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CALCULATIONAL ASPECTS OF COLLISIONAL EXCITATION
OF IONS IN HOT SOLAR PLASMAS

FOREWORD
This report is based on remarks made by the author to the Workshop on
Problems and Prospects in Electron-Positive, Ion Physics held at the Joint

Institute for Laboratory Astrophysics, University of Colorado, July 1 and 2,
1974.

iii



CALCULATIONAL ASPECTS OF COLLISIONAL EXCITATION
OF IONS IN HOT SOLAR PLASMAS

I. ASTROPHYSICAL APPLICATION

The first purpose of these remarks is to bring to the attention of the atomic
scattering community the cross section requirements of physicists studying UV
and X-ray emission spectra associated with active and flare-produced plasmas
in the sun's corona. The studies that are of specific concern here are an inte-
gral part of an experimental satellite program (0SO-5, OSO-7) of the Goddard
Space Flight Center group (Neupert et al.'), and in the final section of this re-
port we shall give specific categories of excitations corresponding to prominent
coronal lines which they observe under solar disturbed conditions.

In this first section I shall outline briefly the astrophysical background lead-
ing to the kind of atomic cross section needed and to discuss the shortcomings
of presently available methods and programs. The second section deals with
our general approach (the distorted wave approximation) to the calculational
problem. The third section will consist of two parts: one discusses the effect
of resonances in a very qualitative way and gives a few words on how their
effect is included through the multichannel quantum defect theory. In the second
part we derive the threshold law for electron-atomic hydrogen excitation in the
distorted wave approximation. The fact that the appro=imation is able to re-
produce that very non-trivial result is as convincing an argument as we can
adduce of the power of the niethod.

The presence of ertremely hot material in the sun's corona is 1ndicated
among other things by the omission of EUV and X-ray lines. We are here con-
cerned with the coronal counterparts of active centers [T, > (3-4) x 10%® °K,
N, * 10° -10'" cm~3] and flare produced plasmas [T, ¥ (10-40) x 10°® °K,
N, > 10'° - 10! ecm-3!. In all coronal plasmas there is a balance between
ionization by electron impact and recombination by radiative and dielectronic
processes, Transitions from ions with closed shells feature prominently (cf.
Fig. 2, p. 12),

Most X-ray and UV line emission occurs as a r:sult of electron collisions.
The aralysis of these spectra is usually done in terms of an energy average rate
coefficient
cm? (1.1)

r

C”(T) = Jfp(v) vQH(v) dv

sec¢



where f;(v) is a Maxwellian electron distribution of velocities v corresponding
to a temperature T. The ultimate atomic parameter needed is seen tc be in the
cross section Q. i

It is the evaluation of Q;; (i = initial state, j = final state) then that is the
chief concern of the atomic calculation. We ske:ch in a few words what has
obviously been a long story. Van Regermorter? has given a formula and co-
effi. ‘ents, based on the Bethe approximatioa, for optically allowed transitions.
The Coulomb-Born approximation has been applied by Burgess, Hummer, and
Tully?® and by Blaha® for a variety of cases. As invaluable as these and many
other calculations are, we believe they are not really sufficiently accurate for
the needs of the solar disturbed problem for the following reasons:

(i) Even though the temperature is high, the mean energy of the electrons
is generally lower than that of the orbital electrons of the highly stripped ions
of relevance here. Thus a busic criterion for the validity of the Coulomb-Born
approximation is not fulfilled.

(ii) For the same reason the consistent (by which I mean an approximation
better than Born-Oppenheimer) inclusion of the exchange symmetry between the
scattered and orbital electrons is necessary.

(iii) Because of the considerable excess of nuclear charge over number of
electrons, a great number of autoionization states (i.e. resonances), of the
electron-ion system in the inelastic domain start playing an important role.

This is one aspect of a non-trivial quantum mechanical phenomenon which shows
up in electron-neutral scattering at energies closer to impact ionization threshold.
We shall discuss this more below, but suffice it to say now that the high charge

of the nucleus enables this phenomenon tc be included effectively, analytically, 5
and itis our hope to be able to include these important developments in the Goddard
program.

. THE DISTORTED WAVE APPROXIMATION
In the form that we shall be concerned with it here, the distorted wave

approximations starts from two equivalent exact expressions for the excitation
cross section.

k k
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p (¢ )are exact wave functions corresponding to initial conditions with outgoing
radxal wave scattering (upper sign) parts or final state solutions with ingoing
radial (lower signs) waves. k; and k; are the initial and final momenta. @, ;

are wave functions corresponding to unperturbed initial (final) states, i.e. they

are solutions of the Schrodinger equation with V; (V, ) absent from the Hamiltonian.

The distorted wave approximation, as we shall use it, consists of replacing
the exact solution by an approximate solution which is a one channel function
corresponding to elastic scattering from the initial or final state at the appropriate
energy. As work of Shelton et al.” and McDowell et al® has shown, this is an
excellent approximation for inelastic scattering of electrons from neutral atoms.
By writing down this form of the distorted wave (assuming here that the target
state has zero angular raomentum).

(2.2)

u-
Y-y T4 Y'_O(Ql) ¢target(2' -+ N+ l)

one can see that since the distorted wave function is antisymmetrized ((i) thus
the effects of exchange have dynamical meaning in that they will give
additional terms in the equation determining u;(r). Secondly, since a sum over
partial waves is involved, there is no assumption of high energy. (In fact the
lower the energy the better since fewer partial waves need be included until
convergence is achieved). In addition to these well-known advantages of the
distorted wave method there are additional circumstances which benefit the
highly ionized charged target application. Because the attraction to the nucleus
so outweights the mutual repulsion between the orbital electrons, a very simple
approximation of the target wave function, Frarget * suffices. (It should be
realized that an approximation is always required for any many-electron target.)
For the same reason the polarization of the target by the incoming electron,
which can be very important for neutral targets; is negligible here. There is
an implicit restriction that Z not be so large that relativistic effects become
dominant; however various calculations'® indicate that relativistic effects are
not too important for Z < 26 (which is the case of iron, almost the highest Z of
direct concern in this astrophysical application - cf section IV).

Ideally the functions u,(r ) would be numerical solutions of the exchange
approximation equation obtained by substituting (2.2) into a variational principle
for the scattering phase shift. The general programs however that have so far
been written® use a scaled Thomas-Fermi potential with an orthogonality con-~
straint to simulate exchange8:!! The approximation seems adequate although
somewhat less than what one might optimally desire. However we shall not
pursue that aspect of the matter any further in this report.



III. OTHER ITEMS

in this section I shall discuss two items which are relevant to the present
problems and approach. The first has to do with the incorporation of resonances,
whose effect is a major one in these applications; the second derives an analytical
form of a threshold law in the distorted wave approximation which we have not
previously seen, and thereby gives furiuher evidence of the cogency of the method.

It is by now well known that in the scattering of elec ons from atoms
resonance can occur.!2 The major class of these resonances occurs just below
the energies oi the various excited state of the target atom. Although the neutron
counterparts of these resonances are a classic feature of nuclear physics, it is
only within the last 12 years that they have had their most natural and mathemati-
cal explanation in the work of Feshbach'?® in a way which if anything is even more
suitable to the atomic problem; they are accordingly and appropriately called
Feshbach resonances. Qualitatively they can be described as states of the electron
plus target system which are only weakly coupled to energetically allowable open
channels. Since the easiest way of forming these states is by attaching the in-
coming electron to an excited state of the target system (which by definition
means the target has one its electrons in an excited orbital), they are sometimes
called doubly excited states, (this picture also explains why the resonant energies
are generally just below the excited state energies of the target).

Now exactly the same phenomenon can occur in electron-ion scattering
except that as the charge of the nucleus increases relative to the number of
electrons, the energies of these autoionization states descend ever farther below
the parent excited state until they finally descend below even lower excited states
of the target ion. Thus if one is dealing with a highly stripped ion in the region,
say between the first and second excited states, there will be many classes of
resonances which will span the whole energy region and they can have an im-
portant average effect. This is well demonstrated in a calculation of Hershkowitz
and Seaton® reproduced in Figure 1 wherein the average of the collision strength,

0, =k2(28; + 1) (2L, + 1D Q; . (3.1)

for e - CIII excitation is seen to be augmented by 50% when states attached to
the P° threshold are included. (I do not believe that the calculation is intended
to imply that the cross section drops sharply at that threshold. Presumably
resonances attached to even more excited states would take over.) The effect
of such resonances can be expected to be even larger for more highly charged
targets.
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Figure 1. (a) The enhancement of the average collision
strength in e-CIII excitation due to resonances whose
parent state is 1p°. (b) The individual resonances from
the partial waves corresponding to incoming p wave and
outgoing s wave of the impacting electron. Dashed curves
are distorted wave results and solid curves are the full
close coupling results. Both figures from Hershkowitz
and Seaton, Ref. 6.



Fortunately this effect can be included within the distorted wave formalism.
The point is that the scattering is domirated by the known (Coulomb) solutions
of the electron from the ionic core. The many-body effects of the core electrons
can be incorporated in terms of quantuir defects below threshold which can be
analytically continued into Coulomb phase shifts above threshold. One can par-
tition the scattering matrix into open and closed channels and, using this connec-
tion, obtain from open channel distorted wave calculations, the closed channel
(resonant) effect on other channels which are open.

The analytic and programmatic aspects of these problem have been the
subject of much work and development particularly at University College, London
as exemplified in Refs. 6, 11 and 14. (We are most grateful to Prof. Seaton and
his colleagues in advance for the opportnity of availing ourselves of these
programs. The work in question will be done in collaboration with Dr. A. K.

Bhatia of our group.)

I conclude this section with a brief derivation of the threshold law for ex-
citation of the degenerate (N; £ = 0, 1..N-1) level from the ground state of hydrogen
by electron impact. This result, which was first obtained by Gailitis and Damburg!s
in a brilliant but unfortunately not very transparent analysis, is nontrivial not
only because the threshold cross section is finite, but because the oscillations
awsy from threshold are (in the complex variable sense) a non-analytic function
of the excess energy. The fact then that one can get the correct functional form
from the distorted wave approximation speaks for itself about the power of the
method. (This analysis also serves as a nice heuristic derivation of this threshold
law, which as far as we know has not previously been given.)

We start with a model of the electron hydrogen interaction which was pre-
viously introduced in studying the much more difficult impact iorization threshold
problem®: we replace the electron repulsion r;; by (r, + 1'2)'1

v=_1,_1 1 1 (3.2)

oV, - — 4
r

1 e, - r,| Iy T +10,

This corresponds to directions in which the scattered electron (r, ) is ornosite
to that of the bound electron (r,), a configuration that dominates the long range
interactions, which as we shall show determine the form of the analytical result.
Within this model the excitation cross section

Quy = ky I8, v |0, DI (3.3)
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corresponds to some kind of an average of the N{ cross section. The (unper-
turbed) initial state is the s-wave part of a plane wave on the target in its ground

state:

_ sin(k;r) R, (r,) ' (3.4)
' L T2
and the exact final state in the distorted wave approximation is
F,
v - KN(rl) Ry (r,) (3.5)
N L T2

Ry (r,) refers to r times the N*" hydrogenic s state of the target (R, being the
ground state). The interaction (3.2a) can conveniently be approximated by®

(2
- — (ry <1y)
rl 1 0
4 (3.2b)
VY
by
__2 (rl > ro)
Lo
where
_ a2
b, = 3N (3.6)

is the dipole moment of the inner electron and nucleus seen by outer electron.

Substituting (3.5) into usual variational principle (which is equivalent to
forming | d°r, R (r,) (H - E) ¢ = 0), one derives

2
d? 3.7
(:1—; - V(r) + k:) FRN(r) =0 3.7

)
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With th approxin:ation (3.2b) for V, the exact solution of (3.6) is

/ nF (kyr), r<rg
FkN(r) = (3.8)

Fy(r), r>r,

F, is a pure Coulomb move and F, a linear combination of dipole solutions:

F, - eikaF (’klz +1; 2; 2ikNr) u;~o vr J,(fa'r') (3.9a)
Fy = e 7 i, G + BN G (3.90)

10,7
: -1—51|6(N__al-7l+¢)
r ‘”]&

J & N are Bessel & Neumann functions and ¢, is phase factor dependingon B which
in turn depends on the matching of function and slope of nF_ to F, atr=r,

(i.e. the continuity of the logarithmic derivative 7 (r)). The normalization
constant 7 is such that it guarantees that inside solution matches to the outside

solution, which approaches (the S-wave part of) a plane wave at r—o; it is given
byS. 16

172
- (roay) (3.10)
F_(ry) vk val + (roR(ry) - 1/2)
Substituting F_ and its derivative into
F'(ro)
el (3.11)
(ro) F—"c('r"'o‘)
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we find

1 (3.12)

V/k—N

T)C[

Proceeding now very quickly, we find that the inelastic cross section reduces

to (we are concerned only with the form thus we set B = 0 in Eq. (3.9b)]

To
-—1—- f F_(r) Vm(r)sinkirdr
0

QiNakN \/EN-

2

®
1 172 .
+— 72 o (kyr) V(1) sin k;rdr (3.13)
/_]EN_ J: ay kN N1
0
where

const. (

(ry + 2r]?

Vy () = J Ry(ry) V(r, r)) R (ry) dr, *
0
is seen to be independent of k. And now we let k, be sufficiently small that

kyt < <oy = k"<<l%l-

in the region of space which gives the dominant contribution to the integrals.
Under these conditions F_(r) can be replaced by r1/2 Jl(ftﬁ), a function in-
dependesit of B, according to (3.9a), whereas the small argument expansion

J. (kN r) (of which we only need the real part) is distinctly not independent of kN:

/
Re{r'/23,, (kye)} « r!/2 cos |}Nln (g) + ¢¢] (3.15)

Thus from (3.13)

2

) r r? sin k.rdr
Qn * |C+ J 1’2 cos ‘E,_Nln<k_“_.) + ¢a] L S (3.16)
T

. 2 (ry + 2r)?




The first integral devoted by C is inlependent of k; an asymptotic series can
easily be generated for the second integral the leading term of which together
with C then provides the final result

k:go Q, @ IC, +C, cos(a, Inky, +¢)|’ (3.14)

That is the Gailitis-Damburg!® result!

IV. ASTROPHYSICAL CROSS SECTION NEEDS

In the context of the astrophysical applications discussed here, i.e. the
deduction of temperature and density in solar disturbed regions from the (UV anc
X-ray) spectral data, the following are relevant transitior~ for which excitation
cross sections are needed. I am indebted to Dr. S. Kastner and to Dr. K. Phillips
of Dr. Neupert's group for this information, and especially to Dr. Phillips for
astrophysical parts of section I.

Targets

Element C O N Mg Al S S8 Ar Ta Cr Mn Fe Ni
Z 6 8 10 12 13 14 16 18 20 24 25 26 28

Transitions
One-electron
1s - 2s, 2p, 3p, 4p, S5p

Two-electron
(1s)> 18 ~ (1snp)'P, 3P; (1s ns) 38
n=2,3,4,5(n > 2 in order to asses cascade contribution)

Many-ele >*ron wave length region
2p)" ~ (20)*"! nt 1A
(252 (2p)r - (28) (2pyr*! 100 — 200 A

r=1,2,3,4,5

10
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