General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
STATIC PERFORMANCE AND NOISE TESTS ON A THRUST
REVERSER FOR AN AUGMENTOR WING AIRCRAFT

by D. L. Harkonen, C. C. Marrs, and J. V. O'Keefe

July 1974

D6-41926

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under contract NAS2-7641

BOEING COMMERCIAL AIRPLANE COMPANY
P.O. Box 3707
Seattle, Washington 98124

for
AMES RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
A 1/3 scale model static test program was conducted to measure the noise levels and reverse thrust performance characteristics of a wing-mounted thrust reverser that could be used on an advanced augmentor wing airplane. The configuration tested represents only the most fundamental designs where installation and packaging restraints are not considered. The thrust reverser performance is presented in terms of horizontal, vertical, and resultant effectiveness ratios and the reverser noise is compared on the basis of peak perceived noise level (PNL) and one-third octave band data (OASPL). From an analysis of the model force and acoustic data, an assessment is made on the stopping distance versus noise for a 90,900 kg (200,000 lb) airplane using this type of thrust reverser.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>SYMBOLS AND ABBREVIATIONS</td>
<td>9</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>13</td>
</tr>
<tr>
<td>Test Facility and Model Description</td>
<td>13</td>
</tr>
<tr>
<td>Facility</td>
<td>13</td>
</tr>
<tr>
<td>Data Repeatability and Accuracy</td>
<td>13</td>
</tr>
<tr>
<td>Model Description</td>
<td>14</td>
</tr>
<tr>
<td>Test Procedures</td>
<td>14</td>
</tr>
<tr>
<td>Performance Definitions</td>
<td>15</td>
</tr>
<tr>
<td>Acoustic Scaling and Extrapolation of Jet Noise</td>
<td>15</td>
</tr>
<tr>
<td>Results</td>
<td>17</td>
</tr>
<tr>
<td>Thrust Reverser Static Performance</td>
<td>17</td>
</tr>
<tr>
<td>Thrust Reverser Installed Performance</td>
<td>19</td>
</tr>
<tr>
<td>Acoustic Analysis</td>
<td>20</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>23</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>24</td>
</tr>
</tbody>
</table>
STATIC PERFORMANCE AND NOISE TESTS
ON A THRUST REVERSER FOR AN AUGMENTOR WING AIRCRAFT
By D. L. Harkonen, C. C. Marrs, and J. V. O'Keefe

SUMMARY

Static performance and acoustic tests were conducted on a 1/3 scale two-dimensional model of a wing-mounted fan air thrust reverser applicable to an advanced augmentor wing aircraft. In concept, the thrust reverser would be deployed from the augmentor flap on landing and would turn and deflect the augmentor nozzle air up and forward above the wing. The reverser models consisted of two curved deflectors of different radii and were tested with various exit lip lengths and angles as shown in Figure 1. A lobe nozzle (corrugated splitter, ref. 1) was selected for the test because of its excellent noise suppression and high thrust augmentation characteristics.

Typical levels of measured reverser effectiveness in terms of the ratio of the reverse thrust components to the measured nozzle thrust versus lip angle are presented in Figure 1. This curve is for the smallest deflector radius tested ($r_D = 1.0$ nozzle height), which produces high reverse thrust levels and a high degree of thrust vector control. Resultant reverse thrust effectiveness levels (reverse fan thrust/nozzle thrust) of over 0.7 are attained, and by use of a flow deflector lip, vertical component effectiveness ratios varying 0.5 to negative values are available.

The noise levels were measured for several of the high performance configurations with a polar array of microphones. The noise data was scaled and extrapolated to different sideline distances for the various power settings. The reverser noise levels are compared to the bare nozzle noise and not with the levels produced by a lined augmentor.

In summary, the thrust reverser configurations increased the noise levels, particularly in the low and mid frequency bands (3-4 PNdB above the nozzle noise level), and redirected the noise toward the forward quadrant. The typical increase in the peak PNL noise levels and the change in noise directivity due to the reverser are presented in Figure 2. It should be noted that the test configuration did not permit evaluation of a full wing chord on sideline far-field noise levels.

The static reverse thrust performance levels developed by the configuration with a 70° lip angle were applied to a stopping performance analysis for a 90 900 kg (200 000 lb) TOGW augmentor wing airplane. Reversal of only the fan air was considered here, with primary (hot) thrust spoiled. The noise levels measured at nozzle pressure ratios that correspond to engine fan thrust levels were scaled and extrapolated to a 152 m (500 ft) sideline. The peak PNL noise levels produced by the
reverser are plotted versus airplane stopping distance for dry, wet, and icy runways in figure 3. As indicated in this figure, use of high reverse thrust with attendant high noise levels is useful only in reducing stopping distance where the runway is considered slick, i.e., flooded or icy with μ factors near 0.05. Under these conditions, the reverser would allow the airplane to stop in 457 m (1500 ft) with 50% power with moderate noise levels, whereas use of brakes-only results in a stopping distance near 914 m (3000 ft). Where runways with high traction are available (μ = 0.3 to 0.4), the brakes provide most of the stopping force, minimizing the usefulness of the thrust reverser.
FIGURE 1.—EFFECTS OF DEFLECTOR LIP ANGLE AND LIP EXTENSION LENGTH ON STATIC REVERSER EFFECTIVENESS

\[L = 0.56 \ h_N \]
\((h_N = \text{Nozzle height}) \)

\[r_D = 1.0 \ h_N \]
Nozzle pressure ratio = 2.6

\[F_N = \text{Nozzle thrust} \]
FIGURE 2.—EFFECTS OF A WING-MOUNTED THRUST REVERSER ON NOISE DIRECTIVITY
FIGURE 3.—RELATION OF ENGINE POWER AND REVERSER NOISE TO AIRPLANE STOPPING DISTANCE

- Power level
 - 100% FNTO
 - 78%
 - 40%

- A/P weight = 90 900 kg TOGW (200 000 lb)
- \(V_{TDN} = 41 \) m/sec (80 knots)
- Four P&W STF 3950 (BM-2) engines, 9136 kg (20 100 lb)
- Primary thrust spoiled
- 152 m minimum air distance (500 ft)
- Reverser effectiveness \(\eta_R = 0.67 \)
- 1-sec brake application
- 2-sec thrust rev obtained
- Includes EGA and is scaled to A/P nozzle span and area

Stopping distances at zero thrust

- \(\mu = 0.4 \)
- \(\mu = 0.2 \)
- \(\mu = 0.07 \)
- \(\mu = 0.05 \)
INTRODUCTION

The distributed-flow augmentor wing system (also jet flap or USB distributed-flow systems) has the potential of superior thrust reversing characteristics. The concept of a turning vane deployed along the wing span to reverse the nozzle flow offers the following potential advantages:

1) Complete avoidance of reingestion.
2) Operation down to zero airplane speed.
3) Fast deployment.
4) Lower noise than a single nozzle, resulting from use of high breakup nozzles.
5) spoiling of wing lift.

It has been demonstrated by static performance and acoustic tests (refs. 1 and 2) that high noise suppression and static thrust augmentation can be obtained by use of large-array-height lobe nozzles and relatively short-length augmentors ($C_T \approx 26\%$). Incorporating a fan air thrust reverser on an advanced augmentor wing airplane would most likely require deployment of the thrust reverser from within the augmentor flap envelope with the augmentor in the landing mode. Reverser stowage (space limitation) and actuation simplicity will be important considerations in the final design.

The noise levels and spectral characteristics produced by lobe nozzles with and without the augmentor flaps installed are well established. With the augmentor thrust reverser deployed after touchdown, the forward sideline noise is of main concern during reverser operation. The deflector reverser will tend to shield the nozzle high frequency noise from the aft arc, but it was speculated that the deflector itself will increase the noise levels in the low and mid frequency bands.

This static model test program examined the flow turning and noise characteristics of a curved deflector reverser and measured the static thrust reverser effectiveness.

It should be recognized that the test program described herein was exploratory, investigating only the most fundamental characteristics of a wing-mounted thrust reverser. A final installation design would require consideration of packaging restraints and deployment methods that would most likely result in changes to the reverser design. However, the test data acquired should provide valuable information for the direction of succeeding programs that must consider the installation requirements.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>area, sq cm or sq in.</td>
</tr>
<tr>
<td>AR</td>
<td>nozzle aspect ratio</td>
</tr>
<tr>
<td>AAR</td>
<td>nozzle array area ratio (ratio of the area bounded by the primary nozzle exits to the measured nozzle exit area)</td>
</tr>
<tr>
<td>b</td>
<td>augmentor span, cm or in.</td>
</tr>
<tr>
<td>C</td>
<td>noise correction factor or wing chord, cm or in.</td>
</tr>
<tr>
<td>CD</td>
<td>nozzle discharge coefficient</td>
</tr>
<tr>
<td>CF</td>
<td>flap chord, cm or in. or (%) wing chord</td>
</tr>
<tr>
<td>CV</td>
<td>nozzle velocity coefficient</td>
</tr>
<tr>
<td>FH</td>
<td>reverser horizontal thrust component, kg or lb</td>
</tr>
<tr>
<td>FN</td>
<td>augmentor nozzle thrust, kg or lb</td>
</tr>
<tr>
<td>FR</td>
<td>reverser resultant thrust, kg or lb</td>
</tr>
<tr>
<td>FV</td>
<td>reverser vertical thrust component, kg or lb</td>
</tr>
<tr>
<td>f</td>
<td>frequency, Hz</td>
</tr>
<tr>
<td>g</td>
<td>gravitational constant, m/sec(^2) or ft/sec(^2)</td>
</tr>
<tr>
<td>hN</td>
<td>augmentor nozzle height, cm or in.</td>
</tr>
<tr>
<td>L</td>
<td>reverser model exit lip length, cm or in.</td>
</tr>
<tr>
<td>m</td>
<td>mass airflow, slugs/sec (measured)</td>
</tr>
<tr>
<td>N</td>
<td>noy level, noys</td>
</tr>
</tbody>
</table>
NPR augmentor nozzle pressure ratio

OASPL overall sound pressure level, dB

PNdB unit of perceived noise level, dB

PNL perceived noise level, PNdB

rD reverser deflector radius, cm or in.

SLS sea level static

SN Strouhal number (frequency x length)/velocity

SPL sound pressure level

SR slant range, m or ft

STOL short takeoff and landing

T temperature, °C or °F

T.O. takeoff power setting

TOGW takeoff gross weight, kg or lb

V airplane velocity, m/sec or knots

WCP wing chord plane

X fore and aft position of the reverser deflector relative to the nozzle, cm or in.

Y vertical position of the reverser deflector relative to the nozzle, cm or in.

α air absorption (as a function of frequency), dB/305m or dB/1000 ft

β model rotation with respect to the microphone orientation, deg

θE effective resultant thrust angle with respect to the vertical, deg
θ_L exit lip angle with respect to the vertical, deg

η_R static reverser efficiency or effectiveness (F_R/F_N)

μ braking coefficient
DISCUSSION

TEST FACILITY AND MODEL DESCRIPTION

In the paragraphs that follow, details of the test facility, test procedures, and instrumentation are discussed, as well as the accuracy and repeatability of performance and acoustic measurements.

Facility

The Boeing North Field Mechanical Laboratories in Seattle, Washington, were chosen for the test location. The laboratories have a facility especially suitable for large-scale combined acoustic and thrust performance test programs. Thrust is measured with a six-component, platform balance bridged with high-pressure air; the noise can be measured in a 180° arc in an acoustic arena as shown in figures 4, 5, and 6. The thrust stand accurately measures model forces using either heated air at 149°C (300°F) or ambient-temperature nozzle air. Nozzle flow rates are determined with precision using Afterburner venturi flow meters calibrated against a Boeing standard nozzle. An acoustically treated muffler plenum, located on the balance platform upstream of the test nozzle plenum, prevents noise generated by the air supply lines and control valves from reaching the test nozzles.

To acquire acoustic data of the highest quality, data were recorded only during a limited range of atmospheric conditions. Because of the precision desired for acoustic measurements, each component of the instrumentation system for noise measurement was carefully chosen and integrated. The basic noise-measuring system consists of microphones, a tape recorder, and one-third octave band analysis instrumentation calibrated and operated over a frequency range of 200 to 40,000 Hz. The output is punched cards, which are used to make computer plots of one-third octave band level versus frequency and other calculations used in the analysis.

Data Repeatability and Accuracy

Before beginning the tests on the thrust reverser models, a 100/1 AR slot nozzle, used as a reference nozzle in previous tests, was installed and tested to check the facility thrust and airflow measuring systems after a long period of inactivity. The slot nozzle performance data (velocity and discharge coefficients), measured just prior to beginning the thrust reverser tests, are shown plotted with data recorded during the Task VII Design Integration and Noise Studies (ref. 3) on figure 7.

The reference slot nozzle performance data (runs 5-8), recorded prior to the reversed tests, shows good agreement with the performance levels measured nearly a year earlier. The discharge coefficient levels at or near 1.0 are not of concern, as some uncertainty exists in knowledge of the precise nozzle exit area.
The data from these four runs indicate a repeatability of test results of approximately ±0.5%. The balance lift axis (reverser vertical vector) was not used in the reference nozzle check runs but was calibrated by use of calibration weights.

Model Description

The nozzle selected for the augmentor thrust reverser tests was the existing corrugated splitter lobe nozzle array (fig. 8) which consists of 20 lobe nozzles equally spaced along a 111.7 cm span (44 in.). The design of an individual nozzle is shown in figure 9. The nozzle was selected for the reverser tests because its high noise suppression and high thrust augmentation characteristics had been demonstrated statically with an augmentor flap (ref. CR-114534). The lobe nozzles were fitted with a sheet metal aerodynamic fairing as shown in figure 10.

The thrust reverser is basically a curved deflector with a radiused inlet (bellmouth) on the lower side and an adjustable lip (flow deflector) on the top side (see fig. 11). Two deflector radii were tested, one of 1.0 nozzle height (1.0 h_N) and the other of 1.25 h_N. The curved deflectors were enclosed on the ends by end plates in order to provide two-dimensional flow characteristics (see fig. 12). The flow deflector exit lip (L) was designed to provide a considerable range of adjustment in both angle and extension length as shown in figure 11. The reverser assembly was supported on a lattice framework (fig. 13) fitted with adjustment capabilities that allowed movement of the reverser with respect to the nozzle in the X and Y directions.

Test Procedures

The effects of the many test variables on reverse thrust performance and noise were unknown for this type of thrust reverser. It was decided that noise data would only be recorded for configurations producing high reverse thrust performance. The reverser was initially set with minimum lip deflection (θ_L = 50°) and the optimum position (X and Y) of the reverser with respect to the nozzle was first determined. Initial runs operating over the full range of pressure ratios (1.6 to 3.0) showed that the reverser performance was not particularly sensitive to pressure ratio. So, performance data was only recorded at nozzle pressure ratios of 2.3 and 2.6 while optimizing the different variables.

After the optimum X and Y positions were determined, the lip extension angle θ_L and length L were varied. Two lip angles for each deflector radius (1.0 h_N and 1.25 h_N) were tested for acoustics and final performance by heating the nozzle air to 149°C (300°F) and recording data at nozzle pressure ratios of 1.6, 2.0, 2.3, 2.6, and 3.0. All tests were made with the model oriented at beta = 90° (sideline).
Performance Definitions

Nozzle Performance

Velocity coefficient, \(C_V = F_N/mV_I = F_N/C_D m_I V_I \)

Discharge coefficient, \(C_D = m/m_I \)

Reverser Performance

Resultant effectiveness = \(R_R/F_N \)

Horizontal effectiveness = \(F_H/F_N \)

Vertical effectiveness = \(F_V/F_N \)

Effective thrust angle \(\theta_E = \arccos (R_V/F_R) \), degrees

where

\(F_N \) = measured nozzle thrust, kg or lb

\(m \) = measured nozzle mass flow, slugs/sec

\(V_I \) = isentropic velocity, m/sec or ft/sec

\(m_I \) = ideal nozzle mass flow, slugs/sec

\(F_R \) = resultant reverser thrust, kg or lb

\(F_H \) = horizontal reverser thrust component, kg or lb

\(F_V \) = vertical reverser thrust component, kg or lb

Acoustic Scaling and Extrapolation of Jet Noise

Acoustic scale-model testing follows Lighthill’s theory that the total acoustic power radiated from a jet is proportional to the density of the jet, the eighth power of the velocity of the jet, and the second power of a characteristic dimension. To simplify scaling, both the density and jet...
velocity of the model are left identical to the full-scale prototype; only the characteristic dimension is scaled. For linear arrays, this characteristic dimension is the height and span of the array. For the data shown in this report, the scale is 1/3.

The steps used to scale and extrapolate the jet noise measured from the scale models to a full-scale augmentor wing airplane installation are given in figure 14. In the first step, the acoustic signature is reduced to 23 one-third octave band sound pressure levels in the frequency range indicated. The spectra are obtained at a number of positions on a 15.25-m (50-ft) radius. These positions are chosen to include all probable directions from the airplane to the sideline. (See fig. 15.)

Corrections are needed to adjust the measured spectra (at 15.25 m or 50 ft) for air absorption, so the adjusted spectra are as observed on a standard day. A different correction is required for each frequency band. This correction is made as the second step in the procedure.

Scaling is performed as the third step. It consists of multiplying all linear dimensions by the scale factor. Using a scale factor of 3, the 15.25-m (50-ft) radius becomes a 45.75-m (150-ft) radius, the nozzle height becomes 27 cm (10.65 in.), the span of the test section becomes 328 cm (129 in.), and the frequency range becomes 63 Hz to 10 kHz.

Steps 4 and 5 are the final processing of the data to the appropriate sidelines and to PNL.

Since the data was scaled up by a factor of 3 when processed, leaving the effective length of the model span at 3.28 m (129 in.), step 6 was used to bring this dimension to full-scale semispan, 12.70 m (500 in.). Using the equation 10 log full-scale/model-scale span resulted in a span correction of +5.7 PNdB. This amount would be additive to the baseline and reverser data, increasing the sideline PNL values but not changing the delta values.

Another factor not included in the regular data processing is the effect of extra ground attenuation (EGA). This can be important because the noise source and transmission path of the sound are close to the ground plane for the entire distance to the sideline.

An EGA factor was calculated (step 7) for a typical spectrum from the test and resulted in a correction factor of approximately -5.4 PNdB per 305 m (1000 ft).
RESULTS

Thrust Reverser Static Performance

The largest deflector radius (1.25 h_N) was tested first with the exit lip set at the minimum deflection angle $\theta_L = 50^\circ$ and extension length L equal to 0.99 h_N. The reverser was tested at several fore and aft (X) and vertical positions (Y) with respect to the lobe nozzle exit. As indicated in figure 16, the optimum fore and aft position is between $X = -0.70 h_N$ and $X = 0.70 h_N$. At $X = 0.70 h_N$, the reverser assembly was moved in the -Y direction until the nozzle splitter screech shields interfered with the inlet bellmouth. The highest reverse thrust effectiveness was achieved with the nozzle flow impinging on the inlet bellmouth ($Y = -0.14 h_N$) as indicated in figure 17.

It appears that the additional friction losses resulting from the flow impingement that occurs in the negative Y position are offset by the higher turning efficiency produced by the lower position of the lobe nozzles.

With the reverser model set at the optimum X and Y positions with respect to the nozzle, the exit lip angle θ_L and the extension length L were varied. Three lip lengths were tested at lip angles varying from 50° to 80°. The reverser effectiveness parameters (F_R/F_N, F_N/F_N, and F_V/F_N) are plotted vs θ_L for lip extensions of 0.56 h_N, 0.99 h_N, and 1.41 h_N on figures 18, 19, and 20, respectively. As indicated in the three figures, the effectiveness parameters are quite sensitive to lip deflection angle but are not strongly affected by lip extension length. As the lip angle is increased from 50° the horizontal reverse thrust component (F_H/F_N) increases to maximum effectiveness of about 0.70 at a 70° lip angle while the vertical thrust component (F_V/F_N) decreases steadily and finally reverses sign (-F_V/F_N) at a lip angle of 80°. The resultant thrust effectiveness (F_R/F_N) does not fall sharply until lip angles greater than 70° are reached. The resultant thrust effectiveness drops from a maximum of 0.80 at a 50° lip angle to approximately 0.45 at 80° lip angle.

Using the deflector radius of 1.25 h_N, two configurations ($\theta_L = 50^\circ$ and 70°) were selected for acoustic evaluation through the full range of nozzle pressure ratios with the nozzle air heated to 149°C (300°F). The thrust reverser effectiveness parameters are plotted vs nozzle pressure ratio for lip angles of 70° and 50° on figures 21 and 22, respectively. The data shows that the effectiveness ratios are not very sensitive to nozzle pressure ratio or thrust level.

The effective reverse thrust angle θ_E was computed from the measured thrust components and compared with the lip angle θ_L in figure 23. This data indicates that flow overturning is occurring, particularly with the lip angle set at 70°. Flow visualization tests were conducted with the smaller deflector radius ($r_D = 1.0 h_N$) using a splitter plate.
The smallest deflector radius (1.0 h_N) was installed using the same inlet bellmouth and adjustable exit lip that were used with the preceding deflector. This reverser was also positioned at the optimum settings determined for the deflector radius of 1.25 h_N. Three lip extension lengths were tested ($L = 0.99\, h_N$, 0.56 h_N, and 0.28 h_N) at lip angles varying from 50° to 80°. Figures 24, 25, and 26 show the reverser effectiveness versus lip angle at a nozzle pressure ratio of 2.6 for the three lip lengths tested. As with the larger radius deflector, the reverser effectiveness parameters are quite sensitive to lip angle. The maximum horizontal thrust component is achieved with the lip angle at 70° for lip extension lengths equal to 0.99 h_N and 0.56 h_N, but for the shortest lip tested ($L = 0.28\, h_N$), the peak horizontal thrust was produced at a lip angle of 80°. The resultant effectiveness parameter varies from a maximum of about 0.75 to approximately 0.45 at the largest lip angle tested. In general, as the lip length decreases, the sensitivity in trading horizontal thrust for vertical thrust diminishes.

At lip angles of 70° and 50°, acoustic and performance data were recorded with this deflector radius through the full range of pressure ratios, using heated air at $T = 149°C (300°F)$.

The reverser effectiveness is shown versus nozzle pressure ratio for the two lip angles in figures 27 and 28. Again, the thrust effectiveness ratios are not very sensitive to pressure ratio or thrust level. The highest level of horizontal thrust and largest spread between the horizontal and vertical components is achieved with the 70° lip angle with the horizontal thrust effectiveness at about 0.65.

The effective resultant thrust angles, θ_E, are shown vs nozzle pressure ratio in figure 29 for the 70° and 50° lip angle configurations. Some overturning is evident with the 70° lip angle, particularly at the lower pressure ratios. Tests with the lip angle increased to 80° indicated that the flow was overturning to the point where the vertical thrust component, F_V, reversed sign as shown in figure 25. The effective thrust angle for this configuration is shown in figure 30 for two pressure ratios. More than 20° of overturning is realized.

In an effort to understand the nature of the flow overturning with the high lip angles, a few tests were conducted with a splitter plate installed as shown in figure 31. The splitter plate was coated with a mixture of lampblack and oil prior to turning on the air and photographed after shutdown.

As indicated in figures 32 and 33, some streamlines of the exit flow are greater than the lip angle of 70°. The procedure was repeated with the lip angle set at 80° and the nozzle pressure ratio set at 2.3. The lampblack pattern shown in figure 34 indicates a large amount of flow overturning as the streamlines are deflected well beyond the lip angle. It appears that the large amount of flow overturning is the result of the flow separating from the steeply deflected lip.

*A lip angle of 90° was tested with the shortest lip.
Thrust Reverser Installed Performance

This type of wing-mounted thrust reverser offers several advantages as described in the “Introduction” section. The static tests described above demonstrated that high reverser thrust effectiveness is available with this type of reverser. Two reverser configurations, for which noise data was measured, were selected as candidates for installed performance analysis on the augmentor wing airplane described in reference 4. These configurations were the 50° and the 70° lip angles for the smallest deflector radius tested ($r_D = 1.0$ ft). Their static performance levels are shown in figures 27 and 28. A preliminary analysis revealed that owing to the reverser being located aft of the main landing gear, the 50° lip angle would aggravate the airplane pitch-up problem and also has a lower horizontal (retarding) force than the 70° lip angle. Only the 70° lip angle was therefore selected for the airplane stopping performance analysis.

A minimum nose gear load of 1818 kg (4000 lb) during reverser operation was selected as the criterion for establishing the maximum usable reverse thrust and the main landing gear location. The main landing gear was located 12% MAC aft of the airplane cg in order to maintain the minimum nose gear load with the four 9136 kg (20 100 lb) SLS engines at full power and the reverser operating at 70% effectiveness.

A breakdown of the available thrust levels for the P&W STF 395D (BM-2) engine is presented in figure 35. The total engine gross thrust, the thrust available at the fan offtake, the augmentor nozzle thrust, and the reverser resultant thrust are plotted against augmentor nozzle pressure ratio. Three engine power settings are identified (40%, 78%, and 100%) along with their appropriate augmentor nozzle pressure ratios used in the airplane stopping distance/noise analysis.

The airplane stopping distances were computed for three reverse thrust levels applied on an airplane velocity schedule as shown in figure 36. The effective resultant thrust angle was determined from the static performance data and applied at the wing location as shown in the sketch in figure 36. The throttle cutback point was chosen at 10.29 m/sec (20 knots) which assumes that reingestion would not be a problem with this type of reverser installation.

The airplane stopping distances were computed for the three engine power settings for a dry, wet, and icy runway and are shown in figure 37. The airplane selected for the analysis is the configuration described in reference 4 with a landing weight of 81 818 kg (180 000 lb). The assumptions for brake application time and time to attain reverse thrust are also given in figure 37. It is evident from this figure that for dry runway conditions, the reverser has little effect on stopping distance and is only effective for icy conditions.
In order to evaluate the tradeoffs in engine power, stopping distance, and sideline noise levels produced by the fan air thrust reverser, the noise levels are plotted versus stopping distance for the different runway conditions in figure 38. The 152 m (500 ft) sideline noise levels were selected from figure 39 at nozzle pressure ratios that correspond with the three engine power settings. The noise levels are scaled to the airplane nozzle areas and span dimensions and include FGA as described in the section “Acoustic Scaling and Extrapolation of Jet Noise.”

Under dry runway conditions, figure 38 indicates that from a noise standpoint, it is not advantageous to apply high reverser thrust levels, as the stopping distance is hardly affected. High thrust levels with the attendant high noise levels should only be considered under icy conditions or partial brake applications where brake life and maintenance are considerations. The design of this thrust reverser for low maintenance is simplified by the relatively low gas temperature environment (149°C or 300°F). The reverser could then be considered for frequent use to reduce brake maintenance.

Acoustic Analysis

Peak Perceived Noise Level

Figures 39, 40, and 41 show the result of plotting the peak sideline PNL at 152 m (500 ft), 305 m (1000 ft), and 610 m (2000 ft) for the four reverser configurations and the baseline (nozzle only). These figures have been corrected for the full span and EGA factor. The remaining data plots in the report are for a 27-cm (10.65-in.) lobe height with a 328-cm (129-in.) nozzle span without EGA. Relative velocity effects have not been applied to the noise data.

All reverser noise comparisons are made with the bare nozzle (baseline) and not with an acoustically lined augmentor. As can be seen from figures 39, 40, and 41, the peak PNL of all the reverser configurations are within a plus or minus 1 dB range. Therefore, on a peak PNL basis, the differences in reverser radius and lip position do not have a great effect.

Figures 42, 43, and 44 are a plot of the data shown in figures 39, 40, and 41, but without the EGA and full nozzle span correction. Table 1 is a tabulation of the nozzle span and EGA correction factors and shows the net result of the two corrections at all angles and sideline distances. Since the one-third octave spectrum shapes are similar at all power settings, the values in table 1 are reasonably accurate for all nozzle pressure ratios.

Perceived Noise Level vs Sideline Angle

Although the peak value of PNL is used for the final analysis, the peak value does not fully define what is taking place along a given sideline. For better definition of the acoustic directivity
changes along the three pertinent sidelines, the data in figures 45 through 56 are included. The result of reversing the gas stream on the acoustic directivity is clearly shown in these figures. As would be expected, the acoustic level in the forward quadrant goes up as much as 10 dB when the gas stream is deflected forward. The aft quadrant acoustic levels drop (relative to a nonreversed stream) in the aft quadrant, but only by 2 to 5 dB. It is also noteworthy that the difference of reverser lip angle of 50° to 70° can change the acoustic directivity, but with a very slight total effect.

One-Third Octave Band Analysis

The one-third octave band spectra for the reverser configurations and baseline nozzle at pressure ratios of 1.6, 2.0, 2.3, 2.6, and 3.0 are compared in figures 57 through 62. The one-third octave spectra are selected at the location of the peak PNL for the given sideline and nozzle pressure ratio. Acoustic data for the 50° and 70° lip angles with the deflector radius of 1.25 bN at the five nozzle pressure ratios are shown in figures 57, 58, and 59. The same type of data for the deflector radius of 1.0 bN is shown in figures 60, 61, and 62. As indicated in these figures, the increase in PNL at the peak angle is caused by an increase in low and mid frequencies resulting from the flow scrubbing on the deflector reverser. The increase in noise level is brought about by the high turbulence during reverse operations.
CONCLUSIONS AND RECOMMENDATIONS

- High reverse thrust is available with a simple curved deflector operating with a lobe-type suppressor nozzle.

- Reversing the augmentor nozzle flow (fan air) above the wing results in increasing the noise level 3-4 PNdB above the basic nozzle-alone noise and redirects the noise forward of the airplane.

- The stopping distance for a 90,000 kg (200,000 lb) TOGW augmentor wing airplane with a touchdown velocity of 41 m/sec (80 knots) is significantly reduced only for icy runways by use of the augmentor nozzle thrust reverser.

- Further studies of this type of thrust reverser should consider airplane installation and packaging constraints.

Boeing Commercial Airplane Company
P.O. Box 3707
Seattle, Washington 98124, July 31, 1974
REFERENCES

TABLE 1.—NOISE ADJUSTMENTS FOR AIRPLANE SEMISPAN NOZZLE AREA AND EGA

Noise Adjustment, PNdB (refer to fig. 14)

<table>
<thead>
<tr>
<th>Angle from inlet</th>
<th>40°</th>
<th>50°</th>
<th>60°</th>
<th>70°</th>
<th>80°</th>
<th>90°</th>
<th>100°</th>
<th>110°</th>
<th>120°</th>
<th>130°</th>
<th>140°</th>
</tr>
</thead>
<tbody>
<tr>
<td>152 m sideline (500 ft)</td>
<td></td>
</tr>
<tr>
<td>Nozzle span factor</td>
<td>+5.7</td>
<td></td>
</tr>
<tr>
<td>EGA</td>
<td>-4.2</td>
<td>-3.5</td>
<td>-3.1</td>
<td>-2.9</td>
<td>-2.7</td>
<td>-2.7</td>
<td>-2.9</td>
<td>-3.1</td>
<td>-3.5</td>
<td>-4.2</td>
<td></td>
</tr>
<tr>
<td>Net</td>
<td>+1.5</td>
<td>+2.2</td>
<td>+2.6</td>
<td>+2.8</td>
<td>+3.0</td>
<td>+3.0</td>
<td>+2.8</td>
<td>+2.6</td>
<td>+2.2</td>
<td>+1.5</td>
<td></td>
</tr>
<tr>
<td>305 m sideline (1000 ft)</td>
<td></td>
</tr>
<tr>
<td>Nozzle span factor</td>
<td>+5.7</td>
<td></td>
</tr>
<tr>
<td>EGA</td>
<td>-8.4</td>
<td>-7.1</td>
<td>-6.2</td>
<td>-5.7</td>
<td>-5.5</td>
<td>-5.4</td>
<td>-5.5</td>
<td>-5.7</td>
<td>-6.2</td>
<td>-7.1</td>
<td>-8.4</td>
</tr>
<tr>
<td>Net</td>
<td>-2.7</td>
<td>-1.4</td>
<td>-5.0</td>
<td>+2.0</td>
<td>+3.0</td>
<td>+2.0</td>
<td>+2.0</td>
<td>+2.0</td>
<td>+2.0</td>
<td>+3.0</td>
<td>+2.0</td>
</tr>
<tr>
<td>610 m sideline (2000 ft)</td>
<td></td>
</tr>
<tr>
<td>Nozzle span factor</td>
<td>+5.7</td>
<td></td>
</tr>
<tr>
<td>EGA</td>
<td>-16.8</td>
<td>-14.0</td>
<td>-12.5</td>
<td>-11.5</td>
<td>-10.9</td>
<td>-10.8</td>
<td>-10.9</td>
<td>-11.5</td>
<td>-12.5</td>
<td>-14.0</td>
<td>-16.8</td>
</tr>
<tr>
<td>Net</td>
<td>-11.1</td>
<td>-8.3</td>
<td>-6.8</td>
<td>-5.8</td>
<td>-5.2</td>
<td>-5.1</td>
<td>-5.2</td>
<td>-5.8</td>
<td>-6.8</td>
<td>-8.3</td>
<td>-11.1</td>
</tr>
</tbody>
</table>
FIGURE 4—STATIC TEST INSTALLATION
FIGURE 6.—THrust REVERSER TEST MODEL INSTALLATION
FIGURE 7.—REFERENCE NOZZLE (SLOT) PERFORMANCE LEVELS AND DATA REPEATABILITY
FIGURE 9.—DESIGN FEATURES OF A SINGLE CORRUGATED SPLITTER LOBE NOZZLE
AUGMENTOR NOZZLE—REVERSER ASSEMBLY
SIDE VIEW
Scale = 1/5

Variables and ranges tested—

\[r_D = 1.0 \, h_N, 1.25 \, h_N \]
\[\theta_L = 60^\circ \text{ to } 140^\circ \]
\[L = 0 \text{ to } 1.4 \, h_N \]
\[X = 0.42 \, h_N \text{ to } 1.26 \, h_N \]
\[Y = -0.14 \, h_N \text{ to } +0.14 \, h_N \]

FIGURE 11.—THRUST REVERSER TEST HARDWARE ASSEMBLY AND TEST VARIABLES
FIGURE 12.—LOBE NOZZLE, REVERSER, AND END PLATE INSTALLATION
FIGURE 13—THRUST REVERSER MODEL AIR SUPPLY PLENUM AND SUPPORT FRAMEWORK
MODEL TEST DATA
\[r = 15.25 \text{ m}, \quad h_N = 9.04 \text{ cm}, \quad f = 200 \text{ Hz to } 40 \text{ kHz} \]
in 1/3 octave bands

STANDARD DAY CORRECTIONS \((C_{SD})\)
\[C_{SD} = \alpha(f)_{SD} \frac{r}{1000} - \alpha(f)_{M} \frac{r}{10000} \text{ dB} \]
Standard day = \(77^\circ\text{F and 70\% rh}\)

SCALE 3 TO 1 NOZZLE HEIGHT AND SPAN
\[r = 45.75 \text{ m}, \quad h_N = 27 \text{ cm}, \quad b = 328 \text{ cm}, \]
\[150 \text{ ft} \quad 10.65 \text{ in}, \quad 129 \text{ in}. \]
\[f = 63 \text{ Hz to } 10 \text{ kHz in 1/3 octave bands} \]

EXTRAPOLATION TO OBSERVER POSITION \((C_x)\)
\[C_x = 20 \log \left(\frac{r}{SR} \right) - \alpha(f)_{SD} \frac{(SR - 150)}{1000} \text{ dB} \]

PERCEIVED NOISE CALCULATION AT OBSERVER POSITION
\[PNL = 33.2 \log (0.15 \sum N + 0.85 N_{\text{max}}) + 40 \text{ PNdB} \]

FULL NOZZLE ADJUSTMENT (WING SEMISPAN)
\[b = 1270 \text{ cm}, \quad 10 \log \frac{500}{129} \approx 5.7 \text{ dB} \]
\[500 \text{ in}, \quad 10 \log \frac{500}{129} \]

EXTRA GROUND ATTENUATION
\[EGA = \left(\frac{-5.4 \text{ dB}}{1000 \text{ ft}} \right) \left(\frac{305 \text{ m}}{500 \text{ in}} \right) \approx \left(\frac{-5.4 \text{ dB}}{1000 \text{ ft}} \right) \]
\[(305 \text{ m}) \sin \alpha \quad 1000 \text{ ft} \sin \alpha \]

FIGURE 14.—JET NOISE SCALING AND EXTRAPOLATION PROCEDURES
FIGURE 16.—SENSITIVITY OF REVERSER FORE AND AFT (X) POSITION ON STATIC REVERSER EFFECTIVENESS \((r_D = 1.25 \, h_N) \)

- \(r_D = 1.25 \, h_N \)
- \(\theta_L = 50^\circ \)
- \(L = 0.99 \, h_N \)
- \(X = \) variable
- \(Y = +0.07 \, h_N \)
- \(NPR = 2.6 \)
- \(T_T = \) ambient

\(F_R/F_N \)
\(F_H/F_N \)
\(F_V/F_N \)
FIGURE 17.—SENSITIVITY OF REVERSER VERTICAL (Y) POSITION ON STATIC REVERSER EFFECTIVENESS ($r_D = 1.25 \ h_N$).
FIGURE 18.—EFFECTS OF DEFLECTOR LIP ANGLE (θ_L) ON REVERSER EFFECTIVENESS FOR A LIP LENGTH EQUAL TO 0.56 h_N ($r_D = 1.25 h_N$)
FIGURE 19.—EFFECTS OF DEFLECTOR LIP ANGLE (θ_L) ON REVERSER EFFECTIVENESS FOR A LIP LENGTH EQUAL TO 0.99 h_N ($r_D = 1.25 h_N$)
FIGURE 20.—EFFECTS OF DEFLECTOR LIP ANGLE (θ_L) ON REVERSER EFFECTIVENESS FOR A LIP LENGTH EQUAL TO 1.41 h_N ($r_D = 1.25$ h_N)
FIGURE 21: SENSITIVITY OF NOZZLE PRESSURE RATIO ON REVERSER EFFECTIVENESS WITH LIP ANGLE (θ_L) OF 70° ($r_D = 1.25 h_N$)

RUN 31

- $r_D = 1.25 h_N$
- $\theta_L = 70°$
- $L = 0.99 h_N$
- $X = 0.70 h_N$
- $Y = -0.14 h_N$
- NPR = variable
- $T_T = 149°C (300°F)$

- F_R/F_N
- F_H/F_N
- F_V/F_N
FIGURE 22.—SENSITIVITY OF NOZZLE PRESSURE RATIO ON REVERSER EFFECTIVENESS WITH LIP ANGLE (θ_L) of 50° ($r_D = 1.25 h_N$).

RUN 32

- $r_D = 1.25 h_N$
- $\theta_L = 50^\circ$
- $L = 0.99 h_N$
- $X = 0.70 h_N$
- $Y = -0.14 h_N$
- NPR = variable
- $T_T = 149^\circ C\ (300^\circ F)$
- F_R/F_N
- F_H/F_N
- F_V/F_N

Reverser effectiveness

NPR
FIGURE 23.–EFFECTIVE REVERSER THRUST ANGLE (θ_E) COMPARED WITH THE GEOMETRIC LIP ANGLE (θ_L) OF 70°, 50° ($r_D = 1.25 h_N$)
Reverser effectiveness

θ_L, degrees

F_H/F_N, F_R/F_N, F_V/F_N

$\theta_L = \text{variable}$

$T_T = \text{ambient}$

$r_D = 1.0 h_N$

$L = 0.99 h_N$

$X = 0.70 h_N$

$Y = -0.14 h_N$

$NPR = 2.6$

$T_T = \text{ambient}$

F_H/F_N, F_R/F_N, F_V/F_N

θ_L, degrees

FIGURE 24.—EFFECTS OF DEFLECTOR LIP ANGLE (θ_L) ON REVERSER EFFECTIVENESS FOR A LIP LENGTH EQUAL TO 0.99 h_N ($r_D = 1.0 h_N$)
FIGURE 25.—EFFECT OF DEFLECTOR LIP ANGLE (θ_L) ON REVERSER EFFECTIVENESS FOR A LIP LENGTH EQUAL TO 0.56 h_N ($r_D = 1.0 h_N$)
FIGURE 26.—EFFECTS OF DEFLECTOR LIP ANGLE (θ_L) ON REVERSER EFFECTIVENESS FOR A LIP LENGTH EQUAL TO 0.28 h_N ($r_D = 1.0 h_N$)
FIGURE 27.—SENSITIVITY OF NOZZLE PRESSURE RATIO ON REVERSER EFFECTIVENESS FOR A LIP ANGLE (θ_L) OF 70° ($r_D = 1.0 h_N$)
FIGURE 28.—SENSITIVITY OF NOZZLE PRESSURE RATIO ON REVERSER EFFECTIVENESS FOR A LIP ANGLE (θ_L) OF 50° ($r_D = 1.0 \ h_N$)
FIGURE 29.—EFFECTIVE REVERSER THRUST ANGLE (θ_E) COMPARED WITH THE GEOMETRIC LIP ANGLE (θ_L) OF 70°, 50° ($r_D = 1.0 \, h_N$).

RUN 55 •———•
RUN 56 ▼———▼

$r_D = 1.0 \, h_N$
$L = 0.56 \, h_N$
$X = 0.70 \, h_N$
$Y = 0.14 \, h_N$
$T_{AR} = 149^\circ C$ (300° F)
FIGURE 30.—EFFECTIVE REVERSE THRUST ANGLE (θ_E) COMPARED WITH THE GEOMETRIC LIP ANGLE (θ_L) OF 80° ($r_D = 1.0 h_N$)

- $r_D = 1.0 h_N$
- $L = 0.56 h_N$
- $X = 0.70 h_N$
- $Y = -0.14 h_N$
- $T_{AR} = \text{ambient}$
FIGURE 35.—BREAKDOWN OF THE AVAILABLE THRUST LEVELS FROM THE ENGINE STATION TO THE THRUST REVERSER
FIGURE 36.—AVAILABLE RESULTANT REVERSER THRUST AT THREE ENGINE POWER SETTINGS
Task VIIA configuration (ref 4)

Weight = 81818 kg (180000 lb) \(V_{TDN} \approx 41.1 \text{ in/sec (80 knots)} \)
Four STF-3950 engines 9136 kg (20,100 lb)
1-sec brake application
2-sec thrust rev obtained
All four engines reversed
Primary thrust spoiled

\(^a \) Landing weight

FIGURE 37.—EFFECT OF ENGINE POWER SETTING ON AUGMENTOR WING AIRPLANE STOPPING DISTANCE FOR DRY, WET, AND ICY RUNWAYS
FIGURE 38.—RELATION OF ENGINE POWER SETTING AND THRUST REVERSER NOISE TO AIRPLANE STOPPING DISTANCE FOR DRY, WET, AND ICY RUNWAYS
FIGURE 39.-EFFECT OF AUGMENTOR NOZZLE PRESSURE RATIO AND REVERSER DEFLECTOR LIP ANGLE ON PEAK PNL NOISE LEVELS AT 152 M SIDELINE (500 FT) WITH EGA
FIGURE 40.—THE EFFECT OF AUGMENTOR NOZZLE PRESSURE RATIO AND REVERSER DEFLECTOR LIP ANGLE ON PEAK PNL NOISE LEVELS AT 305 M SIDELINE (1000 FT) WITH EGA.
Figure 41.—The effect of augmentor nozzle pressure ratio and reverser deflecting lip angle on peak PNL noise levels at 610 m sideline (2000 ft) with EGA.
FIGURE 42—EFFECT OF AUGMENTOR NOZZLE PRESSURE RATIO AND REVERSER DEFLECTOR LIP ANGLE ON PEAK PNL NOISE LEVELS AT 152 M SIDELINE (500 FT) WITHOUT EGA
FIGURE 43.—EFFECT OF AUGMENTOR NOZZLE PRESSURE RATIO AND REVERSER DEFLECTOR LIP ANGLE ON PEAK PNL NOISE LEVEL AT 305 M SIDELINE (1000 FT) WITHOUT EGA
610 m sideline (2000 ft)
Nozzle height = 27 cm (10.65 in.)
Nozzle span = 3.27 m (129 in.)
No EGA

Run 31: reverser radius 1.25 \(h_N\) lip angle = 80°
Run 32: reverser radius 1.25 \(h_N\) lip angle = 70°
Run 55: reverser radius 1.00 \(h_N\) lip angle = 70°
Run 56: reverser radius 1.00 \(h_N\) lip angle = 50°

FIGURE 44.—EFFECT OF AUGMENTOR NOZZLE PRESSURE RATIO AND REVERSER DEFLECTOR LIP ANGLE ON PEAK PNL NOISE LEVELS AT 610 M SIDELINE (2000 FT) WITHOUT EGA
FIGURE 47.—PNL VS MICROPHONE ANGLE, 305 M SIDELINE (1000 FT), \(r_D = 1.25 h_N \),
NPR = 1.6, 2.0, 2.6
FIGURE 48—PNL VS MICROPHONE ANGLE, 305 M SIDELINE (1000 FT), $r_D = 1.25 h_N$, $NPR = 2.3, 3.0$
FIGURE 49.—P NL VS MICROPHONE ANGLE, 610 M SIDELINE (2000 FT), tD = 1.25 hNp
NPR = 1.6, 2.0, 2.6
FIGURE 50.—PNL VS MICROPHONE ANGLE, 610 M SIDELINE (2000 FT), \(r_D = 1.25 h_N \), NPR = 2.3, 3.0
FIGURE 52—PNL VS MICROPHONE ANGLE, 152 M SIDELINE (500 FT), $r_D = 1.0 h_N$, $NPR = 2.3, 3.0$
FIGURE 53.—PNL VS MICROPHONE ANGLE, 305 M SIDELINE (1000 FT), $r_D = 1.0 h_N$
NPR = 1.6, 2.0, 2.6
FIGURE 54.—PNL VS MICROPHONE ANGLE, 305 M SIDELINE (1000 FT), $r_D = 1.0 h_N$

PNR = 2.3, 3.0
FIGURE 55.—PWL VS MICROPHONE ANGLE, 610 M SIDELINE (2000 FT), \(r_D = 1.0 \, h_N \), \(NPR = 1.6, 2.0, 2.6 \)
FIGURE 57.—ONE-THIRD OCTAVE BAND SPECTRA, $r_D = 1.25 \ h_N$, NPR = 1.6, 2.0

1/3 OCTAVE SPL AT ANGLE OF MAX PNL

- ○ Run 32: reverser radius $1.25 \ h_N$ lip angle 70°
- □ Run 32: reverser radius $1.25 \ h_N$ lip angle 50°
- △ Run 57: 20-lobed corrugated nozzle (baseline)
FIGURE 58—ONE-THIRD OCTAVE BAND SPECTRA, $r_D = 1.25 h_N$. NPR = 2.3, 2.6
1/3 OCTAVE SPL AT ANGLE OF MAX PNL

- Run 32: reverser radius $1.25 h_N$ lip angle 70°
- Run 32: reverser radius $1.25 h_N$ lio angle 50°
- Run 57: 20-lobe corrugated nozzle (baseline)

FIGURE 59. ONE-THIRD OCTAVE BAND SPECTRA, $r_D = 1.25 h_N$, NPR = 3.0
1/3 OCTAVE SPL AT ANGLE OF MAX PNL

- Run 55: reverser radius $1.00 h_N$ lip angle 70°
- Run 56: reverser radius $1.00 h_N$ lip angle 50°
- Run 57: 20-lobe corrugated nozzle (baseline)

50$^\circ$ lip

70$^\circ$ lip

Baseline

FIGURE 60.—ONE-THIRD OCTAVE BAND SPECTRA, $r_D = 1.0 h_N$, NPR = 1.6, 2.0
1/3 OCTAVE SPL AT ANGLE OF MAX PNL
○ Run 55: reverser radius 1.00 h_N lip angle 70°
□ Run 56: reverser radius 1.00 h_N lip angle 50°
△ Run 57: 20-lobe corrugated nozzle (baseline)

FIGURE 61.—ONE-THIRD OCTAVE BAND SPECTRA, r_D = 1.0 h_N, NPR = 2.3, 2.6
FIGURE 62.—ONE-THIRD OCTAVE BAND SPECTRA, $r_D = 1.0 \, h_N$, NPR = 3.0