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rnODUCT I O N  

The Viking '75 Mission t o  Mare permits a t r u l y  unique opportunity 

t o  explore t he  na tura l  s a t e l l i t e ,  Phobos, from dis tances measured i n  t h e  

tens of  kilometers. Because of t he  pa r t i cu l a r  geometry cu r r en t ly  planned 

fo r  the Viking Mission o r b i t ,  t h e  Viking spacecraft  can be maneuvered t o  

make repeated passes very c lose  t o  Phobos i n  January and then again i n  

March, 1977; t h a t  is ,during t h e  proposed extended Viking Mission phase. 

Multi-pass images of t he  e n t i r e  s a t e l l i t e  from nearly a l l  aspect angles ,  

and with reso lu t ion  on t h e  order of 10 meters a r e  possible .  Close 

encounters w i l l  permit mass determination t o  an accuracy of t ens  of percent.  

A preliminary f e a s i b i l i t y  study has been made which shows t h a t  t h e  

propulsive requirements a re  nominal, t h e  o r b i t  determination accuracy i s  

adequate, and Phobos is  within t h e  scan platform point ing capab i l i t y  

during portions of each encounter. 

SC IrnIFIC CONSIDERATIONS 

Recent Background. The first close-up photographs (Masursky, Pollack, 

1972) of t he  Martian na tura l  s k t e l l i t e s  by t h e  MM '71 v i sua l  imaging 

system (VIS) produced new impedus t o  a topic  qu i t e  i n  vogue almost a 

century ago. I n i t i a l  ana lys i s  of these  p i c tu re s  indicated that both 

mo0i.s were of i r r egu la r  shape, very dim, and heavi ly c ra te red .  Imnediate 

i3pressions from t h e  data  were that the  current  surface cha rac t e r i s t i c s  

a r e  la rge ly  determined by c r a t e r  ing and i t s  accomp&qJrir,g fragment a t  ion 

and spa l la t ion .  Estimates of  t he  mean r a d i i  were: Phobos, 10.9 + 1.5km, 



Deimos, 5 . ;  2 .5km. F i r s t  estimates of the  surface age, based upon 

c r a t e r  population, ranged from 109 years  t o  as o ld  as the  s o l a r  system 

i t s e l f .  

Recent r epo r t s  (Pollack, 1973) extended the  i n i t i a l  ana lys i s  by 

including estimates of t h e  pr inc ipa l  axes of the moons, providing addi- 

t i o n a l  confirmation of t h e  moons'synchronous periods, and providing an 

in t e re s t ing  postulat ion of a surface r ego l i t h  formed by repeated en- 

counters of t h e  moonc with t h e i r  ovn e jec ta .  From analys is  of  40 photo- 

graphs of Phobos (taken at ranges on t h e  order of 7000 lun) ana 5 photo- 

graphs of Deimos (taken at r imi la r  ranges) over a period of time of about 

100 days, t h e  synchronous r o t a t i o n  of t he  moons were calculated by 

observing changes i n  loca t ion  of surface fea tures .  During t h i s  period of 

time, t he  same s i d e  of each moon faced toward Mars t o  within l e s s  than 

5 degrees. 

T r i ax i a l  shapes of t h e  moons were determineu s i n g  a l i ~ h  f i t t i n g  

technique. Both moons were determined t o  have remarkably comparable 

shapes; wherein t h e  r a t i o s  of t h e  th ree  axes of Phobos t o  t h e  correspond- 

ing axes of Deimos a re  nearly a constant 1.8. The moond f l a t t e n i n g  i n  t h e  

Mars-mon plane were determined t o  be .30 and .31 f o r  Phobos and Deimos , 

respec t fu l ly .  The moond f l a t t en ing  perpendicular t o  t he  Mars-moon 

plane ( t h a t  i s ,  t h e  plane containing the  moon's motion) were determined 

t o  be .l6 and .ll f o r  Phobos and Deimos, respec t fu l ly .  I n  terms of 

equivalent mean r a d i i ,  t h e  da t a  yielded 11.5 km f o r  Phobos and 6.4 lan f o r  

Deinos, values s l i g h t l y  l a r g e r  than first estimatee. Estimates of the  

mass of th2  moon. were given as 19.3 end 3.37 x 1018 gm f o r  Phobos and 



Deimos~respectful ly .  These were based upon an assumption of densi ty  of 

3 m / c c .  However, no d i r e c t  measurements of mass o r  densi ty  have been 

made. 

Experirner~t 0b.lectives. There a r e  many mysteriea s u r r o u d i n g  the  or ig in  

of t he  Martian moons. A t  f irst  glance, t he  f a c t  t h a t  the  two moons have 

nearly i d e n t i c a l  geometric albedo (about .05 ) and almost i den t i ca l  shepes 

suggests a common or ig in .  Following t h e  hydrostat ic  equilibrium theo r i e s  

developed f o r  t h e  Moon (Jef f reys ,  Baldwin), f i r s t -order  ca lcu la t ions  f o r  

t h e  shape of Phobos agree well with v i sua l  r e s u l t s  of Pollack (TABLE: I ) .  

On the  o ther  hand, the  shape of Deimos is  not consis tent  with hydrostat ic  

theory owing t o  i t s  r e l a t i v e l y  l a rge  d is tance  from the  planet .  However, 

if t h e  d is tance  of Phobos is used i n  t he  ca lcu la t ion  f o r  t he  shape of 

Deimos, one obtains  remarkably good agreement with the  datrq perhaps quite 

coincidental ly ,  s ince f o r  bodies of t h i s  size hydrostat ic  theory may not 

be applicable.  

The MM '71 experiment has subs t an t i a l l y  improved our knowledge of t he  

moons; however, many new questions have been ra i sed ,  p a r t i c u l a r l y  on the  

o r ig in  of these moons. The nature and origin o f  the Martian moon5 could 

be the  t r u e  Rosetta Stone f o r  t h e  o r i g i n  of t h e  Solar  System; s ince ,  i f  

these  moons were formed out of primordial matters ,  they should, because 

of t h e i r  r e l a t i v e l y  emall s i ze ,  r e t a i n  t h e i r  o r i g i n a l  chemietry and 

mineralogical composition (Burns ) . 
Further inves t iga t ions  and more d e f i n i t i v e  da t a  on the  Martian 

moons a r e  needed t o  confirm o r  r e j e c t  o r i g i n  theor ies .  A sho r t ,  but hardly 

exhaustive, l i s t  of the  addi t iona l  science information t o  be gained by a 

c lose  Martian moon encounter by t h e  Viking spacecraf t  is  given below. 



Obtain a direct estimate of the mass and an improved figure 

determination. These new data will provide valuable new infor- 

mation on density which bears directly on the regolath and 

origin theories. 

3btain improved values on the rotational characteristics of the 

noons to improve the estimate of the degree of synchronization. 

These data, combined with the size and mass ciata, may yield valua- 

ble information on moments of inertia and perhaps the density 

distribution. Further, non-accountable librations may provide 

bounds on the probability of asteroid collisions (Burns). 

Provide additional data to ?mprove the ephemerides of the moons. 

These data, in conjunction with other Mars physical data obtained 

earlier in the Viking mission should provide valuable insights 

into Mars' internal structure. 

Provide additional and improved knowledge of the secular accelera- 

tion of the Moons (pollack, 1973). Accurate Viking image data, 

taken about 5 years af'ter MM '71 ehould provide further insight 

into the questionable (Burns) secular acceleration in the longi- 

tude 01' t h e  Moons (Sharpleoc). 

Obtain high resolution measurements (about 150 m) on the surface 

thermal inertia. Data scans taken with the infrared thermal 

mapper instrument in conjunction with photographs should provide 

important surface property inforITiati0n. Perhaps these measure- 

ments can provide additional data to substantiate the existance 

of a regolith. 



CELESTIAL MECHANICS CONSIDERATIONS 

Orbit  Geometry. The o r b i t  geometry of Phobos and the  VO is  shown i n  

f i gu re  1. For s impl ic i ty  Phoboa is  assumed t o  be i n  a c i r c u l a r ,  equa- 

t o r i a l  o r b i t .  Neither of these  aeeumptions w i l l  have a s ign i f i can t  

influence on t h e  f e a s i b i l i t y  of t h e  experiment. The VO-A o r b i t  has an 

inc l ina t ion  of 33' and an argument of per iaps is  of 44' on Ju ly  4, 1976. 

In  order f o r  t he  spacecraf t  t o  pass c lose  t o  Phobos, two conditions must 

be s a t i s f i e d .  F i r s t ,  t h e  spacecraf t  o r b i t  geometry must be such t h a t  t he  

dis tance of t he  spacecraft  from Mars is equal t o  the  semi-major a: is of 

t he  o r b i t  of Phobos when the  spacecraf t  passes through the o r b i t a l  plane 

of Phobos; t h a t  i s ,  the  o r b i t s  i n  t h r e e  dimensional space must i n t e r s e c t .  

The second condition is  t h a t  t h e  two a a t e l l i t e s  must be a t  t h i s  in te r -  

sec t ion  point at t h e  same time. A mathematical expression fo r  the  first 

condition can be derived from t h e  conic equation r e l a t i n g  r a d i a l  dis tance 

( r )  t o  the  angular posi t ion i n  o r b i t  (Mc~luskey) 

r =  a ( l  - e2)  
1 + e cosf 

where a is t h e  semi-major ax i s  and e i s  t h e  eccen t r i c i t y  and f i s  t h e  

t r u e  anomaly o r  angle measured from per iaps is  t o  t h e  pos i t ion  i n  o r b i t .  

~ h c  spacecraft  passes through t h e  o r b i t  plane of Phobos when f = -u 

and 180° 4). For t h e  o r h i t  paths t o  i n t e r s e c t ,  r must be equal t o  

9380,, t h e  semidlajor wia of t h e  o r b i t  o f  Phobos. Thus t h e  value 

of w must satisfy one of t he  equations, 



9380 = a ( l  - e2)  
1 - e cosw 

which a r e  necessary and su f f i c i en t  f o r  o r b i t  path in te rsec t ion .  Assuming 

t h e  nominal values of a and e, t h e  so lu t ions  f a r  w a re :  w = + 96 - 
and 2 84'. The paths i n t e r ~ e c t  a s  t h e  spacecraf t  i s  ascending (south t o  

nor th)  when w = 96' and descending when w = 84'. 

A s  mentioned above, t h e  value of w i n  t he  VO-A o r b i t  i s  44'. 

However, t he re  a r e  per turbat ions of t h e  o r b i t  which cause w t o  char~r.:e 

with time. The major o r b i t  plane perturbat ions a r e  due t o  t he  oblatericss 

of Mars which produces both a nodal regression and an aps ida l  precession 

given by (McCluskey ) , 

where J2 ( ~ o r n )  is 1.96 x n = 351°/day is  the  mean motion of the  

spacecraf t ,  e = 0.76 i s  the  eccen t r i c i t y  of t he  s / c  o r b i t ,  R = 3394 is  

t h e  radius of t he  Marsusedas a reference f o r  the  gravi ty  f i e l d  expansion, 

a = 20420 km is the  semi-major wis of the spacecraft  o r b i t ,  i = 33' is  

t h e  inc l ina t ion .  The o r b i t a l  parameters n, a, e and i do not change 

subs t an t i a l l y  with time; thue,  



The argument of periapse w i l l  increase from the  i n i t i a l  value of 44' t o  

84' i n  193 days and t o  96' i n  251 days. Consequently, on January 13 and 

March 12, 1977 the  o r b i t  geometry is such that c lose  encounters of the VO-A 

spacecraft  and Phobos a r e  possible.  Similar analysis  has been performed 

f o r  po ten t ia l  encounters between VO-A and Deimos and VO-B with both nnturul 

s a t e l l i t e s .  The approximate encounter da tes  a r e  shown i n  Table 11. The 

most r e a l i s t i c  opportuni t ies  a r e  the  two rentioned above and these  a rc  

analyzed i n  d e t a i l  below. 

The geometry of Mars, Earth, Sun and t h e  spacecraf t  o r b i t  i n t e r sec t ion  

with respect  t o  the  o r 5 i t  plane of Phobos are i l l u s t r a t e d  i i ~  f igure  2 f o r  

t h e  January opportunity and f igu re  3 f o r  the  March opportunity. Refering 

t o  f i gu re  2, t he  ascending node of  t h e  spacecraf t  o r b i t  on January 13 w i l l  

have a r i gh t  ascension of about 97' find regresses  0.14 degrees per o r b i t .  

On January 13, t he  apace raft passea through the o r b i t a l  plene of I'hobun 

near the  o r b i t a l  path as indicated by the  dot on the  l i n e  of  nodes. 

Since w increases  from o r b i t  t o  o r b i t  by 0.207 degrees, t he  point  wheze 

t h e  spacecraf t  p ie rces  t he  Phobos o r b i t a l  plane cont inual ly moves inward. 

The r a d i a l  c h ~ ~ l g e  per o r b i t  can be calculated by d i f f e r e n t i a t i o n  of 

equation ( I ) ,  



and eviluaxion of t h e  d i f f e r e n t i a l  with f = w - , .  .. ; .q  df *207°* 

The r e s u l t  18 dr  = 27 km. Therefore, succesalve pierci.lg points  w i l l  

be 27 km apa r t  r a d i a l l y  and 22 km apar t  1ongitudine.ll.y. Similar  r e s u l t s  

a r e  obtained f o r  t h e  Mar ch opportunity except t he  points  move outward with 

time. Thus, i f  t he  phasing requirements can be s a t i s f i e d ,  t he re  w i l l  be 

mult iple  spacecrafGPhobos encounters i n  both January and March of 1977. 

Relat ive Phasing. I n  order  t o  insure  repeated encounters the  r a t i o  of 

t h e  two o r b i t a l  periods must be a r a t i ona l  number. The o r b i t a l  period 

of Phobos i s  approximately 7.65 hours and t he  nominal spacecraf t  orbi- 

t a l  period is 2L.61 hours. The r a t i o  is  3.22. Rational numbers c lose  

l6 however, t he  l a t t e r  two r a t i o s  do not t o  t h i s  r a t i o  a r e  3. 3. and 7; 
permit c lose encounters each spacecraf t  o r b i t .  The maximum number of close 

encounters w i l l  occur f o r  a r a t i o  of 3 o r  a spacecraf t  o r b i t a l  period 

of 22.95 hours. Repeated o r b i t  pos i t ions  w i l l  then occur ev ry  space- 

cral'; o r b i t  and every t h i r d  Phobos o r b i t .  An o r b i t  period change from 

24.61 t o  22.95 hours can be performed f o r  a ve loc i ty  impulse of 12  m/s. 

The only remaining geometric consideration is  t o  assure t h a t  t he  

spacecraf t  and Phobos simultaneously a r r i v e  a t  the  point of near i n t e r -  

sect ion.  The r e l a t i v e  o r b i t a l  phase of the  s a t e l l i t e s  w i l l  depend on 

t h e  phasing of t h e  spacecraf t  o r b i t  which w i l l  i n  t u r n  depend on the  

pa r t i cu l a r  mission p ro f i l e .  However, t he  current  uncer ta in t ies  i n  the  

physical parameters t h a t  en ter  i n t o  the  d e t a i l  calcl l la t ions and the 

complexity of the  Viking mimion p r o f i l e  make such ca lcu la t ions  meaning- 

l e s s  a t  t h i s  time. 



Actually t h e  i n i t i a l  phasing has no e f f e c t  on t h e  t o t a l  propulsive 

requirements f o r  t h e  January opportunity, oince the  12  m / s  required t o  

synchronize the  two s a t e l l i t e s  can a l s o  be used t o  phase the  s a t e l l i t e s .  

The 12 m / s  w i l l  produce a 1.7 hours change i n  period, Over a 5 o r b i t  

time i n t e r n a l  such a change i n  period w i l l  penat i t  more than a 360' 

change i n  t he  r e l a t i v e  phase of t he  s a t e l l i t e s .  Thus, t he  f i r s t  maneuver 

a value would be designed t o  reduce the  o r b i t a l  period from 24 61 t o  som, 

grea te r  than 22.95, such t h a t  a f t e r  5 o r b i t s  t he  proper phasing i s  

accomplished. The remainder of the  12  m / s  w i l l  be used f o r  t h e  second 

maneuver which w i l l  synchronize the  o r b i t s .  

The phasing and synchronization during March w i l l  r equi re  addi t iona l  

propulsion. In  January, t h e  s a t e l l i t e s  a r e  i n  the v i c i n i t y  of the  

descending node simultaneously and the  March encouR"ue-. requires  t h a t  both 

be a t  t he  ascending node. The spacecraf t  takes 2 hours t o  pass from 

the  ascending t o  t he  descending node; wheleas, f , 1 takes about 3.8 

hours. Therefore, t h e  t o t a l  phasing e r r o r  t h a t  must be corrected i s  l e s s  

than two hours. If t h i s  phasing is performed over a f i v e  day period, 

t he  t o t a l  propulsive requirements f o r  a two maneuver t ransver  w i l l  be 

about 6 m/s. Thus, the  t o t a l  f o r  both opportuni t ies  w i l l  be about 1 8  m / s .  

Error Analysis. The accuracy with which encounters can be planned and 

control led is  an important consideration and a preliminary ana lys is  i s  

given here. There a r e  t h ree  d i s t i n c t  considerations; namely, how w e l l  

can the  o r b i t  of t h e  spacecraf t  be determined; how well  can t h e  o r b i t  of 

Phobos be determined, and how well  can t h e  o r b i t  of the  spacecraft  be 



control led.  The major o r b i t  determination erTors influencing the  know- 

ledge of t h e  spacecraf t  o r b i t  w i l l  be o r i en t a t ion  of t he  o r b i t  and the  

o r b i t a l  period (Tolson). The or ien ta t ion  e r ro r s  w i l l  be about 0. lo 

(OINcil)  which could produce a displacement r e l a t i v e  t o  Fhobos of 15 

kilometers. T' period uncertainty i s  important because it produces a 

secular  increase i n  t he  e r r o r  from one o r b i t  t o  the  next. The expected 

period uncertainty of about 0.1 sec. (OINeil)  mealis t h a t  t h e  spacecraf t  

passes through the  o r b i t a l  plane 0.1 seconds laxer  ( o r  e a r l i e r )  each 

o r b i t .  After  30 o r b i t s  t h i s  e r ro r  would accumulate t o  3 seconds. Thus 

Phobos would be about 6 kilometers f a r t h e r  ~ h n g  i n  its o r b i t  than 

expected when t h e  s p ~ c e c r a f t  pasEes t h r o q t , ~ ~  the  o r ; i t  plane of  Phobos. 

This e r r o r  i s  consis tant  with the  contr ibut ion from the or ien ta t ion  

uncertainty discussed above; however, t h i s  estimate may be s l i g h t l y  

conservative because the  spacecraft  w i l l  be i n  a 22.95 hour o r b i t  and 

the  per iaps is  w i l l  be a t  a nrv l a t i t u d e ,  so  the  spacecraf t  w i l l  be  

experiencing a neu Vars g rav i t a t i ona l  environment. In any ca3e, the 

t o t a l  o r b i t  determination e r ro r  i s  probably l e s s  than 25 kilometers. 

The e r r o r  i n  our knowledge of the o r b i t a l  period of Phobos i s  

0.0021 seconds ( ~ o r n )  and therefore  negl ig ib le  over a few months 

period. Optical  t racking of Phobos during the  planetary approach phase 

and a l so  during the  o r b i t a l  phase should reduce the  along t r ack  e r r o r s  

t o  a few kilometers and the  or ien ta t ion  angles should be known t o  a 0.1 

degrees (Born). These e r r o r s  produce pos i t ion  u n c e r t ~ i n t i e s  i n  the 

o r b i t  of Phobos t h a t  a r e  the  same order e s  the  uncer ta in t ies  i n  t h e  

spacecraf t  o r b i t .  



The only other source of e r ro r  t o  be considered i s  t h a t  introduced 

by the  phasing and synchronizing maneuvers themselves. Since these 

maneuvers cannot be performed per fec t ly ,  they w i l l  introduce o r b i t  e r ro r s .  

For such small maneuver ;, t he  major e f f ec t  w i l l  be t o  produce an e r r o r  i n  

the  o r b i t a l  period. For example, an 12  m / s  maneuver with a 0.1% propor- 

t i o n a l  e r ro r  w i l l  produce a p tx i c t  e r r o r  of about 6 seconds. This e r r o r  

w i l l  have the  same e f f ec t  a s  an o r b i t  determination e r ro r  i n  t he  period of 

the  VO. Iiowever, a 6 second period e r ro r  is unacceptable i f  very close 

encounters a r e  required. Therefore, small propulsive maneuvers w i l l  

be required t o  assure proper encounter geometry duri .4  t he  most c r i t i c a l  

phase of t he  experiment. With such small trim maneuvers, cont ro l  of the  

o r b i t  geometry should be about one t o  two secondb i n  period; thus ,  during 

the  few most c r i t i c a l  o r b i t s  t h e  cont ro l  e r r o r  w i l l  be belov 20 ki lo-  

meters. Considering all t h r ee  e r r o r  sources, encounters a s  c lose a s  80 

kilometers should be r e l a t i v e l y  safe .  

Encounter Geometry, One po ten t i a l  encounter scheme is i1lustr~:ed i n  

f igure 4 fo r  t he  Januery opportunity. The VO is  targeted t o  pass exact ly 

through the  Phobos o r b i t  on January 13 such t h a t  Phobos is 50 kilometers 

past t he  in te rsec t ion  point .  This geometry assures  t h a t  the  i l luminated, 

t r a i l i n g  hemisphere of Phobos w i l l  be viewed by the  VO. The VO or3ite.l 

period is  i n i t i a l l y  designed such t h a t ,  each time the  VO passes through 

the  o r b i t a l  plane of Phobos, Phobos i s  27 km f a r t h e r  back along i t s  o r b i t .  

On January 15 the  period is redwed by about 15  seconds so t h ~ t  Phobos 

moves back 54 ian between euccessive VO passages. The points  where the  



VO descends through t h e  o r b i t a l  plane are i l l u s t r a t e d  by dots  which are 

t i e d  t o  t h e  corresponding Phobos locat ions.  

Recall  t h a t  t h i s  is a descending node encounter and the  VO has an 

o r b i t  i nc l ina t ion  of 33'. The v e l o c i t i e s  of t he  VO and Phobos a r e  2.65 

km/s and 2-14 h / s .  The r e l a t i v e  ve loc i ty  components a r e  therefore  1.68, 

-0.42, and -1.11 i n  the  r a d i a l  d i r ec t ion  (aww from ~ a r s ) ,  along the  

o r b i t  of Phobos, and normal t o  the  o r b i t  plane of Phobos. The in-plane 

ve loc i ty  o f  t.he VO r e l a t i v e  t o  Phobos is i l l u s t r a t e d  i n  t he  f igure .  The 

r e l a t i v e  ve loc i ty  is  p a r a l l e l  t o  t h e  l i n e s  connecting t h e  s a t e l l i t e s  on 

January 7 and 19, hence on these two encounters the  VO w i l l  pass d i r ~ c t l y  

over t he  north and eouth poles ,  respect ively.  The VO-Phoboa d is tances  

during polar passage w i l l  be about 55 km and 90 ~III respect ively.  

A l l  of t he  encounters p r i o r  t o  January 13 have ccne angles grea te r  

than go0, and, s ince  the  VO passes north of Phobos, most of the  flyby 

phase w i l l  be within the  clock ar.gle range. After  January 13, t he  VO 

pusses south of Phobos and some of t he  cone angles a r e  below 90'. dpace- 

c r a f t  r o i l  manerivers w i l l  be  required during many of these encounters. 

The so l a r  decl inat ion i s  nearly zero during January so t h a t  both the 

north and south polar reglolls of Phobos are i l luminated. Because of the  

synctironism between the  o r b i t a l  period and the  ro t a t iona l  period of  

l'hobos, only the t r a i l i n g  hemisphere w i l l  be i l luminated d m i n g  the 

Jnnuary encounters. 

The March opportunity,  shown i n  f i gu re  5, i s  designed s imi la r ly .  

The VO is phased t o  pass 50 km i n  f ron t  of Phobos on March 12, which 

Rssures t h a t  t he  leading hemisphere, now illuminated, can be scanned by 



t h e  VO instruments. The r e l a t i v e  ve loc i ty  components a r e  t he  sane e x c e ~ t  

t h e  z-component is  pos i t i ve  fo r  t hese  ascending node encounters. On 

March 5 the  VO w i l l  w a i n  pass d i r e c t l y  over t he  North Fole of Phobos at 

a dis tance of about 75 Ian. On March 14 t h e  VO period i s  increased by 

1 3  seconds so  t h a t  the  Phobos pos i t ion  remains invar ian t  f o r  a l l  remaining 

VO passes. On March 1 9  the  VO w i l l  again pass over t he  south pole at a 

d is tance  of about 100 Inn. The VO scan platform point ing requirements a r e  

similar t o  t h e  January encounters. Up through March 1 2  no r o l l s  should 

be required, but a f t e r  t h a t  time r o l l s  w i l l  be required t o  look north 

toward Phobos . 
A number of o ther  encounter sequences can be imagined, and the  

optimum sequences can be developed once a l l  the science requirements ere 

defined. However, t h e  above sequences have the  following advantages: 

( a )  Complete coverage of Phobos with both h a i s p h e r e s  i l luminated. 

( b )  Coverage from a l l  aspect angles: looking down from both poles,  

looking from the  dir : t ion of Mars and looking toward Mars, and 

looking head on at Phobos. 

( c )  Over half  of t he  encounters w i l l  not requi re  r o l l  maneuvers. 

( d )  A number 

f o r  mass 

( e  ) On March 

of very c lose  encounters during both opportuni t ies  

determination of Phobos and increased resolut ion.  

1 6  a p ic ture  of Mars r i s i n g  over Phobos i s  possible .  

Science Instrument Coverage. The f i e l d  of view of t he  VIS i s  26 x 54 

mi l l i rad ians .  Thus, i f  t he  VO is  within 850 km of  Phobos, Phobos w i l l  

f i l l  t h e  f i e l d  of view. This condition w i l l  ex i s t  f o r  over 40 days 

du r i r~g  both t h e  January and March se r i e s .  These extremely c lose  



encauntclrs have the  p t e n t i a l  f o r  very high r e se lu t inn  p i c tu re s  cf 

Phobos; however, t he re  is  no image motion compensation on the  VO and 

the  r e l a t i v e  ve loc i ty  i s  2 km/s. A t  the point of c lo ses t  approach, 

t he  e n t i r e  r e l a t i v e  ve loc i ty  w i l l  contr ibute  t o  smearing, so t h a t  a t  an 

exposure time of 0.01 seconds, the  smear w i l l  be 20 meters. However, t h e  

smearing is  approximately proportional t o  R / r  where R i s  d is tance  of 

c lo ses t  approach and r i s  the  d is tance  a t  which the  ca lcu la t ion  i s  made. 

Thus very c lose  encounters w i l l  have a rap id ly  decreasing smear as the 

dis tances from Phobos increases .  The c loses t  encounter i s  about 40 km, 

so t h a t  by the  time the  spacecraf t  i s  150 km from Phobos, t h e  smearing 

and pixel  resolut ion a r e  both about 5 meters. The bes t  possible  resolu- 

t i o n  w i l l  therefore  ue s l i g h t l y  l e s s  than 10  meters. There w i l l  be a 

blooming d i s t o r t i o n  but t h a t  i s  expected t o  be l e s s  than a meter. 

I f  t he  spacecraf t  i s  expendable i n  March, an extremely close 

encounter could be planned, which i f  successful  w i l l  e s s e n t i d l y  el iminate  

smearing and could r e tu rn  Ranger type p ic tures .  This would a l so  provide 

the  optimulu mass determination experiment. 

The maximum r e l a t i v e  angular ve1ocit.y w i l l  be about 2.5O/sec f o r  

2 
t he  c lo ses t  encounters and is proport ional  t o  ~ / r  . Again t h e  ve1ocit.y 

decreases rap id ly  with d is tance  f o r  c lo se  encounters. Since t h e  

rnuirnum angular r a t e  of t h e  scan platform is  1°/sec, a t  most one 

p ic ture  per encounter, near t he  point  of c lo ses t  approach, w i l l  be 

possible  fo r  c lo ses t  approach dis tances l e s s  than 100 km. Extensive 

ana lys is  a i l 1  be required t o  optimize these  encounter sequences. 



Mass Determination. A s  t he  spacecraf t  passes Phobos the  g rav i t a t i ona l  

f i e l d  of Phobos w i l l  per turb the  spacecraf t  o r b i t  about Mars. An approxi- 

mation t o  t h e  amount of bending is o t ta ined  by assuming t h a t  t h e  r e l a t i v e  

motion of t h e  two s a t e l l i t e s  can be represented by hyperbolic conic motion. 

I f  Phobos has t h e  same densi ty  as Mare, the  change i n  ve loc i ty  due t o  

bending of the  spacecraf t  t r a j e c t o r y  will be about 42 mm/s f o r  an encounter 

dis tance of 40 km. The e f f e c t  va r i e s  inversely a s  t he  d is tance  of c lo ses t  

approach. A seconZ e i f z c t  i a  a r?hmge i n  the  t o t a i  ve ioc i ty  8s t he  space- 

c r a f t  approaches and recedes from Phobos. The energy i n t e g r a l  shows t h a t  

t he  change i n  ve loc i ty  would be 21 mm/s f o r  an encounter d i s tance  of 40 

km and again the  e f f e c t  drops of f  inversely a s  the  dis tance.  The geometry 

is  nearly optimal i n  January t o  view the  t o t a l  e f f e c t  of t he  bending i n  

the  Doppler data .  The geometry i s  not as optimal i n  March; but most of 

t he  change i n  ve loc i ty  magnitude w i l l  be seen i n  t he  Iruppler da t a  along 

with a small amcunt of t h e  bending e f f ec t .  The noise on the  Doppler da ta  

i s  approximately 1 mm/s; thus,  the  s igna l s  w i l l  be e a s i l y  detectable .  

Detailed e r r o r  analyses a r e  required t o  examine the  e f f e c t s  of corrupt ing 

influences such a s  t h e  Mars gravi ty  f i e l d ,  encounter geometry uncertain- 

t i e s ,  e t c .  Mass accuracy i n  t he  t ens  of percent can probably be a t ta ined .  

Applying an expression developed f o r  Asteriod flybys ( ~ n d e r e o n )  y i e lds  

a comparable mass accuracy estimate.  Optical  t racking nf Phoboa w i l l  ,,lrry 

an i m ~ o r t a n t  r o l e  i n  el iminat ing t h e  e r r o r s  due t o  unce r t a in t i e s  i n  t h e  

r e l a t  ive geometry. 



MISSION OVERVIEW 

Figure 6 i l l u s t r a t e s  a possible preliminary mission timeline for  

the  Phobos encounter experiment. The nominal end of mission f o r  Viking 

75 is  November 1 4 ,  1976. Mars solar  conjunction occurs on November 24, 

and it i s  expected t h a t  a l l  spacecraft communication w i l l  be l o s t  during 

t h a t  time period. It is  assumed tha t  f i f t e e n  days a f t e r  conjunction the  

communications w i l l  be adequate t o  determine the VO orbi t  so t h a t  the 

phirsliig iii&x-c:cr rm be ma& ofi neermher 11. This maneuver will take 

l e s s  than 12 m / s  and the  VO o r b i t a l  period w i l l  be between 24.6 and 22.95. 

The synchronizing maneuver w i l l  occur on December 16 and w i l l  use the  

remainder of the  12 m / s .  A t  t h i s  time the  distance from Phobos w i l l  be 

about 1000 lan. The c loses t  approach distance continually decreases t o  a 

minimum of about 40 km on January 13, 1977. An o r b i t  t r i m  is tenta t ive ly  

planned for  January 13, 1977 t o  do the  f i n a l  phasing fo r  the very close 

encounters. Detailed analysis  w i l l  be required t o  define vheneuch maneuvers 

should be executed and how many are required. Another o r b i t  t r im on 

January 16 changes the  phasing again so t h a t  the VO K i l l  pass d i rec t ly  

over the  south pole of Phobos on January 19, 1976. 

The March opportunity s t a r t s  with a p h a s i i ~  maneuver of 3 m / s  cn 

February 15.  The two o rb i t  trims, which a r e  performed i n  March, serve 

the  same purpose as those i n  January, The t o t a l  propulsive requirements 

for the  mission w i l l  be l e s s  than 20 m / s .  



SUMMARY 

It has been shown that the Viking Mars Mission in 1976 will provide 

an unprecedented opportunity to gather important data on Phobos at 

eseentially no extra spacecraft design costs. This serendipitous rniesion 

could provide data of great scientific value on the mass of Phobos and 

additional datu on its figure, surface properties, and rotational 

characteristics. This study shows that a science mission involving a 

close Phobos t?ncount,er is technically feasible and within the capabilities 

of the current Viking desi~n. For a AV of less than 20 m / s  the 

Vikint: Orbiter can provide approximately two bO day periods of close 

observation of Phobos with the first encounter period in January and the 

second in March, 1977. These experiments can be performed in series with 

the nominal mission; thus, providing complementary scientific infcrmation 

without compromising the original mission and scientific objectives. 

The data obtained from s multi-Phobs encounter experiment will add 

significantly to our total understanding of Mars, thc c ~ v i r c r ~ e n t  of Yars ,  

and the origin of the Solar System. 
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TABLE I 

MM '71 
DATA 

PHOBOS 

ASSUMING* 
HYDROSTATIC 
EQUILIBRIUM 

x,km 13.6 5 1 

Yskm 11.521 

z ,b 9.7 2 1 

GEIMOS 

ASSUMING 
DEIMOS 

loe3 1 AT 
9380 km 

Y ,km 6.1 2 1 

* Values used for these calculations are: 

Radius of Mean Mean Distance I I Mass 

I Equivalent Sphere 1 From Mars 1 ( ~ s s m i n p  3gm/cc ] 
PHOBOS I 

I DEIMOS I 
M&= 6.42 x gm 

Rb= 3394 lon 



TABLE I 1  

ENCOUNTER DATES OF NATURAL SATELLITES 

AND VIKING SPACECRAFT 

PHOBOS DEIMOS 

Nov. 1977 

Q c t ,  1978 

1980 

1981 

VO-A 

VO-B Jan. 1978 

1981 

1987 

1990 

Jan. 1977 

Mar. 1977 

1979 

1979 

1984 

1984 

1992 














