
NASA CONTRACTOR 

REPORT 

-

THE VORTEX LATTICE METHOD 
. FOR THE ROTOR-VORTEX 

INTERACTION PROBLEM 

by Raghuveera Padakannaya 

Prepared by 

THE PENNSYL VANIA ST ATE UNIVERSITY 

University Park, Pa. 16802 

for Langley Research Center 

NASA CR-2421 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JULY 1974 



, I 2. Government Accession No. 1. Report No. 

CR-Z4Z1 
4. TItle and Subtitle 

THE VORTEX LATTICE METHOD FOR THE ROTOR-VORTEX 
INTERACTION PROBLEM 

7. Author(s) 

Raghuveera Padakannaya 

3. Recipient's Catalog No. 

5. Report Date 
JULY 1974 

6. Performing Organization Code 

8. Performing Organization Report No. 

1-------------------------------1 10. Work Unit No. 
g. Performing Organization Name and Address 

The Pennsylvania State University 11. Contract or Grant No. 

University Park, PA 16802 NGR - 39 - 009 - 111 
~------------------------------I13. Type of Report and Period Covered 

12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

15. Supplementary Notes 

Topical report 

16. Abstract 

Contractor Report 

14. Sponsoring Agency Code 

This study is concerned with the rotor blade-vortex interaction problem and the resulting 
impul sive airloads which generate undesirable noi se level s. A numerical 1 ifting surface method 

to predict unsteady aerodynamic forces induced on a finite aspect ratio rectangular wing by a 
straight, free vortex placed at an arbitrary angle in a subsonic incompressible free stream is 
developed first. Using a rigid wake assumption, the wake vortices are assumed to move down
steam with the free steam velocity. Unsteady load.distributions are obtained which compare 
favorably with the results of planar lifting surface theory. 

The vortex lattice method has been extended to a single bladed rotor operating at high 
advance 'ratios aodeocc)untering a ft:eevottex from afixed.wing upstream of the rotor. The pre
dicted unsteady load distributions on the model rotor blade are generally in agreement with the 
experimental results. 

This method has also been extended to full scale rotor flight cases in which vortex induced 
loads near the tip of a rotor blade were indicated. In both the model and the full scale rotor 
blade airload calculations a flat planar wake was assumed which is a good approximation at large 
advance ratios because the downwash is small in comparison to the free stream at large advance 
ratios. The large fluctuations in the measured airloads near the tip of the rotor blade on the 
advance side is predicted closely by the vortex lattice method. 

17. Key Words (Suggested by Author(s)) 

Blade-vortex interaction 
Vortex lattice method 
Unsteady aerodynamics 

,:i _ ~ on. n ~ 

Rotor a irl oads .. 4'~ ~ ,~.; 

19. Security Oassif. (of this report, 

Unclassified 

18. Distribution Statement 

Unclassified - Unlimited 

., 
·/~!;;l;:">·'\,"·" .~ STAR Category: ,.,:> •• ~ •• . ' .... ...,.. 

20. Security Classif. (of this' pariei .. ';, , ir} No. of Pages 22. Price· 

Unclassified 141 $4.75 

• For sale bV the National Technical Information Service, Springfield, Virginia 22151 

01 



Page Intentionally Left Blank 



SUMMARY 

This study is concerned with the rotor blade-vortex interaction 

problem and the resulting impulsive air10ads which generate undesirable 

noise levels. First, a numerical lifting surface method is developed to 

predict unsteady aerodynamic forces induced on a finite aspect ratio 

rectangular wing by a straight, free vortex placed at an arbitrary angle 

in a subsonic incompressible free stream. Using a vortex lattice method 

unsteady air10ads on the wing are ob·tained by starting the system from 

rest. Load distributions are obtained which compare favorably with the 

results of planar lifting surface theory. 

The vortex lattice method is next extended to a single bladed rotor 

operating at high advance ratios and encountering a free vortex from a 

fixed wing upstream of the rotor. The predicted unsteady load 

distributions on the model rotor blade are generally in agreement with 

the experimental results. 

Finally full scale rotor flight cases having vortex induced loads 

near the tip of a rotor blade were calculated. Assumi·ng a flat planar 

wake the tip vortex from the preceding blade was placed at a specified 

height below the plane. of the rotor. The large fluctuations in the 

measured air10ads near the tip of the rotor blade on the advancing side 

are predicted closely by the vortex lattice method. 

Using conformal transformation methods an exact analysiS of the 

effects of thickness on the lift due to a two-dimensional wing-vortex 

interaction is presented. 

ii:i. 
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CHAPTER I 

INTRODUCTION 

The interaction of an aerodynamic surface with a vortex is of 

significance in the consideration of noise and blade stresses produced 

during helicopter operations. The airloads on a helicopter rotor blade 

can be strongly dependent on the interaction of the blade with its wake. , ' 

The operating conditions of a helicopter rotor blade are such that its 

wakels not carried away by the free stream velocity as for a conventional 

wing, but rather spirals underneath the rotor disk and relatively small 

distances result between the tip vortex of one blade and the subsequent 

blade, especially on the advancing side. The wake of a helicopter 

rotor in forward flight consists of shed and trailed vorticity in a 

distorted, skewed helix behind each blade of the rotor. The edges of 

these sheets of vorticity roll up to form highly concentrated tip 

vortices. The bound circulation of a rotary wing is highly concentrated 

at the tip, so the rolling up is accomplished within a short distance 

from the tip and the tip vortex formed is very strong. The bound 

circulation goes to zero gradually at the root so that the vortex there 

will be weak. Regions where the blade passes close to tip vortices, its 

own and those' from other blades are numerous, and are important because 

of their strong induced velocities at the blade which cause rapid 

fluctuations in the blade loads. This rotor blade-vortex interaction 

is one of the mechanisms postulated in the literature as the cause of 

blade slap, the term used for the sharp cracking sound associated with 

helicopter rotors. 



The purpose of this study was to determine the unsteady spanwise 

load distribution on a helicopter rotor blade as it interacts with a 

vortex. The application of conventional lifting surface theory to the 

calculation of airloads on rotor blades is prohibited by the extensive 

calculations involved. Hence an approximate lifting surface theory like 

the vortex lattice method which is flexible and involves less 

calculations was considered. 

The simpler problem of the wing-vortex interaction was considered 

first. The wing was replaced by a lattice of vortices and a wake 

consisting of shed and trailing vortex lines starting from the trailing 

edge of the wing. The shed vortices move downstream with the free 

stream velocity. The wing-vortex interaction problem was modeled by 

placing a vortex in the flow upstream of the wing. This vortex also 

moves downstream with the free stream velocity and is carried past the 

wing as time progresses. 

In the rotor blade-vortex interaction oroblem, a particular blade

vortex interaction was considered first for which experimental data was 

available. This model consisted of a single bladed rotor op_erating at 

a high advance ratio and encountering a free vortex shed from a fixed 

upstream wing. A rigid flat wake was assumed in the computations. The 

free vortex was considered as a rigid infinitely long finite core 

vortex. The measured value of the free vortex strength was used in 

the computations. 

Load distributions have been measured in flight on a full scale 

rotor which show that blade-vortex interaction can result in large 

blade load fluctuations. The vortex lattice method was extended to the 

full scale rotor flight cases for which vortex induced loads near the 

2 



tip of the rotor blade were indicated. The reference blade on which 

the load dis.tribution was calculated . was started from rest and a rolled 
. ". :: .. 

up finite core tip vortex from the preceding. blade was pla:ced below -this 

blade. The strengths of the tip v.ortex were calculated from t,he· airloads 

measured in: flight. Flight test values of the flapping .angles were 

considered in· the calculations. Blade pitch angles as well as . the 

height of the tip vortex below the blade 'were adjusted to give agreement 

between the measured and predicted blade load value.s near the tip.' AS 

in the model rotor·case a rigid flat wake was -assUmed. 

'0· 
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CHAPTER II 

PREVIOUS INVESTIGATIONS 

Under certain flight c~ndi tions, a helicopter rotor blade 

intersects the trailing vortex system shed by. other blad~s. Lehman. (Ii 

has shown· from s.tudiesof the flow patterns of a model, ~o bladed 

helicopter rotor in a water tunnel that, in the low forward s~eed 

ranges" p~rtions of the tip. vortex shea at the .fron~ of ~he disc lie 

above the following rotor blad~ in such a manner that the following 

blade(s) can intersect one or more of the vortices. Vapor trail studies 

of Jenny, et a1., (2) have also shoWn that the traili'ngvortex and the 

following blade can interact. This rotor.blade:"'vortex interaction is 

one of the mechanismS postulated for blade slap, the term used for 
. . . . . , 

the sharp cracking sound associated with helicopter rotors. 

At low forward speeds the blade slap is due to'the rapid changes 

in angle of attack. and subsequent lift change produced by blade-vortex 

interaction. At'high forward speeds blade slap has been associated with 

the onset of compressibility effects on the advancing blade' and the 

occurrence of local' supersonic flow. 

A considerable amount of research has been done recently on the 

effects of helicopter rotor blade-vortex interaction and wing-vortex 

interaction. Theoretical investigations have,been carried out with 
'. , 

various simplifying assumptions. Experimental' investigations' have 
, , 

included both model and full scale testing. 

Simons (3) has solved the 'steady case of a three-dimensional wing 

in the presence of an infinite vorte~ at zero relative velocity. A 

lifting line was used to study the spanwise lift distr'tbution on wings 

4 



in the vicinity of a line vortex normal to the span. A finite core 
, ' 

vortex was used when the vortex was close to the wing. 'Kfoury (4) has 

applied'vortex lattice method for the calculation of steady loads on 

wings in the vicinity of infinite vortices. Jones and Rao (5) have 

obtained 'ali exact cso1ution of a closed form based on lifting line theory, 

for the 'case of a wiligof elliptic planform-and a vortex located below 

the'mid-span of 'the wing. Analytical solutions of a series form were', 

also obtained "for elliptic and rectangUlar wings ,when the vortex was 

not located at mid-span. 

Johnson' (6) has applied planar l:i.fdngsurface theory to the 

unsteady model problem of the loads induced on' an infinite aspect ratio, 

wingina subsonic, compress~ble free stream and a straight,' infinitely 
, ' 

long vortex at an arbitrary angle with the wing center line. "The vortex 

was,placed in a plane parallel, to the plane of the wing, at a distance, 

h,beloW it'andwasconvected'past the blade by the free stream. The 

distortion of the vortex by'the flow field of the wing was not considered. 

Linear lifting surface theory in the form of an:1ntegral equation-,between 

the pressureanddoWnwashat the wing surface was used to obtain the 

,solution to themodel'problem. The solution for the model problem was 

applied to the' calcu1atic;nof, aerodynamic loads ,induced on a rotor blade 
, ' ' 

" , 

bya nearby tip vortex.' ,A' comparison of the loads calculated for a 
. . . . -

Simplified vortex and blade configuration, using , theiifdng surface' 
'. '. . . . : 

solution and the usual ).ifting:line'theory indicated that the lifting 

. surface.'theot'y shouidb~ ,,~edfor vortices closer than about five 
. ~ . -: . 

chordleUgthsofthe:'bl~de:: johnson (7) has compared ,the experimental' 
. . .. ' ." ..... ,.' ".- ,',' ' ... " . . . .. . 

", " ' ,data' and' the vortex: lnduced:,lo8ds ,obtained. from the app licadon of ' ' 
;.; .... 

.... -. 

"'l:l..fting:~urfac~theoryt6·a ,s,:l.nglebladed rotor at high advance 'ratio 

5 



encountering a free vortex ,from a fixed upstream airfoil. Good 

correlation was indicated when,~he vortex was uot close to the rotor 

hub. The lifting surface theory solution of Johnson (6) was also ~~ed 
• • "r A-

in the ,calculations of helicopt~r rotor bla,de loads •. Johnson ,,(8) ha,s, 

also compared his.1ifting surface theory results ,with the experi~enta1 

data obt~ined'from flight measurem~nts on ~'H-34 helicopter h,Ving a 

four-bladed rotor. Calculations, using rigid and n~nrigid wa\te geometry, 

indicated that a good ,wake geometry model is necessary in order to predict 

accurate rotor air10ads. 

Surendraiah (9) and Padakannaya (10) ,have used~ s~ng1e bladed 

rotor, having a two inch chord and 12 inch radius, for the experimental 
,:,'£. . 

inve~tigation of b1ade~vo~tex interaction. The rotor w~s operated at. 

high advance ratios in the proximity of' a tip vortex generated by a 

fixed wing upstream of the rotor. The rotor was rigidly mounted at a 

zero collective pttch without flapping or 1agging~ The loads due to 

the interaction were obtained using chordwisepressure sensors mounted 

at, different spanwise locations. Data were taken for rotor plane 

positions above and be1~w the vortex axis and for d~fferent inte,rsection 

angles. Two values of rotor RPMs and vortex strengths,were used. 

Pruyn ,and Alexander (11) have indicated that ~otor wake effects are 

dominated by large disturbances caused by b~ade tip vortices. The 

proximity of the tip vortices to the blade was reflected by large 

pressure fluctuations on the blade. Section pressures were considerably 
. , ' 

different from those of a two-dimensional airfoil over extended areas 

of the rotor disc, apparent~ly due to combined effects of compressibility 

and disturbances from tip vortex interference. . The local Mach number 
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can reach the critical Mach number, especially near the tip of the 

advancing side, which can separate tqe :boundary layer, thereby causing. 

a change in chordwise pressure distribution., ~t was also ,found that 

the effect of the tip vortex was large when the angle between the vortex 

and the blade was small. ' " 

Scheiman (12) and Sche:i,man and. Ludi r (13) have tabulated both 

representative. and critical helicopter rotor blade. airloads ,measured 

in flight using pressure, t~ansducers OlL a rotor blade., A c~parison 

of'the measured loads with the loads ,predicted by elementary uniform 

inflow theory indicated apre90minant influence of the intersection of 

the blade with the trailing vortex from the prece~iing ~~ade. Large 

perturbations in the blade section 10,ading as a function of, azimuth 

angle were shown to. occur near the intersection of the blade with the 

preceding blade tip vortex. ,.The influence of the trailing vortices 

produced harmo~ic blade ~oadings of allord:ers w~th large higher 

harmonics. It was also obs_erved that b1ad'e,...vortex interaction decreases 

with an increase ,in forwardspeed.Landgreb~ and Bellinger (14) have 

carried out an analytical investi,g~tion t,o, evaluate quanti ta~iv,e 

applications of ,available model rotor tip vortex ,patterns from a wate,r 

tunnel.. This quantitative wake ,geometry information is required for use 

in the theoretical analyses fo·r computing the ins.tantaneous rotor flow 

field and 'associate.d b1~d.e air10ads. T~eoretica1 results indicated that, 

for forward flight conditions, ·tqeprimary p,arameters influencing wake 

geometry for a given, blade design are the number of blades, rotor, 

advance ratio, thrust coefficient and tip path angle. TheoreticaL:f ( 

results also indicated that tip vortex geometry for moderate to high 

flight speeds (~>O.15) is insensi~ive to parameters which influence the 
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azimuthal variation of blade airloading such as blade flexibility, 

cyclic pitch, Reynolds number and Mach number. When a tip vortex lies ,. 

close to a rotor blade, the airloads are very sensitive to small changes 
- . . . .. 

in vortex position and hence a very accurate experimental determination 

or theoretical prediction of· the tip vortex position is desired. _ 

Kantha. et al.,-(1S) have qualitatively studied the inverse 

-problem of the-influence of the changes in the convective velocity 

induced by the pressure field around a lifting surface on the-structure 

of a vortex. The influence of: a lifting surface on the vortex core -was 

investigated by a qualitative examination of the'interaction region of 

the tip vortex widl a w:l,ng.Photographsof the flow patterns 'in the 

regions of interest indicated the qualitative responses of the vortex' 

core • Flow pat terns of the region of interaction between, the flow field 

of a lifting surface and the V:ortex core showed that the vortex either 

bends following the streamlfne shape until it intercepts the wake where 

it is -dispersed or the _ core maybe sliced into two smaller vortices when 

the vortex hits the leading edge of the airf~il. The solution of -this 

problem is required for a better understanding of blade-vortex 

. interaction problems. Also a systematic quantitative investigation of 

this type should indicate the range 6f validity of the usual method of 

treati~gthe modification in,the loading on lifting surfaces in the 
. . . . . 

prolCimity of ,vortices by assuming that the vortex itself remains intact. 

, Very recently Scully(16)basdevelopedco1nput~rprogr8ms for the 

calculation of,helicopter rotoT: t:iP; v~rt.e~ geometry in 'hover and forWard 

flight and forthecalculationof,heli,~op'ter :1':0tor harmotdc 'airloads in 

forward _ flight. _~ifting'H.neth~,o?~~S _ ~ed for the, a;i.rloadcalculations 
. >\". 

except' when - the tip ~ortex passescit;setothe_ blade. For close 
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blade-vortex interactions the approximations developed by Johnson (6) 

using lifting su~face theory. was used. Experimental tip vortex 

geometry data and the results of thewakegeametry program were 

generally in agreement although there were local .differences. The 

hovering tip vortex geometry agreed qualitatively with experiment. 

Comparisons o~ the rigid wake. airloads and distorted wake airloads wi th 

measured airloads indicated that distorted wake airloads .are much worse 

than the rigid wake airloads' except· at . some . local areas.. It has been 
< • • • 

suggested by Scully (16) that.to·improve on the ~igid.wake.results, 

distorted tip vortex geometry will have to be used along with a careful 

treatment of.blade-vortex interaction effects • 

. \ 
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CHAPTER III 

VORTEX LATTICE METHOD FOR WING-VORTEX INTERACTION P·ROBLEM 

3.1'· ·Development of Unsteady Computational Model 

The purpose of this study was to develop analytical techniques for 

predicting the unsteady load distribution on a helicopter rotor blade 

as it interacts with a vortex. Prior to investigating the l~.ad 

distribution on a rotorblade,t:he simpler problem of ~ numerical 

lifting surface analysis of a. finite :Wing with a vortelCpassing over· 

the wing was considered .As there is a large variation in the dow'nwash. 

induced by the interacting vortex along· the spanwise and chordwise 

directions over ,the rotor blade, lifting surface methods are necessary 

for predicting unsteady load distributions. 

The two basic classes of ~ifting surface theories are the kernal 

function technique and the finite element method. In the kernel 

function technique, the singular integral equation for the pressure 

difference across a lifting surface is to be solved assuming a series 

approximation for the pressure difference and using the expressions for 

tne kernel function for a lifting surface given in the literature. 

Finite element methods like the vortex lattice and the doublet lattice 

methods are achieving wide acceptance because of their simplicity, 

accuracy and versatility. The extension of the vortex lattice method 

to the oscillatory case has been called in the literature the doublet 

lattice method. In the doublet lattice method, Albano and Rodden (17) 

have used steady horseshoe vortices and oscillatory acceleration 

potential doublets along the bound vortex to model a lifting surface. 
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This method reduces to the vortex lattice method in steady flow. _ In 

the vortex lattice method the only singularities' used are the horseshoe 

vortices. 

Two-dimensional analyses by Janies (18). and later by DeYoung (19) 

have shown the vortex lattice method to be accurate, and have proven 

its convergence. Compariso? of the results with experimental data and 

theoretical solutions basedoQ other approaches have proven the value 

of the vortex lattice method for three-dimensional cases though 

mathematical j\:,$tifi'c~ti,!)n -pf the lattice ..-oothcd fer three-dimensional 

cases has n~t y~t 1;::'<61". in'V~8tigated. 

In th~ unateudy win1l"-',r;:,rl':sx int'eractiml pl'{;oblem the wake consists 

'of shed and trailing vDrti~eswith strengths proportional to the time 

and spanwise rates ~fcha:nE~'!:'especti"ely ~f th-e bound vorticity. Hence 

the strengths of the ~hed vortex elements deposited in the wake at any 

time are made ~qual to' tib-la' cMuge. in strength (bet'N~en two time steps) 

of the corresponding b()~'Hi v\:Jrtex ei2mentso 'rh~ strengt.hs of the 

traiHng vortex ~1~~11tu 1.n the w~1t;;) 21:e made e.qual to the change in 

strength of adjacent: noun,a vor.tex ele:mentsc 

In the analysis to follow the shed and trailing-vortices are 

assumed to lie in the plane ni the wing and to move downstream with 

the free stream velocity, In reality thew-aka rolls up under its own 

influence and the influence of the-bound vortic1as. Djojodihardjo and 

Widnall (20) have shown in the case of an impuisively started airfoil 

problem that even f.(}!: an angle of incidence of 0.3 radians, the indicial 

circulations associated with three wa.~e configurations, namely, a· free 

stream directed wake~ a straight wake tangent to the limiting streamline 

at -the trailing edge .and >it field-induced deform-ing wake (or free wake) 
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with rolled up starting vortex, differ only within four percent at a 

distance of about 1.25 semi-chords behind the airfoil. As the distance 

increases, the indicial circulation for the field-induced deformed wake 

approached.that of the free stream directed wake. Giesing (21) has 

compared a deforming wake result to the Wagner function, which is the 

time history. of normalized circulatory lift due to a step change in 

angle of attack, and showed that the free wake slightly retards the 

lift. 

The wing is assumed to be of negligible thickness. Giesing (21) 

has also compared the Wagner function for a symmetrical 8.4 percent 

thick airfoil and a symmetrical 25.5 percent thick airfoil at a small 

angle of attack so that nonlinearities due to wake deformation do not 

enter the calculations. The effect of thickness was to retard the lift 

build up and hence a thick airfoil,takes longer time to reach a given 

value of lift. Similar effects of thickness were found on the Kussner 

function which is the function used to describe the lift acting on a 

flat plate entering into a vertical gust. It has also been shown that 

the general effects of thickness on Theodorsen's function which is the 

function used to find lift on a flat plate executing simple harmonic 

pitching and heaving motions, is to reduce the lift for all frequencies 

and to increase the phase lag between the quasi-steady and total 

circulation •. Using conformal transformation methods an exact analysis 

of the effect of thickness on the lift due to a two-dimensional wing

vortex interaction is presented in Appendix A. The results presented in 

Appendix A show the effect of thickness on the magnitude of lift due to 

wing-vortex interaction~ The lift is calculated based on the 
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instantaneous angle of attack. As expected, the magnitude of the 

lift increases with thickness. 

The effect of the bound and the wake vortices on the path of the 

interacting vortex is neglected. The viscous effects are neglected and 

thus the strengths of the wake vortex elements do not change with time. 

3.1.1 Analysis 

Bernoulli's equation extended to unsteady flow gives the pressure 

difference on the upper and lower surfaces of an airfoil in z = 0 plane 

as 

~P(x,y,t) 

The velocity potential, in terins of the ,distributed vorticity, is 

= (Ydx 
and the circulation around a differential element of a vortex sheet is 

2~V dx = ydx 

x 

~P (x,y,t) = pVy(x,y,t) + +. [ I y(~,y,'t) dE;] 

o 
The lift per unit span is the integral of'thechordwise pressure 

. c(y) 

R. (y ,t) = I' L\P (x,y, t) dx 

o 

c(y) c(y) 

= pv J 'y(x,y,t),dx+p Jlit 
o 0 
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The above expression for the unsteady lift is composed of two parts, 

one .of which is due to the time rate of change of-circulation around 

the airfoil. The part which appears to be independent of time, is not 

the saine lift that would be computed using steady state methods. The y 

distri~ution is altered by the wake, and the time history of the unsteady 

motion· must be known to compute the wake structure. The second term is 

not the added or apparent mass term used in. classical theories. 

Apparent m8sses are characteristically independent of the past history 

of the motion and are noncirculato~y in nature. 

During vortex interaction, a wing experiences a resultant velocity 

different from that of the free stream due to the presence of the vortex. 

Since every point on the wing experiences a slightly diff~rent horizontal 

component- of the resultant velocity, V , the lift is given by 
x 

R,(y, t) V y(x,y,t) dx + 
x 

c x 

p f ·[~t J y(~,y,t) 
o 0 

d~) dx 

The solution to y(x,y,t) is determined from the boundary condition that 

the resultant flow be tangent to the surface or that the normal component 

of the velocity -re).ative to the surface be zero. The trailing edge 

condition is that the circulation shed into the wake at any spanwise 

station equals the change in bound circulation at that spanwise station. 

The method used to determine the bound vorticity distribution 

satisfying the flow boundary condition and the conservation of circulation 

is the vortex lattice method. In this method both the spanwise and the 

chordwise loadings are made stepwise discontinuous. The wing is sub-

divided chordwise and spanwise into a number of panels. The loading on 
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a given panel is assumed concentrated at the quarter-chord of the panel 

with the chordwise vortices extending to the trailing edge of the wing. 

The velocity induced 'by these vortices is calculated at a finite 

number of control points located at the three-quarter-chord of the 

panel and is made to satisfy the boundary condition that the resultant 

flow be tangent to the surface. This placement of vortices and control 

points where the boundary condition is satisfied is an extension of the 

Weissinger lifting line approximation. The Kutt!', condition is 

automatically satisfied by placing the last control point downstream of 

the, ,last vortex. James {IS) also has shown conclusively that the choice 

of 'one-quarter-chord and three-quarter-chord points for the vortices 

and the control points respectively is both optimum and mandatory for 

the solution of any vorticity distribution in the steady two-dimensional 
./ 

problem. By satisfying the boundary conditions at all the eontrol 

points (equal to the number of unknown vortices) a system of 

simultaneous linear equations for the unknown vortex strengths is 

obtained. This system of equations can be written as 

where 

... 0:". 

V
ij 

(t + Llt) + vw •• (t + Ll't) 
1.J 

i,j = the number of tontrol points in the chordwise and 

the spanwise directions respectively. 

'R.,'m = the number of vortices in the chordwiseBrld spanwise 

directions respectively. 

Aij (R.,m) = is the veloC:t.tYinduced at ((~j), by a' bound vortex of 

unit strength at '(R.,m) • 
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Vij = the component of the free stream velocity normal to the 

plane of the wing. 

v = the component of the wake induced velocity normal to w
ij 

the plane of the wing. 

Vij(t + ~t), the normal component of the free stream velocity is 

assumed known. v (t + ~t) must be calculated from the wake geometry 
wij 

that exists at time (t + ~t). 

The fundamental relation required for the determination of the 

induced velocities due·to·wake and wing vortices is the Biot-Savart 

law. From this relation, the velocity induced at any arbitrary point 

.p in Figure 1 by a straight element of circulation strength, r, is 

This induced velocity is directed normal to the plane formed by the 

vortex element and the point, P, and is in a direction consistent with 

the circulation sense. 

Thus the induced velocity due to a vortex element AB in Fi~re 1 

is 

vi = f(cos a + cos a}/4nh 

which reduces to 

vi = r/2nh for a vortex of infinite length. 

To avoid the mathematical singularity when the point P lies on 

the vortex a finite core for the vortex is to be introduced •. 

The computer model is started from rest to .avoid prescribing the 

wake •. Hence at time t there is no circulation on the.wing. At time 

·(t -+- ~t) the wing increases its angle of attack while shed and trailing 

16 



, : 

p 

h 

r 
A B 

Figure 1. Biot-Savart Law. 
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filaments of unknown strength, but with knoWn positions, are deposited 

o in the wake. The shed vortex is formed at the trailing edge as time 

increment at approaches zero for the continuous case and each new wake 

vortex has a·strength equal to the change in bound circulation. The 

wing is replaced bya lattice of vortices of unknown strength. 0 The 

total dowriwash at the control points on the Owing where the boundary 

conditiori of zero normal velocity is satisfied,is obtained by swmning 

the contribution of the vortex lattice, the contribution from the wake 

vortices, the veloc1tyinduced by· the free vortex and the normal 

component of the free stream velocity. Sat1sfactionof the boundary 

condition· at all of the control points results· in ,il system of 

°simuitaneous equations for the unknown vortex strengths. The 8Glution 

of these equations gives the strengths 1)[ the vortices that are abed 

immediately behind the wingo All vortex element and points not attached 

to the wing are then allowed to t:rhl:UBlat~! oill distance of 0 Vilt behind the 

wing where llt is the time i:ncrentiimt .. ~ecl in the calculstions. In 

subsequent time steps only the v{,H>ti~:es c:rt and just b~hilld the Whig 

have unknown strengths p whil~:t:.h\'.)se in the wake have Itno..",,-n strengths. 

In this manner arrays of discrete shed and trailing vortices ar"" 

generated immediately behind the wing ~1ith strengths corresponding to 

t:he vortex induced wing loads. The vortex shedding process continues 

until ° steady state conditiQus !.\lx,a reached j that is. the bound 

circulation does not change with tim.e. Figl!re 2 shows the vort~'X 

shedding procedure. 

Piziali (22) has presented resvlts of computations for several 

values of the distanc~ from the midchord of the airfoil to theOfirst 

shed vortex in the case of oscillating airfoils. It was found that the 
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Figure 2. Unsteady Vortex Shedding. 
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computer results were much closer to classical results when the first 

shed vortex was at a distance of 30 percent of Vl!.t from the trailing 

edge. The effect of this "wake advance" was also investigated by 

Piziali (22) in the HU-LA rotor blade load calculations at an advance 

ratio of 0.26 where· the "wake advance'was changed from 0.0 to 0.7. It 

was found that "wake advance" had a relatively small effect, but in 

general, increasing the "wake advance" attenuated and shifted the phase 

of the air10ads at higher harmonics. Hence in the present study instead 

of this artificial representation of the shed vortex wake, the first 

shed vortex is placed at a distance of V6t from the trailing edge. 

Once the circulations r .. at each section of the wing are known 
1.J 

from the system of simultaneous equations, the lift at any spanwise 

station can be obtained from 

R..(y,t) = pV 
J 

c 
a JX [at r ij (~fy,t) d~] dx 

o 

The IBM 360/67 digital computer at'The Pennsylvania State University's 

computation center was used to obtain the numerical solution to the 

problem. The set of simultaneous equations for the unknoWn vortex 

strengths was solved by the Gauss elimination method. The coefficients 

of these simultaneous equations, and hence the strengths of the vortices, 

depend on the number of vortices and their locations in the chordwise 

and the spanwise directions. The vortex locations and ,the control 

point locations are handled as input data. This vortex lattice method 

permits an arbitrary number of vortices and their locations and at the 

same time maintains the correct number and locations of control points 

as the control points are located midway between the successive vortices. 
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The optimum number of vortices and their locations were selected on the 

basis of the required accuracy and the computation time and storage 

limitations. The present method of calculation required about 50 sees. 

of computer time for the vortex to travel a distance of about three 

chords. The nondimensional time step size, VatIc, was 0.15 and free 

stream velocity of 150 it/sec. The computation time i~creased 

considerably with the decrease of time step size. 

3.1.2 Results and Discussion 

Before applying the unsteady numerical solution to wing interaction 

problems its validity was assessed by comparing the results to the 

Uagner function for the impulsive start problem. A wing having an 

aspect ratio of 1000 was considered as a good approximation to an 

infinite aspect ratio wing for which there is a theoretical solution 

due co '.1agner. The circulatory part of lift which is time and wake 

dependent is the only part included in the Wagnp.r function. Comparison 

. of the results from the computation model and the Wagner function froni 

reference 23 is presented iri Figure 3. The comparison is good except 

initially ~~here the apparent mass tenn, which is not included in the 

\Jagner solution, is large.· In the numerical solution the: apparent mass 

term is included in the calculated unsteady lift. A comparison of the 

lift buildup in the case of a rectangular wing of aspect ratio six 

subjected to a step change in angle of attack is shown in Figure 4~Ten 

spamlise and five chordwisevortices were considered for the lattice. 
. . 

The results of Jones (24) were based on simplified approximations for 

·the ,!,rowth of lift function corresponding to·a sudden unit change of 

incidence. The comparison is good. 
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The circulation strengths obtained by the lattice method depend 

on the location and the number of vortices along the span and the 

chord ofa wing. Calculations were done with different locations of 

vortices and control points in the wing-vortex interaction problem. 

, The effect on the circulation strength,s, of increasing the number of 

chordwise vortices is shown in Figure 5. As can be seen in 'this figure 

there iS'no significant improvement by increasing the'number of chord-

wise vortices beyond five. As can be seen in Figure 6 there is no 

noticeable difference in the lift, coefficient between the cases of ten 

and twenty spanwise vortices. Hence in most of the calculations ten 

spanwise and·five chordwise vortices were considered as,a compromise 

between the total number of vortices for sufficient accuracy and 

computer time and storage requirements. 

The model used for' the wing-vortex interaction problem was a 

fini,te aspect ratio wing in an incompressible free stream, and a 

straight,infinite vortex at an arbitrary angle 15 with the willg as 

shown in FigUre 7. Most of the calculations were done with an 

intersection angle of zero degrees. In the wing-vortex interaction 

problem the important parameters are the height, h, of the vortex 

above or ,beloW the wing, the wing chord, c,the free vortex strength, 

reo' the positive, and the negative peak values of lift coefficient. 

the time interval bet,Ween the peaks and the maximum difference of 
.' . .' 

section lift coefficients. The starting position of the free vortex 

was chosen 1.5 chords ahead of the leading edge of the wing. The 

,furthest distance possible is desired from a long- wake generation 

standpoint but increasing distance increases the computation time and 

storage requirements. 
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In the numerical calculations of lift due.to wing-vortex 

interaction, it was observed that the time step size (6t)has 

considerable influence on the peak lift coefficients, especially the 

negative peaks. Calculations were done with different values of 

nondimensio,nal time step sizes V6t/c. The variations of peak positive 

and negative wing lift coefficients and peak positive and negative 

midspan circulations with time steps are indicated respectively in 

Figures 8 and 9. A typical variation of wing lift coefficient with 

vortex location is shown: in Figure 10 for different time steps. As the 

computation time increases with the decrease of time step size, most of 

, the, calculations were done with a nondimensional time step, V6t/c, of 

0.15. 

Some of the results obtained by the present vortex lattice method 

are compared with the results of Johnson (6). Johnson (6) has obtained 

.• ' induced loads on an infinite aspect ratio wing due to a straight, , 

infinite vortex using linear: lifting surface theory. A comparison of 

tne two..,.dimensional values of peak circulation values and peak lift 

coefficients predicted by the lattice method and by the lifting surface 

theory are respectively presented 1nFigures 11 and 12. The circulation 

(r)and lift coefficient' (ClL) values for the lattice method are the 

valuesattlle midspan of the wing which is a good approximation to two

dimensional values. ,As seen in these figures the comparison is good 

except at small values of (h/c). Decreasing the time step should 

decrease the peak values obtained by the lattice method and hence give 

better agreement with the results of Johnson (6}. The effect of finite 

aspect ratio is shown in Figure 13 by comparing the present three

dimensional results with the two-dimensional results of Rudhman (25). 
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Figure l4'shows the wing 'lift coefficient variation as the vortex 

passes over the wing for two different (fw/Vc) values. Figure 15 shows 

the lift coeffi.cient variation as the vortex passes over the wing at 
,"l. . 

, ' 

different heights . These figures indicate that lift coefficient 

magnitudes increase with decreasing vortex heights, h,and also with 

increasing values of (fQl/Vc) .:Figure 16 ,'~howsa comparison of li'ft 

coefficient~ for the same positive and ;:~e,8ative vortex heights. ,As can 
. . ~ . . 

be seen in this figure, there is no signif~~~n,~9iffet;eri~e i.,ilthe lift 

coefficients. 
, 

Figure 17 shows theeffectofu8ing q&~~t~~te~4Y~ and,s~~ady state 

approximations in computing unst~ady 'lif{;~~.·,aie'w~ti~.,:tn .. t~~.qUaSi:-
. . . . ... .... ~ ... ' - ~ . ".-~ ..... :': .. -: . '. . .' .~ 

" "', 

but the contribution of theshedw,ak'eW8:S,n.egle,cted~::~tnthe"at~~dy 

.state approximation the lift was compute:a:\l.~;ln'g',~~ '~ll~;tarit~ne~us 
! "1", ..... "... '.' ::-... 'i_. . . " 

velocity and angle of attack. 

. . . . 

'above those predictedbytheuns teady model. as the,wak~which reduces 

the induced loads was not included in thi$;IlPpr9l{,ima~~f)n • 

. Figure 18 shows the variation of lift . coefficient with vortex 

location for different aspect ratios. ThereauctionQfpeak lift 

coefficient with decrease in aspect ratio: does not correspond to the 

reduction given by the aspect ratio correction factor as in the steady 

case. 

Figure 19 shows the variation of lift coefficient at. a particular, 

spanwise station as a vortex passes over the wing at an angle cS = 90°. 

As can be seen in this figure the peak lift coefficients increase with 
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increasing sweep rates • This case approximates helicopter rotors over 

a range of azimuth angles where the tip vortex sweeps across the span 

at approxima:~ely 0 = 90
0

• 

In this chapter the vortex lattice method has been applied to the 

. relativelysiinple problem of planar wing-vortexinteraction~Comparison 

of the results with those obtained .bylinear .~iftings\lrface· theqry has 

shown good agreement. With the confidence gained in the vortex lattice 

methpd by this comparison., the method is extended in the next:~hap'~.er ..... 
J " 

to the mpre complexgeome·try of the r6tor~Vort:exi~~raction' problem~ 
;.l' .. ; • 

. , 

...... :," 

'. ' ".~ 
.~',. 

.•.... : .. ~ .... :'~~ .~~ .... 

.,," , 
;,.' -. .. :0 

...... -- :' . 

' ..... . 
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CHAPTER IV 

APPLICATION OF VORTEX LATTICE METHOD 
TO THE ROTOR-VORTEX INTERACTION PROBLEM 

,\ " 

4.1 Model Rotor-Vortex Interaction- Problem 

4.1.1 ~he Model Rotor and W~ke Configuration 

The wak~ of a rotor blade is important because of the interference 

of the blade with its own wake and the wake of other blades. The wake 

of. a helicopter rotor in forward flight consists of shed and trailed 

vortici ty in a distorted. skewed helix behind each blade of the rotor. 

This vorticity. which is trailed and shed in sheets rolls up to form tip -. . 

and roo.t vortices.· Since the' boUnd circulation of' a ~otor blade is 

highly concentrated at ~he tip the rolling up is accomplished within 

a short distance behind the rotor. Since the bound circulation at the 

root of the b1ad~ goes to zero gradually the root vortex is weak and 

hence -can be neg:J..ected. - . 

In·thepresent.study of rotor-vortex interaction problem, a 

simplified model for the rotor and its wake has been assumed. An 

approxiznate lifting surface .method like the vortex' lattice method is 

used in the calculations. The·ro~or blade is replaced by a lattice of 

vortices. As an approximation ~or the ca1cu1atioll: of the . downwash on 

the rotor due. to its own wake, the wake is approximated bya net of 

finite strength,- finite. ~ength straight line vortices, the trailing 

. lines ~eing. along streamlines re 1ati ve . to the rotor blade and the shed 

vortices being shed parallel to. ~he instantaneous position of the rotor 

blade. The azimuthal spacing in the vortex net is determined by the 

azimuth step size in the calculations while the spanwise spacing is 
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determined by the chosen number of spanwise vortices. The change in 

the wake geometry as the blade moves to the next azimuth station is 

calculated on the basis that a point in the wake moves with the velocity 

of the fluid at that point, due only to the blade modon; namely, 

(v sin 1/1 + Qr.). In other words, it is not a "free-wake" treatment. 
J 

At.high forward velocities or large advance ratios the downwash becomes 

small in comparison to the free stream veloc{ty and hence flat,. planar 

wake is a good approximation for· the lar·ge ·advance ratios considered in 

- the calculations. 

The more exact'free wake mode'! for use in the calculation of rotor 

alrloads would be to represent rotor blades by lifting surfaces and 

blade wake~ by vorte·x sheets. Calculation of wake geometry would 

involve the computation of the disto'rtion and roll up of these vortex 

sheets due to their own induced vel~cities and those of lifting surfaces. 

This detailed wake model,·~owever, is too complicated and time consuming 

for practical computations. 

Experimental data is available from a model, single bladed rotor 

operating at an advance ratio and encountering a free vortex ~rom a 

fixed wing upstream. The rotor was positioned at a zero incidence angle 

: of the tip path plane with the free vortex from the wing lying in a plane 

parallel to the tip path plane. The rotor hub was' positioned at a 

lateral distance Z from the vortex and a distanceh below it. Rigid 

geometry is also assUmed for die free vortex, i.e., the influence of 

blade loading on the geomeiIy of the vortex is not considered in the 

calculations. The mo'del rotor blade configuration used in the 
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computations is shown in Figure 20. A detailed description of this 

model rotor and its instrumentation can be found in the report by 

Surendraiah (9). 

4.1.2 Effect of Vortex Core 

In order to calculate the loads on the blade for small values of 

blade-vortex separation, h, it is necessary to consider the viscous 

core of the interacting free vortex. An approximation to the induced 

velocity inside a vortex core is the Rankine model which assumes a 

solid body rotation of the vortex core with an induced velocity at the 

outer 'edge of the vortex core equal to the value -'given by the Biot-Savart 

law at that point. 

Thus, 

where: 

2 w = fj2Tfa 

v. (r) 
1 

= r /2rra = wa 
r=a 

w = rotational velocity inside the core 

a = core radius 

r = strength of vortex 

v. = induced velocity 
1 

Thus it is only necessary to check whether the point at which the 

induced velocity must be determined is inside the core or not and apply 
\ 

either the Biot-Savart relationship or the solid body rotation model. 

For a vortex with a finite core McCormick, et al., (26) have 

given an alternate expression for the induced velocity' at any point, 

namely, 



Single Bladed 
Rotor 

v 

z 

r Free Vortex From a 
ex) 

Fixed Upstream 
Wing 

Figure 20. Rotary Wing Configuration for the Vortex Lattice Method. 
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a v. (r) = vi(a) (-) ·[1 + 9vn(r/a)] 
1 r 

where v.(a) is the induced velocity at the core radius. 
1 

The logarithmic variation of induced velocity is higher than 

the Rankine model induced velocity. Both the logarithmic variation and 

the Rankine model were tried in the load calculations. The logarithmic 

variation overestimated the vortex induced loads. The Rankine model 

has been used in the calculation of vortex induced loads as these loads 

showed better agreement with experimental. results. 

4.1.3 Calculation Procedure 

Figure 21 shows the blade coordinates used in the calculation of 

blade airloads. The wake geometry is calculated by starting the rotor 

blade from rest in a free stream. The blade is located at a spe~ified 

azimuth (~ = 0 degrees) without any wake vortices. The blade is then 

rotated through an azimuthal increment, ~~, and shed and trailing 

filaments are deposited in the wake. These are of unknown strength but 

with known positions. The blade is replaced by a lattice of vortices 

of unknown strength. Since the load on a rotor blade is highly 

concentrated near the tip, vortices near the tip are placed closer than 

the vortices near the root of the blade. Ten spanwise and three chord-

wise vortices are considered in the lattice. The total downwash at the 

control pOints on the blade where the boundary condition of zero normal 

velocity is satisfied is obtained by summing the contribution of the 

vortex lattice, the contribution from the wake vortices, the velocity 

induced by the free vortex and the normal component of the free stream 

velocity. Satisfying the boundary condition at all the control points 
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Figure 21~ Blade Coordinates. 
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(equal in number to the number of unknown vortices on the rotor blade) 

results in a system of simultaneous equations for the unknown vortex 

strengths. Solving these equations gives the strengths of vortices that 

are shed innnediately behind the blade. ' All vortex element end points 

not attached to the blade are then allowed to translate as the blade is 

stepped forward for a time llt (equal to ll$/Q) with velodty (V sin $ 

+ Qr). This compietes a typical first step in the calcul,at:i.on of the 

wake and airloads' induced' by the free vortex. 

In the subsequent steps only the vortices at and just behind the 

blades have unknown strengths, while those in the wake have known 

strengths. In' this manner arrays of discrete shed and trailing vortices 

are generated i~edia'tely behind the blade with strength~ corresponding 

to blade loads. Figul;e 22 shows the wake configuration behind a single 
". <=-'''. ~ . 

, 
bladed rotor • .KnOW-ing the circulations at each section' of ,the blade 

from the solution of the simultaneous equations, the section lift can 

be obtained from 

c " x 

R, • (y, t) 
J 

= pU E fij(x,y,t) + p f "[~t I 
i o 0 

when U = V sin $ + Qr .• 
J ' 

rij (~,y,t) d~] dx 

The section lift coefficient is based on the local velocity, 

relative to the blade 

where c = chord of the ,blade 

The strength of the free vortex, the core diameter of the free vortex, 

the blade dimensions and the rotational velocity of the blade are 



\ _ f -1 v 

Blade 

r(~jtl,ljJj) 

~r(ri,tpj) 

Trailing Vortex _ 

Shed-Vortex 

r (r . +1 ,tp . ) 
1 J-

-Figure 22. Example of Wake Configuration. 
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handled as input data. The time increment t.t is chosen to correspond 

to the finite change t.ljJin the azimuth position of the blades 

where n is the rotor angular speed. 

The IBM 360/67 digital computer was used to obtain the numerical 

solution to the problem. For the advance ratio of 0.7; the computer 

time required for an azimuth travel of about 60 degrees with an azimuth 
. .' 

increment of five degrees was about 150 sees. The a~curacy of the 

predicted load distribution depends very much on the azimuth increment 
. . 

and the number· of vortices. It was found that an azimuth' increment of 

about five degrees was necessary to predict the vortex induced loads. 

~.1.4 Results and Discussion 

The parameters describing the modei rotor. blade and the free 
,"".' 

vortex are given in Table 1. The az.imuth incretrient~ (t.1j!)in,most·of the 

calculations was five degrees. The values of the'fre~vortex strength 

and the free vortex core radius in Table 1 are from experimental 

measurements of Surendraiah (9). 

The results of the vortex lattice method are compared with the 

lifting surface theory results of Johnson (7) and also experimental 

results of Surendraiah (9) and Padakannaya (10). The lifting surface 

theory solution d'evelope'd for a model wing-vortex interaction problem 

has been applied by Johnson (6) for the rotor-vortex. interaction 
j . . ' 

problem. Johnson (7) has presented the results of the application of 

the lifting surface theory for the single bladed rotor-vortex 

configuration. ,A typic~l variation of the section!ift coefficient as 
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Table 1 

Model Rotor Operating Parameters 

Rotor Rotational Speed n == 1500 RPM and 2000 RPM 

Forward Velocity V = 110 fps 

Advance Ratio l.i == 0.7 (n == 1500 RPM) 

== 0.526 (n == 2000 RPM) 

Free Vortex Strength r 15.25 
2 . 

== ft /sec 
00 

Blade Chord ·c == 0.167 ft 

Blade Radius R == 1.0 ft 

Free·Vortex Core Radius a = 0.031 ft 

Collective Pitch e = 0 deg 

Tip Path Inclination Angle a. = T. 0 deg 
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the rotor blade cuts through the vortex is shown in Figure 23. As 

indicated in this figure the maximum section lift coefficient difference 

is the difference between "the positive and the negative peak section 

lift coefficients. Figures 24a, 24b, and 25 show the comparison of the 

maximum section lift coefficient difference due to vortex interaction as 

predicted by the vortex lattice method and the lifting surface theory. 

These" figures show the variation of the maximum section lift coefficient 

difference with rotor plane position (h/c) at the radial location 

r/R = 0.95. The section lift coefficient is based on the local relative 

velocity of the rotor blade. Good agreement is shown between the lifting 

surface results and those from the vortex lattice method. Padakannaya 

(10) has presented the measured spanwise loads due to vortex interaction. 

Comparisons of the measured and the predicted spanwise maximum lift 

difference distribution for the different rotor plane positions, h/c, 

and for various positions of shaft axis, Z/R, are shown in Figures 26a, 

26b, 27 and 28. As can be seen in these figures the predicted results 

are higher than the experimental results with the difference between the 

two results increasing with decreasing values of Z/R. This discrepancy 

may be due to the effect on the measured results of increased 

interference between the vortex and the hub with its large spinner as 

Z/R decreases. 

The spanwise variation of maximum section lift coefficient 

difference predicted by the vortex lattice method and the measured 

values are presented in Figures 29a, 29b, and 30, for the different 

rotor plane positions, h/c, and for different shaft axis positions, 

Z/R. The lift coefficients are based on local rotational velocities 

of the rotor blade to be consistent with the experimental results. As 
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in the case of maximum lift difference the predicted and the measured 

results differ considerably at the inboard radial positions. A typical 

comparison of the experimental and the predicted lift variation with 

time is presented in Figure 3l. Th~ general shape of ,the variation of 
:-.::-~. 

lift is similar but the computation's predict a hi'gher nega'tiye peak than 

shown by the experimental results. 

In the numedcal method the effect of viscosity has been negleded 

and also the free vortex which is interacting with the rotor blade has 

been considered as a ri'gid,infinitely long finite core vortex. The 

higher predicted ,value of, the load distribution may be due to these, 

assumptions. Measurem~nts of the pressure distribution on a single 

bladed: rotor- interacting with. a trailing vc,rtex from an upstream wing, 

were also made by Baczek (21). Th~s investigation indicated that the 

vortex was pushed out of the: rotor plane either above: or below it, 

resulting, in lower pressure gradients than, anticipated. Also ,Ham {28} 

has indicated: that after a vortex intersects a blade, its strength is 

weakened, possibly due to counter ..tortices generatec:t'~ a result of the 

loading ind'uced by the' vortex on the blade. 

4.2 The Calculation of Helicop ter Rotor, Ai rloads 

4.2.1 Calculation Procedure 

Scheiman (12) and Scheiman and Ludi (13) have tabulated' 'experimental 

data from flight~ests of a four bladed H-34 helicopter. The vortex 

lattice met}:lod developed fortne modelrotor:-vortexfnteraction problem 

has 'been extended to thefuli scaleH-34 helicopter rotor. ' Ftom:the 

experimental data typical ' flight cases in which vortex induced • loads

, near the tip of the rotor blade are indicated, are chosen for study~ 
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As in the model rotor configuration the wake behind the rotor blade is 

represented by a net of finite strength, finite length, straight line 

trailing and shed vortex elements. The blade coordinates used in the 

calculation of blade airloads are shown in Figure 21. The wake 

geometry is calculated starting the rotor from rest in a free stream. 

The reference blade on which the load distribution is calculated is 

located initially at a specified azimuthal (~ = 00
) and flapping and 

pitching position without any wake vortices. The blades are then 

rotated through an azimuth increment, fl~, and shed and trailing fila-

/ 

ments of unknown strength, but with known pos~tions are deposited in 

the wake of the reference blade. The blade is replaced by a lattice of 

vortices of unknown strength. The rolled up tip vortex from the 

preceding blade is considered to determine the effect of vortex 

interaction on the load distribution on the following (reference) blade. 

The strength of the. rolled up tip vortex is made equal to the maximum 

value of the measured radial distribution of the bound vorticity on 

the blade in the azimuth position from·which the element is shed. A 

finite core tip vortex is considered in order to avoid unrealistically 

high induced velocities when the vortex is near the plane of the rotor. 

The core size of the vortex is assumed to be one per cent of the rotor 

radius which is the value commonly used in the literature. The strength 

of this concentrated. tip vortex varies azimuthally as the maximum value 

of the radial distribution of the blade loading varies with the azimuth. 

The tip vortex from the preceding blade can be placed at different 

heigh~f~ below the disk plane. The approximate location of the tip 

vortex below the disk plane can be determined from the rotor advance 

ratio, ~, rotor thrust coefficient, C
T

, and the angle of attack 
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relative to the tip path plane assuming an undistorted wake. Landgrebe 

and Bel~inger (14) have found that the distortion of the wake increases 

'vi th the decrease -in a<;lvance ratio. It has also been observed that at 

very low advance ratios the tip vortex from the preceding blade can lie 
"." .. 

above the tip path·~lane.over a range of azimuth angles on the.advancing 

side of-the disk. Radial contraction of the wake boundaries have been 

observed in exp~r~~ents with the contraction of the wake increasing with 

decreasing advance ratios. Hence the rolled up tip vortex of the 

preceding can be'placed radially at different locations in the wake to 

account for -the contraction of the wake boundary. The radial contraction 
.. ···f· 

is zero when th~ Jip yortex is placed at a radial location of r /R = 1. o. 

Relative O1;i~ntati(mof the reference blade and tip vortex from the 
_ ~' ..... :r ::~. ; .. :' 

preceding blade- on the advancing side of the disk is shown in Figure 32. 

The root vortex of the preceding blade which is in a sense opposite to 

that of the -tip vortex is usually very weak and hence has been neglected. 

Piziali (22) has found that adding a concentrated root vortex has a 

relatively small effect on the rotor blade loading. This rather crude 

approximation for the tip vortex is hoped to be reasonably good for 

the areas in which it has a large effect on the induced velocity in the 

plane of the rotor. 

The boundary condition to be satisfied at the control points on the 

reference blade requires that the sum of the velocities normal to the 

chord be zero. The total vertical downward velocity~ U ~ relative to 
p 

the blade section is 

u 
p 

v cos a
l 

cos ~ sin B + w + rdB/dt - V sin a 1 cos B 
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Blade Number 2 
(Reference Blade) 

Tip Vortex at r/R = 1.0 
From Blade Number 1 

Rotational Sense of Tip Vortex 

Figure 32. Relative Orientation of Reference Blade and Tip 
Vortex on the Advancing Side of Disk. 



and the component, U
T

, in the disk plane normal to the blade radius is 

where 

ell = rotor angle of attack 

8 = flapping angle 

V = free stream velocity 

lJi = azimuth angle 

w = downwash velocity 

r = radial coordinate 

~ = rotational velocity of the blade 

Using small angle approximations, the expressions for the velocities 

can be written as 

Up V8 cos lJi + w + rd8/dt - Vell 

If e is the pitch angle relative to the disk plane, the angle of attack 

of the section from Figure 33 is, 

V S cos lJi + w + rd8/dt - Vell 
= e - -------------=-

~r + V sin lJi 

The wake induced velocity, w, is made up of velocities due to 

known circulations in the wake and due to the tip vortex of the 

preceding blade •. ' 
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Figure 33. Velocity Components on a Blade in Forward Flight. 



where 

Only 

where 

The blade pitch angle for a linearly twisted blade is taken as 

8 = 8
0 

+ 8Tx + 81 cos ~ + 82 sin ~ 

8 = collective pitch 
0 

8
T 

= total twist 

8
1 

= lateral cyclic 

8
2 

= longitudinal cyclic 

x = r/R = radial coordinate 

first harmonic flapping is considered. 

(3 = coning angle 
0 

1\ = longitudinal flapping 

(32 = lateral flapping 

The radial component of the velocity is neglected as it does not 

significantly effect the lift. The blade is assumed infinitely rigid 

in all directions, i.e. the effects of torsional deflection and blade

bending deflections on the velocity and the angle of attack 

distributions are neglected. 

Satisfaction of the boundary condition at all the control points 

results in a set of simultaneous equations for the unknown vortex 

strengths on the blade. Solving these equations gives the strengths 

of the vortices that are shed immediately behind the blade. The 

reference blade is then advanced through an azimuth increment, 6~, 

and each vortex end point which is not attached to the blade is allowed 
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to translate with the velocity (V sin ~ + Qr), i.e. a flat, rigid wake 

is assUmed. The entire computational process for the new position of 

the reference blade is then repeated. In this manner arrays of 

discrete shed and trailing vortices are generated immediately behind the 

.refe~enie blade with strengths corresponding to the blade loads. 

Considerable computational simplifications are achieved through 

the assUmption of a flat rigid wake. At low rotor thrusts or high 

forWard velocities, the downwash becomes small in comparison to the free 

stream velocity and hence this assumption is a good approximation at 

large advance ratios. In a recent paper, Ormiston (29) has presented 

rot4tr wake induced velocities of helicopter rotors in forward flight 

assuming a flat planar wake. The results indicated that a simple; 

flat -planar wake is a valid configuration for the wake vorticity down 

to advance ratios of around 0.15 for nominal thrust coefficients. 

Once the circulations at each section of the blade are known from 

the solution of the simultaneous equations, the section lift can be 

determined from 

R.,. (y, t) = 
J 

c 

pUZ: r.. (x, y, t ) + p J 
i 1J 

o 

where U = V sin ~ + Qr. 
J 

x 

[~t J 
o 

r .. (!;,y,t) d!;] dx 
1J 

Compressibility effects are included in the calculations through 

the use of the Prandtl-Glauret correction factor based on the local 

Mach number of the flow normal to the span of the blade. 

1 
~ = --=--~. 

comp / 1ncomp 
Y 1 - M2 
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All of the input information for the computations, such as the 

flapping angle, the blade pitch angle, the shaft tilt angle and blade 

twist are taken from the report by Scheiman (12). The strength of the 

tip vortex of the preceding blade was calculated from the tabulated 

measured load distributions. The time interval ~t is chosen to 

correspond to the finite change ~~ in the azimuth position of the 

blades. 

where ~ is the rotor angular speed. 

The accuracy of the predicted load distribution depends on the 

number of vortices and the azimuth increment. An azimuth increment of 

about 15 degrees was found to be sufficiently small for the prediction 

of vortex induced velocities. Ten spanwise and three chordwise 

vortices were considered on the blade. 

For the computations of load distribution, both the IBM 360/67 

and the IBM 370/165 computers of the Pennsylvania State University 

were used. The present calculations required about 200 sees on the 

IBM 360/67 computer for an azimuth travel of 180 degrees with an azimuth 

increment of 15 degrees. The same calculations required only 50 sees 

on the IBM 370/165 computer. 

4.2.2 Results and Discussion 

This section presents and discusses the results of the computations 

and compares predicted blade loads with the measured values. The rotor 

blade dimensions and operating conditions are given in Table 2. The 

azimuth increment (6~) in the calculations was 15 degrees. Ten spanwise 

and three chordwise vortices were considered on the rotor blade. 
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Table 2 

Rotor Dimensions and Operating Conditions 

Number of blades 

Rotor blade radius 

4 

28 ft 

All me.tal, constant chord rotor blade 

Twist -8 deg 

Airfoil section 

Blade chord 

Rotor solidity 

Normal rotor tip speed 

Normal rotor angular velocity 

Test disk loading 

Forward rotor ~haft tilt 

75 

Modified NACA 0012 

1.367 ft. 

0.0622 

623 fps 

22.2 rad/sec 

4.79 lbs/ft2 

3.0 deg 



Calculations were done both with equally spaced and unequally spaced 

spanwise vortices. The number of vortices on the blade and the azimuth 

increment in the calculations were chosen taking into account computing 

economy. 

Comparisons of the results of the vortex lattice method and the 

experimental data, for radial stations r/R = 0.95, 0.85, 0.55 andO.2~ , 

are presented in Figures 34 through 37 for an advance ratio of 0.2: 

Scheiman (12) and Scheiman and Ludi (13) have tabulated flight test 

data of a H-34 helicopter. These flight test values are the experimerita~ ~:'''' 

data used for the comparisons. In-flight measured flapping angles were 

used in the calculation of airloads. Blade pitch angles and the height " 

of the preceding blade tip vortex below the reference blade were 

adjusted to give agreement of the loads at the r/R = 0.95 station. For 

the advance ratio of 0.2 the tip vortex was placed at a height of three-. 

quarter's of a chord below the plane of the rotor. This is approximately 

the undistorted wake location near the azimuth location (~) of 90 

degrees where the vortex interaction effect is large. Landgrebe and 

Bellinge.r (14) have indicated that the experimental axial wake position 

and undistorted wake position do not differ much on the advancing side 

of a rotor at an advance ratio of 0.2. 

As can be seen in these figures the large fluctuations in the 

measured airloads near the tip of the rotor blade on the advancing 

side are predicted closely by the present lifting surface method. For 

the advance ratio of 0.2 calculations were repeated for two different 

radial locations (r/R = 1.0 and r/R = 0.90) of the tip vortex to 

determine the effect of radial contraction of the tip vortex (observed 

experimentally) on the airloads. The results of the computations with 
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different radial locations of the tip vortex are presented in Figures 38 

and 39 for radial stations r/R = 0.95 and r/R = 0.85 respectively. As 

can be seen in these figures there is a noticeable difference in the 

air loading due to the change in the orientation of blade passage over 

the two radial locations of the tip vortex. Hence radial con tra<;:.ti 6n of 

the tip vortex is a significant parameter in th~ pJ:¢di'¢t1oti-:oi -~~rtex 
". . ." ~. ~:'-

'. 
induced air10ads especially at low advance ratio~ since the vort.ex:, 

remains closer to the rotor. The effect of the verticail~ation of 
. :;. >.. .: -: ~1;. .. "- -" '":. ;.: 

the tip vortex on the blade loads is shown in Figure 4().·, -AS" ~xp'~c'ted 
;t .. " .. 

the vortex induced load increases as the vortex ge ts: closer' 1:,6: the blade 
. " '. ",.,'_ "rl" 

since the induced velocity on the blade increaseswf.th 'thedecrease' in 
"" . . - ", 

distance between the blade and the vortex. The radial variation of load 

distribution on a rotor blade at an azimuth 10cation(1jJ) of 90 deg~ees 

for unequal and equal spacing of spanwise vortices in the vortex lattice 

method is shown in Figure 41. As expected the radial load distribution 

is not very sensitive to the spacing of vortices except near the tip of 

the blade where the vortex induced load is predominant. 

A comparison of the calculated and the experimental section lift 

with azimuth for an advance ratio of 0.1 is presented in Figures'· 42 

through 45 for radial stations of r/R = 0.95, 0.85, 0.55 and 0.25. 

The experimental data is from Scheiman's (12) report. In the 

calculations the tip vortex was placed radially at r/R = 1.0 and 

vertically 0.6 chord below the plane of the rotor. The vortex 

interaction effect has been predicted reasonably well. From the wake 

pattern studies in a water tunnel Landgrebe and Bellinger (14) . have 

indicated that large axial and radial distortions of the wake occur at 

low advance ratio of approximately 0.1. As the local blade loading is 
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very sensitive to wake distortions, wake distortion effects should be 

included in the calculations for a better correlation of the calculated 

and experimental section lifts at this low advance ratio. 

The section lift variation with azimuth angle at radial stations 

r/R = 0.95, 0.85, and. 0.75 is shown in Figure 46. The results are from 

the flight test data of a H-34 helicopter operating at an advance ratio 

of 0.11. This figure indicates the decrease in effectiveness of the 

tip vortex for inducing loads at the inboard sections. This feature has 

been found in all cases of the present study, cases which were chosen 

because they show large vortex-induced loads near the tip of the blade. 

Figure 47 shows the variation of section lif~ with azimuth angle at the 

radial station r/R = 0.95 for advance ratios of approximately 0.1, 0.2, 
, 

and 0.3. The results are from the flight test data of a H-34 helicopter. 

As can be seen in this figure the effect of tip vortex on the blade 

loading reduces as the advance ratio increases. At low advance ratios 

the extent to which the wake is transported away is limited and results 

in blade-vortex intersections close to the rotor. 

The wake behind a helicopter rotor remains in close proximity to 

the rotor for a long time because of the rotation of the rotor whereas 

a wing moves continually away from its wake. Hence, it might be expected 

that wake distortions which could be neglected for a fixed wing would 

be more important in the case of a rotor. Although lifting surface 

theories allow accurate calculation of airloads on a rotor blade, its 

use requires an accurate knowledge of the relative position of the 

vortex and the blade. Hence a very high degree of accuracy is required 

to correctly predict the close p'assages of the tip vortex and the blade, 

as the downwash is very sensitive to the tip vortex location. Johnson 
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and Scully (30) have indicated that the combination of lifting surface 

and distorted wake geometry does not necessarily result in accurate 

airloads as shown in Figure 48. Calculations using distorted wake 

geometry predicted higher loads and hence the distorted wake should be 

closer to the tip path plane. It has been suggested by these authors 

that real fluid interaction of the blade and vortex (such as local 

vortex-induced flow separation) or local changes of the nature of the 

tip vortex viscous core due to the blade-vortex interaction (such as 

interaction induced bursting) may be important to be included in the 

airload calculations for a better correlation of experimental and 

predicted results. I 

Rotor blades have large aspect ratios and hence their structural 

stiffness is much smaller than that of a fixed wing designed 'to carry 

the same lift. Sadler (31) considered the effects of flexible blade 

motion on wake geometry and thereby on the wake's contribution to blade 

loads. The elevation at which the trailing vortices were deposited 

corresponded to the flapping positions of the flexible blade. As can be 

seen in this Figure 49, the general trends are very similar, but there 

are small differences in the airloads over the aft half of the rotor 

disk due to the effect of flexible blade on the wake geometry. 

In a review paper, Johnson and Scully (30) have indicated that, 

for current wake geometry models (theoretical and experimental), on 

the advancing side of the rotor disk the tip vortex remains very close 

to the plane of the rotor and is pushed downward after the passage 

of the following blade. Hence on the advancing side a finite core vortex 

should be considered in the air loads calculations to avoid unrealistically 

high vortex-induced velocities. Most existiLg analyses currently assume 
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a core diameter of approximately ten percent of the blade chord or one 

percent of the rotor radius. A comparison of the results from the paper 

by Johnson and Scully (30) presented in Figures 48 and 50 for vortex core 

radii of 0.005R and .02R respectively, indicates that assuming a large 

core radius eliminates the difference between the rigid and distorted 

tip vortex geometries. Rorke and Moffitt (32) have recently measured 

the flow field in the core of the vortex behind a rectangular wing 

model which is a segment of a CH-53A helicopter rotor blade section with 

a revolved airfoil tip cap. The measurements were made' at Mach numbers 

5 6 from 0.2 to 0.6 and Reynolds numbers ranging from 4.4 x 10 to 7.0 x 10 

which are comparable to those at the tip of a full scale helicopter main 

rotor blade. As shown in Figures 51 and 52 for rectangular wings, the 

measured vortex core diameter to chord ratios and the peak tangential 

velocity ratios are functions only of wing lift coefficient and elapsed 

time from vortex formation, and appear to be independent of both Mach 

number and Reynolds number. In these figures, the vortex age (t) is the 

time required for an air particle to travel at the free stream velocity 

from the wing quarter-chord to the downstream location at which the 

vortex was surveyed. The trends of vortex core diameters and peak 

tangential velocities presented in these figures could be used to get a 

good approximation for the core diameter of the tip vortex of a rotor 

blade. 

Cook (33) has very recently presented the measured velocity 

distribution through the tip vortex of a single bladed full scale rotor 

operating on a whirl tower at a representative tip speed of 600 ft/sec. 

The measurements were made using a hot wire anemometer. The rotor was 

o 28 ft. radius, with a blade chord of 1.367 ft., 8 overall washout and 
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NACA 0012 section. As shown in Figure 53, the viscous core diameter, 

defined as the distance between the measured velocity peaks, is very 

small. For the same total circulation of the vortex, a typical 

comparison of the measured velocity distribution and two Rankine vortex 

velocity distributions, one with the same maximum velocity as the measured 

and the other with half the core size, indicated a significant difference 

as shown in Figure 54. Since the scatter in the experimental data is 

very large as shown in a typical Figure 55, more measurements will have 

to be made before any data can be used in the analytical investigations 

with confidence. In reference 33, a point was noted on the measured 

vortex velocity profile outboard of which the curve obeyed the (l/r) law. 

This point has been designated by that reference as the core diameter 

indicated in Figure 55. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The foregoing analysis has developed a numerical lifting surface 

method to predict unsteady aerodynamic forces induced on a finite aspect 

ratio rectangular wing by a straight, free vortex~placed at an arbitrary 

angle in a subsonic, incompressible free stream. This vortex lattice 

method has been applied to.a single bladed rotor operating at high 

advance ratios and encountering a free vortex from a fixed upstream wing. 

The method has also been extended to full scale rotor flight cases in 

which vortex induced loads near the tip of a rotor blade were indicated. 

The calculated r~sults were compared with planar lifting surface theory 

results and also with available experimental results. The following 

conclusions can be drawn from this investigation. 

1. This i~vestigation establishes the feasibility of a simple 

vortex lattice method to predict the unsteady forces due to complex 

vortex interactions. This method uses discrete vortices to represent 

tpe lifting surface and the wake. 

2. In wing-vortex interaction problems, comparison of the vortex 

lattice method with linear lifting surface theory shows good agreement. 

3. In the~numerical calculations of lift due to a lifting surface'

vortex interaction the interval between successive time steps and also 

the number of vortices on the lifting surface has considerable influence 

on the peak lift coefficients •. The time step· size and the number of 

vortices on the lifting surface must be chosen as a compromise between 

the accuracy and computer time and storage requirements. 
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4. Steady state or quasi-steady assumpt~ons are inadequate to 

predict the unsteady nature of the lift fluctuation due to a lifting 

surface-vortex interaction. 

5. Good agreement is shown between the vortex lattice method 

results and the planar lifting surface theory results in t4e case of a 

model rotor intersecting a free vortex. 

,6. The vortex induced loads on the model rotor blade are generally 

overestimated by the numerical lifting surface method when compared to 

experimental results. The computed time interval betwee~ peak values is 

in good agreement with experimental measurements. 

7. The numerical lifting surface method predicts closely the 

large fluctuations in the measured airloads near the tip of a rotor 

blade on the advancing side of the disk. 

8. Accurate information concerning the vertical location and the 

radial location of the tip vortex are required for an accurate prediction 

of vortex induced airloads. For close blade-vortex interactions, tip 

vortex core size is an important parameter in the prediction of vortex 

induced loads. 

9. Rotor blade loads are very sensitive to the azimuthal variation 

of flapping and pitchin~ angles. 

10. The flat planar wake configuration is satisfactory for most of 

the advance ratios considered in the present investigation as at large 

advance ratios the downwash becomes small in comparison to the free 

stream velocity. 

Since an accurate knowledge of the wake geometry is required to 

obtain accurate vortex-induced loads it is recommended that'the present 

numerical lifting surface method be used with a d~formed wake mod~l, 
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especially at small advan~e ratios (~ ~ 0.15). However, Moore (34) 

has shown by examination of the rolling up of a vortex sheet of an 

elliptically loaded wing that the approximation of replacing a finite 

vortex sheet by an array of line vortices can be unreliable regardless 

of the number of vortices used. It was suggested by the author that 

the strong coupling between line vortices causes chaotic motion of the 

tip vortices which affects inboard vortices. Hence caution must be 

exercised in using the deformed wake configuration. 

One can attempt to calculate the unsteady air10ads for close 

blade-vortex spacing. However blade loads are very sensitive to vortex 

locations and the sensitivity increasing with decreasing distance from 

the blade and hence such a calculation is questionable. It will be 

preferred to use measured blade-vortex spacing as high degree of 

accuracy is required of the location of the vortex. Since it determines 

the maximum tangential velocity near the vortex, the viscous core radius 

of the tip vortex is a very important parameter for the calculation of 

induced velocity. Hence for close blade-vortex interactions a more 

realistic value of the core radius from a very recent paper by Cook (33) 

could be used. instead of the usually assumed value of 10 percent of the 

chord or one percent of the blade .radius. Also for close blade-vortex 

interactions real fluid effects such as local separation on the blade 

due to large induced velocity gradients and local changes in the nature 

of the tip vortex viscous core due to blade-vortex interaction could be 

very important factors. The present investigation has neglected the 

effects of viscosity." 

Finally, it is recommended that accurate azimuthal variation of 

flapping and pitching angles of the blade should be used in the present 
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analysis as the blade loads are sensitive to these. Accurate azimuthal 

variatio~s of flapping and pitching angles of the blade could be Gbtained 

from an iterative calculation of blade motion and blade airloads. 
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APPENDIX A 

EFFECT OF THICKNESS ON THE LIFl' DUE TO WING-VORTEX INTERACTION 

In the following analysis conformal transformation methods have 

been used to study the effect of thickness on the lift due to a two-

dimensional wing-vortex interaction. A circle can be transformed by 

the Joukowski transformation into a shape resembling that of a wing 

section. The flow about a circulat cylinder having a radius slightly 

larger than a, and so placed that the circumference passes through the 

point x = a, on the z-plane is transformed to the flow about an airfoil 

on the ~-plane using the mapping fUnction 

If, in addition, the center of the larger cylinder (of radius larger 

than a) is placed on the x-axis; the transformed curve will be that of a 

synnnetrical wing section (Figure 56). Let the radius of the larger. 

cylinder be a + E. The complex potential of a circular cylinder with a 

circulation of strength r, placed. in a stream of velocity along the 

x-axis is 

Consider a vortex of strength r
l 

located atz
Ol 

outside the cylinder of 

radius (a + E). If the motion is due solely to the vortex the circle 

theorem giyes the complex potential 

= -
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Figure 56. Conformal Transformation of a Circle into a Symmetrical Wing Section. 



The more general expression for the flow about the circular cylinder 

with flow at infinity inclined at an angle a o to the z-axis in the 

presence of a vortex outside the cylinder can be written by substituting 

and 

ia 
e 0 

In the case of a zero, the lift is due only to the interacting vortex. 
o 

For this case of ao = 0, w = w
l 

+ w2 can be written as 

(a+e:) 2 
w = V[(z+e:) + z+e: 

-r 
1. 1 

+ 2lT [~n - z }] 
o 

The velocity (dw/d~) at the point z = a (corresponding to the trailing 

edge) must satisfy the Kutta condition of smooth flow at the trailing 

edge which determines the value of circulation r around the airfoil. 

_ dw dw dz 
Equatl.ng d~ = dz d~ 

z=a 
= 0 

r = 2rl (a+e:) [Real part {(a+e:~-z }] 
o 

Neglecting powers of e: greater than one the chord of the airfoil is 4a. 

The lift on the wing section is pvr and the lift ~oefficient is 
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Durand (35) has shown that the thickness ratio of the wing section 

is nearly equal to· 3 v'31 4 (E/a) 

C
t 

~ ~1 (1 + 0.77 tIc) [a(l + 1.54 tIc) - x 
{a(l + 1.54 tIc) _ x}2 + y2 

where a = c/4 

For tIc 0 this expression reduces to 

f 
C = -1. [a - x 

t V ( )2+ 2 a-x y 

For a given value of y 

Ct = fl/V [1 + 0.77 tIc] (1/2y) 
max 

This value of maximum lift coefficient occurs at 

x = a (1 + 1.54 tIc) - y 

For tIc = 0 Ct = fl/V (1/2y) 
max 

This maximum lift coefficient occurs at 

x = a - y 

therefore 
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CR, (t/c) 

--=m=ax::.:...,.....,.._~ = (1 + 0.77 t/c) 
CR, (t/c=O) 

max 

For a thickness ratio of 12 percent this ratio is 1.0924 • 

. The variations of lift coefficient with (x/c) for a given (y/c) 

are presented in Figures 57 and 58 for thickness ratios of zero and 12 

per cent respectively. As expected the lift coefficient is higher for 

the thicker wing. 
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Figure 57. Effect of Thickness on the Lift Coefficient Due to Vortex Interaction, y/c = 0.25. 
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APPENDIX B 

RADIAL LOCATIONS AND ANGLE OF INTERSECTIONS ASSOCIATED 
WITH BLADE-VORTEX INTERSECTIONS 

In the calculation of airloads on a helicopter rotor blade due to 

vortex interaction the radial location and the angle of intersection of 

the tip vortex with the following blade is required. Helicopter rotor 

wake studies (experimental) have indicated that there are no 

significant wake distortions in the top view of the waKe in the vicinity 

of the rotor for moderate and high speed conditions. Hence assuming 

an undistorted top view of the wake the radial locations at which the 

following blade intersects the tip vort~x from the preceding blade at 

different advance ratios are presented in Figures 59, 60 and 61 for two, 

three and four bladed rotors respectively. The angles of intersection 

of the tip vortex with the following blade at different advance ratios 

are presented in Figures 62, 63, and 64 for two, three and four bladed 

rotors respectively. These figures show a typical variation.of the 

radial locations and the intersection angles associated with blade-vortex 

intersections. As can be seen in these figures, for an advance ratio of 

0.3, the azimuth region over which intersection occurs increases with 

increasing number of blades of a rotor. For a given rotor the radial 

extent over which blade-vortex intersections occur decreases with a 

decrease in advance ratio. However, the vortex-interaction effect is 

predominant at the lower advance ratios as the wake remains close to the 

blades. For some low speed flight conditions tip vortices pass above 

the blades. As can be seen in these figures, the angles of intersection 

of the blade and the tip vortex are smaller for lower advance ratios. 
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Figure 59. Radial Location of Blade-Vortex Intersection for a Two Bladed Rotor~ 
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Figure 60. Radial Location of Blade-Vortex Intersection for a Three Bladed Rotor. 



1.0 

r/R 

~ 
Vl 

0.5 

o 

].1 = 0:3 

----].1=0.2 

-'-].1=0.1 

- -- --

0.05 

R = 25 ft, ~ =- 28 rad/sec 

lade 

r/R 
Vortex 

-- - -_.--.---- . .----
,/ 

,/ 

./ 
./ 

/ 
,/ ---- ------

0.10 
Time Secs 

Figure 61. Radial Location of Blade-Vortex Intersection for a Four Bladed Rotor. 

0.15 



I\) 
C\ 

160 
I 

,/ 

/ 
/ , 

120~ \ 
\ 

\ 
Intersection 

~ 
\ 

Angle 

15 Degs 
801- ~ 

40 

..-- --
.,,-

, 
" " "'- ...... ...... 

----------

(. ---
"'-,'-.-

~.--.-
----:-_-----

R = 25 ft, n = 28 rad/sec 

)..I = 0.3 

r/R 

J.l = 0.2 

J.l = 0.1 

Vortex 

°LI ________________________ ~ ______ ~ ________________________________ ~ 
0.5 1.0 

r/R 

Figure 62. Angle of Intersection and Radial Location of Blade~Vortex Intersection 
for a Two Bladed Rotor. 
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Pruyn and Alexander (11) have also found that the effect of the tip 

vortex was large when the angle between the vortex and the blade was 

small. These figures provide a rapid means for determining the blade 

radial locations for blade-vortex intersections. Generalized charts of 

the form shown in these figures could be developed to cover the 

complete range of number of blades and advance ratios. 
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