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AN EXPERIMENTAL AND NUMERICAL STUDY OF
WAVE MOTION AND UPSTREAM INFLUENCE
IN A STRATIFIED FLUID

David A. Hurdis
Goddard Space Flight Center

INTRODUCTION
Wave Propagation in Nonhomogeneous Fluids

The earliest significant study of waves in a nonhomogeneous fluid was that of Stokes (1847),
who developed the theory of the propagation of infinitesimal waves in a two-layer fluid
system. The excitation of waves in two fluid layers is discussed also by Lamb (1932,
Section 231). In essence, it has been shown that for a two-layer fluid, two possible wave
systems can exist for any given period of oscillation. One propagates at the free surface

of the upper layer, while-the other propagates at the interface of the two-layer fluid.
Similarly, it can be shown for a three-layer fluid that three wave systems can exist, one for
each surface of density discontinuity. In this context, a fluid with a continuous density
stratification can be considered to be the limit of an n-layer fluid system as n —> oo; internal
waves can be propagated at all levels in such a fluid. A semantic distinction is usually made
between waves propagating at the interfaces of a multilayer system and those propagating
through a continuously stratified fluid. The former are called interfacial waves, while the
latter are referred to as internal waves. i

Internal wave propagation in a continuously stratified fluid is characterized by the local

Brunt-Vaisala frequency N = (-g/p dp/dz)*. (For stably stratified fluids, dp/dz <0.) No
waves can propagate with frequencies higher than the local value of N, and the direction of

propagation of a wave of frpquency o is cos™! (o/N) from the vertical.

The earliest important experimental work on wave propagation in a nonhomogeneous fluid
was published by Ekman (1904), who sought to explain the abnormally high resistance
experienced by ships in the mouths of some Norwegian fjords where there is a layer of

fresh water over salt water. Ekman demonstrated that the phenomenon is due to increased
wave drag resulting from the ship’s exciting of waves not only at the free surface but also

at the interface of the two layers.

Upstream Influence

Density stratification affects the flow of an inviscid, incompressible fluid in two ways.
First, a change in density causes a change in the inertia per unit volume of the fluid.
Second, in a gravitational field, a density change causes a change in.the body force per



unit volume of the fluid. Since, in general, the body force is not the only force acting on
the fluid, these two effects will not nullify each other, and the flow pattern of a nonhomo-
geneous fluid may differ considerably from that of a homogeneous fluid even though the
boundary conditions are the same.

One flow phenomenon exhibited by stratified fluids is upstream influence. This phenome-
non occurs during the flow of a stratified fluid past an-obstacle, and consists of the propa-
gation of a disturbance upstream from the obstacle. It is especially strong when the obsta-
cle.is so wide, in comparison with its height, that the flow past the obstacle is essentially
two-dimensional. Upstream influence is also called forward influence or upstream wake in
the literature. The limiting case and strongest manifestation of upstream influence occurs
in the slow flow of a continuously stratified fluid past an obstacle, and is called blocking.
Blocking is the stagnation with respect to an obstacle of the fluid within a horizontal slab
containing the obstacle and having the same height as the obstacle. Closed streamline
recirculation may occur within the slug of blocked fluid being pushed ahead of the obstacle
(Janowitz 1971 ; Browand and Winant 1972). For very low flow speeds, blocking occurs
both upstream and downstream of the obstacle. At higher speeds, the downstream blocking -
is replaced by a wake and lee waves, and as the speed increases still more, the upstream
blocking becomes incomplete and is therefore more properly referred to as upstream influ-
ence.

Qualitative explanations for upstream influence may be given from two viewpoints, the
buoyancy viewpoint and the internal wave viewpoint.

Buoyancy Viewpoint

As a two-dimensional body moves through a stably stratified fluid, it is necessary for the
fluid to be displaced vertically to get by the body. Because of the stable stratification, )
however, the fluid is reluctant to be displaced vertically, and tends to pile up in front of
the body, thus accounting for the upstream influence.

Internal Wave Viewpoint

The upstream influence may also be regarded as the propagation of an internal wave of
zero frequency. From the above discussion of internal waves, it is clear that such a wave
can propagate from the disturbance source only in a horizontal direction, and that as the
wave does so, it causes the presence of the disturbance to be felt far upstream.

Investigations of Upstream Influence

Experimental

The fundamental experiment which established the existence of the phenomenon of
upstream blocking in stratified flows was conducted by Long (1955). He studied the flow
“of a linearly stratified salt solution over a two-dimensional barrier which was towed along



the bottom of a channel. He observed that for values of the internal Froude number

(F, = U/(g Ap/p H)*) less than 1/7, a disturbance. was propagated upstream from a barrier
moving through a fluid of depth H. He noted that for this case his analytical flow predic-
tions became invalid, since they were dependent upon the assumption of undisturbed
upstream flow. ‘

More recent experiments have been performed by Pao (1967, 1968), Martin and Long

. (1968), Debler and Daily (1971), Browand and Winant (1972), and Laws and Stevenson
(1972). The common features of these experiments are the use of a linearly stratified salt
solution for the working fluid, and use of very slow obstacle speeds. All these investigators
have reported upstream influence with a wavy velocity profile, thus confirming the early
observations of Long (1955), who reported an upstream velocity profile consisting of
alternate jets and stagnation regions.

Theoretical

The problem of stratified flow about an obstacle has also been studied analytically by
several investigators. These studies generally have taken one of three theoretical approaches.

The first approach assumes inviscid steady flow everywhere and a uniform velocity profile
upstream, includes nonlinear effects, and is generally based on the use of Long’s equation;
for example, Long (1953). For internal Froude numbers greater than 1/7, good agreement
is obtained between theoretical and experimental results. For lower internal Froude num-
bers, the experiment shows upstream blocking, a condition which violates the theoretical
assumption of undisturbed upstream flow. It is therefore not surprising that this approach
fails to predict the upstream flow conditions for F, < 1/m.

I

By using the formulation of an inviscid, linearized initial value problem, the second approach
permits study of the formation of the blocking column. However, introduction of viscosity
into this formulation requires the assumption of a Schmidt number (Sc = »/D) equal to
unity, which is far from accurate for the usual experimental conditions involving salt solu-
tions for which Sc = 800. This approach is the one used by Bretherton (1967).

The third approach is a steady viscous formulation for very slow, low Reynolds number
flows. The fluid is assumed to be nondiffusive, and the low velocity assumption allows

the nonlinear inertial terms to be neglected in the flow equations. This formulation is thus
a balance of the gravitational and viscous forces. This approach was used by Pao (1967,
1968), who used two-parameter perturbation expansions to solve for the flow field in front
of and above a horizontal flat plate. He obtained good agreement with his experiment.
Martin and Long (1968) and Brown (1968) have also arrived at solutions that predict
upstream disturbance for slow stratified flow past a horizontal flat plate. Graebel (1969)
solved for the flow field about a vertical flat plate by means of matched-asymptotic-expan-
sion theory. His solution also predicts the existence of an upstream influence. Janowitz
(1971) used an integral transform approach to examine the low Reynold’s number flow of
a linearly stratified fluid about a vertical flat plate. His solution predicts the existence of



an upstream blocking column within which the fluid recirculates in closed streamlines. The
experimental work of Browand and Winant (1972) appears to confirm this result.

In a separate class of theoretical papers, Benjamin (1970), Keady (1971), and Mclntyre
(1972) have examined the phenomenon of upstream influence from a more abstract view-
point to determine whether Long’s hypothesis of no disturbance far upstream is ever
strictly correct. Benjamin concludes that an upstream disturbance exists in the form of a
uniform, long wave extending to steadily increasing distances ahead of the body whenever
lee waves are present downstream. Keady extended Benjamin’s work to the case of inter-
facial waves in a two-fluid system. Mclntyre, whose paper is still the subject of considerable
controversy, discusses a kind of upstream influence different from that considered here.

His theory predicts an upstream influence related to the formation of lee waves and mani-
fested by an increase in upstream velocity with respect to-the body rather than a decrease.

Geophysical Implications

The flow of a stratified ocean or atmosphere over a barrier such as a mountain ridge usually
will produce lee waves downstream and blocking upstream. The prevailing west wind flow-
ing over the San Gabriel Mountains east of Los Angeles, for example, produces blocking
which makes it more difficult for the region’s pollutants to be dispersed.

Background of This Study

Previous studies have dealt with the slow flow about a two-dimensional body of either a
linearly stratified fluid or of a two-layer fluid. The linear-density model is an idealization
which has proven to be very useful in studies of atmospheric and oceanic flows. In the real
atmosphere, however, the near-linear density gradient may be interrupted by one or more
inversions; and in the real ocean, a thermocline of one or more sheets is usually present. At
these locétions, the density undergoes a sudden but nevertheless continuous change, for
which neither the linear nor the two-layer model is a valid representation. The real condi-
tion is somewhere between these two extremes.

Long referred to this situation in Part III of his well-known trilogy on stratified flows
(1955). He suggested that for strong inversions the shock-wave type of phenomena
(hydraulic jumps and drops), such as exhibited in the flow of a two-layer fluid over a
barrier (Long 1954), would dominate. For weak inversions, he proposed that the flow
would behave like the linear model. He concluded, however, that the intermediate case
would be highly nonlinear and therefore difficult to solve analytically.

Davis (1967), while doing research for his doctoral dissertation on the stability of oscilla-
tory internal waves, used an experimental model consisting of a layer of fresh water on top
of a layer of salt water, with a thin transition region at the interface. He recognized, within
the transition layer, the propagation of a new type of solitary wave which had not been
reported in the literature. This type of solitary wave was new, in that it could be propa-
gated in a fluid of infinite depth, whereas internal solitary waves were known previously



only as shallow-water phenomena. Davis added an investigation of this new wave to his
dissertation (see also Davis and Acrivos 1967). Independently and at about the same time,
Benjamin completed a theoretical study in which he predicted the existence of such waves
(1967).

Davis’s experience suggests that the flow behavior of a stratified fluid in which the density
changes suddenly over a short distance cannot necessarily be inferred from previous work
on linearly stratified or two-layer fluids. In view of the importance of sudden density
changes in geophysical fluids (atmospheric inversions and ocean thermoclines), it was
decided to undertake a study of flow about an obstacle by a fluid with a sudden but
continuous density change.

Outline of This Study

Experimental

A laboratory flow model consisting of a layer of fresh water on top of a layer of salt water
with a thin transition region at-the interface was used for this study. A vertical flat plate
of 2.54-cm height was towed through the interfacial layer at various speeds and for various
density profiles. Upstream and downstream velocity profiles were measured by a flow
visualization technique. A conductivity probe was used to determine the density profile
before and after each run. In addition to the shape of the density profile, the present work
differs from that of most previous experiments in another respect. Those workers whose
theoretical work depended upon neglecting the inertial terms in the momentum equation
considered only very slow flow speeds in their experiments. The top speed considered by
Laws and Stevenson (1972), for example, was only 0.07 mm/s, corresponding to a Reynolds -
number of O(1) and a Richardson number (Ri = -g/p dp/dz/(dU/dz)?) of O(10%). For the
present study, flow speeds as high as 4 cm/s were examined. The corresponding dimension-
less parameters were Re = O(103) and Ri = O(1).

Theoretical

The flow conditions described above were formulated as a nonlinear initial-value problem
in a viscous diffusive medium. The Boussinesq approximation, which neglects the effect of ‘
density variation on the nonlinear inertial terms, was not used. The initial density profile
was expressed mathematically by fitting experimental measurements to the equation

p =p (1 - @ tanh az), where & is a dimensionless constant and «™! is a measure of the
thickness of the density-gradient region. Formulation as an initial-value problem permitted
theoretical study of the development of the upstream influence. The formulation is
analytically intractable, and the problem was therefore solved numerically. Comparison of
theoretical upstream velocity profiles with those measured experimentally shows good
agreement, but the theory fails to predict the existence of the reverse lee jet which was
observed downstream in the density-gradient layer.



THEORETICAL STUDY

Formulation

Dimensionless-flow equations will now be developed for the case of a vertical flat plate of
height 2b moving to the right with velocity U through the density-gradient layer of a vis-
cous, diffusive, stably stratified fluid whose initial density profile is of the form p=p

(1 - w tanh az). The flow is viewed from a Cartesian coordinate system attached to the
plate (see figure 1), and the plate is of infinite extent in the y direction.

> N
- N

-U

P(1-w tanhaz)

—uU

Leg—
Figure 1. Geometry of the Flow Field
_ The continuity equation for a diffusive medium is
dp 0 0
— + —(up) + —(wp) = DV’p. ()
ot 0x oz _
The incompressibility equation is
du ow 0
—_—t — = .
ox 0z )

Since this equation is not quite correct for the case of a diffusive fluid such as salt water
(see Phillips 1969, p. 15), it introduces a slight error to the formulation. The momentum

equations are

—=.— + uviu (3a)
P Dt ox H
Dw ap 2
—_= .= + uvV-w (3b)
p Dt 3 g
where
D 2 9 0 92 a2
— = —+y— +w— V2 = — 4 —
Dt ot 0x dz ax2 d9z2



The stream function { is defined by

W oW
u-az’w Tax ‘ (4)

and the y component of the vorticity &=V X d = (£, 1, {) is

LS (5a)
) dz  9x
so that by combining (4) and (5a)
viy = (55)
Subtracting the x derivative of (3b) from the z derivative of (3a) yields
0p Du dp Dw om0 ] op )
————— + — ¢ — + — = g— + uVin.
9z Dt 0x Dt P [6t ox (o) oz (Wn)] gax Hvn (6)

The Boussinesq approximation, which will not be made here, consists of neglecting the first
two terms on the left side of (6), and replacing the factor p in the third term by the average
density p.

The boundary conditions for the system (1), (4), (5b), and (6) fort >0 are

as Ixl, lzl > e p>p (1 -wtanhaz), y »-Uz (7a)
op :
andatx = 0, zI<b,— =0 ' (7b)
ox
oy oy .
— =0, — =0.
ox 74 . (7e)

Since u, w, and 7 are defined in terms of ¥ by (4) and (5b), no independent boundary con-
ditions are possible for these quantities. Although (4), (5b), and (6) can be easily combined
into one unwieldy equation, this is not done here, to retain clarity and manipulative ease.
The initial conditions are

p = p(1 -G tanh az) everywhere at t =0 (8a)
and '
ﬂ = 3y =0 everywhere att = 0. (8b)
ox 0z

With the use of the density scale-length 7! as a characteristic length, U as a characteristic
velocity, and p as a characteristic density, these equations can be put into dimensionless
form. Thus




GH=ak2, @ =—@w, 5=
U )

T U ~ 1 . $ o
= Uat, = — 9, =—
1 Ua K 8)
Equation (1) then becomes
3 R BN B I~
— t—(up)t—(wp)= vp
at ox oz Sc* Re
where .
Sc, Schmidt number = »/D
Re,Reynolds number = (Ujaw)
Equation (6) becomes
dpDu _dp Dw _|om o . ~ 1
— = "= —tp|—+t—(un)+t—(wn) =——
3z DU 9X Dt it ax 3z F? 0x

where

F, Froude number = U/(g/a)'/’.

Similarly, (4) and (5b) become

s

] -3y
u =—-’ w=-—~
o7 ox
and
vy =7.

+—v?7,

%)

(10)

(an

(12)

(13)

Note that the Froude number appearing in (11) is of the overall form, and is not the inter-
nal Froude number, Fi =U/(g Ap/p H)*, that commonly appears in the formulation of
stratified flow problems. This is a result of treating density in the present time-dependent

problem as a separate unknown with a separate governing equation rather than com-

bining the density profile into the momentum equation. To facilitate comparison of pre-
vious work with the results of this study, internal Froude numbers were computed for the

conditions of the experimental runs.

The dimensionless form of the boundary conditions fort >0is

~

as|X 1, 17150, p>(1-% tanhZ), ¢ =-2

(14a)



andat;(=0, [Z|<Otb, — =90 (14b)
3N '
~ a~
o, W_o (14c)
X 9z

The initial conditions become

7 =( -@ tanh 2) everywhere att = 0 (152)
-and
W Wy everywhereatt = 0. (15b)
X 7

Henceforth, the tildes (7)) will be omitted and all variables will be understood to be
dimensionless.

Numerical Solution

Algorithm for Solution

The solution of a modified form of (10) through (15) was accomplished by writing them as
finite difference equations and solving these on a digital computer according to the following
algorithm:

" (a) Att =0, the initial conditions (15a) and (15b) exist.

(b) Att=0"%, the flow is irTotational, with n = 0. The solution for the ¢ field is
accomplished by making an initial guess of Y = -z everywhere and then conver-
ging to the correct result by overrelaxation of (13), subject to the bouhdary
conditions (14a) and (14c).

(c) The uand w velocity fields at t = 0" are computed from (12).

(d) Equation (10), subject to the boundary conditions (14a) and (14b), is used to
make a time step in the density field.

(e) Equation (11)is uséd to make a time step in the vorticity field. {The boundary
. conditions on ¥ result in the following conditions on n: as Ix|, |zl = oo, n > 0;
andatx =0, lzI<ab, (u=93y/dz=0)=n=082y/ox*].

(f) With the new result for the vorticity field, a new value for the y field is computed
by overrelaxing (13), subject to (14a) and (14c).

(g) The u and w velocity fields are computed from (12). Stepsd, e, f, and g are
repeated until a specified time t = t. has been reached. The computer can be
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requested to print out the p-, Y, n,u,and w fieldsat t = 0%, t = t;, and at inter-
mediate times, so that the time development of the flow field can be studied.

As mentioned above, the numerical solution is accomplished with a modified form of
(10) through (15). The nature of these modifications will now be discussed.

Modification of Nonlinear Boussinesq Terms

Numerical evaluation of nonlinear terms was accomplished by a technique called the special
three-point noncentral differences method (Torrance and Rockett 1969). To use this
method, it is necessary that nonlinear terms be of the form 9 (fg)/ox rather than of the
form g (3f/dx). This is accomplished in the case of the first two terms on the left side of
(11) by recalling (2) and adding u (du/ox + 0w/0z) to the factor Du/Dt and w (du/9x

+ 0w/0z) to the factor Dw/Dt. Equation (11) then becomes

o r-(31-+—a--(u2)Jr-a—(uw) _a_p [QV‘V‘FE‘(UW)*'E(Wz)]

0z |ot 0x oz ] oox ot 0x 0z
- (16)
. Fan+a()+a()' L
— — — (W L = e—— — o .
° | ot 0x un 0z n_j FzAax Rev K

' Stretching the Coordinate System

Previous attempts at numerical solution of similar problems have had difficulty with the
application of boundary conditions at infinity. A dilemma is posed by the conflicting
requirements of keeping the finite-difference grid mesh fine in the vicinity of the body
where the gradients are largest, and at the same time having the last grid point be far
enough away from the body that it is an accurate approximation of infinity. One is forced
to choose among an overly coarse mesh near the body, or prohibitively large computer
core requirements, or an infinity so close to the body that errors are-introduced. This
problem was circumvented by writing (10) and (12) through (16) with respect to a
coordinate system such that its mapping to real-world coordinates has a fine-grid mesh
near the origin, a coarser mesh farther away, and a last grid point as close to infinity as
desired. This mapping, which involves the hyperbolic tangent function, will now be
developed.

The coordinate system sought (X, Z ) is one whose mapping to ordinary Cartesian coordinates
(X, z) is such that as X and Z vary from -1 to +1, x and z vary from -oo to +e. The trans-
formation for such a system is given by

X = tanh ax, Z = tanh cz (17

where

| &

= a - sech? ax = a(l - tanh? ax) = a(l - x?) (18a)
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and

dz .
—=c(1-7%).
@ -7 (18b)
Therefore, for any arbitrary function f,
of dx of -, of
— == —=a(1 -%)— (19a)
ox dx ox oxX
and
% _ ot -3 of
==l -7 —
oz oz’ (19b)
50 that from (12)
) 0
u=—w=c(l—22)—w=c(l—z)u (19¢)
oz 0z
and
) (19d)
w = -i = a(l-%?%) % =a(l-x%)w.
ox ox
Finally
a*f d . of s a2 O af
— =a—|Q-F)=|=a%@1-%) — -22%x(0-x)— (19¢)
ax? ax L ox ax? - 9X
and
2 2f of
a_~f=c2(1—22)2——-2c22(1—72)—. _ _ (19f)
922 9z% - - oz

. At this point, it is useful to restate the untransformed dimensionless governing equations.

2+ 2 o) + 2 (wp)
at X P 0z P Sc - Re

v2p . (20a) . -

3’3 [a_u + .a_(u2) +.2(uw)J - % [a_w +i(uw)+ai(w2)]
z

dz |[at ax a9z “dx (ot ox
o 2 2 A 0 (ob)
+ —_—t — + — = — —t —
P [at ox (um) 0z (Wn):l 2 0x ReV n '
0 3
w2 LY (20¢)
0z ox
viy =1 (20d)
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Boundary conditions for t > 0 are

as!xl,lzl - o, p = (1 - Gtanhz), Y - -z (20e)
) .
andatx = 0, Izl < ab, —= (201)
. ox
oy oy
— =0, —= 20
0x ) oz (20¢)
Initial conditions are
p = (1 - wtanhz) ' everywhere att = 0 (20h)
0 0 .
-! = —l-‘b =0 : everywhere att = 0. (201)
ox 0z

Substitution of the transformation (19) into the governing equations (20) results in a sys-
tem of equations which can be put into finite-difference form and solved numerically by
the algorithm discussed above. The transformed equations are so lengthy that their presen-
tation has been deferred .to appendix 1. The finite-difference form of these equations is
given in appendix 2, and the computer program is presented in appendix 3.

At this point, it is appropriate to mention another approximation necessitated by numeri-
cal modeling. Although the vertical flat plate used in the experimental study was very thin
in the x-direction compared to its height, it was necessary that the numerical model of the
plate be at least two x-grid widths thick to avoid instability in the solution caused by singu-
larities at (0, b) and (0, -b). This approximation is not believed to have significantly
~affected theoretical results upstream, but was found to be responsible for the discrepancy
between theoretical and experimental results downstream.

Numerical Results

Figure 2 presents a typical theoretical result for the velocity profiles at four upstream
“locations at some time, t=t,. Figure 3 shows a typical theoretical prediction for the
variation of center line velocity with upstream distance at t=t . Further information on
numerical results will be presented in the section, Discussion of Results, where they are
interpreted in the light of experimental findings. '

13



14

C_[c

! ! | I | 1

0.0

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

0.0

2.0 4.0 6.0 8.0 10.0 12.0

ax

Figure 2. Typical Theoretical Result for Upstréam Velocity Profiles

| | L J | L1 t : | [ !

20 4.0 6.0 8.0 10.0 12.0 14,0 16.0 18.0 20.0 22.0 24.0

ax

Figure 3. Typical Theoretical Prediction for the Variation of Centerline
Velocity with Upstream Position

26.0

14.0



EXPERIMENTAL STUDY
Description of Experiments

Filling the Channel

The experiments were carried out in a Plexiglass channel 10 m long, 60 cm deep, and

35.5 cm wide. On the day before a set of experimental runs, the channel would be filled
to a depth of 23 ¢cm with a uniform salt water solution lightly tinted with nigrosine. To
ensure its uniformity, the solution in the channel was thoroughly agitated and then allowed
to sit for at least 12 hours. Two salt solution densities were used during this study,

1.013 g/cm? and 1.026 g/cm®. On the day of the experimental runs, a layer of fresh water
was slowly floated onto the salt solution until the total fluid depth was 46 cm. This was
accomplished by letting the fresh water from the filling hose flow-into a sponge rubber
basin which was floating on a Styrofoam raft. The water seeped through the sponge,
thereby dissipated most of its momentum, and floated with little mixing onto the salt
solution. Gradient-layer thicknesses of the order of 4 cm were achieved by this method.

By making certain that the temperature of the inflowing fresh water differed by no more
than 2° C from that of the salt water onto which it was floated; convective fluid motions
~were reduced. These small secondary motions could not be entirely eliminated, however.

Measurement of Density Profiles

Density profiles were measured before and after each run with a conductivity probe. The
probe was calibrated with standard salt solutions whose densities had been measured by a
hydrometer to an accuracy of £0.0005 g/cm?®. Density measurements made with the probe
are estimated to be accurate to +0.0005 g/cm?3, while the z elevations for these density
measurements have an estimated accuracy of 0.2 ¢cm. The resulting density profiles were
fitted to Benjamin’s expression (1967), p = p (1 - & tanh «z), where p = 1/2 (o, +py)

= average density of upper and lower layers; @ = (p, - P, )/(p;2 + pu); « is a number deter-
mined by least-squares fit whose reciprocal is a measure of the gradient thickness, and z is
the height above the level at which p = p. Figure 4 shows a typical experimentally-meas-
ured density profile and the function to which it was fitted. Interestingly enough, it was
found that the increase in the gradient layer thickness o! was very nearly a linear function
of the number of transits made through the layer by the vertical flat plate. This relation-
ship is illustrated in figure 5. Since the diffusivity of salt in water is very low, the thickening
is almost entirely due to mixing.

Typically, about four experiment runs and four subsequent retrievals of the plate could be
made during the course of a day. Approximately an hour was allowed between runs for
residual fluid motions to dampen out.
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Plate and Towing System

The vertical flat plate was a Plexiglass strip 2.54 cm high, 35.0 cm wide, and 2 mm thick.
This was suspended below a carriage by two Plexiglass struts which had been machined to
an easy shape to minimize their effect on the flow. The carriage rolled on four double-
race ball-bearing roller skate wheels along rails made from aluminum angle. The towing
mechanism consisted of a variable-speed motor at one end of the channel and a system of
counterweights at the other end. The motor and the counterweights were connected to the
carriage over pulleys by size 20 Hygrade flexible fiberglass cord.* Of several types of cords
and cables tried, this material proved to be the most satisfactory for minimizing jerkiness
in the towing motion. Considerable time was spent in trial and error with the towing sys-
tem in an attempt to achieve smooth fowing motion. Although towing motion was made
adequately smooth for the range of plate speeds considered in this study, it was less than
adequate at very slow speeds. During an experimental run, the motor was reversed so that
the cord unwound from the motor pulley and the counterweight pulled the carriage along
the rails. After each run, the plate was retrieved to its original starting position in prepara-
tion for the next run. -Figure 6 is a schematic drawing of the plate and towing system:.

- . ﬁ
TOP ) J:__@
VIEW: - T
O, i
VARIABLE-
SPEED
MOTOR
CARRIAGE
= — COUNTER-
} WEIGHT
SIDE . STRUTS—" GH
VIEW: " VERTICAL FLAT PLATE

Figure 6. Plate and Towing System

Early in the study, some qualitative experiments were run with two other body shapes:
a 2.54 cm-diameter circular cylinder, and a 2.54 cm-thick lenticular cylinder. The vertical
flat plate was chosen for all quantitative experiments, because it produced the strongest

upstream influence.

* The cord is manufactured by Markel & Sons of Norristown, Pa.
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Flow Visualization

Visualization of fluid motion in the gradient layer was aided by injecting droplets of a
mixture of carbon tetrachloride, mineral oil, and oil red dye into the upper layer with a
syringe and hypodermic needle. The density of the mixture was such that the droplets
were neutrally buoyant at the middle of the gradient layer. The syringe and hypodermic
needle were required both to control droplet size and to prevent the mixture from being
held at the free surface by surface tension. Droplets of a mixture containing toluene
instead of mineral oil were tried earlier in the study. That mixture was rejected because
of the toxicity of toluene fumes, high volatility of the toluene which made it difficult to
control the mixture density, and the mixture’s tendency to dissolve and permanently
discolor the Plexiglass channel.

In addition to the droplets in the gradient layer, upstream flow visualization was accom-
plished by the use of vertical dye lines. These dye lines were created by dropping
nigrosine dye crystals upstream of the approaching body. Arrival of the upstream distur-
bance was made visible by the horizontal displacement of the dye lines. When the first

set of dye lines became so distorted that accurate measurement of their displacement was
no longer possible, a second group of dye crystals was dropped. The second drop created
dye lines which made it possible to evaluate the flow in the near upstream vicinity of the
plate. Figure 7 is a photograph showing the displacement of dye lines due to the arrival of
an upstream disturbance.

Measurement of Upstream Velocity Profiles

Upstream velocity profiles were evaluated by photographing the droplets and dye lines at
known time intervals and measuring the displacement which they experienced during those
intervals. As figure 7 shows, the displacements were measured with respect to a rectangular
grid fixed to the rear wall of the channel. Also visible in the figure is one of the three
stopclocks used. These clocks were started simultaneously with the start of the plate
towing motor so that they measured the total duration of the run as well as the time
intervals between photographs. The clock shown, an Aristo stopclock, measures time in
minutes and seconds. Also used, but not shown in the figure, was a larger stopclock
(manufactured by the A. W. Haydon Co.) which measures time in seconds and hundredths
of seconds. The time intervals between photographs were measured with an accuracy of
+0.01 seconds.

As shown schematically in figure 8, two cameras with overlapping fields of view were used
so that detailed photographs were made of a section of the channel about 125 cm long.
Nikon-F cameras were used with 135 mm Nikkor telephoto lenses. Each camera had a
motorized shutter release and film advance which made possible short time intervals
between successive exposures. Camera motors were connected in parallel to a single switch
so that the cameras made simultaneous exposures. The cameras were focused on the -mid-
plane of the channel, so that both the rectangular grid and the clocks were in focus.
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UPSTREAM DISTURBANCE

Figure 7. Displacement of Vertical Dye Lines Caused by the Arrival of an Upstream Disturbance
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Figure 8. Placement of the Cameras

Typiéal shutter and aperture settings were 1/250 second at /4.0, using Hi-Speed Ekta-
chrome color film developed for an effective film speed of ASA 400.

Measurement of Downstream Velocity Profiles

The measurement of downstream velocity profiles was considerably less accurate, not only
because no dye crystals were dropped there, but also because the mixing in the wake com-
bined with the sudden change of index of refraction in the gradient region to cause such
optical distortion that accurate displacement measurements were impossible. By observing
the motion of the oil droplets, however, qualitative assessments of the downstream flow
could be made. The most striking feature of the downstream flow was the presence of a
reverse jet in the gradient layer, which carried oil droplets about 75 cm downstream with
respect to the fixed cameras before dissipating.’ This reverse jet is discussed in the section,
Discussion of Results. '

Measurement of Body Speed

The speed of the vertical flat plate was determined by two methods. By stopping the

- towing motor and the clocks simultaneously at the completion of a run, the body speed
could be computed directly from the length and duration of the run. Secondly, the body
speed could be computed as the slope of a straight line determined from a least-squares fit
of photographically recorded body positions and elapsed times. Excellent agreement was
obtained between the two methods. '
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Measurement of Speed of Disturbance Front

The least-squares method was also used to determine the propagation speed of the front of
the upstream disturbance.

Parameters for Experimental Runs

Table 1 lists values of the density and flow parameters for the ten quantitative experimen-
tal runs. Data from the last six runs are considered most reliable.
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DISCUSSION OF RESULTS

Qualitative Description of Observed Flow

Figure 9 is a schematic drawing which shows the type of flow observed to be caused by the
motion of a vertical flat plate m a region of sudden density variation.

GRADIENT
LAYER
——— —_—— — = — —_—_—)——_—_—\ - - — - —_——t = - == — ..--_—’/_‘\\
N - ~— PA
R N _____ e ) -1 __ /’
. ‘|SOLITA
LEE WAVES REVERSE LEE JET WAKE l UPSTREAM INFLUENCE l OW/IW?Y(

Figure 9. Schematic Drawing of the Type of Flow Phenomena-lnduced by the Motion of a
Vertical Flat Plate in a Region of Sudden Density Variation

At the front of the upstream disturbance an internal solitary wave of the type predicted by
Benjamin (1967) and observed by Davis (1967) was always present. Behind the solitary
wave was a region of upstream influence. This upstream influence did not take the form of
complete blocking such as has been observed in the very slow motion of bodies through
stratified fluids. Nevertheless, a strong upstream wake was observed in the gradient layer.
‘(The solitary wave and the upstream influence when discussed together are called here the
upstream disturbance.) Both the solitary wave and the upstream influence propagated up-
stream to steadily increasing distances in front of the plate. This is consistent with the
internal wave concept of upstream influence, discussed in the Introduction. The connection,
if any, between the upstream influence and the solftary wave is not entirely clear. Present
indications are, however, that the solitary wave is a distinct phenomenon generated by the
impulsive start of plate motion.

As shown also in figure 9, the upstream flow in the fresh- and salt-water layers was opposite
in direction to that in the gradient layer.

The downstream flow observed in the gradient layer was somewhat surprising. Nearby the
body, the flow looked like ordinary wake flow. About 10 cm downstream, however, a
reverse jet was observed to carry oil droplets downstream not only with respect to the
moving plate, but also with respect to the fixed cameras. The following explanation is
suggested: The observed upstream influence did not take the form of complete blocking,
and some upstream fluid was sufficiently displaced vertically that it cleared the plate.
After passing the plate, the stratified fluid rushed back to its position of neutral buoyancy.

23



In doing so, it accumulated a residual rearward momentum manifested in the form of the
observed lee jet.

The reverse lee jet dissip.ated about a meter downstream where it was replaced by a system
of lee waves in which the oil particles, as seen by the fixed cameras, simply orbited in
closed paths.

Examination of the Internal Solitary Wave

Figure 10 is a photograph showing the propagation of an internal solitary wave from left to
right ahead of the upstream influence which is in turn ahead of the vertical flat plate.

Comparison With Theory

The solitary waves which were observed in this study to head the upstream disturbance
have been examined in the light of the work of Benjamin (1967) and Davis and Acrivos
(1967).

Benjamin predicted that for a region whose density profile is described by p=p (1 - @
_'tanh «z), an infinitesimal solitary wave of the first mode would propagate with the speed
cgw = (gt /2a)”. A wave with finite amplitude a is predicted to propagate with the speed

Cow = c;’w(l +-35-aa)%. @D
In the present study,-the speed 'csw could be determined accurately from photographs by
the least-squares method (see the section, Experimental Study). Thus, it was possible to
compare Benjamin’s theory with experimental results by measuring the observed solitary
wave amplitudes, using (21) to predict wave speeds, and comparing these predictions with
experiment. For the purpose of these measurements, the amplitude was defined as the
maximum vertical displacement of the streamline at z = «!. The results of the comparison
are presented in table 2.

Considering the crudeness of the experimental amplitude measurements, the agreement
between the last two columns of table 2 is quite good.

A correlation between the dimensionless amplitude, ax, and the dimensionless group

A= g/2ozc3w fn (p,/p, ) is predicted by Davis’s theory. Moreover, for small values of aa,
the relation A = 2.0 - 1.2 ax is predicted to be a good approximation to this correlation.
Figure 11 is a plot of A vs ax for the solitary waves observed in the present study. The
theoretical predictions of both Davis and Benjamin are plotted in the same figure. The
agreement between these theories and the results of the present experiment is quite good.
Since the theories have nothing to do with upstream influence, this agreement indicates
that the observed solitary waves are generated by the impulsive start of plate motlon and
are independent of the existence of upstream influence.
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. Table 2

Comparison of Benjamin'’s Predictions for

Experimental Measurements

Internal Solitary-Wave Speed With

"~ Calculated
Measured Measured Wave Speed
e o\ Amplitude | Wave Speed Cow
Run w (em™) fc? =<2_a) a- Cow [Equation (21)]

(cm/s) (cm) (cm/s) (cm/sec)
13 [0.00771 0.50 2.75 2.5 3.73 3.64
14 10.00771 0.48 2.81 0.6 2.95 3.04
16 {0.01417 -2.44 1.69 1.5 3.18 3.02
17 10.01417 1.09 2.52 2.8 4,75 4.24
19 (0.01417 0.73 3.08 1.8 4.11 4.12
20 10.01417 0.65 3.27 1.3 4.06 4.01
21 10.01408 0.32 4.64 0.0 4.62 4.64
22 10.01408 0.31 4.72 0.0 4.65 4.72
23 10.01408 0.30 4.80 0.6 5.02 5.05
24 10.01408 0.29 4 .88 0.6 5.05 5.13
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Correlation of Plate Velocity and Wave Speed

A plot of solitary wave speed ¢, versus plate speed U appears in figure 12. The correlation
between these two quantities is close enough to suggest a contradiction with the above
conclusion that the solitary wave is independent of the existence of upstream influence.
This writer suggests, however, that the correlation shown in figure 12 is quite indirect:

that wave speed Con depends on the wave amplitude a, which depends on the strength of
the starting impulse of the plate and on the speed U for which the towing motor is set when
it is switched on. - .

The results are therefore not as clear as one might wish, but the bulk of the evidence seems
to indicate that the initially generated solitary wave and the upstream influence do not
interact. ’

Examination of Upstream Influence

Brunt-Vaisala Frequency

Now, recall from the Introduction the significance to the 'propagation of internal waves of
the Brunt-Vaisala frequency N = (-g/p dp/dz)*%. It was noted that:

(a) For stably stratified fluids, dp/dz < 0, so that N> 0.

(b) No internal wave can be propagated with frequency higher than the local value
of N.

(c)  The direction of propagation of a wave of frequency o is cos™ (g/N) from the
~vertical.

Finally, it was pointed out that one may consider upstream influence to be the propagation
of an internal wave having zero frequency, and that the direction of propagation of such a
wave would be horizontal.

Figure 13 is a plot of N versus elevation «z for a typical density profile of the type consi-
dered in this study. Note that N reaches its maximum at the center line oz = 0 and drops .
off rapidly to zero at short distances above and below the centerline. The significance of
this is that any wave having a frequency o such that 0 < ¢ < N would propagate in an
increasingly vertical direction as it left the centerline, but could not propagate beyond the
elevation at which o = N. Thus, such waves would be trapped within the gradient layer
and after multiple reflections would eventually die out. The waves with higher frequencies
would be reflected more often and would tend to die out faster.

Phase Velocity of the Upstream Influence

Experimental measurement of the propagation speed ¢,; of upstream influence was not
possible in this study due to the presence of the solitary wave. It was not clear where the
disturbance caused by the solitary wave ended and where the front of the upstream
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influence began. Moreover, the velocity profiles were not observed over a time interval long
enough to permit experimental evaluation of their variation with time. A phase velocity for
the upstream influence could be determined, however, from the results of the numerical
study. Since, as will be shown later, the numerical solutions successfully predicted upstream
velocity profiles as a function of time and position, the determination of c,; from these
solutions is thought to be quite reliable. Table 3 presents these results. In figure 14, ¢, /U
is plotted as a function of the Froude number F = U/(g/a)*.

Suggested Relationship Between Cy; and Group Velocity of Infinitesimal Internal Waves

The i*" component of the group veloéity of an infinitesimal internal wave of frequency ¢
and wave number vector K is (cg ), = ao/aki, i=1, 2, 3. The relationship o = o (k)
between frequency and wave number is called the dispersion relation, and is obtained from
the analytic solution of an eigenvalue problem formulated from the equations of motion
for a stratified fluid with appropriate boundary conditions (see Phillips 1969, pp. 161-165).
Phillips points out that for the general case in which the Brunt-Vaisala frequency is an
arbitrary function of z, simple analytic solutions to the eigenvalue problem are not possi-
ble. For the present study, N(z) = (g&a)*% sech az (see figure 13), and the solution of the
eigenvalué problem is such'a formidable task that it has not been attempted here. Never-
theless, it is tempting to suggest that the speed c ; is related to the group velocity of
infinitesimal internal waves. The existence of such a relationship is suggested by the results
of Kao, Pao, and Wei (1972), who found that when a linearly stratified fluid in a channel
suddenly begins to discharge into a line sink, a disturbance propagates upstream from the
sink with velocity equal to the group velocity of internal gravity waves of zero horizontal
wave number. In view of the analogy between rotating and density stratified flows, a
relationship between ¢ ; and group velocity is also suggested by the study of Benjamin and
Barnard (1964). They found that the motion of a cavity in a rotating fluid induced an
upstream disturbance which propagated at the maximum group velocity for infinitesimal
traveling waves. Confirmation of the existence of such a relationship for the conditions of
this study will await the solution for the dispersion relation.

Comparison of Observed Upstream Influence With Predictions of Janowitz and Experi-
ments of Browand and Winant

The Introduction mentioned the theoretical study by Janowitz (1971) of the slow motion
of a vertical flat plate of height 2b in a linearly stratified fluid. This study, whose results
are valid when 1/Ri << Re << 1, predicts a steady-state, upstream blocking column of length
102b (Re - Ri) composed of cells of closed streamlines. The experiments of Browand and
Winant (1972) appear to confirm the prediction of a region of recirculating flow upstream.

In the present study, the body speeds were much higher, with Ri = O(1) and Re >> 1. Up-

stream influence was definitely present, but not in the extreme form of complete blocking.

Nevertheless, it is instructive to calculate the slug lengths 1072b (Re -+ Ri) for the conditions
observed. These are presented in table 4.
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Table 3

Propagation Speed of Upstream Influence

. ) Propagation
Body Froude Solitary Speed of
Run Speed Number Wave Upstream c ./U
v F Speed Influence "
(cm/s) U/(g/o)* Csw e,
(cm/s) (cm)/s)
13 3.18 0.0718 3.73 0.225 0.071
14 1.95 0.0432 2.95 0.857 0.440
16 1.94 0.0968 "3.18 0.058 0.030
17 3.80 0.1268. 4.75 0.080 0.021
19 2.60 0.0710 4.11 0.216 . 0.083
20 2.60 0.0670 4.06 0.325 0.125
21 3.31 0.0598 4.62 0.724 0.219
22 3.16 0.0558 4.65 0.800 0.253
23 4.08 0.0709 5.02 0.354 0.087
24 4.15 0.0708 5.05 0.324 0.078
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Table 4

Length of Upstream Blocking Column as Predicted by the
Janowitz Formula for Present Experiments

Run 13 14 16 | 17 119 | 20 |21 22 23 24

102b(Re-Ri) | 30| 5048 [ 11.|11.}10.]|] 40| 40| 30| 3.0
(cm)

* These results confirm that Janowitz’s theory is indeed inapplicable to this study, for no
recirculating flow of the type described was observed within the predicted distances of the
plate. Had such closed streamline flow been present, the oil droplets and dye lines would
surely have revealed it.

- Influence of the End Wall

Another way in which this study differs from the experiment of Browand and Winant is
~ that it was unnecessary to correct the data for the finite length of the channel. The front
of the upstream disturbance was still several meters from the end wall when the velocity
profile photographs were taken. ' '

Theoretical and Experimental Results for Upstream Flow Field

The upstream velocity profiles predicted by the numerical study (see section, Theoretical
Study) will now be compared with the experimental results. Figures 15 and 16 present the
results for two typical experimental runs together with the corresponding theoretical
results. Profiles of dimensionless velocity with respect to the plate, u/U, are shown at four
upstream locations. Agreement between theory and experiment is excellent in the gradient
layer. Theoretical flow velocities in the homogeneous layers are in good qualitative agree-
ment with the experimental, although the predicted velocities are somewhat greater than
those actually observed.

Figures 17 and 18 show theoretical and experimental results for the variation of centerline

(z = 0) velocity with upstream position, ax. Here again, the agreement between theory and
experiment is excellent. Shown on the same plots are the predictions for upstream-velocity
variation for potential flow. These plots show that the upstream velocity variation is
somewhat like potential flow in the immediate vicinity of the plate, but rapidly deviates
from this idealization for ax > 0.5.

Finally, these experimental results are compared with the theoretical predictions of
Janowitz in figure 19, where dimensionless centerline velocity with respect to the plate,
u/U, is plotted versus Ix/L3 4. The quantity L, which Janowitz defines as L =b/(Ur/Bg)!?,
can be expressed in terms of the parameters used in the present study as follows.
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Figure 16. Theoretical and Experimental Results for Upstream Velocity Profiles, Run 23
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Figure 15. Theoretical and Experimental Results for Upstream Velocity Profiles, Run 21
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Figure 17. Theoretical and Experimental Results for the Variation of Centerline Velocity
with Upstream Position, Run 21 |

Janowitz considered the density profile

p =p( - pB2) (222)
from which '
do |
— = -pB. (22b)
dz .
This study has considered
p =5 - & tanhaz) . (23a)
for which
do _ __ 2 (23b)
— = -pwasech® az
dz
or,atz=0
b _ -poa. (23¢)
dz
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Figure 18. Theoretical and Experimental Results for the Variation of Centerline Velocity
’ with Upstream Position, Run 23 ’

Thus, by analogy between (22b) and (23c), one can define for a plate of height 2b

VL= bfUrGag)' (24)

Figure 19 again illustrates that Janowitz’s theory, which is formulated for high Richardson
number and very low Reynolds number, does not apply to the present experiment. Agree-
ment is particularly poor near the body, where Janowitz’s theory predicts the existence of
a blocking column with recirculating flow.

Approach to Steady State

In figures 20 and 21 are plotted, for the two runs and at the four upstream stations pre-
viously considered, the variation of the theoretical centerline velocity u/U with dimension-
less time Uat. The times during which the experimental data were taken are indicated in
the figures. These plots indicate that at the time of the experimental measurements the
flow near the body had nearly reached steady state, but that farther upstream it was still
quite unsteady.
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Centerline Velocity with Janowitz's Theory for Slow-flow Blocking
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Re/étive Importance of Various Terms in the Theoretical Formulation and Conclusions
about the Nature of the Observed Upstream Influence

It will be recalled that the formulation presented in the section, Theoretical Study, was
made as general as possible. It treated the flow of a diffusive, viscous, non-Boussinesq,
stratified fluid about a vertical flat plate. A series of numerical solutions were run on the
computer to evaluate the relative importance of various terms in the governing equations
and to determine thereby the nature of the observed upstream influence:

(a) When the diffusive term 1/(Sc * Re)w? p was neglected from the formulation,
the numerical results for the velocity field were absolutely unchanged. This is
not surprising, since, for the conditions of these experiments, Sc = 800, while
Re varied from 84 to 1538. Thus, for the conditions of the present study, the
flow was nondiffusive.

(b) The Boussinesq approximation resulted in a small but insignificant (1 percent)
decrease in the predicted velocities. Evidently, the Boussinesq approximation
is a valid assumption for the flow under study.

(c) Neglecting the viscous terms 1/Re v? 7 also resulted in a negligibly small
(1 percent) decrease in the predicted velocities. Hence, one concludes that the
plate speeds were fast enough that the upstream flow could be regarded as
inviscid.
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(d) Variation in the Froude number F = U/(g/a)*, however, had an overwhelming
impact on the numerical solution. An increase in F resulted in a dramatic
reduction in the length of the predicted region of upstream influence.

From these results one can conclude that the flow under study was governed almost
entirely by a balance between inertial and gravitational forces. This is a significant result,
for it means that the observed upstream influence is of an entirely different regime from
the slow-flow blocking studied by Janowitz and others. In the case of these very slow

- flows, a balance exists between the viscous and gravitational forces.

The effect of the Froude number on the numerical solution is illustrated in figures 22, 23,
and 24. Figure 22 shows the predicted variation of centerline velocity with upstream posi-
tion for F = 0.02, 0.06, 0.10, and 0.20 and for potential flow. This figure shows that as F
increases, the upstream influence becomes weaker and the variation of velocity with posi-
tion approaches that for potential flow. For very small values of F, on the other hand, the
upstream solution shows a closed-streamline recirculation region near the body, a result .
suggestive of the findings of Janowitz. This causes the solution to be somewhat unstable,
as is shown clearly in figure 24, where dimensionless velocity at four upstream positions is
plotted versus dimensionless time for F ='0.02. This result contrasts with the very stable
solution for F = 0.10, as illustrated in figure 23. For intermediate values of F corres-
ponding to the conditions of our experiments, the numerical solutions were quite stable
with no evidence of recirculating flow near the body.

Examination of Downstream Flow Field

The photograph presented as figure 25 shows a dye line created by a crystal that happened
to drop downstream of the moving plate. The shape of the dye line in the gradient layer
shows very clearly the existence of the reverse lee jet previously described.

As mentioned earlier, there were difficulties in obtaining downstream velocity profiles. The
optical distortion in the downstream-gradient layer is evident in the figure. Nevertheless,
an attempt was made to determine downstream-velocity profiles from the motion of the

oil drops that were not swept upstream by the plate. This attempt is summarized in figures
26 and 27. Figure 26 presents profiles of dimensionless velocity with respect to the plate
u/U at four downstream locations. Figure 27 shows the variation of centerline velocity
with downstream position ax.

The numerical solution, which models a plate of finite thickness, failed to predict the
existence of the reverse lee jet. When the numerical model of the plate was shrunk to zero
thickness in the x-direction, however, the solution for Uat < 40 did indeed show the begin-
ning of the development of a reverse downstream wake. Unfortunately, the singularities at
the tips of the infinitesimally thin plate created a disturbance which caused the numerical
solution to become noticeably unstable both upstream and downstream for Uat = 40 and
to become increasingly degenerate with time. The problem of the numerical solution of
the equations of motion near mathematically sharp edges has been studied by Lugt and
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of Centerline Velocity with Upstream Position

Ohring (1971). They found that they could avoid numerical instability only by manipu-
lating their coordinate system so that the singularity did not coincide with a grid point.
This is not a feasible alternative for the geometry of the present study.

Thus, although qualitative prediction of the nature of the downstream flow could be
accomplished by numerical modeling of a plate of infinitesimal thickness, that procedure
created more problems than it solved.

An Examination of the Numerical Study

In summary, the numerical model successfully predicted the observed flow, including:

(a) The wavelike propagation of the upstream influence to steadily increasing
distances in front of the plate

(b) The correct shape and magnitude of upstream velocity profiles.

Moreover, the model permitted identification of the observed upstream influence as the
product of a balance between inertial and gravitational forceé, thus distinguishing it from
the recirculating blocking column produced when viscous and gravitational forces
predominate.
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The numerical model was unsuccessful, however, in predicting the propagation of an inter-
nal solitary wave ahead of the upstream influence. Evidently, to successfully predict the
generation of such a wave, more work is needed on accurate numerical representation of
the impulsive start of the plate.

The model also failed to describe the existence of the reverse lee jet. As mentioned above,
this could be accomplished by making the plate infinitesimally thin, but the procedure
introduced singularities which eventually destroyed the numerical solution both upstream
and downstream.

CONCLUSIONS

Summary of Findings
The significant conclusions of this study are as follows:

(a) The increase during a series of experimental runs of the gradient-layer thickness
o' was very nearly a linear function of the number of transits made through
the layer by the vertical flat plate (see figure 5).

(b) The observed upstream influence propagated as an internal wave of zero
frequency whose wave speed depended on the Froude number F = U/(g/«)*.

(c) The behavior of the observed upstream influence can be adequately predicted by
a numerical solution of the equations formulated in the section, Theoretical
Study. This includes a description of the propagation of the upstream influ-
ence to steadily increasing distances from the obstacle, and the prediction of
the shape and magnitude of the upstream velocity profiles.

(d) The Boussinesq approximation can properly be used in the formulation of
equations to describe the observed upstream influence; moreover, neither mass
diffusion nor viscosity are important in the upstream flow

(¢) The upstream influence observed in the present experiments has been identified
as the result of a balance between inertial and gravitational forces. Furthermore,
no recirculating flow was observed upstream. The observed flow is thus of a
different regime from the recirculating blocking column produced in very slow
flows where viscous and gravitational forces predommate

() The impulsive start of a vertical flat plate in a region of suddenly varying
density will produce an internal solitary wave (Davis and Acrivos 1967;
Benjamin 1967). The numerical flow model used in this study, however,
fails to predict the generation of this wave. '

(g) A reverse lee jet was observed downstream of the moving plate. The mechanism
for the formation of the jet is thought to be a buoyancy effect. The present
numerical flow model with its plate of finite thickness fails to predict the
existence of the lee jet.
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Suggestions for Future Research

The dilemma confronted in attempting to predict numerically the existence of the reverse
lee jet, without destroying the solution with singularities, suggests that further study is
needed in the area of numerical flow modeling in the vicinity of mathematically sharp
edges. '

Another area needing study is the internal structure of the upstream flow when Re = O(1)
so that the inertial and viscous forces are of the same order. Of interest would be the
nature of the transition between a recirculating viscous blocking column and a laminar,
inertial upstream influence.

Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbelt, Maryland May 1973
502-21-28-01-51
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NOMENCLATURE

overrelaxation constant

constants used in the mapping from stretched to real coordinates

solitary-wave amplitude
half-height of the vertical flat plate

internal-wave group velocity

propagation speed of an infinitesimal, internal solitary wave

propagation speed of an internal solitary wave of finite amplitude

propagation speed of the upstream influence

mass diffusion coefficient

U/(g/o)*, Froude number

U/(g Ap/p H)*”, or (1/Ri)*, internal Froude number
acceleration of gravity :

symbol used by Long for total depth of a stratified fluid
x-grid index in the finite-difference solution

z-grid index in the finite-difference solution

wave number vector of an internal wave

b/(Uv/Bg)! /3, dimensionless parameter used by J anow_itz
(-g/p dp/dz)*, Brunt-Vaisala frequency

pressure

U/av, Reynolds number

(N/Uwa)?, Richardson number

number of iterations through overrelaxation routine

v/D, Schmidt number

© time

Uat, dimensionless time

horizontal fluid velocity with respect to the vertical flat plate

u/U, dimensionless horizontal velocity
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NOMENCLATURE (Continued)

dimensionless horizontal velocity with respect to stretched coordinates

velocity of the Avertical‘ﬂat plate with respect to the experimenter

vertical ﬁuid velocity with respect to the vertical flat plate

w/U, dimensionless vertical velocity

dimensionless vertical velocity with respect to stretched coordinates

Cartesian coordinates

ax, oz, dimensionless Cartesiap coordinates

stretched coordinates

a parameter of the density profile; a! is a measure of the gradient-layer thickness

-1/p (dp/dz), symbol for constant-density gradient used by those investigators who -
have considered linear density profiles

finite-difference time increment

finite-difference x-grid mesh (stretched coordinates)
finite-difference z-grid mesh (stretched coordinates)
z cofnponent of vorticity

y component of vorticity

n/Ua, dimensionless vorticity

(g/2ozcs’w) 2n (p, /pu ), dimensionless pararheter used by Davis in his study of
internal solitary waves

viscosity

up, kinemaﬁc viscosity

x component of vorticity

fluid density

fluid density at the horizontal centerline, z =0
p/p, dimensionless density

density of the homogeneous salt-water layer
density of the homogeneous fresh-water layer

frequency of an internal wave
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NOMENCLATURE (Continued)

stream function defined by u=9y/dz, w = -0y//dx

¥ a/U, dimensionless stream function

a parameter of the density profile (o, - o, ) (pg +0,)
vorticity (VX q = (£, n, £))
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APPENDIX 1
TRANSFORMED GOVERNING EQUATIONS

The coordinate transformation (19) applied to the governing equations (20) produces the
following transformed system. The continuity equation becomes

)
L +a(l -%»)-c(1 -22) [_a (Up) '+ — (Wp)] (A1)
ot 3% oz

. a2 . ) 2 a2p _ _ ap
az (1 - iz)z e 2a’% (1 —iz)—ﬂ +c2(1-23) — -2¢%Z (1 -z%) —
ax 2 ox 9z ? oz

Sc - Re

The transformed momentum equation is

ca-92 La-zny L vagoxy - 2a-7 2 @)
9z ot 8%
ta(l-x) - (1-7%) [(1-22) 2@ - 2HW7]]
oz

- a(1-§2)a—p a(l—i2)—?§ +a%(1-x%) -c(1-22) |:(1-i2)—a(ﬁ W)-2GWT(]
o ot

) 9
+ a2 (1-%%)" - c(1-72) —a-(Wz)] + pl?ﬂ ta(l-x%) - c(1-27) [—-Gn) +-(an{”

0z ot 0xX 0z
—2 1 ap 1 2 —2:2 3277 -
=a(l-X) — — + — {a*(1-%X°) — , (A-2)
F2 3X Re 9x 2 :
. 2 an -
- 222X (1-%2) — + 2 (1-7%)° — - 2¢2Z (1-72%) —
X 9z ? o7
The velocities are .
) .9
ﬁ = _?’ W = - —‘p (A3)
0z oxX

and the vorticity expressed as the Laplacian of the stream function is

32 d a2 Y
n = a? (1-%x2)° oy 2a2i(l-i2)—w + ¢ (1-72) v 227 (1-70) = . (A4
ox2 X 0z 2 oz



The transformed boundary conditions for t > 0 are

1
as X1, IZI->1, p- [1—5 tanh (— arctanh Z)] ,
c

andatX = 0, [zl < tanh cab,

oy

x

The transformed initial conditions are

[

9
._p =0
oxX
]
_—lji = 0.
0z

1 ‘ :
p= [l - w tanh (— arctanh i)] everywhere at t = 0

—=—=2=90 everywhere at t = 0

(A3)

(A6)

(A7)

(A8)

(A9)



APPENDIX 2
FINITE-DIFFERENCE FORM OF TRANSFORMED GOVERNING EQUATIONS

The stream function i is deterrnmed by overrelaxation of (A4) subject to the boundary
conditions (AS) and (A7). The overrelaxation scheme is given by

YErD = 9@+ A@ - (B1)

where i and j are the x and z grid indices, respectively, so that 11/(5“) is the value computed
for the stream function at the grid point (i, j) on the (s+1)th 1terat10n The value of \p

is obtained from the finite-difference form of (A4). If the overrelaxation converges, then
as s increases '

(b5 ) = (w50 = 98)

A is an overrelaxation constant whose value affects the speed of convergence but not the
final result for w(s“) For this study, A was set equal to 1.75. The overrelaxation equa-
tion for the stream function is therefore given by

¢ 2
yery = (1-a)¢® + [0.5 A/ ( a® (1-%2)° + ¢ (1-72 )2(%) )] [- (Ax)? m, ;
+a? (1 -iiz ) Wisr 3 Viry) -a? x; (1 ‘s‘_iz) AX Wiy 5 = Vi p) (B2)

: 2 2
+ 2 (1-77) (g) Wign * ¥ig)) -2 50-Z]) EZ)) Wi - ‘l’i,j-l)]
The boundary conditions on ¥ at the solid boundary of the obstacle are derived as
follows. The ¥ = 0 streamline is coincident with the horizontal centerline of the flow
field except at the obstacle where it bifurcates and follows the contour of the solid
boundary. The forward-difference expression for the derivative of a function fat a
solid boundary is :

’ ~ 1 ) \
£ &) 2(Ax) [3 f fi1 fi+2] +0 [(ax)?] (B3a)

and the backward-difference expression is

1
PO~ 2 [3 fi- 46, * fi-z] +0 [(ax) (B3b)

(Conte 1965, p. 110). The nonslip condition, together with the additional constraint that
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¢ = 0 along the solid boundary, combines with (B3a) and (B3b) to give the following
boundary conditions for .

1
lllM3_1’j = 4 \l/M3 -2.j ] = N3, .,N4
- 1 - - ’
d/M4+1,j vy ‘1’1\,14,,2,J j = N3,..,N4
1 (B4)
Vi T Vinaa i = M3, M4

1

llJi,N"""l = _4— ‘pi,N4+2 1 = M3, .o ey M4

where the obstacle istrepresented as a rectangle contained within the grid lines i = M3 to
i=M4 andj= N3 toj= N4. The u and w velocity fields, as given by (A3), become

Vi =~ Vi _ Vieri = Vierj

T, . , W, = —————=
i 2AA2) Vi 2Ax) - B
The continuity equation (A1) can be written in finite-difference form as

Pir i = 2p.. t Piyi
P - 2 =2 2 "1tly) 1,) 1-1,)
T T [ [“ (1-%7) .

Sc  Re (Ax)?
Piii = Pyt P, - 2p. .+ p
-9 a2 _)_(i (1 —i’iz) i+1,) i-1,) + c2 (1 -'z—,j2)2 i,j+1 i,) i,J-1
2(Ax) (Az)?

Pist1 ~ Pija : 9 (B)
-2027j (l-ff)——z'(ZZ-)-——' —a(l-fiz) : C(I'Z_jz) -a;_' (up)
) i,J

)]

where the unprimed variables represent values att=tand p 1s the new value of the

density at grid point (i, j) and at t =t + At. As mentioned i in the section, Theoretical

Study, the nonlinear terms [3/0% (Up)], ; and [3/9Z (&p)]; ; were evaluated by the
“special three-point noncentral dlfference method” of Torrance and Rockett (1969).

A derivation analogous to that for the boundary conditions on ¥ gives the following
boundary conditions for p.
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PMs-ni T 4 T L M j = N3,...,N4
31
pM4,+l,j= _4—+:pM4+2,j j = N3,..,N4
(B7)
31
PN T Y T PN i = M3,...,M4
3 1

PiNa+1 = —4- + : Pi Na+2 1= M3,...,M4

The momentum equation, which is used to evaluate the change of free stream vorticity
with time, can be written in finite-difference form as

, e 2 _
;= my t At ja(l-x) - <(1-7}) [[a_“ (ﬁn)] ' [a—_(wn)] ]
. X i,j zZ i,j

1 1 Pirri=Pi1s 1 n.+1.—2n..+n. .
’ =1y sJ 1,} l'l).‘
+ - [a(l-if) — 2 — |2 -x2) —

p F2  2(Ax) Re (Ax)?

2 Mgt =24

Tiwr 5~ M i

- 227X, (1-%}) —————= + 2 (1-77)
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Finally, the vorticity at the solid boundaries is evaluated from 5 =¥?2 { by taking note of
the boundary conditions on y and using the forward- and backward-difference expressions
for a second derivative at a boundary.. These expressions are (Conte 1965, p. 110) ’

&) ~ [_fi+3 +4f, -5 £, + 2fi] + 0 [(a03

(ax)?

n ~ 1 B |
" (®) ~ e [—fi_3 VAL - SE 4 2fi] + 0 [(an]

and the expressions for i at the boundary are
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sy = 2 (1-%7) , j=N3,..
(ax)?
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APPENDIX 3
COMPUTER PROGRAM

The computer program used to make the theoretical flow predictions for this study is
based on the finite difference equations of /Appendix 2. It is written in FORTRAN-IV
for use on an IBM 360 computer. It uses double precision, and for the present 81 by 41
grid mesh, requires 620 K bytes of storage and 30 to 40 minutes of central processing
unit (CPU) time to model a complete experimental run. Most of the CPU time is spent in
the overrelaxation step of the computation. The core and CPU time requirements are
considerably reduced for coarser grid meshes, but not without some sacrifice in accuracy.
INPUT-DATA FORMAT

Cards 1, 2, 3, and 4 are title cards. A descriptive title can be punched on these cards in
columns 1 to 80. '

Card 5 contains 12 floating-point data inputs in fields of six columns each: -
Col. 1- 6 DX‘= Ax = finite-difference x-grid mesh (“‘stretched” (goordinates)
.7 -12  DZ = Az = finite-difference z-grid mesh (“stretched” coordinates)
13-18 DT = At = dimensionless finite difference time increment
19 -24 T = time at start of computation
©25-30 F = Froude number = U/(g/)*
31-36 Re= Reynolds number = U/va
37-42 EPS = (Schmidt number)? = D/v
43-48 DAVG = p = fluid density at z=0
49 - 54 OMEG = w = a parameter of the density profile
| 55-60 ALPHA = « =a parameter of the density profile

61 -66 UBODY = U = velocity of the vertical flat plate with respect to the
experimenter

67-72 A = overrelaxation constant
Card 6 contains nine fixed point data inputs, right justified, in fields of six columns each:

Col. 1- 6 LL =total number of time incrementations to be made during the
computation (should be a multiple of 40)



7-12 MX = total number of x-grid lines; must be less than or equal to the
number of storage locations assigned to X(I) in the DIMENSION
statement

13-18 - MQNEG = downstream thickness of the obstacle in terms of the number
~of downstream (x < 0) grid lines it contains

19-24 M2POS = upstream thickness of the obstacle in terms of the number of
upstream (x > 0) grid lines it contains

25-30 NZ = total number of z grid lines; must be less than or equal to the
number of storage locations assigned to Z(J) in the DIMENSION
statement

31-36 MLTI =0, if Boussinesq approximation is to be made
= 1, otherwise

37-42 MLT?2 = 0, if Boussinesq approximation is to be made
=1, otherwise

43-48 MLT3 =0, if flow is to be assumed inviscid
’ = 1, otherwise

49 - 54 MLT4 = 0, if flow is to be assumed nondiffusive
= 1, otherwise

Card 7 contains 12 fixed point data inputs, right justified, in fields of six columns each.
These input parameters indicate those results which the user has selected to be printed out.
If a parameter is zero, the results corresponding to this parameter are not printed out. If
the printout is desired, a nonzero integer must be assigned to the parameter. The following
list gives each parameter in the order in which it is read in and the result prints out to which
it corresponds:

- Col. 1- 6 IPOK - number of iterations K through SUﬁROUTINE RELAX
7-12 IPOP - stream function { both initial and at later time

13-18 IPOPC - stream function contour elevations

- 19-24 1PODI - initial density profile at a typical cross-section
25-30 IPODC - density contour elevations
31-36 IPODN - nondimensional density at later time
37-42 IPOD - dimensional den'sity at later time
43-48 IPOV - vorticity field

49 - 54 TPOUO - nondimensional u-velocity with respect to the obstacle



55-60 IPOWO - nondimensional w-velocity with respect to the obstacle
61 - 66 IPOUE - dimensional u-velocity with respect to the experimenter

67 - 72 IPOWE - dimensional w-velocity with respect to the experimenter

COMPUTER PROGRAM LISTING

The following pages present the program listing.
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