for landings into a 20° slope and were 40 kN
(9000 1bf) and 47 kN (10 500 1bf) for the inverted tripod and cantilever models, respec-
tively; and maximum primary strut strokes for both models were 13 cm (7.4 in.). The
inverted tripod model was slightly more stable than the cantilever model because of a
larger ratio of footpad radius to center-of-gravity height,

INTRODUCTION

In the past, legged lander computer programs were developed to analyze a specific
landing-gear design. Although these programs were adequate in predicting results for a
specific vehicle, they were limited in their ability to analyze other landing system config-
urations, Accurate experimental data are needed on a variety of legged landing systems
to evaluate existing legged lander analytical programs and to validate future more compre-
hensive landing dynamics programs. Although investigations have been previously made of
three-, four-, and five-legged vehicles for use in planetary exploration (refs. 1 to 8), little
quantitative data have been published for three-legged landing systems which use inverted
tripod or cantilever landing-gear systems with shock-absorbing capability in all three of
the strut members. Although there is a need for systematic quantitative data on several



landing systems for computer program validation, the two systems reported herein were
chosen because they were proposed landing systems for early versions of the Viking
spacecraft,

The primary purpose of this investigation was to obtain accurate quantitative exper-
imental data for computer program correlation. The secondary purpose was to obtain
data to aid in the design of the Viking spacecraft. Inverted tripod and cantilever landing-
gear systems were tested on 3/8-scale models of the proposed Viking spacecraft at eight
widely varying landing conditions chosen to validate stability results, maximum loads,
and maximum strokes. Time history data are presented as well as maximum value data,
and a film supplement (L-1151) is also available on request. A request card and a
description of the film will be found at the back of this paper. The accurate experimental
results from this investigation provide a part of a data base for validating the adequacy
and aceuracy of present and future analytical landing programs.

SYMBOLS
The units used for the physical quantities defined in this paper are given first in the

International System of Units and parenthetically in the U.S. Customary Units. Measure-
ments and calculations were made in the U,S. Customary Units.

A area, m2 (ft2)

a acceleration, m/s2  (ft/s2)

F _ force, N (Ibf)

g gravitational acceleration, 9.81 m/s2 (32.2 ft/s2)
I inertia, kg-m2 (slug-fi2)

Ix roll moment of inertia, kg-m2 (slug-ft2)

Iy pitch moment of inertia, kg-m2 (slug-ft2)

Iz yaw moment of inertia, kg-m2 (slug-ft2)

k spring constant, MN/m (Ibf/in.)

Z length, m (it)



m mass, kg (slugs)

t time, s

Vh horizontal velocity, m/s (it/s)
Vy vertical velocity, m/s (ft/s)

' velocity, rﬁ/s {ft/s)

XY, Z bhody axes

B gravity ratio

A geometric scale factor

o stress, N/m2 (Ibf/in2)

L friction .coefficient

DESCRIPTION OF MODELS

Two dynamic models of unmanned legged lander spacecraft were used in the inves-
tigation. One model consisted of a center body equipped with an inverted triped landing
gear and the other consisted of the same center body but with a cantilever landing gear
attached. These landing systems were selected because they were being considered
early in the design phase as landing-gear designs for the Viking spacecraft.

Scaling Laws

The scale relationships pertinent to the investigation are presented in table I, and
measured parameters for the model and full-scale vehicle are given in tables I1 and IIL.
Both models used the same scale relationships. The scale factors for the quantities
shown with the double asterisk (table I) were chosen to provide a suitable model for small-
scale testing. The geometric scale factor | A = % = 2_16'5) was selected to facilitate con-
struction, size, and mass requirements and also for convenience in performing the tests.
Since the tests were to be conducted in the Earth gravity environment, and it was desira-
ble to convert data to values that would result from a full-scale vehicle landing on Mars,
accelerations vary as the ratio of Earth gravity to Mars gravity (designated B). Force
was chosen to vary as the cube of the scale factor, that is, 23. With these three scale
relationships fixed, other pertinent scale relationships were derived from the laws of

physics.



Test Model Body

Photographs of the two models are shown in figure 1. The coordinate system shown
in the figure is a body-fixed coordinate system. The primary structural frame was the
same for both models and was made of welded aluminum tubing, sufficiently light to allow
additional ballast weight for obtaining the correct masses, center-of-gravity location, and
moments of inertia. The structural frame was designed to minimize effects of center-
body elasticity. The center of gravity for both models was established at the same loca-
tion within the body structure, but because of different landing-gear geometries, the height
of the center of gravity above the ground line was different.

Landing Gear

The general arrangements of the inverted tripod model and cantilever model are
shown in figures 2 and 3, respectively; and landing-gear strut designations (1A, 1B, etc.)
are shown. Dimensional values given are full scale. More detailed photographs of a
single landing-gear leg for the inverted tripod and cantilever models are presented in
figure 4. The following sections describe these gears in detail,

Inverted tripod.- A single inverted tripod landing leg consisted of a primary strut
and two secondary struts all connected at a footpad interface. All struts were attached
to the model body with universal joint fittings. At the apex of the inverted tripod, one
secondary strut was attached with 2 universal joint and the other secondary strut was
attached with a single pivot connection to an apex fitting., (See fig. 4(a).) These attach-
ments allow complete freedom of motion of the footpad.

A stiff flat-bottom, non- shock-absorbing footpad was attached to the bottom of the
tripod by a ball joint which allowed the pad free pitching movements and 360° of rotation,
All landing-gear components, except the ball joints, sockets, and attachment fittings, were
made of 6061-T6 aluminum. The ball joints, sockets, and fittings were made of 17-4 PH
steel,

The primary strut shock absorber for this gear was a simple piston-cylinder
arrangement as shown by the sketch in figure 5. The cylinder had a centering rod held
in place at the top of the strut by a thin disk. The centering rod, which positioned and
held crushable honeycomb elements, passed freely through a hole in the center of the
piston. Four aluminum honeycomb, energy-absorbing cartridges were used in each pri-
mary strut separated by thin disks to insure proper crushing of each stage. These car-
tridges were crushed in compression (accordionlike column failure) by the landing loads
imposed upon the telescoping landing- gear strut. Each cartridge was designed to crush
at a predetermined force level which remained approximately constant during the strut
stroke. A typical dynamic force-stroke history of the staged crush loads obtained during



an actual model landing is also presented in figure 5. The solid Iine was obtained from a
primary strut and includes strut friction forces. The dashed curve was the nominal force
stroke curve obtained from preliminary experimental testing,.

The secondary struts were equipped with two aluminum honeycomb cartridges: one
for compression and the other for tension force attenuation, Details of the secondary
strut shock absorber are presented in figure 6. The compression cartridge was held in "
place by recesses in the piston and cylinder heads and the tension cartridge completely
filled its cylinder cavity. Typical force time histories for both cartridges are also pre-
sented in the figure, Force is presented here as a function'of time instead of stroke
since the latter was not measured on these struts. The tension force time history was
obtained by dropping a 4.64 kg (0.318 slug) at mass 1.5 m/s (5.0 ft/s) onto the bare
honeycomb cartridge. The compression force time history was obtained by dropping a
11.3 kg (0.776 slug) at mass 2.86 m/s (9.37 ft/s) onto the vertically oriented assembled
strut in which the honeycomb cartridge had been previously installed, Thus, strut fric-
tion forces are included in the axially applied compression force time history.

Nominal crush loads and strokes for both the primary and secondary struts of the
inverted tripod model gear are given in table II,

Cantilever.- The cantilever landing-gear leg consisted of a primary strut and two
secondary struts that interfaced with the primary strut at the lower end of its cylinder so
that the piston rod was cantilevered with a non—shock—absorbing footpad on the end, (See
fig. 4(b).) All the struts were attached to the body with a swivel and pin arrangement that
allowed three-dimensional stroking of the leg, The secondary struts were attached to the
primary strut with a pinned ball joint connection allowing sufficient freedom of motion
for maximum stroking of the leg assembly. The footpad was attached to the end of the
cantilever strut by a ball joint, Additional details and photographs of the cantilever gear
can be found in reference 4,

Typical force-stroke histories for the two-stage compressive primary strut obtained
from actual model landing tests are shown in figure 7(a). The solid line was obtained from
experimental data, and the dashed line presents nominal values of force and stroke obtained
from preliminary tests, Typical experimentally determined compression and tension sec-
ondary strut force-stroke histories are shown in figures 7(b) and 7(c), respectively, along
with nominal values (dashed lines). All experimental data shown in figure 7 have strut fric-
tion forces included with honeycomb crush forces. Nominal crush loads and strokes for
both the primary and secondary struts of the cantilever model are given in table III. The
crushable honeycomb cartridges, used in both models, were precrushed a small distance
prior to installation in the landing gears to alleviate the peak load associated with initia-
tion of crushing.



APPARATUS AND PROCEDURE

Launch Equipment

A sketch illustrating operation of the pendulum launch apparatus is shown in fig-
ure 8. The pendulum launcher, with the model installed at the desired attitude, was
released from a predetermined pullback height to produce the desired horizontal velocity
at the lowest point of the swing when the model was released. The predetermined free-
fall height produced the desired vertical velocity at model touchdown. A photograph of
the launch apparatus is shown in figure 9. The experimental tests were conducted in the
Langley impacting structures facility,

Landing Surface

The landing surface, shown sloped 20° in figure 10, was of stiff wood frame con-
struction covered with smooth plywood 1.8 em (0.75 in.) thick, 1.8 m (6 ft) wide, and
3.7m (12 ft) long. One end of the surface was raised to obtain various slope conditions.
Surface slopes are considered to be negative when the slope of the landing surface is in
the same general direction as the slope of the resultant velocity vector.

The friction coefficients at the footpad-surface interface were determined by slid-
ing a single footpad, loaded to approximately the weight of the model, on a flat plywood
surface similar to that of the landing surface. The friction coefficient was computed by
dividing the total weight of the footpad into the horizontal force necessary to slide the
footpad at a slow, relatively constant, velocity once static friction had been overcome.
The coefficients obtained by this method were later verified by sliding the model down
the inclined landing surface, A nominal coefficient of friction of approximately 0.4 was
obtained with the aluminum footpad sliding on a plywood surface. A higher friction coef-
ficient, nominally 0.8, was obtained on the plywood when the bottom of the footpad was
covered with a thin sheet of rubber,

Test Parameters

Sketches which identify the vehicle axes, acceleration directions, attitudes, and
flight path are presented in figure 11, Accelerations in the direction of the negative axes
are considered as negative accelerations. Both vertical and horizontal velocities are
treated as positive even though the horizontal velocity component is sometimes in the
direction of the negative Z-axis. The principal forces and strokes in the primary shock-
absorbing struts are compression and are considered to be positive, In the secondary
struts, however, tension forces and strokes are considered as positive and compression
forces and strokes as negative.



The procedure used for setting up the vehicle attitude for a test was as follows:
With the model X-axis alined with the gravity vector and leg 1 pointing in the direction of
the horizontal velocity, the model was rolled about the X-axis to the desired roll attitude.
The model was then pitched about the Y-axis with leg 1 down being negative pitch and
leg 1 up beihg positive pitch.” Finally, the yaw angle was set with leg 2 down being right
yaw and leg 2 up being left yaw.

Landings were made at touchdown pitch attitudes ranging from -16° to 15°. Nomi-
nal pitch conditions were -15°, 0°, and 15°, Roll attitudes with one exception were either
0° or 180°. Measurements show a scatter of yaw attitudes from 29 left yaw to .20 right
yaw, Nominal vertical impact velocity was 7 m/s (23 ft/s) and nominal horizontal veloc-
ity was 0 or 2 m/s (0 or 6 ft/s). Landings were made on slopes of 0°, -20°, and 20°.
Two different nominal friction coefficients were used in the investigation: 0.4 and 0.8.

It was difficult to obtain identical runs for the two models, but most runs had only small
differences in test conditions,

The reading accuracies of the various landing condition parameters are as follows:

Pitch, roll, and yaw attitudes . . . . . . . . .o et i e s e e +0.5°
Vertical and horizontal velocities . . . . . . . v v ¢« v v o 0 o v - £0,03 m/s (0.1 ft/s)
Landing surface SIOPE . « v v v v o b b e e h e e e e e e e e e e e e e e e 0° + 10
Friction coefficient (estimated) . . . . . . . .« o v o v v v v b e i s e e +0.1

Instrumentation and Data Reduction

Normal, longitudinal, and transverse accelerations were measured at or near the
model center of gravity by rigidly mounted piezoresistive strain-gage accelerometers.
Three additional accelerometers were used at remote locations. Table IV gives the
coordinates and a description of the various accelerometers. The strokes of the pri-
mary struts of both models and secondary strut of the cantilever model were measured
by means of linear potentiometers. Only maximum stroke data were obtained for the
secondary struts of the inverted tripod model by measuring the crushed honeycomb ele-
ments after each run, All struts of each leg of both models were equipped with strain
gages calibrated to measure force. The signals from the accelerometers, potentiom-
eters, and strain gages were transmitted through trailing cables to frequency-modulated
magnetic tape recorders, The limiting flat frequency response of the accelerometers
and potentiometers with the associated recording equipment was 1000 Hz, The limiting
response for the strain-gage force measurements was 5000 Hz, In the process of data
reduction, the acceleration and stroke data were passed through 300-Hz low-pass filters
and the force data through 880-Hz low-pass filters to eliminate undesirable high-frequency
structural oscillations. The data were digitized by using a sample rate of 2000 samples
per second and stored on tapes which were processed to obtain printouts and plots of the
data.



Motion pictures (taken at 64 and 200 frames per second) were used to determine
landing attitudes, touchdown velocities, and motions. A video camera, tape recorder,
and video receiver were used to obtain an immediate review of the test conditions and
landing behavior. '

RESULTS AND DISCUSSION

The data obtained in this investigation are presented as time histories in figures 12
to 18 for the inverted tripod model and in figures 19 to 25 for the cantilever model. These
histories include the accelerations at the center of gravity, force in the primary and sec-
ondary struts of each leg, and stroke in all primary and some secondary struts. The
maximum values of these parameters are summarized in tables V and VI together with
comments relative to the stability characteristics of the models at each test condition.

To aid in understanding these histories, one for each model has been selected for discus-
sion, General comments on medel impact loads and landing behavior are presented in
subsequent sections. All data are presented in full-scale values,

Time History Data

Typical acceleration, stroke, and force time histories are shown in figure 26 for the
inverted tripod and in figure 27 for the cantilever model. The data are presented for both
models landing at run 4 conditions (tables V and VI}: nominally at a vertical velocity of
6.85 m/s (22.5 ft/s); horizontal velocity of 2 m/s (6 ft/s); pitch, -15°; roll, 180°, and
slight right yaw. The friction coefficient was approximately 0.4, and the models were
landed on a -20° slope.

For the inverted tripod model, the force and stroke data indicated that leg 1 (the
trailing leg) hit initially. During the crushing of the no, 1 gear, compression forces
occurred in secondary struts 1B and 1C. (See fig, 26(b).) After leg 1 crushed, the
model rebounded slightly so that leg 1 was clear of the surface; and the model rotated
downward with legs 2 and 3 hitting at a time of approximately 0.22 second. The dashed
lines for primary struts 2A and 3A illustrate that for this run, three stages of honeycomb
cartridges in legs 2 and 3 crushed, and the force was rising to the fourth-stage crush
level before the impact energy was absorbed. The dashed lines are used here to indicate
only the nominal force of the various stages. Maximum accelerations, maximum forces,
and strokes for this test occurred when legs 2 and 3 hit.

As indicated by the sketches in figure 27, the cantilever model had a landing
sequence of events similar to those of the inverted tripod model, The maximum nor-
mal and longitudinal accelerations for this case were -9g and -5g, respectively, and
occurred when legs 2 and 3 hit. The spikes at the beginning of each primary strut force
curve (fig. 27(c) and (c) part of figs. 19 to 25) are attributed to friction in the cantilevered
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primary strut. Typical fairings of the force data for the cantilever primary struts are
shown in the figure, and the faired values are presented in table VI ~ After the initial
spike in the force curves, the force drops off to the crush level of the first-stage honey-
comb element and then rises toward the end of the force curve as the first honeycomb
element bottoms and the load builds toward second-stage crushing, Typical secondary
strut action is shown by strut 3B. (See figs. 27(b) and 27(c).) For the condition being
discussed (run 4), strut 3B reaches a maximum tension force of 13 kN (3000 1bf) and
strokes of 3.8 cm (1.5 in.). Secondary strut 3C shows a similar trend but in a negative

{compression) direction.

Landing Accelerations and Forces

Maximum center-of-gravity accelerations as given in tables V and VI are sum-
marized in figures 28 and 29 for both the inverted tripod and the cantilever models,
respectively. The figures show that for similar test conditions, the maximum normal
accelerations incurred by the cantilever model were approximately the same as those of
the inverted tripod, The highest normal acceleration, -20g for the cantilever and -18¢g
for the inverted tripod, occurred for the case where the model lands nearly flat on a hard
horizontal surface. Longitudinal and lateral accelerations had maximum values that were
both positive and negative, The maximum longitudinal accelerations for the inverted tri-
pod model ranged from -9¢ to 7g and for the cantilever model, -7g to Tg. The maximum
lateral accelerations ranged from -6g to 8¢ for the inverted tripod model and from -8¢ to
6g for the cantilever model.

The maximum landing-gear forces which were limited by the crush force of the
shock-absorbing elements are summarized in figures 30 and 31 for the inverted tripod
and cantilever models, respectively. These forces were obtained from data which were
faired (see fig. 27(c)) and strut 1A data (fig. 26(b)) to negate obvious structural elastic
responses, Maximum primary strut forces experienced by the inverted tripod model
ranged from 16 kN to 40 kN (3600 1bf to 9000 1bf); and those for the cantilever model were
somewhat higher and ranged between 27 kKN and 47 kN (6000 Ibf and 10 500 1bf) because of
the friction spikes. The secondary struts had both positive and negative forces which
ranged between +22 kKN (+5000 Ibf) for the inverted tripod model and between +16 kKN
{(+3600 1bf) for the cantilever model. '

Landing Behavior

Maximum landing-gear stroke data for both models are presented in figures 32 and
33 for the inverted tripod and cantilever models, respectively. For the eight landing
conditions examined, the maximum primary strut strokes for the inverted tripod model
ranged from 6.6 cm to 19 cm (2.6 in. to 7.5 in.) and those for the cantilever model from



6.4 cm to 19 cm (2.5 in, to 7.5 in.). Although the ranges of values for the two models were
about the same, this is not meant to imply that the magnitudes were comparable for each
test condition. The secondary strut strokes for the inverted tripod model were +3 em
(1.2 in.) or less except for cases 7 and 8 where the vehicle landed into a 20° slope.

For cases 7 and 8, maximum secondary strut stroking was -14 em (-5.6 in.) and -15 ¢cm
(5.8 in.), respectively. Maximum secondary strut strokes for the cantilever model
ranged from +8 cm (+3 in.), Here again the maximum values occurred for cases 7 and 8
with the vehicle landing into a 20° slope.

The inverted tripod model was stable for all conditions tested. The cantilever
model was stable for all conditions except when landed downslope with a friction coeffi-
cient of 0.8, one gear trailing, and pitched down 15° {case 5). A test made at nearly
the same conditions as that of case 5, but with the friction coefficient reduced to 0.4,
resulted in a stable run. A pitch time history plot for each model tested at case 5 condi-
tions is presented in figure 34, together with sketches which illustrate the attitude of the
models with respect to the landing surface. For both models, the trailing leg (leg 1)
initially impacted the surface and the vehicle pitched to approximately 25° in approxi-
mately 0.25 second, and legs 2 and 3 then impacted the surface with leg 1 in the air. The
model pitch direction changed as the legs stroked, and the trailing leg (leg 1) again con-
tacted the surface at the times identified by the arrows (0.3 sec and 0.36 sec, respectively,
for the cantilever and inverted tripod models). The pitch attitude for the inverted tripod
model did not change appreciably as the model slid down the 20° slope and maintained an
attitude of approximately 22°, The cantilever model, however, showed a slight pitch
oscillation as it slid down the 20° slope, and then the sliding friction caused the trailing
gear to lift free of the surface and a turnover occurred. One explanation for the better
stability exhibited by the inverted tripod model is its larger ratio of footpad radius to
center-of-gravity height (2.29 as compared with 1,73 for the cantilever model).

CONCLUDING REMARKS

Accurate results are presented from dynamic model studies of inverted tripod and
cantilever landing-gear systems tested at eight widely varying landing conditions in order
to obtain data for computer correlation, Data from the two models are not directly com-
parable because of geometry and mass differences, but both models are considered to be
typical models of their respective landing-gear systems.

Results indicate that maximum accelerations for both models were nearly the same
(approximately -18g) which occurred during a nearly flat landing on a horizontal surface.
Maximum primary strut forces oceurred for landings into a 20° slope and were 40 kN

10



(9000 1bf) and 47 KN {10 500 lbf) for the inverted tripod and cantilever models, respec-
tively; and maximum primary strut strokes for both models were 19 cm (7.4 in.).

The inverted tripod model was more stable than the cantilever model because of a
larger ratio of footpad radius to center-of-gravity height,

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., April 16, 1974.
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TABLE I - SCALE RELATIONSHIPS FOR SCALING MODEL RESULTS OBTAINED
IN EARTH'S GRAVITY FIELD TO FULL-SCALE RESULTS
IN MAR'S GRAVITY FIELD

l:Gravitational* scale factor, B= % = 2,66; geometric scale factor, A = % = i—%—s-}
' . 3/8-scale Full-scale Mars
Quantity experimental model Scale factor vehicle

Length** l 1/ L/x
Linear acceleration** a 1/8 a/p
Force™** F 1/){3 F/)\3
Area A 1/;\2 A/ ?Lz
Mass m B/A mﬁ/)\a
Moment of inertia I B/ )\5 18/ A5
Time t 1/x t/a
Speed 1.1_

pee v g X5 v
Stress o 1/x o/n
Spring constant 1 /J\2 k/ ).2

*The acceleration of gravity on Mars was assumed to be 3,69 m/sec2 (12.1 ft/sec?)

and that on Earth to be 9.82 m/sec2 (32.2 ft/sec2) for this investigation,
**grale factors which determine remaining scale relationships.
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TABLE II.- PERTINENT MEASURED PARAMETERS OF 1/2,66-SCALE

INVERTED TRIPOD MODEL

Parameter 1/2.66-scale model Full scale

Mass, kg (slugs) . . . . . .. ... ... 11,3 (0.772) 563 (38.6)
Moment of inertia, kg-m2 (slug-ft2):

Iy vroll o . v v 0 v v v v e s 0.988 (0.729) 350 (258)

Iy pitech ... .............. 0.495 (0.365) 175 (129)

Iy yaw . . . . ... .. e e v e ne s e 0.476 {(0.351) 168 (124)
Body:

Center -of -gravity height, m (in.) . . . 0.248 (9.77) 0.660 (26.0)

Landing-gear radius, m (in.) . .. .. 0.5685 (22.38) 1,51 (59.5)

Nominal unsprung mass of single landing
gear, kg (slugs) . .. .........

Nominal landing-gear strut stroke,

m (in.):

Primary, first stage . . ... e
Primary, second stage . . . .. .. ..
Primary, third stage . . . . ... NN
Primary, fourth stage ... ... ...
Secondary, compression . ... .. ..
Secondary, tension . . . ... .. ...

Nominal honeycomb-cartridge dynamic
crush force, N (lbf) 110%:

Primary, first stage . ... ... ..
Primary, second stage . . . ... v oe s
Primary, third stage . . . .. o e e s s

Primary, fourth stage . ... .. ...

Secondary, compression . ... .. ..
Secondary, tension

0.4466 (0.0306)

0.035
0.013
0.013
0.072
0.082
0.014

(1.39)*
(0.50)
(0.50)
(2.83)
(3.23)
(0.54)

471 (106)
707 (159)
943 (212)
1890 (425)
800 (180)
632 (142)

22,36 (1.532)

0.094
0.034
0.034

(3.69)
(1.34)
(1.34),
0.192 (7.54)
0.218 (8.59)
0.036 (1.4)

9000
13 000
18 000
36 000
15 000
11 900

(2000)
(3000)
(4000)
(8000)
(3400)
(2670)

14

*Assumed to be 90 percent of honeycomb-cartridge length,




TABLE III.- PERTINENT MEASURED PARAMETERS OF 1/2.66-SCALE
CANTILEVER MODEL

Parameter 1/2.66-scale model Full scale

Mass, kg (slugs) . . . . v v v v v 0 o« o 12.7 (0.871) 636 (43.6)
Moment of inertia, kg-m2 (slug-ft2):

T | 1.46 {1.08) 519 (383)

Iy pitch . ... 0vme oo vl 1.0 (0.76) 365 (269)

I, yaw . . . . . . e 1.4 (0.75) 361 (266)
Body:

Center -of -gravity height, m (in.) . . . 0.3777 (14.87) 1,005 (39.55)

Landing-gear radius, m (in.) . . ... 0.6502 (25.76) 1,740 (68.52)

Nominal unsprung mass of single landing
gear, kg (slugs) . .. .. .. e e

Nominal landing-gear strut stroke,
m (in.):
Primary, first stage . . . . . e e e
Primary, second stage . . . . . . . ..
Secondary compression
Secondary tension, first stage . . . . .
Secondary tension, second stage . . . .

oooooooo

Nominal honeycomb-cartridge dynamic
crush force, N (lbf) +10%:
Primary, first stage . . . . ... . ..
Primary, second stage . . . . ... ..
Secondary compression
. Secondary tension, first stage . . . . .
Secondary tension,J second stage . . . .

0.482 (0.033)

(2.93)*
(1.98)
(1.40)
(0.61)
(2.00)

0.074
0.050
0.036
0.015
0.051

1000 (230)
1700 (390)
710 (160)
180 (41)
710 (160)

24,1 (1.85)

0.198 (7.79)
0.681 (5.27)
0.094 (3.72)

0.04 (1.8)
0.135 (5.32)

19 000 (4300)
32 000 (7300)
13 000 (3000)

3400 (770)
13 000 (3000)

*Assumed to be 90 percent of honeycomb-cartridge length,

15



TABLE IV.- ACCELEROMETER LOCATIONS WITH RESPECT TO CENTER OF GRAVITY
I:All values are full scale]

Coordinates, cm  (in.)
Accelerometer | No, | Measurement direction

X y zZ

Normal 1 X-axis 0 0 0

Longitudinal 2 Parallel to Z-axis -5.74 (-2,26)| 0 0

Transverse 3 Parallel to Y-axis -10.46 (-4.12)| 0 0

Longitudinal 4 Parallel to Z-axis 28.85 (11.38)| 0 0

Transverse 5 Parallel to Y-axis 24.13 ( 9.50)| 0 0
Transverse ] Parallel to Y-axis 24.13 ( 9.50)}| 0 | 87.83 (34.58)

16



LT

TABLE V.- MAXIMUM ACCELERATIONS, STROKES AND FORCES FOR LANDINGS OF INVERTED TRIPOD MODEL

All values are full scale {Mars prototype); R, right yaw (leg 2 down)
L, left yaw (leg 3 down); C, compression; T, tension

]

[a) 81 Uiits
[‘ Maxinmun aceeleration at
Landing attitude in — . center of gravity,
Vertical | Horizontal Surface Friction Earth g units
Run | velocity, | veloeity, slope, | coelficient, Stubility
mes m/s péizh’ Efi%lé’ X;laé‘:;’ deg . Normmal | Longitudinal | Lateral
1 7.0 o o o | o o To4 | “1s 4, 4 3,2 | Stable
2 T.084 2 10 180 .5L -20 4 -13 -4, 5 -5, 4 Stable
3 7.123 2 -2 150 1.0L -0 -4 -10 -7, 4 -4, 3 Stable
4 8.549 2 -16 | 180 | 2eR | -20 4 -8 -7, 4 5 -4 | Stable
5 6.849 2 -15 180 1.CR -20 .8 -3 -9, 4 8, -2 Stable
6 7.074 2 2 30L | 1.0R -20 -4 -10 4, -8 -6, 5 Stable
7 6.910 2 -i1.3 G 0 20 .4 -8 -8, 6 -5, 5 Stable
8 a 7.088 2 12 180 0 20 4 -10 7, -4 -2,2 Slahle_
Maximum strut stroke, centimeters, for —
Landing attitude in —
Vertical | Horizenlal Surface Friction Gear ! Gear 2 Gear 3
Run | velocity, | velaecity, [— slope, | caefficicnt, it
m/s m/s Pitch, | Roll, | Yaw, deg n "Strul 1A ] Strat 1B | Strul {C | Strut 2.:5.7 ﬁStTt ZE_ Strut 2C | Strut 3A | Strul 3B Strut 3C_‘
deg | deg | dey c c |ti ¢ T C clrT|c{T C cC | T e
1 7.074 0 a o9 0 6.4 18 o |0 0 |oO 18 030 (o jo 17 -0.3 |0 -0.5 |0
2 7.084 2 10 180 .5L -20 4 11 o 0 0 D 15 o] Afa 2.8 13 -3; .8 -3 3
3 T.123 2 -2 | 180 | 1.0L | -20 4 12 -3lo) o0 |o 15 0 |0 |-3]|15 17 3015 0 |0
4 6.849 2 -15 180 2.0R -20 4 8.1 -3.3 /0| -33]|0 15 3] 0 q 5 16 ] 1.8 -8|0
S 6.084% 2 -15 180 1.0R -20 -4 12 -1 ol -t 0 13 dio -.3 .8 15 ] Bl -1 Q
6 | 7.074 2 2 30L | 1OR | -20 4 17 o |o] o 3 13 -3000 {-3] .5 10 9 -.3)0
7 8.910 2 -11.5 G |0 20 4 10 -14 lof-13 |0 15 -2.8|0 [-3) .8 14 Q -3(0
8 | 7.086 2 12 (180 |0 20 -4 6.6 0o jol o 3 16 180 [o 33 15 0 j23[-15 Jao
Maximum strut forces, kN, for -
Landing attitude in —
Vertical | Horizontal Surfave Friction Gear 1 Gear 2 Geur 3
Run | velecity, | velocity, slope, | coefficient, i
m/s m/s Pitch, | Roll, | Yaw, dep n Strut 1A Strut 1B Strut 1T Strut 2A | Strut 2B Strut 2C | Strut 3A Strul 3B Strut 3C
deg | deg | deg c c |l cr C N IERE: C c Tt |clT
1 7.074 0 o a 4 0 0.4 a8 -11 11 -8.9| 6.7 33 -5 | 6.7 -12. 11 39 -16 13 -11] 6.2
2 7.084 2 15 180 AL -20 K 16 -14 13 -5.3 ] 8.7 38 -13 1138 -12 12 36 -13 14 -13 |14
3 7.123 2 -2 180 1.0L -29 ] 138 -18 9.3 | -18 6.7 27 -t )14 -12 18 36 -11 13 -12 | 16
4 §.5349 2 -16 13:10) 2.01R -20 4 17 -i6 0 -16 0 20 -91 0 -10 12 3 -il 14 -4 1 0
5 6.849 2 -1 180 1.JR -20 4 18 -17 6.7 | -17 1 18 -i6 5.3 | -13 13 32 -B.5 | 16 -13 | 8.3
6 7.074 2 2 30L | 1.0R -20 .4 40 -93| 8.0 -2 18 18 -18 |14 -6.7 (13 18 -15 8.3 -17 [ 12
T §.910 2 -11.5 ] a 20 4 22 -19 6.7 1-19 ] 32 -21 1 -17 12 18 -19 12 -14 13
8 1.096 2 12 180 0 20 A4 ‘18 4.9 8.4 |-13 4 35 =22 | 0 0 15 26 -4.4 |15 -19 | 0

dIV TYNIOIgO

JHL d40 ALrg dDNA0Yday
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TABLE V.- MAXIMUM ACCELERATIONS, STROKES AND FORCES FOR LANDINGS OF INVERTED TRIPOD MODEL — Concluded

L, left yaw {leg 3 down}; C, compression; T, tension

[t\.]] values are full scale (Mars protolype}; R, right yaw {leg 2 v:lowu]i|

(L) U.5. Customary Units

Maximum acceleration at
Landing atiitude in - center of gravity,
Vertical | Horizontal Surface | Friction Earth g units
Run | velocity, | velocily, slope, |[coefficient, Stability
e e Pé:;h' B:i%lgl’ ‘1;];19\;, s . Normal | Longiludinal | Lateral
1 23.21 0 0 0 Il 0 0.4 -18 4, -4 -3, 2 Stable
2 23.24 [} 19 180 ShL -20 4 -13 -4, 5 -9, 4 Stable
3 23.37 6 -2 180 1.0R -20 4 -10 -7,4 -4, 3 Stuble
4 22.47 6 -16 180 2.0R -20 4 -8 -7, 4 5, -4 Stable
5 22.47 [ -15 180 1.0R ~20 8 -8 -9, 4 8, -2 Stable
6 23.21 [ 2 30L | 1.0R -20 4 -10 4, -B -6, 5 Stable
7 22.67 [} -11.5 0 ] 20 4 -8 -8, 6 -5, 5 Stable
8 23.28 6 12 180 0 20 4 -10 T, -4 -2, 2 Stable
Maximum strut stroke, in., for —
Landing attifude in —
Vertieal | Horizontal Surface | Friclion Gear 1 Gear 2 Gear 3
Run | velocity, | velocity, slope, | coefficient,
/s T ftfs Pitch, | Roll, | Yaw, deg Jis Sirut 1A | Strut IB ] Strut 1C | Strut 2A | Strut 2B | Strut 2C | Strut 34 | Strul 3B ] Strut 3C
deg | deg | deg c cltlc]r ¢ clr|eclr c c T |C I T
1 23.21 i} 0 0 0 [} 0.4 7.0 Q (U] Q 1.0 -0.1 (0 a a 5.7 010 -0.2 { 0
2 23.24 6 Hy 180 5L -20 4.2 0 a 0 4] 7.5 0 210 1.1 1.4 -.1 B -1t
3 23.37 6 -2 180 1.0R -20 . 4.9 -l1ja| 0 0 5.9 0 0 -1 8 6.5 E B B ¢
4 22.47 [ -16 180 2.0R -20 4 3.2 -13|]0|-1.3]0 5.8 0 qQ ] 2 6.3 0 TH-3|0
8 22.47 § -15 180 1.0R -20 .8 4.5 -510Q -410 5.1 -5 [0 -1 3 6.0 Q 3 -850
6 23.21 6 2 J0L | 1.OR -20 4 6.6 a a o] 1 5.0 -1.219 -1 2 4.1 0 0 =170
T 22.67 6 -11.5 0 o 20 . 4.1 -3.610(-52!0 6.0 -1,1 ¢ -1 3 5.5 0 ] -t 0
8 23.38 § 12 180 4 20 K 2.6 i} a ] 1 6.2 -3.1190 Q 1.3 5.8 0 9.0 | -5.8| 0
Maximum strut forces, thousund pounds, fer —
Landing attitude in —
Vertieal | Horizontal Surlace | Friction Geur 1 Gear 2 Gear 3
Run { velocity, | velocity, slope, | coefficient,
/s it/s Pitch, | Roll, | Yaw, dog u Strut 1A Strut 1B | Strul 1C | Sirut 24 { Strut 2B | Strut 2C | Steyt 3A | Strut 3B | Strut 3C
deg | deg | deg c clric|r c cltlcirT c clTt]c|rT
1 23.21 o V] a o] 0 0.4 8.5 -2.4 |25 -2.0 (1.5 7.5 -3.4 |15 |-2.8:25 8.8 -3.53.0]-25]| 14
2 23.24 6 10 L8O AL -20 .4 3.6 -3.2 1291-1.2]|15 8.5 -3.0)13.0(-281]3.0 8.0 -3.0[3.27-3.0]3.1
3 23.37 6 -2 180 1.0R -20 4 4.0 -3.5 | 2.1 {-4.0 | 1.5 ¢ 6.0 -2.513.5(-2.7 | 4.0 8.0 -2.5 3.0 -28(35
4 22.47 6 -16 180 2.0R -20 .4 3.8 -3.5 |0 -3.5|D 4.6 -2.0 |4 -2,3 2.6 7.0 -2.5 |32, -2 |0
5 22.47 6 -13 180 1.0R -20 .8 4.0 -3.9 |15 -3.9 .3 4.1 -35|12|-30]|29 7.3 -1.9 135 -0 )21
6 23,21 6 2 30L | 1.0R -20 4 8.0 -2.111.81 -4 (40 4.2 -4.013.2]-1.5]3.0 4.0 -3.5]21(-38(2.8
T 22.87 & -11.5 0 1] 20 4 5.0 -42 (15 )-42 {0 7.2 -4.8 3(-39 )28 4.0 -4.2|2.7}-3.1{3.0
e 23.38 6 12 180 [} 20 .4 4.0 “1.1 11,9 -3.0f 8 7.8 -5.0|¢ o 3.3 5.8 -1.0 3.3 -43{0
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TABLE VI.- MAXIMUM ACCELERATIONS, STROKES AND FORCES FOR LANDINGS OF CANTILEVERED MODEL

[

{a) SI Units

L, left yaw {leg 3 down); C, compression; T, tension

11 values are Iull scale (Mars prolotype); R, right vaw {leg 2 down]z[

Maximum acceleration at
Landing atiitude in — center of gruvity,
Vertical | Horizontal Surface Friction Earth g units
Run velo::’ity, velo;.;ity, slope, | coefficient, Stability
m/s m/s it deg i)
pég“gh’ Rd(:lé’ ‘{:laé‘;’ Mormal | Longitudinal | Lateral
1 7.04 ' 5 0o o 0 0.4 -2 1, 6 1, -1 | Stable
2 7.10 2 15 184 1,08 -20 4 -14 -4, 8 .4, -5 Slable
3 7.01 2 -2.5 t 180 [1] -20 4 -11 -2, 1 4, -4 Stable
4 B.83 2 -14 180 SR -20 .4 -9 -5, 3 5, -6 Stable
3 6.83 2 -15 180 1.0R -20 .8 -11 -5, 5 7,5 Turned over
] .07 2 -1 30L (0 -20 4 -11 -6, § 4, -3 | Stable
7 6.98 2 -8 o 0 20 .4 -8 -5, 4 g, -& | Stable
| 8 T.10 2 9 180 2.0L 20 4 -to 4, -6 -5, 3 | Stable
Maximum sirut stroke, centimelers, for —
Landing attitude in — ]
Vertical | Horizontal Surface Friction Gear 1 Gear 2 Gear 3
Run | velocity, | velocity, slope, | coefficient, C—
m/s m/s Pitch Roll, | Yaw dep N Strut 1A | Strat 1B | Strut 1C | Sirut 24 | Strut 2B | Strut 2C | Strut 3A | Sirut 3B | Strul 3C
; ' ,
deg | deg | deg c RENERE: c T ERCEE: c clr |eclT
1 7.04 ] E 1] 0 o 0.4 10 Q 53( 0 4.8 19 Q 2 o 3.8 14 0 5.1 a 1.5
2 140 2 15 180 1.OR -20 .4 11 g 38| 9 4.3 16 -5138|0 3.8 17 a 5.1 -.5] 3.8
3 1.01 2 -2.5 | 180 q -20 A 8.9 a 4831 0 4.3 17 -8|28]0 4.1 13 Q 4.3 -.8] 3.8
4 6.83 2 -14 180 SR -20 .4 14 -.8 5 -1 .9 17 525 -.00 4.% 17 =538 (-2 1.5
5 6.83 2 -15 180 1.0R -20 .8 14 -8]1 -2 2 17 -1 4,810 4.3 5.4 Q 5.1 1-2 3.3
6 7.07 2 -1 30L| 0 -20 4 18 ] 3.8 0 5.1 12 a 4.3 |0 4.6 7.6 0 380 4.1
T 6.98 2 8 0 ] 20 .4 16 -8.03.8]-7.4738 14 L] 330 2.8 13 0 gl a 3.3
] 7.10 2 9 180 2.0L 20 4 8.4 0 28| 0 3.8 g |-51)2 a 8.1 17 0 7.6 ,-7.9]| 1.5
Maximum strut forces, kN, for —
Landing aitituge in — . A
Vertical { Horizontal Surface Friction Gear 1 Gear 2 Gear 2
Run | veloclty. | velachs, slope, | coellicient, o 1A | Stral LB | Steut 1C | Strul2A | Strut2B | Strut 2C | Strat 3A | Strut 38 | Strut3c
. ) rui r Tl Tu ru ru rul
m/s m/s | piteh, | Rotl, | Yaw, 4 u
deg deg | deg c C T |c|T o] c T c T c c T c T
1 7.04 s} 5 b} q Q ¢.4 45.4 0 16 016 33 -3 4.9 -1 12 37 -3 113 -3 1.9
2 7.10 z 15 180 1OR -20 4 az -3 15 -4 | 14 25 -11 14 -6.7 |15 35 -6.7( 13 -14 11
k] 7.01 2 -2.5 | 180 0 -20 A 27 011 3z -3 14 a0 -4.91 14 -11 6.7
4 6.83 2 -14 180 BR -2 4 46.T -14 4.4 -14 | 4 349 -13 3.4 -6.7 | 16 33 -6.7| 13 -15 5.8
-3 6.83 2 -15 180 1.0R -20 .B 31 -14 4.4 |-14 3 38 -15 11 -11 14 35 -4.4| 18 -15 1.6
& .07 2 -1 0Ly 0 -20 .4 44.5 -a.4 g9 -4 |18 29 -6.7 |15 -9.3 | 11 27 -4.9 |13 -1 14
7 6.98 2 -8 q 0 20 A4 31 -16 12 -15| 8.4 31 -8.4 |16 -B.4 | 4.4 31 -4.4| 8.4 -89 1" 7.1
8 7.10 2 ] 180 2.0L 20 4 36 -6.21{ 8.9 -4 9.8 33 -15 3 ] 16 RE] -2 14 -13 4
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TABLE VL - MAXIMUM ACCELERATIONS, STROKES AND FORCES FOR LANDINGS OF CANTILEVERED MODEL - Cancluded

[A

(b} U.5. Customary Units

1} values are full scale (Mars pratatype); R, righl yaw (leg 2 down);
L, lefl yaw (leg 3 down); C, compression; T, tension

e -
Maximum aceceleration al
Landing attitude in — center of gravity,
Vertical | Horizontal Surface Friction Earth g units
Run vctl‘:)fgity, ve}?;;ly, Sél.;pe, coefficient, o o Stability
) [gte‘zl’ igzlgl, ‘gie‘g' £ * Normal | Longitudinal | Lateral
i 23.1 0 5 0 [0 0 0.4 -20 1.8 1, -1 | Stable
2 23.3 G 15 180 1.0R -20 K -14 -4, 35 4, -5 Stacle
3 23.0 G -2.3 180 ] -20 A4 -11 -2, 7 4, -4 Stable
4 22.4 [] -14 180 SR =20 4 -9 -5, 3 9, -B Stahle
5 22,4 & -15 180 LoR | -20 .8 -11 -8, 8 -7, 5 | Turned aver
b1 23.2 6 -1 3L | O -20 .4 =11 -G, 5 4, -3 Stable
7 22,9 8 -8 [ 20 4 -3 -5, 4 €, -8 | Stable
b 23.3 G 9 180 |goL| 0 4 -10 4, -6 -5, 3 | Stable
r Maximum strut stroke, in., for - j
Lunding attitude in - "
Vertical | Horizontal Surface | Friction Gear 1 Gear 2 Gear 3
Run} velocity, | velocity, slope, | ccefficient, —
/s fLfs Piteh, | Roll, | Yaw, deg Strut 1A [ Strut 1B | Strut 1C | Strut 24 | Strut 2B | Strut 2C } Strut 3A ] Steut 3B | Strut 3¢
deg | deg | deg c cirtlc]r C c i tlelT c cit|c [T
1 23.1 Q ] Q o o 0.4 4.0 0 2.1 D 1.9 7.5 a 0710 1.5 7.5 0 201 0 0.6
2 23.3 [ 15 180 1.0R -20 4 4.4 ] 15| 0 1.7 5.2 -2 (150 1.5 6.6 (] 20 -2]1.5
3 23.0 G -2.5 180 g -20 4 3.5 0 LS [0 1.7 6.8 311190 1.6 T.1 0 | 8 -3 |15
4 22.4 ] ~-i4 180 SR -20 4 5.5 -.3 .2 -.5 2 6.6 -2i14-21.8 6.7 -2 (1.5 -.8 .6
5 22.4 ] -156 t80 1.0H -20 .8 8.7 -.3 .5 -6 T 6.6 -4|19]0 1.7 3.3 Q 2.0 -8 (1.3
G 23.2 6 -1 3oL | 9 -20 .4 6.1 Q 1.5{ 0 2,0 4,8 a 1710 1.8 3.0 ] 1.5 0 1.6
7 22,9 § -8 i3 a 20 4 6.5 -3.0: 15 (-28 (1.5 5.6 0 13| 0 L1 5.2 0 1.5 0 1.3
‘i 23.3 8 g 180 2.0L 20 .4 2.5 0 1.1 | 0 1,5 7.0 -2.0| 8,90 3.2 8.8 Q 30[-3.1 .6
Maximum strut forces, lhousand pounds, for —
Landing attitude in — i
Vertical | Horizontal Surface Friction Gear 1 Gear 2 Gear 3
Run | veloeity, | velocily, slope, |coefficient,
ft/s ft/s Pitch, | Roll, | Yaw, deg 1 Strut 1A | Strut 1B | Strut 1C | Strut 24 | Strut 2B | Strut 2C | Strut 34 | Strut 3B | Streat 3C
deg | dep | deg C clr|cTr c el ¢t c clr| e ]r
1 23.1 ] 5 0 [ a 0.4 0.2 o 350 3.5 7.5 -0.7 /1.1 | -0.3 [2.7 8.4 -0.6 {3.0| -0.5 |1.1
c2 23.3 6 15 180 10R | -20 4 1.2 -7134 | -8 3.1 5.5 -2.5|3.11-1.5 |3.3 B.2 -L530(-3.1]25
;3 23.0 6 -2.5 180 0 -20 .4 6.0 f Q 2.5 7.2 -7 3.2 6.8 -1.1]3.21-25 1.5
4 22.4 6 -14 180 .5R -20 4 10,5 =32 (10 |-31| 2 8.7 -3.0 (2.0 |-1.5 {3.5 1.5 -1.5 3.0 -3.4 /1.3
] 22.4 [} -15 180 L.OR -20 R:] 7.0 31110 (-3.1 K 8.7 -3.4 124 7-25 131 8.0 -1.0 {3.5| -3.4 | 1.7
6 23.2 ] -1 30L |0 -20 W4 1¢.0 -1.0 |20 ! -8 |3.8 6.5 -1,6 | 3.4 ]-2.1 |2.5 5.0 -11]30] -3 (3.1
7 22.9 6 -8 o 0 20 .4 8.3 -36 2.6 |-3.4 |19 7.0 -1.9 (35| -19 i1.0 1.0 -Lo |19 -20}186
li 23.3 [ 4 180 2.0L 20 .4 8.2 -1.4 12.0 -9 2.2 7.5 -3.4 | .7 4] 3.6 1.8 -5731;-3.0] 9




Hopeyoomb for sor

(a) Inverted tripod model.

L-T71-1671.1

(b) Cantilever model.

Figure 1.- Photographs of 3/8-scale models.
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All strut-model interfaces made
with universal joints

Slngle pivot connection

f .ESTh
. o8k {18.01)
- ; {3.32) '

‘— Universal joint

22

Cround line ..,_—/

Figure 2.- General arrangement of 3/8-scale inverted tripod model.
Dimensions are in meters and parenthetically in inches. All
values are full scale.




A1 strut-medel interfaces made
/7 with universal Joints
| \\\\ ‘

~_  /

1B ,// ]

-~ - / ’
VooZ Leg 1 114\““ L4575
e - — - T {18.01)

/} ,-/’/4§1r
b7

L083

(3.25)
/ |

~— Universal joint

b
' - -1
Center of gravity
-
A
| ‘1.329
x_ | .32)
1.005
(39.55)
I" 726
I (38.30) >
. S
J/
Ground line I {1.L4)
1.T40
© L (68.52) "

Figure 3.- General arrangement of 3/8-scale cantilever model.
Dimensions are in meters and parenthetically in inches, All
values are full scale, | '
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condary

L-71-6681.1
(a) Inverted tripod model. (b) Cantilever model,

Figure 4.- Photographs of landing-gear details.

L-71-1670.1



Force, kN

Stroke, in

0 2 I & 8
o 1 T [ 1
—— 35.6 N (8060 1bf)
—— e = —— 8000
Measured values /'
—— e — - quina.l valuas !
0 L.
3 1.72 Mi/m /
(9800 1be/immt —6000
20— L=
A
—4poc -
@
[+
—
4 7 /m {34 J g
/. 590 kN/m ({3400 lbf/fin
lo”m__ e " — 2000
8.87 xN {2000 lbf)j-
,j, 3.5 MH/m (20000 1bf/in)
f
Q | | I
0

S 10

Stroke, cm

(a) Force-stroke history.

Crushable aluminum honeycomb cartridges

1st stage 2d

Centering rod

8

Lih stage

Cylinder -

<10k

29
Pizton -038 033

L2130
(4.20) (1.%9)(1.hg) (8.38) inches

metors |

(b) Primary strut shock absorber,

Figure 5.- Details of primary strut shock absorber for inverted tripod model.
All values are full scale,
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(b) Dynamic compression force time history.

Crushable aluminum honeyconib cartridges
Tension Pigton \Cylinder/— Compression

/

z
ri

£
o

LNI-J__I'"..-JL

Cylinder e e " .
Piston L{

.01 meter .2L3 meter
(1.6 in) {9.57 in)

(¢} Strut details,

Figure 6.- Secondary strut shock absorber details for
inverted tripod model. All values are full scale.



Stroke, in.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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Figure 9.- Photograph of test apparatus.
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Figure 12.- Acceleration, stroke, and force time histories for
inverted tripod model landing at run 1 conditions. All val-
ues are full scale. See table IV for accelerometer locations,
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{a) Accelerations and primary strut strokes (run 6).

Figure 16.- Acceleration, stroke, and force time histories for inverted tripod
model landing at run 6 conditions, All values are full scale. See table IV
for accelerometer locations.
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(a) Accelerations and primary strut strokes (run 7).

Figure 17.- Acceleration, stroke, and force time histories for inverted tripod
model landing at run 7 conditions, All values are full scale. See table IV
for accelerometer locations.
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Figure 17.- Concluded.
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(a) Accelerations and primary strut strokes {run 8).

Figure 18.- Acceleration, stroke, and force time histories for inverted tripod
model landing at run 8 conditions, All values are full scale. See table IV
for accelerometer locations.
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full scale. See table 1V for accelerometer locations,
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47



48

FDRCE
STRUT
KN

FORCE
STRUT
KN

FORCE
STRUT
KN

FORCC
STRUT
KN

FORCE
STRUT
KN

FORCE
STRUT
KN

FORCE
STRUT
Kit

FORCE
STRUT
KN

FORCE
STRUT
KN

[

w

5017 =110 x 103
25 o 5
0 ] | | il | | | o
o 02 .4 .06 .0B .0 .12 .14 .16
- TIME.SEC —10
T o
-50 ! t 1 | 1 | 1. =10
D .02 .04 .06 .08 .19 .42 .14 .6
sor TINE .SEC 1o
] — | l i | L -
0 02 o4 .05 .08 .10 .12 .4 .16
TIME,.SEC
SO 10
25 -5
0 1 I j 1 l | o
o .02 .04 .06 .08 -td .12 .14 .I6
TIHE.
SDI_ IHE .SEC 10
Op=—- 0
-50 | | | | ] ] H =10
0 o2 .0y .06 .0B .10 .12 .14 1B
car TIME.SEC — 10
a NS S Q
-50 1 | i | i 1 .. = -0
o .2 .4 0B 08 .6 .12 .14 .16
TIME.SEC
50 10
AT
1
25 Lj\u\/\ﬂx,,/ \\ s
0 ! 1 ] = | I I N
0 oz .0t .06 .08 .10 .12 .14 i
- TIME.SEC —10
T
g ————eme e
sol } ] ] i 1 I~ =10
0 027 ' 0B .08 .10 12 1M 1B
TIHE. 5c
- IHE.SEC —e
Qe 0
-50 | | | ] ] 1 . .—-10
0 oz .04 .06 .08 .10 .12 .14 1B

TIME.SEC
(c) Strut forces (run 1),

Figure 19.- Concluded.
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Figure 20.- Acceleration, stroke, and force time histories for
cantilever model landing at run 2 conditions. All values are
full scale., See table IV for accelerometer locations.
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Figure 20.- Continued.
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Figure 20.- Concluded.
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(a) Accelerations (run 3).

Figure 21.- Acceleration, stroke, and force time histories for
cantilever model landing at run 3 conditions. All values are
full scale.

See table IV for accelerometer locations,
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(b) Strut strokes (run 3).

Figure 21.- Continued.
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(¢) Strut forces (run 3).

Figure 21.- Concluded.
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(a) Accelerations (run 5).

Figure 22.- Acceleration, stroke, and force time histories for
cantilever model landing at run 5 conditions. All values are
full scale. See table IV for accelerometer locations.
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(b) Strut strokes (run 5),

Figure 22.- Continued.
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(c) Strut forces (run 5).

Figure 22.- Concluded.
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Figure 23.- Acceleration, stroke, and force time histories for
cantilever model landing at run 6 conditions, AIl values are
full scale. See table IV for accelerometer locations.
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Figure 23.- Continued.
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Figure 23.- Concluded.
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Figure 24.- Acceleration, stroke, and force time histories for
cantilever model landing at run 7 conditions. All values are
full scale. See table IV for accelerometer locations.
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Figure 24.- Continued.
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(a) Accelerations (run 8).

Figure 25.- Acceleration, stroke, and force time histories for
cantilever model landing at run 8 conditions, All values are
full scale. See table IV for accelerometer locations.
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Figure 26.- Concluded.
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Figure 27.- Typical time histories for the cantilever model landing at

run 4 conditions. V, = 6.83 m/sec (22.4 it/sec); Vj = 2 m/sec
(6 ft/sec); pitch, -149; roll, 180°%; yaw, 0,5° right; p = 0.4;
slope, -20° All values are full scale. See table IV for acceler-
ometer locations.
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Figure 27.- Continued.
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Figure 2'7.- Concluded.
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Figure 28.- Maximum acceleration values for inverted tripod model.
All values are full scale.
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Figure 30.- Maximum force for inverted tripod model,
All values are full scale.
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All values are full scale.
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Figure 34.- Pitch-attitude time histories for inverted tripod and cantilever
models Ianded at case 5 conditions. V, = 6,85 m/sec (22.5 ft/sec);
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slope, -20°. All values are full scale.
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