CHARACTERIZATION OF METALS MELTING DISCS
SKYLAB EXPERIMENT M551

Prepared under Contract No. NAS8-28725

Robert E. Monroe

BATTELLE COLUMBUS LABORATORIES
Columbus, Ohio 43201

For

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER
Huntsville, Alabama

December 4, 1973
CHARACTERIZATION OF METALS MELTING DISCS
SKYLAB EXPERIMENT M551

By

R. E. Monroe

Battelle Columbus Laboratories
Columbus, Ohio

ABSTRACT

Information developed to characterize flight and ground based samples from the Metals Melting experiment is detailed in this report. Included are the characteristics determined by nondestructive examination, visual observation, metallographic examination and posttest measurements. Comparisons of the flight and ground based discs showed that an electron beam heat source can be used successfully in zero gravity for cutting, welding, or melting. Few differences were observed that could be attributed to the absence of gravity in these operations.
Sixteen discs from the metals melting experiment were examined to provide data on the possible effects of zero gravity on molten metals. Three of the discs, one each of 2219 aluminum, austenitic stainless steel and tantalum, were processed on Skylab. The remaining discs were processed in the normal earth gravitational field. Examinations were conducted with careful visual and radiographic methods, dimensional checks, and metallographic techniques. A large number of features were observed and documented for comparative purposes and for study by other investigators. Although the individual discs contain a variety of features, few of these appear to be useful in demonstrating a pronounced effect of zero gravity in the experiment. The cut and weld shapes obtained and the microstructures observed were typical of normal electron beam processing. Weld defects were not as useful in studying gravity effects as anticipated. Porosity was infrequent only along surface interfaces in the aluminum samples. Cracks occurred only in predictable locations in the aluminum at the weld start in the dwell area, and at the point where a molybdenum tracer was used. The tracer technique itself was overshadowed by the pronounced mixing occurring during welding.

Significant findings were as follows:

(1) Strong evidence that gravity induced convection is an important factor in electron beam welding of aluminum was obtained from the differences in the oxide film distribution observed between the Skylab specimen and ground characterization specimens.

(2) Weld-base metal surface contours appear to be generally flatter in the Skylab specimens. Further study of these contours should be made including the data available from other investigators.
INTRODUCTION

This report covers the work conducted at Battelle-Columbus in support of Skylab experiment M551 Metals Melting. The report covers characterization of both ground-based and Skylab-processed specimens during the period from May 15, 1972 through December 4, 1973.

The work was conducted in three phases concerned with (A) Planning, (B) Ground-Based Characterization, and (C) Skylab Specimen Characterization. Inputs made during Phase A were reflected in the experimental details that have evolved and are reported elsewhere. This report covers the details of Phases B and C and is organized into three sections. Section A covers the evaluation of ground characterization samples available prior to the Skylab flight. Section B covers characterization of the Skylab specimens and a post flight series of ground characterization specimens. Finally, conclusions covering all aspects of the program are presented.

The Battelle effort under this program was only a portion of the total effort conducted both by NASA and other contractors. For completeness, some data and information for other sources is included in this report. The reader will find much related information in other reports on this experiment.
During Phase B, the evaluation procedures proposed in Phase A were studied and proven out by examination of ten ground characterization discs. The procedures generally involved visual, nondestructive, and metallographic examinations. The discs examined in this program can be classed in three groups:

(1) Preliminary - Phase B

(2) Ground Based - Phase B

(3) Skylab - Phase C

Only the Preliminary-Phase B group is discussed in this section, since Group 2, Ground Based-Phase B were processed after the Skylab flight. Also, interpretation of the data is limited in this section. Instead, most information is presented as observations made.

MATERIALS

The discs included in the Preliminary-Phase B study are listed below:

<table>
<thead>
<tr>
<th>Identification</th>
<th>Material</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Stainless Steel</td>
<td>Quadrant Design</td>
</tr>
<tr>
<td>B</td>
<td>Stainless Steel</td>
<td>Quadrant Design</td>
</tr>
<tr>
<td>P-1</td>
<td>2219 Al</td>
<td>Mo Coating Evaluation</td>
</tr>
<tr>
<td>H-1</td>
<td>2219 Al</td>
<td>Final Design</td>
</tr>
<tr>
<td>S/N 124</td>
<td>2219 Al</td>
<td>Final Design</td>
</tr>
<tr>
<td>S/N 104</td>
<td>Stainless Steel</td>
<td>Final Design</td>
</tr>
<tr>
<td>S/N 143</td>
<td>Tantalum</td>
<td>Final Design</td>
</tr>
<tr>
<td>S/N 132</td>
<td>2219 Al</td>
<td>Final Design</td>
</tr>
<tr>
<td>S/N 107</td>
<td>Stainless Steel</td>
<td>Final Design</td>
</tr>
<tr>
<td>S/N 158</td>
<td>Tantalum</td>
<td>Final Design</td>
</tr>
</tbody>
</table>
Procedures

The evaluation procedures proposed in Phase A were studied and applied as required. The visual appearance of the front and back disc surfaces was recorded photographically at 1X. A low power examination using a binocular microscope at magnifications in the range of 7 to 30X also was made. Written descriptions of this visual examination will be prepared for the final Phase B and Phase C specimens.

Radiographic exposures were taken with Norelco-MG-150 equipment on the aluminum and stainless steel and with General Electric - OX250 equipment on the tantalum. The exposure conditions are tabulated below:

<table>
<thead>
<tr>
<th>Material</th>
<th>Voltage</th>
<th>Current</th>
<th>Time</th>
<th>Focal Length</th>
<th>Film Type(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>40</td>
<td>5</td>
<td>5</td>
<td>46</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>5</td>
<td>5</td>
<td>46</td>
<td>M</td>
</tr>
<tr>
<td>SS</td>
<td>110</td>
<td>5</td>
<td>5</td>
<td>46</td>
<td>AA & M</td>
</tr>
<tr>
<td>Ta</td>
<td>210</td>
<td>8</td>
<td>3</td>
<td>51</td>
<td>AA(b)</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>8</td>
<td>3</td>
<td>51</td>
<td>AA(b)</td>
</tr>
</tbody>
</table>

(a) Kodak Designation.
(b) With Lead Screens.
(c) Films Exposed Together.

Generally two exposures were required to provide the proper density for interpretation because of the thickness variation in the disc.

Other nondestructive inspection methods, penetrant and ultrasonics, were not found useful in examination of these discs.

Measurements were taken of the disc thickness with appropriate micrometers, and on some discs dial indicator readings were made to determine the out of plane distortion. The procedure for these later measurements was as follows:

(1) Set up disc in a lathe chuck and adjust to have the front disc surface perpendicular to the rotation axis.
(2) Check region near center of disc with dial indicator and readjust as necessary.

(3) Establish zero reading on center region.

(4) Record readings at distance of 1/4 inch from weld centerline on either side of weld every 30 degrees.

The discs were marked for sectioning with scribe lines at the appropriate points. The basic pattern for sectioning is shown in Figure A-1. Sectioning was accomplished using a water cooled abrasive wheel, 0.040 inch-thick. Sections cut for other investigators were marked and returned to MSFC. The nomenclature used for sectioning and sample designation is listed below:

(1) 0 degree is target.

(2) Looking at front surface, angle is measured counterclockwise.

(3) All discs are identified with a disc number.

(4) All radial sections are designated by the angle of the plane examined.

(5) All chord sections are designated by the included angle.

(6) All photographs will have a negative number and magnification shown as follows (AAA-20X).

(7) Direction of view of radial planes will be indicated as, +, looking in direction of weld finish or, −, looking in direction of weld start.

Sections for examination were mounted and polished using conventional metallographic procedures. Sections were examined in both the as polished condition and after etching. The etchants normally used on each base material were as follows:

(1) Aluminum - 60\% \text{H}_{2}\text{O}_{2} - 30\% \text{HNO}_{3} - 20 \text{ Ethyl Alcohol, 15 drops HF}

(2) Stainless Steel - 97\% \text{HCl}, 3\% \text{HNO}_{3} - 1/2 gram \text{CuCl}_{2}

(3) Tantalum - 30\% \text{Lactic}, -40\% \text{HNO}_{3} - 40\% \text{HF}
FIGURE A-1. SECTIONING PLAN - M551

Numbered Sections - BCL

- MSFC
- UK

T₁ - Cut
T₂ - Ramp
T₃ - Full penetration
T₄ - Partial penetration/dwell
All photomicrographs identified as etched were prepared with these etches unless a different etchant is indicated.

Electron probe microanalysis was used as appropriate to identify phases present in the microstructure.

RESULTS

Results of the preliminary Phase B studies are presented in sections containing the data developed on each specimen. The specimens have been grouped by material except for the distortion measurements.

Aluminum Discs

Four aluminum discs were examined. Three of these were of the final disc design and one was a disc used to develop molybdenum coating techniques.

Disc P-1

No defects were noted in the radiograph except crater cracks at the weld stops and dwells. Figure A-2 shows the appearance of this disc as received. The black area is a molybdenum spray coating used for a tracer. A section through the weld zone in the area of the tracer is shown in Figure A-3. No adverse effects of the tracer on the weld region were noted in this section.

Disc H-1

The radiograph showed longitudinal weld cracks near the weld start (125° to 135°), and near the molybdenum tracer (225° to 235°). Cracks in the dwell crater also were apparent. All of these cracks also were visible on the weld surface. Figure A-4 shows the front surface of Disc H-1. The rectangular cutouts were examined at Battelle. The cross hatch wedge sections were sent to MSFC for examination.

Figures A-5 through A-10 show the appearance and microstructural details in the cut region. Several areas on the cut surfaces indicate the presence of a contaminant or reaction zone. This has probably come from material vaproized from the surface under the weld disc. The very wide cut that resulted in this disc is
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FIGURE A-2. FRONT SURFACE OF P-1

FIGURE A-3. SECTION P-1 AT TRACER REGION
FIGURE A-4. FRONT SURFACE H-1
FIGURE A-5. SECTION THROUGH CUT REGION -H-1

FIGURE A-6. SURFACE OF CUT ON INSIDE -H-1
a. Enlarged area of Figure A-6

b. Bottom surface of cut on outside

FIGURE A-7. SURFACE OF CUT -H-1
FIGURE A-8. PORE IN SECTION AT BASE METAL INTERFACE
H-1

FIGURE A-9. SECTION THROUGH RAMP REGION -H-1
FIGURE A-10. PORES IN RAMP SECTION -H-1

FIGURE A-11. SECTION THROUGH CRACK NEAR WELD START
indicative of an electron-beam power level favoring excessive penetration.

The details shown in Figures A-11 through A-23 are provided for future comparisons of structures and defects. Figures A-24 and A-25 illustrate the technique available to identify phases present in the regions containing the molybdenum tracer.

Disc S/N 124

Figures A-26 through A-32 show the appearance of this disc and selected macro- and microstructures.

Disc S/N 132

Figures A-33 through A-36 show additional features of an aluminum disc.

Stainless Steel Discs

Four stainless steel discs were examined. Two were of an early quadrant design and the last two of the final designs.

Disc 2 and Disc B

Figures A-37 through A-39 show the front and back surfaces of Disc B and Disc 2. The quadrant thickness of these discs is tabulated below:

<table>
<thead>
<tr>
<th>Region</th>
<th>Thickness, inch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"B"</td>
</tr>
<tr>
<td>Cut</td>
<td>0.027</td>
</tr>
<tr>
<td>Full penetration</td>
<td>0.097</td>
</tr>
<tr>
<td>Partial Penetration</td>
<td>0.168</td>
</tr>
<tr>
<td>Dwell</td>
<td>0.258</td>
</tr>
</tbody>
</table>

A large number (about fifty) macro and microphotographs were taken of sections from these discs. They are available, but not shown herein because of later changes in material and disc design.
FIGURE A-12. ENLARGEMENT OF LONGITUDINAL CRACK AT WELD START - H-1

135°(-) Etched 5G250-100X

FIGURE A-13. PORE AT INSIDE EDGE OF WELD - H-1

135°(-) Etched 5G251-500X
FIGURE A-14. SECTION THROUGH FULL PENETRATION REGION - H-1

FIGURE A-15. SECTION THROUGH PARTIAL PENETRATION REGION - H-1
FIGURE A-16. SECTION THROUGH UPPER LEFT SURFACE OF PARTIAL PENETRATION WELD- H-1

FIGURE A-17. SECTION NEAR TOP SURFACE PARTIAL PENETRATION WELD- H-1
FIGURE A-18. SECTION THROUGH PARTIAL PENETRATION REGION - H-1

FIGURE A-19. SECTION THROUGH DWELL REGION - H-1
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

a. Crack near left edge in Figure A-19

b. Main crack near center in Figure A-19

FIGURE A-20. CRACKS IN DWELL REGION- H-1
a. Near Left center in Figure A-19

b. Near right center in Figure A-19

FIGURE A-21. MOLYBDENUM TRACES ON SURFACES OF DWELL REGION- H-1
FIGURE A-22. CRACKS NEAR TOP OF DWELL REGION- H-1

FIGURE A-23. CHORD SECTION IN DWELL REGION- H-1
335° (−) Aluminum 11299-300X

335° (−) Molybdenum 11300-300X

FIGURE A-24. ELECTRON PROBE SCANS OF REGION SHOWN IN FIGURE A-21 - LARGE PARTICLE AT LEFT CENTER ADJACENT TO END OF CREVICE - H-1
FIGURE A-25. ELECTRON PROBE SCANS OF REGION SHOWN IN FIGURE A-16 - LARGE PARTICLE AT TOP RIGHT SURFACE - H-1
FIGURE A-27. SECTION THROUGH PARTIAL PENETRATION REGION - S/N-124
FIGURE A-28. ENLARGED AREAS OF PARTIAL PENETRATION REGION S/N 124
FIGURE A-29. SECTION THROUGH DWELL REGION
S/N-124

FIGURE A-30. SECTION THROUGH CRACK IN DWELL REGION - S/N-124
FIGURE A-31. CHORD SECTION THROUGH DWELL REGION
S/N-124
FIGURE A-32. STRUCTURES IN DWELL REGION S/N-124

a. Weld metal-base metal interface

b. Internal microstructure
FIGURE A-32. (Continued)

- Structures' in dwell region
- S/N-124
FIGURE A-33. FRONT SURFACE -S/N 132
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FIGURE A-35. SECTION THROUGH CUT REGION - S/N 132
FIGURE A-36. CHORD SECTION IN FULL PENETRATION REGION S/N 132
FIGURE A-37. FRONT OF DISC B SHOWING SECTION LOCATIONS
FIGURE A-38. BACK OF DISC B' SHOWING QUADRANT DESIGN
FIGURE A-39. FRONT OF DISC 2 SHOWING SECTION LOCATIONS
Disc S/N 104

Figures A-40 through A-50 show the front surface and transverse sections through the various regions of a stainless steel disc.

Disc S/N 107

Figures A-51 through A-54 show additional features of a stainless steel disc.

Tantalum Discs

Two tantalum discs, both of the final design, were examined.

Disc S/N 143

This disc is shown in Figure A-55. Sectioning was limited by the extensive cutting that occurred. Figures A-56 through A-63 show the sections examined.

Disc S/N 158

Figures A-64 through A-68 show features of this disc and selected sections taken.

Distortion Measurements

The distortion measurements are given in Table A-1. Distortion in the cut region was greater than in other regions.
<table>
<thead>
<tr>
<th>Location, degrees</th>
<th>Aluminum S/N 132</th>
<th>Stainless Steel S/N 107</th>
<th>Tantalum S/N 158</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>Out</td>
<td>In</td>
</tr>
<tr>
<td>0</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>-2</td>
<td>-23</td>
<td>+5</td>
</tr>
<tr>
<td>60</td>
<td>+3</td>
<td>-32</td>
<td>+8</td>
</tr>
<tr>
<td>90</td>
<td>(b)</td>
<td>-28</td>
<td>+5</td>
</tr>
<tr>
<td>120</td>
<td>+1</td>
<td>-13</td>
<td>+2</td>
</tr>
<tr>
<td>150</td>
<td>+1</td>
<td>-1</td>
<td>+2</td>
</tr>
<tr>
<td>180</td>
<td>+4</td>
<td>+4</td>
<td>+1</td>
</tr>
<tr>
<td>210</td>
<td>+2</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>240</td>
<td>0</td>
<td>-8</td>
<td>-2</td>
</tr>
<tr>
<td>270</td>
<td>-3</td>
<td>-11</td>
<td>-1</td>
</tr>
<tr>
<td>300</td>
<td>-4</td>
<td>-8</td>
<td>+1</td>
</tr>
<tr>
<td>330</td>
<td>(b)</td>
<td>(b)</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) + = distortion toward electron gun
- = distortion away from electron gun
(b) No measurement, probe in cut or dwell region.
FIGURE A-40. FRONT SURFACE - S/N 104
FIGURE A-41. SECTION THROUGH CUT REGION - S/N 104

30° (+) Etched 7G500-20X

FIGURE A-42. SECTION THROUGH RAMP REGION - S/N 104

105° (+) Etched 7G498-20X
FIGURE A-43. FUSION LINE REGION
S/N 104

FIGURE A-44. SECTION THROUGH FULL PENETRATION REGION
S/N 104
FIGURE A-45. SECTION AT ROOT OF WELD S/N 104

FIGURE A-46. SECTION THROUGH PARTIAL PENETRATION REGION - S/N 104
FIGURE A-47. FUSION LINE REGION
AT SHAPE CHANGE S/N 104

FIGURE A-48. SECTION THROUGH PARTIAL PENETRATION
REGION S/N 104
FIGURE A-49. WELD STRUCTURES - S/N 104
345°-330° Etched 76488-20X

a. Chord Section

FIGURE A-50. SECTIONS THROUGH DWELL REGION S/N 104
b. Top Edge Fusion Line

c. Typical Weld Microstructure

FIGURE A-50. (Continued)
SECTIONS THROUGH DWELL REGION
S/N 104
FIGURE A-51. FRONT SURFACE - S/N 107
FIGURE A-52. BACK SURFACE
FIGURE A-53. SECTION THROUGH CUT REGION
S/N 107

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FIGURE A-54. CHORD SECTION THROUGH FULL PENETRATION REGION - S/N 107
FIGURE A-55. FRONT SURFACE - S/N 143
FIGURE A-56. SECTION THROUGH REGION BEFORE CUT S/N 143

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FIGURE A-57. SECTION THROUGH CUT REGION S/N 143

FIGURE A-58. BOTTOM SURFACE OF OUTSIDE CUT EDGE S/N 143
FIGURE A-59. BOTTOM SURFACE OF INSIDE CUT EDGE S/N 143

FIGURE A-60. SECTION THROUGH BRIDGE BROKEN IN CUTTING S/N 143

FIGURE A-61. SECTION THROUGH PARTIAL PENETRATION REGION S/N 143
FIGURE A-62. SECTION THROUGH DWELL REGION S/N 143

FIGURE A-63. CHORD SECTION THROUGH DWELL REGION S/N 143

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
FIGURE A-64. FRONT SURFACE S/N 158
FIGURE A-65. BACK SURFACE S/N 158
FIGURE A-66. SECTION THROUGH BRIDGE IN CUT REGION S/N 158

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FIGURE A-67. CHORD SECTION THROUGH FULL PENETRATION REGION S/N 158

FIGURE A-68. SECTION THROUGH DWELL REGION S/N 158
SECTION B. EVALUATION OF SKYLAB AND FINAL GROUND CHARACTERIZATION METALS MELTING DISCS

A review meeting on this experiment held at MSFC was attended on July 19. Skylab specimens S/N 106, S/N 129, and S/N 145 were hand carried to Battelle following that meeting. A post flight series of ground characterization specimens, S/N 100, S/N 130 and S/N 147 were received at Battelle in August. Sections from the Skylab samples for examination at MSFC and others were returned to MSFC on July 26. Similar sections from the post flight ground characterization samples were returned to MSFC September 10.

SPECIMEN PROCESSING

Processing of the specimens at Battelle has followed the procedures previously developed and demonstrated in processing ground characterization samples. Visual examinations, thickness and distortion measurements, radiographic inspection, sectioning, and metallographic examinations were conducted.

RESULTS

Results of the thickness and distortion measurements are shown in Tables B-1 and B-2. Good agreement with intended dimensions was observed except for the two tantalum discs. The thickness variation in the cut and ramp regions of these discs may have influenced the extent and nature of cutting. The distortion measurements appear to indicate generally similar behavior in the Skylab and ground characterization samples. The radiographic inspection revealed the same defects that could be detected visually. No abnormal conditions were shown up in the radiographs. Additional results follow in separate sections on each material.

Aluminum Discs

Samples S/N 129 (Skylab) and S/N 130 (ground) are shown in Figures B-1 through B-4. The most significant difference in appearance is the change in the surface along the full penetration region. The Skylab sample (Figure B-3) exhibits a bright center region free of oxide. In contrast, the ground characterization sample (Figure B-1) is covered with small oxide particles. These particles
<table>
<thead>
<tr>
<th>Location in Degrees</th>
<th>Thickness, Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
</tr>
<tr>
<td>0-30</td>
<td>.025</td>
</tr>
<tr>
<td>30-60</td>
<td>.025</td>
</tr>
<tr>
<td>150-180</td>
<td>.120</td>
</tr>
<tr>
<td>180-210</td>
<td>.119</td>
</tr>
<tr>
<td>210-240</td>
<td>.119</td>
</tr>
<tr>
<td>240-270</td>
<td>.249</td>
</tr>
<tr>
<td>270-300</td>
<td>.249</td>
</tr>
<tr>
<td>300-330</td>
<td>.249</td>
</tr>
<tr>
<td>330-360</td>
<td>.248</td>
</tr>
</tbody>
</table>
TABLE B-2. DISTORTION MEASUREMENTS-M551

<table>
<thead>
<tr>
<th>Location in degrees</th>
<th>Aluminum</th>
<th>Stainless Steel</th>
<th>Tantalum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>Out</td>
<td>In</td>
</tr>
<tr>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>+2</td>
</tr>
<tr>
<td>30</td>
<td>+1</td>
<td>+12</td>
<td>+7</td>
</tr>
<tr>
<td>60</td>
<td>-3</td>
<td>+15</td>
<td>+3</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>+20</td>
<td>+6</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
<td>+17</td>
<td>+5</td>
</tr>
<tr>
<td>150</td>
<td>-1</td>
<td>+7</td>
<td>+3</td>
</tr>
<tr>
<td>180</td>
<td>-4</td>
<td>0</td>
<td>+3</td>
</tr>
<tr>
<td>210</td>
<td>-5</td>
<td>+1</td>
<td>+5</td>
</tr>
<tr>
<td>240</td>
<td>-5</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>270</td>
<td>-3</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>300</td>
<td>-1</td>
<td>+2</td>
<td>+4</td>
</tr>
<tr>
<td>330</td>
<td>-2</td>
<td>+4</td>
<td>+4</td>
</tr>
</tbody>
</table>

(a) + = distortion toward electron gun
- = distortion away from electron gun
(b). No measurement, probe in cut or dwell region.
FIGURE B-1. FRONT SURFACE S/N 130
FIGURE B - 2. BACK SURFACE S/N 130
FIGURE B-3. FRONT SURFACE S/N 129
FIGURE B-5. SECTIONING PLAN S/N 129 & 130

Numbered Sections - BCL

- MSFC
- UK

T_1 - Cut
T_2 - Ramp
T_3 - Full penetration
T_4 - Partial penetration/dwell
are believed to be transported from the back surface of the disc by gravity induced convention. Initially, both surfaces of the aluminum are covered with a thin film of aluminum oxide. The oxide on the front surface is removed from the weld center by impingment of the electron beam. Oxide on the back surface is not subject to the same conditions and is free to interact with the molten aluminum weld pool. In a gravity field, the lower density oxide will tend to float to the highest point in the molten weld pool which is on the front surface. In fact, all of the ground characterization samples have exhibited evidence of this occurring where a full penetration weld was obtained. In zero gravity, the density difference is not a factor, and consequently, oxide remains on the back surface.

Comments made during the visual examination of the aluminum discs follow:

Front Surface S/N 130

At 0 degrees, the target shows good positioning of the electron-beam; almost exactly dead center. There is a short weld region on the tungsten which is not contaminated by aluminum which did flow back onto the outer edge of the target for a short distance. A short length of weld then exists up to the point where cutting starts. There is a shrinkage crack in the termination of this short length of weld. The initial width of the cut region is 6 millimeters. For most of the rest of the cut, the cut narrows to approximately 2 millimeters in width. Material from the cut region formed a bead on either side of the cut. This bead is much heavier on the inside edge of the cut. Several more massive accumulations of molten metal exist along the cut region. One at about 20 degrees, one at about 70 degrees, and one at 95 degrees. The region between about 80 and 100 degrees is very erratic in appearance with the cut width varying considerable and a very massive ball of molten material on the inside edge, as mentioned previously at 95 degrees. Welding starts at about 100 degrees with only a very slight indication of a starting crack. Weld ripples are fairly pronounced although the surface is quite molten with a brownish spot-type deposit in the center region with a dark appearance on the outer region of the weld. The weld continues fairly uniform in appearance until the molybdenum tracer region is reached. Initially, at that point, there is a depression in the weld surface and numerous small hairline cracks are apparent in this area. Once the weld passes by the tracer region, it again assumes a uniform appearance with clear surface ripples and very little evidence of the brown spotty material in the center. The center region for the remainder of the weld is basically bright and clean; the brown material appears to have remained along the edges of the weld. The weld terminates in the finish hole with some slight cracking in the weld center. The initial weld width is 8mm; it then narrows to 6mm (full penetration) then to 4mm (partial penetration).
The dwell region was focused slightly to the inside and beyond the intended 330 degrees. The bulk of the dwell which is basically circular in appearance, is completely outside of the two legs of the molybdenum target. The dwell extends under these two legs but does not appear to have reacted with either leg very much. There are a number of shrinkage cracks in the center of the dwell region which is depressed. In general, the dwell periphery is raised above the surface of the plate being approximately even with the surface at the top. The center of the dwell is quite bright with the outer fringes of the molten zone appearing with a light brownish surface coloring. The dwell measures 15 X 12mm.

Back Surface S/N 130

At the target, there is nothing of significance. The cut area looks much like the top surface but is not as smooth nor is there as much molten metal attached below the plate surface as on the top. The inner surface is much dirtier than it is on the top. When welding starts, there is no evidence of the hot tear on the under surface. The initial width of the weld on the under surface is quite wide, measuring approximately 8 millimeters. At about 140 degrees, the width narrows to about 5 millimeters and stays essentially at that width throughout the remainder of the full penetration section. Throughout this region, the under surface is somewhat erratic in appearance. There is a small crack evident at the termination of the full penetration weld. There is no indication of welding on the partial penetration region except that the area around the termination hole is slightly discolored. A slight indication of the existence of this region can be seen without magnification. There is no difference in the surface appearance when looked at through the microscope.

Front Surface S/N 129

At zero degrees, the target shows evidence of aluminum material which has run back onto the target area for a distance of about 3-1/2 millimeters. The initial weld area, which is solid, is approximately 7 millimeters in length. At this point, the cutting action begins as intended. The initial width of the cut region is 6 millimeters. Throughout the rest of the cut, the kerf narrows to approximately 2 millimeters in width. Material from cut region has formed a bead on either side of the cut. This bead is heavier on the inside edge of the cut. At about 80 degrees, there is the first large ball of material which occurs on the inside edge. At about 90 degrees, there is a large ball of material collected on the outside edge of the cut. At 120 degrees, welding starts. For the initial portion of the weld, there is a hot tear along the weld.
centerline. The initial upper surface of the weld is relatively rough. The hot tearing condition continues until about 150 degrees. Surface roughness is still apparent and the weld surface is not depressed, but actually raised. At approximately 230 degrees, cracks are again on the upper surface at this point and between this point and 240 degrees there is some depression of the weld surface apparent. Cracks are evident and traces of the molybdenum tracer present in this region are apparent on the weld surface. The first evidence of ripples on the weld surface occurred just beyond 240 degrees. Weld appearance is fairly uniform from this region on to the termination hole. There is a small crater crack at the termination hole. The weld surface ripples are more apparent in the partial penetration region of the plate. Throughout the length of both the cut and weld region, there is apparent continuous cracking of the oxide film on either side of the weld. This film has a brownish appearance. The dwell region appears to be centered approximately 5 degrees off of the intended centerline and about 2 millimeters outside of the intended focal point. There is some cracking evident in the dwell region. The dwell measures 16 millimeters in length in the radial dimension and 20 millimeters in length along the chord dimension. The dwell is oval in shape with a slight depression at the center.

Back Surface S/N 129

At the target, there is nothing of significance. The cut area looks very much like the top surface but is not as smooth and to some degree, looks a little dirtier. Where welding starts, the hot crack is apparent on the undersurface extending from the start of the weld until approximately 150 degrees. Ripples appear to be evident on the under weld surface starting at approximately 180 degrees. These ripples are quite elongated. Small check like indications in the heat affected zone are evident between 210 degrees and about 225 degrees. These are possible heat-affected zone cracks, but this cannot be confirmed visually. The cracks evident on the top surface at about 240 degrees are also evident on the lower surface. From 240 degrees to the weld termination hole, there is no evidence of welding; however, the area around the hole itself is slightly discolored.

In the dwell region there is no absolute evidence that melting occurred through to the back side. This region is slightly different in appearance from the remainder of the plate with the machine markings being not quite as clear. It would appear that the surface of this region has a fine grained structure.
Sectioning and Examination

Both aluminum discs have been sectioned as shown in Figure B-5. All sections were mounted and examined. Macro and microphotographer showing the significant features of discs S/N 129 and 130 are shown in Figures B-6 through B-15. Figure B-16 shows the results of hardness traverses across the face penetration region of the weld.

Stainless Steel Discs

Samples S/N 106 (Skylab) and S/N 110 (ground) are shown in Figure B-17 through B-20. Comments made during the visual examination follow:

Front Surface S/N 106

At zero degrees, the target shows evidence of having been used to locate the beam with a slight melted region almost exactly on the center. The flow back of the weld appears to extend all the way from the edge of the target back to the center. Another region on one of the grooves appears to contain molten stainless steel which has flowed back in almost a brazing type flow. The surface of the tungsten shows evidence of having reacted with this stainless steel and also evidence of two cracks - one on either side of the main weld deposit. A solid weld region extends from the target to the point where the thickness decreases and cutting commences. The appearance of the cut on stainless steel is quite different from that in aluminum. In the stainless steel, the molten metal from the cut region has accumulated periodically in essentially circular type balls. The first ball appears on the inside surface of the cut, followed by a large ball on the outside, another on the inside, and another on the outside. The width of the cut tends to vary considerably ranging between 1 and 2 millimeters. The pattern of the ball deposits being on the inner or outer cut surface is fairly uniform throughout the length of the cut region. At approximately 70 degrees, there is a complete bridge across the cut region. This is followed by one small hole and immediately followed by the start of the full penetration weld. As soon as the weld initiates, surface ripples which are very elongated, are immediately apparent. After an initial variation in the width, the weld is quite uniform in appearance until about 105 degrees. At that point, a rather severe undercut condition develops along the inside edge. This undercut appearance continues essentially unchanged for the remainder of the weld. There is no similar evidence of undercutting on the outside edge of the weld, and no significant variation in weld appearance from the initiation of the undercut condition until its termination.
FIGURE B-6. SECTIONS THRU CUT REGION
FIGURE B-7. CONTOUR AT BASE METAL INTERFACE CUT REGION
FIGURE B-8. SECTION THROUGH FUEL PENETRATION REGION S/N 129 SKYLAB

FIGURE B-9. SECTION THROUGH PARTIAL PENETRATION REGION S/N-129 SKYLAB
FIGURE B-10. CHORD SECTION IN FULL PENETRATION REGION - S/N-129

FIGURE B-11. MICROSTRUCTURE IN CHORD SECTION - S/N-129
right-weld Face left-weld Root
FIGURE B-12. STRUCTURES IN FULL PENETRATION REGION
S/N-129 SKYLAB
FIGURE B-13. SECTIONS THRU DWELL REGION OF S/N-129 and 130
FIGURE B-14. STRUCTURES IN DWELL REGION
FIGURE B-15. CHORD SECTIONS OF DWELL REGION
FIGURE B-16. HARDNESS SURVEY—ALUMINUM FULL PENETRATION
FIGURE B-17. FRONT SURFACE S/N 106.
FIGURE B-18. BACK SURFACE S/N 106
FIGURE B-19. FRONT SURFACE S/N 110
FIGURE B-20. BACK SURFACE S/N 110
at the hole. There is slight evidence on the opposite side of the hole of the electron beam having been on when the disc was rotated to that point. There are occasional instances where small spatter particles can be seen adhering to the inside edge adjacent to the weld. Surface appearance of the weld is typical for a stainless steel electron beam joint with evident dendritic patterns at higher magnifications. There is no evidence of any cracking or weld defects other than the undercut. The focal point for the dwell area appears to have been almost exactly at the center of the molybdenum tracer target. It is slightly inside but still within the target region. The dwell is elongated - the long axis essentially parallel to the radial direction. There is an obvious buildup of material above the surface surrounding the entire dwell region. Solidification ripple patterns are quite evident along this built up region. The center portion of the dwell shows no evidence of ripple patterns for approximately half of the total area. A large cavity and crater are evident at the center of the dwell. The dwell measures approximately 19 millimeters along the long axis and 10 millimeters on the short axis.

Back Surface S/N 106

The target area indicates nothing of significance except slight brownish discoloration. The cut region starts immediately when the thin section is reached. The appearance of the balls along the cut region is quite similar to their appearance on the upper surface, although there is slightly more grayish discoloration on the lower surface. Where the weld commences, a ripple pattern again is immediately evident. The full penetration weld occurs with fairly uniform width penetration from the start of the weld to 120 degrees. At this point, penetration or width of the bead narrows and there is some buildup on the under surface. Full penetration stops at approximately 140 degrees. This situation continues until at approximately 200 degrees there is a single small circular indication of full penetration. It is clear on the under surface where welding has occurred, even in those regions where penetration is not achieved. It would appear that there is a slight drop through on the underside when penetration is not clearly evident. There is no evidence of the weld on the undersurface in the partial penetration region. Some discoloration is evident on the surfaces surrounding the underside of the termination hole. Full penetration was achieved on the dwell but the overall size of the molten spot is much smaller than on the top surface. Its basic appearance is quite similar with evidence of ripple formation on the edges with a single very smooth surface center region which seems to have solidified all at once. Although it is not as obvious, the region of penetration on the lower surface is also basically oval or oblong in shape. The long axis measured approximately 7 millimeters and the short axis just
under 6 millimeters. The general appearance of the contour on the under surface is a very shallow depression with the edges being possibly slightly raised above the original surface.

Front Surface S/N 110

At 0 degrees, the target has been used to locate the beam with a melted region almost exactly on center. Flow back of molten stainless steel has occurred all the way from the edge of the target back to the center. A solid weld region extends from the target to the point where the thickness decreases and the cutting commences. The cut width is 1mm. In the cut region, the surplus molten metal has accumulated in essentially circular balls. In this specimen, all the balls lie along the inside edge of the cut region. There are 13 of the ball accumulations along this edge. The last of the ball accumulations is slightly beyond 60 degrees, although the actual welding does not start until about 75 degrees. As soon as the weld initiates, the surface ripples which are very elongated are immediately apparent. Undercut along the inside edge is also immediately apparent. Starting at about 130 degrees, the undercut is not as severe and, in fact, may not exist although there is an occasional indication of undercut still along the inside edge. At about 160 degrees, there is a perturbation in the surface appearance related to a mass change as the disc rotates. At the change in thickness going from the thin to the thickest material, there is a change in the bead appearance with the top surface appearing to be more elevated in the partial penetration region. The weld terminated slightly short of the termination hole with a shallow elongated crater. There are occasional instances where small spatter particles can be seen adhering to the inside edge adjacent to the weld. Surface appearance of the weld is typical for stainless steel electron-beam joint. There is no evidence of any cracking or weld defects other than the undercut. The weld width initially is 1-1/2mm widening to 2.5mm, (full penetration) and then to 3mm (partial penetration). The focal point for the dwell area appears to be slightly on the inside and slightly beyond the 330 degree position. However, the dwell is fairly well centered on the molybdenum tracer target. The dwell is elongated, the long axis essentially parallel to the radial direction. There is a build up of material above the surface of the plate in the lower portion of the dwell melt side. The upper portion is depressed below the plate surface. A large cavity and crater are evident at the center of the dwell but slightly toward the top side. The dwell measures approximately 18 millimeters along the long axis and 8 millimeters on the short axis.
Back Surface S/N 110

The target area is completely melted through slightly on the surfaces adjacent to the weld start. Penetration proceeds for a short distance and then stops until the cut region is reached. The cut region starts immediately when the thin section is reached. The appearance of the circular balls along the cut region is quite similar to their appearance on the top surface. Where the weld commences, a ripple pattern again is immediately apparent. Starting at about 145 degrees, there is quite a bit of evidence of spatter adhering to the back surface. The same perturbation noted on the front surface due to the mass shift is also apparent on the back surface. Penetration is continuous throughout the length of the full penetration portion of the plate. At about the same point where spatter first starts, the underside bead contour begins to change getting slightly narrower and somewhat higher than it was in the earlier portion. There is no evidence of the weld on the under surface in the partial penetration region. Full penetration was achieved on the dwell, but the overall size of the molten spot is much smaller than on the top surface. Its basic appearance is quite similar with evidence of ripple formation on the edges with a single very smooth surface center region which appears to have solidified all at once. The outermost edges of the dwell on the under surface are raised slightly above the plate surface everywhere except at the very top. The center region of the dwell is generally depressed. The long axis measures approximately 10 millimeters and the short axis 7 millimeters.

Sectioning and Examination

Both stainless steel discs were sectioned as shown in Figure B-21. All sections were mounted and examined. Macro and microphotographs of significant areas are shown in Figures B-22 through B-28. Hardness traverse results are shown in Figure B-29.

Tantalum Discs

Samples S/N 145 (Skylab) and S/N 147 (ground) are shown in Figures B-30 through B-33. Comments made during visual examinations follow:
FIGURE B-21. SECTIONING PLAN S/N 106 & 110

Numbered Sections - BCL

- MSFC - UK

- T - Cut
- T - Full penetration
- T - Partial penetration/drill
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FIGURE B-22. SECTION THRU CUT REGION S/N-106 SKYLAB

35° (+) Etched 9G-255-20X

FIGURE B-23. CHORD SECTION THRU FUEL PENETRATION REGION S/N-106 SKYLAB
Section is in area of shallow penetration
FIGURE E-24. CROSS SECTION THROUGH FUEL PENETRATION REGIONS
FIGURE B-25. STRUCTURES IN FULL PENETRATION REGION - S/N-129 SKYLAB
S/N-129 Skylab
326° (+)
Etched 9G252/256

S/N-130 Ground

FIGURE B-26. RADIAL SECTION OF DWELL REGIONS
FIGURE B-27. CONTOUR OF TOP FUSION LINE AREAS IN DWELL REGION - S/N-129 SKYLAB
FIGURE E-28. INTERNAL MICROSTRUCTURES IN DWELL REGION - S/N-129 SKYLAB
FIGURE B-29. HARDNESS SURVEY-STAINLESS STEEL
FULL PENETRATION WELD
FIGURE B-30. FRONT SURFACE S/N 145
FIGURE B-31. BACK SURFACE
S/N 145
FIGURE B-32. FRONT SURFACE S/N 147
FIGURE B-33. BACK SURFACE S/N 147
Front Surface S/N 145

The target is integral on this sample. The beam was initiated within the target area but a little beyond the zero point and slightly to the inside. The surfaces of the tantalum welds show both a ripple pattern where the beam was started and clear evidence of the grain structure on all of the surfaces. There is no evidence of any discoloration or oxidation. The cut region appears to start immediately at the thin section and is bridged periodically by a ball of molten tantalum. These balls show a ripple pattern on the side and clear grain structures elsewhere. There appears to be a cavity in the first ball evident on the top lower surface in the direction of increasing degrees. After each bridge, the gap tends to widen then narrow to a kerf which then tends to taper somewhat in width and also in the amount of molten metal that is piled up on each edge. This situation continues until the next bridge.

There are a total of 5 ball bridge regions. Each is quite similar in appearance to the first one described. Each bridge also appears to contain the cavity region described for the first ball. The bridges get progressively closer to one another along the length of the specimen. After the last bridge, there is a region that extends for about 9 millimeters with a hole at the end of this region. At this point, the weld itself starts. This weld is extremely uniform; one can see both the ripples and the surface grain structure quite readily. This weld continues on through to the termination point. At approximately 185 degrees, there is a single surface depression on the inside edge of the weld. In the region where the molybdenum tracer is placed on the disc, there is the appearance of under cut having started on both the inside and outside edges of the weld. Also within the tracer region, there is a change in the width of the weld bead with it becoming narrower at the point where the thickness of the disc increases. The slight undercut condition appears to continue on to the termination of the weld at the termination hole. There were no cracks or other defects aside from the single surface depression noted in examination of this weld.

Additional examination of the area where the slight depression was noted on the inside surface of the weld suggest that there may have been a defect in the plate material at that point. This appears to be a slight machining gouge.

Back Side of S/N 145

Starting in the weld target area on the reverse side of the target, there is evidence of complete penetration. In fact, there appear to be two separate spot areas which were melted through to the
back side and subsequently solidified. Surrounding the target area and still attached to the disc are a number of small spherical particles which are probably tantalum spatter that was ejected from the back side of the target area, bounced off the support plate, and then adhered to the tantalum. At least 8 of these small spheres can be seen in the field of view of the magnifying system. Moving away from the target once the beam-travel combination was initiated, penetration stopped until the thin section was reached at which point cutting action was initiated. The back side of the cut region does not appear to be significantly different from the front side with all of the same basic features being evident. The balls that constitute the bridges are raised above the bottom surface just as they were raised above the top surface on the front of the disc. Material present adjacent to the balls in the direction of increasing angle appears to have been pulled back into the bridge area. Appearance on the underside of the full penetration welds is quite similar to the appearance on the upper surface. The full penetration weld beings to taper after its initiation and there is no more penetration after about 135 degrees. Evidence of the presence of the weld continues as in the case of the stainless steel without full penetration being apparent. There is one short linear indication of full penetration at about 225 degrees. Some further evidence of welding is apparent on the reverse side even in the partial penetration region leading up to the termination hole. At the termination hole itself, there is evidence of penetration through the plate on the side where the weld was terminated. At the dwell region, there is no evidence of complete penetration although again, the grain structure and a surface roughening are quite evident.

Front Surface of Disc S/N 147

The electron beam was initiated almost exactly at the center of the target. A weld is started at this position and runs to the point where cutting begins. The cut is initially fairly wide (3mm) and there are small molten balls collected on the edges along this initial region. The cut varies in width between 1 and 3 mm. The first two balls are on the inside of the cut; the next outside, then one inside, then one out, and two more inside. Following this region of the cut, there are bridges apparent; the first bridge existing at 75 degrees. There are a total of 10 bridges before welding starts. The bridges appear to get progressively smaller in size and closer together. Compared to the bridges on S/N 145, the bridges on S/N 147 do not appear to be as large or quite as spherical in shape. There is evidence of the same type of cavity on the top lower surface in the direction of increasing degrees as seen in S/N 145. The weld starts at approximately 130 degrees. The weld is uniform; about 2 mm wide, one can see both the ripples and the surface grain structure quite readily. This weld continues on through the termination point. A surface perturbation occurs at
about 180 degrees which is the point where mass shift occurs. There is a slight depression in the weld as it enters the partial penetration region but this is quickly lost. The weld narrows slightly at this point to 1 mm, and is quite uniform in appearance on to completion. The weld goes on to the termination hole and also slightly beyond on the opposite side. The ripple pattern is not entirely uniform, being somewhat asymmetrical and displaced with its apex offset toward the inside of the disc. (a) The dwell region is located inside the intended target, but almost exactly on the center of the inside leg of the molybdenum tracer. The dwell is almost rectangular in shape with a center cavity and an apparent pore in the center region. There is no evidence of the ripple pattern on the dwell zone. Grain boundaries coming in from the base metal can be clearly seen to extend on to the surface of the molten zone. The dwell is 5X 6 mm.

Backside of S/N 147

Starting at the target position, there is evidence of complete penetration through to the back surface of the disc. The cut begins at the transition to the thin section. The molten balls are evident on the rear of the plate and in addition, the same type of shrinkage cavity mentioned earlier on the bridges can be seen in these balls on the under surface. At the start of welding, both the ripple pattern and grain structure are quite evident. The ripple pattern on the underside is perfectly symmetrical with its apex along the weld centerline. (b) The weld appears quite uniform in appearance and in width. The same mass shift perturbation noted on the top surface is again noted on the under surface at 180 degrees. The weld continues throughout the intended full penetration region, but does not penetrate completely through the partial penetration region. There is a slight evidence of its existence in this region by virtue of a slightly discolored area.

(a) See MSFC photographs 741072-3 or 741072-4
(b) See MSFC photographs 741073-4 or 741073-5.
Partial melting exists on both sides of the termination hole. In the cut region, there appears to be considerable evidence along either side of the weld of some type of vaporization and subsequent deposit. The same appearance is again evident at the position where the perturbation occurs. This vaporization material would appear to possibly come from the backing plate behind the tantalum. The dwell region is completely penetrated with the under side molten zone being essentially a circular region about 3 millimeters in diameter. There is some evidence of surface roughening and grain structure apparent in the heat-affected zone. The under surface appears to be slightly depressed. There is no evidence of ripples being present in this region. Grain boundaries again extend from base metal grain boundary regions to the molten zone.

Sectioning and Examination

Both tantalum discs were sectioned as shown in Figure B-34. An additional section was taken on these discs to include a bridge in the cut area. All sections were mounted and examined. Macro and microphotographs are shown in Figures B-35 through B-40.
FIGURE B-34. SECTIONING PLAN S/N 145 & 147

Numbered Sections - BCL

- MSFC - UK
T_1 - Cut T_3 - Full penetration
T_2 - Ramp T_4 - Partial penetration/dwell
FIGURE B-35. SECTION THRU CUT REGION - S/N-145 SKYLAB

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FIGURE B-36. SECTION THROUGH BRIDGE IN CUT REGION - S/N-145 SKYLAB
FIGURE B-37. WELD SECTIONS IN FULL PENETRATION REGION
FIGURE B-38. SECTION THROUGH PARTIAL PENETRATION REGION - S/N-145 SKYLAB

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FIGURE B-39. CHORD SECTION IN S/N-145 SKYLAB
FIGURE B-40. SECTIONS THROUGH DWELL REGION
Right edge of top photo matches left edge of lower photo.
SECTION C. CONCLUSIONS

Results of the characterization studies conducted in this program showed that the metals melting discs, both Skylab and ground, exhibited features and microstructures typical of electron beam melted metals. Gravity induced convection was found to be an important factor in full penetration welding of aluminum in a gravity field. The Skylab sample was not influenced by this type of convection. This finding should be of value in theoretical studies of the electron beam processes. Comparisons of surface contours suggest possible differences in the Skylab and ground specimens. This observation needs verification and comparison with the information being prepared by other investigators.