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STATIC PERFORMANCE AND NOISE TESTS
ON A THRUST REVERSER FOR AN AUGMENTOR WING AIRCRAFT
By D, L. Harkonen, C. C. Marrs, and J, V, O'Keefe

SUMMARY

Static performance und acoustic tests were conducted on a 1/3 scale two-dimensional model of
4 wing-mounted [an air thrust reverser applicable to an advanced augmentor wing direraft, In
coneept, the thrust reverser would be deployed Irom the augmentor {lap on unding and would turn
and deflect the augmentor nozzle air up and forward above the wing. Thie reverser models consisted
ol two curved deflectors of dilfferent radii and were tested with various exit lip lengths and angles ns
shown in figure 1. A lobe nozzle (corrug:itc«.l splitter, ref. 1) was selected for the test beesuse of its
excellent noise suppression and high thrast auginentation characteristics.

Typical levels ol measured reverser effectiveness in terms of the ratio of the reverse thrust "
components to the measured nozzle thrust versus lip angle are presented in figure 1. This curve is
for the smallest dellector radius tested ( Iy = 1.0 nozzle height), which produces high reverse thrust
levels and a high degree of thrust vector control. Resultant reverse thrust effectiveness levels (reverse
fan thrust/pozzle thrust) of over 0.7 are attained, and by use of a {low deflector lip, vertical
component effectiveness m'ji‘ios varying (.5 to negative values are available,

~ The noise levels were measurcd Jor several of the high performance configurution:% with a polar
array ol microphones, The noise data was scaled and extrapolated to different sideline distances for
the various power settings. The reverser noise levels are compared to the bare nozzle noise and not
with the levels produced by a lined augmentor,

In summary, the thrust réeverser configurations increased the noise levels; purticularly inthe
low and mid {requency bands (3-4 PNdB above the nozzle noise level), and redirected the noise
toward the forward quadrant. The typical increase in the peak PNL noise levels and the change in

4

“noise directivity due to the reverser.ors presended in figure 2. U should be noted that the test
Y . i B

configuration did not permit evaluation 5¢ & il wing chord on sideline far-field noise levels.

The static reverse thrust performance levels developed by the configuration with-a 70°lip angle
were applied to a stopping performance analysis for a 90 900 kg (200 000 1b) TOGW augmentor
wing airplane. Reversal ol only the fan air was considered here, with primary (hot) thrust spoiled.
The noise tevels measured ut nozzle pressure ratios that correspond to engine fan thrust levels were
sculed ajid extrapolated to & 152 m (500 ft) sideling. The pau{( PNL noise levels produced by the
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ceverser pre plotted versus airplane stopping distance for dry, wet, and icy runways in figure 3, As
indicated in this figure, use of high reverse thrust with attendant high noise levels is uselul only in
reducing stopping distance where the runway is considered slick, i.e., flooded or icy with i factors
near 0.05, Under these conditions, the reverser would allow the airplane to stop in 457 m (1500 ft)
with S0% power with moderate noise levels, whereas use of brakes-only results in a stopping
distance near 914 m (3000 1), Where runways with high traction are available (#= 0.3 to 0.4), the
brakes provide most of the stopping force, minintizing the uselulness of the thrust reverser,
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INTRODUCTION

The distributed-flow augmentlor wing system (also jet fap or USH distributed-flow systems)
hus the potential of superior thrust reversing characteristics, The concept ol 4 turning vane deployed
along the wing span to reverse the nozzle flow offers the following potential advantges:

1) Complete avoidance of reingestion,

2)  Operation down {o zero airplane speed.

3 Fast deployment,

4)  Lower noise than o single nozzle, resubting from use of high breakup nozzies,
5)  Spoiling of wing KfL

It has been demonstrated by static performance and acoustic tests (refs, | and 2) that high
noise suppression and static thrust sugmentation can be obtained by use of large-array-height lobe
nozzles und relatively short-length augmentors (C = 26%). Incorporating & fan air thrust reverser
on an advanced augmentor wing airplune would most likely require deployment of the thrust
reverser from within the augmentor flap envelope with the augmentor in the landing mode. Reverser
stowage (space limitation) and actuation simplicity will be important considerations in the {inal
design,

The noise levels and spectral characteristics produced by lobe nozzles with and without the
augmentor flaps installed are well established. With the augmentor thrust reverser deployed after
torchdown, the forward sideline noise is of main concern during reverser operation, The dellector
reverser will tend to shield the nozzle high frequency noise from the aft arc, but it was speculated
that the deflector itself will increase the noise levels in the low and mid frequency binds.

This static model test program examined the flow turning and noise characteristics of a curved
deflector reverser and measured the static thrust reverser effectiveness.

1t should be recognized that the test program described herein was exploratory, investigating
only the most fundamental characteristics of a wing-mounted thrust reverser. A final installation
design would require consideration of packaging restruints and deployment methods that would
most likely result in changes to the reverser design. However, the test data acquired should provide
valuable information for the direction of succeeding programs that must consider the installation
requirements,

i
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SYMBOLS AND ABBREVIATIONS

areq, sg ¢m or sq in,

nozzle aspeet ratio

nozzle array arcd ratio (ratio of the aren bounded by the primary nozzle exits to the

measured nozzle exit aren)

augmentor span, em or in,

noise correction fuctor or wing chord, em or in.
nozzle discharge coeficient

flap chord, em or in, or % wing chord

nozzle veloeity coefficient

reverser horizontal thrust component, kg or Ib
augmentor nozzle thrust, kg or Ib

reverser resultant thrust, kg or [b )
reverser vertical thrust component, kg or 1b
I‘requcncy, Hz

gravitational constant, mlscc?‘ or I't/se(:2
augmentor nozzle hejght, em or in.

reverser mosel exit lip lengll.l. cm or in.

mass airflow, slugs/sec (measu ﬁ:d)

noy level, noys

PROCEDING PAGE BLANK NOT i




NPR

QASPL

PNd3

PNL

D

SLS

SPL

SR

STOL

T.0.

TOGW

wCp

gugmentor nozzle pressure ratio

overall sound pressure Jevel, dB

unit of perceived noise level, dB3

perceived noise level, PNdB

reverser deflector radius, ¢em or in,

sea level static

Strouhal number (frequency x length)fvelocity

sound pressure level

slant range, m or It

short takeoff and lunding

temperature,®C or°F

takeofT pc;wcr setting

takeofl gross weight, kg or b

airplngne velocity, m/sec or knots

wing chord plane

fore and aft position of the severser deflector relative to the nozzle, em or in.
vertical positioﬁ of the reverser del‘l;:-ctor relative to the nozzle, em orin.
air absorption (as a function of frequency), dB/305m or dB3/1000 it
model rotation with respect to the microphone orientation, deg

effective resultant thrust angle with respect to the vertical, deg




exit lip angle with respect to the vertical, deg
static reverser eiliciency or effectiveness (FRI Fn)

braking coelTicient
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DISCUSSION

TEST FACILITY AND MODEL DESCRIPTION
In the paragzaphs that follow, details of he test facility, test procedures, wnd nstimmentation
are discussed, as well as the aceuracy md repeatability of pedformance and neoustic meastirements.

Fucility:

The Boeing North Field Mechanieal Laboratories in Seattle, Washinglon, were chosen for the
test focation. The laboratories have a fucility especially suitable for large-scale combined acoustic
and thrust performance test programs, Thrust is measured with a six-component, platfonn balunee
bridged with high-pressure air; the noise can be measured in a 180%are in an acoustic arena as shown
in figures 4, §, and 6. The thrust stand accurately measures model forees using elther heated aivat
149°C (3407 Vs or ambient-temperature nozzle air, Nozzle flow rates are determined with precision
using £4 8 veaturi flow meters calibrated against a Boeing standard nozzle. An acoustically treated
watfider plenum, located on the balance platform upstream of the {est nozzle plenum, prevents noise
generated by the air supply Jines and control valves from reiching the Lest nozales,

To acquire acoustic data of the highest quality, data were recorded only during o limited range
of atmospheric conditions. Because of the precision desired for gecoustic measurerents, cach
component of the instrumentation system for .noise measurement was cirelully chosen and
integrated, The basic noise-measuring system consists of microphones, a tape recorder, and
one-third octave baid analysis instrumentition calibrated and operated over a frequency range of
200 to 40 000 Hz, The output is punched cards, which are used to taske compuler plots of
one-third octave band level versus frequency and other caleulutions used in the analysis,

Data Repeatability and Accuracy

Before beginning the tests on the thrust reverser models, 2 100f1 AR slot nozzle, used as a
reference nozzle in previous tests, was installed and tested to check the facility thrust and airflow
measuring systems-alter a long period of inactivity. The slot nozzle perlormance data (veloeity and
discharge cocfficients), measured just prior to beginning the thrust reverser tests, are shown plotied
with data recorded during the Task VII Design Integration and Noise Studivs (ref. 3) on figure 7.

The relerence slot nozzle performance data (runs 5-8), recorded prior to the reversed tests,
shows good agreement with the performance levels measured nearly a year earlier, The dischurge
coelticient levels at or near 1.0 are not of concern, as some uncertainty exists in knowledge of the
precise nozzle exit area. :

T R LY
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The data from these four runs indicate a repeatability of test results of approximately £0.5%.
The badunee Nt axis (veverser vertical veetor) was not usecd in the relerence nozzle check runs.but
wis citlibreated by use of calibration weights.

Model Deserintion

The nozzle selected for the augmentor thrust reverser tests was the existing corrugated spiitter
lobe nozzle array (fig. 8) which consists of 20 lobe nozzles equally spaced along & 111.7 cm spun
(44 in.). The design ol an individual nozzle is shown in figure 9. The nozzle was selected Jor the
reverser lests because its high noise suppression and high thrust sugmentation characteristics had
been demenstrpted statically with an uugmwuf‘rar Nap (ref. CR-114534). The lobe nozzles were litted
with a sheet metal acrodynamie fairing as shown in figure 10,

The thrust reverser is busically a curved deflector with a radiused inlet {bellmouth) on the
lower side and an adjustable lip (ftow delector) on the top side (see fig. 11). Two deflector radii
were lested, one of 1,0 nozzle hieight (1.0 hN) aiid the other of 1.25 hy. The curved dellectors were
enclosed on the ends by end plates in order to provide two-dimensional flow characterishics (see fig,
12), Tha lNow deflector exit lip (L) was desipned to provide a considerable range of adjustment in
both angle and exiension length as shown in figure 11, The reverser assembly was supported on
lattice framev-=vk (fig. 13) fitted with adjustment cupabilities that allowed movement of the
reverser with respect to the nozzle in the X and Y directions.

Test Procedures

The effects of the many test variables on reverse thrust performance and noise were unknown..

for this type of thrust reverser, It was decided that noise data would only be recorded for
configurations producing high reverse thrust performance. The reverser wus initially set with
minimum lip deflection (8 = 50°% and the optimum positidn (X and Y) of the reverser with respect
to the nozzle was lirst determined, Initial runs operating over the full range of pressure ratios (1.6
to 3.0 showed that the reverser performance was not particularly sensitive to pressure ratio. So,
performance data was only recordad at nozzle pressure ratios of 2.3 and 2.6 while optimizing the
different variables, B

After the optimum X and Y positions were determined, the lip extension angle 8 and length
L were varied, Two lip angles for each detlector radius (1.0 hyy and 1.25 hN) were tested for
acouztics and final performance by heating the nozzle air to 149°C (300°F) and recording data at
nozzle pressure ratios of 1.6, 2,0, 2.3, 2.6, and 3.0. All tests were made with the model oriented at
beta = 90°%{sideline),
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Performance Definitions

Nozzle Performance

Veloeity coelficient, Cy= FN/mVl = FNICD“‘IV%

Discharge coelficient, Cpy = mfm
Reverser Performance

- Resultant elTectiveness = Fp/FN
Horizontal effectiveness = F H/FN
Vertical effectiveness = FV/ FN

Effective thrust angle GE = are cos Fy/FR, degrees

where
Fy = measured nozzle thrust, ke or 1b
m = measured nozzle mass flow, slugs/sec e |
Vy =  isentropic velocity, m/sec or It/sec
my = ideal nozzle mass flow, slugs/sec

FR = resultant reverser thrust, kg or 1b

]

FH torizontal reverser thrust component, kg or 1b

Fy = vertical reverser thrust component, kg or b

Acoustic Scaling and Extrapolation of Jet Noise

Acousl‘ic scale-model testing follows Lighthill’s theory that the total acoustic power radiated
from a jet is proportional to the density of the jet, the eighth pewer of the velocity of the jet, and
the second power of a characteristic dimension. To simplify scaling, both the density and jet

X!

i i '
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velocity of the model are left identical to the full-scale prototype: only the characteristic dimension
is scaled, For lineai arrays, this characteristic dimension is the height and span of the army. For the
data shown in this report, the scale is 1/3.

The slcp;.@ used to scale and extrapoliate the jet noise measured from the scale models 1o a
full-scale augmentor wing airplane installation are given in figure 14, In the lirst step, the acoustic

signature i reduced to 23 one-third octave band sound pressure levels in the [requency range
indicated, The speetra are obtuined at a number of positions on a 15,25-m (50-M1) rudiug, These'

positions are chosen to include all probable directions from the airplane to the sideline. (Sce
fig. 15.)

3
Corrections are needed to adjust the measured spectra (at 15,25 m or 50 (1) for air absorbtion,
so the adjusted spectra are us observed on a standard day. A different correction is required for cach
frequency band. This correction is made as the second step in the procedure.

Sculing is performed as the third step. It consists of multiplying ali linear dimensions by the
scale [actor, Using o scale {actor of 3, the 15.25-m (50-ft) radius becomes it 45,75-m (150-t) radius,
the nozzle height becomes 27 cm €10.65 in.), the span of the test seetion becomes 328 em (129 in),
and the frequency range becomes 63 Hz to 10 kiz.

Steps 4 and 5 are the linal processing of the data to the appropriste sidelines and to PNL.

Since the data was scaled up by a factor of 3 when processed, I¢.ving the effective length of
the model span at 3.28 m (129 in,), step 6 was used to bring this dimension to full-scale semispan,
12,70 m (500in.). Using the equation 10 log full-scalefmodel-scale span resulted in a span
correction of +5.7 PNdB. This amount would be additive to the baseline and reverser data,
inereasing the sideline PNL values but not changing the delta values,

Another factor not included in the regular data processing is the effect of extra ground
attenuation (EGA). This can be important because the noise source and transmission path of the
sound are close to the ground plane for the entire distance to the sideline. \

An EGA factor was calculated (step 7) for a typical spectrum from the test and resulted-in a
correction factor of approximately -5.4 PNdB per 305 m (1000 ft).

i
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RESULTS
Thrusi Reverser Static Performance

The largest deflector radius (1,25 hN) was lested first with the exit lip set at the minimum
deflection angle ) = 50° and extension fength L equal to 0.99 hy. The reverser was tested at
several Tore and aft (X) and vertical positicas (Y) with respect to the lobe nozzle exit. As indicated
in figure 16, the optimum fore and aft » osition is between X = 0.42 hy and X=070 hy At X=
0.70 by, the reverser assembly was moved in the <Y direction until the nozzle splitier screech
shields interfered with the inlet -bellmouth, The highest reverse thrust effectiveness was achieved
with the nozzle flow imeinging on the inlet bellmouth (Y = -0,14 hN) as indicated in figure 17,

[t appears that the additional friction losses resulting from the flow impingement that oceurs
in the negative Y position are offset by the higher turning efficiency produced by the lower position
ol the lobe nozzles,

With the reverser model set at the optimum X and Y positions with respect to the nozzle, the
exit lip angle 0y and the extension jength L were varied, Three lip lengths were tested at lip angles
varying from 50°to 80% The reverser effectiveness parameters (Fr/Fy, Fn/F and F y/Fy) are
plotted vs 61 for lip extensions of 0.56 HINE 0.99 llN, and 1.41 hyy on figures 18, 19, and 20,
respectively, As indicated in the three figures, the effectiveness parameters are quite sensitive to lip
deflection angle but are not strongly affected by lip extension length. As the lip angle is increased

from 50° the horizontal reverse thrust component (Fy/Fyy) inereases to mu\:irium effectiveness of
E H''N

about-0.70 at a 70°lip angle while the vertical thrust component (FVIFN) LlLbI’c(lSLS steadily and

finally reverses sign (- FVIFN) at a lip angle of 80° The resultant thruseeffectiveness (IF /FN) does”

not fall sharply until lip angles greater than 70°are reached. The resultant thrust effectiveness drops
from a maximum of 0.80 at a 50°lip angle to approximately 0.45 at 80°lip angle.

Using the deflector radius of 1.25 hy, two configurations (9], = 50°~und’70°) were selected for
acoustic evaluation through the full range of nozzle pressure ratios with the nozzle air heated to
149°C (300°F). The thrust reverser effectiveness parameters are plotted vs nozzle pressure ratio for
lip angles of 70°and 50" on figures 21 and 22, respectively. The data shows that the effectiveness
ratios are not very sensitive to nozzle pressure ratio or thrust level.

The effective reverse thrust angle BE wis computed from the measured thrust components and
compared with the lip angle 8 in ligure 23. This data indicates that flow overturning is oceurring,
particularly with the lip angle set at 70° Flow visualization tests were conducted with the smaller
deflector radius (rp = 1.0 hyy) using splitter plate.

i,
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The smallest deflector radius (1.0 hpg) was installed using the same inlet bellmouth and
adjustable exit lip that were used with the preceding deflector, This reverser was also positioned at
the optimum settings determined for the deflector radius of 1,25 hy. Three lip cxtension lengths
were tested (L= 0,99 hy, 0.50 hyy, and 0.28 hyg) at lip angles varying from 50°to 80%* Figures 24,
25, und 26 show the reverser effectiveness versus lip angle at a nozzle pressure ratio of 2.6 for the
three lip lengths tested, As with the larger radius deflector, the reverser effectiveness parameters are
quite sensitive to lip angle. The maximum horizontal thrust component is achieved with the lip
angle at 70°for lip extension lengths equal to 0.99 hyy and 0.56 Iy, but for the shortest lip tested
(L= 0.28 hp)s the peak hotizontid thrust wis produced at a lip angle of 80% The resultant
efTectiveness parameter varies from o maximum of about 0,75 to approximately (.45 at the largest
lip angle tested. In general, as the lip length decreases, the sensitivily in trading horizontal thrust for
vertical thrust diminishes,

At lip angles of 70°and 508 acoustic and performance data were recorded with this deflector
radius through the full range of prcssurq rutios, using heated air at T = 149°C (300°F).

The reverser effectiveness is shown versus nozzle pressure ratio ¢ the two lip angles in (igures
27 and 28, Again, the thrust effectiveness rutios are not very sensitive to pressure ratio or thiust
fevel. The highest level of horizontal thrust and largest spread between the horizontal und vertical
components is achieved with the 70° lip angle with the horizontal thrust effectiveness at about 0.65.

The effective resultant thrust ungles, GE, are shown vs nozzle pressure ratio in figure 29 lor the
70°und 50°lip angle configurations. Some overturning is evident with the 70°lip angle, purticularly
at the lower pressure ratios. Tests with the lip angle increased to 80° indicated that the Itow wus
overturning to the point where the vertical thrust component, FV= reversed sign as shown in figure
25, The effective thrust angle for this configuration is shown in [igure 30 for two pressure ratios.
More than 20? of overturning is realized,

In an effort to understand the naturc of the {low overturning with the high lip angles, a few
tests were conducted with a splitter plate installed as shown in figure 31. The splitter plate was
coated with a mixture of lampblack and oil prior to turning on the air and photographed after
shutdown,

As indicated in figures 32 and 33, some streamlines of the exit flow are greater thun the lip
angle of 70°% The procedure was repeated with the lip angle set at 80%and the nozzle pressure ratio
set at 2.3, The lampblack pattern shown in figure 34 indicates a large amount of low overturning us
the streamlines are detlected well beyond the lip angle. It appears that the large amount of flow
overturning is the result of the flow separdting from the steeply deflected lip.

A lip angle of 90 was tested with the shortest lip.
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Thrust Reverser Installed Performance

This type of wing-mounted thrust reverser offers several advantages as deseribed in the
“Introduction™ scction. The static tests deseribed above demonstrated that high reverser thrust
ef fectiveness is available with this type ol reverser. Two reverser conligurations, for which noise
data was measured, were selected as candidates for installed performance analysis on the augmentor
wing airplane described in reference 4, These configurations were the 50%and the 70°1ip angles for
the smullest deflector radius tested (rpy = 1.0 hyy). Their static performinee levels are shown in
figtires 27 and 28, A preliminary analysis revealed that owing to the reverser being located alt of the
main landing gear, the 5091ip angle would aggrevate the airplane pitch-up problem and also has a
lower horizontal (retardingy lorce (han the 70° Jip angle. Only the 70° lip angle was therelore
selected for the airplane stopping performance analysis.

A minimum nose gear foiad of 1818 ke (4000 1b) duﬁng reverser aperation wias selected us the
eriterion (or establishing the maximum usible reverse thrust and the main landing geay focation. The
main landing gear was located 124 MAC aft of the airplane cg in order to maintain the minimum
nose gear load with the Tfour 9136 kg (20 100 1b) SLS engines at Tull power and the reverser
operating at 70% elieetiveness.

A breakdown of the availuble thrust levels Tor the P&W STF 395D (BM-2) engine is presented
in figure 35, The total engine gross thrust, the thrust available at the lin offtake, the augmentor
nozzsle thrust, and the reverser resultant thrust are plotted aguinst augmentor nozzle pressure ratio.
Three engine power setlings are identified (40%, 784, and 100%:; atong with their appropriate
augmentor nozzle pressure ratios used in the airplape stopping distance/noise analysis,

The airplane stopping distances were computed for three reverse thrust levels applied on an
airplane velocity schedule as shown in ligure 36. The effective resultant thrust angle was determined
from the static perfornmance data and applied at the wing location us shown in the sketch in figure
36. The throttle cutback point was chosen at 10.29 m/sec (20 knots) which assumes that reingestion
would not be a problem with this type of reverser installation.

The airplane stopping distances were computed for the three engine power settings for a dry,
wet, and icy runway and are shown in figure 37. The airplane selecled for the analysis is the
cenfiguration deseribed in reference 4 with a landing wuight of 81 818 kg (180000 Ib). The
assumptions for brake application time and time to attain reverse thrust are also given in lignre 37.
it s evident from this figure that lor dry runway conditions, the reverser has little elfect on
stopping distance and is only elfective for icy conditions, '
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In order (o evaluate the tradeolTs in engine power, stopping distanee, and sideline noise levels
produced by the fan air thrust reverser, the noise levels are plotted versus stopping distance for the
different runway conditions in figure 38, The 152 m (500 1) sideline noise levels were selected
from fizure 39 at nozzle pressure ratios that correspond with the three engine power settings. The
noise levels are scaled Lo the airplane nozzle areas and span dimensions and include FGA as
deseribed in the section “*Acoustic Scaling and Extrapolation ol Jet Noise,”

Under dry runway conditions, figure 38 indicates that from a noise standpoint, it is not
advantageous to apply high reverser thrust levels, as the stopping distance is hardly alTected. High
(hrust fevels with the attendant high noise fevels should only be considered under icy conditions or
partial brake applications where brake life and maintenance are consideralions, The design ol this
thrust reverser for low maintenance is simplificd by the relatively low gas temperature environinent
(149°C or 300°1). The reverser could then be considercd [or frequent use to reduce brake
maintenance,

Acoustic Analysis
Peak Perceived Noise Level

Figures 39, 40. and 41 show the result of plotting the peak sideline PNL at 152 m (500 [t),
305 m (1000 1), and 610 m (2000 {t) for the four reverser confligurations and the baseline (nozzle
only). These ffgures have been corrected for the full span and EGA factor. The remaining data plots
in the report are lfor a 27-cm (10.65-in.) lobe height with a 328-cm (129-in.) nozzle span without
EGA. Relative velocity cfﬁ:cls have not been applied to the noise data,

All reverser noise comparisons are made with the bare nozzle (bascling) and not with an
acoustically fined augmentor. As can be seen from figures 39, 40, and 41, thie peak PNL of all the
reverser configurations are within a plus or minus 1 dB range, Therefore, on a peak PNL basis, the
differences in reverser radius and lip position do not have a great effect.

Figures 42, 43, and 44 are a plot of the data shown in figures 39, 40, and 41, but without the
EGA and [ull nozzle span correction, Tuble 1 is a tabulation of the nozzle span and EGA correction
factors and shows the net result of the two corrections at all angles and sideline distances. Since the
onc-third octave spéctrum shapes are similur at all power settings, the values in (able | are
reasonuably accurate for all nozzle pressure ratios.

Perceived Noise Level vs Sideline Angle

Although the peak vilue of PNL is used for the final analysis, the peak value does not {fully
define what is taking place along a given sideline. For better definition ol the acoustic directivity




changes along the three pertinent sidelines, the data in figures 45 through 56 are included, The
result of reversing the gas stream on the acoustic directivity is clearly shown in these ligures. As
would be expected, the acoustic level in the forward quadrant goes up as mueh as 10 dB when the
gas strenm s deflected forward, The aft quadrant acoustic levels drop (relative to o nonreversed

stream) in the aft quadrant, but only by 2 to 5 dB. It is also noteworthy that the difference of

reverser iip angle ol 50°to 70° can change the acoustic direetivity, but with a very slight total effect.

One-Third Qctave Bund Analysis

The one-third oclave band spectra for the reverser configurations and baseline nozzle at
pressure ratios ol 1,6, 2,0, 2.3, 2.6, and 3.0 are compared in figures 57 through 62, The one-third
octave spectra are selected at the focation of the peak PNL for the given sideline and nozzle pressure
ratio. Acoustic data for the 50°and 70° lip angles with the deflector radius of 1.25 hy at the live
nozzle pressure ratjos are shown in figures 57, 58, and §9, The same type of duta for the deflector
radius of 1.0 hyy is shown in ﬁgu‘res 60, 61, and 62, As indicated in these figures, the increase in
PNL at the peak angle is caused by an increase in low and mid frequencies resulting from the {low
scrubbing on the deflector reverser. The increase in noise level is brought about by the high
turbulence during reverse operations.

£
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CONCLUSIONS AND RECOMMENDATIONS

{

o [high reverse thrust is available with a simple curved deflector operating with @ lobe-type

suppressor nozzle,
{

e Reversing the augmentor nozzle flow (lan air) above the wing resulls in increasing the
noise leved 3-4 PNUB above the basic noszle-alone noise and redirects the noise forward of
the airplane.

¢ o The stopping distance for a 90 909 Lz ¢ 200 000 tb) TOGW augmentor wing airplane with
atouchdown veloeity of 41 misee (80 kinots) is signilicantly redoced only for icy runways
by use of the augmentor nozale thrust reverser,

ﬂ- e  Furlher studies of this type of thrust reverser shiotld consider airpline installation and
packiging constraints. )

Boeing Commercial Airplane Company

<

“ P,0. Box 3707
Scattle, Washington 98124, July 31, 1974
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FIGURE 6

Tt RUST REVERSER

TEST MODEL INSTALLATION



1,00

Mean level from runs 2126-2129 (date 1/23/73 ref. 3}
B8~ _.._-E-]--—-l—-——“-—-a_
- &
Velocity cocfficient (Cyy) - 2 %1
wl-§
.94 1 | 3 .
1.5 2.0 2.6 3.0 4.0
Nozzle pressura ratio (NPR)
Run Mozzle Date
FANE 100/1 A slot 2111174
O 6 100/1 R slot 2/111/74
o 7 100/1 MR slct 2111174
$ 8 100/1 A slot 2/11/14
1.02
1'00 ﬂ—ﬂﬂ————————_ﬂ-
E A @ é
Discharge coefflclent (Cpy) ’
08 [~
96 { | ; |

1.5 2.0 2.5 - 3.0 4.0

Nozzle pressure ratio (NPR)

FIGURE 7.—REFERENCE NOZZLE (SLOT) PERFORMANCE LEVELS AND DATA
‘ REPEATABILITY :
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AUGMENTOR NOZZLE—~REVERSER ASSEMBLY
SIDE VIEW

Scale= 1/6

00
~Lip mxtension .

50°
60°
70°
80°
Corrugated splitter lobe nozzle End plate
{20 lobes) I
hy = 9.01 em
N (3558 in._}\' |
] — -+FH

Nozzle exit

Inlet bellmouth .

Variables and ranges tested--
rD - 1.0 hN' 1725 hN

6, - 50°to140°
L = Otoldhy
A X = 042hyto1.26hy
Y = -0.14hyto+0.14hy -7

FIGURE 11.—THRUST REVERSER TEST HARDWARE ASSEMBLY AND TEST VARIABLES
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MODEL TEST DATA

r = 16.26m, hN = 0
60 ft 3
in 1/3 octave bands

.04 em; f = 200 Hzto 40kHz
.6b

‘

STANDARD DAY CORRECTIONS (Cgp)

B r T
Cgp = ifisp Toog ~*IM Tooo0 9B

Standard day = 77°F and 70% rh

SCALE 37O 1 NOZZ| E HEIGHT AND SPAN

r = 4876 m, hN = 27 cm, bh = 328cm,
160 ft 10,65 in. 129 in,
f = 63 Hz to 10 kHz in 1/3 octave bands

l

EXTRAPOLATION TO O8SERVER POSITION {Cx)

(SR - 150

Cx = 20 log {g) - efigp (Zygpp" ) 9B

‘

PERCEIVED NOISE CALCULATION AT OBSERVER POSITION

" Ymax

PNL = 33.210g (0.1 ZN+085N___ | +40PNdB

-
OPTION
L 4

FULL NOZZLE ADJUSTMENT (WING SEMISPAN)

b = 1270em,  101og222~57d8

500 in. 129

OPTION
4

EXTRA GROUND ATTENUATION

EGA =~ 305 m
-5.4 dB/1000 ft ) .
{-5.4 dB) (sidelinem)” _ (-5.4 dB) (sideline ft)

{305 m} {sim) ¢ 1000 ft {sinc)

EGA =

N

FIGURE 14.—JET NOISE SCALING AND EXTRAPOLATION PROCEDURES
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Reverser
effectiveness fh =
. e =
L L
2 | L=
. % =
Y =
NPR =
F/F
iy 1 1 L1 | HTN
4 6 8 1.0 1.2 Fy/Fy
X/bN

1.25 hy
50°
0.89 hy
variable
+0.07 hy
2.6

ambient.
{—

0.'..-'0
By m

FIGURE 16.~SENSITIVITY OF REVERSER FORE AND AFT (X) POSITION ON STATIC

REVERSER EFFECTIVENESS (rp = 1.25 hpy
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Reverser
effectiveness

R

L

hp = 8.01 cm {3,556 in.}

|
P........-@........

Y travel limit

— el

-—b‘ .Q..

| ] | | |

-15 -10 -.05 o 06 .10

Yy

REVERSER EFFECTIVENESS (rp = 1.25 hp).

15

/— Nozzle

_‘
O
T

Fr/Fy
Fu/Fy

= 1.25hy

50°
0.99 hy
0.7 hy
variable
2.6
amblent

[—
[TTTTTTTLT ]

Ay um o,

FIGURE 17,~SENSITIVITY OF REVERSER VERTICAL (Y} POSITION ON STATIC




Raverser
effectiveness

50

80

BL' degrees’

0 ;

80

]

=]
—
']

-
L}

NPR
TT =

n

Fr/Fy
Fl/Fy

1.25hy
variable
0.86 hy,
0,70 hN
-0.14 hy
26

= ambient

H
GI.IIII@
O = =

FIGURE 18.—EFFECTS OF DEFLECTOR LIP ANGLE (0,! ON REVERSER EFFECTIVENESS
FOR A LIP LENGTH EQUAL TO 0.56 hy (rp = 1.25 hpd
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&

by = 9.01 cm {3.85 in.)
Nozzle

4
" Reverser _ ‘
effectiveness . \ = 1.25hy
\ 0, = variable
2 = =
\ L = 099hy
. \ X = 070hy
\ Y = -0.14 hN
NPR = 26
0 TT = ambient
FRIFN pm——r]
Fi,/F susaas
" | | | ¥ THIFN ©remee0
50, 60 70 80 g0 Fy/Fy dm=——d
GL,degrees "

. FIGURE 19.—~EFFECTS OF DEFLECTOR LIP ANGLE (0;) ON REVERSER EFFECTIVENESS

FOR A LIP LENGTH EQUAL TO 0.99 hy frp = 1.25 hpl
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Reverser
effectiveness

|

50

66T

70

@, , degrees
L
FIGURE 20.—-EFFECTS OF DEFLECTOR LIP ANGLE (GL) ON REVERSER ’EFFECTIVENES._S‘

80

FOR A LIP LENGTH EQUAL TO 1.41 hy frp = 1.25 by

rD =

F/Fiy
Fy/Fy

1.25 hN_
variable
1.41 hy
0.70hy
=0.14 hy
2.6
ambilant
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Eynansesd
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hy = 9.01 cm (3,55 in.)

l

/- Nozzle Ty

8
6
4
Reverser RUN 31
effectiveness | p = 128hy
_ o
2k 6, = 70
L = 099hy
a X = 070h
o g N
o g o Y = -014h
By — 15N
NPR = variable
0 Tr = 149°C (300°F)
. Fo/F Asanan
-2 1 ' ] _ HN Bressee@
' 1.6 2,0 25 3.0 Fu/Fy Are e
NPR

FIGURE 21.—SENSITIVITY OF NOZZLE PRESSURE RATIO ON REVERSER
EFFECTIVENESS WITH LIP ANGLE (0;) OF 70° (rp = 1.25 hy)
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by =9.0tcm {3.55in.)

l /— Nozzle TT

° a____-—-e—'—_a‘ . —— ]
O--l.--l---l{)"".“'@"'IIIQQII-uu.-n---e
8 I~
ﬁ"-—-n-------&"“"""""&-'--'---&-”_.--.ﬁ
A4 1
Reverser ’ RUN 32
effectiveness ~
: rD - 1.205 hN
.2 . OL = 60
L = (.99 hN
X = 0.70hy
Y = =0.14 hN
0 _ NPR = variable
Tp = 149°C {300°F)
i F asene
“2 | | { { H/FN O acenend _
1.5 20 25 3.0 FylFy dem o= =,
NPR

FIGURE 22.—SENSITIVITY OF NOzZLE PRESSURE RATIO ON REVERSER EFFECTIVENESS
WITH LIP ANGLE (6;) of 50° (rp = 1.25 hal-
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.g":i“‘. -

S

Run31 ©e====O

Run 32 0"—'0

80°

Effective thrust angle {0

80°

FIGURE 23.—EFFECTIVE REVERSER THRUST ANGLE (0g) COMPARED WITH THE

o = 1.25hy
L = (0,99 hN
Y = "‘0.14 hN

TaoiR= 149°C (300°F)

G"-----
.""el-nh----
@lt-------e---u----

- LLEL O

Lip angle {0}

'F-'—I—I@- —-h_ —-+-—--—d
Lip angle (9|_} :

e — — ——— —

i I
1.5 2.0 25 3.0

Nozzle pressure ratio (NPR)

oL

GEOMETHIC LIP ANGLE (0;) OF 70°, 80° {rp = 1.25 hyy)
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6
4
Reverser
effectivenass N\ ﬁrD = 1.0 hN
BL = variable
2 L = 299hy
X =:070hy
A Y = -0d4hy
N NPR = 2.8
0 T—r = ambient
Ny Fr/Fy ST
h"wl anEe
| i 1 L Fulfy (Soreeme
e 50 60 70 80 g0 Fyffy dm=—wd
GL,degrees

FIGURE 24,—EFFECTS OF DEFLECTOR LIP ANGLE (8, ) ON REVERSER EFFECTIVENESS
FOR A LIP LENGTH EQUAL TO 0.99 hy (rp=1.0hp)




- 50° -
‘ 0, //eo"
/700
4 hpy = 9.01 em (3.55 fn.)
=::l\lmzzle TT
¢
i
8
£ 8
' 4
i
Reverser
effectiveness \‘ b = 1.0hy
: N\ 6 = variable
2 \ L = 0.56hy
{ \ X = 070hy
. \ Y = -0.14hy
\ NPR = 2.6
0
‘ \ Tp = ambient
¢ L FR/FN [———(
9 l { | | FH/FN @ansannfd
' 50 60 70 80 . 80 Fylfy Amem=aA
‘ Lo BL, degrees
L F FI(:URE 25.—EFFECT OF DEFLECTOR LIP ANGLE (9 ) ON REVERSER EFFECTIVENESS FOR
A LIP LENGTH EQUAL TO 0.56 hy, (rp = 5 0hyl
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Reverser N
effectiveness ;
N

50 60 70 80

BL, degrees

= 1.0 hN

variable
0.28 hN-

= 0.70 hy

0.14 hy

2.6
ambient

H
esannedd
Ay h

FIGURE 26.—EFFECTS OF DEFLECTOR LIP ANGLE (8,) ON REVERSER EFFECTIVENESS

FOR A LIP LENGTH EQUAL TO 0.28 hyy (rp = 1.0hp)
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'"-'"--:8:'.."0.!......0.......&....@
S
'4 -
RUN 55
Reverser
ff t. = .Oh
eltectiveneass —.--_A rD 1 ) N
&l‘"'-_ L = (.56 hN
X =070 hN
Y = -014hy
NPR = variable
0 f Tr = 149°C
(300" F)
FRIFN Erm—
I I J I FH!FN 9.-'..-@
--2
15 2.0 25 3.0 FylF e == =i

NPR

FIGURE 27.—SENSITIVITY OF NOZZLE PRESSURE RATIO ON REVERSER EFFECTIVENESS
FOR A LIP ANGLE (0, ) OF 70° (rp= 1.0 hy)
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50°
0, 7 e

B
= = = -t
b I~
9.-"“""“ ITIIT LT L1 1Y
'0 'O I.II.G..-.-.-...-O
4 ‘
Reverser RUN 56
effectiveness np = 1.0 hyy
9 6, = 80°
L = 0.56 hN
X = 0,70 hN
Y = -0.14 hN
NPR = variable
0 T = 149° C
{300° F)
s I | l i FH/FN 9----._.@
1.5 2.0 - 25 30" Fy/Fy. A i

NPR

FIGURE 28.—~SENSITIVITY OF NOZZLE PRESSURE RATIO ON REVERSER EFFECTIVENESS
FOR A LIP ANGLE (6, ) OF 50° (rp = 1.0 hpy)

50

-

Ty



I'D = 1.0 hN
RUN 55 @eaaseed L = 0,66 hN
RUN 56 § o mm = X = 070hy
Y = 014hy
Tag = 149°C (300° F)
90°
80° |-
s
..I.G LYo e
| Lip angte (¢ Sainang,
op P 2rate O LT
 Effective thrust angle {0
60° B
Lip angle (GL)
] h . : —_—
50 “:j--'r;%.-.hﬁ_- "
r —
i
40° : ! _ '
1.5 2.0 2.5 3.0

Nozzle pressure ratio (NPR)

FIGURE 29.~EFFECTIVE REVERSER THRUST ANGLE (0g) COMPARED WITH THE
GEOMETRIC LIP ANGLE (8, ) OF 70°, 50° (rp = 1.0 hpy).
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90?
Effective thrust angle (GE)

80°

rD = 1.0hN
L = 0B6hy
X = 0.70hN
Y =-014hy

TAH = ambhient

Lip angle (OL}

Run 43 Wi

iE

1.5 2.0

Nozzle pressure ratio (NPR)

iy

3.0

FIGURE 30.—EFFECTIVE REVERSE THRUST ANGLE (0f) COMPARED WITH
THE GEOMETRIC LIP ANGLE (0,) OF 80° rp=1.0 hpl
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Thrust per engine

Ity
9 000~ 20 200

Engine—P&W STF 395D (BM-2)

9136 kg S1.S {20 100 Ib} Primary
Uninstalled thrust
Y+
18 000 instl
B ODDL B losses
16 Q00— Duct an?
augmentor
7 000 nozzle
losses
Total thrust
14 Q00—
Fan thrust at offtake —
6 000
Augmentor nozzle thrust
12 000
5 0004-
10 000 |~
4 000}~
8 000
3 o0of- T
6 000 .
2000 5
4 000
Reverser resultant thrust®
40% - 78% 100% FnTO
1000 2000 |
4L 4 | i 1 1 -
300 .
0 1.6 18 - 2.0 2.2 2.4 26 - 2.8

: Augmentor nozzle pressure ratio

FIGURE 35.-BREAKDOWN OF THE AVAILABLE THRUST LEVELS FROM THE ENGINE
- STATION TO THE THRUST REVERSER
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Page 23 fin. 10
NASA CR-114621

b
12 000
kg
5000
10 00D 100% 4510 kg NPR = 2.68 TR = 68
{9922 ib)
4 0001 >‘
o 8 000 8% 3570 kg NPR = 2.28 N = 68
5 {7854 Ib)
&
5
3000 =
7]
g 6 000
5 s
é .
a
2000 = o , _
§ 4000 40% 1707 kg NPRZ158) 5 - 67
B (3963 1b)
2 .
1000 ] 2 000 -
. Mg data from*run 55
| A | [ |
0 0 40 ‘ 60 80 100
_ Vo -knots

0 10 20 30 40 50
myfsec - .

FIGURE 36.—AVA ILABLE RESULTANT REVERSER THRUST AT THREE ENGIVE POWER
" SETTINGS |
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Third-octave band level in dB re 0.0002 microbar
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FIGURE 57.—ONE-THIRD OCTA VE BAND SPECTRA, rp =125 hN, NPR = 1 6,20
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Third-octave band level in dB re 0.0002 microbar
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FIGURE 59,~ONE-THIRD OCTAVE BAND SPECTRA, rpy = 1.25hpy, NPR = 3.0
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Third-octave band level in dB re-0.0002 microbar
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Third-cctave band level in dB re 0.0002 microbar
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FIGURE 62.--OME-THIRD OCTAVE BAND SPECTRA, rp=1.0 hp. NPR =3.0
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