JSC-09205

NASA TECHNICAL MEMORANDUM NASA TM X-58151
September 1974

R
'NASA

CONTROL UPTIMIZATION OF A LIFTING BODY ENTRY PROBLEM BY AN
IMPROVED AWD A MODIFIED METHOD OF PERTURBATION FUNCTIONS

(NASH=-[v1~£-07151) CUYTirCLL dPIIallaTicoN CE NT4=3L¢T3
O LEFTOUS o0y LonlryY Qs oMoLY MW

aMPEOY "0 AWl L MOZITUU ASiLnlT of

PYETOL o2 TLIC  "NLITON  Pue e d1L0H1s = JLCL s
Houstnor (NAL M) ST S be. vael 22¢ ud/ e o794

A Dissertation Presented to the Faculty
of the Department of Mechanical
Engineering of the University of Houston
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

o ——
PR P 7}_\
g T .
,{r
i .
[+~ -
,i' - - [N
o -
P :
-2 -
3 .
- s N
4
- R
v

NATIONAL AERONAUTICS AND SPACE ADMINJSTRATION
LYNDON B. JOh. SON SPACE CENTER
HOUSTON, TEXAS 77058



-

2. Government Accession No.

R No.
NASA TM X-58151

. Recipient’s Catalog No.

~

Title and Subtitle

Control Optimization of a Lifting Body Entry Problem by an
Improved and a Modified Method of Perturbation Functions

. Report Date

September 1974

. Performing Organization Code

~

. Author(s)

Frank Garcia, Jr.

. Performing Grganization Report No.

JSC-09205

. Performing Organization Name and Address

Lyndon B, Johnson Space Center
Houston, Texas 77058

. Work Unit No.

986-15-00-00-72

. Contract or Grant No.

. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

. Type of Report and Period Covered

. Sponsoring Agency Code

. Supplementary Notes

. Abstract

The present investigation is a study of the solution of a complex entry optimization problem. The
problem is transformed into a two-point boundary value problem by using classical calculus of

variation methods.

Two-point boundary value problems usually require iterative numerical methods

for selution, and thus, two periurbation methods were devised. These methods attempted to de-

sensitize the contingency of the solution of this type of problem on the required initial co-state

estimates.

Numerical results are presented for the optimal solution resuiting from a number of different

initial co-states estimates.
are an improvement over existing methods.

The perturbation methods are compared, anda it is found that they

17. Key Words {Suggested by Author(s}) 18, Distribution Statement
® Trajectory Optimization
® Optimal Control STAR Subject Category: 19
® Functional Minimumization
® Reentry Trajectories
® Flight Optimization
19, Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price”
Unclassified Unclassified 75 $3.75
*For sale by the National Technical Information Service, Springfield, Virginia 22151
NASA — JSC

JSC Form 1424 (Rev Jul 74)




- SAGE BLANK NOT FILMED o0 ow NG T EILMED

CONTROL OPTIMIZATION OF A LIFTING BODY ENTRY PROBLEM BY AN
IMPROVED AND A MODIFIED METHOD OF PERTURBATION FUNCTIONS

A Dissertation
Presented
the Faculty of the Department of Mechanical Engineering

University of Houston

In Partial Fulfiliment
of the Requirements for the Degree

Doctor of Philosophy

by
Frank Garcia, Jr.

May 1974



;AGE BLANK NOT FILMED

CONTROL OPTIMIZATION OF A LIFTING BODY ENTRY PROBLEM BY AN
IMPROVED AND A MODIFIED METHOD OF PERTURBATION FUNCTIONS

ik Lo,
i;? /<27 /‘izéhnfaoftdl4f~

Co-Chai

Co Chairman

-/
,‘ < ( ( ( & Z/'\»-»—- —_—

]
L

Dean,‘Cu en Coll of Engineering



2ING PAGE BLANK NUT Flliid)
TABLE OF CONTENTS

CHAPTER
I. INTRODUCTION . . . . . . v v v v v v v e e e e e e e e
II. PROBLEM DEFINITION . . . . . . . . v v v v v v v v v o o
2.1 Statement of the Entry Problem . . . . . . . . . .
2.2 Basic Assumptions . . . . . ¢ . ¢ o o v e e e e
2.3 Governing Differential Equations of Motion . . . .
2.4 Formulation of the Objective Functional
Argument . . . . . . . .. 00000 e e e
2.5 Specified Initial and Terminal Conditions
IIT. FORMULATION OF AN OPTIMIZATION PROBLEM . . . . . . . . ..
3.1 Necessary Conditions for Optimal Trajectories
3.2 Reduction of an Optimization Problem to a
Two-Point Boundary Value Problem . . . . . . . .
IV. SOLUTION OF A TPBV PROBLEM BY AN IMPROVED METHOD OF
PERTURBATION FUNCTIONS . . . . . . . . . . o o . v v . .
4.1 Introduction . . . . . . . .. ..o 0oL
4.2 Method of Perturbation Functions . . . . . . . ..
4.3 Determination of the Differential Correction . . .
4.4 Iteration Scheme for the Improved Method of
Perturbation Functions . . . . . . . .. . . ..
V. MODIFIED METHOD OF PERTURBATION FUNCTIONS . . . . . . . .
5.1 Introduction . . . . . . . . .. o o000
5.2 Modified Method of Perturbation Functions Using
the Davidon Method . . . . . . . . . . . .. ..
5.3 Modified Method of Perturbation Functions Using
the Method of Hooke and Jeeves . . . . . . . ..
5.4 Modified Method of Perturbation Functions Using

an Accelerated Random Search Method . . . . . .

vii

10

15
16
18
18

23

27
27
27
32

34
37
37

39

42

46



TABLE OF CONTENTS

CHAPTER Page
VI DISCUSSION AND ANALYSIS OF RESULTS &+ « v v v v o v o o . . 49

6.1 Introduction . . . . . . . ¢ v ¢ 0 o v v e e . 49
6.2 Initial and Terminal Boundary Conditions . . . . . 49
6.3 Numerical Integration Method . . . . . .. . . .. 53

6.4 Solution of the Entry Problem by IMPF . . . . . . 55
6.5 Solution of Entry Problem by MMPF . . . . . . . . 55
6.6 Results of Solution of the Entry Problem by

IMPF and MMPF, . . . . . . . e e e e e e e e e 56

VII. SUMMARY AND CONCLUSIONS . . &« ¢ 4 ¢ ¢ v v o ¢ ¢ o o o . 67

BIBLIOGRAPHY . & v 4 ¢ v ¢ v v e s v o o o o o o o o o o o o« . . 69

APPENDIX v« & ¢ ¢ ¢ ¢ o o o o o o o o o o o s o s o o » .« s s e e . 73
viii



Figure
2-1.
2-2.
4-1.

6-1.

6-2.

LIST OF FIGURES

Entry Geometry and Coordinate System . . . . . + « « « &

Vehicle Lift, Drag, and Control Angle Definition . .

A General Computational Iterative Outline of the

Direct-Indirect Method for Solution of a TPBV Problem

Schematic of Hooke and Jeeves Pattern Search Showing

Improvement ., . . . . . v 00 v e e e e o o .
Schematic of Hocke and Jeeves Pattern Search Showing

Pattern Destruction . . . . . + ¢ v ¢ ¢ o v o .
Optimal States for Solution of Entry Problem . . . . .

a) Altitude, Velocity, and Flight Path Angle . . . . . . .

b) Azimuth, Latitude, and Longitude . . . . . . . . .

Optimal Control and Payoff Variables for Solution of

Entry Problem . . . . . . .. . e e e e e e e s . . e

ix

Page
n
12

27

a4

45
64
64
65

66



Tabte
6-1.

6-2.

6-3.

6-5.

LIST OF TABLES

Page

The Influence of Relative Error Bognd Magnitude with
an Error Bound Separation of 10¢ on an Iteration., . . . 54

Co-State Values Selected for Sensitivity Analysis of
the TPBV Problem Solution Using IMPF and MMPF. . . . . . 57

Sensitivity of Solution to the TPBV Problem by IMPF . . . 59
Sensitivity of Solution to the TPBV Problem by MPF . . . . 61
Sensitivity of Solution to the TPBV Problem by MMPF . . . 62




LIST OF SYMBOLS

Indices
j Number of coefficients in atmospheric model
m Number of control variables
n Number of state and co-state variables
p Number of initial constraints
q Number of terminal constraints
Scalars
aj j-coefficients for logarithmic form
A Aerodynamic¢ reference area
CD Newtonian aerodynamic drag coefficient
C: Newtonian aerodynamic 1ift coefficient
D Aerodynamic drag force
G Total aerodynamic force
g Acceleration of gravity
9 Acceleration of gravity at sea Tevel
H Variational Hamiltonian function
h Altitude from the earth's surface to vehicle
h0 Reference altitude
LV Vertical component of aerodynamic 1ift force
LH Horizontal component of aerodynamic 1ift force
m Mass of reentry vehicle
p Ubjective functional
Q Convective stagnation heat flux refurenced to a one-foot

radius sphere

xi



g e e ey -

- .

Radius from center of earth to vehicle
Radius of the ear:th

Optimum step

Independent variable, time

Initial time

Final time

Norm of dissatisfaction function squared
Velocity of the reentry vehicle
Reference circular orbital velocity
Weight of reentry vehicle

Reentry vehicle angle of attack

Constant in exponential atmosphere
j-coefficients for exponential form
Flight path angle of the reentry vehicle
Coordinate system longitude

Correction for optimum U

Convergence criteria, 1 x 1078
fyrrection factor

Coordinate system co-latitude
Heading angle of the reentry vehicle
Atmospheric density

Reference atmospheric density

Standard deviation

Non-dimensionalized time

Terminal value function for extremizing
Argument of the objective functional

Stopping function

Xii



Matrices
(The brackets indicate the dimensionality of the symbol.)
g [nx 1] Iritial boundary conditions
h [n+1 x 11 Terminal boundary conditions
I [2n x 2n] Identity matrix
L [qx1] Initial conditions
M[q x 1] Terminal conditions

T [n+1 x n¥1] Correction transformation

u fmx 1] Control variahles

x [n x 1] State variables

Xq [nx 1] Initial state variables

X [nx 1] Terminal state variables

Y [2n x 1] Random numbers of uniform distribution
Z[2n x 1] Combined state and co-state variables
A {nx 1] Co-state variables

7 [2n x 2n] Fundamental or state transition matrix

Teo [2n x n] Reduced state transition matrix

o [2n x 1] Davidon's correction factor

Special Symbols

g . d ()

() Indicates —p—=

) : d ()

() Indicates —g—-

s () First variation of { )
d () Total differential of ( )
()7 Transpose of matrix ( )
()7 Inverse of matrix ( )

xiji



Partial darivative of ( ) with respect to w
Second partial derivacive of ( ) with respect to w and v

Indicates that ( ) is a non-dimensionalized variable

Indicates the square root of the sum of the squares
of w (norm)

Indicates evaluation of a variable at to and tf

Indicates the variable ( , at the iteration

Indicates the variable ( ) evaluated at tf

Xiv




CHAPTER I
INTRODUCTION

In many non-linear and/or time-varying problems, solutions are
often sought for the "best" or optimal way to control or guide a system
subject to some criterion., Typically, this criterion consists of an
objective fi ~tional (pay-off function) that is to be extremized
(maximum or minimum), the desired terminal conditioas, and the possible
constraints on the state and/or control. After the problem has been
mathematically formulated, there are various conceptual techniques
available to obtain the conditions required to numerically solve the
optimization problem. Most of these conceptual techniques may be
considered in one nf two main categories, direct or indirect. Direct
methods are dependent on the direct evaluation of an objective
functional in order to arrive at control changes, which in turn, result
in an improvement in the objective functional. Indirect methods, on
the other hand, use variational analysis to arrive at a set of
conditinns that -e optimal solution must satisfy without actually
evaluating the objective functional. Thus, the problem becomes one of
finding solutions which satisfy the conditions of a resulting two-point
boundary value (TP3V) problem.

The most attractive of the direct methods are the gradient methcds

developed by Kelley [1]* simultaneously with those of Bryson and

*Numbers in brackets refer to the references in the Bibliography at the
end of this thesis.
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and Denham [2]. These methods have the advantage that convergence is
not contingent upon good initial gue<ses and that improvement in the
criterion to which it is subject is guaranteed by each step. The
methods have the great disadvantage that convergence often
ceteriorates in the icinity of the optimum, since the gradient goes
to zero. However, Lasdon, Mitter, and Warren [3] have used second
derivative information to improve the convergence near the optimum.
Numerous other extensions have been made to the basic gradient
methods, and these are lucidly discussed by Sage [4] and Wilde and
Beightler [5].

Among the more usual indirect approaches are the calculus of
variations as explained among others by Bryson and o [6] and Bliss [7];
the dynamic programming of Dreyfus and Bellman [8,9]; and Pontryagin's
Principle [10]. A disadvantage of the majority of these methods is
that a solution is often contingent upon good initial guesses,
particulariy when complex problems are invoived. The:se methods,
however, do possess the great advantage that whenever a solution is

obtained, its associated control is considered to be optimal because

of the necessary conditions which must be satisfied to obtain a solution.

The calculus of variations concept, in particular, offers a powerful
tonl for solving optimization problems because of the conditions
resulting from this classical theory.

This thesis presents a solution to a complex 1ifting reentry
three-degree-of-freedom problem by using the concept of the calculus of

variations to generate a set of necessary conditions. Then solving




numerically the resulting TPBV probliem by an improved existing
technique and a new "direct-indirect" technique, Both of these
techniques are designed to decrease the strong dependency of the
solution upon good initial guesses. Since such mathematical treatment
leads to a TPBV problem whose solution requires usage of large memory
high-speed computers, the solution of practical problems has been
rather limited until the last decade.

The atmospheric entry of a 1ifting body is a formidable physical
problem. When optimal solutions are sought to entry problems, several
simplifying dynamic and kinematic assumptions must be made if results
are to be obtained with a reasonable amount of computational effort.
This study addresses itself to the motion of the center of gravity of
the vehicle as it passes through the atmosphere of a non-rotating
spherical earth. The only external forces considered are the gravita-
tional and the dissipative aerodynamic forces; vehicle control is
effected through 1ift vector modulation. An approximate expression
due to Detra, Kemp, and Riddell [11] is used to calculate the stagna-
tion convective heat rate, neglecting other heat transfer processes.
The three-dimensional trajectory formulation is tailored for ease of
numerical solution and proper representation of the problem at hand.
Previous entry studies conducted by the author and vacuum trajectory
studies by Tapley, Szebehely, and Lewallen {12] and Lewallen, Schwausch,
and Tapley [13] show that effort in formulating differential equations
for numerical solutions often pays dividends by way of increased accu-

racy and speed. For this reason, the equations of motion descriting
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the entry of a lifting body are in a spherical coordinate system and
are non-dimensionalized. In most dissipative force problems such as
this one, the medium is an important factor in the resulting motion.
With this in mind, the atmosphere wes not modeled in the conventional
manrer shown in the literature (such as in Chapman [14], Loh ['5], and
Klafin and Barnhard [16]) o = Py EXP (-E/ho), but was modeled by a

j i+1.

J -
logarithmic form such as 1np = a  * z aih In this manner, a very

i=1
good model of the atmosphere is obtained that represents a continuous
atmosphere between any desired two altitudes.

In many problems in the field of flight mechanics, it is
important to restrict the total heat input to a vehicle during entry
into a planetary atmosphere along with the total aerodynamic load.

The optimization problem may now be stated as follows: Given a set

of differential equations which describe the motion of a 1ifting
vehicle entering through the earth's atmosphere, find the combination
of state and control variables ‘“hat will minimize the integral on time
of the sum of the aerodynamic force and the heat flux (pay-off function),
and at the same time, satisfy specified terminal conditions which ~i11
determine the terminal trajectory time. As posed, this problem falls
into a class of control optimization problems due to Bolza [17]. The
entry problem considered here does not have state and/or control con-
straints along the trajectory. Problems with such constraints are
fully discussed by Bryson and Ho [6], Hestenes [18], and lLastman and

h ol

Taptey [17). Proceeding with the calculus of variations on the posed



problem results in a TPBV problem with the appearance of a set of
co-states (Lagrange multipliers) which have little physical
significance and often are a discouraging factor in optimization
studies. This is due to the fact that an initial guess of the co-states
must be made to start the numerical integration of the differential
equations associated with the TPBV problem. More often than not, the
result is an initial solution which is totally unacceptable from both
the numerical viewpoint and the physical viewpoint. Thus, it should
be obvious that the optimal solution of a complex problem is dependent
upon good initial guesses and that it follows that a major effort of
this study is to attempt to desensitize the dependence of an optimal
solution on the initial guesses.

Having formulat.d the TPBV problem, it now remains to chcose a
method to solve it. Specifically, the problem at hand is to
systematically meet the boundary conditions while estimating the
initial co-states. Numerical techniques to accomplish this hava been
considered by Hestenes [20] as early as 1949 and have been improved
steadily since then. Some of the popular methods include the method
of adjoint functions of Jarovics and McIntyre [21] which uses the
equations adjoint to the linearized co-state equations; the
quasilinearization methods formulated through a concept as presented
by Kalaba [22] along with the modified quasilinearization method by
Lewallen [23]; the perturbation methods based on the work of Breakwell
[24] and Breakwell et al [25]; and, more recently, the method of

perturbation functions (MPF) of Lewallen [23]. Based on the work of

— ‘_‘.
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~ewallen [23], which compares the convergence characteristics of the
MPF, the modified quasilinearization method, and the method of
adjoint functions, among others on an orbital transfer problem, the
author chose the MPF beczuse of its reported superior performance.

The MPF method was modified to improve the iteration philosophy
for correcting the terminal dissatisfaction (terminal boundary errors).
The iteration philosophy of Lewallen [23] was based on a norm reduction
method only. More recently, Lastman and Tapley [19] have compared the
MPF method using a norm reduction method and a magnitude limitation
method separately with limited success. Also recently Doiron [47] has
improved the MPF method by essentially employing a correction factor
based on the norm and the daesired number of iterations. In this thesis,
the author uses a combination norm reduction and magnitude limitation
method defined as an improved method of perturbation functions (IMPF).
A new method which uses one of three function minimization techniques
on a terminal dissatisfaction function during the early iterations and
then switches to the IMPF is also exercised on the entry problem. This
method is referred to as the modified method of perturbation functions
(MMPF). The three function minimization techniques used are the pattern
search method of Hooke and Jeeves [26], Davidon's [27] conjugate
gradient search method of Fletcher and Powell [28], and an accelerated
random search technique [29]. 1In order to test the ability of the IMPF
and the three MMPF techniques to converge when started with different
guesses, the entry optimization problem was started with six different

sets of quesses.,

oo



There have been several optimization techniques applied to the
problem of reentry trajectories with partial success. Bryson et al [30]
used the gradient method to solve a planar entry problem for minimum
entry heat, and Breakwell et al [25] solved a planar entry problem
for maximum terminal speed at a given altitude. The Pontryagin
maximum principle was used by Leondes and Niemann [31] on a planar
entry problem. Lastman and Tapley [19] considered a two-degree-of-
freedom entry using an objective functional similar to the one used
in this study and employing the MPF technique. Tapley and Williamson
[32], along with Colunga [33], considered several Apollo entry problems
using MPF with an objective functional similar to the one used here.

No where in the literature has the author been able to find an entry
problem using the same features as the one presented in this thesis;
one that could be used directly as a basis of comparison for the IMPF
and MMPF strategies. Therefore, an MPF strategy similar to Lewallen's
[23] is used on several different initial guesses to serve as a
comparison basis.

In the following chapter, the entry problem is completely defined
from a general statement of the problem through the formulation of the
pay-off function. Chapter III presents the formulation of an optimiza-
tion problem using the calculus of variatiuns to arrive at a set of
conditions which guarantee optimality. In addition, the resulting
TPBV problem is defined. In Chapter IV a solution of a TPBV problem ,
by the MPF is outlined that includes the differential correction of

norm reduction and magnitude limitation which give rise to the IMPF.
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The MMPF using each of the three function minimization schemes on a
terminal dissatisfaction function is presented in Chapter V. Chapters
IT1 through V address an optimization problem in general. Chapter VI
specifically focuses on the entry problem stated in Chapter II and
presents its boundary conditions along with a discussion and analysis
of the attempt to desensitize the effect of initial guesses on con-
vergence. Finally, a short summary and the conclusions of this study

appear in the last chapter.




CHAPTER I1I

PROBLEM DEFINITION

2.1 Statement of the Entry Problem

The statement of the problem for the present study is to
find the path which a spacecraft, using roll modulation for control
with given aerodynamic characteristics and entering through the
earth's atmosphere, must follow in going from one point in state
space to another with a certain objective functional. The objective
functional requires that the total integral of the sum of the
stagnation convective neat flux and tre total aerodynamic forces
experienced by the vehicle during its trajectory between the two
points in space be minimized, at Teast in a local sense. The
objective function, as stated above, results in a design requirement
which favors the spacecraft thermal protection system weight and
exposes the crew to short-duration, high-level aerodynamic force pulses.

2.2 Basic Assumptions

The aerodynamic properties, mainly the 1ift and drag
coefficients (CL’ CD), are assumed to remain constant for a given
angle of attack in the hypersonic flight regime [34]. For purposes
of this study, the angle of attack was assumed constant; consequently,
trajectory control is available through roll angle modulation only.
The gravitational field is an inverse square, gravitational force
field, and the earth and its atmosphere are non-rotating with respect

to inertial space.
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In most dissipative force problems, such as the one being
presented, the dissipative medium is an important factor in the ensuing
motion. With this in mind, the atmosphere [35] was not modeled in the

classical manner shown in the literature, i.e, p = Py €XP (-ﬁ/ho), but
j 141

was modeled by a logarithmic form such as Inp = a, + Z a; h . The
i=1

advantage of choosing the latter functional form over the classical
form is that a continuous atmosphere may be defined over any altitude
range to any desired degree of accuracy rather than a piecewise con-
tinuation. Thus, a very accurate model of an exponential atmosphere
was generated by obtaining the "a" coefficients from a least squares

th

fit t. the j° order of an actual atmosphere [36]. For this study,

j=b was four- to be sufficiently accurate. Taking the exponential
of the logarithmic form mentioned earlier, the exponential density,
) S
p = B exp [— Z (B8.;h) é], results.
i=0

2.3 Governing Differential Equations of Motion

The mathematical model used in deriving the differential
equations of motion assumes, in addition to the assumptions in
Section 2.2, a point mass with three degrees-of-freedom whose motion
is referenced to an inertial X, Y, Z coordinate system and is expressed
in a spherical coordinate system (r, vy, 8) as shown in Figure 2-1,
Control of the spacecraft is effected by rolling the stability axis
about the velocity vector (Figure 2-2), thus using the vehicle's 1ift

to perform out-of-plane maneuvers (roll modulation). The two
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aerodynamic 1ift force components resulting from a roll maneuver u,

are defined as

-
1]

= % P V2ACL €COoS U

H ]?"V

2

L ACL sin u
where - u «r and the aerodynamic drag force as

J12
D= 7 P ) ACD

Then using the inverse square gravitational field

and vehicle mass

(2-1a)

(2-1b)

(2-1b)

(2-1d)

(2-1e)

it may be showr [37,38] that the six first-order differential equations

describing the motion are

. g r 2

V=-Jo Ve AR+ g (8 sint

r=-VsinT

r=-Yeosr-t,vica cos u (Eg)z cos T
r 2 L" 9o WV r 9% ~V

o1 2 sin u v .

A= 7 P ) CLA WoeosT % - F—cot 8 cos T sin A

o = JcosT cos A

r

- Vcos T sinA
Y r sin 6

(2-2a)

(2-2b)

(2-2c)

(2-2d)

(2-2e)

(2-2f)



14

The above set of equations (2-2) form an n set of non-linear
differential equations whose solution in general is obtained by a
numerical integration process. Numerical solutions are also quite
dependent on the range of values which the dependent as well as the
independent variables assume. Studies presented in the iiterature
suggest that a normalization scheme of some sort aids in the solution
of this type of equations. Therefore, the procedure used to non-
dimensionalize the equations of motion (Equaticn 2-2) involved deriva-
tives as well as dependent variables. The transformation applied in

going from dimensional to non-dimensional derivatives was

d( "e d( )

Trzt'?T
where
Vc N gore

In addition, the following length, velocity, density, and energy

constants were used to non-dimensionalize the dependent variables:

Length - Radius of the earth, r, 20.925738 x 10° £t
Gravity - Sea level gravity, 9 32.174 ft/sec2
Density - Sea level density, o 0.2378 x 1072 s]ug/ft3
Energy - Mechanical to thermal energy

conversion factor, J 778.0 ft-1b/Btu

Thus, the set of n equations (2-2) normalized according to the above
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schetie with a scalar cot..rol u are as follows:

. ~ ~n CoA .
Vs - Lo v —g—-+ sip L (2-3a)
r
ro=-VsinT (2-3b)
o= - l oS T - %-6 v C_ cos v A-+ £3§§£ (2-3c)
r W Vr
A= - ¥ cos I - %-S v C, sinu §-+ 5:§§£ (2-34)
r - W Vr
g = Y COSTcosn (2-3e)
r
Y‘ _ Y cos T sin A (2-3f)
r sin 6

2.4 Formulaticn of the Objective Functional Argument

As mentioned in Section 2.1, the objective functional is the
minimum integral of the sum of the convective stagnation hea: flux and
the aerodynamic forces evaluated between the initial and final
trajectory points. The argument of this objective functional is then
the heat flux and the aerodynamic forces. The convective stagration
heat flux expression commonly used in the literature to de: ribe fhe
heat input to a spacecraft is that due to Detra, Kemp, and Riddel [11].
Referenced to a one-~foot radius sphere, the heat flux can be

expressed as

3,15

A = 17,600 (53—%55) )¢5

o i
(57002378 (2-4)

el
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and the total aerodynamic Toad as
2 L 2 L, 2
6= (@ + D D (2-5)
Normalizing Equations (2-4) and (2-5) as specified in

Section 2.3, the following is obtained:

2-c, j3:15 -0.5 (2-6)
. - 12 ..

VR 2. 2 2
b= Q+ ud (2-8)

where u is a weighing parameter, and y is the argument of the
objective functional.

The problem as defined in this chapter may be classified as
an optimization problem whose necessary conditions and their
applications are derived and shown respectively in Chapter III.

2.5 Specified Initial and Terminal Conditions

As pointed out in Section 2.1, the problem under study is
to find the path a spacecraft must follow to satisfy some objective
functional as described in Section 2.4 while going from some specified
initial state to a specified final ctate. The specified initial state
is defined as the initial conditions of the problem and the final state
#< the terminal conditions. For the problem under study, the initial
boundary conditions specified are n+l; that is, all of the independent

{ variables n as well as the dependent variable time, which is zero, are



specified. The terminal conditions specified are all of the indepen-
dent variables except the heading (azimuth) A; thus, at the terminal

time there are n-1 specified terminal ceaditions.
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CHAPTER 111

FORMULATION OF AN OPTIMIZATION PROBLEM

3.1 Necessary Conditions for Optimal Trajectories

Trajectory optimization problems classically require the
satisfaction of various conditions. These evolve from consideration
of the following problem: Given a set of non-linear differential
equations, determine the history of its variables so that some
objective functional is optimized while satisfying specified initial
and terminal constraints. The objective functional is, in general,
some combination of the variables describing the problem. Variables
in optimization problems are classically divided into state, co-state,
independent (normally time), and control variables.

The non-Tinear set of differential equations which describe

the trajectory are
x = f (x, u, t) (3-1)

where, for the problem under study, x is an n-vector of state
variables; u is an m-vector of control variables; and t is the
independent variable, time. The initially specified initial

conditions are

L (xo, to) =0 (3-2)

where L is a p-vector, and the initially specified terminal conditions

with M as a g-vector are

M (xg, te) = 0 (3-3)
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The objective functioncl, the quantity to be extremized, is a
scalar and, in general, is formulated as a problem o1 Boiza [17]

b
P=29¢ (Xf, tf) +{ Y (X9 u, t) dt (3-4)
o]

where ¢ = ¢ (xf, tf) allows the introduction of functions whose
terminal values must be extremized. The non-Tlinear differential

equation (3-1) may be adjoined to P with the co-state a:
t

f
P=¢+f [¢+>\T(f->'<)]dt (3-5)

t

For convenience, the scalar term H is defined as follows:

Hey+al ¢ (3-6)

where H is commonly referred to as the variational Hamiltonian
function. The term H takes its name from the well known "Hamiltonian
function" of classical mechanics [39] because of its functional
similarity. Substituting Equation (3-6) into (3-5) results in the

following form of P:
t

f
P=yg+ ]. (H - W X) dt (3-7)
t0

Equations (3-1) through (3-2) and (3-7) describe in general
many optimization problems for deterministic, non-linear, time-

dependent systems.
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Integrating the sacond term under the integral of the above

expression (3-7) by parts, then

t t.
f i .
P=¢ = AT X fg ¥ {. (H + AT x) dt (3-8)
0 0

The first necessary condition classically required
throughout the literature [6] for an optimal trajectory by using
calculus of variations techniques is that the ,irst variation of P
vanish. Citron [40] shows that in the ralculus of variaticns theory,
the first variation is *dentical to the total differential in
optimization of functions. The conditions are discussed by Tapley
and Lewallen [41] and a derivation is included for completeness.
Taking the first variation of P in the form of (3-8), the result is
given by

T dx) +

dP = d¢ It - (GAT X+ A
f
(3-9)

t
f
d g. (H + u x) dt
0

Taking the indicated differentials in the above expression and using

the Liebnitz rule on the last term, Equation (3-9) becomes

dpP = (¢T dx + ¢, dt) I - (dAT X + A0 dx) ltf
X t tf to
oT Itf N | T
+ (H+ 1 x) dt t0+-{ [(Hx+x fx) <Sx+Hu 8,
0
+ HI sx + 31 ex + oAt x] dt (3-10)
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Performing the indicated integration on the last term in
(3-10) and defining the total differential of A to the first order as
de = 6AT + iT dtf where the variation in A, GAT, takes place during
a fixed time period, the necessary condition that dP vanish now

becomes

+ (¢t + H) dt |t + (AT dx - Hdt) lt

T .7
dP = (¢, = 1) dx |
X te f 0

jif T . T T T
+q [(Hx + A7) &x + Hu su + 8x (f - xi] dt = 0 (3-11)
0

The condition that dP vanish implies that each term in
(3-11) goes to zero provided that all of the variations are
independe.t. The resulting necessary conditions may be classified
as initiail transversality conditions, terminal transversality
conditions, and conditions to be satisfied for all time t between t0
and tf.

The initial transversality condition

A dx - Hdt |, =0 (3-12)
0

will be identically satisfied if the initial state and time are

specified. However, if the initial state and time are not specified

and dx and dt are independent, then (3-12) implies that y1 and H must

vanish at to. On the other hand, if dx and dt are not independent,

use must be made of (3-2) to satisfy (3-12).
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The remaining two transversality conditions which must be

satisfied at the terminal time tf are

(6, + H) dt Lf = 0 (3-13)
and
T T ]
(6, = ') dx |tf =0 (3-14)

The above two equations imply that if dt and dx are not specified,

T

x " AT), must be zero.

their respective coefficients, (¢t + H) and (¢

The only remaining necessary conditions derived from dP = O
(3-11) come from within the integral term in that expression and must
be satisfied for all t0 <t < tf. The first condition within the

integral of (3-11) is
Ho+ 1T =0 (3-15)

which provides “he co-state differential equations and is the
classical Euler Lagrange equation. The next condition is the classical
optimality condition

Hu =0 (3-16)
The third and Tast condition resulting from the integrand of (3-11)

is merely that the original differential equations of motion be

satisfied, that is

X -f=0 (3-17)
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A trajectory satisfying the necessary conditions expressed
by Equations (3-13) through (3-17) defines a stationary trajectory,
these conditions are not sufficient to guarantee an optimal trajectory.
A fourth condition, and one that is sufficient to insure an optimum,
is known as the Legendre-Clebsch condition in the calculus of
variations. This condition involves the Weierstrass E-Function as
explained by Gelfand and Fomin [42] as well as Bryson and Ho [6] and
must be equal to, or greater than, zero for a minimum. The
Legendre-Clebsch condition states that, for t0 £t< tf, Huu must be

non-singular positive definite

Huu 20 (3-18)

3.2 Reduction of an Optimization Problem to a Two-Point Boundary
Value Problem

A trajectory optimization problem may now be reduced to a
TPBV problem by considering all of the conditions for optimality
derived in Section 3.1. The conditions that must be satisfied for

all t0 <£t< tf are as follows:

(3-19)

where x i3 an n vector first-order, non-linear, differential equation
of motion;

5= - H] (3-20)
where A is also an n vector first order non-linear differential

equation of co-states and is called the Euler-Lagrange equation;

H =0 (3-21)
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which is the classical optimality condition. Since u is an m vector,
(3-21) defines m algebraic equations. These m algebraic equations

may be solved for m control variables, u, as a function of the state,
co-state, and independent variable time and thus u may be eliminated

from Equations (3-19) and (3-20) if desired;

Huu 20 (3-22)

this inequality states that Huu must be non-singular positive
definite. It is commonly used in trajectory optimization problems
to resolve sign ambiguities arising out of the condition for u
from the optimality condition Hu = 0.

Equations (3-19) and (3-20), the state and co-state

equations, may be re-written in a more compact form as

H

b 4

(XSAQUQt)

~»
n
"
—>

= F (Z,u,t) (3-23)

>e

-Hx (x,2,u,t)

where Z is a 2n vector composed of state and co-state variables.
The initial boundary conditions which must be satisfied at

t = t0 are
g (xo, to) =0 (3-24)

which is an n vector made up of the initially specified initial
conditions L from Equation (3-2) and the initial transversality
conditions from Equation (3-12). As pointed out in Section 3.1, if
dx and dt in Equation (3-12) are not independent, which is generally

the case, then dL = 0 is used to eliminate p variations from the n+l
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variations of Equation (3-12), leaving n+1-p independent variations
whose coefficients are equated to zero to yield n+l-p relations., Thus,
when these n+l-p relations are combined with the p reiations arising

out of L, there results a set of n+l relations, g = 0 and to.

is an n+l terminal boundary condition vector which is made up of the

initially specified terminal conditions M from Equation (3-3) and the
terminal transversality conditions from Equations (3-13) and (3-14).

An argument parallel to that used above to insure that dx and dt are

independent on the initial boundary also applies here on the terminal
boundary. Thus, n+1 independent coefficients are assured.

Equations (3-24) and (3-25) completely define the 2n+2
conditions necessary to solve a TPBV problem. In many problems, the
initial time to is usually specified as zero; therefore, under this
assumption, we have defined n initial conditions, g, and n+l terminal
conditions, h. In summary, the TPBV problem to be solved is defined
by a system of 2n non-linear, first-order, differential equations (3-23)
with n initial boundary conditions, g, and n+l terminal boundary
conditions, h. The solution of this problem results in a minimum of
the objective functional (3-4) with satisfaction of all the constraints
defined by (3-2) and (3-3). The general solution of these problems is
so complex that closed-form solutions are only realized under a
multitude of simplifying assumptions, if at all; thus, solutions must

be obtained numerically. In fact even numerical solutions are complex.
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The following two chapters will discuss this problem and use
perturbation methods to obtain solutions. Chapter IV will deal with
an improved version of the popular method of perturbation functions
(IMPF) and Chapter V will address a new approach, a modified method
of perturbation functions (MMPF). Chapter IV also outlines an
algorithm employing the improved version of MPF which, with minor

modification, is also applicable with the MMPF outlined in Chapter V.
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CHAPTER IV

SOLUTION OF A TPBV PROBLEM BY AN IMPROVED
METHOD OF PERTURBATION FUNCTIONS

4,1 Introduction

Equations (3-2.; through (3-25) are the transformation of
the entry problem as stated in Chapter II into an optimal control
problem. This resulting optimal control problem is a TPBV probiem
whose numerical solution may be obtained in general only through
some sophisticated iteration algorithm. The need for an iteration
algorithm arises from the fact that there are 2n non-linear, first-
order differential equations (3-23) which must be numerically
integrated either forward or backwards in time; however, there are
only either n or nt+l conditions known for the forward and backwards
integration, respectively. Thus, it is necessary to guess either n
or ntl conditions to allow integration of the differential equations.
An improved method of perturbation functions (IMPF) is used to update
the assumed conditions and to ccntinue iteratively the updating
procedure until the terminal boundary conditions h go to zero.
Figure 4-1 shows the general outline of such an algorithm,

4,2 Method of Perturbation Functions

As the name itself implies, the method consists of perturbing
the i function. This function, Equation (3-23), with the control u
eliminated by using Equations (3-21) and (3-22) is perturbed lineariyv
about the kth trajectory at the end of each iteration. This pertur-

bation then provides an estimate of the value of the unknown variables

[
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needed to begin the integration process at the next iteration and, at
the same time, drive the dissatisfaction, h, to zero. In general terms,
this process is illustrated in Figure 4-1, Practical use of this
method has shown that it possesses second ~rder convergence properties
[41] when it is near a solution.

If the initial boundary condi{tions satisfy g = C,
Equation (3-24), then i = F (Z,t). Equation (3-23), may be integrated
forward in time starting at t0 = 0 to scme assumed tf. Generally,
h # 0 on the initial iteration sc that cquation (3-25) is not
satisfied, mainly because the n ascumed co-states along with the
final time estimate, tf, are not the optiinal values. The terminal
dissatisfaction function h is ther used tc correct the assumed values
by the rocedure described below,

Consider a perturbed trajectory terminating on a perturbed
set of terminal conditions. If only the linear terms of a Trylor Series

expansion about some reference trajectory are retained, then
. . 3 3F - R
Z*=Zk ‘S'Z'lk [L*’Zk] ('))
and if 62 = Z§+‘ - Zk then the above results can be exprassed as
sz = 21 sz (4-2)
3 'k

which is a set of 2n Tinear pertur..tion equation with %; veing a
2n x 2n matrix evaluated on the kth or referente trajectory. Since,
on the reference trajectory h # 0, a perturbation equation is alsc

outained for the t~rminal constraint h which is evaluated at the
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terminal time tf. The differential constraint dh (Zf,tf) is

_ 3h
dh = = | ¢ dZ +—f|t (4-3)

and represents a change in the terminal error due to changes in Zf

and t If dZ 2, + Zf dtf is used to allow terminal Z variations

f: f oo
due to t., then Equation (4-3) becorws

%
a

: dh = 37 |tf 5Zc + h dt, (4-4)

g‘ The desired linear algebraic correction equation is derived

' under the conditions that there exists a fundamental matrix =, as
defined in the literature, so that the terminal variations in Z (GZf)
can be related to the initial variations in Z (620) according to

§ 82, = 1 (to,t.) 6Z (4-5)

: f f*o 0

; The above expression is the well-known solution to a differential

equation of the form c¢f Equation (4-2). Equation (4-5) implies that
éZf is some linear function of the initial variation GZO, where m is
a 2n x 2n matrix. Thus, Equation (4-4) can now be written in a more

useful form as

dh = 3h (4-6)

Hltf“620+hdt

f

by making use of Equation (4-5). As stated earlier, n of the 2n
elements in 620 are known; therefore, no corrections are required for

these states. Thus, only the right half of the 2n x 2n = matrix in

PTG  at AL o,
nemtEA

R
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Equation (4-5) needs to be known, and it may be rewritten as

8¢ = mg, S (4-7)

where n_ . is a 2n x n matrix. Using this reduced form, Equation (4-6)

dA
in partitioned matrix form now becomes

[
S 8
ah '
dh= 5|y o, o b2 =T -2 (4-8a)
f : dtf

or, upon solving for the correction vector and assuming that T is
non-singular,

N
[-fe] =11 dn (4-8b)

dtf

There remains two variables to be determined in the above
expression, namely, Ty and dh, Since the estimate of dh will be
covered in the following section, the determination of Tgy €N be
made. Evaluation methods for = or gy are well covered in the
literature [43] but will be summarized here for the sake of
completeness. Consider Equation (4-5), which is a solution to
Equation (4-2), and relates the final perturbations 6Z¢ to the
initial perturbations 620. Assume that a 2n x 2n identity matrix I

is used to express the initial perturbations where each column of I
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is used as lq in the following manner:
i

1

O e s @ - . ;5—’0_1

(4-9)

Eooo.oOQOO|

€)oo & ¢ & o o O~O
O e o 06 ¢ s O—OO

———

where i = 1,2n refers to each column of I. Then each successive

application of 620. results in a GZf which is an ith column of the
i i
transition (fundamental) matrix n. Therefore, if Equation (4-2) is
integrated 2n times with 620 as an initial vector from t0 =0 to tf,
i
the transition matrix = vould be available. Furthermore, for the

case at hand where only n_. is needed, the integration of Equation (4-2)

8A

is required only n times, and the initial vector used 1is GZO where
2
L = n+l, 2n,

4,3 Determination of the Differential Correction

The usual procedure found in the literature (Lewallen [23]

is an example) for the evaluation of dh is to let

dh = -nh (4-10)
with the restriction that the sca’ar correction factor 0< n <1 and
the values that n then assumes are chosen as some step function of

Ihl| . Equation (4-8b) may now be rewritten by substituting for dh with
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Equation (4-10) as
§A

-2l == qrhh (4-11)
dtf

For problems whose initial solutions result in large ([, n is
normally chosen close to zero; as the norm of the dissatisfaction Hh”
begins to vanish r approaches one. The successful solution to a
problem often depends to a large degree on the logic used for
selecting n.

Thus, the logic used to develop a process for selecting n
should concentrate on the fact that an attempt is being made to solve
a highly complex non-linear problem by at best a quasi-second order
technique. This means that particular attention should be directed
toward the following:

a) The case where n = 1 which indicates 100 percent of the

S\
correction vector[}-g] is requested., Large corrections
dt
f

should in general be suspect and not allowed.
b) The maximum (100 percent) correction should be based
on the expected range of values of the state. The
comparison can be made by comparing the norms of the
correction vector and the range of values of the state.
c) The norm of the terminal dissatisfaction should also be
monitored. Steps to reduce large percentages of h
should not be allowed basically because elimination of
large errors in a non-linear system which is based on

linear estimates has little guarantee for success.
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The general philosophy of the correction factor using the
logic stated in (a), (b), and (c) above is to avoid overshooting the
envelope of convergence; improve the area of convergence; and, at
the same time, speed up the convergence process. It will later be
shown in Chapter VI that this philvsophy does, in fact, improve the
envelope of convergence as compared to results in the literature.

The functional relationship for the correction factor is

{f(uhn) if A el
= (4-12)
1/ id! it ldi > el

where f (hi) is defined as a step function, idl is the norm of 100
percent of the correction vector (Equation (4-11) evaluated with
n=1), and llell is a constant representing the norm of the expected
range of the states and time of the particular problem whose solution
is being sought. In the event that the present norm is greater than
the past, n is reduced by a factor of two.

4.4 Iteration Scheme for the Improved Method of Perturbation Functions

I3
Now that the initial correction vector equation [——9] = —nT']h
dt
f

has been completely defined, an iteration scheme for solving the TPBV
problem may be stated. The scheme requires that an initial vector of
A and an estimate of the terminal time, tf, be made available so that
the 2n equations, i = F(Z,t), may be integrated forward in time to
t= tf. Simultaneously with this integration, the 2n perturbation

equations 67 = %%-62 are integrated to the same tf n times using the
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starting vector defined by the right haif of Equation (4-9). At the
terminal time, the terminal dissatisfaction h as well as its norm, is
evaluated. Subsequently, the algebraic equations which determine the
initial corrections in A and te to be applied at the next iteration
(Equation 4-11) are solved. This iteration procedure is continued
until some small predetermined value of “h" is reached, when it is
assumed that the problem is solved or has converged. However, it is
not always possible to achieve convergence under ordinary circumstances.
If convergence is not achieved within a reasonable number of iterations
and divergence is diagnosed, it is best to start again with a different
estimate on the unknowns.

The described iteration scheme for the IMPF may be sequen-
tially applied in the following manner:

a) Choose initial estimates for A tes and ne”.

b) Simultaneuusly integrate forward in time to tf the

2n non-linear differential equations, 7= F(Z,t), and
AF
| Y
c) At the terminal time, evaluate h, "h“, and "d" to

the 2n linear perturbation equations, Gi = 8Z.
select the scalar correction factor n.

d) Solve for I and dtf to update previous initial
estimates.

e) Examine “h“ and number of iterations to determine
whether to continue iterating or stop. If the process

is continued, return to step (a).
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The following chapter will examine some alternate approaches
to the solution of a TPBV problem which does not make use of the
perturbation on h initially, Equation (4-4), but first considers some
function of h as a quantity to be minimized. Minimization of this
function then results in a solution to the TPBV problem by switching
to IMPF at some predetermined small value of h. This is done to take
full advantage of the IMPF convergent characteristics which are very
rapid whenever the initial guesses fall within the envelope of
convergence. This technique may be classified as a direct~-indirect
approach; direct in the sense that some function of h is extremized
directly, and indirect in the sense that IMPF does not extremize h

to arrive at a solution.
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CHAPTER ¥
MODIFIED METHOD OF PERTURBATION FUNCTIONS

5.1 Introduction
In the previous chapter, an improved method of perturbation
functions (IMPF) was used to solve a TPBV problem arising out of the
calculus of variations. This method essentially used the linear per-
turbations of Z = F(Z,t), Equation (3-23), and the dissatisfaction
vector h, Equation (3-24), to arrive at an initial correction vector

S
[}-9], Equation (4-8b), with which to correct the previous initial A
dt

f

and terminal time estimates. The algorithm then makes these correc-
tions and the process is continued as described in the last section of
the previous chapter. Although this method is one of the most popular
for solving TPBV problems, it is by no means independent of the initial
estimates of co-states and terminal time. For this reason, three new
strategies under the general name of modified method of perturbation
functions (MMPF) are explored. These new strategies make use of
function minimization methods which have showr good results in the
literature and are used with the MPF method to form a direct-indirect
approach to the solution of a TPBV problem. Essentially they are used
to define an initial correction vector replacing Equation (4-8b).

The name MMPF is derived from the fact that some of the features of
MPF are used in MMPF. Most of the methods surveyed throughout the
literature may be classified as either gradient methods, pattern
search methods, or random search methods (an example is found in [44]).

Of the three classificacions, gradient methods generally use the most
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intelligence and random search the least. The three particular

methods chosen are (1) the Davidon Method [28] which is a proven
gradient technique; (2) the method of Hooke and Jeeves [26], a

pattern search concept; and (3) an accelerated random search

strategy [29]. The above three methods are identified as MMPF-D,
MMPF-HJ, and MMPF-ARS, where the letter or letters after the hyphen

in each case refers to Davidon, Hooke and Jeeves, and accelerated random
search, respectively. For the sake of completeness, these individual
methods will be briefly explained in the following three sections.

In all cases of the modified method of perturbation
functions, three changes had to be made to the method of perturbation
functions concept described in Chapter IV to implement the direct-
indirect concept of solution. The first change was the selection
of a stopping condition on which to end the integration process
since, with function minimization processes, there is no way of
obtaining a terminal time estimate. This was accomplished by
defining the terminal time as the time which satisfied one of the
selected terminal boundary conditions in h; preferably, one which
is monotonic decreasing. Therefore, the satisfaction of

a=0 (5-1)
is used as the stopping condition. Next came the s:lection of the
function evaluated at the terminal time which is to be minimized.

Since the TPBY problem is solved whenever the norm ”hv reaches some

small specified value, the logical choice for a function is some

a,(f{*;s-w-“"‘““ . - PR . ~—~~~~'-I Pt i St
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U(h)>0. Thus, the function chosen to be minimized was

U=hh20 (5-2)
It should be pointed out that the gradient information of
U which is required in the MMPF-D would already be available from dh,
Equation (4-4). Finally, since the set of the variables Z which
minimize U are at the terminal time, they must be expressed as correc-
tions to the initial Z's. This is accomplished by considering the

solution of 61/ from 87, = mg, 61, Equation (4-7), that minimizes

SA
the sum of squares of the residuals. This solution is given by

_ . T -1 T
GAO = (nGA “GA) Ty GZf (5-3)
where SZf is defined by the difference between Z at tf and the desired

Z which results from the minimization of U.

By making use of Equations (5-1) through (5-3), the MMPF
neing one of the three previously mentioned function optimization
methods would proceed until "h" reached some small predetermined value.
At this time, a switch would be made to the IMPF strategy described in
Chapter IV. A general computational outline of the direct-indirect
method for solution using any of the three MMPF methods with the IMPF

method as a final strategy is shown in Figure 4-1.

5.2 Modified Method of Perturbation Functions Using the Davidon Method

The method of Davidon as described by [28] involves the use
of the first and second partial derivative information on the function
being extremized and is derived assuming a quadratic function.

Generally speaking, this method uses the idea of generating the



i et

40

Girection of search by multipling the gradient by a matrix that is in
some manner related to the inverse of the second partial derivative
matrix. This method appears particularly attractive to solve TPBY
problems when used in conjunction with IMPF. Methods using gradient
information (first partial derivatives) become extremely slow as the
optimum is approached. Therefore, it is necessary to switch to a
methoc which converges rapidly as the optimum is approached. As
pointed out in Chapter IV, the IMPF procedure converges rinidly in
the vicinity of the optimum, and a natural transition woulc be to
this method.

“avidon's method described here briefly for a general
func:ion s%arts by examining a quadratic otjective function, for

example,

Tz + %.zT cZ (5-4)

U(Z)=a+hb
where the .. ..ian of U(Z) (c) is a non-singular symmetric positive
definite matrix. Tnus, U\Z) has a local minimum which, in fact, is

also a global minimum. The gradient of (5-4) at any point Z is

»

U(Z) =b+cZ (5-5a)

from which
z=ct u(2)-b) (5-5b)
At the optimum of a differentiable function, all first derivatives

are zero, and Equation (5-5b) may be written as

7% = ¢~ ' b (5-6)



a
The above equation and (5-5b) may be subtracted to obtain the correction

A to be made to Z 1n order to have the optimum U,

U (5-7)

According to Davidon's method, if this inverse were available
and the U under consideration were quadratic, the optimum could be
found in one step. In most practical applications, this is not the
case, and Equation (5-7), as such, is not applicable directly to most
functions. In Davidon's method, Equation (5-7) is used only to define
a direction of search in the space of the variables Z. And thus, a

new correction sector, o, must be defined so that

o=sa=-5cty (5-8)
where the step size, S, is found by obtaining the optimum along a line
of search using quadratic interpolation. The evaluation of c'], as
outlined in [28], is performed indirectly by using the change in

], and the

gradients from iteration to iteration, the last ¢~
correction vector o.
An iterative scheme for a minimum under MMPF-D may be
described as follows:
a) Begin with the identity matrix, I, as the initial guess
for c]'], and assume some X .
b) Integrate forward both the non-linear and the perturba-

tion differential equations, as described in Section 4.4,

observing Equations (5-1) through (5-3).



42

c) Evaluate the gradient of U, u”.

d) Compute a direction using Equation (5-7).

e) Evaluate the step size, S, by using a quadratic
interpolation scheme or some other suitabl: scheme.

f) Compute the correction vector, o, as oy = Sk L

g) Evaluate the desired terminal variables as Zk+] = Zk + o
and compute 8 using Equation (5-3).

h) Compute the 0;1] for the next iteration, which must be
be positive definite so that the new direction will
give local improvement of U(Z).

i) If yhll < 172 “h"k=]' switch to IMPF; otherwise, start
over at (b) with new estimates for Age

5.3 Modified Method of Perturbation Functions Using the Method of
Hooke and Jeeves

The nethod of Hooke and Jeeves [26] is a direct pattern
search technique requiring no derivative information but involving
a sequential examination of trial solutions. This method is compriced
of a series of exploratory moves about each variable in the function
under consideration. These exploratory moves are performed on one
variable at a time insisting that the value of the function be less
than, or equal to, its previous value if a minimum is being sought.
At tne end of the total exploration in the variable space, it is
assumed that a pattern may be established. Thus, a new exploration
point is set by simultaneously stepping off a distance equivale . ‘.

that of the initial start point and that at which tne search stopped.



This technique is continued until the function reaches a desired
value. The technique has strategies which handle situatior- where
no improvement is detected whenever the establishment s -oorn
is being sought.

For the sake of completeness, an example of an applicaticn
of this method in two-variable space (x,y) as pr.posed by Hooke and
Jeeves is presented. It is assumed that the search is staitey at “he
x and y corresporiding to b] in Figure 5-1, where b represerts a
pattern resulting from an expl.ratory search at E, and the subscripts
indicate the trial. The resulting expiorati>: about poin* * in
Figure 5-1 becomes b2' and, ty using b] and b2 and reasoning that a
similar exploration about b2 would give similar results, a new
exploration point, EZ’ is selected. 1Its location in space is given
by 2 (b2 - h]); using this formula, the pattern will continue to
grow. The search continues until a point where improvement in the
desired function is not realized (point E, in Figure 5-1). At this
paint, a new strategy is needed to continue. The point E4 is
discarded, and the last good pattern point now becomes the new
exploration point. Figure 5-2 shows that the new exnlcration point
nas required a decrease in step to reach a new bace b6. Mow using
bs and b6, it 1s possible to start as before. The strategy continues

until a solution is reached.
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[

Figure 5-2. Schematic of Hooke and Jeeves Pattern Search
Showing Pattern Destruction.
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Extending the ideas presented by the example, an iterative
scheme using MMPF-HJ for a minimum solution may be described as

follows:

a) Integrate forward both the non-linear and the perturba-
tion differential equations, as described in Section 4.4,
observing Equations (5-1) and (5-2).

b) Using the Hooke ana Jeeves algorithm outlined in [26],
sequentially compute each desired Z resviting from
either an exploratory step or a pattern step.

c) Compute 8, according to Equation (5-3).

d) If fhil < 172 il _; switch to IMPF; otherwise, start
over at (a) using the new estimates for Ay

It should be pointed out that using the method of Hooke and

Jeeves requires at least 2n iterations before a pattern point is
established. This is due to the fact that, during the exploratory
phases, the effects of changes on each variable must be sequontially

examined,

5.4 Modified Method of Perturbation Functions Using an Accelerated
Random Search Method

The accelerated random search method [29] is one which
combines the ideas of both pattern search and random search with
recalculation. This method has shown promise, particularly on
multimodal hypersurfaces. The accelerated random search begins by
making a random search in tke vicinity of the initial estimate based

on a normal distribution of probability. It follows with a step in




the opposite direction if the function is increased (failure), for
example, in the case of search for a minimum. If this change in
direction still produces no improvement, a new random step is
generated (new set of GZk). As soon as the random search phase
discovers a direction for improvement (success), a pattern search
is begun doubling the step after each success. However, if the
pattern search produces a failure, a retreat is made to tre last
improved step, and a random search is initiated. For practical
reasons, the accelerated random search method confines its random
search phase to an experimental region defined for each problem.
The normal distribution function which governs the

magnitude of the increments, §Z, during the search phase is

2
(Y, /c,)
|62, | = — exp-—f—"k]
k 5 VI k

where Y represents 2n random numbers uniformly distributed between

0 and 1 and o is their standard deviations about a —ean of zero.

In addition, the sign of aZk has equal probability of being plus or
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(5-9)

minus. During the pattern phase, the increments assume an arithmetic

progression form as

6Zp4q = 2 8L, (5-10)

and in the event of a failure during the random search phase, a

reversal is executed by taking a step in the opposite direction as
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P L 4 B

% An iterative scheme using the MMPF-ARS now may be described

as follows:

a)

b)

c)

d)

Integrate forward both the non-linear and the
perturbation differential equations, as described in
Section 4.4, observing Equations (5-1) and (5-2).
Using Equation (5-9), compute the 2n desired terminal
corrections where, for each correction, a different Y
is obtained.

Transform the terminal corrections to initial
corrections by using Equation (5-3) and proceed as in
(a) with new initial A estimates.

If Uk+1 is an improvement over U by either a random
forward step (Equation 5-9), a reversal step
(Equation 5-11), or a new random search, compute

the next terminal correction by using Equation (5-10)
and proceed as in (c). Continue the pattern search
as long as there is improvement in U. Whenever
<172 fihily_qs switch to IMPF.

If there is no improvement in U during a pattern search,
retreat to a random search mode, step (c), and start

again.

Both this method and the Davidon methcd make all the

corrections simultaneously instead of sequentially as in the method

of Hooke and Jeeves,

O PR ST S [ S,
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CHAPTER VI
DISCUSSION AND ANALYSIS OF RESULTS

6.1 Introduction

The numerical aspects involved in the solution of the TPBV
problem will be discussed. In the main, this will inciude those which
are common to all four methods including the boundary conditicas,
numerical integration scheme used to integrate both the noi-linear
and linear differential equations, and finally the features which
apply to each particular method. In this chapter, results are also
shown which compare the IMPF and the three MMPF strategies outlined
in Chapters 4 and 5, respectively, along with an additional strategy
similar to that of [23]. Results are presented for the entry problem
posed in Chapter II and transformed from an optimization problem into
a TPBV problem as shown in Chapter III.

It should be pointed out that all quantities appearing in
this chapter, except the co-states, are dimensional only for the sake
of awareness. Internally, all computations irvolved non-dimensionalized
quantities as stated earlier.

6.2 Initial and Terminal Boundary Conditions

The specification of the initial bovrdary conditions proceed
as specified in Chapter III. First by selectiig an initial state at

t=t =o0,anl (xo, t_) vector may be stated as

0 0

[P SR
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ri] (t,) - 25,975 ft/sec]
Z, (t,) - 400,000 ft

Z, (t ) - 1.5 deg ’

L= | 370 20 (6-1)
Z, (to) - 90 deg |

L?s (to) - 0 deg J

using the form of Equation (3.23). Likewise, a specified terminal

state vector mav be selected at t = tf as

7, (tg) - 25,306 ft/sec
Z2 (tf) - 252,784 ft

Zg (tc) - 18.1897 deg

Equation (6-1) and the fact that the initial state and time are
specified result in no initial transversality conditions from
Equation (3-12). Thus, at t = t, = 0 the initial boundary condition
becomes

g=L=20 (6-3)

On the other hand, since Equation (6-2) represents only five boundary
conditions and seven are needed, the remaining two must come from the
tesminal transversality conditions, Equations (3-13) and (3-14), For
the example problem, ¢ = 0 and the terminal time tf and Z4 (tf) have

not been specified. Therefore, the remaining two boundary conditions

; . r e v fas
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become H(tf) =0 and , = Z]O(tf) = 0. Thus, the terminal boundary

condition h becomes

(i] (t) - 25,306 ft/sec']
2, (t.) - 252,784 ft/sec
Zy (t;) - 1.0568 deg

h= Zg (tg) - 89.9676 deg =0 (6-4)
Z (tg) - 18.1897 deg
Zyo (tg)
H (te)

and as pointed out earlier it is the nom of h, Nhﬂ, that is used to
determine convergence to a solution. Furthermore, since time does not

appear explicitly in the generalized Hai.i1tonian

H(t) =0 (6-5)

for t,stg tes where H is defined using Z variables as

, 0.5 . , iz
D) B tL L Fy (66

-+
=3

(cf ¥ C

For this particular problem, the control, u, is eliminated
from the Z equations by using the optimality condition, Hu = 0, and the
Legendre-Clebsch condition for a minimum, Huu > 0, as outlined in

Section 3.2. Use of the optimality condition yields

. _ cos U
Xa sSin U = -X4 oS T (6-7)

which may be used to solve for the functions sin u and cos u by




R A A L L

1B R Y

squaring (6-7) and using the trigonometric identity sin2u+c052u =1
to give
A
sin u = 4 (6-8a)
4 Z 2
t\/x4 * A3 costT
A3 COS T
CosS u = (6-8b)

J_r\/xi + A;[ cos® T

The Legendre-Clebsch condition is then used to choose the proper sign

for Equation (6-8). This condition requires that

sin u
= - 220 1>
Huu x3 cos u A4 o5 T 0

(6-9)

and using Equation (6-8) to substitute for sin u and cos u in
Equation (6-9) shows that for -m/2<I<n/2 the negative sign is chosen

for Equation (6-8a) and the positive sign for Equation (6-8b) or

M
sinu = - (6-10a)
V&i + Xg cos c T
Ay €OS T
Cos U = (6-10b)

Z 4 V4
V&4 t A3 COsT T

It should be pointed out that, as a result of the terminal trans-
versality conditions (6-4), x4(tf) = 0 and therefore u(tf) = 180 degrees

on the optimal trajectory.

‘ Saitin R

s

R
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6.3 Numerical Integration Method

The numerical integration method used [45,46] to integrate
the 2n non-linear differential equations, Z = F(Z,t), and the 2n linear
perturbation equations, 6% = %;-GZ, is a variable step, fourth-order
Runga-Kutta scheme. The i equations of motion and the %; are
functionally presented in Appendix A. Since the entry problem chosen
as an example is not for fixed terminal time, the generalized
Hamiltonian becomes time-independent and, therafore, constant. This
fact is used as an aid in selecting relative error bounds for the
variable time step integration process. The task of selecting error
bounds, particulariy upper bounds, is a formidable one and often can
be selected only according to experience and the type of problem at
hand. The fact that the generalized Hamiltonian is a constant, and
zero on the converged solution, allows observation of the effects of
the errcor bound on the numerical accuracy and thus makes possible a
logical choice. Table 6-1 shows the effects of the error bound for
six cases on the variation of the generalized Hamiltonian during an
iteration, as well as the value of the norm at the end of the
iteration and the required UNIVAC 1108 time. The method of solution
used was the IMPF described in Chapter IV; all six cases used the
same identical boundary conditions and final time estimate. It is
logical, therefore, to assume that this table gives a representative
relative assessment of the effects of error bound on the accuracy
of solution. Based on this information, a relative error bound of

5.0 x 10'3 - 5.0 x 10'5 was chosen based on a convergence criterion
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of lh = 1x10'8 compared to an expected Hamiltonian amplitude of about
the same order of magnitude. A further consideration in the choice of
the error bound was the exponential increase nature of the computer
time with decrease in error bound.

6.4 Solution of the Entry Problem by IMPF

Solution of the entry problem using the terminal conditions
of Section 6.2 and the integration method and constants stated in
Section 6.3 was initiated by assuming a terminal time, te of 260
seconds with which to begin the iteration process outlined in
Chapter IV. The necessary constants needed for the correction process

as described in Section 4.3 are as follows for |idil < flel =v7:
3

0.4 if ihjl <1 x 1073
n= _4 (6']])
0.8 if thdi <1 x 10

0.4 if hhii 21 x 107

1.0 9 dnji< 1 x 107
where h is assumed to be evaluated using non-dimensionalized
variables. The choice of lgl= V7 comes from allowing an absolute
range of unity for all the states and time since they are all non-
dimensionalized and result in magnitudes close to one. The vector
h and the %;-e1ements that are necessary to compute the corrections
according to Equation (4-8a) are presented in Appendix A.

6.5 Solution of Entry Problem by MMPF

The stopping condition, 2, chosen to end the integration
process for each iteration in the MMPF solution was




T —— o i
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This variable was monotonic decreasing for all the cases studied and,
therefore, served as an excellent -topping condition, The function
chosen to be extremized resulted in a highly non-linear function
involving all the stites and co-states as well as the state differential

equations. This function may be written as

T 2 2 2

Us=hh=nh 2 4 h2

2 2
1+ h2 + h3 +hy + h5 + h6 + h7 (6-13)

where h is defined by Equation (6-4). The value of |Ihll at which the
transition from MMPF to IMPF was executed was set 2%t jinll = Dgi1k=1.

This particular value was chosen under the assumption that iihll = Ugﬂ‘ k=1
is sufficiently close to the minimum so that the IMPF can attempt to
obtain a solution. Thus, at the above value of ilhll, the IMPF is

started with not only the co-state values . : the particular iteration
but also with the corresponding final time as the terminal time estimate.
It can be expected that whenever the transition to IMPF is made, the
final time estimate will Le diffevent than tf=260 seconds, which was
assumed to start the IMPF solutions of Section 6.4.

6.6 Results of Solution of :he Entry Problem by IMPF and MMPF

In order to adequately explore the potential of the IMPF and
the MMPF to solve tie TPBV problem, a set of six initial co-state (1)
vectors wer: selecied as shown in Table 6-2. The selection of the
first four vectors made use of the information from the terminal
boundary conditiens which required the control u to be positive; thus,
the first three co-states were chosen positive and the fourth, negative,

Since it is apparent from Table 6-2 that the chcice of the first vector

" r—— i e
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is close to the optimal, the choice of the remaining five co-states was
made to measure the effect on convergence of starting further away
from the optimum. To further evaluate the improvement of these two
methods, an additional MPF strategy based solely on the magnitude of
the norm and similar to that of Lewallen [23] was used. The data in
Table 6-2 show results for the following examples: Cases 1 through 6
used the IMPF with its correction factor based on norm and step size;
Cases 7 through 10 used the MPF with a correction factor based only on
norm and similar to that of Equation (6-11, with the exception that
the first factor is 0.2 instead of 0.4; and finally, Cases 11 through
13 used the MMPF where a, £, and ¢ stand for Davidon, Hooke-Jeeves,
and accelerated random search, respectively, with a transiiion to the
IMPF of Cases 1 through 6 as explained in Section 6.5.

The IMPF strategy using a correction factor dependent on the
norm and the step size was used to solve the TPBV problem starting with
each of the six co-state vectors of Table -2 as initial estimates and
guessing an initial terminal time tf = 260 seconds. This strategy was
successful in obtaining a solution for each of the six candidate
co-state vectors. The results depicted in Table 6-3 show essentially
that the vector cliosest to the optimal sclution required the least
number of iterations. Cases 2 through 4, which used somewhat more
difficult vectors, also converged in essentially the same number of
iterations. Cases 5 and 6 are by far the most difficult but yet were
driven to convergence by the strategy. In summary, the solution of

the TPBYV problem was very insensitive to the first four cases. However,
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as the progression was made to order of magnitude differences in the
initial co-state (Case 6), the sensitivity increased, but the most
important fact was that a solution was still obtained. This point is
further emphasized when the MPF with a correction factor dependent on
the norm only is discussed next.

Results using a correction factor philosophy similar to [23]
and dependent on the norm only are presented in Table 6-4. As shown
on Table 6-2, this scheme used only the first four vectors in Cases 7
through 10, respectively. The only solution possible out of the four
cases was for Case 7 which required 50 percent more iterations than
Case 1 for the same co-state vector and terminal time estimate. The
remaining three cases diverged after four iterations even though the
first two iterations gave a decrease from the first norm. This set
of cases points out the power of a correction factor such as the one
used in Cases 1 through 6.

Finally, results using the MMPF and starting with the first,
fourth, and fifth co-state vectors are depicted in Table 6-5. The
logic used to control the total number of iterations for these cases
was as follows. A maximum of 50 terations was allowed within which
to halve the initial norm; once the transition was made to IMPF, a
maximum of 30 iterations was allowed if the tota® number of iterai.ons
exceeded the companion case of Table 6-3. However, if the total
number was less, iterations were continued up to an equivalent total
as tiue companion case of Table 6-3. Table 6-5 exhibits two cases, 12a

and 13c, which converged. Although Case 12a converged, it did so in

l Y SR A i o
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about one-third more iterations than Case 4. Case 13c, on the other
hand, required approximately 26 percent fewer iterations than its
companion case, Case 5. The remaining cases shown in Table 6-5 did
not converge, nor did they diverge in the set number of iterations.
It is felt that the cases which were evaluated will converge if allowed
sufficient iteratiors but there was no reason for doing this. Based
on the cases examined in Table 6-5, the MMPF using the accelerated
random method seems the most powerful and it appears to get relatively
better as it starts with co-states further from their optimum, as
evidenced by Cases 1lc, 12c, and 13c. The method of Hooke-Jeeves does
not appear promising in comparison., Davidon's method converged on
Case 12a but did not meet the basic criteria in 11a and 13a. This is
not surprising because gradient methods are incapable of negotiating
multimodal hypersurfaces and Equation (€-13), as evidernced by examina-
tion of Cases 11a and 13a, appears to be multimodal.

Figures 6-1 and 6-2 depict the optimum states, control
variable, and the pay-off function variables Q and G as a function
of the optimal time. It should be pointed out that, although the
theory only guarantees a local optimuin, all of the cases which
converged do so to the identical solution. Thus, the statement may
be made that the solution obtained and shown in Figure 6-1 is the
optimum solution at least within the space defined by the six co-state

vectors of Table 6-2,
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CHAPTER VII
SUMMARY AND CONCLUSIONS

Two general iterative methods employing the basic method of

perturbation functions to soive TPBV problems have been described.

The first method (IMPF) uses a unique selection scheme to arrive at

a correction factor which in essence sets the desired changes to be
applied to the previous guessed co-states. The second method (MMPF)
solves the problem in two phases. Phase 1, the start, uses function
minimization techniques until the norm is subsequently reduced to a
level equal to, or less than half of, that which it began with., At
this point Phase 2 which is identical to the first method, takes over.
To examine the capabilities of these two methods to obtain a solution,
a complex entry optimization problem which was reduced to a TPBV
problem through calculus of variations techniques was used. The two
methods were then exercised using the above problem starting with
several sets of different initial co-states. In addition, a method
similar to that used in [23] on an Earth-Mars transfer problem was used
to serve as an additional basis of comparison.

Based on this study, both of the techniques used must be
judged superior to the one which is similar to that of [23]. Of the two
techniques used, the IMPF with the correction factor based on norm and
step size is by far superior as evidenced by its ability to obtain a
solution for all the candidate cases. However, the MMPF using the
accelerated random search strategy seems to become more attractive as

the initial co-states get further away from their optimum values. Due
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to the extreme compiexity of the problem considered, it became
computationally impractical to study cases further away from the
optimum than those attempted.

Though convergent properties of iteration schemes are problem
dependent, certain observations may be made in comparing the results of
this study to those in the literature. Tapley and Lewallen [41]
presented an Earth-Mars transfer problem which exhibited convergence
from regions much closer to the optimum than those presented here. A
similar statement may be made nf studies on reentry problems such as
the two-dimensional problem studied by Lastman and Tapley [19]. A
recent study by Tapley and Williamson [32] on a three-degree-of-freedom
reentry problem using MPF indicated 15 iterations were required for an
optimal solution. However, based on the close proximity of their
initial co-state estimates, indications are that the IMPF technique
might imprcve on the iterations required for an optimal solution. In
conclusion, it may be said that two methods have been formulated which
have decreased the contingency of a solution to a complex entry problem

on the initial co-state estimates.
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APPENDIX A

THE STATE, CO-STATE, AND MPF EQUATIONS

The state (x) and co-state (A) differential equations of
motion for the entry problem form a set of 2n = 12 equations which are
nen-linear and ordinary in nature. Of this set of 2n equations, n
are state equations and n are co-state equations. Both sets of equations
may be expressed as functions of the variatiunal Hamiltonian. The
variational Hamiltonian (Equation (6-6)) can be written in terms of ,

A, and u variables as

. - 12 .
. 3.05°0.5 .1 A ,2 . .2 2
H=Cxpm "o  + o ;“L+%) P Xt

6
(A-1)

Aif.

1 1

where the n set of states x correspond to Equations (2-3a) through (2-3f)
respectively; ;(xz) is of the form explained in Section 2.2; and

F(X,u,t) represents the n differential equations of motion (2-3a)

through (2-3f). Taking the partial derivative of H with respect to A

yields n differential equations of state

X = H = F(x,u,t) (A-2)

The n equations of co-state (i) are then obtained by taking the partial

derivative of H with respect to x

A = H = A(X,2,U,t) (A-3)

Equations (A-2) and (A-3) may be combined to form a 2n set of differential
equations

Z = F(Z,u,t) (A-4)
where the variable Z is made up of the x and A variables.
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aF
9

which may also conveniently be exprassed as a function of H

The perturbation equations, =, result in a 2n X 2n

S G O
T o 1 ol

-1
URLTTIRATE

- . -1
D3(t) Hxx * qu uu Hux

matrix

(A-5)

(A-6)

(A-7)

(A-8)

For example, with the entry problem defined in this thesis, the top row

of the D] partition is as follows, with u being a scalar since there is

but one control varieble:

D]('I,'I) = HA] X -

1
—
uu

1

D,(1,2) = H X, - H H
1 A 2 Fﬂ;: AU uX,

01,9 = 4, 7y - L
1 uu

1
—
uu

D](1,4) = H

>

M 4

D,(1,5) = H,

x

- H H
1 5 uu A1u ux5

D,(1,6) = H

x
1

-

X

H
A1 6 uu A1u uXe

(A-9)

'A-10)

(A-11)

(A-12)

(A-13)

(A-14)
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Referring to Equation (6-4), the vector equation for the time

derivatives of the terminal dissatisfactian h is

- -~

Z,(t,)
Zy(te)

Z3(tf)

- e
1}

Z5(ts) (A-15)
Zg(te)

Ziolte)

() |

where H(tf) = 0 since H(t) is a constant, as pointed out in Section 6.2,
and Z(tf) are the 2n differential equations of state and co-state. The
%%—results in a 7 x 12 matrix which has zero for many of its elements.

Only the non-zero elements will be specifically identified

ah sh ah sh ah ah
EZSN ST Y PR Y PR Y AT
The last row of the —vaatrix 15'32' wnich is

NASA-JSC



