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DEFINITION OF SYMBOLS

CMG control moment gyro

H instantancous momentum state of the CMG system

H AV average momentum over the orbital period

H C momentum command, réference momentum value of the CMG
system at the end of the orbital dumping period

HD C momentum dump command

HS EC change in average momentum per orbit

H€ momentum error, the difference between the instantaneous and

command momentum at the end of the orbital dumping period

I Al I - I

L : -4

1 A3 I -1,

10P in the orbit plane ( principal axis)

i PQP orientation label

j command label in the principal vehicle framg

K coefficient matrix

KPD percentage dumping constant indicating the amount of momentum

to be removed from the CMG system

LBNP lower body negative pressure torque (taken from Skylab)
LOS line-of-sight

MIB minimum impulse bit ( lb-sec)

N Nth or present orbit

N-1 ( N-1) th or previous orbit

vi



DEFINITION OF SYMBOLS (Concluded}

. POP perpendicular to the orbit plane (principal axis)
T.A. No. 1  trash airlock No. 1 vent {taken from Skylah)

T.A. No. 2 trash airlock No. 2 vent (taken from Skylab)

To orbital period-

T torque occurrence time ( sec)

TXBD constant biased disturbance torque about X-axis

TYBD constant biased disturbance torque about Y-axis

TZBD constant biased disturbance torque about Z-axis

€ ‘ small angular rotation ahout the vehicle axis, maneuver angle

€, - commanded attitude of the vehicle relative to the reference
frame

€, apparent zero momentum accumulation attitude of the vehicle

relative {o the reference frame

o orbitai angle
Ca cos ]
56 sin @
Wg orl_;ital rate

vii



TECHNICAL MEMORANDUM X-64873

ORBITER/SPACELAB MOMENTUM MANAGEMENT FOR
POP ORIENTATIONS

SUMMARY

This document describes an on-orbit momenlum management scheme
using small maneuvers while at the same time providing conlihuous celestial
target observation. The basis of the scheme is to periodically maneuver the
vehicle through a small angle thereby using the gravity gradient torque to dump
momentum from the control moment gyro ( CMG) control system. The CMG
momentum dumping scheme is applied to the Shuttle Orbiter/Spacelab which
could operate in the X-POP, Y-POP, and Z-POP orientations shown in Figure 1.
These three orientations and their complement in combination with a double-
gimbal telescope will provide complete celestial sphere line-of-sight ( 1.08)
coverage. 'The scheme invoives performing once per orbit a three-axis maneu-
ver soon after momentum error determination, followed by a single axis maneu-
ver on the axis perpendicular to the orbit plane ( POP) approximately one-fourth
orbit later,

A general discussion of the momentum dumping scheme is presented in
Section II. Some typical simulation results are shown in Section III, and con-
clusions are discussed in Section IV.

|. INTRODUCTION

The Spacelab experiments require an attitude to provide continuous
celestial target observation. To attain complete celestial sphere LOS coverage,
the Shuttle Orbiter is held in an inertial orientation. Using both a coarse and
fine gimbal system, a target can be observed. Use of two of the POP orienta-
tions in combination with the telescope gimbal control angles will provide com-
plete celestial sphere LOS coverage as shown in Figure 2.

Gravity gradient, aerodynamic, and other torques acting on the vehicle
while performing these experiments must be stored by a momentum storage
device, and for Spacelab, a system of three double-gimbal CMG's could be
used. Noncyclic torques exist and tend to saturate the CMG system, which is



limited in its storage capacity. To avoid saturation of the CMG system, momen-
tum is removed { dumped) by periodically maneuvering the vehicle to a slightly
different attitude, thus allowing the gravity gradient torqgue to dump momentum
from the CMG control system.

. MOMENTUM MANAGEMENT SCHEME MODEL

Because of its orbital altitudes, the Spacelab will primarily be affected
by disturbances resulting from the gravitational field of the earth. The gravity
gradient torque acting on the vehicle can be expressed as

$GG = 3wg TIF , - (1)

when the vehicle is in a circular orbit. w is the orbital rate (wo = N M7R3) ,

I is the vehicle inertia matrix, r is a unit vector directed along the radius
vector from center of the earth to the vehicie center of mass, and r is define
as :

r=|r 0 -r . (2)

In matrix form, when the vehicle axes are principal axes. of inertia, the gravity
gradient torque becomes

TGG1 ( - L) r, 1
TGGz = 3(.0; (.[1 - 13) r3 r1 » (3)
TGG3 (L - 1) 1 n

The gravity gradient torque and therefore the angular momentum accu-
mulated by the CMG's of a vehicle in an inertial orientation depend on the
vehicle' s orientation relative to the earth's local vertical; i.e., the direction
cosines ry, 1y, and r; of equation (3).



When the vehicle's prineipal axis is perpendicular to the orbit plane, the
gravity gradient torque consists of a nonbias cyclic component on the vehicle
POP axis having a period equal to half that of the orbit and zero componenis
on the vehicle in-plane axis. Since momentum is the integral of the torque, no
momentum will be accumulated because of the gravity gradient torque. If,
however, the vehicle has an angular displacement from the POP orientation,
the torgue components on the vehicle POP axis will remain a nonhias cyclic
function. The torque component on each of the vehicle's in-plane axis will
have a bias torque causing the vehicle to accumuiate momentum. .

A momentum management (dump) scheme using small maneuvers which
would he suitable Tor Spacelab operating in a POP orientation was developed. !
To dump the accumulated momentum of the in-plane axis, a small rotation
about the in-plane axis will change the bias component of the gravity gradient
torque which can be used as a control torque to dump accumulated momentum
from the CMG's. The average torque capability available per orbit for momen-
tum dumping can be expressed as

T
e f
GD, GG, T0 0 GG, ’ (4)

where

T GD is the gravity gradient dump torque capability
ij

i is the PQP orientation label

j is the component label in the principal vehicle frame

T0 is the orbital period.

1. Howell, J.T.: Momentum Dumping Scheme for Shuttle/Sortie Lah. S& E-
AERO-DO0-41-73, September 18, 1973.



A summary of the momentum dumping capability (HD) per orbit for a vehicle
inertially held is then calculated by

T
H = T T = [ T dt . (5)
.0

A ""pair'’ of small maneuvers abhout the vehicle POP axis when properly
executed (timed) will result in 2 bias gravity gradient torque on that axis
which can be used as a control torque to dump accumulated momentum from
the same axis of the CMG control system. A "pair'' of properly timed maneu-
vers effects a hias torque hy altering the shape of the gravity gradient torque
profile from the symmetric sinusoid, characteristic of a vehicle inertially held
in a POP orientation.

In the dump scheme simulation, the paired maneuver used was the
position/position maneuver illustrated in Figure 3. The position/position
maneuver is an idealistic maneuver in that an infinite vehicle maneuver rate is
assumed that provides an instantaneous change in vehicle orientation. This
simplification provides an overview of the mechanism of the proposed momentum
dumping scheme. In addition, for a reasonable vehicle maneuver rate such as
that equal to half the orbital rate, a smalil angle maneuver can be accomplished
in several minutes, which is a small percentage of the total orbital period.

Figure 3 illustrates how the gravity gradient torque profile is altered
for the position/position maneuver. At time t,, the vehicle is rotated through
a small angle about the vehicle POP axis which introduces a phase shift of the
gravity gradient torque profile, One-fourth orbit later ( b=t + T0/4) y the

vehicle is rotated through the negative of the first rotation, thus returning the
vehicle to its original inertial orientation and torque profile.

In Figure 3(a) the first rotation at t, (just past the peak of a positive
lobe) has the same sense as the orbital angular velocity vector ('.uo) . This

will effect an increase in the area under the positive lobe of the torque curve
and consequently provide a positive increase in momentum to be accumulated.
A rotation of opposite sense at t, {prior to the peak of the negative lobe)
reduces the area under the negative lobe providing an additional and equat
increase in momentum.



In Figure 3(b) the vehicle is first rotated at t,, in the opposite sense
as the orbital angular velocity vector (wo) and then in the same sense at t,.

For this case, there is a decrease of positive area and an increase of negative

area, both resulting in a decrease of momentum accumulated.

The momentum dumping scheme described above and the corresponding
equations are preseunted in detail in the Appendix. '

[11. TYPICAL SIMULATION RESULTS

The momentum desaturation method for the Shuttle Orbiter/Spacelab
configuvration utilizing the gravity gradient torques has been simulated. The
scheme consists first of making a small rotation about the in-plane axes once
per orbit, then making a pair of small properly timed rotations about the POP
axis each orbit.

Numerous case runs have been conducted on the 8900 hybrid simulation.
All simulations were made using a run speed of 100 times real time and a 370-
km {200-n. mi.) orbit with an inclination angle of 55 deg. Graphical results of
some of these studies are shown in Figures 4 through 28 where

PHIXC — commanded maneuver angle about vehicle X-axis

PHIYC — commanded maneuver angle about vehicle Y-axis

PHIZC — commanded maneuver angle about vehicle Z-axis

HXCMG — CMG total momentum about vehicle X-axis

HYCMG —~ CMG total momentum about vehicle Y-axis

HZCMG — CMG total momentum about vehicle Z-axis

HMCMG — total CMG momentum magnitude

ETAT — vehicle angular position in orbit measured from orbital
midnight. '
Figures 4 through 12 show cases for initial rates being applied to the
vehicle. This analysis considered the transfer of control from the 950-1b
reaction control system (RCS) thrust level operating in a minimum impulse bit
{ MIB) mode to a CMG control mode. Maximum residual rates were determined

<l



and assigned as initial rates as CMG control was initiated. The largest rates
were those for MIB = 33 lb-sec which were 0. 0299 deg/sec in roli, 0.0369 deg/
sec in pitch, and 0. 0179 deg/sec in yaw.

Figures 4 through 6 are for X-POP orientations. The initial rates for
case 4 were 5 percent of the largest rates and for case 5 were 10 percent of
the largest rates. The transfer of angular rates by the change of control modes
also causes a transfer of angular momentum. The amount of momentum trans-
" ferred increases as the angular rates increase. To control this increase in
momentum, a larger maneuver angle is commanded by the dump scheme. This
can be seen in Figure 6 where the commanded roll angle is on the 10-deg
assigned limit.

Figures 7 through 9 are for Y-POP orientations, and Figures 10 through
12 are for Z.POP orientations. For these cases, the largest commanded
maneuver angle is 1.6 deg which is for Z-POP orientation with MIB = 3 lh-sec.

Figures 13 through 21 illustrate results of aerodynamic disturbances
and a constant biased disturbance torque (TXBD’ TYBD’ T ZBD) being applied

to the vehicle. Figure 13 shows an X-POP orientation with a biased disturbance
torque about the POP axis of 0. 03 N-m. This torque was the largest permissi-
ble in order to keep the commanded maneuver angle below the 10-deg assigned
limit, Figures 14 and 15 show for X-POP a constant torque about the Y-axis
and Z-axis respectively. Here, the Jargest torque applied was 1 N-m.

Figures 16 through 18 illustrate the effects of a biased torque for the
Y-POP orientations. Figure 17 shows the largest permissible torque about the
POP axis of 0.8 N-m in order to keep the commanded maneuver angle below the
10-deg assigned limit.

Figures 19 through 21 show the effects of a constant biased torque for .
the Z-POP orientations. Figure 21 illustrates the largest permissible torque
about the POP axis of 0.8 N-m which allows the imposed limit of the maneuver
angle to be satisfied.

Figures 22 and 23 are for X-POP orientations having torques applied to
the vehicle by typical housekeeping vents. The two different vent torques
applied were taken from Skylab data and occurred at 14 000 sec { halfway into
the third orbit).

Figures 24 through 2B show cases having torques applied to the vehicle
‘by a typical scientific vent, This torque was also obtained from Skylab data.
The magnitude of the torque was 0. 346 N-m about the X-axis, 3.46 N-m about



the Y-axis, and 2.76 N-m about the Z-axis. Figures 24 through 26 illustrate
the effects of the vent torgue being applied at 14 000 sec for the X-POFP, Y-POP,
and Z-POP respectively. Figures 27 and 28 give the results of applying the
Lorgues during the first and second orbit respectively for the Z-POP orientation.
-The commanded maneuver angle for the orbit following the orbit in which the
vent torque oceurred remained unchanged for the three different event times.

Figures 29 through 31 show the results of having aerodynamic disturb-
ances acling on the vehicle. Several orbital altitudes were studied for the three
different POP orientations. The range of commanded maneuver angles for all
axes is given by the bars with the steady state angle shown by the darkened
area.

V. CONCLUSIONS

The vehicle disturbance torques are much lower for POP orientations
than for previously used X-IOP orientations; thus, less momentum management
capahility is required. However, the POP orientation scheme will require a
coarse telescope control system for ""off axis" pointing as well as a fine control
system to place the telescope on target.

Simulation showed that the CMG momentum dumping scheme for POP
orientations performed very satisfactorily. For the initial rates cases, the
assigned limited maneuver angle of 10 deg was reached on one case, that being
an X-POP orientation when large initial rates were assigned. However, after
three orbits the maneuver angle was reduced considerably.

When constant biased disturbance torques were applied about the POP
axis or the X-axis, the limited maneuver angle of 10 deg was reached or nearly
reached. In some cases this occurred throughout the run.

The scheme did manage the momentum buildup for all cases involving
the torques created by the Skylab type scientific and housekeeping vents.
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APPENDIX
DERIVATION OF DUMPING SCHEME EQUATIONS

A, Gravity Gradient Torque

The gravity gradient torgue can be expressed in the vector-dyadic form,

T - 2 s o
Thg = Swrir . (A-1)

When the vehicle axes are principal axes of inertia, then equation (A-1) can be
expressed in the matrix form,

TGG1 P (I ~ L) r, r A
TGGg = 30."'; (11 - 13) I'3 I'l H (A—Z)
TGG3 (I, - 1) r

In principal axes for X-POP,

TGG1 P ' IA1(529 - 2¢, C26)
'I‘GG2 = g- wg IM(e2 + € C2 + ¢ S20) ; (A-3)
TGG3 1&3(43 t g CW - g 520)

Y-POP,
TGG, P IAl(-q - € C20 + € 520)
ch2 a% w? T1,,(-820 + 26, C20) ; (A-4)
T - B IAS(ea - € C20 - € 520)

GGy
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Z-POP,

TGG1 P L (e + € C2% - ¢ 82 ]
o E 2
Taa, ¥ 3 9o | lagl-e t @ CW 4 € 5%) l
- - 26
TGG3 1A3( S20 2€; C26)

B. Momentum Dumping of In-Plane Axes

(A-5)

A small rotation aboul an essentially in-plane axis produces a change in
the bias torque about that axis which can be used as a control torque to dump
accumulated momentum from the same axis of the CMG control system. The
average torque capability available per orbit for momentum dumping can be

expressed as,

T0
A 1
Tep. = Taa, = T J Tog, 9t
ij ij o 0 ij
where
T GD is the gravity gradient dump torque capability

J is the component label in the principal vehicle frame
T0 is the orbital period.

The gravity gradient torque capability can be expressed as:
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X-POP,

- - SN _
Tap,
3 2
n 2 : A-7
Tap, 2 Yo | Tas © (A-7)
T - | €
. GD; 4 [ TA3 R
Y-POP,
Tap,| Tay @
' o E 2 . ‘
T(}D2 =3 Y 0 ’ (A-8)
| Yo, | | Az 6
Z-POP,
- - [~ I ‘ -
Tap, A1 €t
o §. 2
Tap, | ¥ 2 “o | Taz © (A-9)
T 0

| GDy | ! |

- During the time that the vehicle is held in an inertial hold, the gravity gradient
dump torque is a constant. The momentum dumping capability can then be cal-
culated by '

H =T < AL, (A-10)
where At is the time interval of constant attitude. For an orbit,

At = T = = | | (A-11)
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and the momentum dumping capability per orhit is then

H, = — T . (A-12)

Using equation ( A~7), the momentum dumping capability [equation
( A-12) | for a vehicle referenced to either an X-POP, Y-POP, or Z-POP
orientation ean be expressed in matrix form as:

- X-POP,
- -y r -
H 0
D,
HD2 = 3mw | L, & ; (A-13)
i -
| D, |Taz G
Y-POP,
Hp, Tar @
HD2 = 3w 0 E (A-14)
H
L. D'a - e IA3 63..:
Z-POP,
[ 7 ™ .
H €
D, Ia @
HDE = Brw _IAZ € . ‘ (A-15)
I-I-I]):}d- L 0 wd

The momentum dumping capability for the in-plane axes [ equations
(A-13), (A-14), and (A-15)] indicates the amount of momentum which can be
dumped from the in-plane axes over an entire orbital period.
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C. Momentum Dumping of POP Axes

A ''single'' small rotation about the vehicle in-plane axes held constant
over the orbital period will not provide a bias torque on the POP axis. However,
a "pair' of small rotations about the vehicle POP axis when properly executed
(timed) will result in a hias gravity gradient torque on that axis which can be
used as a control torque to dump accumulated momentum from the same axis
of the CMG controi system.

The gravity gradient torque equations in principal axes can be expressed
as:

X-POP,
P -
TGG1 Ly, s2(0 €y)
o §. & .
Tag, =2 YA - - ; (A-16)
TGG3 g =7 -
Y-POP,
P 1 - h -
TGG1 Al
A E g 2 - .
TGG2 = S wl -l 8200 - ¢) ; (A-17)
TGG3 Az =~ -
Z-POP,
P -
TGG1 Ta
~ 3 2 L
TGGrz = oW L, === | (A-18)
TGGEI “Lyq 82(8 + )
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A pair of properly timed rotations ( changes in €, €,, or ¢;) effects a
hias torque by altering the shape of the gravity gradient torque profile from the
symmetric sinusocid, characteristic of a vehicle inertiaily held in a POP
orientation. The type of paired rotation maneuver utilized was the position/
position maneuver.

D. Position/Position Maneuver

The gravity gradient torque on the POP axes [equations ( A-12), (A-13),
and ( A-14) ] as a result of the position/position maneuver is of the form

_ 3 .
TGG.._ 2 ﬂoI
1]

. s8in 2(8 - e, , I o= j , A-19
Aj ( ) j (A-19)
where

i is the POP orientation label

j is the component jabel in the principal vehicle frame

and

Gj = Oforty = t < tyandt, < t = TO

ej = a constant fort; = t = 1,
The average torque capability over an orbit for momentum dumping on a POP

axis is

T

1 [0
TGD,, = T f TGG, dt , i = j

ij o 0

3wl T
= —— I i -
2T 'Aj _£ sin 2 (0 Ej) dt
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or
Tep,,
1]
Thus,
T
GD,,
1)
or
T

1]

GD,,

3 Ih ty T
3w 0
o1, fsin26‘dt+fsin2(9—ej)dt+fsin29d6

or in matrix form as

TGDzz

T

GD33

ty b o by
3w§ 0y %2 2
b _Bfsin29d8+_9fsin2(9.—€j)d9+fsin26d6‘
0 1 0y
y €./2
Swo ]
—e R A-20
o 4 [ cos 2o do ( )
0
3w;
——2;1Ajsm€j y 1= y
(A-21)
3o 2
21, . €
or A i ]
. I €}
3w(2) Al
= -—-2?- nIAz €y . (A—22)
Taz
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given by

By = Tgp, To » 1753
ij ij

or

H

i2

Dij BonAjej y b=

The momentum dumping capability per orbit on the POP axis is then

(A-23)

{A-24)

The momentum dumping capability (HD) per orbit for the POP axis of a
vehicle in either X-POP, Y-POP, or Z-POP orientation due to a small angle

position/position maneuver can be summarized in matrix form as

HD11 IAI €4
= w1
HD22 Ea Az ©
H -1 €
Dy, A3 3

Equation { A-25) then can be written for:

X-POP,
/
HD“ I&1 €4/
o
I_IDm W, Iy €
-1
b, a3
Y-POP,
3., Tay
HD22 = 8w “IAZ €,/
H ' I
Doy A3
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H I €
Dy, a1t
> 3 - . - (A~
HD32 Brw { -, & (A-28)
- /
M g &7

E. Momentum Dumping Scheme

Presented below are the momentum dumping scheme equations for the
in-plane axes.

Initial input for the Nth orbit (normally N = 1) {Note: The end conditions of
the ( N-1) th orbit become the initial conditions for the Nth orbit.):

€oj(N-1)
Mo
ch
HAVj(N-l)

Hejneny = Fjnven 7 Moy
KPDj .

Beginning-of-orbit calculations for the Nth orbit:

Hpcaw) = Fepj Hej(non)

| "pci(w)
€ . = g . e ——
cj(N) 0j (N-1) K,

47



During-the-orhit calculations:

t( N)
1
H, ... = e H.dt , tis measured fromg_tod_ + 2r .,

End-of-orbit calculations:

Herci(w) = Havi(w ~ Mavi(noy)

HSECj(N)
(¥ T Sei(™) T TR,
Hei(w) = Mi(w ~ Hg

For the POP axes, the momentum dumping scheme equations are as
follows:

Initial input for the Nth orbit (normally N= 1):

Beginning-of-orbit calculations for the Nth orbit:

Hpci(n) = *ppj Hej(n-1)

HDCj (N)

€ . =
cj( N} Kij
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End-of-orbit calculations:

Test for the signof H _, .. :
8 €j(N)

<0, set mj
for H |
€j (

i(N)
>0, set mj

il
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F. Flow Chart
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