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AN ANALYSIS OF FRACTURE TRACE PATTERNS
IN AREAS OF FLAT-LYING SEDIMENTARY ROCKS
FOR THE DETECTION OF BURIED GEOLOGIC STRUCTURE

by
Melvin H. Podwysocki
ABSTRACT

Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks
were analyzed to determine if a quantitative relationship exists between fracture
trace patterns and their frequency distributions and subsurface structural closures
which might contain petroleum. Fracture trace lengths and frequency (number

of fracture traces per unit area) were analyzed by trend surface analysis and
length frequency distributions also were compared to a standard Gaussian dis-
tribution. Composite rose diagrams of fracture traces were analyzed using a
multivariate analysis method which grouped or "clustered" the rose diagrams

and their respective areas on the basis of the behavior of the rays of the rose
diagram.

Analysis indicates that the lengths of fracture traces are log-normally distributed
according to the mapping technique used in this paper. Deviations from log-
normality may be associated with both reef (passive) structures whose '"closure
is caused by differential compaction of sediments over the reefs and with base-
ment uplift (active) anticlinal-structures. The primary control of fracture trace
frequency and log-mean lengths is associated with variations in surficial lithology.
This variation may be extracted using trend surfaces and the residuals may he
analyzed. Fracture trace frequency appeared higher on the flanks of active
structures and lower around passive reef structures. Fracture trace log-mean
lengths were shorter over several types of structures, perhaps due to

inereased fracturing and subsequent erosion.

Analysis of rose diagrams using a multivariate technique indicated lithology as
the primary control for the lower grouping levels. Groupings at higher levels
indicated that areas overlying active structures may be isolated from their neigh-
bors by this technique while passive structures showed no differences which

could be isolated.

————
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AN ANALYSIS OF FRACTURE TRACE PATTERNS IN
AREAS OF FLAT-LYING SEDIMENTARY ROCKS FOR
THE DETECTION OF BURIED GEOLOGIC STRUCTURE

INTRODUCTION

Although linear features on the earth's surface had long been mapped solely on
topographic and geologic criteria (Hobbs, 1911; Brock, 1957), more of these
subtle features became apparent as aerial photographic coverage became
available (Rich, 1928), Since then, airphoto linears have been applied to a
wide range of topics such as groundwater studies (Lattman and Parizek, 1964;
Siddiqui and Parizek, 1971), mineralization (Keim, 1962; Kutina, 1969) and
engineering studies (Parizek and Voight, 1970; Parizek, 1971; Alpay, 1973;
Benedict and Thompson, 1973). Linears observable on various scales of
aerial photographs and topographic maps have been utilized extensively in
regional tectonic studies (Plafker, 1964; Gol'braikh et al,, 1968a; Gold et al, ,
1974), Although several investigators claim that analysis of airphoto linears
will allow exploration for geologic structures which may bear petroleum
{(Permyakov, 1949, 1954; Blanchet, 1957; Mollard, 1957), few exploration
techniques have been divulged due to their proprietary nature, This paper will
discuss some parameters which can be extracted from an airphoto linear study
for the purposes of exploration for several types of oil and gas traps.

NOMENCLATURE

The terms "airphoto linears' or "linears' were used above in order to circum-
vent the variety of names and non-systematic nomenclature for these topographic
and photographic expressions., Barton (1933) used the term "topographic lines"
and Gross (1951) used "topographic linears," Although their maps showed they did’
limit the size of the observed features, no comment was made concerning the
distribution of their individual lengths, Only recently has attention been paid

to the scale of observations and size of the features (Nemee, 1970; Gold et al. ,
1974) and until the advent of satellite imagery, there was no convenient format
for direct observations of the large features.

Blanchet (1957) categorized his observations on linears observed on aerial
photographs as "micro- and macrofractures, " dividing the two categories at

2, 5 miles (4 km), He claimed, but offered no proof, that microfractures (0,5 -
2,5 miles (0, 8 - 4 km)) in length are intrinsic to the sediments themselves
whereas macrofractures (greater than 2, 5 miles (4 km)) are related to deep
seated basement features, Because similar orientations prevailed in different
parts of the world, he claimed that the fractures were related to a worldwide
tectonic pattern, : '



Mollard (1957) used the term "lineament' to classify aerial photographic linears,
His classification allowed the use of both continuous and discontinuous features
ranging from 0. 2 - 5 miles (0, 3 - 8 km) in length, He too considered them
related to global tectonics,

Gol'braikh et al, (1968 a,b) use the term ""megajoint, " which they adopted
because of its relationship in hierarehy to other scales of jointing (i.e. micro-
and macrojointing) and to the analytical techniques which could be applied
regardless of scale, The term megajoint is based on the scale of maps or
aerial photographs used and the minimum length (1 ¢cm) which they believe can
be precisely measured to determine the bearing of a megajoint., Their published
works indicate a range of 1 to 6 km with a peak around 3 km (Mirkin, 1973,
pers. comm, ), Unfortunately, this scheme is dependent upon the scale of maps
or photographs used. Other Russian terms used fo describe the same phenomena
are "lineamental jointing, " "rectilinear elements of topography and stream
networks" (Gol'braikh et al,, 1968a) and ‘''lineaments” (Shul'ts, 1969),

Lattman (1958) subdivides airphoto linears into "lineaments' and fracture
traces, ' based on their length, He defines fracture traces as naturally
occurring linear features observed on aerial photographs as alignments of
stream segments, topographic features and soil and vegetational tonals which
are expressed continuously for less than one mile in length, He relates them
either to small faults or zones of joint concentration which are usually vertical
or nearly vertical in cross-section (Lattman and Matzke, 1961). Excluded from
the definition are bedding planes, compositional layering, and foliations.
Lineaments are defined as consisting of the same morphological landscape
elements as fracture traces, except that they are expressed discontinuously in
the landscape and are greater than one mile (1,6 km) and up to several tens or
hundreds of miles (km) in length, They may consist of zones of increased
fracture trace concentrations, transgressing structural, temporal and physio-
graphic provinces and because of their great lengths, they are thought to he
recurrent effects associated with basement faults or zones of tectonic adjust-
ment between major crustal blocks (Wise, 1968; Gold et al, , 1973, 1974), A
plot of aerial photographic linears combining both of Lattman's categories
indicates a bimodal distribution, with a minimum occurring at about the one
mile length (Lattman, 1969, pers, comm, )., Mirkin (1873, pers. comm, )
indicates a similar bimodal distribution with his break occurring at the 3-4 km
interval,

The present study will use the terminology of Lattman (1958) and will examine
whether his definitions agree with observations made during this study.



MEASUREMENT PARAMETERS

Griffiths (1967) characterizes the measurable properties of an object by the
following mathematical equation:

P = f (material, size, shape, orientation, packing) (1)

Size (length) and orientation (bearing) are the most readily measured properties
of fracture traces, Shape can be variously defined, Griffiths (1967) characterizes
the shape of quartz grains or pebbles as the ratio of their long, intermediate
and short axes, In this sense, the ratio of fracture trace width to its length
might be a measurable parameter. However, measurement of fracture trace
widths is a highly subjective study because of possible erosional and seasonal
vegetal enhancement, and until more is known of their character with depth,

no consistent classification can be attempted, In addition, since fracture
traces are defined as lines, their width can be defined as infinitely small and
unmeasurable. A radius of curvature can also be defined as a shape parameter,
however, the scarcity of these features would preclude their use as a commonly
measured and quantified parameter (Gol'braikh et al,, 1968a). The possible
significance of these curved and arcuate features has often been overlooked
(Podwysocki and Gold, 1974); they may represent the surface expression of
periclinal structures, listric faults and intrusive bodies,

The two remaining factors which can be studied are materials and packing, In
this study, materials will refer to surficial geologic materials (formations)
present in the mapping area, Packing (density or number of fracture traces per
unit area) will be one of the parameters calculated as a result of this investigation,

STUDY AREAS

Two study areas were chosen representing different types of ''structural traps"
for the accumulation of petroleum, Both are located in the relatively stable
cratonic platform areas of the central USA, A study area in south-central
Kansas was chosen because it was regarded as typical of vertical uplift
controlled by basement faulting, The other area was located in west Texas and
is underlain by a series of reef structures with overlying sediments draping
over them (differential compaction), No basement tectonic control is evident

in the latter area.

The Kansas study area, covering approximately 150 square miles (270 sq. km),
occupies the southern portion of Pratt and the northern part of Barber Counties
(Figure 1), It overlies a portion of the southward plunging nose of the Pratt
Anticline, a southerly extension of the Central Kansas Uplift (Merriam, 196 3).
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Although deformation occurred as early as Cambrian time (Williams, 1968),
the major pulse is Mid-Pennsylvanian {Merriam, 1963), and produced an
unconformity between pre-Mississippian and late Pennsylvanian rocks,
Structural and structural-stratigraphic traps suitable for the entrapment of
petroleum were created by "crenulations' of 2-3 km diameter on the Pratt
Anticline, A northeast trending fault underlines the Coats Qil Field, cutting
the Precambrian basement (Cole, 1962), No documentation exists for this
fault in higher stratigraphic horizons (Williams, 1968), Figure 1 contains

a schematic representation of the oil fields in the area and the amount of
structural closure as determined by structure contours on top of the Late
Pennsylvanian Lansing Group (Williams, 1968). According to cross-sections
by Curtis (1956), minor reactivation of some of the structures may have
occurred as late as Permian time, Average depth to the top of the producing
horizons is approximately 3500 feet (1065 m) below the surface and depth to
basement averages about 5200 feet (1585 m),

Figure 1 also contains a surface geologic map, Glacial outwash gravels, sands,
gilts and some clays of the Pleistocene Kansan and Illinoian Stages predominate,
The Iilinoian materials are found on the upland surfaces in the northern portions
of the study areas whereas Kansan materials are usually found in the southern
part and the major stream valleys of the central portion (Layton and Berry,
1973), Thickness of these deposits reaches a maximum of 200 feet (61 m) in
the northern part of the study area and pradually tapers to a zero edge where
the Permian rocks of the Whitehorse ‘Group crop out in the southern extremity
of the study area, The latter consist of reddish-brown siltstones, shales and
sandstones with lesser amounts of gypsum, salt, anhydrite and limestone
(Layton'and Berry, 1973),

The Texas study area, covering approximately 180 square miles (324 sq. km),
is situated in the northwestern portion of Nolan and southwestern part of Fisher
Counties (Figure 2), If lies on the eastern shelf of the Midland Basin, the site
of the Pennsylvanian and pre-Pennsylvanian Concho Arch and Platform (Hope,
1956), Two major unconformities exist with a hiatus from Late Ordovician
through the Mississippian and another from Triassic through the Cretaceous
ages (Hope, 1956; Shamburger, 1967), During Pennsylvanian time the area
was the site of extensive reef-building, caused by repetitive advances and
retreats of the seas across this shallow platform area {(Van Siclen, 1958),
Subsequent deposition commonly covered the reefs with fine-grained clastic
sediments, eventually draping over them, due to differential compaction, to
create ""structural highs' (Conselman, 1959), In addition, stratigraphic traps
associated with the updip pinchout of fore-reef detritus are common, No
documentation exists for faulting in the study area (Hope, 1956), Depth to
"Canyon Reef" production horizons averages about 6000 feet (1830 m),
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Figure 2 contains a schematic representation of reef production with a minimum
"structural closure! indicated for each reef and excludes stratigraphic traps
such as the '"Canyon Sands, "

The surface geology is also portrayed in Figure 2, The Permian Whitehorse
Group consists of sandstone, siltstone and shale redbeds with some inter-
spersed gypsum beds, It crops out in the northern and extreme eastern
portion of the study area, The Triassic Dockum Group crops out sporadically
in the northern and eastern parts of the study area because of its cover by the
Cretaceous and Tertiary units and its erosion during a later hiatus (Conselman,
1959; Shamburger, 1967). This unit consists mainly of red and tan conglomerates,
sandstones and shales, Because of its small extent and similarity in lithology
to the Permian, the two units have been grouped together, Dips on the Permo-
Triassic and older subsurface units is about 0,5 - 1 degree to the west, The
Cretaceous Trinity Group occupies the extreme southern part of the study area
and consists of medium to coarse-grained quartz sands up to 80 feet thick which
vary in color (Shamburger, 1967). Directly above is the Fredricksburg Group,
consisting of thin to thick bedded arenaceous and fossiliferous limestones,
Maximum thickness approaches 200 feet (61 m) in the Edwards Plateau directly
to the south of the area, but it is considerably thinner locally, Karst features
such as broad, shallow, poorly defined sinkholes are also found, Although
these limestones underlie most of the central and western portion of the area,
they are masked by a relatively thin cover of Tertiary Ogallala deposits, The
Cretaceous units have been consolidated into one map unit because of the small
lateral extent of the Trinity Group, Regional dips on these units usually do not
exceed 1 degree to the southeast, The Pliocene Ogallala Formation consists

of caliche, sands, gravels and some light colored clays; it forms a thin mantle
over the central and western parts of the field area and, where exposed in
cross-section in imestone quarries, it does not exceed 8 feet in thickness,

MAPPING METHOD

U. S, Department of Agriculture aerial photographs at a scale of 1:20, 000 taken
in the early 1960's were used as a basis for mapping the fracture traces. A
pocket stereoscope was used in areas of moderate relief (up to 150 feet (46 m)),
and for low relief areas (5 ~ 20 feet (1.5 - 6 m)), individual photographs were
viewed at low oblique angles while the photos were rotated to view all possible
ook directions, "' Mapping was done in flightlines, spending about 1/2 hour
per stereo pair. Trainer (1967) showed that 84-89% of the fracture traces
could be found in the first 20 minutes of observation,

As a check to determine if this operator was consistent in the selection of
fracture traces, parts of the sidelap between adjacent flightlines were mapped



and compared. A minimum of 83% of fracture traces were mapped consistently
between several pairs of flightlines.

As a test of variations in the recognition of fracture traces, several experienced
operators were compared to determine if the same general trends were mapped
amongst the operators. Four sets of airphoto stereo pairs representing
different types of topography in the study were mapped by two additional
operators, Freidman Two-Way Analysis of Variance (Siegal, 1956) indicated
that each operator mapped a different number of fracture traces on the four
examples, based on a 0. 05 level of rejection, However, the relative ranking
by the operators of fracture trace direction indicated that in three out of four
cases, there was no reason to reject the hypothesis that the operators were
choosing the same directions. Thus, even though absolute numbers of fracture
traces varied between operators, the same patterns of orientation and the

same relative magnitude remained when the data were plotted in rose diagram
plots., Gol'braikh et al, (1968a) achieves the same end by converting the
absolute number or length of megajoints fo percent rose diagrams in order to
eliminate variation due to different operators and to more clearly discern the
signal pattern,

Fracture traces were mapped directly onto aerial photographs by marking
their endpoints with a soft colored pencil. In order to minimize planimetric
errors, the fractures were mapped only within a three inch radius of the
photograph centerpoint. These data were then transferred using a Saltzman
projector to standard U, 8. Geological Survey 1:24, 000 scale topographic maps
which were used as a base map, Figures 3 and 4 represent the fracture maps
of the two areas, The grid on the left and top margins will be discussed later,

Cultural features such as pipelines and fencerows were usually readily distinguish-
able on aerial photographs. Subsequent field examinations verified and eliminated
these features. Difficulty was encountered in differentiating some cultural
features from fracture traces, notably relict plow patterns, This manifested
itself in two fashions: 1) Plow patterns which paralleled some fracture traces
would most likely cause the operator to overlook these fractures, This would
eliminate north-south and east-west oriented fractures in the Kansas area. In
west Texas, due to the orientation of the cultural pattern, those fractures
oriented within several degrees of N12W and N78E could be easily overlooked.
Conversely, old plowing practices did not heed the "lay of the land, " and

plowing was done normal to local slope. Those plow furrows normal to the

slope would enhance and concentrate runoff in this direction, creating a series

of parallel first and second order stream channels, Contour plowing practices
alleviated this problem, however, they may have additionally obscured some of
the original fracture pattern, Figures 5 and 6 are obvious examples of some
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Figure 5, Vertical Aerial Photograph of a Portion of Pratt County, Kansas,
Taken in 1950, Note the Finishing Passes in the Plow Pattern (A),
the Fracture Trace (B) and Areal Extent of Exposed Carbonate-Rich

"B" Soil Horizon at C. Compare with Figure 6.

Figure 6, Vertical Aerial Photograph of a Portion of Pratt County, Kansas,
Taken in 1963, Finishing Plow Patterns (A) Might be Mistaken for
Fracture Traces. Fracture Trace (B in Figure 5) Has Been
Obliterated by Land Contouring, Poor Agricultural Practices Have
Caused Erosion and Exposed More Carbonate-Rich "B'" Horizon (C).
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of these phenomena. Many others exist where a decision conceming their
origin is more difficult, 2) Plow patterns with their characteristic finishing
passes through the field diagonals create linear patterns which later show
through as relict patterns through a newer plowing pattern. Because most of
these lines pass through field or section corners, they were regarded with
suspicion and their significance downgraded, Gol'braikh et al, (1268a) noted
gimilar problems in the USSR,

For the purpose of this study and fo eliminate some of the subjectivity of the
mapping, only continuous features were mapped as individual fracture traces,
Thus, if a linear feature of 4 em length on an aerial photograph appeared to
have a break in its length, dividing it into two individual fractures, it would
be mapped as such,

DATA HANDLING

Due fo the large amount of information obtained, a computer-based data
handling system was devised. A cartesian coordinate system was established
with its origin in the upper left corner of each of the map areas, The X axis
was chosen as latitudinal and positive to the right and the Y axis meridional
and positive downward, The beginning and end points of each fracture trace
could now be referenced with respect to this system which is illustfrated in
Figures 3 and 4, The map data were digitized onto standard 80 column
Hollerith computer cards and preliminary treatment performed by a FORTRAN
IV program TRANSFORM. Program listings and additional detail are described
in Podwysocki (1974), The punched card oufput of this program contained the
beginning, end and midpoints of each fracture trace as well as its length in
millimeters on the map, azimuth and several other parameters which were
then used in additional computer programs, Subsequent programs utilized the
established cartesian base, dividing the map area into various grid cell sizes,
and summarized the data in several fashions,

These programs were designed so that not only could data be summarized

within a grid cell specified by the user, but the increment by which this grid

cell was moved across the map could be specified. Thus, 1) the whole map
could be treated as a single grid cell and all information would be summarized
within that one cell, 2) the map could be subdivided into a series of smaller

cells with the summaries taking place in those individual cells or 3) the map
could be subdivided as in 2 above and the summary cell size could be incremented
at a value less than the grid cell size, creating a "running average' or smoothing
effect (see Podwysocki, 1974), Gol'braikh et al, (1968a) used the latter tech-
nique to look for changes in the number of megajoints and their orientation which
might be associated with the presence of structural complications (i. e.

structural closures, faults),

12



ANALYSIS OF FRACTURE TRACE LENGTHS

Treating the whole map of each area as a single grid cell, and classifying the
fracture traces into 0, 05 mile (0, 08 km) class intervals, produced the results
shown in Figures 7 and 8, VECLEN, the computer program for this classifi-
cation, which is described in Appendix A, summarizes a fracture trace by its
- length if its midpoint falls within a grid cell, In both study areas the distri-
butions of fracture trace lengths are highly skewed towards the shorter lengths,
Gol'braikh and Mirkin (1973, pers., comm, ) showed similar results for their
studies of the Vilyuisk Syneclise and the Preverkhoyansk Downwarp, Although
no conscientious effort was made by the operator to discriminate against
linear features greater than one mile (1.6 km) in length, it should be noted
that all but a few fracture traces mapped were less than the maximum defined
length of one mile as defined by Lattman (1958),

Because of the marked similarity between the observed distribution of fracture
trace lengths and plots of sediment grain size distribution from sieve analysis,
a variation of Krumbein’s Phi scale transformation {1938) was applied to the
data as follows:

z=10g2x-!-6 {2)

where x is the original length of the fracture trace in miles, z is the transformed
value of the fracture trace length and 6 is a constant added to each value so that
all resultant values in this work would be positive. Repeated analysis using the
same techniques listed above produced the results illustrated in Figures 9 and
10. The histograms look like Gaussian distributions, however, the summary
statistics in the figures do not bear this out, The following discussion of
fracture trace lengths will ufilize the transformed data.

It was thought that mixing of geologically different populations might cause the
deviations from log-normality in the transformed data., The study areas were
divided into quarters and each analyzed independently. Results indicated that
only some areas showed normal distributions, It was noted that the log-mean
fracture length was different for each of the 4 quarters of each of the two study
areas,

To isolate those areas which were anomalous, the study areas were again
quartered, producing a 1/16th unit of the total map area and the analysis per-
formed on each unit, In addition, the summary unit cell was incremented by
1/2 cell intervals in both the X and Y directions, creating a2 running average

as described earlier, The summaries produced cells which were approximately
3.5 by 3.9 miles (5.6 by 6.2 km) in the west Texas area and 3,6 by 2. 9 miles

13
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(6.8 by 4.6 km) in the Kansas area for a total of 64 cells (8 by 8 in each area).
Summary statistics such as the log-mean fracture trace length, standard
deviation, skewness /B, ) and kurtosis (8, ) of each cell's frequency
distribution as well as the number of fracture traces for each unit cell

were produced for use in additional analyses.

The summary statistics produced in the above mentioned compilations of the
data were analyzed using linear regression analysis, Due to the paucity of
fracture traces in the southernmost tier of cells (less than 5 in each) in the
Texas study area, these cells were ecliminated from the analysis,

The significance test for correlations between the statistical moments for the
Kansas data (Table 1) indicates a significant correlation for 1) log-mean
fracture trace length and skewness, 2) number of fracture traces per unit cell
and standard deviation and 3) skewness versus kurtosis, Figure 11 represents
the plot of the standard deviation versus number of fracture traces per unit

cell, The plot indicates low standard deviations associated with cells containing
few fracture traces (lower left part of diagram), Because the reliability of the
statistical moments for such small sample sizes is highly questionable, the
offending samples (all cells containing less than 45 samples), which occurred
along the eastern and southern margins of the map area, and were due to
incomplete mapping coverage, were eliminated from consideration in further
tests, Repeated regression analysis on the data execlusive of the mentioned
marginal cells indicated no significant correlation between two of the three
previously determined associations, However, it should be noted that a
significant correlation did remain between the skewness and kurtosis measures;
Figure 12, based on the original analysis of 64 $amples, serves to illustrate
the results, A small group of samples located near the right margin of the

plot contains kurtosis values which are highly leptokurtic* (8-10), These cells
contain several very long fractures (greater than the accepted length for a
fracture trace) that were inadvertently included, and will be discussed later

in the log-normality analysis, A removal of these four anomalous cells and
repeated regression analysis indicated no significant correlation between the two
moments, Removal of these correlations, or attributing them to some sampling
inconsistencies, indicates the samples are homogeneous, that is, several
discrete and very distinct populations do not exist in the data,

* More peaked than normal
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Table 1

Results of Linear Regression Analysis
On Log-Mean Fracture Trace Moments

Kansas Data - 64 Samples

Log-Mean Standard
Length Deviation Skewness Kurtosis
Standard
Deviation NS$
Skewness S5* NS
Kurtosis NS NS Sx#
Na. of Fracture
Traces per NS S NS NS
Unit Cell
Table 2
Results of Linear Regression Analysis
On Log-Mean Fracture Trace Moments
Texas Data - 56 Samples
Log-Mean Standard
Length Deviation Skewness Kurtosis
Standard grw
Deviation’
Skewness g** NS
Kurtosis NS S# NS
No. of Fracture
Traces per NS NS NS Sk
Unit Cell

NS = non significant

S*  =significant at 0.05 level
S*#* = gignificant at 0.01 level
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Figure 11, Regression Analysis Plot of Standard Deviation versus the Number of Fracture Traces
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Data Points Located in that Position,
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Figure 12, Regression Analysis Plot of Skewness versus Kurtosis for the Kansas Data.
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The regression analyses on the Texas data are given in Table 2, Significant
correlations exist between:

1) log-mean fracture trace length and standard deviation
(Figure 13), which indicates increasing standard deviation
with increasing mean fracture trace length;

2) log-mean fracture trace length and skewness (Figure 14),
which illustrates an increasing positive skewness (mode
displaced towards smaller values with respect to the
mean of the distribution) with increasing fracture trace
length;

3) standard deviation and kurtosis, (Figure 15); and

4) kurtosis and the number of fracture traces per unit cell
(Figure 16).

Figures 13-15 can be interpreted together to indicate one of two possible
causes, If the assumption is made that the samples were taken from a single
homogeneous population, then the sampling technique indicates a bias, Con-
versely, the population may not be homogeneous, and the tests may indicate
the sampling of iwo or more discrete and distinct populations of fracture
traces, The second of the two hypotheses will be proven and more clearly
illustrated by the use of trend surface analysis which will be discussed later,

The last significant correlation occurs between kurtosis and the number of
fracture traces per unit cell (Figure 16). These high values are associated
with large sample populations and are anomalous, perhaps suggesting some
mixing of several populations of fracture traces,

Tests were performed using the Chi Square, skewness and kurtosis criteria
(Griffiths and Ondrick, 1968), comparing the observed against a hypothetical
Gaussian distribution. Deviations of each of the criteria were ranked,
assigning values to those populations which significantly differed from

normality at the 0, 05 and 0, 01 levels, Rankings were assigned as illustrated
in Table 3,

If a criterion value was non-significant, it was assigned a zero value, The
rankings of the three criteria for each cell were then summed to create an
index value characteristic of the population distribution in each cell, High

ranking values indicate strong deviations from log-normality as illustrated
in Figures 17 and 18,
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KANSAS STUDY AREA
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Figure 17. Results of Test for the Distribution of Fracture Trace Lengths to
Log-Normality. Rank-values Are Associated With the Centerpoint
of Each Grid Cell. Refer to Table 3 and Text for Key to Rank
Values,
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Figure 18, Results of Test for Distribution of Fracture Trace Lengths to
Log-Normality, Rank-values Are Associated with the Center-
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Tahle 3

Rankings for Deviations from Log-Normality

Level of
Criterion Significance Rank
Chi Square 0. 05 2
0, 01 4
Skewness 0, 05 1
0, 01 2
Kurtosis 0, 05 1
0,01 2

In many cases, significant deviations from log-normality occur over known
struetures, Analysis of fracture trace log-lengths in the Kansas study area
indicates a consistent positive skewing (mode displaced towards smaller values
with respect to the mean) in cells which rank four or higher; their respective
kurtosis values are leptokurtic, Several factors may account for these varia-
tions, First, structural control may exist, possibly causing development of
shorter fractures over structures due to enhancement of surface factors such
as erosion along the fractures, Secondly, control may be due to changes in -
lithology. Analysis of fracture trace lengths does indicate a lithologic control
and will be discussed shortly, Thus, mixing of two surface rock types within
a grid cell may cause this type of discrepancy. However, it should be pointed
out that similar mixing also takes place in the two Pleistocene aged formations
in the eastern part of the study area, and these types of deviations do not exist
in this area, Very high deviations in the southern portion of the Kansas area
(ranked 7 and 8) may be due to the proximity to Permian outcrops and/or the
influence of two fractures greater than one mile (1, 6 km) in length that were
inadvertently mapped (see Figure T7), Because these features were larger by
a factor of two over all other fracture traces in the area, they cause highly
significant deviations from log-normality, These same fractures were re-
sponsible for the high correlation between the skewness and kurtosis in the
regression analysis plot (see Figure 12). Thirdly, biases due to operator
fatigue or cultural land practices may occur, These hopefully were minimized
with field checking, rest periods during mapping and cross checking with
photographic coverage of earlier dates to eliminate these possible errors,

Significant deviations from log-normality (ranked four or higher) also ocecur
over some of the known reefs in the west Texas study area., Skewness and
kurtosis behave similarly to the anomalies in the Kansas area, The same
three arguments stated in the previous paragraph may be employed. Cultural
effects have been minimized by reference to earlier photographic coverage.
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Because lithology shows little control in the northern part of the area where
cells transgress lithologic boundaries, it is probably not a controlling factor
in the anomalous eastern portion of the study area, The high value (a rank of
6 in row 4, column 3) in the central portion of the map area is due to the
presence of a lineament, The fracture trace length distribution for this area
is unlike those over the reefs; it is skewed positive and is nearly normal in its
kurtosis, Ia some cases, the anomalous ranks do not directly overlie the
structure, but lie on its flanks, Harris et al,, (1960); Gol'braikh et al, ,
{1968a) and Saunders (1969) indicate that increased fracture density may cccur
along the flanks of a structure, however, no mention has been made of changes
in fracture length,

Further reduction of the grid cell size produced many cells with too small a
population, and thus reliable statistics were not possible, Analysis of fracture
trace length distributions in individual 10 degree azimuth classes in each grid
cell also proved fruitless because of the small number of fracture traces in
each cell,

ANALYSIS OF FRACTURE TRACE FREQUENCY

Trainer and Ellison (1967) define frequency as the number of fracture traces,
irrespective of their length, which fall within a unit area under consideration,
Trend surface analysis (O'Leary et al., 1966) was applied to the fracture trace
frequency values generated by the VECLEN program for the 1/16th unit areas
discussed above, This technique attempts to fit surfaces which represent
polynomial equations of increasing order to map data. Increasing polynomial
order represents increasing complexity of the surface, which thus more closely-
approximates the given data. It can be used in some instances to extract
different components responsible for variations which may be present in the
data. In most cases, first through sixth order surfaces were fitted to the data.
Analysis of variance was applied to the output statistics of this technique to
determine which surfaces were a significant improvement over their lower
order neighbors (Krumbein and Graybill, 1965); the probability level used was
based on P = 0, 005. Only selected surfaces which achieved the prescribed
level of significance and their residual plots will be discussed, Tables 4 and 5
summarize the data for each study area,

Figure 19 illustrates the second order surface for the Kansas data and accounts
for 82% of the variations. It shows that fracture trace frequency is highest in
the southeastern part of the map area near the Permian outcrops, and decreases
northward toward the younger Pleistocene deposits and towards the map
peripheries, where coverage is incomplete or control is lacking, This suggests
that lithology may be a controlling factor for one of several reasons, 1) The
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Table 4

Analysis of Variance of Trend Surfaces Data for
Fracture Trace Frequency Kansas Study Area

Percent Variation

Sum of Degreesof  Mean - Cumulative Percent
Surface Order Squares Freedom  Square F  Significance Variation Explained Irl;sir(:c;]vZT;r;Lgor
Ist 7238.8 2 36194 11.2  .005-001 39.8 39.8
Dev, from 1st 10964.8 34 3225
2nd 7711.8 3 25706 245 <.001 82.1 42.3
Dev, from 2nd 3253.0 31 104.9
3rd 7814 4 195.4 21 10-.23 864 4.3
Dev, from 3rd 24716 27 91.5
4th 1963.1 5 3926 17.0 .01-025 97.2 10.8
Dev. from 4th 508.5 22 23.1
Sth 158.2 6 26.3 1.2 .25-:50 98.1 0.9
Dev, from 5th 350.3 16 219 -
6th 238.1 7 34,0 2,72 .05-10 99.4 1.3
Dev, from 6th 112.2 9 12.3 :

Table 5

Analysis of Variance of Trend Surface Data for
Fracture Trace Frequency Texas Study Area

Percent Variation

. Sum of Degrees of  Mean - Cumulative Percent
Surface Order Squares Freedom  Square F Significance Variation Explained lrr}lzzlglvgr:[efgtt::or
1st 8142.2 2 40711 130 <001 37.7 37
Dev. from 1st 13446.7 43 3127
2nd 6432.7 3 21442 122 <.001 67.5 29.8
Dev. from Ind 7014.0 40 1754
3rd 1041.4 4 260.4 1.6 10-.25 7123 4.8
Dev. fram 3rd 59726 36 165.9
4th 3443.6 5 688.7 8.4 <.001 88.3 16.0
Dev, from 4th 2529.0 31 81.58
5th 896.4 6 i49.4 23 .05-.10 92.4 4.1
Dev. from 5th 1632.6 25 65.3
6th 908.8 7 129.8 . 3.2 01-.025 96.6 42
bev, from 6th 723.8 18 40.2
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Figure 19. Second Order Trend Surface for Fracture Trace Frequency
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unconsolidated Pleistocene sediments may have a masking effect, subduing the
number of fractures propogated to the surface; 2) the younger sediments may
have been subjected to lower stress levels, fewer periods of deformation and

a shorter time for the propogation of the fractures; or 3) different rock types
may have different mechanical properties. Because Pleistocene unconsolidated
deposits do thicken northward, the first two factors are probably the most
significant.

Analysis of the residuals* map (Figure 20) indicates a large positive residual
{greater than the calculated model) in the southeast part of the map, underlain
by outcropping Permian rocks, and may be explained by several factors.
Harris et al. (1960) noted changes in jointing frequency due to contrasting
lithologies over the Goose Egg Dome in Wyoming, Not only did they find a
progressive decrease in frequency from siliceous limestone, calcareous
quartz sandsione, soft sandstones to ductile shales, but also that fracture
frequency was inversely proportional o strata thickness, In his study on joints
in the Great Scar limestones in England, Doughty (1968) recorded changes
between differing limestone types of similar age. Huntington (1969) found
changes in fracture trace frequency due to contrasting lithology and suggests
that observations be confined to like rock types, DeSitter (1964) recognized
lithology and strata thickness, amongst others, as controls of rock fracturing
intensity. Another factor which should be considered is the possible masking
of the fractures due to the strong contrast in mechanical properties of the
consolidated Permian deposits as opposed to the unconsolidated Pleistocene
materials, which could act as a filter, either totally obliterating or subduing
some fracture traces, :

Another positive residual is associated with a series of structural closures in
the vicinity of the town of Coats (Figure 20), Although the anomaly overlies

two different map units, the mechanical contrast between these two unconsolidated
Pleistocene deposits should be minimal, Excluding possible operator bias,

the residual might reflect the subsurface Pennsylvanian structures. Residuals
along the map peripheries are discounted due to lack of contrcl. Gol'braikh

et al. (1968a), Saunders (1969) and Dranovskii (1970) have suggested that the
number of airphoto linears per unit area (frequency) is an indicator of structural
culmination, Moreover, Dranovskii (1970) further states that in box-like
uplifts, maximum fracturing occurs on the fold limbs, while in rldge -like

uplifts it develops on the crest of the structure,

The second order surface for the Texas data accounts for 67% of the variation
~and is illustrated in Figure 21, It shows fewer fracture traces over the

* Fot any given observed data point on the map: residual = observed - expected valuc calculated for the
coordinates of the observed data points.
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Tertiary deposits and the immediately underlying Cretaceous limestones,
whereas more fracture traces occur over the Permo-Triassic rocks, In
conformity with the previously stated conclusions of Harris et al. (1860) and
other workers, the same reasons may explain the lower frequency over the
Cretaceous-Tertiary rocks. The Ogallala Formation forms a thin blanket,
not exceeding 6 - 8 feet in thickness over the study area. In addition, inspec-
tion of several quarries in the Fredricksburg Group limestones revealed a
large population of curved joint surfaces which usually terminated at bedding
planes, These are non-systematic joints that are not associated with quarrying
operations., The paucity of vertical systematic joints suggests that most
stresses may have been taken up and diffused in the non—'systematic joints,
thereby precluding the formation of wide zones of weakness suitable for the
development of fracture traces, Because the fourth order residual map more
clearly illustrates the results, a discussion of the second order map residual
is unnecessary.

Figure 22 shows the results of the fourth order fit and answers 89% of the
variation. The model contours tend to parallel the north-south flightlines,
which suggests an operator bias due to changes in accuity during mapping,
however, higher frequencies again occur over the Permo-Triassic rocks.
This inter~flightline variation was the predominating signal in the residual
plot of the second order surface. It is therefore suggested that mapping of
fracture traces either be done on a suitable scaled mosaic or that individual
photographs or pairs should be picked randomly from the total available set
so that this type of variation might be distributed more evenly,

Figure 23 contains the residuals map based on the fourth order surface.
Although some alignment parallel to the north-south flightlines does occur,
most has been removed by this surface. The large positive anomaly in the
northern portion of the area is associated with the "saddle" in the trend surface
(Figure 16) and is anomalous. The strong negative anomalies in the eastern
portion of the map area appear to be associated with the flanks of three of the
reefl structures, This observation is further enhanced by the fact that they
occur along several flightlines, thereby indicating a consistency between flight-
lines after removal of the inter-flightline variation.

In summary, the predominating portion of the variation in frequency of fracture
traces is associated with differences in lithology. Lesser amounts of the
variation are due to operator variability due to changes in perceptibility during
fracture trace mapping, Another variation which may occur is associated with
''structural closures. ' Basement uplift structures are accentuated by positive
(high) fracture trace frequencies along their flanks, whereas "'passive’ structures
such as reefs, may be associated with negative (low) fracture trace frequencies
in these study areas,
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ANALYSIS OF LOG-MEAN FRACTURE TRACE LENGTHS

Log-mean fracture trace lengths generated for the 1/16th unit areas by the
computer program VECLEN were also analyzed using trend surface analysis.
Significance of improvement in the information level of each surface was
tested as described earlier. Tables 6 and 7 summarize the results, Only the
highest order surface showing the prescribed level of significance (less than
0. 005) will be discussed.

Figure 24 illustrates the fifth order surface for the Kansas study area and
accounts for 80% of the variation, The model shows longer fracture traces in
the northern part of the study area, becoming progressively shorter towards the
Permian outcrop area. This may be interpreted as a masking effect of the
glacial overburden, causing the operator to overlook shorter fracture traces
due to their less pronounced nature or their complete obliteration by the
overburden, The model also shows a parallelism between some of the contours
and geologic formation boundaries, as exemplified by the 4. 1 contour, which
further reinforces the lithologic control hypothesis, The parallelism of contours
and their steep gradient in the western part of the area is due to lack of control
in this area,

The corresponding residuals map (Figure 25) indicates a broad positive residual
trending northwest in the central part of the area, and parallels the boundaries
between the two mapped Pleistocene units, The positive bands in the northeast
and southwest sectors also may be associated with the formational boundaries,
A negative residual is present in the west-central portion of the map and
coincides with the increased fracture trace frequency derived from the second
order residual (Figure 20). These two factors may be inter-related; increased
deformation may cause more intense fracturing (higher frequency) and because
of surficial processes, greater erosion generates more linear first and second
order streams, which manifest themselves as fracture traces.

The fifth order surface for the west Texas study area (Figure 26) indicates
longer fracture traces over the Cretaceous-Tertiary deposits, with shorter
fracture traces occurring in the Permo-Triassic rocks, The observed differ-
ences may be due to masking effects as discussed earlier for the Kansas area,
however, Trainer and Ellison (196 7) found that longer fractures traces occurred
in the limestone units of the Shennandoah Valley, They suggested that this
might be due to solution and coalescence of joint planes and zones of weakness,
a process which has operated in this area as evidenced by the development of
karst features.

‘Figure 27 illustrates the residuals map associated with the fifth order surface.
No consistent pattern is found with respect to the reef structures. The dominant
features include a negative residual trending northwest in the central part of

39



Table 6

Analysis of Variance of Trend Surface Data for
TFracture Trace Log-Mean Length Kansas Study Area

Percent Vartation

Sum of Degreesof  Mean L Cumulative Percent .

Surface Order g e Freedom  Squarcs [ Sgmficance v ion Explained  CXPlained By
A Each Surface
st 0514 2 0257 7.79 <.001 21.5 21.5
Dev, from 1st 1872 56 0033

2nd 0696 3 0232 10.55 <.001 50.6 29.1
Dev. from 2nd 1176 53 L0022

3rd 0167 4 0042 2.00 10-25 57.7 71
Dev. from 3rd 1009 49 L0021

4th 0230 5 0046 356 .025-05 67.4 3.7
Dev. from 4th 0779 44 0018

5th 0309 6 0052 433 ,005-.001 80.3 12.9
Dev, from 5th 0470 38 0012

6th 0204 7 0029 3.22 .01-.025 88.9 8.6
Dev. from 6th 0266 31 0009

Table 7

- Analysis of Variance of Trend Surface Data for
Fracture Trace Log-Mean Length Texas Study Area

Percent Variation

Sum of Degreesof  Mean - Cumulative Percent .

Surface Order Squares Freedom  Squares F Significance Variation Explained Explained By
Each Surface

Ist 1.58 2 790 29.26 <.001 48.8 48.8

Dev, from 1st 1.66 61 027

2nd M 3 037 14,81 <001 70.7 221

Brev. from 2nd 95 58 016

3rd 28 4 070 5.83 <001 79.2 8.3

Dev. from 3rd .67 54 .012

4th 30 5 060 7.50 <.001 88.6 94

Dev. from 4th .37 49 008

5th 14 6 .023 4.60 < .001 92.9 4.3

Dev. from 5th .23 43 005

6th NOT ANALYZED

Dev, from é&th
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the map area. Its extension across several flightlines tends to bear out the
reality of this feature, Examination of an aerial photographic mosaic reveals
a lineament passing through the area in this direction which is most likely
related to this anomaly, The same argument previously discussed concerning
increased structural deformation, which produces a greater number of shorter
fractures, may be invoked. Again, some variation is noted between flightlines
and some of the positive anomalies in the south,

In summary, log-mean fracture trace lengths are predominantly controlled by
the type of sedimentary material, Variations between flightlines may occur,
but their effect is not as pronounced as in fracture trace frequency, Fracture
traces may be shorter over basement uplift structures. This effect may not
occur over passive structures, such as those formed by a draping of sediments
over bedrock highs,

ANALYSIS OF ROSE DIAGRAMS

Several formats are available for displaying directional data. Three dimensional
data, such as attitude of joint planes, can be efficiently portrayed on stereo-
graphic (Wulff) or equal area (Schmidt) nets, Statistical analysis of these data
are cumbersome, but has been discussed by several works (Chayes, 1949;
Fisher, 1953; Pincus, 1953). Two dimensional data, such as the strike of
fracture traces, may be displayed as histograms or as rose diagrams
(Podwysocki, 1974), Both these formats can be conveniently tested and may be
generated by computers and will be used in this paper because of their

suitability for visual comparison.

Several methods can be utilized to summarize the data for rose diagrams.
Trainer and Ellison (1967) use the terms ""frequency' and "density, " Frequency
as described earlier, refers to the number of fracture traces, irrespective of
their length, while density refers to the total length of fracture traces. Each
of these respective techniques has its disadvantages., Summarization using
frequency eliminates a bias due to length, Thus, a fracture trace of 0, 25 mile
(0.4 km) is given as much weight as one 0. 75 mile (1, 2 km) long, However,

due to the mapping technique employed in this paper, which breaks up fracture
traces into components based on their continuous exposure, the shorter fracture
traces are favored, Thus, density was chosen as the analysis criterion in this
work in order to minimize this bias, In addition, the need for a standard unit
to facilitate comparison has been noted elsewhere, Gol'braikh et al, (1968)
suggest conversion of the units into percent values prior to plotting, so that

the size of all roses will be standardized,
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Joints were measured in several bedrock exposures in the west Texas study
area. Their orientation frequencies were compared to the density of rose
diagrams of fracture traces measured in grid cells approximately three miles
square surrounding each of these localities, Data in 10 degree azimuth classes
were analyzed using AZMAP and ROSE, computer programs written by
Podwysocki (1974). In order to compare statistically the two dissimilar units
of measurement, both sets of data were converted to percentages, A total of
69 systematic joints were measured in Cretaceous limestones of the
Fredricksburg Group, exposed in a quarry near the central~western edge of
the map area. Nearly all systematic joints were vertical, eliminating the need
to use three-dimensional displays and making the measurements suitable for
comparison with the fracture trace distribution, As discussed earlier, there
also were many non-systematic joints, Permian exposures in the extreme
central-eastern part were measured and consisted of a roadcut in a gypsiferous
sandstone and a railroad cut in a massive sandstone, A total of 59 joints were
measured and combined from these two adjacent cuts, All joints in these cuts
were within 5 degrees of vertical, Figure 28 contains a graphical comparison
of the two sets of patterns,

Neither set of rose diagrams show a good visual fit; a Chi Square test comparing
the fracture trace and joint orientations for each locality indicates that the
patterns were not similar based on a 0. 01 level of rejection. Neither could it
be influenced that much by population size, because Gol'braikh et al, (1968a)
indicated that 40 - 50 joint measurements were required to achieve statistical
reliagbility, It should be noted that while there is conformity in direction in

the Permian rocks there is a consistent angular displacement between the two
patterns in the Cretaceous rocks, The former set may reflect fracture traces
that are occupied by zones of joints sub-parallel to the direction of the fracture
trace (Lattman, 1969, pers. comm, }; the latter may represent a displacement
of the second order joints from the direction of maximum shear stress, This
phenomenon has been documented by Renner (1969) and may relate to a
hierarchichal structural framework as postulated by Moody and Hill (1956) and
discussed by Nemec (1970) and Gold et al. (1973). Because of the dissimilarity
in the Cretaceous patterns and partial agreement in the Permian patterns, it
might also be suggested that either the rocks have behaved differently when
subjected to the same stresses or that the older units were subjected to an
additional period of stress not experienced by the younger units,

These results are partly contrary to those of Lattman and Nickelsen (1958),
Hough (1959), Boyer and McQueen (1964) and Alpay (1973), who generally
found good agreement between fracture trace and joint directions in their
investigations in sedimentary rocks dipping less than 5 degrees, Matzke
(1961), Lattman and Matzke (1961, 1971) and Trainer and Ellison {1967),
however, reported that fracture traces and joint directions do not totally
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coincide. Their observations were made in more deformed rocks (i. e. the
Appalachian fold belt). Lattman and Matzke (1961) suggest that joint patterns
in relatively stable cratonic areas are paralleled by fracture traces whereas,
local structure in highly deformed materials impress their own local joint

" sets which may deviate from the regional trends,

. Although orientation directions coincide for the Permian rocks, the length of
the rays (degree of preferred orientation) is greater for the joints, This is
probably due to the big difference in the size scale of the areas sampled
(9 square miles (23 sq. km) versus 2 outerops 1/2 mile apart),

ANALYSIS OF FRACTURE TRACE PATTERNS

Pattern recognition of preferred orientation in fracture analysis tends to be
more difficult due to the large amount of data and its multivariate nature,
Several approaches have been used to enhance patterns, Haman (1961, 1964)
isolated and plotted all macrofractures {lineaments) and mesofractures
(fracture traces) which fell within narrow azimuth ranges and used them in a
qualitative fashion to discern faulting and to locate changes in regime of
individual fectonic blocks., Maffi and Marchesini (1964) describe the use of
optical and computer processing techniques to filter and isolate individual
trends, Gol'braikh et al. (1968a) also isolated regional structures by plotting
their megajoint densities for narrow azimuth ranges, and showed the applica-
bility of Permyakov's (1949) "rule of the parallelogram" to determine regional
trends by analysis of the rose diagram modes, Tittle has been published on a
method for the comparison of several rose diagrams, Chudinskii (Mirkin,
1973, pers, comm, ) suggests that rose diagrams of small subsets of the total
area should be compared against the grand rose diagram for the whole territory.
A variation of the Chi Square criterion could then be used to compare the subset
against the composite rose diagram. Those which proved to vary significantly
from the composite diagram were zones of "tectonic complications, ' Lattman
(1969, pers, comm, ) suggested a similar technique, but instead of comparing

a subset against the composite rose diagram, the subset was compared against
all of its adjacent neighbors, Significant variations between neighboring diagrams
would then indicate structural complexities,

The fracture trace data compiled by the TRANSFTORM program was processed
by AZMAP (Podwysocki, 1974), which classified the fracture traces into
direction categories within each unit cell (1/16th of the total study area), As
described previously in the analysis of fracture trace frequency and lengths,

a 1/2 cell sliding average increment also was used. An azimuth class interval
of 10 degrees was utilized during the classification,
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Several classification techniques could be used in AZMAP. The first, entitled
"Part" analyzed only that portion of the fracture trace length which lies within
the cell, "Mid" considered the whole fracture trace within the cell if its mid-
point fell within the cell, A comparison of the two techniques showed that
there was no significant difference if the results of the two classification tech-
niques were compared against each other for each of the 49* grid cells of each
area, using the Chi Square test and a rejection level of 0, 05,

Punched card output of the summary length of fracture traces per azimuth class
per grid cell were processed by a computer program ROSE (Podwysocki, 1974},
which produced rose diagrams (see Figures 29 and 30). The punched card
output from AZMAP also was utilized in a multivariate analysis computer
program CLUS (Rubin and Friedman, 1967). Each rose diagram consisted of
18 variables or measurements (the sum total length of fracture traces within
each of the 10 degree azimuth classes). A total of 49 grid cells (objects) were
generated by AZMAP for each study area and these were treated as 49 samples.

Multivariate techniques have been shown by Dahlberg and Griffiths (1967) to be
an effective method for determining the relationships between objects with
interacting properties, The Rubin and Friedman program is appropriate for
determining the relationships between samples because the procedures allow
classification on the basis of a number of groups determined by the user, A
determination of the optimum grouping is made on the basis of several computer
generated criteria for each classification,

The inverse of the Wilk's lambda criterion, log {max | T |/ | W |), is used
as an informal indicator of the best number of groups (Friedman and Rubin,
1967), where:

W  is the pooled within-group matrix of the cross products of
deviations,

T 1is the matrix of cross products of deviations for the total
sample,

B is the matrix of between-group cross products of deviations
of groups from the grand means weighted by group size
(Cooley and Lohnes, 1962),

and
T=B+W,

*A total of 15 cells occupying the easternmost and southernmost areas was eliminated due to the low fracture trace
frequency caused by incomplete photo coverage.
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Figure 29, Rose Diagram Plot of Fracture Trace Patterns for the Kansas
Study Area
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The best partition may also be determined by use of the total generalized
distance, the Mahalanobis D 2 criterion, where D? is defined as the sum of
the distances between multivariate means of all possible pairs of groups, in
terms of standardized measurements.

Using principle components, a plot of the eigenvalues of the total correlation
matrix indicates a gradual decrease in the amount of variation explained by
each additional component (Figure 31), It was arbitrarily decided to choose
the 8 component level as the cutoff, A total of 85% of the variation is explained
by the 8 components in the Kansas data and 82% is explained in the west

Texas data,

The two sets of data were processed by the program CLUS, using 2 through 11
groups. Figure 32 illustrates the plot of the two criteria using the log

(max |T{ /|W| y* algorithm for the Kansas data using 8 components. An
inflection at the three group level in both eriteria is interpreted as significant,
The six group level also indicates a major inflection of the I* * criterion.

An additional run on the data using six components produced exactly the same
classification for the 6 group level, but showed a more marked increase in the
value of both eriteria, Figure 33 illustrates the three group classification,
which in a crude fashion, tends to outline the geology, Group 2 mainly occupies
the northern part of the area of exposed Illinoian deposits, group three occupies
the area underlain by the Kansan and Permian deposits and group 1 covers
areas occupied by a mixture of groups 2 and 8. The six group level (Figure 34)
contains some isolated members of groups 3 and 5 within the central part of

the map. These overlie the Coats Anticline, which has a structural closure of
approximately 250 feet (76 m) and may thus have affected the overlying fracture
pattern, Examination of the rose diagram patterns in Figure 29 reveals a
pronounced enhancement of the northeast ray directly over the structure (row
3, column 3), which may be associated with the northeast trending fault in the
basement rocks underlying this structure (Cole, 1962),

Figure 35 illustrates the plot of the two indicator criteria for the west Texas
data, No pronounced peaks were noted, although a change in slope for both
criteria occurs at the two and seven group level. The two group classification
(Figure 36) seems to be related to geologic materials exposed on the surface,
Group 1 tends to overlie areas of Permo-Triassic rocks whereas group 2
occupies areas of Cretaceous-Tertiary deposits. The 7 group level (Figure 37)
shows no obvious relation to any of the reef structures. The classification is
again partly related to lithology; groups 1, 2, and 3 overlie Cretaceous~Tertiary
deposits, whereas groups 4, 5, and 7 overlie the transition between the two

*Based on the grouping of log (max iT|/ (W)
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major map units, Group 6 occupies mainly Permo-Triassic rocks, The mis-
classification of the cells in the southwestern part is probably due to the small
sample size in this area due to incomplete coverage, producing rose diagrams
without any preferred rays.

In summary, classification of the rose diagrams using a multivariate classifi-
cation scheme produces groupings which are predominantly controlled by

surface lithologic factors if classification is limited to a2 small number of groups.
Active structures (i.e, basement uplift anticlines) may be recognizable because
their fracture patterns may differ from their immediate neighbors and may be
isolated by classifications at higher group levels,. Passive (reef) "structures"
do not create fracture patterns which can readily be isolated from their
surrounding neighbors by this technique,

CONCLUSIONS

Detailed quantitative analysis of fracture trace patterns can be routinely per-
formed using repefitive techniques and computer algorithms, Cultural

features can affect the ability to map fracture traces. Fracture trace lengths
tend to be log-normally distributed, Deviations from log-normality tend to be
associated with structural closures in both study areas, suggesting that fracture
pattern may be disturbed over the structures, '

Trend surface analysis may allow extraction of several levels of information
that may be present in a set of data. Examination of fracture traces by trend
surface analysis indicates that lithology mainly controiled the frequency and
log-mean fracture trace length, Frequency was also affected by an operator
bias, which caused alignment of some of the model contours with flightline
paths in at least one of the study areas, Higher order surfaces extracted the
majority of these variations, Residuals in the frequency analysis isolated
areas of increased fracture frequency in the Kansas area that appeared to be
associated with either bedrock exposures or with structural culminations, In
the west Texas area, strong negative residuals appear to be related to reef
structures. The increase in frequency in the active structure (anticline) and
the scarcity in the passive structure (reef) suggests either different mechanisms
for propagation of fractures through these two types of structural discontinuities
or different stress fields produced above the structures, Analysis of residuals
for log-mean fracture trace length indicates that in at least one instance,
fracture traces may be shorter over active structures in the Kansas study area.
The west Texas residuals map shows some alignment parallel to flightline
paths; however, a strong negative anomaly (shorter lengths) may be associated
with a through-going lineament in the area. Both areas show a shortening of
fracture traces in areas underlain by tectonic structures {anticlines, lineaments),
possibly due to increased fracturing and subsequent erosion of the fractures,
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Fracture traces and joints measured in an area underlain by Permian rocks
(sandstones) coincide in orientation, but there may be large differences in the
length of the frequency rays, In an area of Cretaceous rocks (limestone), the
apparent displacement in orientation between joints and fracture traces may
represent a possible second order shear relationship between the fracture
trace and jointing directions,

Analysis of rose diagrams using a multivariate statistical approach shows that
the basie source of variation is due to differences in surface lithologies, and

that a lesser amount may be due to deformational effects in an active structure,
thus changing the fracture pattern. For example, in the Kansas area, an
anticlinal structure, with a normal fault at depth, was isclated from its surround-
ing neighbors, whereas in the west Texas area, the predominant effect was
lithology even in the larger group classifications,
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FUTURE WORK

Similar areas should be studied to determine if a valid exploration technique
has been developed, Additional work also should be carried out to determine
if lithologic control may be extracted from fracture trace orientations
summarized as rose diagrams, Conversion to percent rose diagrams may
achieve this end,
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APPENDIX A

SOURCE LISTING OF FORTRAN IV COMPUTER PROGRAM "VECLEN"
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WA EE R PR RCR T ok RNk kR kR VLNOO 3OS
VECTOR LENGTH PROGR AM VLNOQGLS

LR TR 2P ISR PR SRR SRR SR B VLNDO D25
VYLNOGO 35

THE PROGRAM wAS wRITTEN BY MELVIN POOWYSCCKI OF THE GEDSCIENCESYLNGOOD4S
DEPTas THE PENMSYLVANIA ETATE UNIVERSITYs APRIL, 1972 “OR THE VLN0ODDSS
LEM 265767 CGMPUTER. AND wAS MODIFIED LN APRIEL, 1974, FDR USE VLNODOBS
DN OTHER COMPUTERS HAVING THE EQUIVALENT OF 120K DBYTES STORAGE.VLNOOOT7S
VLNOQOAS

PROGHAM SUMMARIZES VECTOR CATA AS FREQUENCY=~LENGTH DISTRISUTIONS.VLNOOOSS
UPERATCGR SPECIFIES CLASS LENGTH. STZE OF MAXIMUM CLASS AND DETER=VLNCOL1ODS
MINES ThHE CIMENSICNS OF THE AREA (GRID CELL) IN wWHICH THE OATA VLNCOL115
ARE SUMMARILICD. A VECTOR IS COUNTED IN A GRID CELL [F I TS5 MID- VLNOO 125
PCINT FALLS IN THE CELLa. NGO CONSIDERATION IS GIVEN TO VECTOR AZI-VLNQG135
MUTH, PROVISION IS MADE FOR A LOG BASE 2 TRANSFORMATION IF DESI- VLNODIAS
RED TU ATTEMPT NORMALIZATION OF THE DATAs A TEST FOR MORMALITY [SViLN0O0O1SS
MADE BY COMPARING A THEORETICAL CISTRIBUTIDN USING THE CALCULATEDVLNOD1&S
MEAK AKND STANDARD CEVIATION OF THE OBSERVED POPULATION AGAINST VLNOO17S

THE DISTRIBUTICAN CF THE OBSERVEC POPULATICN UTILIZING THE CHI YLNOO 185
SUURARE CRITERION. EXAMPLES OF PROGRAM QUTPUT AND APPLICATIONS AREVLNQO19S
GIVEN Ihs POOWYSUOCKI, Mekas 1974, WANALYSISE OF FRACTURE TRACE VYLNOG 205

PATTERNS IN AREAS OF FLAT-LYING SEDIMENTARY ROCKS FOR THE DETEC- VLNOG21S
TIOM OF EURIED GECLOGIC STRUCTUREY: MNASA =~ GODDARD SPACE FLIGHT VLNQ0OZ22S
CENTER COCUMENT X=G23=-74=-2CQ0. DATA ARE READ FROM CARDS GENERATED VLNOG235
BY VECTOR TRANSFURM PROGRAM (SEE PODWYSDCKIs MaH.s 1974, "FORTRANVLNOOC24S
IV FROGRAMS FOR SLMMARIZATION AND ANALYSIS DF FRACTURE TIACE AND VLNQD 255
LINEAMENRT PATTERNS™] NASA — GSFC LOCUMENT X-644-74-3), VLNOD 265
CONTRUL £ TITLE CARDS ARE READ FRLULM CARD READER WHILE >ATA CARDS VLNQOOZ27S
MAY BE READ FROM ANY UNMIT CECLARED BY '{TAPEZ' ON CONTROL CARD 4,.,VLNIDZ85

VLNGO 295
ALL NUMERIC INPUT CATA IS RIGHT JUSTIFIED: “[n INDICATES INTEGER VYLNOO39S
FGRMAT, "“F" [NCICATES FLCATING PCINT FOHMAT, A" INDICATES CHMA- VLNGO31S
RACTER FURMAT, %g% PRECEED ING NUMBERS INDICATES COLUMNS USED FOR VLNOG32S

EACH PARAMLTER. TQ SPECIFY NCNUSE OF AN OPTION. PUNCH O VLNDO33S
VLNOO 345

**%xaxexkCCNTROL CARCS 1 THRU 2~=—-=-TJITLE CARDS YLNQOO 355
TITLE wILL BE PRINTED AT THE TuP 0OF EACH GRID CELL SUMMARILZED VLNGQ 365
(20A4, #1801+ NOTE: 3 CARDS MUST BE USED;: IF ALL 3 ARE NOT USEDVLNOQ3TS

s BLANK CAROS MUST HE INSERTED IN THEIR PLACE. T OVLNQO 385

k¥ ¥%x ¥R CCNTRCL CARD 4 —————~—0OPT IONS CARD YLNOO 395
XINC=INCREZMENT OF X—-AXIS TRAVERSE IN MM, {la,#1=4) VYLND04OS
YEINC=INCREMENT OF Y-AXIS TRAVERSE IN MM. ([4,#5=8) VLNDOO41S
XSTART=STARTING PQINT FOR X-aAXIS TRAVERSE LN MM, (I14,89-12) VLNCOA 25
YSTAAT=STARTING POINT FOR Y-AXI5 TRAVERSE IN MM. {l&,.#13-16) YLNGQQ4 35
XSTOF=END QF X-AXI1S TRAVERSE 1IN MM, (la,x17-20) VLNDO 445
YSTOF=END OF Y-AX{3 TRAVERSE IN MMa ([8,8#21-24) VLMND0aS5S
NOTE: PROGRAM SUCCESSIVELY SCANS DATA [N MAP GRID CELLS *XCELL*VLNDO46S

BY 'YCELL' IN SEZE+ I[NCREMENTING BY IXINC* LUNTIL *XMAX* > VLMNOO4TS

YXSTORP*y WHEN *YINC' IS INCREMENTED. PRCGRAM TERMINATES WHEN VL NOQ4BS
PYMAX! > 'YSTOP¢*, NCME OF THE ABOVE 6 VALUES CAN BE NEGATIVE. VLNQCA9S
AMPSCL=MAP SCALE ENTERED AS MILES/MM, (FS.4.#25-29) VLNDOS0S
NLTE ! WHEN VECTCRS ARE MEASURED ON A 1124000 SCALE MAP AND ODUT=-VLNOOSIS
PUT IS DESIREC IN MILES."AMPSCL?*S.0149 (L4Es 1 MM,z=.018% MILES)VLNOOG25
DHINC=NUMER ICAL VALUE OF EACH *X* INCREMENT OF FREQUENCY-LENGTH VLNDOS35

HISTOGRAM {[+Es EACh '"X'z™ 2 VECTORS) (FS.24#30-34a) VLNGOS545
SCINC=FREQUENCY CLASS INTERVAL; CEPENDERT CN DATA TREATMENT VLHNNDQSES
(SEE *NTRAN' BELUW). (FS.2,:#35-39) VLHNOC 565
SCLMAX=UPPER CLASS LIMIT OF LAST FREQUENCY-LENGTH CLASS (3EE VYLNGOSTS
"ATRAN' BELOW). (FE,2,¥4C~44) VLNDOSAS

NHIST=-=PUNCH | FOR FREQUENCY=-LENGTH HISTOGRAM IR PRINTED JUTPUT VLNOO595
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(s Rala

REPRODUCIRIY 11y
PAcw 1q

ORTGINVAT,

t11.245)
NPUNCH==PUNCH 1 IF FREQUENCY=-LENGTH OISTRIBUTION IS DESIRED

ON CARDS (Il1,w8€)

OF THE
PNy
VLNOOGDS
VLNQQS6ILS
YLNOO G625

NSTAT==PUNCH 1 IF FREQUENCY MCMENTS ({.E., MEAN, STANDARD DEVIATIDONVLNOOS3S

» SKEWNESS, ETC.) ARE DESIRED ON CARDS (IL.#47)
XCELL=CELL SIZE (1IN MM.} IN X DIRECTION (14,#486-51)
YCELL=CELL SIZE {IN MM.)} IN ¥ DIRECTION ([4.,#52-55)
NFOLE~~PUNCH 1 TO FOLD TAILS OF FREQUENCY-LENGTH DISTRIBUTION TO

VLNODG4S
YLNQOG6SS
VLNOD665
VLNOQGTS

SATISFY REQUIREMENTS FOR CHI SOUARE TEST. TAILS ARE FOLQED WHENVLNOOGH8S

EXPECTED FREQUENLY OF A CLASS [5 € 0.95 (11 .,#56)
ITAPEZ=LOGICAL UNIT FOR READING DATA CARDS GENERATED BY "TRANS-
FORM® PROGRAM (I2,#57-58)
NTRAN=-=SELECTS DATA TREATMENT (12.#59-60)
PUNCKH | IF DATA IS TO EE TREATED IN A LINEAR FASHION {l.E.

YLNOOG695
VLHNOGTOS
VLNOG715
VLNODTZ2S
VLNQQ735

INTERVAL IN MILES AS SPECIFIED INM 'AMPSCL*}. NOTE: *NFOLD' CANVLNOOT74S

NGT EE 1 IF THIS OPTLION IS CHOSEN

PUNCH =1 IF CATA IS TO BE CONVERTED TO LOG BASE 2 BY THE FOR-
MULAZ 2 = (1/7L0GIOL2)1*LOGI0(X])4+46+ WHERE X = VECTOR LENGTH
IN MILES. NOTE: FOLO OPTION MAY BE USED.

VLNOOT75S
VLLNOOT65
VLNOQT75S
VLNOO 785

TSCLMAXY AND *SCINC' ARE GOVERNED BY PNTRAN®. FREQUENCY=LENGTH VYLNOO795
CLASSES BEGIN WITH A MINIMUM VALUE OF O AND INCREMENT BY 'SCINCYLNOOBOS
¢ UNTIL 'SCLMAX* IS REACHED. IF A LIiNEAR SCALE IS USEDs *SCLMAXVLNDOOBIS
t I5 > THE LARGESY VECTDR LENGTH EN MILES. IF DATA iS5 TRANSFOR=VLNQQA2ZS
MED TO LOGARITHMS,s 'SCLMAXY IS DETERMINED B8Y THE CONVERS ION OFVLNOOQB35
TRE LARGESY VECTOR LENGTH BY THE ABOVE FORMULA. *SCINC* MUST BEVLMOOB4S

CHOSEN APPROPRIATELY FCR EACH CASE.
ENBXXHBECAT A CARDS—=——===
VECTCR CATA INPUT FROM VECTCR TRANSFORM PRCGRAM

VLMNOOBS5S
VLNCOBGS
VYLNGQOBTS
VYLNOOBRBS

DIMENSICN TITLE{(G60) VECLEN{Z20CO0) o« XMID(2000)+YMID(2000}+Z{2000),5CMVLNOOBIS
1IN{AQ), SCMAX(40) s FNUMIA0D.Z1(AD), AREA(4Q)sDIFFI40) JFRIGEX(40}+CHISVYLNQOROS

2Q{403.0(40)FD(A0)+FD2(4D)+FD3{A0)I«FDA(40)FDSL4Q)
DIMENSTON FFRQX(40)s FFNUM(A40)FCHISA(40)

VENQOZLS
vLNOO925

CATA THX/1HX/3AC/3232153 /. 1READ/S/+ IPRINT/Z 6/ IPUNCH/T/4AL/+0997926VLNOOI3S
18D0/4A2/+40A443201400/+A37 20056592000/ +A4/~. 0000986200/ 4A5/+00058155VLNCO945

2D0/

VLNOOGSS

INTEGER XINCyVINCs XSTART+YSTART s YMIN XMIN. XSTOP, YSTOP & XM AX 3 YMAX s XCVLNOD965

1€ELL, YCELL s BOMB
READ CONTRODL CARODS

a0Maso
REACHIIREAD,S) (TITLECL }el=1460)
REAC (IREAD+10) RINCsYINC s XSTART YSTART ¢y XSTUP, ¥YSTOP s AMPSC L+ DHENC
1SCINC+SCLMAXGMNHIST s NPUNCH +NSTAT ¢ XCELL s YCELL+NFOLD s ITAPEZ2 JNTRAN
IF (X INC LT e 020OR o Y INC k. Toe QeOR4XSTART LT 0sDORa YSTART4LT 204 DR XSTOP,
ILT +0 ¢ CR¢¥YSTOP 4LT a0 +0OR s XCELL aL T a0+ ORYCELL«LT 4 04 ORWNFOLNE EJale AND
2+NTRANLGT . 0) BOMB=1
11 IF{BCMB} 18,18+13
13 WRITEC(LIPRINT 15} XIMCoYING: XSTART ,YSTART . XS5TOP . ¥STOP «+ XCELEL » YCELL
1+NFOLD s NTRAN.
GO TO BO0O

READ CATA CARDS FROCM LOGICAL UNIT *ITAPEZ2!

18 DD 25 [=1,5000
READ{ITAPEZ2 4320 +ENO=30) VECLEN(T)s XMID(I)+¥YMID(]1]
IF{1=-2000) 25.2%:22

22 WRITE(IPRINT.24)
GO TC 800

25 NUM =i

VLNOQ97?S
VLNOGIBS
VLNODS9S
VLNDL00S
VLMOLOLS
VLNO1025
VLNO1035
vLNO104S
VL NOL 0SS
YLNO106S
VLNOLOTS
VLNOL1OBS
VLNO109S
VLNOL10S
VLNOLILS
VLLNO1125
VLNO1135
VLNQ114S
VLNO11SS
VLNO1165
YLNOL175
VLNO1185
YL.ND1195
VLNOL205 .



non

30

32

3S

36

39

40

50

To

a0

100

105

120
L30
149

DO 35 M=1,NUM
ZIMI=VECLEN(M) 2 AMPSCL

IF (NTRAN) 32,13,35
Z{M)3(ALOGIO(Z{M)}I*AC)+G,
CONT INUE

NCL ASS=SCLMAX/SCINC+0 .5
IF{NCLASS=40) 39,39,36
WRITE(IPRINT38) SCLMAX.SCINC
GC TC BQO

DO TO N=1s, NCLASS

IF(N-1}) 40,40,50
SCMIMNINDI=0.

GO TC 6C
SCMINI{NI=SCMANIN=-1)
SCMAXINI=SCMININI+SCINCG
CONT INUE

SCAN ANLC SUMMARIZE VECTORE [IN

DO 700 YMIN=YSTART.YSTCP.YINC
IF{YNMINLGE.YSTOP) GO TG 800
DO 700 XMIN=XSTART » XSTOP ¢« X LNC
IFIXMINLGE.XSTOP) €O TC 700
DO 88 L=1,.NCLASS

AREA(LI=0.

CHISQ(L =0,

olL)=0.

DEFFIL)=0,

FOU(L )=0.,

FD2{L)}=0.

FD3(L)=0.

FD4(L)I=0s

FDS5(L1=0.

FCH1ISaQ{L)I=0.

FFRAX{L })=0.

EFNUNMILI=0.

FNUMIL ) =0,

FREQEX(L}=0Q.

ZIC(L =0,

CONT ENUE

TENUM=( .

AXMAXTZXMIN®XCELL
YMAX3YMINS+YCELL

DO 140 I=1,.NUM

EACH GRID CELL

VYLNO1215
VLNO1 2295
VLNO1235
VLNOL 245
VLNQL1 255
VLNOLZ26S
VILNGQL27S
VLNOL 28S
VILNO1 295
VLNOL1 39S
VLNGL31S
YLNO132S
VILNO]1 335
VLND1 345
VLNO1 355
VYLNO]1 365
VILNG]1 375
VLNO1 385
VLNO) 195
VLNO140S
VLNO1415
YLNO1425
YLNC1435
VLNO14AS
YLNOL14S5S
YL NO1465
YLNO147S
VLNO148S
VYLNO149S
VLNQLS0S
VLNO1S1S
YLNOLS25
VLNGI 535S
VLNOL 545
VLND155S
VLNQL1S6S
VLNOISTS
VYLNOL1585
VLNOL 595
VLNO160S
YLNG1615
YLNO1625
YLNO1 635
VLNO164S

IF{XMID(I) s GE« XMINJAND o XM ID { £ JuL T o XMAX o AND s YMIC {1} o GE « YMINLAND, YMI VLNOLESS

DOL) el Te¥YMAX) GO YO 1CO
GO TC 140

acC=1

DO 120 J=1sNCLASS

IF{ZLIAC) s GELSCMIN{L)AND 2 ([AC)+LT+SCMAXINCLASS)) GO T3 105
WRITE(IPRINTS102) TAC.Z{LAC )»SCMIN{L1) SCMAX{NCLASS)

<D TO 8¢D

IFC(Z(IAC) +GE=SCMIN(J) dANDWZ{IAC)LTSCMAX{J))} GO TO 110

GO TR 120

NTYPE=)

GO TC 130

CONT INUE
FNUMINTYPE)=FNUM{NTYPE }+1.,
CONT [NUE

DO 150 N=1,NCLASS
TENUN=TFNUM+FNUM(N )

VLNO166S
VLNO167TS
VYLNOL1 &8S
VLNQ1695
VLNGL1TOS
VLNO1T1S
VLNOLT25
vYLNOL1T73S
VLNOL 743
VLNO175S
YLNO1765
VLNO1T7S
VLNOL1T8S
VLNO1795
VYLNO180S
VLNOLB1S
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150 CONTINUE VLNO182S
NC={ SCLMAX=04)} /SCINC+0.5 ViNG183S
VLNC1 84S

ELIMINATICN OF LOWER EMPTY CIL ASSES VLNO1855
VLNC1 865

DO 1481 J4K=1.NCLASS VLNO187S
IF{FMUM  (UK)) 161,161,162 YLND188S

161 CCNT INUE YLNO1895
162 JKL=JK VI_NO1905
VLNOL1915

ELIMENATICN OF EMPTY UPPER CLASSES VLNO1925
VYLNQ193S

DO 1€3 JK=1,;NCLASS VLNOL194S
KH={NCLASS—JK) #1 VLNO1955

IF( FNUM {KH)) 163,163,164 VLNO1965

163 CONTINUE VLND19TS
164 JKH=KH vYLNO198S
VLHO1995

CALCULATE STATISTICAL MOMENYS FOR EACH GRIC CELL © WLNO200S
VILNOZO1S

MAXCLS=1 VLNDO2025

DO 165 M=JKLsJKH VLNO20 35
IF(FRUMIMAXCLS )=FNUM(M)}} 165,165,166 VLNO204AS

165 MAXCLS=M VLNOZ 055
166 CONT INUE VLNQ2065
CLEMEP=(SCMINIMAXCLS I +5CMBX{MAXCLS)I 2 VLNO20TS

DD 170 MS=JKL4JKH VLNQ20as
D{MS)S((SCMIN(MS ) +SCMAX(MS ) )’ 2=CLSMDP )} /SCI NC VLNOZ2095

170 CONT INJVE VLNO2105
5D=94 VYLNOZ2115
SD2=0, VLNO2125
SD3=0. VLN0O2135
SDA=0, VLNO214S
sSDs=C, VLMNO2155

DO 175 I=JKLyJKH VLNO2165
FD{I)=FNUMCT)}*DC([ ) VLNO217S
SD=SC (1) vLNO218S5
FO2UD)=FNUMLI)®{D{I)*exZ) VYLNOZ219S
SD2=S02+FD2(1) YLNO220S5
FO3(I)=FNUM{I)}%{0C{ [)*%x3) VLNDO2215S
SD3I=503+FD3(L) VLNQ2225
FOALTI=FNUMCTI ) *(D(I )%%4) VLNO2235
SDA=S50D4+FDa (L) VLNO2245
FOS{I)I=FNUM{L}®C({DI(I)—1.)%x%x4) VLNO2255
S505=S05+FDS (1) VYLNO226S

175 CONTANUE VLNO22T7S
GCK=ED4-(A4,%S02)+(C+hSD21—{ 4.%50) +TFNUM VLNO228S
AMEMAI=SD ATFNUM VYLNQ2295
AMCM2=SC2/TFNUM VLNOZ 305
AMOM 3=S0D3/TFNUM - VLNDO2315
AMCM4=SD4 /T FNUM VYLND2325S
TMOCMLI=AN¥DM] «SCINC VLNOZ2335
TMOM2=(SCINCE*Z2 e ( AMOMZ~ [ {AMOM]L Jx%2}) VLNOZ2345
TMOMIA={ SCINCE®I I ( AMDME={ 3, AMOM2 ®AMOM] 3+ £ 2., ( AMOM1 *%3})) VLNO235S
PTAAS{AMOMA—{4 ., s AMCMIXAMONL )+ { S {AMOML 32 )= AMOMZ} } VYLNOZ2365
PTA4RBEPTAA- (3, % (AMOMI®*4) )} VLNO2375
TMOMA={SCINC*x4 }x(PT4B) vLNO238S5
XBARRCLSMDP +TMOML VLNOZ2 395
VAR=TWOM2 VLNO240S5
STOVISQRT(VAR) YL ND2415
RTBI=(TMCM3/{ (SQRT (VAR ) 1%%3}) : VLNO2425
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2090

220
2309

240

250

260

270
280

290

300

302

3405

310

B2 a(TFOMA/(TMCM2*%2))}

CALCULATE CHI SQUARE CONTRIBUTION & EXPECTED FREQUENCIES FOR EACH
CLASE ASSUMING A NORMAL DISTREIBUTION WITH A XBAR £ STOV OF THE

OB8SERVED POPULATION

NDF={ JKH—-JKL) =2

DO 260 JSJKLeJKH
ZI{JI=(SCMAX(J)}-XEAR)} /STDV
CONT ENUE

TOIFF=0.

TFRQEX=0,

TCHEISG=04

1JK=0

IKC= KL -1
AREA(IKLC)=0.

D0 260 [=JKL+JKH
liv=il-1
IF(ZICL)IZL1042204220
AVT==ZI(I)

GO TO 230

AVT=ZII{ 1)

AREALII=1+vAVT x (AL +tAVTH(AZH+AVTR{AI+AVT R (A4 +AVTXAS) 1)}

AREA{I)=0+5/{AREA({ I )*%B)
IFCZICT IVZR0:+250,250
DIFFA{I)I=AREA{I)-AREA{ ]IV}

GO Ta 280

ITJUR=TJK+1

IF{1JK=1) 2604260270
DIFF(L}=1.—-AREA{I)—-AREA(LIV])
GO TG 2EQ
DIFF(I}=AREAILIIV)I—-AREA(I)
TDIFE=TCIFF+DIFF{ [}
FREQEX{TII=DIFF{ I1)2TFNUM
TFROEX=TFRQEX+FREQEX{( 1)
CHISQ(I)=(( FNUM( [)-FREQEX(I })**2)/FREQEX(I)
TCHISA=TCHISQ+CHISAQ( 1)

CONT [NUE
CHIPRE=PRBCHI{TCHISQ,NDF)
NFLAG=0

NMFLAG=0

IF{NFAOLD)495,465,300

FOLD LOWER TAIL QF DISTRIBUTION IF REQUIRED

DO 302 MP=JKL..JKH
FCHISAQ(MP)=CHISGIMP)
FFROX(MF)}=FREQEX(MP)

FENUM{MP]) =FNUM( MP }

CONTINUE

DO 310 LL=JKL.MAXCLS

IF(FFROX(LL )~0+%E€) 305.,31C.210
FFRARMILL*LIZFFRAX(LL) +FFROX{LL+1)
FENUMILL+1)}=FFNUMILL) +FFNUMILL+1)
FCHISQ(LL)=0.

JKL1=LEL +])

NFLAG=L

CONT INUE

JKO= (JKH=MAXCLS F+1

FOLD UPPER TaAIL OF DISTRIBUTION IF REQUIRED

VLNO2435
YLNQ2445
VLNO245S

‘VLNO246S

YLNOZ&ATS
VL.NO2ABS
VLNOZ249S
VLNGZ50S
VLND2515
VLNQ252S
YLNG2S53S
VLNDO2545
VLLNO2555
VLNO256S
VLNO2S57TS
VYLNDB2585
VLNOZS9S
YiLNOZ260S
VLNOZ615
VLNO262S
VLNOZ263S
VLNO264S
VYLNO265S
VLNO2665S
VLNOZ2BT7S
VLNGC268S
VI_N02695%5
VLNOZ2T0S
VLNO2715
VLND2725
VLNO2735
VLNO2745
VYLNOZ2755
YLMNO2T76S
VLND2775
VLNG2785
VLNOZ2T795
VLNO280S
VLNO2815
YLNO2825
VLNO283S
VLNG2B45
VLNQ2855
VLNOZ2B6S
VLNQ2BTS
VLNOZBBS
VYLNO2B9S
VLNO2905
VLNO29195
YLNDO2925
VLNO2935
VLNOZ94S
YLNDO2955
VL.NO296S
YLNO29T75
vLNDZ298S
VLNO2995
VLNO3ICOS
VLNO3015
VLNG302S
VLNO303S
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VLLNO3045

00 320 LH=1,JKQ VLND3O5S
KHH= £ JKH=L_H ) +1 VLNO306S
IF(FFRAX(KHH)=0.,95) 315, 220,320 VLND3OTS

315 FFRQX{KHH=-1)=FFRQX (KHH=1 }+FFRAX(KHH) YLNO30BS
FFNUMIKHH=1 }=FFNUM(KHH—1 ) +FFNUM{KHH } VLNO309S
FCHISA{KHH)=0a - . VILNO3105
JKHL=KHH=1 VLND3L1S
MFLAG=1 vLND312S

320 CONTINVE VLNC3135
IF{NFLAG) 325,325,330 VLNDI145

325 J2=JEL VLND3155
GO TaO 33s ) VLND3165

339 J2=JELY VLNO317S
335 IF{MFLAG) 340,340,345 viLNO3 i8S
340 J3=JKH VLNMO319S
60 TO 3E0 VYLNO320S

345 J3=JKH1 VLNO321S
350 TFFROX=0, VLNO322%
TFCHSQ=Ca ) VLND323S

00 385 Ji=42,J3 VLNO324%
YFFROX=TEFROX+FFRQX{J1) VLNO3I25S
FCHISA{ JEI=S(IFFNUNMTJII~FFROX{ JI} Y% 2} /FFROX(JT) VLND3265
TFCHSQ=TFCHSQ#FCHISQL ST ) VILN03Z27S

355 CONTINUE VLNO3285
NFDF e(.J3=)2)=2 VLNQ329%
FCHPRE=PRECHI{TFCHSQ. NFDF ) VLNO3 0%
VLNO3A1S

OUTPUT VLNO332S
VLNQ3J3S

495 WRITE(IFRINTS00) (TITLE(L) L.=1,60) . YLNO33aS
NROW=(YMIN®YINC } /Y INC YLNO3 355
NCOL=S{XMINEXINCY /X INC VLNO33&S
WRITEC(IPRINTS10) NROWSNCOL « XMIN XMAX s YMIN s YMAX VLNG337%
WRITE(IPRINY,S20) VLNO3 385
NXERR=0 VLNO3 39S

DD 630 [J=JKLsJKH VLNO34 05
WRITECIPRINT(S30) [JsSCMIN{IJI»SCMAX{LIJ I JFREQEXL [} CHISQITI), VLNO341S
LFNUMTD ) . ‘ VLNO342S

JF (NFOLDAEQel « AND 4 NFLAGEG s ] ¢ ANDs J24EQe1J) WRITE(IPRINT+532) VLNOD343S
1IFFROGX(EJ) « FCHISQC IS} FENUMI T I} VLNQ344S
IF(NFOLOEQe1 s ANDoMFL AGEGe 14 AND+ JIEQu[J) WRITE(IPRINT,S32) VLNDO3I4SS
IFFRAUXCIJY o FCHISQ{ T J) s FFNUML [J ) VLNO3465

IF (NPUNCH~1) S60.540:550 VLNO3ATS

540 WRITE(IPUNCH.SS50)INROW sNCOL s [J+SCMIN(IJ) ,SCMAX(I ), FNUMLE J) VLNO348S
560 JF (NHIST=1) 630+570+€630 VLNO3495
570 NUMXE FNUM{IJ) Z0HINC . ‘ VLNO3S0S
IF(NUMX) 600+580,600 VLNO3S1S

580 WRITE(IPRINT590} - VLNO3525
GO TC 630 VLNG3S3S

6CO IF(NUMX-TD) 62Q+620.610 VLNO3S545
610 NIMXITO VLNO3555
NXERA=1 VLNO3S6S

620 WRITECIPRINT+625) (IHX,[UKA=1,NUMX) VLNO3STS
630 CONT INUE VLNO3S8S
WRITE(IPRINT,640) TFRQEX.TCHISO, TFNUM.DHINC YLNO3595

IF (NFOLC+EG.1 « ANDoMFLAG +EQa J4ORMFLAG-EQ.1)} WRITE (IPRINT,645) VLNO360S
1TFCHSA VLNO3IGLS
IFCNAERRLEGe1) WRITEC IPRINT+650) . VLNO3625
WRITE(IPRINT 652} NOF+CHIPRE VLND363S
IF{NFOLDSEGals ANDoNFLAG:EUs 14 OR.MFLAG.EGs1) WRITE (IPRINT,654) VLMN03I64S
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LNFDF + FCHPRB VLNG36SS

WRITE{LPRINT+555]) MAXCLS CLSMDP +FNUMIMAXCLS ) VYLNOQ3IGG6S
WRITE (IPRINT+660) XBARWVYAR.STDV.RTH]1 .B2 VLNO36TS
IF(NSTATLEQs1l) WRITE(IPUNCH.:565) NROWNCOL s XMIMN « XMA XA YMI Np YMAX VYLHNQ3I GBS

1 XBARSTCV.RTH1 .82 ' VLNO3695
IF{GCK«“SDS5+GT «10s) WRITE({IPRINT+670) GCK4S5D5 VLNO3T70S

700 CONTINUE VLNOATLIS
5 FORMAT(20A4) VYLNO3725
10 FORMAT(6LA+FSe443F52a2+3114214.011,212) VLNO3 73S
19 FORMAT{ *1', *ONE OR MORE OF THE FOLLOWING DO NOT CONFORM TO PROGRAMYLNO3ITA4S
1 LIMETATIONSY /1 T4 Xy " XINCH 4 aXs * YINCH 42X, "XSTART? 42X+ 'Y START? VLNO3T55
243X IXSTOP? 33X "YSTOP '+ IXN 4P XCELL Y 43X, 'YCELLY s 3X 'NFOLOD®, 33X, YLMO3T765
B3'NTRAN® 3/ ¢ *51018,/7%0"+30X,%JDB ABORTED?) YILNO3775

20 FORMATIT2S+F6e1+4T5€42F7.1) YLNO378S5
24 FORMAT(*1°*, *MORE THAN 2000 VECTORS IN DATA SET*./'0%,30X," JOD ABORVLNQ3TIS
1TEDY ) YLNO380S5

38 FORMAT('1*, *NUMBER OF FREQUENCY-LENGTH CLASSES EXCEEDS PROGRAM LIMYLNO3S8)1S
117 OF 40 WHERE: SCLMAX/SCINC=ZNCLASS'/s? " T6G.F6e24"/ ¥ ,F5.2," = VLNQ3825
2+ 154/ /7%0"+ 30X, %JOR ABORTED®*] ¥LNG3AB3S
102 FORMAT{*1',*VECTAOR #%,+16+°* LENGTH OF"sF1145,% EXCEEDS CLASS LIMITSVLNO3IB4S
1 OF'42F125+/7%0%,30X, 'JOB ABORTED') . VILNQ3855
500 FORMAT(*1*,3(T30,2CA0%,//)])} YLNQ3B6S
510 FORMAT( 101, 'ROW 4.1 +COLUMN'sI14,TA0,0{ ", 15 ' < X &£ *,I5 ' ; VLND3AT?S
17405 o € ¥ € "I5 4*)4) VYLNO3RES

320 FORMATL*0!' s T9.s *LIWER? s 2X+"*UPPER " s TA24+ 'CHI "o/ TI+ *CLASS Y4 2X » *CLASS'YLND3IAGS
15Xy *EXPECTED s 7K "SOQUAREY s SX + "OBSERVED Yo/ +T2 4 'CLASS " 42X s *LIMIT ' , 2VLNOIF0S
2Xe TLEMITY 45Xy *FREQUENCY® 4 SX s *CONTRIBa *+4 X4 "FREQUENCY ' 49X + * OBSERVEDVLNGAG1S

3 FREGQUENCY HISTOGRAM! ,//} VLNOJI925
S30 FORMAT( Y 942X [I242X1FS52242NsF5e24FT22+8XeaFBa20 9%FG.0) YLND3I93S
S32 FORMAT( "+ "o T27 4 *{ " sFSa23 1 1" 4 T4 (" 4F 6.2 )4 T564' {1 FIa0s)1) VLNO394S5
550 FORMAT(3IS,2F10.2.F12.2) VYLNOISES
590 FOAMAT('+* ,TE1l,1>* ) VLMNDIIES
625 FORMAT{ "+ ,T61.+"'>*,70A1) VYLND39TS
640 FORMAT( Y %, T2037( =" ) +sTA04T( =) 4TSy 1m0,/ TIO+'"TOTALS"*,T19,FEB.,VLND3985

124 T35+FEa2eTEOFOaOyTTOW"EACH X" = *,F10,2.¢ VECTORI(S)}?) YLNO3I99S5
645 FORMAT(Y ,T34,'{*,FR.2.,)") VLNOACQS
650 FORMAT(*0!,.T70,'GNE OR MORE FREQUENCY CLASSES EXCEED HISTOGRAM LIMVLNO&401S

1IT53*) VLNO4O2S
652 FORMAT('0', *CEGREES OF FREEDOM {(NCN-FOLDED) = ',I4,'; CHI SQUARE VLNQ403S

1PROBABILITY = *,E10.4) ‘ VLNO4 D45
654 FORMAT(*0", *DEGREES OF FREEDOM (FOLDED) = *.I4,'; CHI SOUARE PROBVILNO40SS

LABILITY = ',E10Q0.4) YLNO4OGS
655 FURMAT{ 0" ,TS0, 'MODAL STATISTICS? s/TS0s16( =) ,//,T20.*CLASS? ,T40,VLNO4DTS

1*MIOFGINTY ¥y TGO, *OBS.FREQUENCY ? o// 4T 21 e 12.TA&(0sFT7e34T6E4,F6.2) YiLND40A&aS5

660 FORMAT{ 0", TSSO *STATISTICAL MCMENTS ! 3/ s TS0.19( =1} 4//T20 +* AVERAGE'VLNO4095
13T40 4 *"VARIANCE* » T6C+* STANCARD DEVIATION® ,TAS, *RCOT Bl *3TE 054" BYLMNO4105

22 Yo/ /s T204FBa3 e TAOsFBe e TES1FBaIvTEBSHFBa3sTI0S.FBe3) VLND411S
665 FORMATIGIA.4F8.2) VLNO4125
670 FORMAT(*0?, *GRAM=CHARLIER CHECK = *,F1%,4,1 ;SUM = 7 ,F15.+4) VLNGC413S5
BOO S5TOP YLNQ414AS

END YLNO415S

CHE 000S
FUNCTION PRBCHI (CHISG. IDF) CHI 0015

CHI 0025
WRITTEN BY HaDe KNQOBLE £ F.YATES BORDEN. THE FENNSYLVANI A STATE CHI 0035
UNIVERSITY. 1966 CHI 0045
THIS FUNCTICN COMPUTES BY THE APPROXIMATIONS ON PAGE 941 OF CHI 0055%

PHANCBOOK OF MATHEMAT ICAL FUNCTIONS",U.Se DEPT. OF COMMERCE»1964. CHI 0055
GIVEN A VALUE OF CHI-SQUARE ANC [TS DEGREES OF FREEDOM, FUNCTION CHI QO07S
PRBCHI COMPUTES THE PROBAPILITY OF A GREATER VALUE OF CHAI-SQUARE. CHI 0085
THE Z(ARGUMENT )} FUNCTION IS COMPUTED BY FORMULA 26.2.1. Ps 931, CHI 0095
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INTECER TEST

ALL REAL*8 ARGUMENTS CHANGEC TO DCUBLE PRECiSlDN BY M,PODWYSOCK]

DOUBLE PRECISION DSORT.DEXP ;ARG.SCHISO, XPLEVL
OOUBLE PRECISION GeRsSeTebs VaVI.PROBsS2PI, Z200S5.APPROX
CATA SZPI/Z-SPﬁEZEZDOO/ :

Gl ARG}I= (DEXP(—ARGCARG*0 .5 )/ 2+ SO662B2D00)%{ T#(0.3193B15D2G+T*

CHI
CHI
CHI
CHIi
CH1
CHI
CHI
CHI

1(~0.35656380004+TX( 1.7TE1478D00+T*(~1.8212560004(1+33027a4D00*T}})21ICHI

XPL=Z.576235%6D00
PRBCHI=0.0

[IF(CHISQWLT +0.0) RETURN
IF(IDF.LE«O ) RETURN
SCHISO=CHISAQ

S=1.90

v=I0F
Voz2.0/FLOATL(9%IDF)
==5CH15Q%0.5
SCHISU=DSQRT(SCHI5Q)

[F (LABSIU) +LT 4174.6) GO TO 110

174.6 LS THE LARGE £T ARGUMENT THAT EXP WILL TAKE,

PROB=Qe0
GD TO 240

CHECK FOR OEGREES OF FREEDOM GREATER THAN 100 OR GREATER THANW 30

110

IF {IDF4GT.100) GO TC 200
IF {1DF ,.GT .30} G0 TO 170

DEGREES OF FREEDOM LESS THAN OR EQUAL TO 30

PROB=0.0
TEST2MOCC(IDF,2)
IF {TEST.NE.Q) GO TO 140

EVEN DEGREES OF FREECOM ** LESS THAN OR EQUAL TO 30 +% FORMULA
2€s4 ¢S5y PAGE 941

120
130

IRANGE=( IDF=-2})/2

IF (IRANGE+EQ.0} GO TO 130
DO 120  1=1,IRANGE

IR=IL#1

S=5#1IR
PROBR=PRCB+SCHISQ*% IR/S
PROSSDEXP (U E{ 1 .0+PROB)

GO TC 230 .

pDDOD OEGREES OF FREEDOM *+ LESS THAN OR EQUAL TO 29 % “DRMULA
2648 44, PAGE %41

140

150
160

[RANGE={IDF=1}/2

IF (1IRAMGE .EG+0) GO TO 16C

DO 150 1=1+ IRANGE

iR=L+1~-1

S=S5%x]IR

PROBIPACB+SCHISO**x [R/S
T=1.0/{1.0#0,2316413D0C%SCHISQ)

PROBSZ2.0% {G(SCHISG})I+Z 0% (DEXPIU) /52P 1) *PROB
GD TO 220

CHI
CHIL
CHI
cHI
CHI
CHI
CHI
CHI
CHI
CHI
cHl
CHI
CHI
CHI
CHI
CHI
CHI
CHI
CHI
CHI
CHI
CHI
cHI
CHI
CcHl
CHI
CHI
CHI
CHI
CHI
CcHI
CHI
CH1
CcHI
CHI1
CHI
CcHI
CcHI
cHI
cHI
CHE
CHI
CHL
CHiI
CHI
cHl
CHI
CHIE
CHI
CHI
CHI
CH1

0105
0115
Q125
0135
0145
0155
0165
0175
oins
0195
0205
0215
0225
6235
o24s
0255
0265
0275
0285
0295
0305
0315
0323
0335
03as
0355
0365
0375
0385
0395
0a0s
0e15
0425
0435
oaas
0455
0465
0475
0485
0495
0505
0515
052%
0535
0545
0555
0565
0575
0585
0595
0605
0615
0625
0635
0645
0655
0665
0675
0685
0695
0705
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Kbk nxAks® GREATER THAN 30 DEGREES OF FREEDOM X d%skkEns

AN APPROXIMATE VALUE OF CHISG IS FIRST COMPUTED THEN COMPARED wItH

THE GIVEN CHISQ. IF THE APPROX. VALUE IS GREATER ¥THAN THE GIVEN
VALUE, G(CHISQ,IDF} IS RETURNED AS ,905.

ttt#tttt!tttttt.ttt#*!t#ittlt#t#ltttt.t‘itit#t#t*tt‘ttttt*t‘#‘t#ttthHI
FOR GREATER THAN 30 AND LESE THAN OR EQUAL TO 100 DEGREES 0 FREEDOMCHI
THE APPROXe VALUE OF CHISQ AT THE +995 LEVEL IS COMPUTED BY FORMULA CHI
264+44.17 PAGE 941, THE SIGN OF X{P) IN THE FORMULA WAS CHANGED

FRACM + TO - TO ALLOwW COMPUTATION OF CHLISG AT THE .995 LEVEL RATHER

THAN THE +00S5 LEVEL AS IS5 THME CASE WHEN THE SIGN IS ¢.

170

APROX=({ (1+0-VI-XPLADSCRT{VO) Jan3I) v
IF (APROX.LE.CHISGQ) GG TOD 180
GO TC 210

180 v={{CHISQ/V)**0.33333333000~( 1.0=v9)})/D8GRTI(VY)
190 T 140/(14040.2315419000%V )
PROB2G{ V)
GO TO 220
GREATER THAN 100 ODEGREES OF FREEOOM. THE APPROXs VALUE OF CHIZA

IS COMRUTEDC 8Y FORMULA 26.4.16, PAGE 981, ThE SIGN OF X(D) wAS
CHANGEE FCR THE SAME REASON AS ABOVE,

200

220

230
240

APROX=({=XPL#DSARTI(VEV=1,0))282]1%0,5

IF (APRCX.LELCHISQ) GO TO 220
PROB2+0.995

GO Ta 240

V=DSORT (2.000¥%CHISGCI=-DSORTI( 2., 0%V=1,0)
GO TO 190

IF (PROE.GT.0+9%5) GO TO Z10
PRBCHI=PROB

RETURN

END

A-10

CHI
CcHI
CHL
CcHI
cHf

cHi
CHI
CHI
CHI
CHI
CHI
CHI
CHI
CHI
CHI
CHE
GHI
EHl
CHL
CHI
CHI
EHI
CHI
CHi
Chi
CHI
CcHl
CHI
CHI
cHl
CHI
CHI

o715
oras
0?35
0745
o755
0765
orrs
oras
076s
[/ 7:1:1.1
081s
. ¥-1
083S
08aS
[-¥. 111
0A6S
0475
0B8S
6a9s
0905
-1 4.
0925
0935
a94s
095S
096%
097S
09as
0995
1605
1015
1028
1035
1045
1085





