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PREFACE

With the recent developments in statistical methodolegy of clustering
and classification as well as in aﬁtomatic remote sensing data processing
techniﬁues, the scope of extracting ﬁseful information on earth resources
Ifrom multispectral scaﬁne; data has increased considerably. Though the
perforﬁauce of most of the previously develoﬁed remote sensing data handling
techniques has yet to be ascertained through the process of testing and
numerical evaluations, it now appears that the development of a tecﬁnology
for performing a large area earth resources inventory is in sight.

For the earth resources project of EOD, NASA-JSC, presently a top
priority has been given to the development of a system for performing an
inventory of some crop or crops nof ecomomic interest Qver a large area. An
important aspect of this project would be to devise a suitable crop acreage
estimation procedure. A major part of the research work reported here in
our final report is concerned with this problem.

First of all, a model is developed for the evaluation of crop acreages
(proportions) in an agricultural area using the classification approach. The
model takes into account the classification errors likely to arise in labeling
remotely sensed data points under the classification algorithm used and evalu-
ates the actual crop proportions by correcting the expected labeled crop
proportions for the possible bias due to these errors.

If the goal is to determine crop acreages for a large area, it will Ee
necessary to usé only a subéet of the full data obtained using a sampling
technique since it would not be practical to collect and process a complete
set of scanner data covering the entire area. Depending upon whether or not

it
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any information is available on the area crop layouts, agricultural practices,

ete,, a suitable sampling scheme needs to be devised for acquiring a well
representative sample of the unlabeled remotely sensed data. The precision
of any crop acreage estimates will also depend upon the performance of the
classification algorithm wused in labeling remotely sensed data poiuts and
whether or not the associated classification errors are known. It is very
unlikely to have these errors known in advgnce. As such, a certain amount
of ground truth, ﬁreferably a sample of ground truth for each crop type in
Fhe area of interest, needs to be ascertained so that the classifier is
properly trained and the classification errors estimated.

Considering these aspects of the problem, we have_discussed the estima-—
tion of crop acreages for different'possible cases. If the classification
errors for the classification procedure used are assumed known, the estima-—
tion method provides best estimates for the crop acreageé, In case of
unknown classification errors, the estimates are consistent. UNext, both the
error analysis and the problem of sample size are investigated in general
as wellras for certain specific cases. Our results are given in reports 1,
4 and 5 listed in the tgble of contents.

A study 6f classification errors for the Gaussian maximum likelihood
classifier is made when due to interest in identifying elements of only one
class, the other e¢lass is made of the remainder of the classes and then the

problem is treated as a two-class classification problem. Given in report

iii

6, depending upon the geometry and location of the classes under thils practice,

it is shown that the classification performance for elements in the class of

main interest may or may not improve under this practice.
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The estimation of optimum errors of classification and the dependence
. of these estimates upon the distance between classes are examined for the
two—-clags problem, assuming classés to be univarigte normal, in report 2.
Considering both the maximum likelihood estimate and the minimum variance
unbiased estimate for the optimm probability of misclassification, we give
the relative efficiencies-of these two estimates, theoretically as well as
numerically, and investigate the bias of the former.

A simulation study 31 done on the relationship betweeﬁ the probability
of misclassification using linear as weil as quadratic discriminant rules,
the number of features and the training sample size. As showm in report 3,
when the sample size is small, use of a fewer number of features for dis-
crimination leads to smaller probability of misclassification.

For classifying an oBservation into ﬁne of two given normal populatioﬁs
whose parameters are unknown, the usual practice in the abgence of any
training sample is to cluster past data into two nearest neighber clusters
and to design a sample based Bayes’' classifier, treating the two clusters
as training samples from the two populations., The use of lrﬁorm is often
advocated for such clustering. In report 7 it has been shown that such
advocation is mot always reasonable.

A unified theory of adaptive pattern recognition has been presented in
report 8. It has been shown that all adaptive pattern recognition algorithms
are just different means of approximating a function that separates the sets
of training samples, choosing different criteria for best approximation.

The data obtained by remote sensing devices in Earth Resources Survey

come from a large area and often over a large period of time. Due to changes



in spatial and temporal conditions the statistical characteristics of the

data have been found to undergo changes. In such.a situation, the performance
of sample~based Bayes classifief designed on the assumption of normality of
thé populations can be eﬁhanced by periodic updating of the parameter esti-
mates. It has been shown in report 9 that all updating algorithms that can

be fouﬁd in literature are related to one particular model of the random

environment.
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- ESTIMATION OF A LARGE AREA CROP ACREAGF

INVENTORY USING REMOTE SENSING TECHNOLOGY

0. SUMMARY

Basaed upon the existing remote sensing capabilities, the useful informa-
tion about the acreage of some crop of eccnomic interest can be obtained from
multigpectral scanner measurements acquired over an agricultural area. If
the goal is to determine the acreages covered by various crops over some large
.area such as the continental United States, then some sampling procedure will
be necessary since it would not be practical to collect and process a set of
scanner data covering the entire area.

In this report we develop a model for the evaluation of acreages (propor-
tioﬁs) of different crop-types over a geographical area using a classification
approach and give methods for estimating the crop acreages. If prior informa-
tion is available on the classification errors associated with the classifica-
tion algorithm used, the estimation method provides the best estimate for the
crop acreages. Otherwise, the method would first require a certain amount of
ground truth in the area of interest to be obtained so that the classifier
can be trained and the classification erroré estimated.

If the main interest lies in estimating the acreages of a specific trop—
type such as wheat, it is suggested to treat the problem as a two-crop problem:
wheat vs. non-wheat, since this simplifies the estimation problem considerably.
The error analysis and the sample size problem is investigated for the two-
crop appreoach. Certain numerical results for sample sizes are‘given for =z
JSC-ERTS-1 data example on wheat identification performance in Hill County,
Montana and Burke County, North Dakota. Lastly, for a large area crop acreages
inventory we suggest a sampling scheme for acquiring sample data and discuss

the prbblem of crop acreage estimation and the error analysis,



1. INTRODUCTION

In recenﬁ years the development of several automatic data processing.
techniques for statistical pattern recognition has enhanced considerably
the scope bf remote sensing technoiogy for the study of earth resources,
particularly in the field of agriculture. It now appears that a system
for.pefforming a large area crop inventory can be developed on the basis
of existiﬁg remote sensing capabilities.

The data handling and analysis for remotely sensed agricultural resources
over a large area may not be feasible both from technical and economical view-
points if each scamned data point is being processed for its recognition. For
example, if a complete recognition is desired for an ERTS scene, it would re-
quire processing over half a million data points., As such, an important
requirement for any system to be developed for a large area crop inventory
should be to have a suitable crop acreage estimation technique that uses
only a sample of the unlabeled remotely sensed data obtained for the area
of interest for the purpose of recognitiom.

In this report we -discuss a large area crop acreage estimation procedure
that would meet this requirement for the system. Wé develop a model for the
evaluation of crop proportions for an agricultural area and ﬁrcvide methods
for crop acreage estimation, taking into consideration the classification
errors likely to arise in labeling remotely sensed data. The error analysis
for the model is ;tudied and expressions for variances of different estimates
are given, in general as well as in specific cases. For the two-crop situa-
tion, the problem of sample size is investigated and certain numerical results
for the sample size are provided. Next, we extend the scope of our study to

investigate a large area crop imnventory.



2. CROP PROPORTIONS MODEL

Suppose there are m different crops nl,wz;...,ﬂm in the agricultural
area of interest and that every data point is identifiable with respect to
one of these crops. Let Py denote the proportion of pixels in Wi’ i=1,2,...,0.
Considering a random sample of n unlabeled remotely sensed data points, let
n be the number of points classified into w;, i=1,2,...,myusing a classifi—
cation algorithm. Suppose n(i‘j) is the number of data points to be in ﬁj
but classified into ni, then |

n, = n(i|1) + ndd|2) + ....v. + 0(i|m)

and

ni n(1 .) . .
2 E —LLD , i=1,2,...,m (2.1)
3=l ~

.are .the pbserved crop proportions for the sample data under the classification
algorithm used. The observed proportion ni/n is a biased estimate of P; gince

it estimates unbiasedly E[ni/n] given by
m ‘
e - S E[g_m] ,
i n ‘ )
j:l .

m .
> »y PG (2.2)
j=1

where P(ilj) denotes the probability of classifying a data point from ﬂj
into wi under the classificatiqn algorithm. It may be pointed out that
processing of remotely sensed data for total recognition would lead to an

evaluation of the expected classified crop proportions ei's instead of the



actual crop proportions pi's. Of course, if the classification algorithm
performs so well that the classifiction errors are sufficiently small, ei
will be close enough to P i=1,2,...,m. But most statistical pattern
recognition techniques for processing of remotely sensed data are expected
to be failible and thereby the two types of proportions are not going to be
near equal. Henceforth in our discussion we will assume that P(ilj) >0
for at least one j different from i.

Denoting the observed proportion ni/n by ;i,i=1,2,...,m, it follows

from (2.2) that

~

e = E[e]
or
e = Pp ‘ (2.3)
where
e, mPl_
e= e, , p= | p,
- em..J L_pm_
and
ecalyy p@|2) . .. .. PQ|w,
P= |P(2]1) PC[2).....PC2lw} .
P(r|l) Pm[2) P (m|m)]

Accordingly, the vector of actual crop proportions

p=P e " (2.4)

are obtained subject to :E: pi'= 1 provided e and P are known.



The wvector of classified crop propertions, e, can only be known if the
complete set of remotely sensed data is processed for total recognition using
a classification algorithm. Hence, in general, e will be unknown. Regarding
the classification error matrix P, two cases arise:

(i) P is known
(ii) P is unknown .
If P is known, an unbiased estimate of p 1is

p = P"le . {(2.5)

But P will generally be unknown. As such it would be necessary to obtain a
certain amount of suitably selected gound truth in the area of interest,
probably indepeﬁdent of the sample data used in estimating e, so that the
classifier is trained and the classification error  matrix estimated, Let

P be an estimate of P, Then an estimate of p when P is unknown is given by

5=p1a ., (2.6)

LB 3

Clearly, p will generally be a biased estimate. Both bias and mean
£

square error o will depend upon the performance of the classification
algorithm. as.” well as the degree to which the sample represents the popula-
tion. The classification performance can be achieved desiredly by training
the classifier sufficiently on the basis of a well representative sample for
the ground truth. By adopting certain sampling schemes that may be suitable
for the area of interest, appropriate samples for goth the ground truth and
the unlabeled remotely sensed data can be acquired. For our later discus-

sion we assume that these two types of samples are independently obtained,

In appeﬁdix 1 we have derived general expressions for the covariance

~
-~

matrix of p,and both the bias and the mean square error matrix of p. In the



- ~

case of p not only the estimate p itself but bias as well as mean square

A~ ~

error quantities will also depend upon how P is obtained. One solution for P

and the probability distribution of its components is suggested therein, as well.

3. TWO-CROP APPROACH
Sometimes the main interest is in estimating the acreage of a specific
crop type in the area of interest. In that case one approach to the acreage

estimation problem lies in considering 7w, to be the specific crop type and

1
T, to be the "other crop" consisting of the remainder of the crops, and then
treating it as a two-crop situation. Howéver, lumping of different crops
together for the "other crop™ would require certain caution and should be
judged in terms of the classification performance for the two-crop case as
against that for the case of the original set of crops. For the Gausgsian
maximum likelihéod classifier, Basu and 0dell (1973) have investigated this
problem and have shown that the classification performance for the class of
main interest may or may not imﬁrove when the clagsification is performed
using the two-class approach. But the probleﬁ under this approach is
greatly simplified and, barring extreme cases, perhaps it will provide
satisfactory solutions in the remote sensing situation when interest only
lies in ascertaining the acreage cover of one specific crop.

Now considering two crops T and o> let P(l]O) = @l and P(Oll) = @é

for the probabilities of misclassification when a certain classifier is

used. We will assume that @1 + @2 # 1. 'Then



If Py and p, are the actual crop proportions of Ty and LAY respectively,

whereas ey and e, are their respective expected classified crop proportions

under the classifier used, it follows from (2.3) that

e, = (1~¢2) p, + & (17p1) (3.1)
and
e2 = 1——el
On the other hand,
e, — ¢
1 1 .
P1 7155 (3.2)
and
e T R
2 l-@l—¢2 2 1

Suppose from a random sample of n unlabeled remotely sensed data points,

ny points were classified into Ty and n, = n-n, points were classified into

Ty by the classifier. Then
. ~ nl
el =5 (3.3)
e, ~ ¢
~ 1 1
p, = T———= (3.4)
1 1 @1 @2
if @1 and @2 are known, and
- e, - 5
" 1 1
Py = T (3.5)
l—@l-®2 . .
when @l and @2 are unknown and have estimates @1 and @2 respectiﬁely. Clearly
~ l -
Var(p,) = Var(e,) . (3.6)
1 2 1
(1-2, -2,)

~

For the estimate Py in (3.5), it easily follows that



~

Bias (f)l) = (e,~9,) E[T-6] - E{T(Zsl-qsl)] (3.7)
where
R
T = (1-0,-0))
and

]

-1
(l—¢1—¢2) .
However, evalution of expected values in (3.7) may be quite a difficult job
and so an exact bias value may not be accessible, An evaluation of the
MSE(pl) in its exact form is even more difficult. As such we instead con-

sider having it in the following approximate form obtained in Appendix 1

using the §-method. For a discussion on the method, see Rao (1965).

s,y -— 1 Ware) e G PR e Ml B
MSE(p,} = Var(e,)+ [1-~-——=] Var(e¢, )*+[-———] Var(s, )) (3.8)
1 [1_¢1_¢2]2 1 1-¢,-2, 1" 11-¢ 3, 2
or
MSE(}i y =t [Var(e.) + (1-p.) Var (2.} + p2 Var(s.)] (3.9)
Y e o2 1’ Py TR 2 .
1%

where Py is given by (3.2).

Sample Size

Considering simple random sampling with pixel as the sampling unit, we
discuss the problem of sample size necessary to minimize the sampling cost
or to achieve a desired amount of precision for the proportion estimate, given.

that the other is specified. Suppose total sample consists of N==n~+Nl-FN2

data points selected randomly, where n is the size of sample of unlabeled
remotely sensed data used for estimating e and Nl and N2 are sample sizes

for ground truth data from Ty and T and are used to estimate Ql and @2,

~ ~

¢ and ¢, are all obtained as observed

respectively. The estimates el, 1 2

sample proportions and thus it follows from (3.6) and (3.9) that



Var(ﬂ Yy = E;EE—:—Ell“
Py 2
n(1~¢,-4,)

and
2 el (1-e;) 3, (1-2.) 3, (140)
MSE(p)) = —t—— | —Lyapy? 10, 2 2 2 (5
(1-6 -0,) 1 2

Suppose we want to obtain sample sizes necessary to minimize the sampling
cost when Var(pl) and MSE(pl) are specified, say each equal to or smaller

than 02. In the case of @1, ¢2 known, the only cost involved is that of

precessing the remctely sensed,samplé data, Clearly, it will be minimum

when the sample size n is the smallest integer greater than or equal to

el(l—el)

: 5 (3.11)
(1)/b2~¢2) G

For when ®l and @2 are unknown, there are two types of cost involved: omne

is the cost of processing the total sample data, say at the rate of €y dollars

per data point and the other is the cost of obtaining ground truth, say at

the rate of <, dollars per data point. Then the cost associated with a

sample of size N =n + N, + N, is of the form:

1 2
C(N) = cyn + (cl+c2) (N1+N2) . (3.12
The purpose is to find N (i.e., n, Nl and N2) which minimize C(¥) subject to

MSE(pl) 5_02. This is done in Appendix 2 where we derive explicit expressions

for n, Nl and N2 in (A.9).
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4, AN EXAMPLE

Certain sites in Hill County, Montana and Burke County, North Dakota
were selected to investigate wheat identification performance for the ERTS-1
gatellite data during 1973. For the sites in Hill County, there were three
acquisition periods, covering both wintef and spring wheat seasons, for
which ERTS-1 labeled data were evaluated against the ground truth to ascer-—
tain wheat identification performance. In the case of the site in Burke
County, there were only two acquisition periods covéring the spring wheat
season. For the classification identification performance results and other
details, refer to Appendix 3.

Considering ¢. to be the omission percentage for the non-wheat data

1

points and @, for the wheat data points, we give sample size results in

2
Figure 1-7 for the various cases of omission percentages listed in Appendix
3, assuming different wheat proportions in the area and Gy = .01. Based on
these results, the following conclusions are drawn:
1. Expected labeled wheat proportion, els increases as the actual
proportion of wheat, Py» increases for the area, though not strictly.
Though to a certain extent it depends upon the magnitude of the
omission percentages for both non-wheat and wheat data points,
it tends to centralize away from too low or too high values for
the percentage.
2. Sample size for the unlabeled remotely sensed data first increases
as the actual wheat proportion increases and then decreases later

on; the point of decrease depends upon the size of the two omis-

sion percentages.
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3. All sample sizes increase as the total omission rate ¢l -+ @2
increases.

4., Sample size, for the unlabeled remotely sensed data is much

1’ @2 are unknown compared to when these are known.

5. In the case of ¢

larger when ¢
17 @2 unknown, ﬁhe sample size for the unlabeled
remotely sensed data is proportional to c2/cl; the ratio of two
types of cost.

6. Sample sizes for ground truth of wheat and non-wheat are inversely

proportioned to czfcl.

7. Sample size for the ground truth of wheat is larger than that for

non-wheat when the expected labeled wheat proportion is below .5.
Reverse is the case when such proportion is above .5. A similar
trend holds against the actual wheat proportion, though not
strictly.

8. Sample size for fhe ground truth increases as either of the two

omission percentages increases when the other is held fixed.

For making a comparison of sample sizes irrespective of the wheat propor-
tion which, in fact, is unknown, a suitable criterian is to determine the sample
sizes against values for ghe coefficient of wvariation, C.V.;=c/p. Generally
the wheat coverage in any area of interest is expected to be somewhere in
between 1 percent and 20 percent. As such we here give sample sizes for the
unlabeled remotely sensed data and the ground truth of wheat as well as non-
wheat by specifying ¢ = .01 and considering certain C.V. values in a 5 to 50
percent range. Numerical results are presented in Table 1 for all different

¢, values that arise from the wheat identification performance

cases of @l, 5



results given in Appendix 3. Moreover, for certain cases the sample sizes

are sketched in Figure 8-14. The following conclusions are drawn:

1.

All samples sizes increase és the total omission percentage

@1 + @2 increases.

Except for the sample size for the ground truth of wheat, sample
sizes decrease as the coefficient of variation increases. These
are generally very high in numbers for the 5 percent co-efficient
of variation but leveis off when the co-efficient of variation is
50 percent.

Sample size for the unlabeled.remotely sensed data increases con-
siderably if ¢

¢, are unknown compared to their known case.

1’ "2
Again, all sample sizes depend upon the ratio 02/c1 as regards
the two types of cost.

Sample size for the ground truth of wheat is consistently larger
than that of non-wheat. Also, it shows very small changes over
the range of co-efficients of variations being considered here,
In cases where there is a high overall omission percentage, and

particularly for the non-wheat, it tends to increase as the co-

efficient of wvariation increases.

12



i TABLE 1: Sample sizes: n for the unlabeled remotely sensed data, N, for the ground truth of

1
L.
wheat, and Nz for the ground truth of non-wheat when o = .01
COefﬁCient|Wheat Dmission rates Expected ¢1,¢2 ¢l and ¢2 unknown case
* of F propor— < ¢ labeled - - —
£ 1 2 knowry ¢, /e =5 e.lc,=20
variation! tion wheat Sample 271 2'71
opy proportion) . Sanple Ground truth | Sample | Ground truth
i H . N
- e n size gsample gizes size sample sizes
_ n Nl ] N2 n Nl I N2
0 0,200 200 0.300 0,3000 guod 20885 1604 2195 - w2979 The a7
.050 0,100 0,250 0.2300 4392 12101 2037 1022 19100 2377 st
D150 0.100 0.3000 3733 13c3z 2705 69 16638 RPN u7s
. 0.100 0.150 D.2500 3324 6200 2083 [+ 15318 1732 1i
} 0,050 0,200 0.20u0 2C45 727 1245 sun 11138 1059 u st
o . 0.050 0.100 0,22¢0 2376 5667 7% 336 8533 T8 7c
0.000 4,650 0.1930 1706 2170 ) 99 2574 [ 2
0.100 0.100 0.200. 0.300 0.2500 7500 76713 8399 1060 33712 7205 913
. 0.150 0.25¢C 0.1C5u 3282 1108k 2571 677 15875 500 oS
[ 0.153 0.1u0 ©.2250 3100 3542 2507 219 15054 1523 23C
! 0.109 0,139 0.1750 2567 7025 212 293 12030 1806 247
a.050, 0,200 0.1250 1545 53LG 1295 260 2aog 1378 22¢
- 0.053 .190 0,13%0 1017 w237 583 152 6518 817 125
0.050 0,050 0.0950 853 1127 0 as 13178 [ #1
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0,150 ’ 0.100 0,250 0.1533 2537 LYY 34 z905% 304 15EUG 2554 L.
: 0,150 0,168 0.2000 TELS 8922 3pEl 186 14357 S611 157
i 0,100 0.150 Q.1500 2267 taa: 2238 191 11105 150t . 162
i : 0.058 0.200 0.1000 1600 LCOG 1215 160 7225 1689 151
t . . €.050 o.100 0.1067 1319 3esa EETY 97 5694 1% &1
0,000 0.050 0,063 654 75% [ 19 818 0 1i
0.050 0.260 0,300 0.2250 €975 23460 B7iE 524 3areie 7510 453
,0. 200 . . 0.100 0.250 . 4.1325 2721 B759 3003 229 13987 2568 1¢6
. 0.150 ©.3100 0.187% 2709 g7210 3698 137 13972 2ESD 112
. €.100 0,150 0.1375 2184 653 2247 141 1900t 1916 120
0.050 c,200 0.0875 1420 /// 2L 1261 122 £6L7 1063 103
L . T, 0.05¢ T r.A00 0,092% 1167 3343 a7é 71 5243 :5 93 ]
; 0.000 0.050 0.0475 502 565 [} 12 628 ) 0 7
0, 250 &.040 6.200 0.300 r.2200 C86u 23164 176 419 ATH1y 75€9 362
P . 0,100 0.250 0.1260 2607 gugs 3005 181 13597 2575 155
: C.150 0.100 o.i1800 2624 6560 3114 110 1372% 2073 L1
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5. A LARGE AREA CROP ACREAGE ESTIMATION
Our previous discussion, in essence, applies to crop acreage inventory
for an agricultural area which is homogeneous in respect to agricultural
practices and thus is not expected to be large enough. Since a major objective

of the JSC~EOD project is to perform or estimate crop acreages for a large

area using available remote sensing capabilities, we here suggest.a sampling
procedure to procure sample data for the purpose of estimating a large area
crop acreage inventory and discuss the error analysis associated with it.

Once again, we assume that the frame is made of agricultural areas; the
non-agricultural areas in the region of interest can be easily excluded by
way of a monitoring system. As a first step in the sampliné procedure, we
suggest having a geographical-based stratification which effects a division
of the region into reasonably homogeneous areas with respect to physical and
climatological conditions. Considering additional factors of (1) the pre-
dominance of vafious crop-types and (ii) the latitude and longitude, a
finer stratification must be achieved. This is to obtain better discrimina—-
tion for the underlying crop-types and to control variability which may
otherwise dominate over the distinction that exists between the resolution
classes for these crop-types.

Note that as a result‘of stratification one may only need to consider
a part of the region for frame if crops of interest do not cover the whole
region. So depending upon whether the frame would require consideration of
the complete region or only a part of it, one should make a list of strata

making up the frame for the purpose of sampling.

Remoting sensing data gathered by an ERTS satellite is documented in

terms of scenes, each covering approximately an area of 100 x 100 milés and
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divided into four strips where each strip has approximately 6,400 scanlines

in it. As such, we suggest a three stage sampling plan to be independently

carried out in each stratum: select randomly EﬁTS sééﬁeé ;t_fhe f£r5£
stage; strips within scenes at the second stage and scanlines within strips-
at fhe third stage. Of course, one may consider one ﬁore stage in selecting
pixels within scanlineé. Howeﬁer, sampling at this stage is excluded from
the plan because it is inconvenient and uneconomical.

Notations

Let R be the region (in the sense of frame) of interestlfor estimating
. crop acreages. Suppose if is stratified into strata Rt’ t=1,2,...,L, with
weights LA the proportion of pixels in tth stratum, t=1,2,...,L so that
L

L
R = tglRt Wlth Z w, = 1 .
t=1

In stratum Rt’ let It be the number of scenes whereas J, H and n denote the
number-of strips per scene, number of scanlines per strip and number of
pikels per scanlines, respectively. From the previous paragraph it is
obvious that there is no need to distinguish between strata in the categories
of strips per scene, scanlines per strip and pixels per scénline. Next, let
etijh(ﬁk) be the expected proportion of pixels to be classified in Te from
the hth scanline in jth strip of ith scene for stratum Rt’ t=1,2,...,L.

Then for Rt’
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the expected proportion of pixels to be classified in L from the jth strip

J H
ey (m) = Z Z €rijh (M)

j=1 ©h=1

in ith scene,

from the ith scene,

the expected proportions of pixels to be classified in =

I J H
€ (nk) = z ZL z t1;|h ) ’
j= h=1

i=1
the expected proporticn of pixels to be classified in L Accordingly,

k

L
e(-rrk) = z Wtet(ﬂk) . {(5.1)
t=1

is the expected proportion of pixels to be classified in Mes k=1,2,...,m,
for the region R.

Estimates

Suppose m, T and s depote the corresponding number of scenes, number
of strips per scenes and number of scanlines per strip that one selected for
£ t=1,2,...,L, using the stratified three stage random sampling described_
earlier. Let n, .., {m ) be the number of pixels classified into ™ from the hth
selected scanline in jth selected strip of the ith selected écene in Rt'

Then considering the observed proportions of classified data points into

different creops for estimates, one has

: (r ) = ntijh(”k)
tijh* 'k n !
=

~ 1
e13(Md T ns Z Nesn (M
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T 8
- 1
e 1 (Md = Tex ZE ES “tijh(“k) :

j=1 h=1

A Tt o« &

e (m) =—= N > Von @

t 'k nsIm, tijh>"'k* °

i=1 j=1 h=l
and L
= = L . -2
e(wk) EE v, et(wk) . k=1,2, ,m (5.2)
' t=1
- T
Next, expressions for Var(et(nk)) and Cov(et(ﬂk), et(wk»(k#k ) can be
obtained without muech difficulty. For example, refer to Section 10.8 in
Cochran (1963) for the general discussion on three stage sampling plan.
Hence, the covariance matrix of e is given by
- L
~ _ 2 -
Var(e(ﬁk)) = 2 W, Var(et(ﬂk))
=1
and L
- - 2 ”~ ~
Cov(e(ﬂk), e(wk,)) = :E: LA Cov(et(wk), et(ﬁk')), k', k=1,2,...,m , (5.3)
t=1

Similarly, an estimate of the covariance matrix is obtained by replacing

the unknown quantities by thelr estimates in (5.3). In this context, see

Chhikara and Odell (1974) who have discussed such results in greater details.
Now to ohtain the actual crop proportions, there is a need to consider

whether or not the classification error matrix is the same for each stratum,

When the area is wide and large and the stratification is performed consider-~

ing factors mentioned in the beginning of this section, it is quite likely that

these classification error matrices will not be the same for different strata.
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In that case, find an estimate of Py s k=1,2,...,m, using (2.5} if the classi-
fication error matrix is known and (2.6} if it is unknown for each stratum.
Denoting Py by pt(nk) for stratum Rt’ it then follows that

L
z tht(ﬂk) » k=1,2,...,m (5.4)
t=1

-~

Pp =

when the classification matrices, say Pt’ t=1,2,...,L, are known, and
- L -

Py = ;2; wtpt(nk) . k=1,2,...;m _ (5.5)

when these are unknown and are separately estimated using ground truth data
from each stratum. Next, Var(gk) and MSE(;k) are respectively obtained from
' (A.2) and (A.7) after making an appropriate subsfitution from (5.2).

On the other hand, either there is the same classification error matrix
for all strata or can be made so by proper adjustmeﬁt of gignatures in the
classification algorithm for each stratum. For then an estimate of crop
proportions Py k=l,2,...,m-is directly given by (2.5) if the common classi-
fication error matrix is known and by (2.6) if it is unknown, using ;(ﬂk),
k=1,2,...,m of (5.1) for e. Hence, both estimates and their error analyses
are cobtained by following the general procedure given in Section 2,

In fact, our approach in Section 2 is quite general and can be applied
to perform any large area acreage inventory by considering an appropriate-
sampling scheme for both the unlabeled remotely sensed data and the ground
truthed data.

Once again if interest lies in estimating only the wheat acreage, the
two-crop approach of Section 3 can be applied. Then an estimate of wheat

proportion is obtained from (3.4) or (3.5) as the case may be, elther first
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obtaining it stratumwise and then combining as we did above in (5.4) and
{5.5) or directly, depending upon whether or not the classification error
matrix is fhe same for different strata. Subsequently; the precision of
this estimate and the sample size necessary to achieve a desired precision
with minimum cost can be easily obtained by applying our technique of
Section 3.
Sample Size

Taking the cost factor into consideration; suppose we want to determine
the sample size that either minimizes the sampiing cost for a specified
precision or maximizes the precision of the estimate for a fixzed cost.
Though a large initial cost is involved in acquiring remotely sensed data,
presently we are mainly concerned with the cost of the processing and
labeling of the sampled data. In general, any such cost can be considered
as

C, =cm +cmr+ cmrs

t 1.t 2t 3t

for the sample in stratum Rt’ and

L
C = (cg + cor + cgrs) Z m,
t=1

for the area of interest.
In case of unknown classification error matrix or matrices, there is an
additional cost of sampling the ground truth, say C'. As such the total cost

involved is C = C + C'. Now if the cost is fixed, say C" < C , a determina-

0’
tion of sample sizes for both the unlabeled remotely sensed data in all
three categories and the ground truth for wvarious crops can be achieved by

solving equations obtained by equating the partial derivatives of
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-~

MSE(p) + A(C"-C) ,  k=1,2,...,m

where A is a Lagrange multiplier, with respect to ﬁ%, r, s and the ground

~

truth sample sizes to zero. Similarly, when the MSE (ﬁk) is fixed, say Ui,
k=1,2,...,m, again this can be achieved by considering the function
" 2
" -
c’ + kk[MSE(pk) Gk],

for minimization. This, of course, would lead to k different values for

k=1,2,...,m

various sample sizes unless we consider the minimization from the point of
a specific crop~type proportion estimate. On the other hand, a unique
determination can be obtained by considering the largest value obtained
in each case.

It may be pointed out that under this procedure, it will be difficult
to give any closed form expression for any sample size and its carrying out
would involve some optimization technique.

If the classification error matrix (or matrices) is known, the sample
sizes mt(t=l,2,...,L), r and s can be easily determined by minimizing

Var(e(wk)) + A(C—CO) or C + Ak[Var(e(ﬂk)) - 02] as the case may be. More—

k
over, the sample size problem in the case of unknown classification error

matrix or matrices can be treated either by assuming the classification

errors known or by investigating the two types of sampling separately.
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6. FURTHER REMARKS

In actual practice it may not be possible to have every data point
identified with one of the crops in the area of interest, particularly if
the area is large. This may be caused by not knowing all crop-~types that
exist‘in the area or some data points representing pixels falling on the
field boundaries, As such the model developed in this report may be viewed
somewhat restricted. Its use for performing a large area crop inventory
may be considered subsequent to obtaining information about the agricultural
practices in the area.

It is extremely difficult to model the problem of a large area crop
- inventory in its full gemerality unless certain comstraints are imposed.
The condition of identifiability is one such constraint that one must have

in order to deal with the problem analytically.



APPENDIX 1

~

A.}. Variances of Components of p

For p given in (2.5), the covariance matrix,

P E[(e - e)(e - e)T1 DT

E[(p - p)(p - D)"]

or

"

25 e h v et

. ; - . R o}
where V denotes the covariance matrix of e, Denoting the (i, j)

~

element of P_l by le, it follows that the variance of P, the ith

element of p, is given by

m ' m m )
Var (Pi) =2(P13)2 Var (ej) +Z ZP]'J pik Cov (ej, ek)
j21 3=1 k=1
J#k

where V(;j) and Cov (ej, ék) would depend upon the sampling scheme
used for obtaining samples of unlabeled remotely sensed data points.,
In the case of random sampling wilith sampling unit as pixel (i.e. one

data point),

~ e.(l -_-'e.)
Var (e,) = —d————i_

3 n
and

E‘..E‘.k

nsj#k,j,k=1329--am:

Cov (ej, ek) = -

ignoring the finite population correction due to large population size. Next

22

(A.1)

(A.2)

(A.3)
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an unbiased estimate of these quantities is given by

. e.(1-e.)
ﬁ;} (ej) N I i

n-1
N ~ ~ eek
Cov (ej, ek) = -~ El:"I, j#Fk, j, k=1, 2, .., m,

On the other hand if the sampling unit is a 5 x 6 mile segment con-
sisting of r pixels then considering a random sample of m segments
(here for the sample size one may consider n = mr data points) from
the total of M segments in the area of interest and again ignoring the

finite population correction, cne gets (Cochran, 1963)

M
- 1 2
Var (eJ) = m—:—l)— z (eji - e_'_l)
‘ i=1-
and '
M _ (A4&)
~ - 1
Cov (e,, ) = ———— (e,. —edle . -e), 3%k
b ®k n (M~1) ;g; ji 3j ki k

where eji denotes the proportion of claszified data peints in 7. for

the ith segment. Once again, for their unbiased estimates
.. m
s NP A A
SEETE R
Var (ej) = am oD (eji ej)
ie1

and
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AT 1 Z - LT " .
Cov (ej, ek) e (eji - ej)(eki ek), i# k,
i=1

i, k=1, 2, ..., m.

Similarly, components of V and their estimates can be obtained for other

types of sampling plans. Making appropriate Suﬁstitution in (A.1) or

(A.2), variances for the components of p and their estimates are then

obtained.

~
~

A.2. Mean Square Errors of Components of p.

~

?irst we calculate the bias of p given by

Bias (p)} = E[p-p]
= E [P—le - P—le]

E [p te—e) + (21 - phye]

1

1

g [P - plle (A.5)

because the first term is zero due E(e-e) = ¢ for a given P"l. Clearly,

the bias depends upon how much bias there is in P~ s and

Bias (5) = (Bias (%_1))e.

In order to find the mean square error of any component of p, let us

first ceonsider the evaluation of matrix,

~ -~

E [(;-p)(g-p)T] = E [(5"1; - P'le)(ﬁ" e - p 1T

e) ]

24



SO
=t ((E D ee)e-a) T HT + 1 - 7y T 7t - p7HT)
e hvehT e et -l el @l - hHT

~

where E stands for expectation with respect to P. Again, denoting the

(i, j)th element of P"l by P and that of P_l by PiJ; it follows from

" .th N .
(A.6) that the mean square error of P the i component of i, is given

by - m m m
MSE (;i) = E z (PlJ) Var (e -+ Z z Cov (ej ey )
j=1 =1 k=1 - :
- m. mn J¥k c '
+ Z 2 g ptd - Plj]2+z zejekE[(PlJ-—Plj)(PlknPlk)] ,

3= =l k=1 -
itk

i<1l, 2, ..., m.

Once again, V, i.e. Var (ej) and Cov (ej, ek), jand k=1, 2, ..., m,

may be obtained as in (A.3) and @.4). If some other sampling plan is used

-

for selecting remotely sensed data to obtain the estimates. ej's, expres-—
sion for V can accordingly be obtained, To evaluate expectation in (A.7),
one needs to find the distribution of ﬁ. This will, of course, depend

upon how E is obtained. In general, it will be difficult to obtain any
exact distribution of ﬁ. However, if the sampling of ground truth involves

separate independent samples from each crop and P is obtained as the

matrix of observed proportions among randomly selected pixels classified

25

(A.6)

(A.7)
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inte different crops using a classifier, each column vector of P has a
multinomial distribution and is stochaotically independent of the others
in P. Since expectation in (A.7) is for elements of P_l, it may not be

easy to derive the MSE (ﬁi) in a closed form, especially if the number of

crops is large.

28
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APPENDIX 2

Two-Crop Case

First we derive the MSE(pl) as in (3.8).

Proof of (3.8)

~ ~ -~

Considering the estimates Ql’ @2 and e, being obtained from

independent sets of samples, it follows by an application of the §-method

that
2 2 ‘ 2
.MSE(Pl) *\3 Var(el) + \55- Var(@l) v Var(@z)
. 1 1 2.
, 2
- e ~1+0 ”
. 1 1 2 N
T2 Var(e;) + [“—:‘___;J Var(e,)
(1 @1 ¢2) 1 {1 @l @2) 1
|: el - fI>1 ]2 . ~
R Var(s,) )
{1 @1 @2) 2
Hence

2
Lo 1 - &~ S
;MSE(pl) = TE:EI:EESQ (Var(el) + 1- 1_¢1_¢2 Var(®l)

P

- )
e - @1 : A
+[1':W "a’-"@) :

12 :

Here dot with equality sign means equality with approximation. This

establishes (3.8).
For a determination of sample size necessary to minimize the cost
lal

[a]
subject to MSE (Pl) < qz as discussed in section 3, it is achieved by

mininizing the function
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~

F = C (N) + A (MSE (;31) - 3

~

with respect to n, N, and N,, where C (N} is given in (3.12) and MSE(Pl)

1 2’

is given inm (3.10). By rewriting, we have

i 7 =2

F = cl n + (cl + 02) (Nl + Nz) + A (1 ~ ﬂ-"l - @2)

. elcl"el) + (l-p )2 5 (=2 92 2y (-2 o? (10, -0 )2 .
n Nl NZ

Taking partial derivatives of F with respect to n, N, and N2 and equating

1

each to zero, one obtains the following set of equations.

: -2 el(l—e) _
¢ ~ A-¢-0) 7 ——— =0
n
. -2 i 1=
(cl + CZ) - l(l—@luéz) (l——pl)2 1 ( l) 0
2
Ny
. -2 2
(6 + o) = A=01=0y) = pyp 3 A=)
’ 2
NZ

Considering only the admissible solution of these eguations, one has

_ ‘/; ?Lel (l-—el)
n. .= 3
cl (1-%.-9,)

1 2

] A ¢l(l—¢1)
Nl = (1"'131) . 9 ‘ ' (A.8)
(c1+c2)(l—®l - @2)

] Aoy (l-0,) )
N2 ~ R e +¢.) G~ )2
( 17eg) (=25 -

2
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»~

-

Considering that MSE (pl) 02 and making substitution in (3.10)

for n, Nl and N2 obtained in (A.8), one gets

\/3\—= [\/Cle (l—el) + (l—pl)\/(cl-{-cz) (ID-l(l—-(IJl) + pl\/(cl'ftz)Cbz(l—@z)]
g (l % ~2,)

After substituting forVa in {(A.8), the sample sizes n, Nl and N2 are obtained

as following:

nd'el(l—el)/cl [\/clel (1—e1) + (1—p1) \/(c1+c2)<1> (d-¢ )+p \/(c +c2)@ (1-¢ )]

2 2
0 (;-4’1-4’2) |
A / ¢1<1-@1>[W + Qp IV e, 8 @-0))
200 s 42 . -
" ({1-¢,~0,) gyt ’
12 12 +p1\/(cl+c2)®2(l—<b2)]
_ Py [o,(1-2,) E/‘”"_(‘—"Te T=e]) + (- Ve ¥e)) e (1-0))
2 9 2 c +c
g (1—@1-—¢2)

+py v’(c +c2)® (1-4.) J(A 9)

It can be easily seen that n is a monotone increasing and Nl, N..2 are monotone
decreasing functions in c2/c1, the ratio of two types of cost. For when
e ¢1, @2, are unknown, estimates of n, Nl and N2 can be obtained from (A.9)

by replacing these unknown quantities by their estimates.
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APFPENDIX 3

ERTS—-1 DATA INVESTIGATION

FOR

WHEAT IDENTIFICATION

Hill County, Montana

V. N4 W NW
W [90 . ﬂ W [90 10 W [9 5
W L5 95 MW O[5 95 NW [0 100

Complete ground for evaluation in 2 X 6 mile area in Hill
County North

Ground identifications of wheat, barley, oats in Hill County
South

ERTS-1 data evaluated at three acquisition periods covering
spring and winter wheat seasons

Date Winter Wheat Stage Spring Wheat Stage

May Greening Pre-emergence
June Heading 1007% cover
July Mature Headed

Classification performance results:

W — Spring/Winter Wheat
NW — Oats/Barley/Pasture

Commission/Omission Percentages

W ONW W N WoONW
W 70 30 W 90 10 W 80 201
NW 20 80 NW 15 85 NW 5 95
May 23(tl) June 27(t2} July 16(t3)

W NW
5

May, June May, July May, June, July



Burke County, North Dakota

Complete ground truth for evaluation in 2 x 10 mile area

ERTS-1 data evaluated at two acqulsition pevioeds

Date Spring Wheat Stage
June 5 3"-4" growth
June 23 : Jointing

Classification performance results:

W - Spring Wheat
NW - Barley/Oats/Pasture/Summer Fallow

Commission/Omission Percentages

W NW W ONW
w |75 25 W [85 15
NW |10 90 NW (10 90

June S(tl) ' June 23(t2)

1Y) NW

W 190 10

N
June .5, June 23
(tl’tz)
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ESTIMATION OF OPTIMUM ERRORS OF CLASSIFICATION
FOR UNIVARIATE NORMAL POPULATIONS
by
Raj 5. Chhikara
and

Patrick L. Odell

1. Introduction

For the multivariate normal populations, the problem of classification
using the Bayes' discriminant procedure inyoTves certain difficulties as to
. an exact evaluation of actual errors of classification, i.e. optimum proba-
bilities of misclassification, and an optimal estimation of these errors,
particularly in the case of small samples. [If the populations are assumed
to be univariate normal, these errors of classification are easily expressi-
ble in a close form. Yet even for this simplified case the problem of their
estimation has not been fully examined. For example, to the authors' best
knowledge no minimum variance unbiased estimates of these errors are given
so far in the literature.

Recently Sorum [8] investigated the estimation of both expected and
optimum errors of classification associated with the linear discriminant
function for univariate normal populations with known common variance. For
the optimum errors of classification, she considered the maximum likelihood
estimates and their various slight variants in her study involving large
samples. Hill [6] too considered the same problem but his investigation was

primarily motivated towards examining expected errors of classification.
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For a brief statement of the problem, let ur and m, be two normally

2
distributed populations with means My and My respectively, and common
variance Uz. Having obtained an observation x from one of the two popula-
tions, the problem is to identify the population to which it belongs.
Assuming equal a priori probabilities for Tys T, and a constant cost of

misclassifying any observation, the Bayes' discriminant criterion amounts

to: classify the observaticon x into i if

u]+u2 '

x> 5 when P O 0

and
+
x < Y when py, = p, < 0
- 2 1 2 ’

ctherwise classify x into Ty Without loss of generality, we assume
Hy =My, 2 0.

Suppose P(i|j) denotes the probability of claésifying an observation x
from “j into Tis i and j=1,2. Then the actual errors and non-errors of classi-
fication under the above discriminant rule are

(- %} iF i A
P(i]j) = (r.1)

1-a(- %), otherwise

Sometimes it is desirable to have the knowledge of P(i]j)'s. It provides
an assessment of the confusion likely to arise between individuals of two
groups and thereby it is helpful in correcting for bias, etc. For example,
see Cochran [3] who deals with several aspects of statistical inference in

presence of certain types of classification errors.
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In this paper we consider the probiem of estimating P(ilj), i and
J=1,2 when sample observations are available from the populations. In view
of (1.1}, one, however, only needs to consider the estimation of 2(~072)
when an estimation of P(i[j)'s is desired.

Let x,,Xx,,...,x_ be a random sample from population 7. and YisYaseaesy
1272 n, ] 1’72 n,

be another random sample from population Ty Consfdering the two parahetric
cases (i) I unknown and 02 known and (ii) HysHy and 02 all unknown,

the maximum Tikelihood estimate (MLE) of &(-A/2) is @(—3/2) where £==(§;?)/a
in case (i) and E = (x-y)/s in case (ii); here x and y denote the two sample

means and s is obtained by

™ 2

(n]+n2-2)52 = ZE (xi*;)z + EE (YI';)z
1 1

Below in section 2 we obtain the minimum variance unbiased estimate
(MYUE) of ¢(-4/2) and then compare it with the MLE in section 3 by evaluating
relative efficienciés of both MVUE and MLE with respect to the Rao-Cramer
lower bound for variances of unbiased estimates of ®(-A/2). It can be

shown that the Rac-Cramer lower bound is

{1.2)

in case {i) and

P I A 2. A
(——+— + —1“'**——:—74 (- =) (1.3)
N n, n, ?2 n]-f-n2 [ 2
in case (ii}, where ¢ denotes the standard normal density function. The

relative efficiency of an estimate is obtained by dividing the appropriate

lower bound by the mean square error (MSE) of the estimate.
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2. MVUE of ¢(- %)

(i) UI’HZ unknown and 02 known: The random variable

2l (/- + 1y o xo
n] ) n2 [e3

where Z is the standard normal variate, is distributed normally with mean~%

and variance one. As a result

o(- %) = prop (Z#H-(le— + 1y XY < 0)

2 ! n2 Le;
= E[Prob(Z < - Xy | %,y)]
] 1
T
- Elo(- —2Y 7,
T
)

E demoting expectation with respect to x,y, a set of complete sufficient

statistics. Thus by the Rao-Blackwell theorem we have the MVUE of &(- -;%),

oDy = ol BT (2.1)
LD
] 2

(ii) ul,uz and 02, all unknown: Let U be a beta variate, B(ﬁ—z—],%—l—),

stochastically independent of 52 which is 02x2/v distributed with

v = (n]+n2-2) degrees of freedom (d.f.). Then by applying theorem 1 in

Ellison [5], it follows that {2U-1) /v s/o has the standard normal distribu-

tion. Furthermore, the random variable

7 lw-D) S/"(’*“(;,I-]”f—,l;;) + (D1

has ‘the normal distribution with mean 4/2 and variance one. Accordingly,



Prob {{2U-1)s I/\)[}-}'(%""!'I_]_l"'] + {x-y) < 0}

i 2

fl

]

E[Prob{(ZU—])s/\:[h- (—’n—— + :1—)] +(x-y)<0|x,y,51}]
1™

where E denotes expectation with respect to the set of complete sufficient

statistics x, y and s. Thus the MVUE of (- %) is

Wn ¥
——

1

!

]

= Prob{(20-1) sAl-(-+ )7+ 7)< 0%, 7, s}
| 2

Prob {U j_%

¥

- (xY) /25 /o lb- (l—i + 191 [%,7,5)
; |

where U has a B(v—] v-l) distribution. Since extensive incomplete-beta

T
integral tables are available, (2.2} can be easily evaluated for any given
values of X,y and s obtained from sample observations. Next, denoting

| L %oy ,

’ 26 ol G+ 1)

w =

(2.2) can be rewritten in the form

3. Relative Efficiencies of MVUE and MLE of &(- é?

First we derive formulas for the variance of MVUE, ¢(-A/2), and the MSE
of MLE, ¢(-A/2), in forms suitable for numerical computations, and then
. /
present their values as well as relative efficiencies of both types of

estimates for certain parametric values of A in each of the two cases

(i} and {ii).
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3.1. R.E. of the MVUE

54

Case (i). Noting that v= XY is distributed normally with mean & and variance

a

(l_ +-l~) and

n n
! 2 - A v
(- 3) = Prob {Z < - I vl ,
b (- 4 1y
] 2
we have
ea- 912 = [ o2 - —L—) o(—E ) 4
2 — T
-0 ‘/Q_(__ — /_.+_.
] 2 M M
N Y S 2 R I
(I)( 2 2 :K(n] + ”2))

where &(x,y;p) is the bivariate standard normal c.d.f. The result in (3.1)
easiltly follows by a simple probability argument, e.g. see Zacks and Evens
{91, Hence

Var [6(- 3)] = o(- &, - &, ]

JZ\ A 1
R

)) - 0P (- )

:|~

2

and
) ] } 2, A oA
R.E. [o(- 5)] = =+ ) ¢" (- 5}/4 var [e(- 5)]
2 n n, 2 2
]/2, a non-central student t variate

Case {ii). Letting t = (;@;Q/s(%_ + 1_9
1
1/2

n
2
with v d.f. and non-centrality parameter &/(%—-+ J*J

= (2.2) can be
I p

written as

é(-%)=Prob {(20-1) < -t /n ;:— ./\,,{4 (711- -:1-—)] |tj-
2 1 2

Furthermore, letting U] and U2 be two independent beta variables, each dis-

tributed as 8(2513 B%lJ and considering W = max(ZU]-l, 2U2-l), it follows

that the density function of W is

1
fw) = (1-
W 2\)-38(\);"\);]) v

2)v—3 v=1 w1

L) /22 72

), =1<w<]

(3.2)

(3.3)



where x
I (a,b) = 3 ;’b f y@ T -y)P Ty
0
Now we can write
Viges
[o(- $)1% = Prob (W < - L2 |y
M-+ 1y
1 "2
T
= F{(- — | t), (say)
Aoth- (= + Ly
1 M
Then '.,._I__
n
E[¢-(- —) I F(- n 2 ) (t;6,v) dt (3.4)
o A L)
)

where g(t;8,v) is a non-central student t density function with non-centrality

parameter § = A/(—]- + :]—-)]/2 and v d.f. For numerical integration of the
1 2 '

right side in (3.4), we have considered the following forms for the functions

F{w) and g{t;8,v):

(1-w)/2
Flw) = (v_])le;v-l e D v R 0-y) T ay

0
© vt} (1+w)/2
. Z B ktl) kvl vy
B{v-1,k+1) f
k=0 0

where exact integration was obtained using recursive scheme, and

g(t,s,v) =

1 /y 2
Y 2 expl- Ut/ L -¢) -y }dy
v 2 “/2 { 20w
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where the 32-point Gauss-lLaguerre quadrature formula was used for numerical
integrations. The final integration in {3.4) was done using the Rhomberg
method of numerical integration. All of these evaluations were on double

precision basis.

After finding the variance of @(--é}, we now obtain

2
N N I T 20 By 1 yae o 8 (3.5)
R.E. [e(- 59] = (;ﬁ'+ ;;‘+ ETB:;E;:TT)¢ (- 59/ Var [¢(- 591 . 3.5

3.2. R.E. of the MLE

For the MSE and Bias of the MLE, we need to find both E[@(-&/Z)] and
E[@z(*A/Z]. We will be using the following result of Ellison '[5]  in
our discussion.

If X is a normal variate with mean p and variance 02, then

El0(X)] = o(—2—) . (3.6)

l+cr2

Case (i): Since -(x-y)/20 has the normal distribution with mean -A/2 and

variance %{l-+ %—J, it follows from (3.6) that

M 2 .
Ele(- §)] = a(- —4 ).
T
i 2
Again, it can be easily shown that
- hn.n
Elo?(- 91 = of- A , - A , (14— 27Ty (3.7)
z T P LR
24+ & L 21+ 1y
™" 2 1 M
Hence
- 4n.n
2, -1
MSE[o(~ 3) 1= ole,e, (14 “1“}'"2) - 20(g)e(- 2) + o® (- 5 (3.8)
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and

Bias [o(- 21 = o(z) - o(- &) (3.9)
where

P ] A 1

]
Next, the relative efficiency of ¢{- %),
Byq b1y -2, A B
R-E.[e(- )] = (;]-;-+B;) 7 (- 5)/4MsE [o( R (3.10)

Case (ii). Given 52, conditionally (x-y)/2s has a normal distribution with

mean (u]-uz)/ZS and variance (%+-+ %—ch/bsz. So by applying (3.6), we have
1 ya

~ ~

Efo(- 21 = E[E[o(- D) |s7] ]

2
Ls 1 1
E[@("A//’G—E—"‘ (‘r?""rg) )]

Since @ = v52/02 has a xz distribution with vd.f.,

1
n

elo- 91 = elo(-0/ /2 4
1

+ %;9 )] (3.11)

where the expéctation on the right side is with respect to the random variable
Q.

Next by drawing analogy with the previous result in (3.7), it can easily
be shown that

El’(- 9]

1

E[E[e” (- £)]s%]]

- Elo(- : , - A g1 (3.12)
¢(%Q +(%—-+ %rj f/gg=+(%?-+ %rq ]+'G_
1M 2

Accordingly,

MSEo(- D] = Ele(n,n, 1)) - 2E(e(m]o(- &) + ¥(- &) (3.13)



58

and
Bias[a(- D1 = Ela(n)] - o(~ 9 (3.14)
where
A
n = -
/ﬁg +(_]_.+_]__)
v n] n2
Once again,
A ) .
R.E[o(- )1 = (—,1—]- . ;‘1—; * g ¥ PrSELe - D)1 (3.15)

Expressions in (3.1), (3.7) are in terms of the standard bivariate
normal c.d.f. and can be easily evaluated using the method by Owen (1356},
among others, for any given values of nysny and &. MNext, for the final

numerical integrati611 in (3.11) and (3.12), we employed the Gauss-Laguarre

quadrature formula.

4, Numerical Results

Certain numerical results are presented in tables | and 2 considering

n,=n,=n and specifying valués for n and A: n=5,10,15,30 and A = .5,1.0,1.5,

1 2
2.0,2.5,3.0 in table 1 for 02 known case and n=5,10 and 4=.5,1.0,1.5,2.0,
2.5,3.0,3.5 in table 2 for 02 unknown case. (Due to limited computational
facilities, we considered only two values for n in the latter case). The

presented results are mainly designed to. exemplify the comparison of the

MVUE and the MLE in small sample case.

For the case of known U2 (figure 1}, bias of the MLE is non-negative for
all values of A, maximizing at A = 2.0. But when Uz is unknown {figure 2},
bias is negative for A equal or less than 2.0 and positive for A greater
than 2.0. However, in both cases, as one would expect, it decreases uni-

formly as the sample size n increases and is zero when A=0.



Further, interestingly enough, we observe that whether or not ¢ is

known makes a great difference in relative efficiences of the two types of
estimates. The. relative efficiency of MLE is higher than that of MVUE for
smaller values of A (i.e. when probability of misclassification is higher}

when 02 is known {Table 1). But reverse is the case when 02 is unknown

{Table 2). J
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TABLE 1
Relative Efficiencies of MVUE and MLE of ¢(- —g—) for 02 Known Case
~ A A of- D - _'&_
A n Var [o(- EJ] MSE [o(- 5)] R.E. [o{- EJ] R.E.[of 2)]

.5 5 .01502 01374 .9955 1.088
10 .00749 .00716 .9982 1.0044
15 .00499 .00484 .9989 1.0297
30 .00249 .00245 .9995 1.0149
1.0 5 .01256 01172 L9867 1.0573
10 .00624 .00603 .99361 1.0285
15 .00415 .00406 .9958 1.0189
30 .00207 .00205 .9980 1.0095
1.5 5 .00933 .00899 .9722 1.0082
10 .00460 .00452 .9861 1.0026
15 .00305 .00302 .9907 1.0014
30 .00152 .00151 L9954 1.0005

2.0 5 .00615 .00620 .9523 .9438
10 .00300 .00302 - .9756 9677

15 .00198 .00200 ' 9836 9774

30 .00098 .00099 L9917 .9881

2.5 5 .00360 .00384 .9274 .8685
10 .00173 .00180 9623 .9249

15 .00114 .00117 .9745 L9475

30 .00056 .00057 .9871 .9725

3.0 5 .00186 .00212 L9014 L7907
10 .00088 .00095 .9500 .8798

15 .00058 .00061 .9653 L9144

30 .00028 .00029 .9816 .9538
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TABLE 2

Relative Efficiencies of MVUE and MLE of &(- %—} for 62 Unknown Case

~

A n Var {o(- %J] MSE (- %J] R.E. [o(- %)] R.E. [0(- %Q]

.5 [ .01639 01726 .9438 .8965
10 .00780- .00814 .9900 .9485

1.0 5 .01491 01494 L9467 L9448
10 .00712 00722 .9843 L9714

1.5 5 .01249 .01178 .9526 1.0106
10 .00597 .00586 .985]1 1.0027

2.0 5 .0095] .00849 .9576 1.0730
10 L0045k .00432 .9845 1.0340

2.5 5 .00653 .00564 .9549 1.1052
10 .00309 .00289 .9832 1.0514

3.0 5 .00403 .00346 L9374 1.0906
10 .00183 .00175 L9747 1.0451

3.5 5 00224 .00189 8988 1.0615
10 .00102 . 00091 .9543 1.0717
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Summary

Considering the problem of estimating the optimum prébability
of misclassification under the maximum likelthood discriminant
rule for univariate normal populations with common variance, we
give its minimum variance unbiased estimate (MVUE) and derive
the variance of the estimate for both cases of variance known
and unknown. Next, we obtain the mean square error of the maxi-
mum likelihood estimate (MLE) and compare the two estimates by
evaluating thelr relative efficiencies with respect to the Rao-
Cramer lower bound for variances of any unbiased estimates. Also,

blas of the MLE Is investigated.
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CHAPTER I

INTRODUCTION

The Bayesian Solution of the Discrimination Problem

Consider m populations Mis++«+fy and suppose that each
individual in the union of these populations possesses p
common observable characteristics Cl,...,Cp. Let the
observed values of an individual be denoted by
X = (xl,...,xp)T, where x. denoctes the cobserved values of

J

C. The classical discriminant analysis problem consists

j-
of formulating a technique to divide the space of observa-
tions into m mutually exclusive and exhaustive regions
RysseesRy (hence classifying the individual in population
g if ¥ falls in region Rj) in a manner such that the cost
of misclassifying the individual is minimized.

There have been various techniques proposed for solv-
ing the problem, of which the Bayesian solution is optimal,
in the sense that it minimizes the expected édét of
misclassification. Andérson [1] states the Bayesian
sclution as follows:

"If g; is the a priori probability of drawing
an observation from population Ij with density

pi(X){i = l,...,m) and if the cost of misclassi-

fying an observation from Ij as from IHj is
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C(jli), then the regions of classification,
Rys-+-,Ry, that minimize the expected cost are
defined by assigning X to Ry if:
m m
I aipi(XC(k|i) < § q;p;(X)C(3|L) (1)
i=1 i=1
i#k i#j

for 3 =1,...,m,3 # k."

Estimation of Population Parameters

In actual situations the values dresesGys C(i]3) for
all i, j = 1,...,m, and the probability densities p;(X),
pz(x),...,pm(x) may'not be known. One solution is to
aésume the populations are egually likely, c(ilj) = 0 for
i =3 and Cc(il3j) is constant for i # j, and the populations
are normal, that is, when X is from population I

X ~ N(uj,Zj) @

where uj is the mean vector and ziis the covariance matrix
of the ith population. 1In addition, if the parameters yuj
and'zi; i=1,...,m, are unknown and a random sample of

) (i) (i) (1) .
size n; (denoted x r X teseyr X ) can be obtained

1 1 L2 ni

from the ith population, then w3 and L; can be estimated
by the estimators ii and ii given by
n- [}

i i
boxg

3 (3)

5|

X; =
B S T |



and
. ni (i) - (i) — . T
I; = __Inil— j£1 (5 =) (x5 ~X3)

respectively [1]. One can then estimate

9 Pl(x) = pi(XrUi:zi)l
by

A
.

pi (X:;X3,23)

]

PilX)

or ) -P -

N[ =

s 2 -~ — - —
pPi(X) = (2n) |z4] exp[—%-(x—xi)T zil(x—xi)]-

An individual with the observation vector X = ¥, will be

classified as belonging to the jth population if

max ﬁi(xo) = ﬁj(xo} r i = 112'c-o'mo

{4)

(5)

(6)

(7)

(8)
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CHAPTER II

DIMENSION REDUCTION AND VARIATE SELECTION

Misclassification as a Function of Separation

If p, the vector length, is large, the problem of
glassifying individuals becomes quite cumbersome and time
consuming [7,§]. For example in the analysis of remote
sensing data [10], when p = 12 the amount of computational
time is immense. Thus it is desirable to reduce p while

maintaining near optimal results. One technique is to

pick an acceptable number of characteristics, say s, s £ p,

based on_an'examination of a measure of the separation
between the populations, and proceed with Bayesian classi-
fication procedure using the s-variate marginal densities.
Provided the separation is held constant or nearly so, it
is feasible that fewer than p variates may be used for
classification purposes ﬁithout significant degradation of
accuracy.

In the case where m = 2 and Ny and I, are normal
.populations with unknowﬁ parameters u;, M, and
£y = I3 = I, the classification procedure'(B) can be

replaced by an equivalent discriminant function [1]

P T
v = XTEH(R) -K,) -3 (R +E ) TE (X -Ky) (9)

2
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where X, is given by (3) and
- 1 2B (4) o, (i) o.\T
D= = ] I (x5 -X;) (x37'-X3) . (10)
ntnp=2 =1 =1
V is asymptotically distributed N{(-a/2,a) when X n N(uz,z)
and N(a/z,q) when X ~ N(u;,I), where o is the Mahalanobis

distance between the populations given by
a = (ul-uzp?xtl(ul-uz) . (11)

Thus the probability of miscléssification is asymptotically
dependent on « aﬁd not on p. Hence the procedure to select

§ < p in a manner so as to hold thenéeparation, a, relatively
cbnstaﬁt,_and then to classify on the basis of s variates,

is reasonable.

Development of Divergence (A Measure of Separation)

For the two population case, Iy # Ep, Kullback [5]
ﬁses the divergence between the populations as the measure
of separation or difficulty of discriminating between the
populations. Defining the logarithm of the likelihood ratio,
loé [pl(Xo)/Pg(Xo)], to be the information in X = X, for
discimination in favor of 0, against T,, the mean infor-
mation for discrimination in favor of leagainst Iy is

p; (X}
Py (X)

112 = f pl(X) log dX . {(12)



The divergence between the populations, J, is defined by

In the case where I; and @I, are s-variate normal

populations,
7

S -1 -
P (X = (2m Z|z;| 7 expl-F0r-up) 1} (xup) ] o
for i = 1,2. CThen ]
X | L ’
log Py (X) _ L 109 125 - L¢r Iy (X-ujy) {X-uy) -
] (15)
1 -1 T
+ 3 tr Iy (X-up) (X-up) ot
from which we get
-1 -1
1 lzof | 1
I15 = £ 1 + 5 tr I;(Z; ~Ip )
- (16)
- % tr zgl(ul-uz)(ul‘uz)T .
Similarly
1 121l 2 ot
T,y =11 + 5 tr Ip(Iy -Iy)
21 2 J lZzI 2 2t 2
(17)
1 -1 T
+ 5 tr Iy (ugmug) (wyuy) .
Thus
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or
_1 -1 -1
J =3 tr (2;-5,) (T, -2;7)
(18)
i -1 -1 T
+ 5 tr (23 +Ip ) (ug-uy) (ug-uy)
Assuming equal covariance matrices, 21 = Iy = I,
: 1 -1 T
J lz E tr [2:': (Ul_l-lz) (ul—U2) ] (12)
or
T -1
J = (Hy=up) & “{uyj-up} . (20)
That is, if Zl = 22 = I,
I =« ' (21)

where o is the Mahalancbis distance between the populations.

It may be noted in (18) that the first term of the
expression for divergence is due to the difference of the
covariance matrices, and the second térm is due to the dif-
ference of the means. In actual situations I # I,p, howevér,
one may choose to ignore the difference and compute o« instead
of 'J. Then a value to sﬁbstitute for ¥ in (11) or (20) is

— L, +2
2

(22)

This assumption is made within this report, and the conclu-

sions of Chapter IV indicate it is reasonable.
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Sample Size Considerations

If the parameters of ﬁl and T, are unknown but esti-
mated on the basis of training samples of sizes nq and ns,
respectively, then the choice of s may be ﬁeavily dependent
on the values nj and nj. Consider 1) if £, = Ip = &,

(n; + nj)p measurements are used to estimate the

2p + (p2 + p)/2 distinct elements of ?i,iz and I; and 2)if
£y # Zor (nl + nz)p measurements are used to estimate the

3p +'p2 distinct elements of fl,fz,fl and 52. In eitherxr
case,,the‘number of elements to be estimated increases as

a function of p2.' This suggests thét for small sample sizes
the probability of classification may actually be improved
by cpnsidering fewer variates. The results contained herein

support this hypothesis.



CHAPTER IIX

SIMULATED POPULATION CLASSIFICATION

Classification Criteria

~ Anderson {1] discusses the classification when m = 2
and IIj and Hp are normal populations with equal covariance
~matrices. The classification procedure (8) can be replaced

by an equivalent discriminant -function

v A-l (Xl—Xz)*—(Xl-f'Xz) TA {El—iz) {23)

]

Al

~

where fi and I are given in (3} and (10), respectively. If
n; = n; = n then the distribution of V if X is from .M, is
the same as the distribution of -V if X is from I,- Thus
if V2 0 is the region of classification as I;, then the
probability of misclassifying X when it is from H; is equal
to the probability of misclassifying X when it is from T,.
Since V is asymptotically distributed N{(-o/2,a) when X is
from Ip, P(1{2), the prdbability of classifying ansobserva-

tion from Ii; -in I, is approximately

o 2
1 -(v+a/2)"/2a .
d - 2
{ = v (24)
Similarly
2
¢ 1 —(v-a/2 2 .
P(2|1) = [ Vo (v=a/2) / *av ; {25)

_

and P(2{1) = p(1]2).
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In the event Ij #‘22, ﬁl(x) and 52(X) are estimated
on the basis of training samples of sizes n; and n,,

respectively. X is classified in 1, if
p2(X) > p1(X) (26)

and in @; otherwise. Notice it is not necessary to compute

ﬁl{x) and ﬁz(x) since (26) is equivalent to

1 1 ,
|2,12 exp[-z,/2] < |£,|? expl-z,/2] (27)

where
z; = (X-X;) I; (X-X;) , (28)

i=1,2. Taking the natural logarithm of (27) and multiplying
through by 2 gives the classification rule: Classify X in nzi

provided
log (det Iy)-z; > log (det fj)-z; (29)

and in N otherwise. This rule is equivalent to (8) and (26).

Monte Carlo Simulation Procedure

If the populations Iy and.nz are assumed to have equal
covariances matrices, the probability P(2]|1) can be estimated
from (25) provided the sample sizes n; and n, are large. |
For small (and moderately large) values of njy = np = n, the
probability P(2|{1) can be estimated by Monte Cérlo methods.

The process involves taking a sample of size n from each of
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_the two normal populations. These samples are used to
compute X1,X, and ¢ according to (3) and (10). A sample
population of 50 is generated from Hj ~ N(uj,I) and 50
values of V are calculated. The probability of classifying
an individual from the HIj population as beionging to Ny is

then estimated by

B(2]1) = k/50 _(30)

where k is the number of values of V < 0. " The sequence

[training samples - estimation - Population - classification -

B(2]1)] is repeated 50 ﬁimes, and the mean of the 50 values
of P(2]1) is used as the estimate of P(2{1). The results
of Test Cdse 1 were obtained in this manner.

-When the covariance matrices of I; and I, are not
assumed to be equal, the procedure for eétimating P(2]1)
is basically the same as the preceding discussion. Dif~
ferences arise in the estimation of El and 52 and in the
classification procedure since V is no longer valid. El
and~§2 are computed according to (4).  The sample populaticn
of 50 is generated from I3 ~ N(uj,Z7) and the 50 members are

classified.as belonging to I} or I, according to (29). Then

P(2|1) = k/50 . - (31)
where k is the number of times a member of the population
is classified as belonging to My Again the sequence

terminating in the computation of ﬁ(2|l) is repeated 50
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times and the mean of the 50 values of P(2]1) is used as the
final estimate of P(2]|1).

When I # Iy, §(2|1) # P(1]2). However, the estimation
of P(1]2) is accomplished by changing the order of the input
of the parameters of the populatic:.s. The résults of Test

Case 2 were cobtained in this manner.
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CHAPTER IV

RESULTS AND CONCLUSIONS

Test Case 1: Feasibility

- To demonstrate the feasibility of selecting a subset
of the variates while holding the separation measure constant
consider the populations I'; and II; and the simulation results

given in the following table:

TABLE 1. TEST CASE 1: FEASIBILITY

Number of uy=0 - Max R
Variates 2 P P(2[l}
1 (1) 1. .318
2 (1,1) 2 . 256
3 (1,1,1) 3 . 216
4 (1,1,1,1) 4 171
5 (1,1,1,0,1) 4 .192
6 (1,1,1,0,1,0) 4 .195
My ~ N(O,I) : vy = (1,1,1,0,1,0)
I, ~ N(up,I) ny =np = 15

‘Table 1 illustrates a hypothetical situation where the
maximum separation, «, for the populations considered as
_ 4-variate, 5-variate, and 6-variate populations is the same.
Thus, if the training samples are large, an individual
could be classified on the basis of four characteristics,

namely C,,C,,C3 and.Cg, with no degradation of accuracy.



For small sample sizes, in particular nj = ny = 15, the
simulation indicates that sample size considerations are
significant, and better results are obtained using only

4 variates.

Test Case 2: Remote Sensing Data

To test the classification procedure using selected
variates under meaningful conditions, actual data from a
l2-channel sensor typical of those used in remote sensing’
of agricultural crops was obtained from NASA and used as
populétion parameters for simulation purposes. My was a
composite of soybean fields and is represented by u; and
I as givén in Table 2. 1I; was a composite of corn fields
and is. represented by ug and I; as given in Table 3. The
divergence J for all combinétions éf 12 channels taken s
at a time (s =1,2,...,11) was computed by NASA. As many
as 50 of the largest values of J weré printed for each
value of s and the values were included in the data package.

' For purposes of comparing separation measures, ﬁ was
computed [assuming & =, (I;+I,)/2] for s = 1,3,6 andhlz.
The maximum and minimum o and the maximum J for the wvarious
~values of s are plotted in Figure 1. The two distance
measures are not readily comparable; however, the data
does demonstrate the existence of combinations of fewer

than 12 channels which yield almost the same separation as



Mean Uiy
169.56 174,76 193,24
Covariance Matrix I
19. 08 |
14,47 14,28
9.01 7. 62 5.91
9.40 8,49 5.12
16,77 14, 59 9.00
13,73 11.98 7.24
7. 97 7. 01 4.68
13,79 12,62 T, 72
.10.43 10,02 6. 00
9,46 8.69 5.68
-3.02 -3.48 -1.33

-4,73 ~4,11 -2.73

192, 64

6.50
9. 86
8. 01
4,90
8,63
7. 00
6,28
-2.19

-2,75

Table 2:

19,23

14,22

8,44

15,12

12.08
10. 99
-2, 81

-4.24

MEAN AND COVARIANCE FOR SOYBEANS

166, 80

12, 84
7. 15

12,30

9.82

9,26
-1.10

~2,69

R

190,56 171.49

}

5,31
7,42
6.14
5.97
- 20

-1.67

15.17

11,47

10, 32

‘=4, 14

4,11

185,49

10, 88
8. 57
-4, 02

-30 23

173.79 160.94 181.18

10.10
-.84 23,59

-1.43 6. 55 9.70
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Mean LD

172,35

Covariance Matrix

23.92
18,21
11,57
10, 95
23,40
24,52
13,29
15.21
8.93
9. 14
19, 88

8.79

17.21
9.33
9.28
19,28
20.50
11,06

13. 26

Iy .

7,25

6,01
12, 65
13,18

7.52

8. 88

5,41

6.26
11.27

5.17

178.58 196,25 196,02 175.20 171.77

28,43
28. 94
15.95
19..14
11,49
14.15
27.21

13,18

32, 71

17.52  10.84
20.45  11.46
12,11 6,97
15,62  9.31

32.89 18. 61

15.85 9.01

194,28

180,16

16,43
9.92
12,40
18. 00

9.57

Table 3; MEAN AND COVARIANCE FOR CORN

193.56

7.76
8. 32
8,77

4,94

183, 46

13.89
17.48

9.32

157.35

63. 35
26.18

178,62

18. 21
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the full complement of channels. In particular, régardless
of the choice of separation measure, very little increase
in maximum separation is obtained by considering more than
5 channels. |

To further stuay the equivaleﬁce of J and o as the
criteria for the selection of variates, Table 4 was con-
structed. Table 4 contains some of the values!obtained for
J and o« for various subsets of variates. For.a single
variate,}the largest three values of J arise from consider-
ing the same three variates or channels that yielded the

largest values of ¢, and in the same order.

TABLE 4. SEPARATION AS A SELECTOR OF SURSETS

Subset of Channels Values of o Values of J
(10} 7.8% 16%*%*
( 9) : 7.0 15

( 8) 4.8 _ 10

{ 6,10,12) 12.0 J2*x*
( 6, 9,10) 12.4%* 31
{ 1,10,12) 12.3 30

( 4, 6, 9,10,11,12) 13.5 38**
( 4, 6, 8, 9,10,12) 13.6 - 38
(4,6, 7, 9,10,12) 13.5 38
(1, 4, 6, 9,10,12) 13.6 _ 38

{ 1, 4, 8, 9,10,12) : 13.7* :

* largest o for fixed number of channels
** largest J for fixed number of channels

For the three variate case, the best three subsets by J
measure were the best three subsets by o measure, though

in different order. 1In the case of 6 variates, from the
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924 possible subsets of channels, the best three by J
measure were not among the best three by o measure; however,
the best three by J did yield values of o significantly
close to the maximum a.

The conclusion from Figure 1 and Table 4 is that either
of the separation measures between populations, divergence
and Mahalanobis distance, is a suitable selection criteria
for the desired subset of variates. |

Figures 2, 3, and 4 were constructed from simulation
data based on training sample sizes of 15. They éupport
the theory that P(2|1) is a decreasing function of a. In .
most instances §(2|1) decreases as the distance measure
increases. The relation.is consistent with what could be
expected from the asymptotic theory. Figure 2 is not tco
coherent because there are exactly 12 data points to con-
sider. It does, however, indicate the trend. Figure 3 is
very consistent in support of the relation. Figure 4 shows
considérable scattering. If one looks ahead to Figure 6,
the reason for the scatter in Figure 4 is evident. The
sample size was too small. A ﬁraining sample sizeaof 30
would probably have produced a more consistent figure.

Figures 5 and 6 are the significant figures of this
report. They represent the same data presented from two
different viewpoints. Figure 5 shows that forrsmall fixed

training sample sizes, there is a subset of fewer than 12
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variates which yield the minimum probability of misclassifi-
cation. Figure 6 holds p constant and varies the training
sample size. This figure shows that, for the populations
considered, if one is constrained te n £ 11, one migh£ just
as well look at a single variate. For 11 < n < 30, 3=~
channel data is adequate, and n must be somewhere in the
neighborhood of 100 before l2-~variate data can be justified
over G—Vériate data.

The conclusion of this report is that for small sample -
sizes, a subset of the variates can be chosen so as to yield
better classification results than the full complement of
variates, and the selection of variates can be accomplishea

by considering the separation between the populations.
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ACREAGE ESTIMATES FOR CROPS USING REMOTE SENSING TECHNIQUES:

CLASSIFICATION ERROR MATRIX KNOWN

1. Introduction

Remote sensing technology has shown a great potential for data collection
for the earth resources in any given geographic region. As a result of this,
it may be feasible to assess various earth resources and, thereby, answers
to some of the important yet previously unsolvable problems may be available.
At present we address ourselves tb the problem of estimating crop sizes, i.e.,
amount of acreage under crops, in a large area using remote sensing technique.
Even though it may not be difficult to obtain full data over an area by using
remote sensors, crop acreage estimation on the basis of complete enumeration
of data points in the area may not be feasible both from technical and
economical viewpoints. As such it would be desirable to derive estimates
based upon sampled data acquired by a suitable sampling process.

In this report we discuss a sampling scheme providing crop acreage
estimates in a given geographic region, and investigate the precision of
these estimates and the effect of misclassification on the estimates. Since
observations are obtained on individual pixels, we consider the frame made
of the collection of all pixels in the region of our interest. As to the
. actual layout for various crops, two cases arise. One is that no informa-
tion is available and the other is that some a priori information on the
physical situation of crops exists. For example, if the area of interest

is small like a county or certain areas covering Western Oklahoma, it is



95

possible to have some prior information for the location of different crops.
In our discussion we consider each of these cases and point out the difference

that exists in precistons of two estimates.

2. Formulation of the Problem

Let C ..,Cm be m different crops and A],A .,Am be their corre-

1772 277"
sponding acreage areas in a region. Assumce the whole region consists of N
total number of pixels. Since a pixel on the basis of observation taken by
a remote sensor is subject to uncertainity in its correct identification,
let P{i|j) denote the probability of misclassifying a pixel from céop Cj
into crop Ci, and P(i[i) denote the probability of correctly classifying a

pixel into crop Ci. Accordingly, the expected acreages associated with Ci

on the basis of remote sensing data is

M

E, = E Aj P(i]j) , {2.1)

=1
i=1,2,...,m.
Given the total number of pixels and a pixel size, it is sufficient to
consider proportions of pixels associated with different crops in the region.
Let PyaPos--rsPy he the prﬁportions of pixels for C],Cz,...,Cm, respectively.

Then the expected proportions of pixels likely to be identified in Ci’

i=1,2, ,m, are
m
e. = E P P{ilj) . (2.2)
J=
e coincides with pi,I=I,2,...,m, when every pixel is correctly classified.

Since it is almost impossible to expect so in remote sensing, in our discus-

sion we Tirst consider estimation of e i=1,2,...,m, and then seek estimates
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for P i=1,2,...,m, assuming that P(i|j)} > 0 at least for one } different
from i. This will be done considering two cases: (a) P(j|i)'s are known

and (b) P(ilj)'s are unknown.

3. The Sampling Procedure

As we mentioned earlier in Section 1, we consider the following two
cases:

{i) Crop boundaries (i.e. the physical layout for crops) are unknown.

(i1} Crop boundaries are enhanced and so known.
(i) In this case, a sampling procedure which appears to be useful is a two-
stage sampling scheme. At the Tirst stage a specified number of flightlines,
each of the same size, are randomly selected, and at the second stage an
equal number of units {pixels) are randomly selected from each of the selected
flightlines. However, in order for this scheme to be useFQI, it may require
a fairly large number of flightlines to be selected. Otherwise, a simple
random sampling with single-stage, though more difficult to execute, may
produce estimates with smaller variance thanlthe two-stage random sampling
scheme.
(ii) When the physical layout for the crops is known to a certain degree,
consider the region made 6f subregions, each consisting of flightlines
covering area as homogeneous as possible. This could allow more than one
crop in a subregion, and such subdivision should be restricted to a minimum
possible number of subregions. For an illustration, see Figure 1 given at

the end,.
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For a samp]iﬁg procedure, we suggest a three-stage sampling scheme
carried out in each subregion. At the first stage flightlines are randomly
selected proporticnal to the size of a subregion; at the second stage blocks
(or segments) are randomly selected within a flightline proportional to the
size of a crop in the flightline; and at the third stage units within blocks
are randomly selected in equal numbers. The number of blocks selected in
each of the sampled flightlines is the same. Here by block we mean a
sampling unit of specific size within a flightline. It may be pointed out
that careful consideration should be given in specifying the size of a
block. Neither should it be too small for any practical use, nor should
it be too large to make any distinction for the ﬁrops when sampied. This
way at the first tﬁo stages the sampling is proporticnal to the size of the
underiying strata (i.e., subregions or crops, whichever may be the case) and
at the last stage it ig a simple random sampling. Though one may expect
accumulation in sampling erfor due to three stages of sampling, it should
lead to a smaller variance of the estimate for e, (i=1,2,...,m) compared to

a single-stage or double-stage sampling scheme.

4. Expected Proportions Estimates

(i) Let N denote the total number of flightlines for the region and let n
flightlines out of N be randomly selected. Suppose each flightline consists

of R units from which r units are randomly sampled for each of the sampled

flightlines. In the sample, let m. denote the number of units from tth
selected flightline classified into Ci' Now denoting
- Mt

= -1 t=1,2,...,n,



an unbiased estimate of e, is given by

n
-~ _ l . . -
e, = o= E M s i=1,2,...,m . (4.1)

Since the total size of units, NR, is expected to be large in relation to the
sample size, nr, the random vector e = (e],ez,...,emf has a multinomial dis-
tribution, usually a satisfactory approximation in such a situation. So it

~

follows that the variance of €5

~

vie)=(1- P ﬂ"r]rTT Z (eit'ei)z”’“" @%‘Fmﬁ-—;y e; (1mey ) (B.2)
- ot o]

and an unbiased estimate of V(ei) is given by

J\}((l;,i) = (] - l’l m Z "'e ) + ) —‘m E -t) (‘!*-3)

where ey dencotes the expected proportion of Ci in tth flight-line and

N
e, = E eit/N, the same as defined in (2.2}, {(Cochran, 1963):
t=1

{ii) Again, let N denote the total number of flightlines, each consisting of

R units. Suppose the region is divided into k subregions, R}’RZ"'"’Rk’ and

N],N2 ..,Nk are the corresponding number of flightlines for RI’R2’°"’Rk
such that ' K
N = E N.
J
J=1

Considering a sample of n flightlines out of N, let nj flightlines be

randomly selected from Hj in Rj such that nj = n(Nj/N), j=1,2,...,k, and



99

j=1
For subregion Rj’ let Bjit be the number of blocks covering ith crop
in the tth sampled flightlines; from this let bjit blecks be randomly

samples such that

and

i=1,2,...,m .
Considering block size L, suppose 1 units are randomly selected for each
sampled block. Thus the sample size for subregion Rj is njb] and the complete
sample consists of nbl unitg.
Let u.itdenotethe number of sample units being classified in Ci for

tth flightline selfected from Rj' Then

n,
i
. ]
€51 T n.bl E : “iit (4.5)
| J t=1
is an estimate of eji’ the expected proportion of units in Ci for subregion
Rj’ i=t,2,...,mand j=1,2,...,k. Thus
k
~ 1 - .
e =5 E Nj eji’ i=1,2,...,m. (4.5)
i=1
Next, K
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where
N e.i(l-e..)

: =Moo Dy o J - JU
Vie;) =5 O- 9 T

assuming the same variance in each flightline of Rj for a fixed Ci' Thus

ke 2
)y =L -n j .
Vie) == (1- 1) z I oey; (e (4.6)
=1 7
i=1,2,...,m

5. Actual Proportions Estimates

Denoting
._el - V'p]'h
e = e, s p = Py s and
®m _pm B
HP(I|I) P(H[2) . ... P(l]m)m
Q = P(2]1) P(z2|2) . .. . P(2]m ,
P(m]]) P(mIZ) .. P(m|m)
(2.2) can be written as
e =20Qp . (5.1)

Observe that Q may be a singular matrix. In view of this the equations
in {5.1) may or may not have a solution for p for specified e, Q. In

case any solution exists, it is given by
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p = QIe + Py (5.2)

where QI is a generalized inverse of Q matrix satisfying
cela = ¢ | (5.3)
‘and po satisfying on = 0.
in the second case when no solution exists, we lfook for the vector p

that minimizes the squared length of e-Qp for a given e, . Any such vector
is given by

p =0+ p, (5.4)
where QS is a right pseudo inverse of Q matrix satisfying

S (5.5)

(@' = 0
and Po satisfying on =0,

Since more than one Po MY satisfy the condition on = 0, in either case,
a.unique solution for p may not exist. Accordingly, either one would have a
complete set of solutions p given by {(5.2) or a complete set of vectors p
which are a "best-fit' when obtained from (5.4). The techniques for finding
Q;, QS and Py are well known (Boullion and Odell, 1972). Henceforth, by a
golution we mean in either sensé and will denote it by

p=Qe, (5.6)

assuming Po = 0 without lass of generality.

B.1. Q known
(i) Taking the estimate e given by (4.1) and the known value of Q, it follows
from the above discussion that an estimate of p Is given by

b = ol . (5.7)

Denoting the (i,j} the element of QG by q?j, we have
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_ . ‘

~ _ G ~ .

p, = 2 9 e i=1,2,...,m. (5.8}
i=1

These are unbiased estimates of Pis i=1,2,...,m. For the variance,

m m

v(p) Z (q; (e, c) + Z z qu qu, Cov(;j,;j,) (5.9)

j: _II=
j#_jl

where V(;j) is given in (4.2) and

Cov(ej,eJ W]T Z e )(faJ t-ej,)

N
_ _r _1_ R ‘3 P
(1 R) Nr N(R-T7 § ejteJ t, (i#j')
t=1

Next, an unbiased estimate of V(ej) is given in (4.3). .Similarly an unbiased

estimate of Cov (ej,ej,) can be shown as

COV(EJ.,EJ,) ‘Nn—(n—_—l—)— E -e)(e 't ej,)

n
' r 1 E : s e
(] - f{') WT) ejtej't’ (J#J )
t=1

Replacing the unknown quantities in (5.9) by their estimates, one thus

obtains an unbiased estimate of V(pi), i=1,2,...,m,

(1) In this case using the estimate e given in (4.5) we obtain
- o
p=1>Qe ‘ (5.10)

or
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m
~ G ° .
p, = E a5 e i=1,2,...,m . {5.11)
Jj=1

Once again,

~ m m m
~ :E : 6,2 ., :E : C G A
vip,) = (qij) V(ej) + E qiquJ.COV(ei,ej.) (5.12)
J=1 j= ji=1
J#j!
where V(;j) is given in {4.6) and
k

N
c ey =-don z:“_g__~
C°V(ej’ej*) Y (-5 N €%

i=1
-Now replacing V(ej) and Cov (ej,ej,) by their estimates, we can get an

estimate of V(ei), i=1,2,...,m.

£.2. Q unknown

In this case one also needs to estimate P(i[J), i and j=1,2,...,m. An
obvious way to do so is to ascertain the ground truth for a certain number of
additional observations taken independently of those used for estimating ei's
and utilize these to estimate P(i]j)'s. In view of this ; and a will be

stochastically independent and an estimate of p is given by

p=0%e (5.13)
or
m
p. = E & e i=1,2,...,m . (5.14)
l ._J J ’ 3 H » -
I

where q?j is the (i,j)th element of QG.
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~

For a given QG, the conditional variance of Bi is given by (5.9) in
case (i) and (5.12} in case (ii) with q?j's replaced by a?j's. For the
unconditional variance, the expression will involve the variances and co-
variances for the elements of aG. In general it will be difficult to express

the unconditional variance explicitly.
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Figure 1: A subdivision of a region with five crops
for a three-stage sampling plan.
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Estimation of Crop Acreage Through

Sampling of Remotely Sensed Data

R. S. Chhikara and P. L. Odell
The University of Texas at Dallas

1. INTRODUCTION

In this report we consider the probiem of estimating crop acreages
in an area using samples from remotely sensed data for the area. Ration-
ale for using samples is to avoid enormous cost and time that might be
involved otherwise if the full data is processed. In particular, such
would be the case for a ERTS scene which generally has over half a mil-
lion data points and covers approximately an area of 100 X 100 square
miles.

While considering crop acreage eétimation, it is desirable to as-
sume that the underlying region is an agricultural area and that every
data point is identifiable with respect fo certain known types of crops.
In a Targer context of an arbitfary area, it is sufficient for the con-
dition of identification to hold with respect to the underlying known
earfh resources,

To formulate the problem, let my, T,, ..., M denote the m crops in
the area and py, pPas ...s P, be the proportions of their acreages. Next,
let P(i/3) be the probability of classifying a reso1ution element {(pixel)
from Hj into n. using a classification algorithm. Then associated with
such classification algorithm processing of full remotely sensed data

would amount to expecting proportion of I; acreage given by
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m
e-i :Zp_ P(i/j)i 13 j! 2! "'Sm (1)
j=td
Equivalently,
e = Pp (2)
where
ey i
5 3 o
e = ., p=1. and P = [ P(1/1) P(1/2)... P(1/m)
: P(2/1) P(2/2)... P(2/m)
e - ~p - R
m m P(m/1) P(m/2)... P(m/m)_l

If the vector e and matrix P are known, one gets p by solving (2) sub-
ject td Ip; = 1. Otherwise one needs to consider estimation of e or P
or both of these as the case may be in order to ascertain abouf p.

In general, e will be unknown. An estimate of e is given by the
vector of observed proportions of resolution elements processed and clas-
sified into T i=1,2, ..., m using sample data obtained under a
sampling plan. Regarding P, two cases arise:

(i} P is known

(11) P is unknown
Again, P will generally be unknown and for an estimate of P one would
require some suitably selected amount of the ground truth, probably in-
dependent of the previous sample data used in estimating e} Moreover,
care should be exercised in handling of the sampled ground truth. Most
often, it would be desirable to use the sample for both training the

classifier and obtaining estimate of P.
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Clearly how much complex the estimation problem is depends upon how
much one knows about P. In an entirely unknown situation of classifica-
tion with untrained classifier, estimation of acreage proportions can be
very misieading. As such we would assume for the classifier to be proper-

ly trained and thus are able to achieve reliable estimate of P.
2. PROPORTION ESTIMATES

Let & be an estimate of e and P of P. Then an estimate of p is given

by

(i) p= P! & when P is known ‘ (3)
and 5

(ii) p = -l & when P is unknown (4)

In case (i) p is an'unbiased estimate of p whenever e is an unbiased es-
timate of e. However, if estimate for both e and P are involved in esti-
mating p as in case (i), it may hardly be possible to obtain an unbiased
estimate of p in E. Henceforth, we will assume €, and so also p, to be
unbiased estimate and it is the vector of observed proportions of resolu-
tion elements processed and classified into different Hi's (This wi1] be
the case due to the sampling plans being considered in this report.)
Also, we would restrict our investigation to case (ii)*and for case (i},

refer to Chhikara and Odell [ 1]. Though final results in [ 1] pertain

to specific sampling plans, the discussion there is of general nature

and results can be adopted in any sampling situation.



3. MEAN SQUARE ERRORS OF ESTIMATES

First we calculate the bias of p given by

Bias'{é} = E [E—p]

ELP e - pled

E[p” (é-e) + (5'] - P'])e]
ELp T - p e (5)

n

I

A

because the first term is zero due E(&-e) = 0 for a given P"]. Clearly,
the bias depends upon how much bias there is 1in ﬁhT, and
Bias (P} = (Bias {P™'})e. , (6)
In order to find the mean square error of any component of é, we
first consider the evaiuation of matrix,
E L(p-p)(p-pY1 = E [(P7Ta - pTe)(pTe - pTe)Ta
EL(PT)(-e)(-e) T )T + (577 - b1y eeT (571 - p1yTy
e e v e ! e Ty et 7 - 0L, ()

]

where M denctes the covariance matrix of e.
Denoting the (1,3) th element of P™' by P™ and that of P=! by

P1J, it follows from (7} that the mean square error of ﬁi is given by

Mmoo
E[z pik
k=1 J

m e -
+ I ek(P1k"p1k)
k=1 o d

A..iJ‘ -~ -~
P Cov(ej,ek)

Hem 3

1

1| P
5 (PH-pld) e;]
=1 J

where E stands for expectation with respect to 55 Denoting it by MSE {51},

we have
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" m T m
S ~y i3 " A

MSE (pi) = E z (P J) Var (e )+z S Cov (ej ,ek)

S =1 =1 k=1 ;

L M m. m J#k
+ Z 'e:‘?E P - p l5']+Z\ zeeE[(Pl‘] _pidy pik_pik i,

J=1 j=1 k=1 -

j#k (8)

13,2, ..., m.

The procedure for obtaining ﬁ would invoTlve sampling of ground
truth independent of samples taken for estimating e. In the following
section we give expressions for v(éi) and Cov (éi’ éj) considering dif-
ferent sampling plans. To evaluate expectation in (8), one needs to
find the distribution of 5. This will, of course, depend upon how 5
is obtained. 1In general, it will be difficult to obtain any exact dis-
tribution of 5. However, if the sampling of ground truth involves sep-
grate independent samples from each crop and P is obtained as the ma-
trix of observed proportfons among randomly selected pixeis classified
into d1fferent crops u51ng a c]ass1f1er each column vector of P has a

mu1t1nom1a1 distribution and is stochaotically 1ndependent of the others

~

in P. Since expectation in (8) is for elements of P"], it may not be
easy to derive the MSE'{ﬁi} in a closed form, especially if the number
of classes is large. As such we now consider the two-class case and

show the procedure for obtaining Bias' {p.} and MSE (p.}, i=1, 2.

Two-class Problem

Often interest 1ies in ascertaining acreage of a specified crop in
an area. In view of this one may consider T; to be the crop of main in-
terest and I, to be its complementary part. Without loss of generality,

let us assume density functions for 1, and 1, to be symmetric about certain
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location points.” Then P(1/2) is same as P(2/1). Denoting this common

value by ¢, one gets

-6 ¢
S O
It now follows from (2) that
e1‘-‘P]+(Pg'P])¢
and
ey = Py * {py - Py} 2, (&g t &y =1)

Assuming @ # 1/2, we have

€, -
p'|=1—
1 -2 ¢
and
e, - &
Pr = 2
A e

Considering é1, éz and ¢ (& # 1/2) estimates for ers &y and &, respec-
tively, obtained according to the procedure outlined in the previous

paragraphs, one has

ﬁ'l:_e]-q)
1-2%

ﬁ2=82‘¢’
1-2%

Clearly, é] + 52 = 1 because of é] + é2 = 1. Next, it follows that for
k=1, 2,

Bias (5} = (e, - 1/2) (ELTI - o)
and

MSE (B, ) = Var(8,) ECT°] + (e - 1/2)° EIT - o1

where

T={(1-2%"] and 0= (1 -2 )"
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To obtain E[T] and E[T2], one way is to find the distribution of
¢. Let ry out of N] pixels sampled from my; be misclassified into 1,
and r, out of N2 pixels sampled from I, be misclassified into my;. Then
1 2
provides an estimate of ¢. The condition of ¢ # 1/2 is easily met if
we restrict N] % N2 to an odd number, a mild restriction which should
not undermine the generality of present discussion. Denoting r = r + r,

and N = N] + Nz, the random variable r has a Binomial distribution with

proportion ¢ and sample size N. Accordingly

- N
E[Tf =z N N of (1 - o)NT
r=0 N - 2r \r
and
N - r N-r
E(T2y = 3 N2 ) (E) o (1 - e)
r=0 (N - 2r)
However, it is difficult to give any closed-form expression for E[F] and

E(T2]. Due to -1 < (1 -'ﬁﬁ) o,

E[T] =
S

il ™~ §

S
. (2/N) M

and

EITZ] = 5 (s + 1)(2/N)%,

I~ 8

s=0
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where Mg is the sth moment of Binomial distribution about the origin and
can be easily obtained by evaTuatingrthe sth derivative of the moment gen-

erating function at the origin, i.e.

55 a-a+aet)N
]JS W t=0 .

It can be shown thatr
E[T] = (1 - 26)" + 0(1/N)
E[T2] = (1 - 2¢)72 + 0(1/0) .

Then asymptotically, i.?. as N becomes large,
Bias {p,} = 0

)—2

and MSE (B} = Var (p) = (1 - 22 Var(ék).

4. SAMPLING PLAN AND COVARIANCE MATRIX OF e

In a remote sensing situation involving collection of data over a
large region, we suggest a stratified random sampling scheme with three
stages. First of all, stratification will be most effective if strata
are formed on the basis of at least

(i} predominance of varioué Crops,
{(i1) Tlatitude,
(iii) longitude.

The first factor would lead to homogeneity in various strata whereas
the other two fagtors are important from the point of assessing P appro-
priately. |

Let R denote the region for which-crop acreages are to be estimated.

With the consideration of (i) - (iii),suppose R is stratified into strata
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Rst’ $=1,2,...,a and t=1,2,...,b, with weights Weps the proportion of

acreage (number of pixels in a stratum divided by the total number of
pixels in the region}, i.e.

R=U R

s,t 5t
with
] = E Wer
s,t

Due to (i}, one may expect elimination of many scenes or even many
strata if interest Ties in only a few specific types of cfops. Nevertheless,
for sampling purposes, select ERTS scenes at the first stage, strips within
scenes at the second stage and scanlines within strips at the third stage.
0f course, one can go one more stage in selecting pixels within scaniine.
However, this would not be convenient as far as processing is concerned.

As such, thié-stage is not considered for the sampling.

For stratum Rst’ we denote the following:

e ¢ ijhk = expected proportions of pixels in T for kth scanline
in hth strip of Jth scene,
€t iih - expected proportions of pixels in m for hth strip in
jth scene,
et i = expected proportion of pixels in TS for'jth scene,
SR = expected proportion of pixels in urs
Then a b
e =ZZ Wey By io i=1,2,....,m.
s=1 t=1
Next, let Gst’ Hst’ Rst and n denote the number of scenes, number of

strips per scene, number of scanlines per strip and number of pixels per
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scanline, respectively, for stratum Rst' Suppose gt hSt and rep are
the corresponding number of scenes, number of strips in a scene, number
of scanlines in a strip that are selected randomly at three stages. Let
Net i3hk be the number of pixels classified into T for kth selected
scanline in hth selected strip of jth selected scene. Then considering

the observed proportions for estimates, one has

- _ st ijhk
st jjhk n
- - lﬂst
et ijh = 1 NSt ijhk
nre.
&=
hot Tt
" o 2 2
e . s = — n ..
st 1] nreihes - - st 1jhk
=1 k=1
st hst st
. = n ..
st 1 nr h / o 4 st ijhk
st st St i=1 h=1 k=1
and
a h
e; = E E wst est i i=1,2,...,Mm.
s=1  t=1 :

For the covariance matrix,

t 2
v =(1 - S 2 - .
ar(est 1) ( t gst(Gst 1} (est ij = st 1)

h st st 2
o ) I
Hst gsthstest(Hst 1} st ijh st ij
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qt st

’"st) ( )
A ek ZZZ e

Rst' Ost strsthtHst(Rst 1) st ijhk “st ijh

Gst
Covlo.. v, a)=(1- 5t > e )(e )
CrUst 1Tst Gst gst(Gst 1) e st i3 %t i/\%st i5” st
Gst Hst

i .
st 1
*0- 79 7 -1 szest ijh ®st ij)(est i3h Cst i)

g G_,(H
st st stst'' st =1 h=1

r‘st) 1
Rst gsthstrsthtHst(

+(1-

1Y 4 (esti3hkCstiih) (Cstijhk Cstitsh)"

Thus the covariance matrix for e can be obtained because

a b
Var(ei) = 3 2 wst Var(e ., ;) -(9)
- a b
A A ~ 2 -~ A~
Cov (ei’ei‘) = 2 22 st COV(est i St i') ) (10)

For an estimate of the covariance matrix,

~ ~

~

a
N - 2
Var(ei) =5 > Weg Var( et 1)
s=1 t=1

~
~

- a b
FS ~ _ 2
Cov (ei,ei.) = > 2 Wey Cov(eSt is 8t 1..)
. :‘[ u

where
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where
] g %t 2
A t '[ ~ ”~
Var(e_, .) = (1- =25) —v 3 leg, i€, :)
st i Gst gst(gst 1) b st 1 “st i
' hSt 1 95t hst - - 2
+ (1- ) (e, .o.e . ::)
Hst Gstgst st 2: E: st ijh st 1]
=1 h=1
r gSt hst r‘St 2
t 1 -~ "
+(1- ) ST OY (e, oy ci) - (11)
RSt GstHs st st st(h 1} P st ijhk “st ijh
Similarly one can write Cov (ést ; ést 1..) by replacing the sum of

squares terms in the variance by the correspohding sum of product terms.

5. OPTIMUM SAMPLE SIZE

Taking the cost factor into consideration one may want to know the
sample size that either minimizes the cost for a specified mean square
error or minimize the mean square error for a given cost. In remote
sensing, the sampling cost would mainly involve a\Targe initial cost plus
the processing cost. Although it would depend upon a situation, the cost
function may be considered as

C

+C h., +C

295t st h

i 39st"st" st
for when sampling in stratum Rst’ and

C=0Cizggy + Cpaggihoy + C3og ho,rey

for the whole region,



In the present context, there is an additional cost of taking samples

for estimating P and this can be expressed in the form of
.
c' = ,2: CgsMy-  Thus the overall cost involved is given by

Ral C"=C'+C.

Next, the mean square errors, MSE{ﬁk}, k=1,2,...,m, are obtained
from (8) after making substitution from (9) and {10). Now, if the cost
is fixed, say C" £ CO’ a determination of sample sizes, ni's, gst's,

's and rs 's, can be achieved by solving equations obtained

It st t _
by equating the partial derivatives of MSE{pk} + A(C“—CD), k=1,2,...,m

. . . | | 1 !
and 1 a lLagrange multiplier, with respect to N;'Ss 9t S5 hSt s and Pep S
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to zero. Similarly, for any fixed values, say UE, for MSE{ﬁk}, k=1,2,...,m,

this can again be achieved by considering the function

" A 2
c" o+ AK(MSE{pk} - “k)’

k=1,2,...,m, for minimization. Of course, this
procedure may Tead to k different values for various sample sfzes. For
a unique determination, take the largest value in each case.

It may be noted that under this proce&ure, it is not possible to
give any closed forin expression for any samp]é size and its carrying
out would involve some optimization technique.

One direct way to simplify the problem is to treat the two types
of cost separately. For example, if we consider only the cost C and
variances given in {9) for the purpose of determining gst's, hst's and

's, the problem is greatly simplified. Denoting

G
st 9

r.st

2 _
st"1) Sep 1 .2: (est ij = Gst i)

j=1

(G



GSt Hst 2
2 » -
GIst(Hst—”Sst 2 DD (est ijh st ij)
j=1 h=1]
and
Rst Hst Gst )
2 _
Goilet(Rer-Sgy 3= 20 20 2 (Bgt i5nk Bt jh)
k=1 h=1 Jj=1

(9) may be written as

- 2 ] 2 2 1 2 2
Var(e.) = E W [———-(S -5 /H ) + = (S -S /R_,)
i s st 95t st 1 7st 2/ st gsthst st 2 “st 3" st

2 2
*Scy 3/ 9stMstst T Sst 1/Gst] :

which is a function of It gsthst and gsthstrst ?s is the case with
the above cost function. Thus, the guantity Var(ei) + A(C—CO) or
C + Ai(Var(éi) - V?), and equivalently Var(éi) for fixed C or C for

fixed Var (e1L is minimized when

- 2 z
Y5t = st QJ(Sst 1 Sst Z/Hst)/AC]

_ ? 2
9o thgr = Wgt Q (Sgp 2 = Set 3/Rg)/ACy

: _ 7
P &st 3/AC3

Accordingly,

-
|

- 2 2
st Sst 3\/62/ gcs(sst 2'Sst 3/Rst)

2 2
h., = of C(S5, ,-S 2 2
st Q 15t 2775t 3/R VG, (S5, 1S5y p/Mgy)
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and 95t ¢ Yst Q’ (Sgt 1 Sgtz/Hst)/C1 :

These values are, of course, for the case of Var(éi). Similarly, one

can obtain sample sizes corresponding to other variances. By choosing
the maximum of these values in different cases, a unique solution can

be obtained.
6. FURTHER COMMENTS

When stratification is based upon factors of Tatitude and longitude,
one might expect différent P's over different strata. However, if proper
adjustment can be made in the classification algorithm with respect to
spectral variation so that P remains the same, there is no need to make
any change in the above procedure. On the other hand, one should find
both the actual proportion estimate and its mean square error separately
for each stratum and then by combining these one is able to obtain so
called ; and its mean square error. In this situation the formula in
(8) is still valid but stratumwise.

| Qur discussion given in Section 1-3 is quite general and can be
specialized and different sampling schemes can be adopted. For example,
if our inference set is only one scene, then proportion estimates and
their mean square e}rors are again obtained as discussed in Section 1-3,
but as to sampling scheme there may not be any need of stratification

and the sampling is done in two stages rather than in three stages.
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ABSTRACT

Observations may be known to be coming from m+1 normal
populations having same dispersion matrix; but one may he
interested in identifying observations from T only. Then
the usual practice is to merge the other populations Myases™
into one single population 7 and assume it to be normal. This
is done in order to achieve the computational convenience of
two population classification. This paper investigates the
effectiveness of such practice. 1t has been found that in
some situations this practicle may decrease the proper classi-

fication probability of observations from T considerably.

Key Words

Dispersion matrix, Bayes' procedure, misclassification
probability, proper classification probability, prior proba-

bility, misclassification cost.
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1. Introduction

Let us suppose that all of our observations come from (mt+1) p-variate

normal populations LANLETL PYRPIYS with densities Np(ui,V)(|=O,l,2,...,m),

where‘pT = (”fi’”iz”" ) is a vector of p means of the populations w.

’uip
and V is the dispersion matrix, same for all populations. In general the
problem of classification into more‘than two classes (m+l>p>1) is more
complex and computationally inconvenient than the problem of classification
into two classes. In some situations, instead of finding which population
an observation has come from, one may be interested in finding only if the
observation has come from some particular population, say Ty There, for
achieving the convenience and simplicity of two-ﬁopu]ation classification
problem)one may think of merging the populaticns M afgs e s intc one
single population w and further assume the resulting single population 7 to
be normal. Then the question that needs to be answered is how badiy the
classification procedure based on such assumptions affects the misclassifi-
cation probabilities. This paper endeavors to answer this guestion.

In Bayes' procedure the prior probabilitie% play a significant role.
Improper choice of prior probabilities affects the misclassification proba-
bilities. The usual practice in remote sensing data analysis is to assume
the prior probabilities 9 and q of Mo and y to be eqﬁa], even though it has
been assumed that the prior probabifities GgsQys- 59y of T Myseeesm are
equal. Therefore in answering the question raised in the above paragraph
we should take into consideration our assumption about the prior probabilities.

Thus our study will be concerned with combination of following sets of

assumptions.
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Assumptions regarding population densities

(1) Before merger the populations TypTysenesT have densities
Np(ui’v)’ i=0,1,...,m;
(2) After merger, Ty has density Np(pG,V) and the density of g is

a linear combination of the densities Np(ui,v), i=1,...,m;
(3) After merger ng has density Np(uO,V) and ™ has a density
Np{p,V'), where p and V' will be specified later.

Assumptions regarding prior probabilities

P/ (m+1) s

(a) 9 1/(m+1), 9y =9, = ... = q_

It

1/2m .

fl

(b) qp = 172 » 9y =9, = ... =g

m

2. Dispersion Matrix of the Populationw

The true density p{x} of the population 7 is given by
_om . _
p(x) = Zi=] [q,/(1-q,) ] N, (u.,¥). (1)
Now-since in both assumptioné {(a) and'(b) we have

Im899 7 Ty

and qi/(i-qo) = q]/(T—qO) = 1/m,
then the density p{(x) under {(a) or (b} is given by
m
p(x) = (1/m) [._, UNUPRAORS (2)
Therefore the mean p of 7 is given by
n=E () =/ x p(x)dx = il Zm Sox N {u.,V) dx
e R m fi=] R prii’
P P
1 —_
=E|-(u]+...+]_lm)=].l, (3)

and the dispersion matrix V' of @ is given by
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vio= E [0 (- T

m
-4 Zm S Gem TN (oY) dx
m “i=1 R pi’
P
m
=Ly e Gen) T 20 o)+ G G TN (V) dx
R
P
= v I G W) | (4)

Here En(-) denotes expectation of the population 7.

Therefore,if we want to use a normal density function far n instead
of the density p(x) given by (2), we have to use NP(E,V'), where V' is
given by (4).

Expression for (V')_]

Let us write VO = V and

A e [N LA (R I OB (5)

Then Vm = Y', We know (Rao, 1965; p. 29} that if A is a nonsingular p % p

matrix and o and B are two p x 1 vectors, then

-1 -1 . T.-1
(A+a6T) =al-4 ?S-;?—m. : (6}
I+ A '«
-1 -1 1 =T -1 —\T, -
Thus, Vv (u]-iﬂ(u]—u) v ﬂ{1+(p]-u)TV I(u]-uz)}, (7)
Sl el e =T =T o~
and P R RO RO PRID R AR VAR LU L UPL R
(i=2,...,m). Therefore
(Tt v - n (say). (8)

The exact expression for M that can be found recursively from (7) is not a

simple cne.



3. Acceptance Region For Ty Assumptions (1) and (2)

We will denote the acceptancc region of T given by a Bayes' classifi-

cation procedure by B. B for example, will denote the region B obtalned

2a’
under the assumptions (2} and {a). If the populations T ®pseee s have
densities po(x), pl(x),...,pm(x) and prior probabilities P L and
C(vj|ﬁi),(j#i), denote the ccst of misclassifying an observation from .
into ﬂj, then it is well known (Anderson, 1958; p. 143) that the acceptance
region B for Ty is given according to Bayes' procedure by

m m
B=N ]{X=Z;=1Q;P;(X)C(WOIW;)<E;#JQ;P](X)C(“jf“i)+q0PO(X)C(Wj|“O)}-

In case of assumption (1) if we assume all costs of misclassification to

be equal, then we have

m
By = N0 1t agp (x) > a;p(x)}
= {x: g,p,(x) > max {q.p. ()]} .
070 1<j<m Jj
Therefore, B, = {x: po(x) > max p.{(x)}
: 1<j<m
and B,, = {x: p.(X) > (1/m) max p.(x)} .
b 0] 1<
S)=m

In case of assumption (2) we assume that
C‘“o'“i) = C{ ”ilﬁo) = C(WJIFO), for all i#j#0
and C(ﬂi[nj) =0, for all i,j#0 .

Then we have

B, = {x: qppy(x) > qpy(x) + ... +qp (x}]
= Oxqypy(x) > (1-q,) ZT=l[qi/(1-§0)]pi(X)}
Therefore, B, = {x: po(x) > p‘(x) + ...+ pm(x)}
and Bop = 1x: pp(x) > (1/m) Ipy(x) + ... +p (x)]} .

(9)

(10)

(11)

(12)

(13)
(14)
(15)
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Now since max {pl(X),...,pm(x)} > (l/m)[p}(x)+...+pm(x)] , the following
set theoretic inequalities are evident.
Blp = Bop= Bra = Boy (16)
When pi(x) = Nb(ui,V), (i=0,1,...,m}, then we know (Anderson, 1958; 147)

that B] can be expressed as follows.
B, = ?L] {x: wj(x) z_Tog(qj'qo)}
= {x: Wj(x) > Iog(qjlqo), for j=1,...,m} ,
where Wi () = (ugu) W7 Ik = (172) (g + )] (18)
Therefore By, = {x: wj(x) > 0, for j=i,...,m} (19)
and By = {x: Wj(x) > -log m, for j=1,...,m} .

When the means HpsHgyeo sl are collinear, without loss of generality we

can assume the populations to be two dimensional and assume the means to be

as follows:

SO, W=, =2, (20)

a -a - a
o 7 L I and " = . (21)

Let the 2 x 2 disperion matrix V be given by V = [Vij]' Then we have
w, = (1/|v]) [x]—(lfz)(a0~a)][(a0+a) Vag = bgvysl

|
+ (/v Ix, = (1/2)bglIb vy = vy,(ag+a)] | (22)
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and Wz = (I/[Vl) {X]— (l/2)(ao+a)][(ao‘a) VZZ_bO VIZ]

+ (7)) Ix, = (V2)bllby vy - vy,(a-a)] . (23)

The acceptance region 8] for v, will be bounded by two straight lines, viz,

0
w]-d and W2=d, where d=0 in case (a) and d= -log 2 in case {b). The point of

intersection of these two lines will be given by

(VIZC/D, VZZC/D), (24)

2a_b_v + b2v

22 = 230Pgvya * bgvy )+ 24[V[]

where £ = [{(ag - az) v

= 2b, V],

2
and D = 2by(viqvy, = vy

|V| denoting the determinant of V.

From (14) and (15) it follows that the acceptance region BZa and B2b

can bhe given the following general description.

B2 = {x: po(x) > (1/w) [Pl(x) + ..+ Pm(x)]}s

where o should be taken as I-For B2a and as m for BZb' In case of three

populations with means given by (21) we may note that the condition
ap_(x) > p,(x) + p,(x)

is equivalent to
log [a p_(x)/p;(x)] > log [p,(x)/p;(x) + 1].

Neting that uy o= , we can write the above condition as

U
2

| T -1 - s
log o + (u2+u0) v [x+(u2—uo)/2] > log [1 + exp (szv. x}] (25)

Here o should be taken as 1 fer B, and as 2 for B, .
2a 2b

When all means are collinear, without loss of generality we can assume
the populations to be univariate and HpSHp€en ey . V in this case is the
common variance of the univariate populations. Now from (18) we have

wJ.(x) = [( J/V] [x=(1/2) (u0+uj)]-

oTH

130



131

It now follows from {(19) that if Ho< Wps then

By, = {x: x <lughu)/2} , (28)
if PRSI then
Bla = xi {{ugtu /2 < x < (ughug, )72} (27)
and if Hy > oo then
Bla = {x: x > (u0+um)/2} . (28)

The positions of the end points of the interval B2a depend on Vlogm and the

values of HosHys e oW BZa-can not be given a general description like Bla

4. Acceptance Region for m,: Assumption (3}

o’

When m populations Tyoeeeso have been merged to form the population w,
according to assumption {a) the prior probabilities 4 and g of Ty and © are

then given by q, = 1/{m+1) and q = m/{m+1) and according to assumption (b)

they are given by 9 = 1/2 and q = 1/2. When 7 is assumed to have density

Np(ﬂ,vl), the acceptance region 838 of Ty will be given according to Bavyes'

procedure by

B,

{x: Np(uo,v) > mNP(u,V')}

fx: = e T T e+ Geud) T v (xep)

Yo Ho
< log(]V'l/]U[) - 2logm}.

Using (8) we can write

B}a = {x: Q(x) < Iog(lV'|/IV|) - 2 logm} , {29)

where  Q{x) = (x-1) M(x- 1) - Z(no-ﬂ)T v [x- (u +u) /2], (30)
We can similarly have
By, = {x: Q(x) < log(|V'{/[V])} . (31)

Obviously B3b :)BBa'



Special Case

Let us suppose that the populations are two dimensional, their means are
given by {20} subject to the condition p = 0 and their common dispersion
matrix is given by V = diag'{v], vz}.' Then from (&) we have

m T | 7 T
Ve =V + 2 My “i/m = diag {v]-bzui ui/m, vz}. (32)

Therefore (33)
T

WWHi/1vi = 1 +Zuiui/mv}
Writing
mT = [( Ea?/m)% 0],
we can express V' as
V' =V + mmT.
From (6) and (8) we now have

-1

M= (mij) LT T PRTRL IR

Obvicusly M is a matrix such that

2 2
m Zai/{vi(mv] + ai)}

and Myy = Myy =My, = 0.
Therefore, from {20) and (30) we have
~ 2 T -1 T -1
Q{X) = my% —-Zuo v ox + Mo v Mo

_ 2 2 2
= mX —-Zan]/vl —-Zbolev2 + (aO fv] + bO /VZ)
From (29) and (31) it now follows that the regions
B, (s = a, b) are bounded by

3s

'{xl -—(aO/vim”)}2 = 2(b_/m {x, = &+ (v, /b ) ?og a}

11V2) 1%,

where « should be taken as m for B3a and as 1 for B3b and
2 ' P

A = bo'z +a v, (mli"l_”/{%o"‘n) - (v2/2b0) tog {1VF1/1V1) (35)

(34)

A boundary described by (34) is a parabola with vertex at the point

(aO/(vlm]]), A -(vz/bo) log o ) (36)
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and symmetric about the point _
= : | (37)
Xy=a/vmy

When there are three populations with means given by {(21) and

¥ = diag {v], vz}, we then have the regions 835(5=I,2) bounded by a para-

bola (XIQf)z = hk(xz-g), where

f = ac(l+a2)/a2vi

k = b0(1+32)/2\,2a2 : (38)
and g =b /2 + ao2 2(azv; - l—az)/(Zazbo)

- (VZ/ZbO){ log (l+a2/v]) -2 log al

a being equal to 2 for B3a and to 1 for B3b'

5. Classification Probabilities

The acceptance region of Ho being given by Bis (i=1,2,3 and s = a,b)}
under different assumptions, the true probability of misclassification of

an element from the 'other' population M into Ho is given by
m

P8, M) = Sla/(1-a )] 7 N (o V)
j=1 B, : (39)

[

and that of an element of HO inte T by

C —_—
P(BiSIHO) = Jr Np(uog V)s . : “‘"0)
c
B
is
where AS denotes the complement of a set A. As the regions BZa’ sz,

B3a or B3b are bounded by conicoids, the integrals In”(39) and (40) can
not be evaluated in closed form.

In special cases, when the populations are two dimensional and the
common dispersion matrix is diagonal, the boundaries of B3a and B3b are
parabo]gs. The integrals in (39} and (40) cannot be evaluated in closed

form even in this case. Therefore, it is not possible to state precisely



in terms of misclassification ﬁrobability how much we have to pay if we
want to reduce our many population classification problem into a two
population classification problem and which one of the alternative assump-
tions 1b, 2a, 2b, 3a and 3b is preferable next to the true assumption fa.

in special cases, it may be possible to make some inference looking
at the graphs.

Examples
In the following examples we consider three populations with densities

Nz(u], v}, i=0, 1, 2, where
a -a a
vV = y H = s ]J] = and uz = *

0 4 0 0
a, a_, bo being specified separately in each example. All the populations
have the same prior probability.

Example 1. Let a=}, a0=3 and b0=6. Then we have

By, = {0x,y): 8x + 3y ~ 17 20, hx + 3y - 17 >0},

By, = {{x;y): 8x + 3y - 15.b2 >0, bx + 3y - 15.b2 >0},

BZa = {(XYY): 3y > 2 log [1 + exp {2x}] - 8x + 17},
B,y = {(x]y): 3y > 2 log [1 + exp (2x) - 8x + 15.b2},
B,, = (0y): (x-b)* < b(y-0.23)3,

By, = {lx)¥): (x-b)% < b(y + 0.23)}.

The classification procedure defining the partition (Bla’ B?a) is optimal
in the sense that it has the minimum expected cost of misclassification

{which in this case is equal to the total misclassification probability).

From the graph it is evident that the next best partition is (BZa’ Bg ),
a
c c ca. .
then (sz, sz), then (Blb’ Blb)' The two classification procedures based

on the assumption of normality of the mixture perform relatively poorly.
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O0f the two, the partition (B3a, ng) has lower misclassification probabi-
- — C
lity than the partition (BBb’ BBb)'

Example 2. Llet a=2, a =0 and b0=8. Then we have

B, =‘{(xly); x+y=-3>0,y=x=-3>0},

9 ='{(x]y): x +y=~2,66>0,y-x-2.66>0},
B, ='{(x]y): 2y > Tog [1 + exp (4x)] - 2x + 6},
B, = {(x,y): 2y > log [1 + exp (4x)] - 2x + 5.31},
B, = {{xv): xZ < 5(y - 3.94))

By = (O x% < 5(y - 3.6)1.

The classification procedure defining the partition (B]a, B]:) is optimal
and from the graph we may infer that the next best Is the one with partition

(BZa’ B;a)' Unfortunately, in this case, no comparison of other procedures

can be made even from the graph,
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EFFCT OF DISTANCE-MNEASURES
OV CLUSTER-DASEY CLASSTTFICATTON PIGCLDLRFJ

P. L. OLPLL and J. P. BASU

The ﬁnivcrsity of Texas at Dallas

. ABSTRACT

When we have a single sample of ebserva-
tions from two nortwal populations vith sane co-
variance matrix, Lut no training sample from
either population, then for classifyivg future
observations, the usual practice is to eluster
the sample into two ncareﬁt neizhbor clusters
and design a Bayes' classifier treating the
two clusters as two training samples. The use
of f;-distance is often advocated for such
clustering. It has been showm in this paper

that such advocation 1s not always reasonable.

1. Introduction

Ve suppose that our data have beca obtained
through remote sensing devices fron twa p-variate
normal pepulations Ty and Ep with dersitics
‘p(nl,Z) z2nd hp(uz,E) respectively, the vectors
I} and uy of means and the common dlspersion ma~
trix I belng unknmm, and thaL ve do not have any
training sample, thar ¥s, we do not Lkanw the act-
wal source of our pbservatlons; but the data is
pscuncd to be such that twp and only .two distinct
modes can be deternined fron them. For classi-
fylng future ebservatiens Into these two popula-
tions on the basis of such data, the usual prac-
tice {5 to cluster the data Into twp nearest
nefpiher clusters € and € using metric or dls-
tance {onction defincd by £y-, fp-, or & _-nora;
and then deeipn a Fayes' elaastfler with the
assulption that the populatien d(n-\lft are
"p(ﬂj' ,J)(j 1,2), whoere ﬁj and Tj are Tespees
tively 1ﬁu nnwp!c.wcnu and Lhoe naeple dispersfon
gatrls of the sample G ansured te he couclating

)

of phucrvitfons from the pepalation Fi alove. 1F

gt fs known that the parent popﬁlations'have the
geiee. dispersion matrin, then in gnslgning the
classificr, the matrices‘gl and I sbove are Té-
placed by E LH;re

L= [(N1~1)21 1+ (Wg- l)zg]f("l -2}, 6}
Nj_denoting the number of clements of Cj. A
classification procedure defined in this fashion
will be rcfcrred te as cluster based elassifica—
tien progedure. '

Let P denote the Bayes' procedure based on
conplete annlndge of N (p ,I) (3=1,2} and Pi the

cluster based pfoccdure nnen Li-norm (i=1,2,=)

“has been used for clusteving’ and the sample sizes

are very larpe. Our objeetive in this paper is.

to compare the nisclazsification probabilitics of

theee clasgification procedures. Ve have made

the comparison a little sirmpler by taking P=2,
p3=0 and ¥ = I, that i5, by assunming our popula-
tion densities to be ¥,{0,TI) and Hafue, 3. Im
designing the classificre we have also assumcd
that both populztions have equal prior probabil-
{tice (1/2 each) and cqual misclascification
costs. ¥ow, without any further loss of genar-
ality, 1t can be assuncd that pgTﬂ {a,b] and
a»0, v 0.

2. Classification Preocedure PO

Undar the sct of assumpticns wmade above, the
Bayes' classifier 1s g'vau h;
u (z)a~x+b}-—(a4b)?f 7 =[:-:y] {Z]

(8]
-

and h(ncc the accoeptance reglon. B for ¥y 1s
given Ly _ ‘ :

Bo = ((x,y); ax + by < (n2+h2)f2}. ﬁS}
If P [1) denotes the probability of misclassi-
fying an cleaent from ﬂi {nto M,, then for this

3

procedure we hove :
vty = 1\(1[ ) <-( Ja 1wy, (-l
vhera

& (L) -_i exp (wi'/?) dxﬁfﬁﬁ.



If a=1.and b=2, thien ve have fron (%)
rill) = ralo = (e J312) = 0,13,
3, Cluster Rased Clasnification
"It is well known (Lerean, 9?0) that as tnc
sample sizes dncreasc, the clusters C1i and (‘.21
based en Ei-norm converges with prehability eae to

the partition (511'5’1) of Ry, the two dimensional

Hally < Huzeabl?
(5)

yeal vector space, Waere

< = = ry e
821 = sli {e = (x,¥):

c
AS denotes the complerent of the sct A and

Ho-vl1;

and v of Kp according to F ,-norm,

denotes the distance between the points u
ﬁji and Eji’ th
¢ean ;nd dispersion matrix of the sample Cji’
(j#1,2), can be viewed as the sample mean and san-
ple dispersion natrix of a population with dencity
function p, (z) given by

Pss (z) = (1/2)065(0,1) + ¥ (2, I)p 2 & 555(6)

31
= 0 otherwise.

Thus, by the law of large numbers, with probabil-

ity onc ﬂji convernes to ”ji and Eji to Eji’ where

= 1 iy
Vg SJiZPji(z)d"/](sji} (7
= - - T 2 ’
Iji Sji(z uji){z uji) in(Z)dzlP(Sji) (&)

and P(Sji) = pji(z)dz. “. (9)

In designing clucter based classifiers, 25 ve

hawve montionad earlier, we shall consider wo
cases——wWihion we dﬁ not kaow that the dispersion m2-
trices of the pepulation Iy and Ky are equal and
vhen ve know that they are equzl. In the first
case, we shnll denote the cluster bascd procedure’

by P {bascd on I —Dorﬂ) and in the second case by

.Pi'. Thus Pi is thc Toyes' pxocedurc based on the
densitics N;(uji,fi) (3=1,2), wheye
= [ 4 3 .
A T R AT (1)

Hrl'“'"}l'lr:u?jou Protability

1f a classifinatien preccdure delines a set B
as the acceptance repion for the pepulation iy
with true density BA(0,1) and n as the acceptonce

reglon Tor 3 with trun density Mo{un, 1), then the

rdftl?*f!ficvtion probatillities of this procedure
arte glven by
p2l1) = pt iy TN (e, 1) dx
[
. B
and PO @ Plu[n) = ﬂﬂ?(n;,l)t an
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Let & be the acceptance reglon for Il accord-

{eg to the Tayes® classification procedure in
which the population densitics for Iy and Ny have
been fradvertently assumed te be ¥ (m,V}) and N
Then )

Wi{x,y} 01},

(=',V") Tespectively.
B= {27 (x,v): {12)
vhere

wix,y) = 2(g x+g y} + K + 2exy- d;xz—doy , (13)
3y = via/ V" I vl Y,

¢y = vir/lvl = vn/lvly
e = Viz[lV'I - v12/!V[,
g1 = (vimi-viemD /vl - (vzamy-vizmz ) vl
" ga = GhmivimD /1wl - Game vz /vl
E = v e - m'TV'“lm' - rop (Vv 1/]¥]-
pere v = Lyl ¥ @ I¥)) af = [my,m] and

T s e
o’ = [=i,mil.
The misclassification probabilities P(Zil)

aad P(l!Z) czn now be expressed in the fora

_ r(2]1) = POV(E,Y) 20 [Z € My} “(14)
end PLI2) = PQUEX,Y) <0 {Z e 1) (15)

' 1f V#v-, then the cxact distributien of
W(¥,¥) vhen 2 ¢ Ty o 2 € 1 is intractablé. But

if ¢;, ¢, and e are negligible compared to ) and
g2, thea in (14) and (15),
the seco*d degree terms in X and ¥ will be negli-
Thus

the contribution froa

gitle conpared teo that from K + 2{gi¥tg:V),
ve can periaps approxizate the distribution of

W{N,Y) by the distribution of \(‘,Y) o 4+

2(gyx+ g2¥). But 1f v=Vv°, then V—s. Yow U can be
shown to te distributed naroally with wean

L = ¥, when 2a82(0,1)
and B = K+ 2(matpslb),

. . T
wheh -2y (12, 1), 12 = [a,b) (16)

and variance ' -

e o 2 2

Var W = 4(g1 te2’) Qa7n

in elrher case, The approximate values of the
piselassification probabilities P(Z!l) and P(l]E)

carn beo glven by

P21y 2 P(P0)Z € Ty) = 1- NN NI,
' _ (15)
and F(112) & pCic0]Z « Hy) =
=l (o abggd) 1K A e ). a9

&, C\ﬂ'virirwtinn Prthdnrc Py and Py’
The Lp-norn Sn Juerd distance l.chun two

is piven by
1{?

= vy 3
Flo-vila = + Qapme )

Since L;T - Ea.b], thea 1L fullows fyon (J) that

pofnis 4 = !Ul:“z] an

(ul~v3)
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the limltinb clusters Syp and Sza are’ bixhn by points (x,yj patisfying the following condltions

Szz = 53 = ({x,y): axiby < (a 24,2 y/2}. in three diffcrent cases.
Evidently S12°B ,-as given by (3). Wow it fol- Case 1. b>a>d [Eigure (2} and (37]
lows from (O)- (9) that (i)Y =x>a, y<(b-a} /2 |
P(S)2) = P(Sz3) = 1/2, ' (20} (11) O<x<a, xhy<(ath)/2 ’
v, < i[bl and (i11) %<0, y<(atb}/2.
n st fro and
. [? +a k (l & ) abk (lhl ) o ;n this ca:ﬁ i;; and 531 are distinct freu Sy3
I I o %, aor 22 glven by 15
: 1 1 Case 2. b»0, a=0 [figure (1}]
{4=1,2), vhere ) ) T (1) y<b/2.
ky = ¢(-a 24 /?) - ( 21Ga Zeb )/2) . * . In this case §y) coincides with Sy, and Sy coln-
exp {-(alh %) 18} (22) cides with Sas. ' )
ani Ky = of aZv2/ny + ¢ 2mialy/n™ o Case 3. b=a>0 [figure (4))
exb {~(a2+b2)/3}. ‘ ) (i} =xy<a

The Ry-norm distances of the point (x,y) from
(0,0) and (a,b) are equal when
»hy>a and x<0

The set By, the acceptance veglon of I
aecording to Py, can be obtained frem (12} by
Jetting m=ppa, 1w =wz2, V=Iyp and V7=igp and the
corresponding misclassification probabilities or  whyza and y<0.
from (13), (18) and (19).

An Ixample

Let a=1 and b=2. Then

Szgc = 8y, = {(x,y): =xtly < 2.5}

[figure (3)]
and 4t follows from {21), (22) and {23) that

Ty = -0.05, ky = 1.06, u, =k, (1,21,

These pointv Lave been assigned to 533 in order
that no point escape claSSLflcation. In this casc
also the cluster 8)3 coincides with 512 and Sg3
cofneides with So5.

Thus the proccdhrc PltPi) differs frem the
procedure Po{P1) only in case 1. In.this case,
the expression for the components of the means ¥y
. : _ 2nd Vpy and the dispersion matrices Ipy and I
.212 ﬁ[?é?;1 -g:%é] and Tz = [?6?32 “g:%g . arc long and complicated expresslons invelving é:c

: probabilities ola), 2[(att)/2] and si(b-a)f2l.

For that reason ve have not included it here, As

T

51

and Ta, the Fayes' classifier based on densities

In Py, for discriminating chservations from

in the exacople in section 4, if we take a=1 and
N (ulz,le) and 175 (uz9,Tz2) is used instead of !
b=2, then we shall have

that b3>Ld on the true densities Mp(0,1) a - 0,005 5.4
T Ho{([1,2] ,I), uhich are unknown. Then the ap-~ n 0.197;° 2. 11
proxicate values of the resulting mivclaesifica- Ya. = 0.94 —0.0%]and $or = 1.82 -,
117 {-0.05 0,66 21 7i-2 0.8

tion prebabilities are obtained from (18) and
(19) es Fron (13) it now foéloks taq;

. JOF = /, -
p(1]2) = 0.32 and (2]} = 0.078. H(EZY) = 046K + 0. 26Y

, o
In precedure Py, the Bayes' classificr is + 0.0exY 9.36 -
The exact distributicn of W is {ntrzctable. The

+ 2(0.52¥ + 2.46Y)

based on densitics Ma€uyp,F) and Kp{uzz,?), where

T P(Sy) iy + P82 Egp = {0,935 ~0.115
‘ -0.115 0.7654°

normal approximation to W glven in section 3 iz not

valid, since the coofficients 0,40 of xz and 0,24

The mlsclassification probabilitles are now ob- of Yz are not neplipible corpared to coeffictents
tatned from (18} and (19) as 7 0.52 of X and 2,60 of Y. Uslup a very rough ap-
P(l]2) 0.185 and P(“[l) = 0.09. provination, fE cen be shown that in this case
3. E!ﬂiﬁk[iﬂiﬁtfll?fﬁfitﬁﬁ Pl and Ty” P(2[1) and P(1}2} are larger then thosc
The £q-nora inducad distance hetveen the for Iy, )
pofuts u and v 1s plven by - Tor proccdure F{ we Lave
Hu-vily = fuy-vi b+ f“--V7| Ly =" P(5; 08 TS

The 1iaitding elucter S1y(=8) Yy conuluts of ) m 0,495 L1y + 0.505 Ly
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B EN A
-0,13

-0.13
6.73
From {13) we now have

W(LY) = 1.118% + 5,447 - 6,541
and from {18} and (18) we have
P(2]1) = 0.18 and P(1[2) = 6.12

6. Classification Progeduze P and ¥~

The £ _-torn induccd distance betusen the
points u and v is given by
[Jurvll, = max {luy-n1], fug-val).
The points {x,y} in the Iimiting cluster
5)_(=5;.) satisfy thé following conditions.
brax0  [figure (2) and (3)]
(1) a-b/f2<x <max (b/2,2) and
y<b/2,
(11} x<a-b/2 and xty<a

Cage 1.

{11i} xomax (b/2,a) and xty<b.
Case 2. b=a*0 [figure (4)}]
{1) xfy<a

The % - distances of a point (x,y) from (0,0) and
{a,b) are equal when :

xty*a and x<0
nf xtyra and y<0,
Such points have been assipned to Sz | arhifrarily.
Thus in this case §)_ and 8y  coincide with 532
and Sy, respoctivaly. o

~Case 3. brD, a=0 [figuré (1Y)

In this case, the performunce of £_-norn Iin clus-
tering is very pocr. The §_- distances of every
point {x,y) fron (0,0} and (0,b) arc cqual vhen-
ever

¥-y+2<0 and xiy<Q
or, xty-Ir0 and x-yr0
However, we can arbitrorily define Sy as the set

{Gaydy: y<u/2).
But 8y then beoeomes ddentical te 8y or Sp3.

Thus the preccdure PW(P;) differs from P {P7)
only in case 1. But in this case, the exact nis—
clazaification probhbiliLy ic bard te find., In
tha speclal case, whea a=1 and b=2, (figure (3))
we [ind thst the boundury lpe of 5y  and 53 can
be obtafned as the reflectdion of the boundary live
of 531 and $3y about the boﬁnder line of Spa and
Séz.' Froo thils we way puess that, as ia case of
the procedure 'y oand T, the total nlsclansifica-

tion pr@h&hi][t!vﬁ of r and P; will Le Yarpey

than the totnd pdeelansd {leation probablliitien of -

I's and 135,

7. Conclusion

Our flndings about the misclossification

preohabilitics P(l!?} aud P(Z[l) for the procedures
Po. Py, P{, P; and P7 in the speelal case vhen a=1

and b=2 can be seen at a plance {rom the folloving

table,
‘ Jable
True " %y-norn based - £s-norm based
Bayes
P P, P{ P, P;
P(1{2) ©0.13 0,12 0.22  0.18
P(2{1) 0.13 0.18 0.078 0.09
Total 0.26 * 0.30 0.299 0.27

#Using rough approximaticn it has lLeen found that
the total misclassification probability ol Py is

greater than 0,229,

Thus, taking misclassification probability as

the eriterion for comparing the perforsance of the

classifiers, wa find that in the example consid-
ered above P37 is better than P{ and Py 1s better
than P;. But, no such conclusion can be made in
general, It is not known whether P3 always has
lover wisclassification probability than its con-
petitor F| or P and Ty has lover misclassifica-

tion probability than Py or P _.
o

Among 211 norm-induced distances, 1i-dis--
tances arec the most casy to compute.
tion weans are known to be such that the straight

line joining then Is inclined at an angle of 45°

{a,= ), the classification procedure P1{P{} and
Py{F:} become ddentical.

P{ is the optlral procedurc, beciuse we then

achieve the computational case along with low mis~

clas=ification probability,
The procedures P_and P oare not desivable.

If in the process of clustering, two clusteor cen-

then scme points are to be clustered according to

Bo-distance. This arbitrariesss in alloecation of

poaints to the clusters. makes P or T undesirable.
@

Fefrrence
1. Lerman, I. C, {1970},

fleatien Autematique.

Cautbler-viliars, Parls.

Only in that case, P} er

Les Tanes de 1a Clansls

Vhen popula-

‘ters ave such that they have the same x-coordinate,
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l. Introduction

A classifier or discriminant function w(xgc) is a function or a set of
functions which determine the membership of an cohservation vector x into one
of several given sub-populations, ¢ denoting the vector of parameters of the "
classifier. The classifier usually considered is one which has minimum
expected cost of misclassification among all classifiers. This optimal
classifier is known as Bayes' classifier [2]. This classifier is obtained
on the assumption of complete knowledge of misclassification costs, prior
probabilities {the propcrtion of the given subpopulations in the over all
population) and the probability densities of the given subpopulations. When
lthe parametric family of the population densities are known, but the parameter
themselves are unknown, then the usual practice is to replace the true values
of these parameters by their respective estimates based on sets of past
observations of known classification in the expressions giving the elements
of c. A classifier W(x, ;); thus obtained, lacks in the above optimality
pfoperty. A set of past observations known to be coming from a particular
population is often referred to as a training sample. When the parametric
family of the population densities are also unknown and sometimes the prior
probabilities are also unknown, the methods by which a classifier W{x, ¢} is
obtained from the available training samples of the populations are referred
to as nonparametric methods of classifier design. An adaptive pattern recog-
nition scheme is one such nonparametric method.

An adaptive pattern recognition scheme is a nonparametric method in

which a classifier is assumed to be of the form



Wix, ©) = ¢)Q (k) + ... + o 0 (x) = clolx), (1)

where the components Ql(x), cees Qm(x) of the vector &(x) are prechosen
]inear]y independent continuous functions of the Qbservation vector x and
the unknown parameters Icl, cees cm] = cT are directiy estimated recursively
as in {1, 7] or nonrecursively as in [6, 8] from the available training
samples, instead of being obtained terms of the estimates of the probability
densities. A classifier obtained in this fashion will be referred to as an

adaptive classifier.

The functional forms of the functions Qi(x)‘s and their number m are
often choosen arbitrarily. This arbitrariness in the choice of the func-
tions Qi(x)'s may create problem. A good classifier should be cptimal for
discriminating among the given populations. For example, it is well known
[2] ‘that when there are two p-dimensional normal populations with different
covariance matrices, a linear classifier of the form

Wix, ¢) = CiXp + .. ¥ ©p¥p *c, = cTz, _ (2)
L [x], ey xp] and zT = [xT, 1], is not

where ¢! = [c], R co], X

P
optimal for discriminating between these two populations. Therefore, if the
functional forms of Qi(x)'s are not properly chosen, then the classifier
W(x, ¢} given by (1) may not be optimal for discriminating among the given
pbpulations. Also in designing an adaptive classifier rarely any attention
is paid to the optimality criterion, minimum expected cost of misclassifica-
tion. However, adaptive classifiers are easy to desigh and are very attrac-
tive in fast classification for their simplicity. Besides, there are

empirical cases in which they do no worse, if not better, than many other

sample based classifiers [2].
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A comprehensivé survey of adaptive pattern recognition schemes can be
found in HO and Agrawala {5] and in Tsypkin [9]. Our objective here is to
present a unified theory of adaptive pattern recognition. Most of the adap-
tive pattern recognition schemes have been devised for discriminating between
two populations and few of these schemes have been generalized in a very
straight forward manner for discriminating among more than two populations.
For this reason, we shall also restrict ourselves mostly to the case of two

population classification,

2. Basic Theory

tet all the observations come from two p-dimensicnal population m and

ﬁz. Then the observations can be represented by points and the two training

samples by two sets T] and T2 of points in the p-dimensional real Euclidean

space Ep. [t will be evident later from the way an adaptive classifier is
designed that the sets T} and T2 should be disjoint., A real function f(x),
T3 Ep - E], is said to separéte two disjoint sets T] and T2 in Ep, if there

exists a constant t such that f{x) > t for all x ¢ T] and f(x) € t for all

xeT If there exists a function f{x) separating T] and T2’ then f(x) can

9
be considered to be an ideal classifier which can be used to classify all of

the points of T, and T2 correctly. It may not often be possible to construct

1
such f{x), even if it exists. But, it may be passible to obtain a function
W{x, ¢) as an approximation to the function f(x} and use it as a classifier
instead of the ideal classifier f(x). This is precisely the way an adaptive
classifier is designed.

The existence of function f(x) separating the training samples Tl and
T2 will be evident soon. The following theorem is well known (Dunford and
Schwartz, [4], p. 417).



Theorem. In a topolagical vector space, any two disjoint convex sets,
one of which has an interior point, can be separated by a nonzero continuous
Finear functional.

i f T] and T2 have disjoint convex hulls C] and CZ, then we can use the

above theorem to prove the existence of function f(x} of the form

f(x) =c,x, + ... +cx +c¢
p’p o

such that f(x) > 0 on C, and f(x} < 0 on C,- In this case the training

samples T1 and T2 are said to be linearly separable. Therefore, when the

training samples are linearly separable, then a linear function f(x) separat-

ing T, and T2 can be used as an ideal classifier. An adaptive classifier is

]

then easily obtained as a linear function approximating this ideal classi-
fler.

Unfortunately, the sets T] and T2 of training samples are rarely lin-

early separable. Therefore, often there may not exist any linear function

separating T] and*TZ. However, there exists a function f(x), not necessarily

linear, which will separate T1 and T2 whenever thersets C] and CZ’ the

smallest closed sets containing T. and T2 respectively, satisfy the conditions

i
of Uryshon's theorem, well known in Topology ([4], p. 24).

Uryshon's Theorem, |If C] and C2 are disjoint subsets of a normal topo-

logical space V, then there exists a continucus function g(x), g: Vv + {0, 1],

such that g{x) = 0 for all x ¢ €, and g{x) = 1 on Cye

2

Using the function g(x) of Uryshon's theorem, we can easily define a con-

tinuous function f(x} on V such that (a) f(x) =t

y on C] and f(x) = t, on CZ’

where t, and t, are any two distinct preassigned numbers, or, (b} f(x) > & on

C] and f{x) <— & on C

97 where & is a preassigned positive number, Now, since
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it is well known that Ep is a normal topological space under any nontrivial
topology and TI and T2 are disjoint sets containing finite number of points,
then we can always obtain two disjoint sets C] and C2 as the smallest closed
sets containing T] and T2. Therefore, as long as T] and T2 are disjoint sets
of training samples, there always exists a function f(x), Tinear or non-
linear, which separates Tl and Tz.

Aé we have mentionea earlier, in an adaptive pattern recognition pro-
cedure the ideal classifier f(x) is approximated by a function W(x, c) of

the form (2), namely, a linear function of an observation x to obtain a

linear adaptive classifier, or, by a function W(x, c) of the form (1), a

linear combination of a finite number of known nonlinear continuous func-

tions, to cbtain a nonlinear adaptive classifier, the parameter vector c

being selected in order to minimize certain glven pay-off function.

As the probabiltity densities of the populations are unknown, expected
misclassification cost cannot be evaluated and therefore cannot be used as
a pay-off function. Distances D(f, W)} between the functions f{x) and
W(x, c) or some functions of it defined by some meaningful metric can be
used as geometrically and intuitively appealing pay-off functions. For
example, using Euclidean metric we can define

0, (F, W) = | Fla) —wlx, 9%, (3)
xeT]UT2

as a pay-off function and select the parameter vector ¢ In order to minimize
D, (f, W). In this case W(x, c) is a least square approximation to f(x).
In order to assure the existence of a unique Tinimum of the pay-off function,

a pay-off function of the form
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L{f, W) = F{F{x) —Wx, c})/n, (4)
XET]UT2
where n is the total number of points in T] and T2 and in the fashion of
decision theory F is a convex function interpreted as a loss function, can

also be used [9]. Ve may note that the pay-off function 52 (F, W) =

Dz(f, W)/n, often referred to as mean square error criterion [6, 8], is a

particulaf case of (4).

Let the subpopulation IIE have prior probability 9s and probability
density function pi(x). Then the population which is a mixture of T, and
IL, has probability density function q]p](x) + quz(x). Therefore, the
expected value of F{f(x)}) — W{X, ¢}) will be given by

R(F, W} = E F (F(x) —W(X, c})
2
= q; / F(f(x) — W(x, c)) pi(x) dx (5)
i=1
Now, if there are n observations in Ti and nyFon, =, then we can write
2 : )
L(F, W) = (n/n)  F(F(x) = W(x, c))/n, (6)
i=1 - xeT,

i
and observe that L(f, W) is the sample mean and R(f, W) is the population
mean of F {f(x) — W{X, c)).

't is important to note that there is some arbitrariness in the choice
of the number m and the continuous functions QI(X)’ ey Qm(x), used in the

definition of W(x, c).
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3. Linear Classifier

The linear classi
to following reasons.
1. They are rel

2. The circuits

3. The Bayes' classifier with minimum expected cost of misclassifica-

tion has a linear structure when the two populations have normal distribution

with equal covariance

3.1, Nilsson's Llassi

fiers are used in adaptive classification mainly due
atively simple to implement as electronic circuits.

can be made adaptive very easily.

matrices.

fier

The algorithm proposed by Nilsson [7] iteratively determines the para-

meter vector ¢ of W(x,

rule. Let x(i) denote the ith observation of known classification, that is,

an element selected fr

corresponding value of
. . T
iteration and win =c

iteration we have

It

c(ifl, nj

where d is a positive
classify x(i) for all
at the end of nth iter
some i, c(i, n) = ¢(]J,

~

such ¢ exists, we shal

c), as defined in (2), according to the following

om Tl UT2 at the ith step of an iteration, z(i) the

z, c{i, n) that of ¢ at the ith step of the nth

(i, n) z{i). Then at the (i+1)th step of the nth

c(i, n) if x(i) ¢ T1 and win > 0
c(l,rn) if x{(i) ¢ T, and win < 0
c{i, n) +dz(i} if x(i) ¢ T] and win <0
c(i, ny —dz(i) if x(i) € T2 and W > 0,

T,. .
number, so chosen that ¢ (i+1, n} z{i) can correctly
i. The vector ¢(1, n+l) is taken as the value of ¢
ation. The process is continued until we have, for

n} = c(e, n¥l) = ¢ (say) for all j>i and 2<i. When

~
+

1 say that c(i, n) has converged to c.
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Unfortunately, if the sets T] and T2 of training samples are not

linearly separable, then the sequence c{i, n) may not converge. The algor-

ithm is effective, that is, c(i, n) cénverges to a ¢, only when T] and T2
are linearly separable., It should be noted that c is not unique; it depends
on the sequence in which we select the observations from Tl UTZ' The num-
ber of iterations needed to reach such ; also depends on this sequence.

The classifier W(x, ¢} constructed in this fashion is not in general a

Bayes classifier.

T T T

Example., Let T, = {fo, 11, [1, 11}, T, = {[o, D]T, {1, 0] ' }. Then
choosing d = 1 and the sequence of observations as in the Table we can
obtain Nilsson's classifier in the following way.

c z

i 7
n i ) c, S X X, 1 Ni Change c?

] 0 0 0 1 1 1 0 Yes
1 2 i ] ] 1 4] 1 2 Yes

3 0 1 0 0 1 1 ] No

L 0 ] 0 0 0 1 0 Yes

1 0 1 -1 ] 1 1 0 Yes
2 2 ] 2 0 ] 0 1 ] Yes

3 0 2 -1 0 1 1 1 No

4 0 2 -1 O 0 1 -1 No

1 0 2 - 1 | 1 1 No
3 2 ¢ 2 -1 1 0 1 -1 Ho

~

Therefore cT = [0, 2, -1] and the classifier is 2x2-i. A decision rule

it 2x.-1 > 0 and to 0 i7

based on this classifier is to assign x to H] 2 9

ZXZ -1 < 0.
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L= ar N mymm ) and e = =27 (Nm H,m,) — (N N,) /(N #,), (9)

where  d = 2/[(N N3/ EN N (0 ,=2) b+ (mymm)) T2 () omy) ] (10)

and 5 = (N S +N,S,) /(N +N,=2) . (1)
When N] = NZ’ then we have

ey = (m-m,) Tz 7" (m ) Nt/b (1) (12)

The classifier Wix, ¢) = ¢’z in this case resembles the Bayes' classifier
with parameters of the population densities replaced by their respective
-estimates, that is, Anderson's [ 2 ] sample based discriminant function for
two normal population with equal covariance matrices.

The classifier attributed to Agmon and Mays [5] is obtained when

LE, W) = 2 [|Wx, ¢) = F(x)] = (Wix, c) — F(x)}]?

‘ XET] UT2

is used as the pay-off function.

b, Nonlinear Classifier

The nonlinear classifiers are used in adaptive classification mainly

due to following reasons,
1. if the sets T1 and T2 of training samples are not linearly separ-

able, then a function f{x) that can be used to separate them are often
nonlinear,

2. The Bayes classifier has nonlinear structure when the two popula-
tions have {(a) multivariate normal distributions with unequal covariance

matrices, or (b) nonnormal multivariate distributions.



- minimize D

3.2 Other Linear Classifiers

An adaptive linear classifier can be obtained as linear apprOXfmation
to a function f{x) separating T] and T2 and taking the value 1 on T] and

-tonT the parameter vector c being selected as a vector ¢ that minimize

2’
a given pay-off function, Different pay-off functions can be used to obtain
different classifiers.

Koford=-Groner Classifier

An adaptive linear classifier W(x, c) may be obtained by selecting a
vector ; as the parameter vector that minimize the mean square error cri-
terion 52 (f, W), or equivaTentIy-the squared Euclidean distance D, (f, W)
given by {3), using gradient method or any other suitable optimization
technique. An iterative algorithm based on gradient method for obtaining

¢ can be given by

c{n+1) = c(nkozi {f(x) — 'z} ' (7)
xeT] UTZ
Koford and Groner [6] observed that the criterion Dz(f, W} can be expre

expressed in the form

2
_ T T 1y Ji2
D, (f, W) =& Nj[z Sj£+{£mj+co+(1) 1, | (8)
J=1
T T T
where C ={2,c ], m, =1 x/N,,S5.=1¢L -m. ~m, .
{ O] j i S {x mj)(x mJ) /NJ
xeT, . xeT,
J J

and Nj is the number of observations in Tj' The values of 2 and cO that

) (f, W), given by (8), are as follows.

1

3



As mentioned earlier, a nonlinear classifier W{x, ¢) is obtained in the

form of a tinear combination
_ T -
W(x, c) = colx) = ¢ Qx)+ ...+ ¢ 0 (x) (1)

of linearly indeperdent nonlinear continuous functions Q](x), . Qm(x),

whose functional forms and number are prechosen. The performgnce af the
classifier W(x, c), how often the classifier will be able to correctly
classify an observation of known classification, depends primarily on the
choice of these functions. But, often they are chosen arbitrarily on the
basis of economic consideration and one's intuition. However, sometimes,
when one has some prior knowledge of the population densities, they can be
satisfactorily chosen. For example, when it is known that the populations
have multivariate normal di;tributions with unéqual covariance matrices, the
function W{(x, c) may be chosen as a second degree polynomial in Xis ones

xp, the p componeﬁts of the observation vector x, and the functions Qi(x)'s

k1 k2 k
as the monomials ST . xp p, where ki's are 0, 1 or 2 and

k, + k2 +oo.. t kP = 2. |t has been suggested [5] that when the densities

1

are unknown, the functions Qi(x)'s should be taken as orthogonal or ortho-

normal functions such as generalized Hermite functions given by

(n) ) -n/2 n . p

3

g Kyo ees kO (-0" (2n) i e ((hrox ).
P 3, ... ax T

| p

H

i=1

Unfortunately, there is no specific rule to guide us in selecting these

functions judiciously.
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b.1. Patterson — Womack Classifier

The adaptive classifier of Patterson and Womack [8] is a nonlinear
classifier W(x, c) obtained as an approximation to a function f(x) that
separates the training sample sets T1 and T2 and takes the value C(2|l) on
T, and -c{112) on T,» where ¢{j|i) denotes the cost of misclassifying an

element from Hi into Hj. The parameter vector c is selected as a vector

¢ that minimize the pay-off function

MO, M) = (g /M) 0 [k, <) - c(2|n)? +
%xeT
1
(a,/0,) = Wlx, o) + c(1]2)f?, (14)
XET2

where Ni is the number of elements in TI and the prior probability q; of

the population I, is assumed to be known. As in {(5) and (6}, it is not

2

difficult to see that M(N], N is the sample average of [W(X, c) —-f(X)[

%)

and therefore, by law of large number, M(N], NZ) converges to
2
R(F, W) = E[W(X, ¢) — f(X)]

as N1 =+ o gnd N2 -+ o, Patterson and Womack [8} have shown that the vector

¢ that minimize R{f, W), as given above, will also minimize

~

E WX, ¢) —D(x}|?,

where D(X} is the Bayes' classifier given by
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D(X) = {c(2[1) qypy (X) = C{1]2) app, (X)3/{q p (X} + qup, ()} (15)

and pi(x) is the density of Hi’ provided that f(x) has been chosen in the
above fashion. This has been the motivation behind using c(2{1) and —
C(1]2) as the preassigned values of the separating function f(x).

When q]'s are unknown and to be estimated, then Ni/(N1+N2) can be used
as an unbiased estimate of 95 where Ni is the number of elements belonging

to Ti out of a sample of size (N]+N2) from the mixed population, Then the

criterion M(N], NZ) may be replaced by

D, (F, W) =% | Wix, ) = F0) 27 (NN

2 2)’
xeT UT2

the mean square error criterion. Patterson and Womack have called M(N], NZ)

the mean square error criterion.
Example. Let T {[o, l]T ]T, [2, l]T} and
T

tlo; 01", [z, o}', [o, -11"3.

, [1,0

T2

Then, assuming W{x, ¢) to be of the form

_ 2 2
Wix, c) = C\X] + Xy F C3% %, ooy * ccX, +cg (16)
and C(l]Z) = C(2|1) = |, we can obtain the parameters Cis Cpp wvvs C by

the least square method. Scolving the normal equations, we obtain

25/8, Ci{.: 17/8’ C5=] and C6=_]/)+

3]
Ir

-11/8, c, = 1/4, c3

and W({x, c} (1/8)[2x§ ——ilx% + 5x Xy o+ 17x, # 8x2 - 2].

)
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A decision rule may be defined in order to assign xeﬂ] whenever W{x, c) > 0

and to H2 otherwise. We may note that such a decision rule correctly clas-

sifies all the observations iIn Tl and Tz.

in this example, the sets T] and T2 can be separated by a quadric such
as parabola, ellipse, hyperbola or circle. That is why a classifier assumed
to be of the form (16) of a second degree polynomial in x could classify all
the points of T] and T2 correctly. But there are cases when the sets T]

and T2 cannot be separated by any such curve. Then a second degree poly-
nomial in x will not be so efficient, that is, the c]assif?er will not be

able to classify so many points of Tl and Tz.

L.2. Potential Function Method

The potential function method was introduced for adaptive classifier
design by Aizerman, Braverman and Rozonoer [1}. They assumed that a function
and fi{x}) < 0on T

f{x), f(x) > 0on T that is, sign f(x) = 1 on T] and

1 2
sign f{x) = — 1 on’Tz, that can be used to separate T1 and T2 can be

expressed in the form
F(x? = C]QI(X) + ... +Acm Qm(x), (17}

where {Q](x), cees Qm(x)} is a finite set of orthogonal or orthonormal
functions. This function f(x), which can be used as a classifier, can be

obtained iteratively using the following algorithm.

fn+1 (x) = fn(x) + s{n+l) K (x, x{n+1}), fo(x) = 0, {18)

where  s{n+l) = sign f{x(n+1)) — sign fn(x(n+1)), fn(x) is the approxima-
tion to f(x) obtained at the nth step of iteration, x{(n) is the nth obser-

vation in a seguence of observations of known classification from the



mixture of the populations I, and I, and K(x, v) is a potential function

of the form

Ki{x, v) =2  Q(x)Q(y). (19)

In order to avoid the problem of choice of the set'{Ql(x),

LN

Qm(x)} Braverman {3] made the following suggestions. Let us assume that

f(x) can be represented by

(=] o

fle) =2 e Q&) 2 c‘?‘ <o, (20)

i=] i=l

where {Qi(x)} is a complete set of square integrabTe functions. Then

K{x, y) in the above algorithm {18} should be replaced by a function

K{x, y) of the form

&

K, v) =2 Q0 Q). (21)
i=1

Braverman showed that if we take

Kix, v} = F (d(x, y)}, (22)

where F is a continuous real function, d(x, y) is any function defining

distance between x and y and F has a positive Fourier transform everywhere,

then K(x, y) can be represented in the form {21}. For exasple, K{x, y)

may be chosen as

p
K(x, y) = exp { - a2 % | xi—vilz},

i=1

(23)
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where o is any finite real number. Braverman has shown that the sequence
fn(x], where x is an observation from I, or i,, converges in mean to the
function f(x).

Example. In the expression (23) for K(x, y) we choose o=1 and illu-

strate the construction of fn(x).

n X xz Member s{n} fn(x)
1 ) 0 T -1 — exp ( —-Exz)
2 P i
: 2 2
2 0 1 T 2 2 exp { — x| —-(x2-1) } o+ Fl(x)
3 2 0 T, 0 fz(x)
4 2 ] T, 0 f,(x)
5 0 ~1 T, 0 fz(x)
6 1 0 \ T 2 Fo(x) + 2 exp { — (x -])2'—-x2}
1 2 P i 2

4.3, Stochastic Approximation Method

Yau and Schumpert [10] have used stochastic approximation method in

obtaining an adaptive classifier W(x, ¢), as in (I}, as an approximation to

a function f(x) that takes the value 1 on TI and -1 on T2 usiﬁg G{c) given

by

6(c) = E | Flx) —wu(x, o) |2, .
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a special case 6f (5), as a pay-off function. G(c) has a unigue minimum,
or, the equation G'{c) = 0 has a unique solution. But the density q]p](x) +
quz(x) of X from the mixture of m, and H2 being unknown, G(c) is unknown.
The solution ¢ of G'{c} = 0 can be obtained iteratively using the following

a]goriphm.
c(ntl) = c(n) —a_{c' (1) ¢ (x(n) = F(x(n))} ¢ (x(n)),

where x{n) is the nth observation from the mixture of H] and H2 @T(x) =
[Q](x), cees Qm(x)] and'{an} is a sequence of real numbers satisfying the

conditions

(a) Ta_ == and I a < ®
n=1 n=1

{1/n} is an example of one such sequence. The convergence of c{n) to ¢

follows from the %act that c¢(n) forms a Rcbbins — Monroe process.
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ABRSTRACT

Two recursive estimators for the current 'mean' of two
stochastic processes used in mod..*ling patterns varying over
space and/or time have been obtained. A brief survey of models

and estimators so far proposed in literature has also been made.
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i. Introduction

In the analysis of remotely sensed data, such as multispectral scan-
ner {(mss) data, itlis usual practice to assume that the data generated
come from populations having multivariate normal distribution. When the
parameters of the distributions, namely, the means and the covariance
matrices, are known, then assuming the misclassification costs to be the
same for all populations the Bayes' classifier, the classifier with mini-

mum probability of misclassification, is given by

Wij(x) = log p, x) - log pj(x) + log (qi/qj),i#j,i, j=1,...,m,
where m is the number of populations and pi(x) is the density and q is the
prior probability of the ith population. When the parameters are unknown
the usual and useful practice in designing classifiers is to replace the
unknown parameters in (1) by their respective estimates obtained from a
training sample, a sample of known classification. These sample based
classifiers, which we shall refer to as estimate plug—-in classifiers, do
not in general minimize the probability of misclassification. But they
are useful in large number of applications and theoretically desirable
since we know (Anderson [2]) that as the training sample sizes increase
the estimates converge with probability onme to the value of the unknown
parameter, provided that the observations in a training sample are iden-
tically distributed. Thus for large training sample sizes and each
training sample having identically distributed observations a sample
based classifier may be expected to perform satisfactorily.

The data obtained by remote sensing devices in the earth resources

survey come from large areas and over a long period of time. Often the
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statistical characteristics of the data have been found to undergo changes
over space and time due to variation in spatial and temporal conditions.
Thus observations in a training sample collected from a large area and/or
over a long period of time are not identically distributed. Therefore,
the estimate plug-in classifiers in which the estimates are based on such
samples can no 10nger be expected to perform sétisfactorily in classifying
patterns that vary over space or time. The performance of these estimate
plug—in classifiers can be improved by updating the estimates whenever
necessary.

The estimate updating methods are applicable to all populations in
the same'way. So, without loss of generality, we can discuss these
methods in the context of any single population.

The efficiency of the updated estimates depends to a great degree on
the accuracy of the statistical model chesen to represent the statistical
nature of the varying patterns. But the complexity of the statistical
model may on the other hand lead to estimates that are not useful for
practical purposes because of computational incenvenience. In this paper
we shall consider two general models for estimation and some "quick”
methods of estlmation based on exponential smoothing techniques (Box and
Jenkins [3], Brown [4]1).

Throughout the paper we shall denote a sequence of observation vec-
tors from the p~ dimensicnal population 1I by Yl, YZ’ cees ¥ 4 ... and

n

assume

Y, o= X+, (1)

where Xk's are the signals, true patterns or means of Yk's and Wk's are
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p - variate normal random noise vectors distributed independently and
identically as N(0, C). Henceforth we shall write L(+) to designate the

distribution law of the random vector or vectors in the parenthesis.

2. Autoregressive Model

The pattern Xk can be assumed to be a member of a r—-th order auto—
regressive process. TFor the sake of simplicity and mathematical tract-
ability we assume that Xk is a member of a first order autoregressive

vector process given by

e TAX T4 (2)

where A is a pxp matrix of real numbers, Zk‘s are independently and
identically distributed as N (0, I), Zk's are independent of Wk's and
L(Xl) = N(0, V). The process is known (Box and Jenkins [3]) to be sta-
tionary if [Af < 1, where ]AI denotes the determinant of A, and nonsta-
tionary otherwise.

We shall dencte by L{P), L{P, Q) and L(P!Q) the probability distri-
bution of P, P and Q jointly and conditional distribution of P given Q

respectively. We knmow that if L(P, Q) = N{(u, B}, L(P) = N(ul, Dll)’ L(Q) =

N(uz, DZZ) and



i

then L(P|Qj = N(Q, #), where
- -1 -
Q= u; + D, Doy (Q - 1yl (3)
_ 5 -1
and b = Dllr DlZ D, D21.

Thérefore, from (1) and (2) we have

v, = X, L(Yl[xl) = N (X, ©), L(Y;) = ¥ (0, V).

and hence L(Yl, Xl) = N(0, Q), where
V+C V¥
Q= .
vV v
From (3) we now have L(XllYl) = N (ul, Ql), where

= E(xllYl) = v(v+c)_lY (4)

"1 1
Q, = Cov (X, , X, |Y,) = c(v+c)'1v
1 S | :

Similarly we have

-
i

o = Kyt = AX +2 HI,,

T _ T
so, L(Y2|Yl) N (Ap;, AQAT+IHC) and L (X2|Yl) = N (Aug, AQATHI)

As in (4), we obtain from (3)

. |
E(X2|Y2, Y} =€ (AQATHEHC) TA

+ (AQ1A¢+E)(AQ1AT+E+C)'1Y

Ho

2

. _ T -1 T
¥,, ¥y) = C (AQATHIHC) T (AQAT+E)

and

~
b
!

= Cov (XZ’ X2



yat

R B T -1
thus o= E(Rk|Yk, ey X)) = C(AQ_ ATHEHC) A H(AQ
T T oo -1
+ (AQ, ;A +E)(AQk_1A,+z+c) Y1
and Q, = Cov ( Y Y.) = C (AQ AT+z+C)'l(AQ AT+Z) (5)
K Xeo el o0 4y k-1 k-1

From the above model we can obtain the model of Abramson and
Braverman [1] by taking A = aIp, where Ip is the pxp identity matrix
and a 1is a real number, and that of Scudder {12] by taking A = Ip.
If we assume IA[ < 1, so that the process is stationary, then we obtain
the model proposed by Tamura et al [14]. Following Abramson and Braverman,

if we assume feor slowly varying patterns that = AC, L =‘{12ﬂ1—l)} C,

Q-1

0<i<l, in order that = Qk’ then we have from (5)

Q1

(1-)) Bro1 + AYk

]

Writing = E(Xk+1|Yk, ceey Yl), we obtain

b = B Y, e 1))

]

E(Xk+Zk|Yk, ceey Yl} =y

Therefore e = {1-2) Mp_1 + AYk. (6)

The above recursive formula is reminiscent of the exponentially weighted
averages to be discussed in section 4.

. In the model (2) it is implied that a new pattern is encountered at
each observation, in other words, Yl, ey Yn are observations on random

vectors each having different means. The efficiency of the estimator (5)



will be poor if the changes in pattern are few and far between. In Sec—

tion 6 we will come back to the question of how to improve the estimates

(5).

3. Chernoff - Zacks Model

For analyzing time varying patterns Chernoff and Zacks [6] proposed
a model and obtained minimum variance linear umbiased (MVLU) estimate of
the current mean. They also obtained Bayes' estimator and an "ad hoc”
estimator, a simplified version of Bayes' estimator. But they'arg unus-
abhle for practical purposes, Bayes' estimator due to compuﬁational diffi—
culties and the "ad hoe' estimator due to its being based on many restrictive
assumptions. Chernoff and Zacks dealt with univariate observations. There

we have Yk’ Xi, Wi as univariate random variables. The model assumes

Y, =X, +W,, i=1, ..., n, : (7)
X, = X, +J,Z2,, 1=1, ..., n~1 (8)

where wi's are independently anq identically distributed as N{0, 1),
Ji's are random variables having  the value 1 if there is a change
in the mean or pattern Xi between ith and (i+l)th observation and the
value 0 otherwise and Zi is a random variable representing the amount
of change when a change takes place.

Let us write

Y = , W = i. , Z =11 and J
nxl . nxl . nxl

n
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Then noting that we can combine (7) and (8) to obtain the equation

n-1
Yi = Xn + Wi + I . Jk Zk, 1<i < n-1,
k=i
=X +u, i=n,
n n
we can write
Y =Xe + W+ MZ, (10)
nn
— 1 =
where nin = Jl J2 . anl 0t and en }
2 .Jn—l 0 nxzl i
Jn_l 0
0] 0
If we agsume
P(Jk=1) = pk, k=1, ..., n-1, (11)
2
and L{z) = N(0, ¢"5)

Il

where S Inul ol , ‘ (12)
0 0 _

then we obtain from (10) that

L(Y|Xn, J) = N(X e, Q(I)),

1+ oot (13)

where Q(j)
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from {(11) we have

n~1
EQ(H =z E[p {Q(I) [T =1} + (l—pk){Q(J)|Jk=O}]
k=1
n-1 . T
n-1
= In + E=l Py R(n, k), . (14)

where R(n, k) is a nxn matrix whose upper left submatrix is Ek’ a

kxk matrix all of whose elements are 1, and the other elements are zero.
When changes in the mean occur almost always or when there arz al-

most no chénges, the random vector J «can be assumed to be distributed

independently of Y. 1In that case we obtain from (13) and (14)

L(Y|Xn) = N(X e , V), (15)
n-—l2
where V =EQ(J) =1 + % o p_Rn, k). (16)
n ooy k

If u is the current mean, the mean of ¥ then using standard argu-
n n’

ments it can be shown from (15) that
po=e VY /e V e ' (17)

is a MVLU estimator of Ho- If v(n, j) denotes the sum of the elements
-1 ~ '
of the jth column of Vn , then H, can be written in the form
n-1 n—-1

W= [0 vn, DYI+Y /I v, )+ 1 (18)
j=1 j=1



When we have

(16)

n+l

il

We know (Rao

v o
n
I

n+l

+

} + Gzpn [eﬂ [ei 0]
0

[11] p. 29) that if

/7L

observations, we can obtain in a way similar to

czp R{ntl, k)

e =

B = A + UV,
pxp  pxp  pxl lxp
then Bl =at-alvtalsa + ViAo (19)
Therefore,
7vfl 0 GZP
V—l - n _ n K
n+l 0 1 2 T -1 n+1’
= l+0"p e V¥ e
: n n n n
where K 1= vgn, 1) [v(n, 1) . v(n, n} 0]. (20)
v(n, n)
| O
So, vint+l, otl) = 1
, T
v(ntl, i) = v(n, 1)/[1 + c"p_ ¥ wv(n, k)], 1<i<n,
| k=1
n ' 2 n , 1
and 1 4+ L v{ntl, i) = [1+(I+c'p ) L v(n,L)]/[1 + o p_ T v(n, k)]
. n’ 1 n
i=1 i=1 k=1
- n n
Therefore, ‘ Moyg © [ v(ot+l, k) Yk + Yn+l]/[l + I wvi{ntl, k)]

k=1

k=1
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n

n
ivq O 2 A
(2 vin, D] w + 2 +0% & vin, HIY
_ i=1 i=1
2 I
1+ (14+cp)r vin, 1)
n .
i=1
¢
== e A Yo, (21)
2 0 : 2 2
where A ={1+¢p. £ vi(n, DI{1+ Q+sp) & vin,i)}.
o T oi=1 =1

(22)

Using (22) we can now recursively estimate the current mean.

&, Exponentially Weighted Moving Average

In analyzing observations on space and time varying patterns, espe-
cially time series data, it has been a popular practice (see Brown [4])

to use exponentially weighted moving average (EWMA) (Box and Jenkins [3])

as the current "mean", location or "level" of the process because of its
success in a variety of afplipations. Let {..., Yt—l’Yt} be observations
at .. t-1, t (a stochastic process in discrete time). Then an exponen-
tially weighted moving average (EWMA) 1s a prediector or forecsst of a
future level at t + h derived by weighting past observations "exponen-

tially" (or geometrically) and expressed in the form

(==

Te, b3 ) =2z @07y, , Al <1 (23)
-r
r=0
=AY +(1-2) ¥ (-1, b 2, P <L (24)

For h=1, we shall woite

Y(c, 13 ) =¥ ). (25)



Thus from (24) and (25) we have

Y O =AY+ Q-0 Y () (26)
=2z (1-0)" ¥
r=0 t-r

Muth [10] has shown that ft(l), as given by (26), 1s optimal for some

A for the following nonstationary moving average process. Let

(27)

where Wt's are independently distributed as N(O, 02) and Zt's are

independently distributed as N(J, tz). Then the predictor it ()

given by (26) minimizes the error variance

E(Y,, - ?t(x))z (28)

t

when A ds given by

2 2 1/2
SE et . (29)

t
)
402

202

A =1+

From (28) it also follows that

?t(x) = E(X (30)

t+lIYt’ Teopr o)

When Yt is a pxl wvector, L(wt) = N(0, C), L(Zt) = N(0, I},
then following Muth, it can be shown that ?t(k) minimizes the scatter of

error given by



- “7‘ T
B - L) (0= ¥ 00)

provided we take

y= 1+ ([z|/2lehy - |zl/ich af1 + |3]/4ic]. (31)

In passing, it should be noted that the choice of the weight A is
vital in the definition of EWMA. In many situations EWMA's may not be
optimal, because the underlying process mzv not be of the form (27), or
evea if the process is of the form (27), the matrices £ and C are
unknown, so that it may be impossible to obtain the exact value of A
given by (29) or (31). Even then they are attractive because they are
easy to compute.

Motivated by the work of Abramson and Braverman [1], especially by
the equation (6) which has been derived from a model of the form (27) and
perhaps following the popular practice, Kriegler and Horwitz [8] have
proposed that for simultanecusly updating the current mean of several
ﬁopulations whose covariance matrices do not change any one of the follow-
ing three algorithms should be adopted.

(1) Exponentially Weipghted Running Estimates

If an observation A has been recognized as one coming from the
class Hi’ then the present mean Mi of this class is to be updated to

a new value Mi, where
. 1o +
Mi (1-3) Mi Y, {32)

and A ds a constant.
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Kriegler and Horwitz have recommended that X should be given a
value between 0.001 and (.003. Evidently such small A will heavily
weigh the past observations, especially the present mean Mi and will
attach very little weight to the current observation. Unless the pat-
terns are extremely slowly varying, such small A will make the updated
mean Mi a very poor representative of the current pattern.

(2) Exponentially Weighted Running Estimates With Interaction

Assuming that at any time the mean Mi of the class Hi is related

to the sum M of means of all M classes by the equation
M= mp, M., (33)

where Py is constant for all’ " time, the present mean Mj of any

clsss Hj should be updated to the value Mj, where

. . | ,
Mj. piMi/pj ) (34)

and M{ is the current updated mean of ﬂi, updated according to (32).
The assumption {33} is hard to justifw.

(3) Posterior Probability Weighted Lstimates

Let Ki denote the fixed covariance matrix of Hi. Then according

to this algorithm an obgervation Yt is assigned to the class Hi if

for some preassigned threshold value tl’

Li(Yt) >Lj(Yt) and Qi(Yt) < tl,

ny .
where Li(Yt} = |Ki| ? exp {&Qi(&t)/Z}
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PN S
and Q (V) = (V)" KT (Y M)

The mean Mi should be wpdated to M; given by

M

=1+ YRi(Yt)(Yt—Mi) (35)

{11 - 2(t, 1)} Mi + A(t, 1) Yt,

1]

m ¥
where Ri(Yt) Li(Yt)/ Z- Lj(it)

j=1

and A(t, i) YRi(Yt), ¥ being a constant (0<y<l).

The updating formula (21) based on Chernoff ~ Zacks model énd formula
(35), both resemble EWMA, except that the weights are now variable and to
be updated each time. The predictor (21) has been shown to be MViU. But
the predictor Mi given byl(35) may nct enjoy any such property. It is

not known for what kind of process M£ will be optimal in some sense.

t and y on

Kriegler and Horwitz have suggested some values of tl, 2

empirical grounds, but have failed to give a specific rule for the selec-
tion of these quantities. The performances of the predictors (35) in
different situations are yet to be determined and compared.

The work of Kriegler and Horwitz [B] motivated Chang [5] to propose
updating formulae for the mean and covariance matrixz using variable

weights. Let Yj denote the observation from the jth

R S
1’ jn(i)

training field, a set of identically distributed random vectors. Then

the updated mean Mi is given by

M=y, MI . f (1-v.) M.,
57y M ( YJ) : (36)



where Mj = (le + ...+ an(j))/ n{j),

, = a, N, ./ N,
Y3 j-1 7i-1" 73’

N

” n(l) + ... + nk)

and aj is a number satisfying 0 i-aj—l E_N./Nj_l and to be guessed

-1 j

from the nature of the data. The covariance matrix is to be updated to

K. where
3

SRR |
{Nj/(Nj~l)} (Qj My Mg )s (37)

I
It

il

£
'.4:
e
|
S
=
~
[
o

and Q.

When the patterns are varying, the updated "mean" Mg given by (36) is
not an unbiased estimate of the current mean. It is not known in what
way these updated estimates are optimal. The other disadvantage of this

algorithm is that it leaves the choice of Y4 to the gues: of the user,

5. Updating By Kalman Fiiters

Consider the dynamic relationship

<
|

o = HS W (38)

k k-1 k-1
satisfied by the pxl observation vectors Yl’ cens Yk’ vo. and the
gxl state vectors Sl’ ey Sk’ ...y Where Wk's are pxl random

/7
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noise vectors independently distributed as N{(0, C), Zk's are  gx1
random vectors distributed independently of each other and of Wk's as
H(0, Q) and the pxq matrix Hk and gxg matrix A wmay be time vary-
ing, but are known matrices of real numbers. It is well krown {(Lee [9])

~

that an estimate S of Sk given Yl, .ees Yk such that

k
E(Sk) = E(Sk Yk, cans Yl) (39)
and E[(§ -5 )T(S -5 }] is minimum
k "k k 'k
can be obtained, using discrete Kalman filter, recursively as
S = AS +p Hch[Y, - HAS ] (40)
= B8 TR OO T EBAS 5
_ T -1 T -1 -1
Pk = [(A Pk—l AT+ Q) + ch Hk] . (41)
= Cov (Sk’ Sk lYk’ vy Yl)

Assuming covariance matrices of all populations to be the same and
not undergoing any change, Crane [7] used the estimation method by Kalman
filters for simultaneously updating the means of the populations

I Ve Hm. Crane considered the feollowing model:
Y, o= HS tW, (42)

5 =8 + Z

PR B S R (43)

M ® Ip, (44)

4=
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where Mk is a mxl matrix with ith row {(i=1, ..., m) as 1 Iif Yk
has been recognized to be coming [rom Hi and zero otherwise and A QB
denoting the Krenecker product of the matrices A and B (Andetrson [2]).

It has also been assumed that

¢=REC, (45)
1 Ty eus r2
wvhere R = L 1... ry | (46)
mxm . .
T 1
| 2 _J

The state vector S is a m pxl wvectoer of m stacked subvectors of

k
i - ; ; (1) (1)
pxl vectors of present means (prior to updating). Let Xk and Zk

denote the ith px1 vector component of Sk and Zk respectively.

Then assuming Y to be an observation from Hi, we obtain from (42),

k
(43) and (44) that

_ (1)
Yoo =X W (47)
(1) (1) (1) -
xk + Xk—l + Zk—l . {48)

This is the process for which EWMA s are optimal. Thus it is evident
that Crane's model is a generalization of the above model so that in
simultaneously updating the means of all populations their interaction

has been taken into account.
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Noting that

-1

[ _; + Q)“l + 1-1;5 ¢t Hk]_l Hi C

K _ T T -1
= (Pk—l+ Q) Hk [Hk (Pk—l+ Q) Hk + Cl 7,
we now cbtain from (40) that

- ~ T T -1 :
S, = Sp_q T (P gt @ B [H (P _+Q H_+CI (Y-S, ). (49)

Further assuming L(Sl) = N{(0O, PD) and

P0=To®c s ’ (50

mpxrmp mXm pPxp

we can obtain from (43) that

P,HQ = (Pol + H§ ¢t Hl)_l +Q
= (T;1+M1Mr]li)_l ® C+R @ C
= {T —E%} © cC+RrR @ C
1+M T M,
= Tl & C
and P,4Q = {(P1+Q)_l + 1-1§ ¢t HZ]_l + R @ C



J{d

o1 T -1
= (@ +MpM)TT @ CHR ® C
T
TMME T
={T1—~—1~%;1}'® C+R @ C
L4, TN,
= T2 8 c,
T M]M§ T
where T1 = T0 - ———% + R
1T M
T
T M. M- T
and T2=Tl~%“+1z.
LG T M,

By induction, we can obtain

Pk + Q = Tk & C,
mpXmp  mpHmp  mxm pEp
T Mk ME T
: _ k-1 k-1
where Tk = Tk—l = + R (sl)

1+ Mk Tk—l Mk
Using (51) we can simplify {49) and obtain

- T , .
S = Sy TLAMG T M) T T M 8 1T (S ). (52)

Crane has suggested some "ad hoc" value for ry and r. in (46)

2

in order to define the interaction matrix R. But it seems more reason-

able to estimate them from a part of the sample,.
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The above estimation procedure will be clear from the following

nunerical example.

Example, Let m= 2, p=2,T = 12, C = 12, ry, = 0.01, T, = 0.02,

(8]
vy = [12]em, Y = [-1 1] € I,. Then
1 1’ 2 N
T T
Ml= {1 0],1112: [0 1],
T . _
M, T My = 1,

=]
I

=1I.~{1 [LO0] 1.}/ 2+ 0.01 1 0.02
1 2 =2 {é] 2 0.02 1

1 0] _ [oe.50], 0.0L 0.002

o 1 0 0 0.002 0.01

_ [0.51 o.ooz] .

]

0.002 1.01
MT2T1M2 = 1.01,
T, =T -'{Tl [g] [0 1] 7,3/ 2.01 + R
=7 -1 [0. o.ooz} [0.51' .0.00%} . x
2010 1.01 0.0062  1.01 ’
6. Detection of Change in Mean

The models on which we have based our estimation process so far
implicitly assume that the means change almost at each observation. If
this is the case, then the updating of meens using the procedures so far

discusged is just. But when we are considering spatial variation and
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have observations from points spaced not too far from each other, then it

is more likely that the sequence of observations Yl, Y2, vany Yn can be

Y.}, ... such that

s Yy ey Y, LY Yy e,
1 2 kl kl+1 kl+2 kZ

members in the same group have the same mean while members in different

grouped as {Y

groups have different means. In that case it will be more reasonable to

use the arithmetic mean (Yki+l + ...+ Yki+l)/(ki+l - ki) as the mean
of Yj(ki+l_i j =< ki+1) than to use the mean obtained by the updating
process. But often the points Ki, k2, ... at which the changes in mean

take place is unknown. Therefore we have to use some statistical test
in order to determine the points of change.
When Yl, Y2, cany Yn are pxl random vectors independently dis-—

tributed normally with the same covariance matrix, say .Ip’ then for test-

ing the hypothesis

H : = U, T ol = un (equality of means)

against H.o =

1 ---=ur#ur+l=--._=u,

My

where the change point r dis unknown and 1 < r < N-1, Sen and Srivastava

[13] have used the test statistic U* given by

_9 n-1 n-1 _ 7 n-1 _
Uk =N ° 7F (z (Y, - ¥y (% (Y, -Y) ),
11 j=1 jtl j=1i j+L
where Y = (Yl + ...+ Yn)/N. They have also given the asymptotic

percentile of U* for p=2 through p=8. Chernoff and Zacks [6] have
also given a test for p=l. Yor other references of work in this connec-

tion we refer to [13].
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Addendum to Papers 1, 4 and 5

Consider the matrix P for the two crop situation. Say,

. Jraln r@al2) ) \
P =i, . , where P(1|1) = x/n. P(2]2) = y/N., and

P(2|1) P(2[2) 1 2
§(2|1) =1 - ﬁ(l[l), §(1f2) =1 - £(2|2). % ig the number correctly
classified into population one and y is the number correctly classified
into poj:ulation two. Since X and Y are independently distributed as bi-
nomial variates, the probability that § is singular is positive. This is
illustrated for the case N1=N2 = 3 where 12 represents the probability of
correctlylclassifying an opservation in population i.

Since ﬁ is singular iff xy - (3-x)(3~y) = 0, iff xty = 3, there are 4
points yielding % singular. They are (1,2), (2,1}, (0,3}, (3,0) and the
probability ﬁ is singular is 9 plqipzqz + 9 piqlpzqg + qipg + piqg. In

there are N+l points which yield P singular.

general, if Nl=N2 9

Hence, an alternate method must be used to estimate P. One approach
is to estimate Ky Zi for each population from training samples and then

estimate P(i|j) by 'P(i]j) = f pj(x;uj,Ej) dx, where Ri is the region
Ri
corresponding to an observation being classified into the ith population,

and pj is the (continucus) density function of the jth population. Thg
probability that 5 is non-singular with probability one can be established
using advanced probabilistic arguments.

Another approach is to use the pseudoinverse of 5 rather than the dinverse.
However, this approach would affect all the analyses done and the results may

be difficult to interpret. This approach 1s probably the best but needs to

be studied to assure that subtleties have not heen ignored.
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Finally, one could make the analysis coaditional on the fact that P is
non-singular. Formulas for variances and mean squared error of P would

necessarily be modified to incorporate this condition; yet the analysis

would conceptually be straightforward and follow the arguments now presented.



