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FOREWORD 

Phase 11 documentation prepared fo r  the Requirements and Concepts f o r  

Space Processing Payload Equipment Study under Contract NAS 8-28938 resulted 
i n  a three-volume report. These volumes are as follows: 

Volume I. 
V 0 l ~  XI. 

I IA. 
I I B .  
I I C .  

I I D .  

IIE. 
Volume 111. 

Execu ti ve Sumnary 
Technical 

Experiment Requi ren;ents 

Payload Interface Analysis 

Da ta  Acquisition and Process Control 

SPA K i t  
Comnercial Equipment U t i l i t y  

Pmgranma ti cs and Payload Accomnoda t ion  

Vol ume I I, Techni cfi, i s  pub1 ished as f i v e  sub-vol umes i n order t o  

f a c i l  i tate presentation o f  topical groupings of data. 

Phase I documentation was previously documented i n  1973 as three 

volumes under the t i t l e ,  Requirements and Concepts fo r  Materials Science 

and Manufacturi nq i n  Space. 

One feature o f  th is  study has been the close ass~c ia t ion  between the 

NASA Shuttle Sort ie #orking Group on Materials Science and Manufacturing i n  

Space and the study contractor, TW System Group. The NASA-MSFC study COR, 

Mr. Kenneth R. Tay:or, has provided TRW Sys+,ems Group with workirlg group 

documentation and, i n  turn, has coordinated study task results in to  the 
ac t i v i t i es  of the working group. 

The TRW Systems Group personnel who assisted i n  the preparation o f  
Volume I I B  are l i s u d  below: 

Mr. R. D. Stevenson (Power) 

Mr. P. R. Mock (Thermal) 

Mr. K. W. Biber (FMC) 

Mr. R. L. Hammet (Editor) 

Ms. A. G. Smith ( td i t o r )  
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As a pa r t  o f  the task o f  performing prel iminary engineering analysis 

o f  modular payload subel ementlhost vehicle interfaces, a subsystem i n t e r -  

face analysis was performed to  establ ish the i n t e g r i t y  o f  the modular 
approach t o  the equipment design and integrat ion. Sa l ient  areas tha t  were 

selected for analysis were power and power conditioning, heat re jec t ion  and 

electromagnetic capabil i ty (EMC). 

1.1 POWER AND POWER CONDITIONING 

Ea r l i e r  studies indicated tha t  v i r t u a l l y  a1 1 equipment requires speci a1 

conditioning o f  the input  power. An examination o f  the input  power ava i l -  

able from the Spacelab indicated a possible mismatch i n  special equipment 

requirements f o r  a majori t y  o f  cases ( i n c l  uding commercial equipment). I t  

was determined tha t  maximum f l e x i b i l i t y  i n  i n t e g r ~ t i n g  subelements i n t o  the 

Spacel ab can be achieved i f the power condi t ioners are not  central  i zed, but  

are pa r t  o f  the equipment. . 

The number o f  possible SPA experiments are diverse. For the purpose 

o f  narrowing the scope o f  t h i s  study, the equipment and load p r o f i l e s  f o r  

twelve representative experiments were ident i f ied.  Two o f  the twel ve ex- 

periments were chosen as being representative o f  the group anc have been 

described i n  greater de ta i l  to  i l l u s t r a t e  the evaluations used i n  the analy- 

sis. 

The Shutt le Orbi ter  w i l l  provide e lec t r i ca l  power from i t s  three fue l  

ce l l s  i n  support o f  the Orbf t e r  and the Spacelab operations. One o f  the 

three Shutt le Orbi ter  fuel  ce l l s  w i l l  be dedicated to the Spacelab e l e c t r i  - 
cal power rel,ui rements during normal Shutt le operation. This power suppl i es  
the Spacelab subsystems and the excess w i l l  be avai lable t o  the payload. 

The current Spacel ab subsystem requirements resul t i n  a payload a1 locat ion 

o f  4.0 to  4.8 kW average (24 houriday) and 9.0 kW peak f o r  15 minutes. 

Additional power sources must be provided t o  f u l f i l  1 e l ec t r i ca l  power 

requirements that  cxceed the a l ' x a t i o n  of e l ec t r i ca l  power from the 

Orbiter. The power sources cons: iered were suppl menta l  and/or peaking 

bat tery k i t s  and the use o f  a Power-Heat Rejection K i t .  This k i t  w i l l  
contain up to  two Shuttle-type fuel ce l l s  and the necessary plumbing, 



controls , reactants and tankage t o  sa t i s f y  the SPA experiment requirements. 

The Power-Heat Rejectian K i t  would provide up to 14 kW o f  continuous power 

and peaks o f  up to 24 kW f o r  15 minutes. 

The use o f  the experiment payload al locatron f r o r  the Orb i te r  and the 

Power-Heat Rejection K i t  w i l l  provide e l ec t r i ca l  power to  the SPA experi- 

ments o f  from 4.0 t o  18.8 kW continuously and peaks a f  up to 33 kW f o r  15 

minutes. 

The e lec t r i ca l  power condit ioning and d i s t r i bu t i on  subsys tem must 

d is t r ibu te  power to the experimental equipment from the power source, i n  a 

safe, e f f i c i e n t  manner. A number o f  concepts were considered and compared 

re la t i ve  to: 

1 ) Impact on subelement payloads 

2) Impact on host vehicle (Spacelab) 

3) Modulari t y l f l  ex i  b i l  i t y  

4) Ef f ic iency,  weight and s ize 

5) Safety 

6) Electromagnetic compati b i l  i t y  (EMC) 

This comparison resulted i n  the fo l lowing recommendations: A 115 \ 

400 Hz, single-phase system for the low power experiment bus, and a 115 

VAC-1600/1800 Hz, 3-phase, 4-wire system f o r  the high power experiment bus. 

Power conversion from 28 VDC t o  400 Hz and 1800 Yz Ac w i l l  be accomplished 

by s ta t i c  DC to  AC inverters, which are frequency and phase synchronized to 

prevent dynamic interact ions and system i n s t a b i l i t y .  The inverters w i i  1 be 

sel f-protect ing f o r  overvol tage on input  and overload and short  c i  r cu i  t on 

output. Further consideration should be given to  the modularization of 

both the input  and output junction Poxes i n t o  several separate modules so 

that  i n  case o f  a major f a u l t  some bus protect ion w i l l  be provided by the 

physical separation o f  the switching elements. 

O f  course, throughout t h i s  a c t i v i t y  a continuous trade study of power 
condit ioning and d i s t r i bu t i on  equipment e f f i c ienc ies  on the thermal control 

requirements was made, Several thermal interfaces between the e l  ec t r i c a l  

power and thermal control subsystems were evaluated. The primary interface 

i s  the dissipat ion o f  a l l  e lec t r i ca l  energy consumed by the experiments, 

i .e. ,  the energy under the experiment power source p ro f i l e s  must be d i s s i -  



pated by the thermal contro l  subsystem. The d i ss ipa t i on  o f  t h i s  energy 

requires addl t i ona l  e l  e c t r i c a l  energy f o r  operat ion o f  the tilerma1 ct jn t ro l  

equipment resui t i n g  i n  a increa je  i n  e l e c t r i c a l  energy t h a t  must ba d i s s i -  

pated. Other thermal in te r faces  considered were the d i ss ip r  t i o n  of heat 

from the fue l  c e l l s  dnd the resul tan4 ~y -p roduc t  (water) produced by the 

fue l  c e l l s  f o r  po ten t i a l  use by the thermal cont ro l  subsystem. Based upon 

the experiment load requirements and assuming the use o f  the Power-Heat 

Reject ion K i t ,  a thermal cont ro l  pump system e l  e c t r i c a l  power requi  rement 

o f  470 W continuous was determined t o  s a t i s f y  the thermal cont ro l  sutsystem 

requi rements . 
1.2 THERMAL PERFORMANCE REQUIREMENTS 

The thermal cont ro l  subsystem w i l l  prov ide the requi red thelqma1 pro 

tec t i on  to maintait i  a l l  subsystems w i t h i n  thermal l i m i t s  f o r  a l l  rnission 

phases f o r  the experimental equipment. Waste heat d i ss ipa t i on  time1 i nes 

were developed f o r  the equipment selected i n  the subelements. The t ime l  ines 

were necessary t o  es tab l i sh  magnitude and dura t ion  o f  peak Icads. Items of 

eq~ ipment  t h a t  have waste heat requirements were separated i n t o  two groups : 

(1) those t h a t  can be met by the Snacelab capabi l  i t y  and (2)  thuse items 

tha t  requ i re  supplemental capab i l i t y .  i r ,  bddi t i o n  t o  the amount o f  heat, 

some i terns of  equipment were i d e n t i f i e d  t h d t  must meet s p e c i f i c  temperature 

requirements such as component touch o r  condensation tempgrature 1 i m i  ts .  

For the purpose o f  assessing the magnitude o f  the thermal cont ro l  

problem, three d i f fe ren t  thermal cont ro l  sys tem corrcepts were inves t iga ted  

to  determine t h e i r  capabi 1 i t y  to  provide the necessary thermal cont ro l .  
A1 though the assessment was o f  a p re l  iminary nature, the concept analyses 
d i d  i nd i ca te  a number o f  areas where modi f icat ions to  SPA t imel  ines andlor 

equipment woul l 52 necessary. 

The a i r  cool ing system concept depends upon the Spacelab suppl ied a i r  

f low f o r  cool ing o f  rack-mounted e lec t ron i c  equipment. I n  the analys is  o f  
t h i s  concept, a simp1 i f i e d  thermdl model o f  a t yp i ca l  cabin thermal cont ro l  

system a rd  the SPA a i r  coa l ing  loop were generated. Based on the analyses, 

i t  appears t h a t  a i r  coo l ing  i s  f eas ib le  p rov id ing  the necessary P/UA* can 

be provided on the commercial equipment. 

*P = Component Power 
UA = E f fec t ive  Thermal Conductance from Component t o  Coolant 
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The l i q u i d  cooling system i s  sim:lar t o  the a i r  cool ing coccept 

except that  the equipment mounting r e f l s  i n  the rack are cooled by coolant 

1 ines. A parametric analysis was conducted to a r ~ e s s  the f e a s i b i l i t y  o f  

suing a water cooling loop wi th  cold @'?te moonted electronics. The 1 i q u i d  

cooling concept's f e a s i b i l i t y  depends, t o  a large extent, on the design o f  

the 1 iqu id  d is t r ibu t ion  system. A pmperly des iged  -system must be capable 

of providing the required f low ra te  a t  a low encvgh pressure drop to r e s u l t  

i n  a reasonable pump power requirement and i t  appears t ha t  a 1 i qu jd  cool i ng  

loop would be feasible. 

A heat pipe system employed as a cool ing concept f o r  Spacelab was also 

investigated. Such a system would provide the capabi l i ty  o f  a thermal 

energy transport without an attendant expenditure o f  power f o r  an electro-  

motive device (fans, pumps, etc.). I t  was determined that  the heat trans- 

por t  requirements on the heat pipe system that  resu l ts  from a typ ica l  rack 

power dissipation d is t r ibu t ion  are too severe. The number o f  pipes required 

were considered impractical i n  re la t ion  to  a i r  o r  pumped l i q u i d  cooling. 

Heat pipes can be used, however, f o r  dumping heat f r o m  the various components 

in to  the a i r  ducts. 

The Power/Heat R e j z c t i o ~  K i  t (PHRK) thermal runt ro l  subsys tem (TCS) 

consists o f  a pumped 1 iqu id  loop which re jects  thermal energy to space v ia  

a thermal radiator located on the exter ior  o f  the PHRK strur ture.  The 

system i s  a l i q u i d  loop using two radiators to re jec t  the thermal energy 

abzorbed f r o m  the fuel  ce l ls ,  e lectronic equipment and furnaces. The 
primary radiator i s  a high temperature radiator f o r  high heat re ject ion 

and the secondary radiator i s  to  provide temperature drop i n  approximately 

ten percent of the flow for cool ing  room- temperature operating, e lectronic 

equipment. A theme1 capacitor i s  included i n  the system dcwnstream o f  

the primary radiator to store the thermal energy tha t  exceeds rad ia tor  

capacity u n t i l  such a time as the thermal load f a l l s  w i th in  rad ia tor  
capabi 1 i ty. 

The heat re ject ion subsystem was base1 ined on a 7 ft. body-munted 

radiator length. The usable experiment duty cycle was then defined f o r  

th is  system versus the average experiment power invol ved. Subsequent1 y, 

stirdy o f  the heat re ject ion system designs required to operate a t  7 kW and 

14 kW e lec t r i ca l  steady-state was made. A t  the fuel  c e l l  sources, the 



the previous e lec t r i ca l  values re f l ec t  a steady-state heat r e j e t t l o n  
? 

pmblem o f  11.3 kW and 22.3 kW, respectively. The steady-sate approach 

to defining the use o f  a supplemental power and re ject ion k i t  represents 
an extreme usage 1 i m i t .  On the other hand, examination o f  possible duty 

cyc 1 e usages based upon average experiment power i 11 us t ra tes usage options 
w i  th t h i s  approach. While the SPA experiment a c t i v i  t i e s  mvo l  ve around 

bth power and energy a v a i l a b i l i  t ies, i t  can be conclusively shown t h a t  

heat re ject ion w i l l  always pose the primary l i m i t a t i o n  i n  achieving the 

associated subsystem support. This i s  par t i cu la r l y  t rue i n  1 i g h t  of the 

1 imi tat ions affecting the thermal subsystem design o f  rad ia tor  size, fuel 

ce l l  temperatures and use o f  capacitors. 

1.3 ELECTIEOWGNETIC COMPATIBlLITY 

A s im i la r  a c t i v i t y  was performed f o r  the analysis of the electro-  

magnetic compatibil i ty (EMC) interface. His tor ica l ly ,  EMC has been 1 
appmached by test ing engineering models per a m i l  i tary  speci f icat ion.  I n  I 

contrast, modeled payload analysis can be used to  predict,  characterize and i' 
provide trade solutions Sn the design ac t i v i t y .  Most o f  the data required 

! 
' 

for detai led EMC study was not  readi ly  ava i l  able. A beginning was necessary i 
? 

f o r  two important reasons: One i s  tha t  the problem area had to be opened ! 
! 

up t o  establ ish the approach to EMC control; the other was tha t  i n  order 
i 

t o  exp lo i t  every mission opportunity, SPA payloads must be capable o f  ! 

operating i n  close proximity t o  almost any other experiment. An EMC eval- 

ust ion of ccmmercial equipment was one o f  the most important things t o  

emerge from th i s  e f for t ,  since comercial  equipment o f  the k ind envisioned 
' 

SPA had nct  considered EM: i n  the broad sense as necessary w i t h  space 
systems. This shoded up i n  component design, component assembly techniques 

and lack of measured o r  analyt ical  EMC data. The EMC problem i s  fur ther  

aggravated by the high currents and vol tages required by SPA. The i n i  ti a i  I 

efforts have been aimed a t  various levels o f  categorization o f  the payloads 

and inter facing equipment and a t  the establishment o f  ill I t i a l  estimates f o r  1 

the EMC environment for the representative payload configurations. A t es t  

program was performed to measure some a f  the pert inent EMC character ist ics i 

o f  R&D prototypes o f  equipment s imi iar  to  tha t  under consideration as po- 

ten t ia l  SPA payloads. 



2.1 OBJECTIVES 

I n  keeping w i th  the  d i rec t ion  i n i t i a t e d  by past studies def in ing SPA 

payload equipment concepts as m d u l  a r  , reconfi  gurabl e and reusable group- 

h g s  ~f apparatus, t h i s  task has attempted to perform a systems design 

analysis on the major equipment items. The equipment i t e m  have been 

categorized i n t o  groupinss. Par t icu lar  a t tent ion was given to groupings 

t ha t  support a number o f  om jected experimenters involved i n  mu1 ti-mission, 

shuttle-implemented, space processing ac t i v i t i es .  

A1 I gved wi th  maintaining a consistent f low o f  information tha t  mu1 d 

detarmine the feasi b i l  i t y  o f  apparatus, a1 ternatives and accommodation 

concepts, present study a c t i  v i  t i es  selected representative categories f o r  

the expressed purpose a f  redgcing the myriad o f  var i  A i l  i ty i n  equipment 

redundant;. The study a c t i v i t i e s  included fur ther  analyses o f  space pro- 

cessi ng considerations i n  re1 at ion to three major subsys tem interfaces : 

e l  ec t r i c  power, thermal and electromagnetic compati b i l  i t y  (EMC) . 
The major d i rect ion and scope o f  t h i s  task's e f f o r t s  can be summarized 

i n  a re l a t i ve l y  s impl is t ic  manner -- a t t a i n  su f f i c i en t  data t ha t  can be 

parameterized. To perform a series o f  tradeoff studies tha t  would re1 ate 

SPA payload requirements t o  Space1 ab/Shuttle capabil i ties,  i t  i s  necessary 

to evaluate a number o f  physical interfaces. The compilation o f  these 

equipment/experiment performance and requirement parameters are the basic 

substance o f  t h i s  analysis. The product o f  t h i s  study should then be con- 

sidered as a pro ject  management tool tha t  would define problem areas ar,d 

guide future studies. 

2.2 KEY INTERFACE ACTIVITIES/GUIDELINES 

The key inter face act iv i t ies /gu ide l ines are presented f o r  the three 

major subsystem categories : E lec t r i c  power and d is t r ibut ion,  thermal 

control and EMC. For purposes o f  reducing the imnense quant i t ies o f  

inter twining data that  the experimenta 

i n i t i a l  objective o f  t h i s  study was t o  
(b io logical  and furnace) thereby r e f i  n 

remaining aspects o f  the program. 

1 subelements would provide, the 

concentrate on two subel ements 

ing  the study approaches f o r  tha 



2.2.1 E lec t r i c  Power and D is t r ibu t ion  Subsystem 

Ea r l i e r  studies indicated tha t  v i r t u a l l y  a l l  SPA equipment w i l l  
require special condit ioning o f  the input  power (high voltage, low 

voltage, regulatior;, etc.). An examination o f  the input  power condi- 

t ion ing avai lable from the Spacelab indicated a possible mismatch !n 

special equipment requirements for a major i ty o f  cases including 

comnerci31 equipment. Maximum f l e x i b i l  i ty i n  in tegrat ing subel ements 

i n t o  the Spacel ab i s  achieved i f  the conditioners are not  centralized, 

but are pa r t  o f  the equipment. Central a c t i v i t i e s  were directed toward 

def in ing equipment requi rernents (more than j u s t  power leve l )  and toward 

establ ishing minimum equipment complements f o r  f l i g h t  hardware. A t  

the commencement of the study i t  appeared tha t  power conditioners 

would be provided f o r  each o f  the minimum equipment compl ements. One 

potential a1 ternat ive t h a t  was considered was tha t  modif icat ion o f  

ex is t ing equipment designs could be imp1 emented t o  standardize input  

power characterist ics i n  order t o  operate e i ther  d i r e c t l y  from the 

Space1 ab ptiwer buses o r  from modular standardized power condi t ioners 

(pa r t i  a1 l y  central i zed). A simple e lec t r i ca l  in ter face between sub- 

elements and the Spacelab (o r  other power source/vehicle) appears to  

be mandatory. When considering d i f ferent  types o f  power tha t  may be 
avai 1 able from the space1 ab (AC, DC, d i f f e ren t  vol tagesl f  requencies) 

eilch sube'er.mt must be examined t o  establ i sh  which source y ie lds  the 

k s  t com~romise between power conditioner re1 i ab i  1 i t y  , efficiency, 

weik' ':, etc. Wherever appropriate, the selected power type must a1 so 

t: available f r o m  power sources other than Spacel ab. 

Another aspect tha t  must be considered f o r  the e l e c t r i c  power 

subsystem interface analysis i s  the protection o f  the power source 

against oierloads i n the subelement equipment o r  wir ing. Overloads 
mcay r s v l  t from large peak power requirements and are an in terest ing 

u:obl em especially i n  the s i tuat ion when a1 1 power comes from Spacel ab 

on a single bus. The en t i re  area of f a u l t  protection has been sc ru t i -  

nized during t h i s  study. 



Power condit ioning and d i s t r i bu t i on  equipnent e f f i c ienc ies  have a 
d l  r ec t  impact on thennal control mqu i  rements. Conversely, thermal 

control requirements may have a d i r e c t  impact on power condit ioner 
s iz ing (if conditioning i s  required f o r  pmps, fans, etc.). This 

i t e r a t i v e  analysis of the e l e c t r i c  powerlthermal control in ter face 

was a key stuciy ac t i v i t y .  

Consideration has been given t o  peak power requirements t ha t  may 

impose excessive voltage drops i n  power buses o r  excessive cable 
weight t o  achieve acceptable voltage drop a t  the using equipment. I n  

addition, the energy content o f  the peaks may be be t t e r  supplied from, 
o r  supplemented by, bat ter ies i n  the subelement i t s e l f .  This would 

minimize the impact o f  the power requirements on the s iz ing  o f  Spacelab 

power equipment. The i n ten t  o f  t h i s  consideration i s  to devise subele- 

rnents that  can f i t  i n t o  a given vehicle design without necessitating 

major modifications. I t became apparent tha t  consideration must be 

given to batter ies and quel c e l l s  i n  the subelements. The type c f  

battery o r  fuel c e l l  and associated controls were reviewed and selected. 

The power sources' large, variable heat dissipation, as well  as t h e i r  

performance sens i t i v i t y  to  temperature, create a major thermal i n te r -  
face analysis ac t i v i t y .  

2.2.2 Thermal Control Subsystem 

The Spacelab thennal interfaces under evaluaticn per ta in  to  the 

waste heat re ject ion requi rements o f  the subel ements. The heat re ject ion 

capabil i t y  tha t  i s  suppl ied  by the configured Space1 ab dictates the 

d i rect ion and emphhsis o f  the study. Heat d issipat ion by moderate 

temperature renge equipment may be handled by the excess capabi l i ty  o f  

the Spacelab. Waste heat from high temperature source (furnaces 

typical l y )  can most e f f i c i e n t l y  be hand1 ed using a high tempera:ure 

aux i l ia ry  n d i a t o r .  Iden t i f i ca t ion  and separation o f  the subelement 
waste heat i n to  candidates for Spacelab removal o r  high temperature 

radiator removal was the i n i t i a l  task o f  the study. I n  conjunction wi th  
waste heat reject ion, equipment temperature control was i n c l  uded as an 

important aspect of the thermal design. Achieving temperature d i s t r i  - 
butions i n  the region of high temperature furnaces o r  cool ing un i ts  



which a m  compatible w i th  component touch o r  condensation temperature 

l i m i t s  became a major consideration o f  the thermal control system 
design. The equipment investigated f o r  the two prototype subelements 

was categorized according t o  the need f o r  addi t ional  thermal control  

f o r  temperature compa ti b i  1 i ty . 
The interfaces o f  the thermal control system w i th  the subelement 

equipment were examined t o  ascertain po ten t i a l l y  desirable modif icat ions 

t o  equipment tha t  would reduce the thermal control  problems; for  ex- 

ample, the addi t ion o f  a small blower w i th in  eqiripment tha t  i s  normally 

a i r  cooled by natural convection could negate the need f o r  surface 

temperature control.  

The physical interfaces wi th  Spacelab and the Shutt le cargo bay, 

created by the need f o r  an aux i l i a r y  radiator ,  include the locat ion o f  

f l u i d  1 ines and requ is i te  penetrations o f  the pressure shel l  t o  accomno- 

date radiator  requirements. Location o f  the rad ia tor  i t s e l f  must, 

therefore, be compatible wi th  other aspects o f  the selected o r b i t i n g  

configuration. 

The physical inter faces w i th  experiment equipment may necessitate 

the nee.. f o r  aux i l i a r y  ducting f o r  a i r  cool i ng  the moderate temperature 

range equipment and may create addi ticma1 inter faces w i th  the Space1 ab 

a i r  d i s t r i bu t i on  system. The payload ducting, i f  fed from the Spacelab 

system, must be compatible w i th  the pressure d is t r ibu t ions  w i t h i n  the 

sx is t ing ducting. Otherwise addit ional fans (compressors) would be 

required to p r w i d e  the necessary cooling. A trade-off between the 

prime mover power and the neat re jec t ion was conducted to assess the 

f e a s i b i l i t y  o f  a i r  cooling. 

2.2.3 EMC Subsystem 

The EMC tasks and a c t i v i t i e s  were di rected toward a t ta in ing the 

following system assurances: (1 ) tha t  no degradation o r  ma1 funct ion 

of the SPA system i s  caused by unintentfonal electromagnetic i n t e r -  
actions between elements of SPA o r  w i th  the electromagnetic environment 

i n  which i t  i s  embedded, and (2) tha t  the SPA system does not  degrade 

o r  casse ma1 functions i n  other systems operating i n  tha t  environment. 

These tasks were approached by rev i  ewi ng both e l  ec tromagneti c 
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interference (EMI) emissiorts and EM1 suscept ib i l  i t y  o f  elements of 

SPA t o  ensure tha t  a margin ex is ts  between the EM1 environment and the 

suscep t ib i l i t y  o f  a l l  elements which must operate i n  t ha t  environment. 

A s ign i f icant  in ter face ex is ts  i n  the area of r e l a t i ng  other users' 
systems w: t h  which SPA must be electromagnetically compatible. I n  the 

tMC ac t i v i t y ,  other users must be considered both as c u l p r i t s  and as 

v i c t i m  i n  assessing EMC. Within the context o f  exp lo i t i ng  every mission 

opportunity, SPA shod d be capable o f  operating i n  close proximity t o  

suc9 experiments as high energy science invo lv ing wideband receivers. 

Both the range o f  1 eve1 s and the range o f  frequencies t o  be con:- idered i n  

i n  the EMC studies were broader than i s  normal i n  space systems EMC 

analysis. 

An addit ional fac tor  tha t  contr ibutes to  the EMC subsystem inter face 

wi th  the other subsystems i s  tha t  most comnercial equipment o f  the kinds 

envisioned f o r  SPA have not  had t o  consider EMC i n  the broad sense tha t  

i s  necessary wi th  space systems. This problem affects not  only SPA 

internal  EMC, bu t  also EMC w i th in  the Space1 ab/Shuttle envi romnent. 

The magnitudes o f  the currents, voltages and powers processed 

w i th in  some components envisioned f o r  SPA ind ica te  tha t  the EM1 emissions 

from SPA w i l l  be abnormally high f o r  space systems. The inclusion o f  

radio frequency (RF) sources working i n  housing wi th  necessary opt ica l  

aperatures, which necessarily reduces shie ld ing e f f ec t i v i t y ,  can be 

expected to  contr ibute to  these high leve ls  of EM1 i n  the SPA environment. 

I n  practice, t h i s  character is t ic  implies tha t  SPA i s  more 1 i k e l y  to be 

an EMC c u l p r i t  than an EMC victim. 

2.3 ENGINEERING DISCIPLINES' SUBSYSTEM REQUIREMENTS 

2.3.1 E lec t r i c  Power and D is t r ibu t ion  Subsystem 

To establ ish power condit ioning and d i s t r i bu t i on  configurations, i t  

was necessary to determine e lec t r i ca l  character ist ics of the ava i l  able 
types of power sources and the experiment loads a t  the outset o f  the 

study. Where the characterisi  t i c s  selected f o r  the study were r e l a t i v e l y  
broad, the study addressed the sensi t i  v i  t y  of subel ement performance and 

the power required t o  accomnodate experiments during these "del tau var iat ions . f 



Configuration concepts o f  the power condit ioning and d i s t r i bu t i on  

subsystem were strongly influenced by such prudent factors as integrat ion,  

tes t ing  and physical constraints i n  addl t ion t o  those o f  e l e c t r i c a l  

power inputs, outputs, control and protect ion requi rmen  ts. 

2.3.2 Thermal Control Subsystem 

The thermal control subsystem provides the required thermal pro tect ion 

t o  maintain a1 1 subsys tans and experimental equipment w i t h i n  thermal 

l i m i t s  f o r  a l l  mission phases. 

Waste heat d iss ipat ion t imel ines were constructed for  the equipment 

needed i n  cer ta in  exemplary experiments sel ected f o r  the subel ements t o  

be studied. The timel ines were necessary t o  establ ish magnitude and 

duration o f  peak loads. The -~tet+nd o f  hand1 ing peak loads, e.g., use of 

primary structure as a heat s ink  versus provis ion o f  addi t ional  heat 

sink material was somewhat dependent upon theSr character ist ics.  A1 low- 

able component temperature information was required t o  assess the ten- 

perature control mechanisms ava i l  able. The need f o r  1 i q u i d  loop thermal 

control versus a i r  cool ing can depend on the heat d iss ipat ion and 

allowable temperature o f  the equipment t o  be thermal 1 y control i sd. 

Typical equipment packaging information was required t o  se lec t  a thermal 

control system. The locat ion o f  heat d iss ipat ing equipment re1 a t i  ve to  

the ex te r io r  envelope, s t ruc tura l  members and other heat d i  ss i  pa t i  ng 

equipment, impacts the choice o f  a thermal control system. Information 

regarding the physical shape o f  the heat d iss ipat ing components was 
necessary to  ident i fy  the leve l  o f  forced a i r  f low necessary t o  compen- 

sate for the cool ing tha t  would normally be provided by natural convection. 

In the case o f  the Spacelab, the a i r  f low character ist ics o f  the 

Spacel ab were required f o r  use i n  the thermal control system s i  ti ng and 

trade-off analyses. Local cabin veloci t ies ,  duct pressure d is t r ibu t ions  

and equipment container flows were required to  properly assess the a i r  

cool i ng concepts. Thermal characteri s ti cs of the Spacel ab were requi red 

t o  conduct trade-off studies. I n t e r i o r  temperature d i  s t  

required to  establ ish the thermal rad ia t ion enbironment 

heat d iss ipat ion analyses. Physical information on the 

Spacel ab envelope was necessary t o  locate auxi 1 i ary rad i  
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attendant interfaces. The ~ v a i l  ab lz  area f o r  loca t ing  a rad ia to r  

d ictates the thermal control  scheme a1 ternat ive tha t  miky be chosen. 

2.3.3 EMC Subsys tem 

A majori+,+ o f  the data required f o r  a deta i led EMC study i s  no t  

read i ly  avaialable; therefore, much o f  the analyses accomplished was 

based on assumed levels, frequencies, configurations, etc. 

Two general approaches t o  the EMC program presently i n  use are: 

(1 ) the m i l  i tary  speci f i  cat ion approach, and (2) the mission-speci f i c  

analyt ical  approach. The m i l  i tary  spec i f ica t ion approach u t i l  izes a 

speci f icat ion document providing a broad range o f  requirements on 

component emissions o f ,  and suscepti b i l  i t y  to, EMI.  His to r i ca l  l y  , the 

po in t  o f  control has been i n  the acceptance tes t ing  o f  the components. 

The in ten t  o f  the m i l  i t a r y  spec i f ica t ion approach was t o  ensure t ha t  

components qua1 i f ied  to  the speci f ied requi rements coul d be integrated 

i n t o  a system w i  th  minimal EMC problems which i s  a v iable approach i f  

r igorously enforced f o r  long l i f e t i m e  systems. Unfortunstely, such an 

approach has o f ten resul ted i n  over-desi gning from an EMC po in t  o f  view, 

and severe cost  and weight impacts have been incurred which were 

unnecessary. 

The mission-speci f i c  analyt ical  approach t o  EMC u t i 1  i zes an EMC 

speci f icat ion as a s ta r t .  Analysis, using a computer EMC model of the 

system, would be performed during implementation o f  the s:ls tem design 

and would be ver i f i ed  by tes t ing  during cc-..iponent and s y s t e ~  assembly. 

Thus, the po in t  o; control i s  sh i f ted  i n t o  the design phase. Design 
trade-offs invol  ving EMC constraints could be made ra t iona l  l y ,  w i th  the 

computer model as an analy t ica l  too l .  Rigorous enforcement o f  a 

m i l  i tary speci f icat ion approach would d i l  ute the advantage o f  the 

mission-specific approach w i th  regard to design trade-effs, bu t  the 

computer analysis could s t i l l  s h i f t  the EMC control po in t  i n t o  the 
design phase 

The po in t  o f  concern 's tha t  the SPA approach t o  EMC must r e f l e c t  the 

Spacelab and Shutt le approaches which are as yet undefined. 



3. ELECTRICAL POWER SUBSYSTEM 

The major concerns o f  the e lec t r i ca l  power subsystem have been to 
review and evaluate the e lec t r i ca l  power demands o f  various SPA experi- 

ments as they re la te  to: 

a Power avai 1 abi 1 i t y  

0 Power capabi 1 i ty 

0 Energy demand 

0 Eva1 ua t i o n  o f  suppl menta l  power sources 

These studies w i l l  then provide the basis f o r  concept evaluation 

and comparisons f o r  supplemental power sources and power condi t ioning 

and d i s t r i bu t i on  f o r  Space1 ab. Each o f  the above has been evaluate0 

during the continuing SPA program study a c t i v i t i e s .  

3.1 POWER REQUIREMENTS 

There are a vast number o f  possible SPA experiments. For the 

purpose o f  narrowing the scope o f  t h i s  study, the equipment and load 

p ro f i l es  f o r  twelve representative experiments have been iden t i f i ed .  

Two experiments were chosen from each o f  the s i x  basic research and 

development (R&D) categories. The twel ve representat i  ve sxperiments 

are l i s t e d  i n  Table 1 by name, along w i th  the R&D category and 

equipment subelement i n  which i t  would be performed. Throughout the 

body of t h i s  report, the twelve experiments w i l l  be iden t i f i ed  by the 

numbers one through twelve. Two o f  these experiments, chosen as 

representative o f  the twel ve, have been i d e n t i f i e d  i n  greater de ta i l  to 
ass is t  i n  the necessary evaluations o f  t h i s  study. They are: Experiment 

#1, Metal lurgical-Furnace, Encapsulated Immiscible Combination; and 

Expsr;~r~ant #8, Biology Appl icat ion-Biological  , Continuous Flow Electro-  

phoretic Separation o f  Proteins. 

3.1 .1 Equipment Power Load Pro f i l es  

During the previous phase o f  the SPA study, surveys were conducted 

to  determine appl icable experiment equipment i n  each o f  the subel ement 

categories and t o  obtain operating character s t i c s  and re la ted data f o r  

as much o f  the experiment equipment tha t  was comerc ia l l y  available. ilo 





attempt was made t o  select  part icuf  a r  equipment but  the approach taken 

was t o  determine the character ist ics o f  tyc!cal equipment t ha t  could be 

used. 

From the resu l ts  o f  these surveys, typ ica l  equipment was l i s t e d  f o r  
i , ; ~  twel ve representative experiments and nc :ec! i n  Section 3.1 .2. Furfher 

de ta i l  was obtained f o r  two o f  the twelve experiments tha t  were selected 
as r e p ~ s e n t a t i v e  o f  the twelve. A summary of the equipment requf red 

and t h e i r  e lec t r i ca l  power character ist ics are containei i n  Table 2 

for  the Metal l u rg ica l  -Furnace (Encapsul ated Immisci b l  e Cc ~f nation) 

experiment and i n  Table 3 f o r  the Biology Applications- biologic^; 

(Continuous Flow Electrophoretic Separation) experiment. Each o f  the 

experiment equipn;ent items are i den t i f i ed  by name ;.,d by equipment 

number. The operating power i s  the power required t o  maintain the 
operation o f  the eqdipment i tem. The energy requirement i s  f o r  one 

experiment cycle. A l l  o f  the equipment items require a 115/230 VAC, 

60 Hz i?pu t  tha t  could operate a t ranges t o  400 Hz. Those equipme,~t 

items that  are shown t o  require a d i f f e ren t  input  have been provided wi th  

a power condit ioner as pa r t  o f  the equip~ent.  A1 though the power con- 

d i t ioners are pa r t  o f  the equipment items that  they supply, the condi- 

t ioners are 1 i s ted  separately. The power requirements 1 i s  ted are inputs 

t o  the power conditioners which are 115/230 VAC, 60 Hz inputs. 

A l l  equipment items f o r  the two experiments are 1 i s t ed  :n Tables 2 

and 3, but  a l l  do not require power. I n  Table 2, the Hot Wall Furnace 

(F2E) contains a Resistance Heater (F18E) that i s  supplied power from 

a Low Vol t/High Amp Power Ccndi t ioner (F15E). Power i s  required only 

to  the power conditioner. Power i s  supplied to  the High Vacuum Pump 

(F2SE) from the Vacuum Pump Power Conditioner (F3OE). The Molecular 
Sieve ( F28E) does - q t  requi r e  e l  ec t r i c a l  power. 

The Continuous Flow Electrophoretic Column (B11 E )  f o r  the R i ~ l o g y  

Applications Experiment (Table 3.) i s  sugplied power from the High 

Voltage ( 5  kY) Power Conditioner (B21E). No power i s  required f o r  
the supply tanks B i 4 E  and B20i o r  for the waste l i q u i d  tank B26E. 

The power requirements for  each of the equipment i tems assigned to  

the Core Subelement tha t  i s  used to  support the SPA experiments, i s  
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1 i s ted i n  Tab1 e 4. Energy mqui m e n t s  are not included because the 
duration o f  operation o f  the Core Subelanent equipment i s  dependent upon 
the experiment that  i s  being supported. That is,  the Core Subelement 

operates for about 3.5 hours f o r  the k t a l l  urgical-Furnace (Encapsulated 

Imniscihle Combinatfon) experiment and about 2.8 hours f o r  the Bioloqy 

Appl iu t ions-Bio logica l  (Continuous flow Electrophoretic C o a l  natfon) 
experiment. Each o f  these durations are f o r  one experiment cycle only. 

A l l  equipment items are sat is f ied by a 115/220 VAC, 60 t o  430 HE input. 

The Fluid Supply S p + s  (ClOE) does not require e lec t r i ca l  power. 

An e lect r ica l  power load p r o f i l e  f o r  each o f  the equipment items o f  

the Metal 1 urgical -Furnace (Encapsul ated Imnisci b l  e Combination) experi - 
ment are presented i n  Figures l (a )  through l (q ) .  Each of the equipnlent 

items are phased from the beginning o f  an experiment cycle wi th  zero 

elapsed time assumed t o  be the turn-on o f  the Core Subelement support 
equipment. These prof i les are fo r  a l l  power required a t  the user 

equipment. A to ta l  equipment user load p r o f i l e  i s  obtained by adding 

the power required f o r  each equipment item a t  each t i m e  t o  obtain the 

p r o f i l e  presented i n  Figure l (h).  

The equipment e lect r ica l  power load prof i les a t  the user equipment 

are presented i n  Figures 2(a) through 2(k), f o r  3iology Applications- 

Biological (Continuous Flow Electrophoretic Col umn) experiment equipment 

items. A to ta l  equipment user load p r o f i l e  f o r  the experiment i s  

presented i n  Figure 2(1). 

The equipment power p r o f i l e  f o r  the Core Subelement used to support 

a l l  o f  the SPA experiments i s  presented i n  Figure 3. This p r o f i l e  

shottld be added to  the experiment equipmer,t prof i les,  Figure 1 ( n )  , and 
L(1), to obtain the to ta l  experiment equipment prof i les.  The ind i  v i  dual 

equipment profi les have not been defined separately because o f  the 

differences i n  requirements f o r  each experiment, (pr inc ipal ly  i n  dura- 

t ion  of operation). The average user power for the Core Subelement i s  

about 1.8 kW with a peak power o f  about 2.1 kW f o r  a maximum of  

50 minutes. The durations to  support the two selected experiments are 
indicated on the prof i le .  
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a. F30E VACUUM PUMP 
POWER 
CONDITIONER 

b. F12E PESJOUAI. GAS 
ANALlZER 

c. F26E VACUU4;PRESSURE 
MEASUREMENT W I T  

d. F Z ~ E  VACUUM/PRESSURE 
REGULATOR 

e .  F23E PIEZOELECTRIC 
DRIVE 

ELAPSED EXPERIMENT TIME - HOURS 

F igures  l a -e .  Equipment Power Load P r o f i l e s .  
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ETALLURGICAL - FURNACE 

f. F15E LOW \IOLT/HIGH AMP 
POWER CONDITIONER 

g. F21E MECt:ANICAL MIXING 
AND DISPERSAL UNIT 

h. EXPERIENT LOAD 
PROFILE 

1 2 3 4 5 

ELAPSED EXPERIMENT TIME - HOURS rP414  -#it# 

Figures  I f - h .  Equipment Power Load P r o f i l e s .  
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BIOLOGY APPLICATIONS - CONTINUOUS now 

300 300 
a. 823E REFRIGERATOR 

150 

0 

b. B1E FLUID COOLING/ 
REFRIGERkTOR 
UNIT 

I I 

LY 
u 1 0 0  
H d. B13E GAS ELIMINATION 

SYSTEM 

5 0  
' . . '  

0 - .  I I - -. . I  

4 0 -  
40 
I e. B15E PH MONITOR 

0 1 2 3 4 
ELAPSED EXPERIMENT TIME - HOURS 

S p ~  ru - ~ I?C  

Figures 2a-f. Equipment Power Load P r o f i l e s  
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BIOLOGY APPLICATIONS - CONTINUOUS FLOW 

a 
g. BITE now METERS I 

I I J 1 

3 0  
30 h. B19E DISSOLMD OXYGEN 

ANALYZER 

15 

0 

i . B21E H I W  VOLTAGE (5KV) 
POWER CONDITIONER 

I ---I 

j. BlOE METERING PUMPS (2)  

- I- 

k,  BSE UV-VIS SPECTROMETER 

ELAPSED EXPERIMENT TIME - HOURS 
5 p ~ q ~  - l f ? ~  5 

.:. 
Figures 29-k. Equi prnent Power Load P r o f i  l e s  4 



power o f  the u n i t  B1E as 
ised i n  June 1974. 

NOTE: Power p r o f i l e  should r e p w e n t  a 
1.5 kW not 2.35 kW which was rev 

peak 

BIOLOGY APPLICATIONS - BIOLOGICAL 

1. EXPERIMENT 
LOAD PROFILE 

ELAPSED EXPERIMENT TIME - HOURS 

~i gure 2(1).  Equipment Power Load Prof i  l es  
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CORE SUBELEMENT 

I I 

DURATION I S  
DEPENDENT Ol 
EXPERIMENT 

ELAPSED EXPERIMENT TIME - HOURS 

F i g w e  3. Equipment  Power Load P r o f i l e  Core  Subelement .  



A summary o f  the requi remsnts f o r  the two representative experi- 

ments i s  presented i n  Table 5. The average, sustaining and peak power 

requirements f o r  the two experiments are also included. The average i s  

expressed as the average power over the t o ta l  elapsed experiment time 

from the time the core subelement supporting equipment i s  turned on u n t i l  

i t  i s  turned o f f .  The time reference f o r  t h i s  value i s  approximately 

one hour longer i n  duration than the experiment equipment operation. 

However, variat ions w i l l  occur and i s  dependent upon the experiment. The 

sustaining power i s  expressed as an average over the period of time tha t  

the experiment equipment i s  i n  operation. The time frame f o r  t h i s  opera- 
t i on  i s  usually a shorter time duration than f o r  the average power. The 

peak requirements are keyed to indiv id la!  p ro f i l es  and are not  addit ive. 

This fac tor  i s  a t t r i bu ted  t o  the condit ion tha t  a l l  o f  the peaks do not  

occur a t  the same time. 

The experiment, core and thermal equipment requirements are e l  e c t r i  - 
cal power requirements a t  the load user equipment. The subtotal o f  these 

values are re f lec ted back to  the power source assuming a 90% power factor, 

a 70% inver ter  eff iciency, a 2% factor f o r  l i n e  losses, and a 10% contingency. 

The load requirement summary i s  based upon a1 1 i den t i f i ed  loads requir ing 

AC power and re f lec t ing these requirements back t o  a 28 v o l t  CC e l ec t r i ca l  

power source (see Section 3.2). The t o ta l  values for each experiment f o r  

average, sustaining and peak power are e lec t r i ca l  power requirements a t  

the DC power source. 

3.1 .2 Experiment' s Load Power Requirements 

The twelve exemplary SPA experiments were analyzed i n  the same manner 
li 

as the two tha t  have been detai led i n  the previous section. Power p ro f i l e s  

were prepared for  each i tem of equipment and to ta ls  were obtained f o r  the 

various power requirements a t  the experiment load. 

The average, sustaining and peak power requirements a t  the user 
, , 
j .  

equipment for each o f  the twel ve representati ve experiments and the Core I 

Subel ement are summarized i n  Figure 4. These val ues w i l l  be re1 ated t o  j 

source power requirements i n  the fo l lowing section. The f igure shows the j 
1 .  

values for average, sustaining, peak power and the durat ion o f  each o f  the I 

i 

peaks. Where mere than one peak occurs o f  s im i la r  magnitude both are presented. 1 i 
, . 
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Where two identical peaks occur w i t h  on ly  several minutes o f  separat io* 

they are represented as one peak w i  t h  a t f i ta l  durat ion equal t o  the sum 

o f  the durat ion o f  each peak. 

The energies summarized i n  Figure 5 are f o r  one experiment cyc le and 

a1 1 energies required a t  the user equipment f o r  both the experinent and 

Core Subelement equipment. The lower p a r t  o f  each bar represents the Core 

Subelement c ~ n t r i b u t i o n  t o  the t o t a l .  These values must then be r s l a t c d  

t o  source energy requirements and subsequently mu1 t i p l i e d  by the nmber  of 

experiment cycles i n  a mission t o  determine the t o t a l  energy requi renient. 

3.1.3 Source Power Requirements 

The e l e c t r i c a l  power requirements a t  the power source has skiera1 

functions; i t  i s  used to s ize  the power source arid supplementary equipment 

and t o  ass i s t  i n  the EM1 analysis and thermal contro i  design. To obta in  

the e l e c t r i c a l  power requirentents o f  the SPA experiments a t  the power 

source i t  i s  necessary t o  r e l a t e  the experiment equipnsnt load requirements 

through i n v e r t e r  i n e f f i c i e n c i e s  and 1 ine  losses t o  the e l e c t r i c a l  power 

source. This was accompl ished f o r  each o f  the  twel ve representat i  ve SPA 

experiments t h a t  were i d e n t i f i e d  i n  t h i s  study. The resu l t s  are shown as 

e l e c t r i c a l  power source p r o f i l e s  f o r  each o f  the twelve experiments i n  

Figures 6a- 1 .  

The e l e c t r i c a l  power source p r o f i l e s  f o r  each n f  ihe twelve experiments 

were obtained by combining the experiment equipment and Core Subel . anc 

equi gment requi rements presented i n  Section 3.1 . 2  w i t h  the thermal con t r o l  

equipment requirements. The values are then d iv ided by 0.9 to  account 

f o r  an assumed power factor of 90%, d iv ided by 0.7 to acccunt f o r  an 

i nve r te r  ef f ic iency o f  70%, d iv ided by 0.98 t o  account f o r  a 2% 1 i ne  

loss  and a 10% fac to r  i s  added t o  the resu l tan t  subtotal  t o  a l low f o r  a 
10% contingency. 

The average, sustaining and peak power requi rernonts are ind ica ted f o r  

each of the m e l v e  experiments and the  susta in ing and qeak values were 

sumnari zed i n  Figures 7 and 8. Thest f igures a1 so compare the average and 
peak z l e c t r i c a l  power capabil i t i e s  o f  one and two fue l  c e l l  systems. 
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c. EXPERIMENT NC. 3 

CRYSTAL 6RWTH - LEVITATION 

AMRAGE = 5.97KW 
SUSTAINING = 6.18KW 
PEAK = 9.42KW 

9.3YKW (30 MIN) 

ELAPSED EXPERIMENT TIME - HOURS 
d*  1 

Figures 6c and d. SPA Experiment Power Source Load P r o f i l e s  

EXPERIMENT NO. 4 spA 7U -t,9 M 



..:. . GLASS TECHNOLOGY - FURNACE 

. . .  .::... .:: 

AVERAGE = 10.43KW 
SUSTAINING = 13.53KW 

.......... . . . .  : ..:.: .. . . .  
PEAK = 27.60KW (30  MIN) 

. . . . . .  

e. EXPERIMENT NO. 5 

I I ' I 

GLASS TECHNOLOGY - LEVITATION 

AVERAGE = 10.15KW 
SUSTAINING = 13.06KW 
PEAK = 28.22KW 12 MIN) 

27.86KW 36 MIN) I 

ELAPSED EXPERIMENT TIME - HOURS 
f. EXPERIMENT NO. 6 

Figures 6e and f. SPA Experiment Power Source Load P r o f i  les 
-33- 
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il. TE : -9s af June 1974 the peak power of the uni t B1 E was e v i  sed t e  be 1 .5 kK , 
whjch w i l l  change the appearance o f  the paver prof i les samewhat. 

BIOLOGY APPLICATIO#S - BIOLOGICAL 

AVERAGE = 5.75KW 
SUSTAINING = 5.56KU 
PEAK = 9.34W (SPIKE) 

8.8W (18 MIN) 

- 

g. EXPERIMENT NO. 7 

- 0 1 2 3 4 
ELAPSED EXPERIMNT TIME - HOURS 

cpr 19 -1r8J h. EXPERIMENT NO. 8 

Figures 69 and h. SPA Experiment Power Source Load Prof i les  



1 0  . -  -I - I r I 

PHYSICAL PROCESSES I N  FLUIDS - LEVITATION 

AVERAGE = 5.34KW 
SUSTAINING = 6.47Kkl 
PEAK = 8.81KW SPIKE) 

8.18KW 12  AND 18 H I N j  I 

. . . . . . . . . . .  3 .  , , , ~  I .  I I 

i . EXPERIMENT NO. 9 

0 ....... .......... t . L. -- - I- 
0 1 2 3 4 

ELAPSED EXPERIMENT T I E  - HOURS 
j. EXPERINENT NO. 10 

Figures 6 i  and j. SPA Experiment Power Source Load P r o f i  les 



-- - - 
I - 7- I 

CHEMICAL PROCESSES - LEVITATION 

AVERAGE = 5.00KU 
SUSTAINING = 5 .5W 
PEAK = 8.36KU (SPIKE) 

k. EXPERIMENT NO. 11 

CHEMICAL PaCESSES - GENERAL 

AVERAGE = 4.96W 
SUSTAINING = 5.14W 
PEAK = 8-68U (SPIKE) 

ELAPSED EXPERIMENT TIME - HOURS 
1. EXPERIMENT NO. 12 smw-~rm, 

F igures  6k and 1. SPA Exper iment  Power Source Load P r o f i  les 



SUSTAINING CAPABILITY - TWO FUEL CELLS 

iOURCE ENERGY INCLUDES: 
EXPERIMENT EQUIPMENT LOAD 
CORE EQUIPMENT LOADS 
THERMALCONTROLLOAD 
90% POWER FACTOR 
?O% INVERTER EFFICIENCY 
2% LINE LOSSES 

10% CONTINGENCY 

I 
SUSTAINING CAPABILITY - 

ONEFUELCELL - - - - - - -  
6.47 

E XPERlM ENTS 

Figure 7. Sustaining Experiment Power ( a t  Power Source) 



CORE EQUIPMENT LOADS 

70% INVERTER EFFICIENCY 1 2% LINE LOSSES I 
I 10% CONTINGENCY I - -- 

15 MIN PEAK - - - - - - - - - -  
I 

} EL 
CELLS 

1 HOUR 
PEAK 

EXPERIMENTS 

Figure 8. Peak Experiment Power ( a t  Power Source) 



The sustaining and peak experiment requirements a t  the power source 

were 01 tained i n  the same manner as the requirements ill ustrated i n  Section 

3.1 .I. The sum o f  the experiment equipment, the core subelement equipment, 

and the thermal control equipment requirements are r e f l e c ~ e d  through the 

subsystem inef f ic ienc ies  t o  obtain the values presented i n  Figures 7 and 8. .i 
The peak power requirements also show the duration o f  the peaks. For the i 
case where more than one #eak occurs t ha t  have s im i la r  magni tude, both peaks I 

$ 

are shown. For the case where two ident ica l  peaks occur w i  t k  3 separation 

c f  only several minutes, the peaks are represented as one peak wi th  3 t o t a l  I 
1 

duration equal t o  the sum o f  the durat ion o f  each peak. 
I I 

i 

The average values given are defined as the average power over the 

t o ta l  elapsed experiment timo f o r  each experiment and occurs from turn-on 

o f  the core equipment (zero minutes). I n  Figures 6a and 6b, the durat ion 

used for  the average power are 3.5 and 4.5 hours, respectively. The core 

equipment and thermal con " ro l  equi p e n t  are on continuously during these 

durations and require s l i g h t l y  high - :. than 4 kW a t  the power s x r c e .  The 

experiment equipment operates f o r  a shorter period o f  time, and depending 

on the experiment, the sustaining power i s  the average power o f  a1 1 equip- 

ment during the shorter time duration. 

The energy requirements f o r  one cycle o f  each o f  the twel ve experi - 
ments were also determined and these data are summarized i n  Figure 9. The 
energy requirements are a t  the energy source and include the t o ta l  energy 

from turn-on t o  turn-off o f  the core and thermal equipment. The t o ta l  
energy requirement f o r  a mission has not  been determined, as i t  was not  

w i th in  the scope o f  t h i s  study; however, i f  mission experiment t imelines 

o f  the twel ve exper'ments were devel oped, the source energy requ i remen ts  

coul d be determined by mu1 ti p ly ing the energy o f  a sing1 e cycle by the 

number o f  experiment cycles f o r  each o f  the experiments used and combining 

the results. For example, i f  experiments 2, 4, 6, 8, 10, and 12 were 

used on a s ingle mission and each required two cycles o f  operation, the 
to ta l  energy requirement would be as shown i n  Table 6. 



SOURCE ENERGY INCLUDES: 
EXPERIMENT EQUIPMENT LOAO 
CORE EQUIPMENT LOADS 
THERMAL CONTROL LOADS 
90% POWER FACTOR 
70% INVERTER EFFICIENCY 
2% LINE LOSSES 

10% CONTINGENCY - 

SPA. 79- 
EXPERIMENTS 

I Figure 9 .  Experiment Energy Requirement at Power Source 
(Energy per Experiment Cycle) 



Table ti. Energy Calculat ion f o r  Sample Mission 

E XP KWH/ CY CLE CYCLES KWH/MISSION 

2 42.3 2 84.6 

4 40.8 2 81.6 

6 45.7 2 91.4 

8 17.4 2 34.8 

10 25.1 2 50.2 

12 24.3 2 48.6 
391 .2 KWH 

The energy data can also be used to determine the reactants required ! :  
f o r  the fuel  ce l l s  and to  determine the 1 i m i  t s  o f  experiments. For j 
example, i f  Experiment 3 was pa r t  o f  the mission and 10 cycles were 3 
required, the t o ta l  mission energy requirement would be 933 kWH. I f  only 

1 
, 

950 kWH o f  power were avai lable f o r  the mission, then no other experiments i 

could be considered unl ess addi t ional  reactants are provided. 

3.2 POWER AVAILABILITY 

To properly determine the e lec t r i ca l  power requirements i t  i s  nec- 

essary to  design andlor t o  know the character ist ics o f  the e l ec t r i ca l  power 

source and then t o  re la te  the loads t o  the source. This section w i l l  
define and describe the e l ec t r i ca l  power source, and summarize 

the experiment requirements a t  the source. The power condit ioning and 

d is t r ibu t ion  losses are discussed i n  greater depth i n  Section 3.4. 

3.2.1 Power Source Def in i t ion 

The e lec t r i ca l  power source tha t  supplies e l ec t r i ca l  energy to  the 

SPA experiments w i l l  be Shutt le type fuel ce l ls .  The fuel  c e l l s  could be 
the Shutt ie fuel ce l l s ,  .he PowerIHeat Rejection K i t  (see Section 3.3.2) 

fuel  ce l l s  o r  both. Bat ter ies may also be required f o r  supplemental o r  
peaking loads and the use o f  bat ter ies could be designed to  be compatible 

wi th the fuel  c e l l  output character ist ics.  Two d i f f e ren t  fuel c e l l  s are 
presently being considered for the Shutt le Orb i ter  and the one selected 

by NASA-JSC should be used f o r  a11 appl icat ions so as t o  avoid dupl icat ion 

o f  development. Final select ion o f  a fuel c e l l  fo r  Shuttle-Orbi t e r  has 

not been made and the manuiactur7ei-s ~ T C  s t i l l  i n  a competit ive mode, 

thereby m i  nimi zing the avai 1 abi 1 i t y  of detai 1 ed data. A1 though the two 



Table 7. Fuel Ce l l  Performance 

Vendor 

E l e c t r o l y t e  

Voc (per  c e l l )  

Vo a t  ra ted  load (per  c e l l )  

Cool i ng Method 

Rated Gutput Power 

Maximum Output Power 

Nominal cur ren t  densi t y  

Stack Temperature 

Reactant I n l e t  Pressure 

Heat generated a t  ra ted  load 

E f f i c i ency  

Inherent Vol t a  e Regulation 
(0.5 t o  7.0 kW 3 
short c i r c u i t  cu r ren t  

l e i g h t  

Specif ic Weight 

i p e c i f i  c Reactant 
Consumpti on 

. . . , . , . - 

Mat r ix  I o n  Exchange 

P & W  

KOH 

1.10 v 

0.97 V 

Pumped l i q u i d  coolant  p lus  
open cyc le  H20 boi1:ng a t  
backup 

7 kW 

14 kW ( w i t h  open cyc le 
cool i ng) 

1 300 amp/m2 ( 1 20 anp/f  tZ ) 

88°C (190°F) 

420 kN/r? nax (60 ps ia )  

4.4 kW 

61% 

r 5% 

3000 amp 

110 kg (245 l b )  

16 kg/kW (35 lb/4W) 

3.4 kg/kWH (3.9 lb/kWH) 

GE 

S o l i d  polymer 

1.23 V 

0.93 V 

Pumped 1 ' qu id  
coolant  

7 kW 

14 kW (sho r t  durat io f i )  

1400 amp/mz (130 amp/ft2) 

82°C (180°F) 

350 kN/i2 max (50 ps ia )  

4.35 kW 

62; 

+ 5: - ,. 

800 amp 

146 kg (325 I b )  

21 kg/kW (46  lb/kW) 

0.4 kg/kWH (0.9 lb/kWH) 

NOTE: As of Ju l y  1974, i t  i s  unLiw; ,oo.; i h a t  the P 6 H Fuel Ce l l  
has been sel ec ted. 
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Tab1  e 8. S h u t t l e  F u e l  C211 C h a r a c t e r i s t i c s  

L I F E  W IYHOUT MAINTENANCE 

L I F E  WITH MAINTENANCE 

2,000 HR Mld IMUM 
5 0  "YCLES (START-STOP) 
9000 KWH 

5,000 HR 
1 2 5  CYCLES (START-STOP) 
22,500 KWH 

SHELF L I F E  10 YEARS 

VOLTAGE 

POWER 

OVERLOAD 

REACTANTS 

PURGING 

REACTANT CONSUMPTION 

40 VOLTS ( V  . I 
0 1 

2 7 . 5  - 32.5  Yd, B 2 C TO 1 2 . 0  KW 

2 . 0  TO 7 .0  KW STEADY STATE 
UP TO 1 2  KW FOR 15 FINUTES 
UP TO 10 KW FOR 1 H8 (EMERGEXY 1 

5 4 5  AMPS FOR 1 M!YCTE MINIMUM 

GASEOUS HYDROGEN 
GASEOUS OXYGEN 

h2 AND O2 

1 2  HOUR MINIMUM INTERVAL 

U.9 LB PER KWH 

HEAT GENERATED (RATED LOAD) 

S I Z E  

ALL DIMENSIONS 
ARE MAXIMUM 

. 
t '  

WF I GHT 

EFFICIENCY 

TEMPERATURE 
(OPERATING) 

I). 
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types of fuel  c e l l s  under developmant are required t o  meet a comnon spec i f i -  

cation, they d i f f e r  i n  many respects, pa r t i cu l a r l y  i n  the type o f  e lec t ro ly te  

used. The l a t e s t  avai lable data w i l l  be presented. I n  nost cases the worst 
I 
i 

case conditfons o f  the knawn fue l  c e l l  ch6racter ist ics were used f o r  the 1 
ana 

Orb 

i an 

the 

yses . 
The two fuel  c e l l  types t h a t  are being considered f o r  the Shutt le I 

i 
t e r  are a matr ix fuel c e l l  proposed by P ra t t  and Whitney (PW) and an i 
exchange fuel  c e l l  under development b;# General E lec t r i c  (GE) . Each o f  f 

fuei  c e l l  e lec t r i ca l  power generating systems contain the fue l  c e l l  stack, 

val vcs and plunbing for reactant control,  a cool ant  pump, water sepzrator, 

and heat exchanger. The design nd performance character ist ics o f  both fue l  

c e l l  types are sumarized i n  Table 7 (References 4 and 6). 

More detai led and up-to-date character ist ics o f  the fue l  c e l l s  are 

contaiced i n  Reference 2, 3 and 5. A sumnary of these cha. ac te r i s t i cs  are 

contained i n  Table 8. I t  i s  apparent t ha t  some o f  these character ist ics are 

s t i l l  changing but  not s ign i f i can t l y .  Selection of a fue l  c e l l  manufacturer 

should resu l t  i n  f i  rmer characterist ics. The character ist ics shown were 

used i n  the design o f  the Power/Heat Rejection K i t  and f o r  the thermal control 

inter face designs discussed i n  Sections 3.3.2 arid 3.5. Each o f  these sections 

contain addi t ional  data on the fuel c e l l  generating system and i s  re la t ,ve t o  

tne i r  design. 

3.2.2 Oower Source Accommodation Analysis 

The Shutt le 0;-biter w i l l  provide e l ec t r i ca l  power from i t s  three fuel  

ce l l s  i n  support c f  the Orbi ter  and the Spacelab operations. One o f  the 

three Shutt le Orbi ter  fuel  c e l l s  i s  cedicated to the Spacelab e l e c t r i c a l  power 

requirements during normal Shutt le operation. Each f ue l  c e l l  ha? a capabi 1 i t y  

o f  providing from 2.0 t o  7.0 kW continuously w i th  peak capabil i ~y o f  up t o  

12.0 k'rl for' 15 minutes. This power supplies the Spacelab c~bsystems and the 

excess i s  avai lable to  the payload. A sumnar.y o f  these capab i l i t i es  and 

+heir chd rac te r i s t i c~  w e  shown i n  Table 9. The normal energy avai lable from 
the Orbi ter  i s  50 kWH, however, an addit ional 900 kWH can be provided by the 

Orbiter, but  the reactant and tankage weights are charged t o  the Spacelab o r  
I 

the SPA pay i~ad.  

The current Spacelab subsystem requirements r esu l t  i n  a payload al loca- (. 
6 

t i on  of 4.0 t o  4.8 kg average and 9.0 kW peak. The average power i s  a 24 hour/ ! 
3 

day average and the peak. is a 15 minute maximum duration peak wi th  a minimum 3 3 

separation o f  3 hours between peaks. (Reference 1). 
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Additional power sources may be provided to supply e lect r fca i  Power 

r e q u i m n t s  that  exceed the a1 location o f  e lect r ica l  power fmm the 

Orbiter. The power sources considered were supplemmta1 and/or peaking 

battery k i t s  (see Section 3.3.1 ) and the use of a Porrer/Heat Rejection 

K i t  that w i  1 l contain up to two Shuttl e-type fuel  c e l l  s and the necessary 

plumbing, controls, reactants and tankage t o  sa t is fy  the SPA experiment 
requirements (see Section 3.3.2). The Po1,erIHeat Rejection K i t  would 

provide up to  14 kU o f  continuous power and peaks o f  up to 24 kW f o r  

15 minutes. For purpmes o f  th is  analysis the emergency peaking of 10 kW 
per fuel c e l l  o r  20 kU to ta l  for one hour was a1 so assuned. 

The use o f  the experiment payload al locat ion from the O r b i t e r  and the 
Power/Heat Rejection K i t  nil 1 provide e lect r ica l  power to  the SPA experi- 

ments o f  from 4.0 to 18.8 kU continuously and peaks o f  up to 33 kbi f o r  

15 minutes. The Space1 ab e lect r ica l  power requirements t o  support i t s  

subsystems w e  not f ixed and any increase i n  these requirements w i l l  

resul t i n  decreases i n  the pcwer available to the exper'iments. 

For the purpose o f  assessing the capabil i t3  o f  the e lec t r i ca l  power 

allocations ta satisfy the SPA experiment requirements, the sustaining 

and peak experiment e lect r ica l  per  requirements a t  the source f o r  each 

of the 12 ident i f ied  experiments (See Figures 7,8 i n  Section 3.1.3) were 

collpamd with the power allocations from the Spacelab and the Power!Heat 

Rejection K i t .  

The sustaining and peak power requi rements for each o f  the twel ve 

experiments are re la t i ve ly  high. This fact i s  p a r t i a l l j  a t t r ibuted to 

the .zomnercial equipment designers that  have lacked concern about power 

consumption. Also, the e lect r ica l  load analyses conducted during th i s  
study are based upon typical equipment and some worst-case conditions. 

When a decision was required under the above conditions. a worst-case 

o r  near-worst-case condition was usual 1y selected. A refinement o r  
scrubbing o f  the experiment equipment requirements and time 1 ines and 

possible increases i n  power condi t i on i  ng eff ic iencies by ident i  f y i  ng 

equipment that does not require regulated sine wave AC could resul t i n  

some decrease i n  the power requi rements. 

The sustaining and pzak SPA experiment e lect r ica l  power requirements 

a t  the source were compared to the average and peak e lec t r i ca l  power 
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allocations to the SPA experiment from the Shutt le Orbiter/Spacelab and 
frwn the Pawer/Heat Rejection K i t  as shown i n  Table 10. The "X's" on the 

table indicate tha t  the a l locat ion concept's average or peak power capa- 

b i l i t i e s  sa t i s f y  the sustaining o r  peak power requirements, respectively, 
o f  tha t  experiment. The Spacelab a l locat ion provided by the b t x e p t  1 
configuration o f  4 to 4.8 kW average does not  sa t i s f y  any o f  the 12 

SPA experiment sustaining power requirements , a1 though f i v e  of the experi - 
ments peak power requirements are sa t i s f i ed  by the 9 kW peak al location. 

The use o f  a Power/Heat Rejection K i t  w i th  one fuel  c e l l  (Concept 2),  
7 kY average and 12 kW f o r  15 minutes, sa t i s f ies  both the sustaining and 

peak requirements o f  seven o f  the th  ~l ve SPA experiments. Concepts 1 and 

2 were combined to obtain Concept 3 to give an average capabi l i ty  o f  11 to 

11.8 kW and 21 kW peak. This concept appears to o f f e r  no s i gn i f i can t  

advantage over Cowept 2 as the sustaining power requirement of only one 

additional experiment i f  only one addit ional experiment i s  sat is f ied.  

A two-fuel-cell Power/Heat Rejection K i t  w i th  a 14 kH average and a 24 kW 

for 15 minute capabi l i ty  (Concept 4) sat is f ies  eleven o f  the twelve SFA 
experiment sustaiqing power but  only seven o f  the SPA experiment peak 

power requirements. A l i  o f  the experiments sustaining and peak power 

requirements are sa t i s f ied  by the average capabi l i ty  o f  18 to 18.8 kW 

and peak capabi l i ty  o f  33 kW f a r  15 minutes f o r  Concept 5. 

To perfarm a1 1 o f  the twel ve i den t i f i ed  SPA experiments requires a 

two-fuel-cell PowerIHeat Rejection K i t  i n  addi t ion t o  the Spacel ab experi - 
ment a1 location. A s ign i f icant  increase i n  the Spacel ab subsystem require- 

ments could r e s u l t  i n  a s ign i f i can t  decrease i n  the power al located to the 

experiments from the Spacelab and Concept 5 would not  be able to sat is fy  

a1 1 o f  the experiment requirements. I f  the experiment al locat ions as 
indicated i n  Table 10 are derated, then the resul tan t  number o f  experiments 

tha t  can be operated i s  decreased. Without the PowerIHeat Rejection K i t  

none of the experiments are f u l l y  sat isf ied.  

For purposes of sat isfy ing the experiment requirements w i th  derated 

power al locations i t  i s  apparent that  the use o f  supplemental and/or 

peaking batter ies would be necessary. The energy required to supplement 
each concept arid tc sa t i s f y  each experiment are l i s t e d  i n  Table 11. 

Conceivably, if only the power from the PowerIHeat Rejection K i t  (Table 10, 
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Concept 4) were available, bat ter ies  could be used to  supplement the 

sustaining requirement o f  Experiment 3 and provide the peaking requirements 
o f  Experiments 1, 2, 3, 5 and 6. For each addit ional experiment cycle 

the energy values must be mu1 t i p1  i e d  by the number o f  cycles. This 

approach can be employed t o  determine the energy requirement f o r  each 

concept. The dashed 1 ines presented i n  Table 11 indicate those rsquire- 

ments t ha t  have been sa t i s f l ed  by the concept. 

The type and s ize o f  bat ter ies  are beyond the scope o f  t h i s  study and 

have not  been determined a t  t h i s  time, b u t  fu r the r  discussion can be found 

i n  Section 3.3.1. The s ize and type o f  bat tery  are dependent spon the 

experiment, miszion and end use o f  the batteries. Supplemental battery, 

peaking bat tery  and power source concept tradeoffs can be performed 

when mission t imelices are established f o r  the SPA d isc ip l ine.  

3.3 POIJER KITS EVALUATION AND REQUIREMENTS 

As previously discussed, supplemental and/or peaking e l ec t r i ca l  

power sources are required to sa t i s f y  the SPA experiment e l ec t r i ca l  

power requirements. This power can be provided by k i t s .  Two types o f  

k i t s  have been considered: (1 ) a bat tery  k i t  f o r  suppl emental and/or 

peakirig requirements, and (2) a Power/Heat Rejection K i t  f o r  supplemental 
power requi remen t s  . 
3.3.1 Battery K i t  

One method o f  providing the addi t ional  supplemental and peaking power 

requirements of the SPA experiments i s  the use o f  a bat tery  k i t .  The 

bat tery k i t  could be compriszd o f  as many bat ter ies  as required to sa t i s f y  

the suppl emental o r  peaking requi rements. The bat ter ies  are connected t o  

a bat tery bus which i s ,  i n  turn, connected to the load bus (e i the r  t o  the 

Spacel ab or  experiment bus). Battery chargers, necessary control and 

protect ion electronics are required w i th  the use o f  secondary bat ter ies  so 

as t o  assure a safe system. A bat tery  k i t  concept i s  depicted i n  Figure 10. 

Batteries coul d be required for  several appl ica  tions. The ,nos t 
ap,parent use of bat ter ies  i s  t o  sa t i s f y  the sustaining and peak power 

requirements of the experiments when the Spacel ab experiment a1 locat ion 

and/or the Power/Heat Rejection K i t  capab i l i t y  daes not  sa t i s f y  the 

experiment sustaining o r  peak power requirements. These requi rt ments are 
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presented i n  Table 11 i n  Section 3.2.2 as the average and peak requirements 

per experiment cycle f o r  several concepts. I n  most cases the use of a 

secondary (rechargeable) bat tery would be required because of the high 

energy requirements. The bat tery would be recharged during low power 

periods and reused, however, the t o ta l  energy from the fuel  c e l l  s would 

also have t o  include the energy required t o  recharge the battery. This 

would resu l t  i n  a s l i g h t l y  higher t o ta l  energy when compared t o  the condi- 
t i o n  whereby the fuel  ce l l s  provided the t o t a l  power requirement. The 

return fac tor  f o r  recharging the bat tery  i s  110 t o  130% o f  the ampere- 

hours taken out. 

Another appl icat ion f o r  bat ter ies  i s  lo ass is t  the fuel  c e l l s  during 

those condi ti 62s when 1 arge i ns tantaneous increases i n power are requi red. 

Although the fuel  c e l l  t ransient  response i s  r e l a t i v e l y  f a s t  over i t s  

design range (Reference 2), the use o f  peaking bat ter ies  may be desirable. 

The large increases i n  power requirements can be seen i n  the experiment 

power source load p ro f i l e s  i n  Figures 6a-1 (Section 3.1.3). There are a t  

l eas t  four experiments tha t  have instantaneous increases o f  over 20 kW and 

a1 1 experiments have a t  l eas t  one instantaneous increase o f  f r o m  1.7 t o  

6.8 kW. Further analyses are required t o  determine bat tery  requirements 

as they re la te  t o  fuel  c e l l  character ist ics and capabil i t i e s ,  and the 

p o s s i b i l i t y  o f  programming the experiment equipment as a means o f  reducing 

1 arge instantaneous changes. 

The bat tery types tha t  are considered f o r  the bat tery  k i t  are re-  
chargeable nickel-cadmium o r  s i lver -z inc  and primary s i lver -z inc .  Several 
o f  the advantages and disadvantages o f  each o f  the three bat tery  types 

are summarized i n  Tab1 e 12. The nickel  -cadmium secondary bat ter ies  have 
a proven long l i f e  capabi l i ty  through extensive tes t ing and operation i n  

space environments. They have been used on may  U. S. sate1 1 i tes ar~d 

space vehicles. These bat ter ies  have a re1 i ab l  e recharge capabil i t y  and 

can be recharged between peaks and/or during low power requirement periods. 

S i l  ver-zinc secondary bat ter ies  have a higher energy density when compared 

to nickel -cadmium but  have a much shorter cycle 1 i fe  capabil i t y  and must 

be recharged a t  lower rates. S i l  ver-zinc primary bat ter ies  have the 

highest energy densi t y  but  have essential l y  no recharge capabi 1 i t y  

(several cycles only) and would have to be replaced a f t e r  each mission. 



S i l  ver-zinc bat ter ies  have been used i n  space p r i nc i pa l l y  (Apol l o  program) 

where several capacities including' large capacity bat ter ies  were used. 

One major disadvantage o f  s i l  ver-zinc bat ter ies  are t h e i r  re1 a t i  vely shor t  

she l f  1 i f e  characterist ics, however, t h i s  fac to r  may not  be n problem 

f o r  the SPA experiment mission. 

Table 12 

Battery K i t  - Battery Types 

Nickel -Cadmi um ( N i  -Cd) secondary 
.Long cycle 1 i f e  

1,000's o f  cycle-function o f  depth o f  discharge 
Proven Operational Testing 

Most sate1 1 i tes and extensive 1 ab tes t ing 
Good recharge capabil i t y  
No rep1 acemet~t a f t e r  each m i  ss i  on 
Recharge between peaks - during low requirement periods 

S i  1 ver-Zinc ( Ag-Zn) secondary 
Higher energy density than Ni-Cd 
About 200 cycles 
Replace a f t e r  one o r  two missions 
Charge a t  lower rates than Ni-Cd 

Therefore longer charge time i s  required 

S i  1 ver-Zi nc ( Ag-Zn) primary 
High energy density 
Essent ia l ly  no recharge capabil i ty 
Replace a f t e r  each mission 

3.3.2 Power/Heat Rejection K i t  

A Power/Heat Rejection K i t  attached t o  the Spacelab o f fe rs  a so lu t ion 

to  sat is fy the SPA experiment power and thermal control requirements. The 

structural  de ta i l  o f  the k i t  and concepts f o r  equipment storage are shown 

and discussed i n  Vol ume 11-D. The e l ec t r i ca l  power por t ion  o f  the k i t  and 

i t s  interfaces w i l l  be discussed i n  t h i s  section. Both fuel  c e i l s  and 

aux i l i a ry  power un i t s  (APU's) were considered f o r  the k i  t and both w i l l  be 

discussed i n  t h i s  section, however, the APU's are not compatible f o r  t h i s  

mission. 

The e lec t r i ca l  power subsystem of the Power/Heat Rejection K i t  i s  

made up of two fuel ce l l s ,  oxygen and hydrogen reactant tank assemblies, 

water storage tanks, plumbing, cab1 ing  and inverters to  convert the 

nominal 28 V DC fuel  c e l l  output t o  AC power. A s imp l i f i ed  block diagram 



o f  the e l e ~ t r i c a l  power subsystem i s  presented i n  Figure 11. The power 

condit ioning and d i s t r i bu t i on  elements o f  the k i t  are discussed i n  

Section 3.4. The e l ec t r i ca l  power system has an output from both fuel 

c e l l s  o f  approximately 14 kW average wi th  peaks o f  up t o  24 kW f o r  up t o  
3 

a 15 m i ~ u t e s '  duration. Higher peaks can be sustained f o r  shorter  3 

periods o f  time and lower peaks for  longer periods. The fuel  c e l l s  have 
1 

an emergency capabi l i ty  (Reference 2) o f  10 kW f o r  one hour, and t h i s  
3 

level  was assumed f o r  t h i s  study. The reactant tank assemblies provide 3 
for cryogenic storage o f  hydrogsn and oxygen t o  provide about 1000 kWH $ 

'1 3 

o f  energy. A J 

A flow diagram o f  a fuel  - ce l l  power p lan t  i s  presented i n  Figure 12 
1 
?. 

and i s  a simp1 i f i e d  d i a~ ram tha t  i s  based upon the Shutt le Orb i te r ' s  1 

design o f  the fue l  - ce l l  (Reference 5). The subsystem i s  comprised of two 1 
fuel ce l l s  w i th  t h e i r  interfaces t i e d  together as shown. The fue l -ce l l  3 

t 

power plant 's  interfaces are: (1) the oxygen and hydrogen reactant in le ts ,  

(2) vents for  oxygen and hydrogen purge and water, (3)  coolant i n l e t  from 
! 

an o u t l e t  to  a thermal control heat exchanger, and (4) the pr inc ipa l  
I 

outputs o f  e l ec t r i ca l  power t o  the loads and by-product water to storage 
F 

tanks . I 
1 

3 
Oxygen and hydrogen are supplied to the fuel  c e l l  's i n l e t  where the 1 

i 
p 

reactants are heated w i th in  the power plartt before entering the c e l l  stack. 
2 

The e lec t r i ca l  power i s  generated by electrochemical react ion o f  oxygen ,i 

and hydrogen. The e l  ec t r i ca l  power i s  del i vered to  the equipment loads 3 

through power condit ioning and d i s t r i bu t i on  elements. This react ion has 
I 

an ef f ic iency o f  about 60%, reski t i ng  i n  the generation o f  heat which i s  3 

carr ied away by the coolant loop. The coolant passes through the thermal i 
9 

control heat exchanger where the thermal control subsystem picks up the ; 

hedt f o r  dissipation. The water i s  col lected I n  special storage tanks 1 J 

and used as needed to sa t i s f y  addi t ional  thermal control requirements. : 
'I 

The water i s  not dumped because o f  the thermal control requirements and i 
the fac t  tha t  i t  can po ten t ia l l y  be used t o  maintain the vehic le 's center 

of grav i ty  (c.g.1. The water tanks are sized to  store a l l  of the water 
that  i s  produced by the fuel ce l l s  and not required by the thermal control 

subsystem. The fuel c e l l ' s  stack i s  purged a t  minimum in terva ls  o f  12 

hours by hydrogen and oxygen. 
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Each power p l a n t  i s  chpable of p rov id ing  27.5 t o  32.5 v o l t s  ~f LC 
power over a power range o f  2 to 12 kW fo r  15 minutes. The design goa: 

f o r  the power p lan ts1  operat ional 1 i f e  w i thout  m a i n t e n a m  i s  2,000 hours 

and i s  5,000 hours w i t h  maintenance. This includes 50 s t a r t l s t o p  cyc les 

w4 t h  no maictenance and 125 s t a r t l s t o p  cycles w i t h  maintenance. 

The source o f  energy f o r  the fue l  c e l l s  i s  provided by s b p e r c r i t i c a l  

cryogenic storage dewars t h a t  supply oxygen -nd hydrogen t o  the f u 2 l - c e l l  

power p:ants. The reactants are maintained a t  a pressiire greater  than 

the fl u i d - c r i t i c a l  pressure and reactants a re  s ~ p p l i e d  i n  a s ing le  f l u i d  

s t a t e  by simple pressure feed. The nominal pressure o f  1.7 MN '92 (250 ps ia)  

f o r  hydrogen and 6.2 MN/m2 (900 ps ia)  f ~ r  oxygen i s  maintainec; by supplying 

heat t o  the f l u i d  when the pressure i n  the dewars drops below a minfvum 

a1 lowed pressure 1 i m i  t. Tnc: reactant  tank assembly fo r  the Power/He~t 

Reject ion K i t  i s  presented i n  Figure 13 . The tank asse~ilbl i es  i n c l  ude 

the heaters, pumps, fi 1 ters, valves and cont ro l  loops necessary t o  

maintain storege and to  supply the reactant  t o  the power p lants.  The 
interfaces f o r  fill, drain, vent and supply are a lso  shown. Ths Power/lieat 
Reject ion K i t  i s  comprised of one o r  ~l iore various combinations o f  the 

oxygen and hydrogen tank assembl ies.  

The performance charac ter is t i cs  o f  the Power/!ieat Rejezt ion K i t  i s  

designed to  sa t i s f y  the susta in ing arid peak power requirements o f  the 
SPA experiments as presented i n  Section 3.1 - 2 .  

To power hydraul i c  pumps during p re l  aunch, ascent, en t r y  and 1 andi ng, 

the Shutt! e o r b i t e r  uses fou r  independent, 130 horsepower, monopropel 1 ant, 

hydrazine a u x i l i a r y  power u c i t s  (APU's). The poscib le use o f  these u n i t s  
has been considered as a supplemental power source fo r  the SPA experiments. 

The performance cha rac te r i s t i cs  o f  each APU i s  presented i n  Table 13. 

Table 13 

Aux i l i a r y  Power Uni 

(Shutt  

Rating 

Pm l a n t  

S ta r r i ng  

Turbi ne 

SPC 

(APU) Character is t ics 

Orb i te r )  

~ 9 7  bW (1 30 hp) 

Hydrazi ne (N2H4) 

Bootstrap, Pump Fed 

60,000 to  80,000 RPM 

2.2 to  4.4 lb/kWH 
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It i s  conceivable tha t  t)le NU could d r i ve  a generator and de l i ve r  

AC power d i rect ly .  Their hardware weight per kW i s  less than t ha t  of 

fuel ce l ls .  However, the s ize o f  the o r b i t e r  APU's, 130 hp o r  approximately 

97 kW, could create d i f f i c u l t i e s  i n  con t ro l l i ng  the proper speed to  
generate 60 t o  400 Hz power. The reactant consurption i s  greater than 

twice tha t  o f  fuel ce l l s  and the high speed dynamic uni  ts c s u l  t i n  noise 

and v ibrat ion that  i s  incompatible w i th  the experiments. The o r b i t e r  

APULs are shut d m  on attainment of o r b i t  and the use o f  APU's are mt 

considered f o r  the Space1 ab SPA experiment appl i cation. 

3.4 POWED CONDITIONING AND DISTRIBUTION 

The e lec t r i ca l  power d i s t r i bu t i on  subsystem addresses SPA pay1 oad 

design probl ens deal ing wi th power processing, d i s t r i bu t i on  and control  

as i t  emanates f r o m  the power source ( fue l  c e i l  s) to  selected experimental 

equipment. 

The e lec t r i ca l  d is t r ibu t ion  subsystem provides the fo l lowing functions 

t o  the e lec t r i c  power subsystem interface: 

P m r  switchinq and d i s t r i bu t i on  t o  a l l  experiments 
Signal d is t r ibu t ion  

Signal conditioning 

0 Interconnection o f  a1 1 e lec t r i ca l  interfaces 

The power d is t r ibu t ion  subsystem w i l l  be cmstrained i n  design by the 

fol10w"ng factors : 

0 The 28 V DC fuel  c e l l  bus shal l  be protected by DC c i r c u i t  
breakers 

0 The DC-AC inverters are t o  be sel f -protect ing f o r  overvoltage 
on the input as well as overload and short c i r c u i t  o f  the 
output. 

0 The low power output feeder 1  ines (500 amp) sha l l  be Frotected 
by AC c i r c u i t  breakers. 

0 The high. r power output feeder 1  ines shal l  be protected by faul  -L 
detectors which w i l l  c lear the fa21 ted bus. C i r c u i t  breakers 
are not pract ical  on the higher power buses because insuf f ic ient  
overload current i s  avai lable t o  t r i p  the breakers, since the 
source i s  a  current l im i ted  inverter. 

3.4.1 Corrcep t s  and A1 terna ti ves 

The e lec t r i ca l  power d is t r ibu t ion  subsystem takes the avai lable source 

power and d is t r ibutes t h i s  power to the experimental equipment i n  a safe 



and e f f i c i en t  manner. The fol lowing d i s t r i b ~ t i o n  systesis were considered: 

a 28 VDC distr ibutiorr system 

0 60 Hz AC d is t r ibu t icn  systea 

0 400 Hz AC d is t r ibu t ion  system 

0 ldOO Hz AC dis t r ibut ion system 

3.4.2 Evaluation and Coslparison 
The e lect r ica l  powr d is t r ibu t ion  subsystem selected f o r  the Spacelab 

experiment equipment should interface with the camnercial l y  available 

exsriment equipent wi th  a miniam of arrdiftcation. 

The experiment equipnent selected f o r  the Spacelab mission are com- 

mercially available uni ts operating from a 115 V 60 Hz o r  400 Hz bus. The 

majority o f  the units are rated f o r  a 60 Hz bus, but w i t h  minor amdifica- 

tions, can be adapted to operate o f f  o f  a 400 Hz or higher frequency bus. 

For high power experiment loads requir ing precise power control, a 

higher frequency system i s  desirable. Y i th  a low frequency sys 'em, pro- 

portional control (phase control ) i s  required to  obtain the regulation 

accuracy whereas with a higher frequency system, zero switching control can 

be ut i l ized. Proportional control o f  high power loads resu l t  i n  high 

electromagnetic interference (EM) beicg generated since switching occurs 

during a cycle. 

The 115 VAC a t  400 Hz i s  selected f o r  the low power experiment bus 

f o r  the following reasons: 

Lower cab1 ing wetght than 28 VDC 

Minor o r  no modification required on experiment equipment 

a Voltage level can be changed readi ly by transformers 

a Ava i lab i l i t y  o f  c i r c u i t  breakers 

o Airborne qua1 i f ied  and specified by MIL-STD-704 

The 115 VAC, 3 pt~ase (0) , 4 wire a t  1600 Hz o r  1800 Hz i s  selected 

for the high power experiment bus. 

Table 14 provides a tradeoff i n  size and weight f o r  DC t o  AC inverters 

f o r  60 Hz, 400 Hz and 1800 Hz. 
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3.4.3 Concept Selection 

The e lect r ica l  d is t r ibut ion subsystem will be l im i ted  to the power 

sources and requirements that  are available to the Spacelab from the 
Shuttle and any onboard primary o r  secondary sources o f  power as designated 

by the e lect r ica l  power subsystem. The basel ine power d is t r ibu t ion  select- 

ed fo r  Space Processing i s  an AC system that  u t i l i z e s  400 Hz, single-phase 

inverters for low power and 1800 Hz o r  160G Hz, three-phase; 4-wire inverters 

f o r  hign leve: power. An additional design constraint f o r  power d is t r ibu t ion  

i s  that manual switching be considered as base1 ine f o r  the system. A l l  power 

and signal d is t r ibut ion w i l l  consider the impact o f  electromagnetic in te r -  

ference and that  suff ic ient safeguards be made available t o  minimize the 

effects of short c i r cu i t s  a t  one load f r o m  inf luencing other experiments. 

Figure 14 presents a block diagram o f  the power d is t r ibut ion system. 

Two isolated 28 VDC primary power buses provide the power requirements 
for the experiment lmds o f  the 'Spacelab. 

Power conversion f r o m  28 VDC to 400 Hz and 1800 Hz AC i s  accomplished 

by s ta t i c  DC to AC inverters. For tne 4 0  Hz d is t r ibu t lon  bus, four 1500 VA 

inverters are connected i n  paral le l .  The inverters are frequewy and phase 

synchronized t o  prevent dynamic interactions and system ins tah i l  i ty. Each 

of the 1500 VA inverters can be further divided i n to  smaller VA ra t ing  

inverters f o r  redundancy considerotions. The 1800 Hz, 3-phase inverter 

shown as a single block can be made up o f  several inverters connected i n  

paral lel.  When considering safety aspects of the system, the inverters 

are self protecting f o r  overvol tage on the input as we1 1 as overload and 

short c i r c u i t  o f  the output. 

A variety o f  switches and sensors are needed f o r  load and inverter 

ON/OFF control, fo r  protection o f  the primary buses ?nd for removal of 

fau l ty  loads and inverters. The input power junction box contains c i r c u i t  

breakers and f a u l t  sensors fo r  inverter input power protection and 

switchi .. C i rcu i t  breakers can be used on low VA rated inverters since 

enough oberload current i s  available f rom the bus to t r i p  the breaker. 

As the VA. ra t ing o f  the inverter approaches the VA ra t ing o f  the bus, 

c i r c u i t  breakers w i l l  not be able to clear a faul t and other means o f  

faul t  isolat ion must be used. A faul t detector which senses both 
voltage and current i s  therefore used on a l l  high power applications. 
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The output power junct ion box contains c i  r c u i  t breakers, swi tches 

and f a u l t  sensors for  the load buses. The VA r a t i n g  o f  the load buses 

qhould be kept as low as possible f o r  protect ion purposes. A switch 

act ivated by f a u l t  detect ion c i r c u i t r y  i s  provided on the output of each 

inver ter  mcdul e so t ha t  a faul  ty module can be iso la ted from the bus. 

Consideration should also be given to modularize both the input  and 

output junct ion boxes i n t o  several separate modules so tha t  i n  case of 

a major fault, some bus protect ion i s  provided by the physical separation 

of the switching elements. I f  a l l  the c i r c u i t  breakers and f a u l t  

detectors were contained i n  a s ing le  enclosure, an overheating o r  f i r e  

could jeopardize the complete system. 

3.5 THERMAL INTERFACE 

Several thermal interfaces between the e l ec t r i ca l  power and thermal 

control subsystems were evaluated during the study. The primary i n t e r -  

face i s  the d iss ipat ion o f  a l l  e l ec t r i ca l  energy consumed by the experi - 
ments. That i s ,  the energy under the experiment power source p r o f i l e s  

presented i n  Section 3.1.3 must be dissipated by the thermal control  

subsystem. The dissipat ion o f  t h i s  energy requires addi t iona l  e l  ec t r i c a l  

energy for operation o f  the thermal control equipment resul t i n g  i n  an 

increase i n  e l ec t r i ca l  energy t ha t  must be dissipated. Ot!ier thermal 

interfaces considered are the d iss ipat ion o f  heat f r o m  the fuel c e l l s  and 

the resul tant  by-product water prod~ced by the fuel  c e l l s  f o r  potent ia l  

use by the thermal control subsystem. 

Based upon the experiment load requirements (Section 3.1 ) and assuming 

the use of the PowerIHeat Rejection K i t  (Section 3.3.2), a thermal control  

pump syste: e lec t r i ca l  power requirement of 470 watts continuous was 

determined to  sa t i s f y  the thermal control subsystem requi rments.  The 
approach assumes t ha t  any experiment equipment that  receives power from 

the Spacelab uses the Spacelab tnermal control capabi l i ty .  The 479 watts 
thermal control requirement i s  included i n  the experiment requi rements 

and prof i les  that  are presented i n  Sections 3.1.2 and 3.1.3. 

I f  the Power/Heat Rejection K i  t i s  not  employed, the thermal control 

power requirements range from 300 to  600 watts continuous. For an a i r  
cool ing thermal control approach, the requirements are 400 watts for  a i r  

cooling fans plus an addit ional 200 watts for  a water pump f o r  the furnace 



cooling. This resu l ts  i n  a t o ta l  thermal control  requirement o f  about 

600 watts contfnuous. The use o f  a 1 fquft i  coolant loop w i l l  el imf nate 

the fan requirement o f  400 watts and replace f t wi th  a coolant loop 
pump requirement o f  approximately 100 watts. The 200 watt  water pump 

for furnace cooling would br ing the t o t a l  contf nous power requirement 1 

approximately 300 watts. For the experiments zhat do not  require furnaces 

o r  inductance heaters, the thermal control requirements can be reduced 

by 200 watts. 

Because a Power/Heat Rej8 c t i on  K i t  i s  required to  sa t i s f y  the experi - 
ment power requirements, the 470 wat t  continuous f o r  the thermal control  

subsystem wns assumed f o r  a1 1 o f  the twelve representative experiments. 

The Power!Heat Rejection K i t  has a l im f  ted rad ia to r  area and addi- 

t iona l  cool ing capabi l i ty  i s  required, therefore, the fuel  c e l l  by- 

product water i s  made avai lable f o r  t h i s  purpose. The water production 

ra te  f o r  each fuel c e l l  i n  po~nds per hour i s  presented i n  Figure 15 as 

a function o f  net  power output o f  the fuel  c e l l  s i n  k i lowatts (reference 3). 

As noted, the water production ra te  f o r  both the General E lec t r i c  and P ra t t  
and Whitney fuel ce l l s  are n ta r  the maximum ra te  presented. The water 

could be del ivered t o  a water storage tank tha t  contains a pnsi t i v e  

expulsion system tha t  permits the water to be used f o r  them.31 control .  

To ass is t  i n  the de f i n i t i on  o f  requirements and design o f  the 

thermal control subsystem i n  the PowerIHeat Rejection K i t ,  the heat 

re jec t ion and cool ant  exi  t temperatures f o r  both the General E lec t r i c  
and the P ra t t  and Whi tney fuel  cel  I s  are presented i n  Figure i 6 as 3 

function o f  gross power output from the fuel  ce l l s .  The indiv idual  fuel  

c e l l  s w i l l  operate between 2 kW and 12 kW each. For the case where both 

fuel c e l l  s are operating the minimum power w i  11 be 4 kW. The data pre- 

sented i n  Figure 18 i s  dated informat im, however, i t  i s  the most recent 
manufacturer' s data (Reference 5). 

The heat re jec t ion requirements f o r  each o f  the fuel  c e l l  types i s  
not  s ign i f i can t l y  d i f fe rent .  The differences i n  the cool ant e x i t  tempera- 
tures are consfdered to be p r imar i l y  due to coolant f low rates. A fue l -  
c e l l  manufacturer has not  presently been selected; however, f o r  purposes 

of th i s  study the worst case data are assumed relevant. 
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4. THERMAL CONTROL SUBSYSTEM 

The SPA thermal contro l  subsystem (TCS) provides f o r  thermal cont ro l  

o f  SPA equipment u t i l i z i n g  the  heat r e j e c t i o n  c a p a b i l i t y  provided by the  

Spacel ab. A1 though t h e  Spacelab provides a one-atmosphere, sh i  r t -s leeve 

environment, the absence o f  natura l  convection i n  the  low g r a v i t y  o r b i t a l  

environment requires t h a t  a c t i v e  thermal contro l  be provided t o  SPA 

equipment*. The ac t i ve  thermal contro l  can be provided by e i t h e r  supplying 

forced convection cooling, mounting equipment on 1 i q u i d  cooled racks, 

provid ing 1 i q u i d  cool ant  passages w i t h i n  the equipment, o r  p rov i  d i  ng 

combinations o f  a l l  three. Since the  SPA payloads consist  of equipment 

which are o f  a commercial nature, thermal contro l  can be accompl ished 

w i t h  minimum change t o  equipment by provid ing cool i n g  i n  the  manner 

o r i g i n a l l y  intended f o r  the  equipment except t h a t  forced convection 
cool i n g  must be subst i tu ted  f o r  natura l  convection cool ing. This means 

t h a t  e lectronics equipment w i l l  general ly  be a i r  cooled and equipment 

(e.g. furnaces) t h a t  are cooled by f a c i l i t y  water w i l l  be provided w i t h  

a closed loop coo l ing  system. 

The SPA TCS must depend on the  heat r e j e c t i o n  provided by the  Spacelab 

and/or an a u x i l i a r y  heat r e j e c t i o n  k i t  (see Volume 11-D SPA Supplemental 

Power and Heat Reject ion K i t )  . Since the  Spacel ab w i l l  provide approxi - 
mately 4.2 kW cool ing t o  payload equipment, a number o f  SPA payloads must 

depend on the a u x i l i a r y  heat r e j e c t i o n  k i t  t o  provide the  necessary cool ing. 

For tnose Spacelab payloads t h a t  do no t  requ i re  more than 4.2 kk e l e c t r i c a l  

consumption a t  the power source the : acelab provided ~ 9 0 l i n g  w i l l  be 

s u f f i c i e n t .  

Several concepts fo r  provid ing SPA equipment thermal cont ro l  have been 

evaluated as t o  concept f e a s i b i l i t y .  A1 though de ta i l ed  t radeo f f  studies 

were not  conducted due t o  the  pre l iminary nature o f  payload equipment and 

* I t  i s  t o  be noted t h a t  experiments conducted during the  Apollo 14 f l i g h t  
(Ref: LMSC Report HREC-5577-3, The Apol l o  14 Heat Flow and Convection i 

Demonstration Experiments, dated September 1971 ) 1 ed t o  the concl usion < r 
t h a t  there i s  s i g n i f i c a n t  natura l  convection energy t ransport  present i n 
a low-gravity f i e l d .  However, a repe3t o f  t h e  experiments on t h e  Apol lo : 
17 f l i g h t  d i d  not  e x h i b i t  natura l  convection behavior. A reassessment i 

o f  Apol lo 14 data confirmed the lack o f  s i g n i f i c a n t  natura l  convection i n  ; 

o r b i t  (Ref: NASA TMX-64772, Apol l o  17 Heat Flow and Convection Experiments, % t 
dated 16 Ju ly  1973). 4 

$ 
S 



Space1 ab cool i n g  resources d e f i n i t i o n s  , s u f f  i c i  en t  analyses were conducted 

t o  i den t i f y  SPA TCS and Spacelab inter faces,  thermal cont ro l  concept 

f e a s i b i l  f ty, thermal contro l  concept 1 im i ta t i ons  and a r e a  o f  f u r t h e r  

invest igat ion,  

4.1 SYSTEI.1 IiiTERFACES 

The thermal contro l  subsystem (TCS) in ter faces are o f  two types depending 

on the subsystem being considered. I n  general t he  in ter faces can be described 

as e i t h e r  physical o r  thermal. The physic31 in ter faces a r e  f a i r l y  s t r a i g h t -  

forward and can be described i n  f i n i t e  tmns.  The thermal in ter faces are 

not  as eas i l y  described since they depend on the i n t e r a c t i o n  o f  the  SPA 

TCS wi th  the  Spacelab TCS. A change i n  condi t ions on one s ide o f  the 

in ter face e f fec ts ,  aqd a t  the same time i s  a f fec ted  by, condit ions on the  

other  s ide o f  the in ter face.  

4.1 .1 Physical In ter faces 

The physical in ter faces depend on the  SPA TCS concept selected. 

The i d e n t i f i e d  inter faces f o r  the  three concepts studf es are sumrnari zed 

i n  Table 15. The requirement f o r  a furnace water loop in te r face  w i t h  the 

Spacelab water loop, wh i le  common t o  a l l  three concepts, appl ies on ly  f o r  

those SPA pay1 oads flown wi thout  the aux i l  i a r y  power k i t  containing e i t h e r  

furnaces, c e r t a i n  o f  the heaters o r  the l dse r  f l ash  lamp. 

The fnterfaces i d e n t i f i e d  w i l l  be discussed more f u l l y  i n  the suo- 

sequent sections deal ing w i t h  each TCS conyept. 

4.1.2 Thermal Inter faces - With -- Soacelab - 
The thermal in ter faces are general ly comnol. t o  a l l  three concepts. 

The i n t e r f i x e s  p r imar i l y  are tke temperature o f  t he  f l u i d s  enter ing the  

i n te r face  heat exchanqers and the equipment waste heat re jec ted d i r e c t i y  

to  the Spacelab cabin environment These in ter faces are shown f o r  s p e c i f i c  
payloads i n  the  subsequent sections. 

E f f luents  from the payload equipment w i l l  be considered i n  the 

Commercial U t i l  i t y  Assessmcr~t , howevel , the quest ion o f  moisture addi t ion 

or  removal from the zabin atmosphere by the payload equipment has been 

reviewed. Moisture removal w i l i  occur when e q u i y e n t  i s  evacuated t o  a 

vacuum condi t ion o r  cooled below the loca l  dewpoint temperatr4re. The 
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amount of moisture removed k i l l  be a function o f  equipment use and cabin 

re12t ive humidity. 

Moisture remove1 w i l l  also occur as a r e s u l t  o f  condensation i n  areas 

where the surface temperature i s  below the dewpoint temperature. Such 

areas w i  11 be thn i n te r i o r s  o f  re f r igerated equipment ane c h i l l e d  1 ines w i t h i n  

the confines o f  comnercial wuipment. The anount o f  moisture removed from 

the atmosphere as a resu l t  u i  access t o  the i n t e r i o r  o f  the re f r igerated 

equipment should not  be s ign i f icant ,  h0~ev2r,  condensation on c h i l l e d  l i n e 3  

and surfaces w i th in  the con i ims  o f  c o m r c i a l  equipment could be. Generally 

speaking, these ereas ere i rsu la ted t o  some degree t o  minimize heat leak 

i n t o  the equipirwnt. However, each i tem and payload w i l l  have t o  be reviewed 

t o  assess the noisture removal potent ia l  and the a t t e ~ d a n t  impact, i f  my,  

0'1 i ' i e  Space1 ab atmos#herp moisture contrnl system. 

4.1.3 Thermal Interfaces W i  t h  Pay1 oad Equipment 

The therma' ir1terfac.s w i  t h  the payload equip me^' a r e  r= imar i l y  the 

i n l e t  temperaturw o f  t h ~  coolants ( a i r  ?r water) required t o  omvide the 

socesssr:: sdste heat removal rates a t  the design coolant f low rates. These 

ter?eratures are also dictated by the in teract ion o f  the SPA TCS w i  +h the 

Spacelab TCS. The inter face requirements w i l l  vary f r o m  payload t o  payload, 

fiowever, w e  subsequent sections deal i n~ w i  t h  eacb TCS concept w i  1 1 i 11 us t r a t e  

typica; conditions t o  be encountered. 

4 .2  THERMAL CONTROL COOLING CONCEPTS 

9 e  o f  the key aspects o f  the SPA payloads i s  f l e x i b i l i t y .  The 
a b i l i t y  t o  coh ine  d i f f e ren t  groups o f  exp6,ftnents i n t o  a payload dictates 

thh t  tho supporting subsystems be f lex i  b i t  enough t o  accomn9date 3 large 

number o f  :anbinations o f  input  parameters. I n  the cas. 9 f  the TCS, t h i s  

requires accommodating .i vide range o f  waste heat re jec t icns an3 equipment 

heat d iss igat ion ri ltes. 

To tssrss the ma~nitude o f  the thermal control problem, three d i f fe ren t  

therrnal c o n t r ~ l  system concepts were investigated t o  determi ne the i  r capabi 1 -; tp 

t o  ~ r o v i l e  the .,ecessary thermal co r t ro l .  Whil? the assessrent was o f  a 

preliminary n ~ t u r e .  the ccncept en.: ~!,;es d i d  indicate a number o f  areas wt.ere 

m!if ications t 3  SPA t i ne l ines  andior equipment would be necessdry. 



A schematic diagram o f  a typical  arch configuration equipment arrangement 

(immiscible so l id i f i ca t ion  experiment) i s  shown i n  Figure 17. While t h i s  

arrangenent i s  not the only ~ o s s i b l e  arrangement, i t  serves t o  i l l u s t r a t e  

the magnitude o f  the p e r  dissipat ion i n  the rack-mounted equipment. Not 

shown i n  the f igure i s  the waste heat f r o m  the furnaces which, as w i l l  be 

discussed la te r ,  are not included i n  the rack-cooling system. The power 

dissipations shown i n  Figure 17 are steady s ta te  power leve ls  during the 
duratioc o f  an experiment cycle. While some o f  the equipment have transients 

(e.g. startup) which exh ib i t  higher power dissipat ion levels, the thermal 

mass o f  the equipment absorbs most o f  t h i s  energy and the  thermal controi 

system does not react t o  these short-term transients. 

4.2.1 A i  r-Cool i ng Concept 

4.2.1 . I  System Description 

The eir-cool ing system concept i s  one tha t  depends on the Space- 

lab suppl ied  coolant f l o w  f o r  cool i ng o f  rack-mounted electronic equipment. 

The system schematic i s  shown i n  Figure 18. This schematic i l l u s t r a t e s  b w  

the SPA system might integrate w i th  the basic Spacelab thermal control syshm. 

The basic Sparelab coolant loop i s  the loop shown as 1-11 (i.e., i n l e t  from 

e i ther  the Spacelab radiator o r  Shutt le inter face heat exchanger i s  a t  po in t  

1 and return i s  a t  point  11 i n  Figure 18). The SPA system a i r  loop i s  shown 

as 10-12 and i n t e r f i i e s  wi th the Spacelab coolant loop a t  the payload rack 

(PR) t - ' exchanger. It i s  anticipated tha t  the 'R heat exchanger would be 

suppi ied by the Space1 ab and be permanently ins ta l  lea i n  the Spacelab 

coolant loop t o  minimize the number s f  disconnects and standardize the 

sysbm f o r  other Spacelab user payloads. 

The air-cooling-loop d is t r ibu t ion  system w i l l  in ter face wi tn the 

eqaipment racks w i  c)! i n l e t  and ou t l e t  supply headers as shown i n  Ffgure 19. 

The a i r  d is t r ibu t ion  w i th in  each rack w i l l  be through the rack header. 

These headers w i l l  contain iouvers which would be preset t o  provide the 

necessary rack a i r f l ow based on the heat d issipat ion i n  each rack. 

I h  airf low w i l l  be provided by a fan clus'ter o f  2 o r  3 fans. 

l l t i l i z i n g  a fan c luster  provides f o r  system re&~ndancy and could el iminate 

requirements f cw  fan accessabi 1 i ty f o r  i n - f l  i g h t  maintenance during the 

short-duration (7-day-long) missions. It i s  anticipated tha t  the fan c luster  



N h r s  indicate pawer 
dissipation in  watts. 

* Total pwer  d i  ssepati on 
from rack i n  watts. 

0 Equipment item no. 

CORE FL'R'IACE SUBELEKNT 

\ 
VIEW A-A 

Figure '7.  &Wi~ni-'::'' Themi l  Loads for Typical Imniscible Sol idi f icet ion Experineat. 



ITEM NO. PAY LOAD EOUI P E N T  

Processor 
Scanner Programer 
Oscilloscope 
Operator Control Unit 
Printer [Output) 

Digital Volt kter  
Digital Clock 
Analog (SCR) Control 1 er 
Signal Conditioner 
Teleprinter 
Tape Input 
Multiplexer A/D Conwrter 
Set Point Controller 
Digital Storage Uni t 
Input/Output Stage 
S torqe Peripherals 
Camera Control Unit 
Slaw Scan Sync. 
~riuae Storage Uni t  

YacwwjPressure Regulator 
Vacuijm/?ressure Measurement Unit 

2-Col or Py W t e r  
yolt/High Amp Power Condi tioner 

vacua punp Power Condi ti oner 

High Vac~lan Pump 

i? 

t t ion ixperfment. 







power requirement w i l l  be on the order o f  400 watts t o  de l i ve r  20 m3/min 
2 (700 cfm) a t  a head pressure o f  5.5 - 3.5 kN/a (0.5 - 0.8 psia). 

4.2.1.2 Analysis 

An analysis was conducted t o  assess the performance o f  the a i r -  

cool i ng concept. Since t ? z  a i  r-cool i n g  concept in teracts  thermal l y  w i  t h  

the Spacelab thermal control system, a s imp l i f i ed  thermal model o f  a 

typ ica l  cabin themal  control system and the SPA a i r  cool ing loop was 

generated. The basis f o r  the thermal model i s  the studies on the So r t i e  

Lab conducted a t  the MSFC. The MSFC studies were used as a basis due t o  

the lack o f  detai led de f i n i t i on  o f  the Spacelab TCS auring the analysis 
phase of  ne study. 

=igure 20 shows the baseline Sor t ie  Lab thermal control system 

and idenl i f i es  nodal points o f  the analysis model constructed. Nodal po in t  

d e f i n i t  ' m s  are presented i n  Table 16. Loop No. 1 i s  the water loop which 

provides f o r  heat re jec t ion through a heat exchanger t o  an external heat 

re jec t ion system (Shutt le radiators) .  It i s  assumed f o r  t h i s  study t ha t  

230 kg/hr (500 1 bs/hr) o f  water a t  a temperature o f  4C (40 F) i s  provided. 

Loop No. 2 provides humidity control  f o r  the cabin whi le Loop No. 3 gives 

sensible heat r ewva l  from the cabin atmosphere. Loop No. 4 provides f o r  

heat removal from the experiments. The node po in t  temperature predict ions 

are shown i n  parenthesis f o r  the ideal ized case where experiment components 

are per fec t ly  insulated from the cabin atmosphere. Analyses we* conducted 

wi th the thermal model and ".he resu l ts  are shown i n  Figure 21 and 22. 

Figure 21 shows resul ts o f  analyses made o f  the a i r -coo l ing system 

using various values o f  rack-mounted eq~ipment thermal conductance t o  the 

cabin and experim2nt power densities. As the camponen t- to-cabi n conductance 

(GI ) increases, more heat i s  dumped i n t o  the cabin and the component bul k 

temperature decreases f o r  a given power density. A1 though t h i s  help: i n  
component cool i ~ g ,  the cabin temperature i s  increased as shown i n  Figure 

24 and the rack panel surface temperature tends t o  increase. 

The parameter i n  the f igures i s  the r a t i o  o f  the component 
power to the heat transfer avai lable from the component (e f fec t i ve  thermal 

conductance). This parbneter i s  used t o  compare d i f f e ren t  sizes o f  
components on a common basis. 
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Since the SPA thermal control  system interfaces w i th  the Space- 

1 ab thermal control system a1 1 heat dissipated i n  the thermal racks 
ul t imately effects the Spacelab cabin temperature. Because the thermal 

rack heat exchanger has 1 i m i  ted capaci t y  [approximately 4.1 kW (1 4,000 

Btu/hr) power al location], any increase i n  e f fec t i ve  heat d iss ipat ion 

ra te  greater than the heat exchanger capacity u l t imate ly  a f fec ts  the 

cabin temperature (e i the r  d i  r ec t l y  o r  by i ncreasi ng system i n l  e t  tempera- 

ture  a t  Point 1 i n  Figure 20). Accordingly, there i s  a t radeof f  between 

a1 lowabl e cabin temperature r ise ,  rack-mounted equi pmer~t bul k temperature 

and heat d iss ipat ion w i t h i n  the racks. This t radeoff  i s  shawn i n  Figure 

23. This f igure shows t ha t  i f  the cabin temperature i s  allowed t o  increase 

3 C ( 5  F) as a r esu l t  o f  SPA operation and the rack-mounted equipment i s  

allowed to  operate a t  approxfmately 60 C (140 F) the maximum heat d is -  

s i  pation per u n i t  thermal conductance betwee:; t',e e lectronic equipment 

and the cooling a i r  i s  28 W-s-C/J (15 W*hr-F/Btu). For t h i s  condit ion the 

surface o f  the rack accessible t o  the crew would be i n  the 40 C (105 F) 

to  46 C (115 F) temperature range as a resu l t  o f  the temperature gi ,dients 

between the component and czbin a i r .  

4.2.1.3 System Feas ib i l i t y  Assessment 

I n  order t o  assess 

determine i f  the SPA payload 

per u n i t  thermal conductance 

range shown i n  Figure 23. A 
e lectronic equipment iden t i  f 

ment thermal characteri st! cs 

he system f e a s i b i l i t y  i t  i s  ne, --:_v t o  

rack-inounted equipment's p c ~  :pzt ion 

t o  cool ing 3 i r  (PIUA) i s  w i  tl , : . a': ' 7 '  able 

survey was made o f  data avai1ad:t .,I. -. ,.%. .r 7 
ed as SPA candidate equipment. t; , -  .st., l i p -  

A synopsis of the resu l ts  n f  t; . ie) ?re 
shown i n  Table 17. As shown, a l l  o f  the equipment ssrveyed f a l l  d t h i n  

the required range except f o r  the high voltage power conditioners snd the 

mechanical mixing and dispersal un i t .  The waste heat from the conditioners 
was taken as 20 percent o f  the e l ec t r i ca l  input  power t o  ths conditioner. 

The high voltage condit ioner needs t o  be more e f f i c i e n t  and i t  requi res 

a doubling o f  the heat t ransfer  area t o  be w i t h i n  the allowabie range. 

The heat t ransfer  character ist ics o f  the a i r  cool ing system have 

been based on typ ica l  conditions, however, t o  assess the heat t ransfer  

character ist ics and a r r i ve  a t  the required e i  r flow, s ize o f  fans and 

fan power requires tha t  an a i r  f low t es t  o f  a typ ica l  rack be performed. 
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.dble 17. Summary o f  Typical Electronic Equipment Thermdl C k a r a c t v i s t i c s  

COMPONENT -- 
~ ' d s  Chromatogra~h G16E 

Vigh Vacuum Pufip F25E 

Res'dual Gas Analy-er  FiZE 

VaculmnVPressure M e a s .  !:nit F26E 

O j a l y s i s  U n ~ t  B9E 

'rdS El i r i i na t io r :  System H13C 

iyoph! 1 i z a t i o n  U n i t  B -  3 t  

Conta iner less P o s i t i o n  Con t rc i  Sys. 

D i g i t a l  Clock CIE 

Mu1 t i o l e x c r  k:0  Conver ter  ClJE 

P r i n t e r  (Output: C9i 

Anaicg (SCR) C o n t r o l l e r  C13E 

L i g i t a l  Oata Storage U n i t  C12C 

Data 'nput lOutput  Stage CiE 

O r v a t o r  Cont, d:   nit C8E 

Processor Uci t C5E 

T e l ? p r i n t e r  C l l E  

Osci 1 lcscope C18E 

1R Spectrometer 68C 

Laser Oo t i  ca l  S c a t t e r i n g  Mon; -2 r  66t 

Low Vo l t IH igh  4np P/C R21E 

t i inh Voltage P/C B2lE 

RF I n d u r t ~ o n  P/C F29E 

Laser Py rometer F9E 

-- 
WASTE HFhT 



The nrslber o f  fans and parer requirements presented herein have been based 

on estimated press~rp  drops i n  the systan and, as such, are approximations 

only. 

Based on the analyses t o  date, i t  appears that  a i r  cooling i s  

feasible providing the necessary P/UA can be provided on the conmercial 

equiplaent This could be accompl ished by removing covers, adding f i ns  

and/or i .;lckaging high power dissipation equipment. Analyses o f  indiv idual 

,:quip~ent i t e m  with high P/UA values should be conducted i C  hssure 

adequate cool ing  exists. 

The air-cool ing concept i s  recommended as the baseline system 

provided that  the a i r  flat tests ver i fy  adequate a i r  d is t r ibut ion can be 

achieved. Equipment w i t h  high PIUA values may require modification i n  

some manner. 

4.2.2 Liquid-Cooling Concept 

4.2.2.1 Svstem k s c r i ~ t i o n  

The 1 iquid-cool ing system i s  sirnil a r  t o  the a i  r-cool ing concept 

except that  the equipment mounting surfaces (cold plates) i n  the rack are 

cooled by coolant l ines. The system schematic i s  ident ical  t o  the a i r  

system schematic (Figure 18, Page 74 ) except the fan i s  rep1 aced by a nater 

purp and the PR heat exchanger becomes a water-heat exchanger. Figure 24 

shws a concept o f  how the cold plates would integrate with the rack and 

electronic equipnent. 

The pump system is estimated t o  require approximately 100 watts 

fo r  a water flow rate o f  up t o  321) kg/hr (700 lb/hr). A punp package 

containing two pumps (one fo r  redundancy) i s  recomnended t o  a l lev ia te  

any v q u i  rements f o r  i n-f 1 i ght maintenance. 

4.2.2.2 Svstem Analvsis 

A parametric analysis was conducted t o  aszess the f e a s i b i l i t y  

of using a water cooling loop wi th  cold-pl ate-mounted electronics. Figure 

25 shows the e l&i t ron ics assembly bulk temperature as a function o f  water 

f low rate. The para.-tter P/C i s  the r a t i o  of the electronics assembly 

waste heat (P) t o  the thermal conductance between the assembly and the 

coolant loop (C) .  As shown, the beneficial water f low rate i s  i n  the range 
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o f  18C-320 kg/hr (400-700 lb /hr ) .  Since most o f  the e lec t ron ic  assemblies 

w i l l  have a P I C  o f  less than 10, the water f low r a t e  could be l i m i t e d  t o  

approximately 180 kg/hr (400 lb /hr )  w i t h  an attendant reduction i n  pmp 

power. 

The thermal coupling between the rack-mounted equipment and the 

cabin a i r  i s  not  too important i n  the coolant loop system when the equip- 

ment i s  mounted d i r e c t l y  t o  the swface being cooled (ccld plate) .  The 

thermal coup1 ing should be established such tha t  the equipment waste heat 

i s  dissipated d i r e c t l y  t o  the coolant loop and d iss ipat ion t o  the cabin 

a i r  i s  minimized. For  a system water f low ra te  o f  180 kg/hr (400 l b l h r )  , 
each rack ( f i v e  racks i n  analysis) w i l l  have a f low ra te  o f  36 kg/hr (80 

lb/hr)  i f  the f low s p l i t s  are equal. Assuming a cold p l a te  e f f i c iency  o f  

between 80 and 90 percent, a t o t a l  heat d iss ipat ion o f  1.5 kW can be hand1 ed 

i n  any rack based on a coolant i n l e t  o f  7 C (45 F) and an average P/C o f  

approximately eight. 

4.2.2.3 System Feas ib i l i t y  Assessment 

The 1 iquid-cool i ng  concept feasi b i  1 i ?y depends to a 1 arge extent 

on the design o f  the l i q u i d  d i s t r i bu t i on  system. That i s ,  the system must 

provide the required f low r a t e  a t  a low enough pressure drop t o  r esu l t  i n  

a reasonable pump power requirement. I n  addit ion, the thermai loads on 

each por t ion o f  the loop (equipment racks) must be balanced su f f i c ien t l y  so 

as t o  maintain rack ou t l e t  temperatures below the vapor generation temperature 

a t  local  l i n e  pressure. The thermal load on any component p l a te  should ~e 

l imi ted,  based on pressure drop, t o  maintain adequate o u t l e t  temperature i n  

the f l u i d .  

To completely assess the cool ant loop characteris t i c s  , detai 1 ed 

thermal analyses are required on a spec i f i c  configurat ion. Based on the 
preliminary analyses t o  date a 1 i qu id  cool ing loop would appear t o  be 

feasible. 

4.2.3 Heat-Pipe Concept 

4.2.3.1 System uescript ion 

A heat-pipe system was investigated since such a system provides 

the capabi 1 i t y  o f  thermal energy transport w i  thout an attendant expendi t ~ ~ r e  

o f  power f o r  an electromotive device (fans, pumps, etc.).  tlovrever, the heat 



transport requi remen t s  on the hea t -p i  pe sys tem resul ti ng from a typi  cal 

rack power dissipation d is t r ibut ion (Reference Figure 17) are too severe. 

Fob* example, a heat pipe capacity c f  nearly 760,000 W-cm (300,000 Watt-in.) , 
which i s  the thermal energy times distance i t  must be transported, i s  
required t o  transport the core equipment heat dissipation. Mhile t h i s  

requirement could be sat is f ied by a mult ip le pipe system, the nlnnber o f  

pipes required i s  considered impractical i n  re la t ion t o  a i r  o r  pumped 

l i q u i d  cooling. 

Heat pipes can transport high heat loads f o r  short distances 

very iuff iciently, thus, i t  seems more reasonable and pract ical  t o  provide 

a i r  ducts from the ECS system t o  ducts behind the equipment racks. Heat 

pipes can be used as i l l us t ra ted  i n  Figure 26 f o r  dumping the i r  heat f r o m  

the various components i n to  the duct. The heat pipes are attached t o  the 

components and therefore are ins ta l led  wi th  a minimum ef fo r t .  

The f i r s t  concept i l l us t ra ted  i n  Figure 26 u t i l i z s s  heat pipes 

attached t o  the component and extending i n to  an a i r  duct. The heat i s  

dissipated t o  the a i r  v ia the a i r  cooling f ins  attached t o  the heat pipes. 

The number o f  heat pipes required on each piece o f  equipment i s  a function 

o f  the power dissipation ( the low voltagelhigh amp power conditioner would 

require s i x  as i l l us t ra ted  i n  the f igure). The second concept i l l us t ra tes  

the use o f  a panel heat pipe t o  d is t r ibute discrete heat loads uniformly 

t o a i r c o o l i n g f i n s .  T h e a i r f l o w w o u l d b e d u c t e d ~ 1 o n g  thecool ing f ins  

from an i n l e t  header t o  an ou t le t  header. 

4.2 3.2 System Analysis 

I n  order t o  select heat pipes f o r  the various SPA equipment 

cool ing requi rements , the performance i n  terms o f  watt-inches has been 

mapped out f o r  various wick structures and working f l u ids  over the 

anticipated temperature range. The performance maps are shown f n Figures 
27, 28 and 29 f o r  round arteries, homogeneous wick and square o r  rectangular 

axial-grooves , respectively. Water, ammonia and methanol are the candidate 
working f l  u i  ds over the temperature range from 32 C (90 F) t o  66 C (1 50 F) . 
These curves serve as a guide fo r  preliminary selection and siz ing o f  the 

wick for a given requirement. They show what heat pipes can and cannot 
do, but should not be used f o r  estimating performance o f  a par t icd lar  

heat pipe. The curves are va l id  only fo r  zero-gravi t y  and negl ig ible 
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POWER CONDITIONER 
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Figure 26. Heat Pipe Cooling Concept for Rack Mounted Equipment 
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F i  gure 28. Zero-Gravi ty W i  ck Performance w i  t h  Negl i g i  b le  Vapor Loss 
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Figure 29. Zero-Gravi ty Axi a1 Groove Performance wi th  Negl i g l  b l e  Vapor Loss 
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vapor loss. The e f fec t  u f  f i l l e t s ,  meniscus recession, e tc .  , have been 

neglected and one should r e f e r  t o  the  TRW MULTIWICK computer program 

f o r  est imat ing heat p ipe performance [Reference 81. 

A few examples o f  t y p i c a l  wick dimensions are shown on t h e  curves 

as dashed 1 ines. The heat t ranspor t  c a p a b i l i t y  (QLeff) i s  def ined as 

f o l  lows : 

where ii i s  the  average r a t e  o f  heat t ranspor t  through a g iven sec t ion  o f  
the p ipe and Li i s  the length o f  the sect ion.  Another way o f  de f in ing  - 
Qi i s  the sum o f  a l l  heat i npu t  up t o  the g iven sec t ion  p lus  t h e  average 
o f  the incremental heat i n p u t  o r  r e j e c t i o n  i n  the  length, Li . Uniform 

heat input  and output are imp l ied  over  each length. 

4.2.3.2.1 External Heat Transfer 

The r a t e  o f  heat t r a n s f e r  through the heat p ipe  i s  governed 

by the amount o f  heat t h a t  can be dumped t o  the  coo l ing  a i r .  For a g iven 

m o u r t  o f  external  condenser area and a i r  f l ow  rate,  the  heat r e j e c t i o n  

i s  l i m i t e d  by the temperature d i f fe rence between the  heat p ipe (J ) and 
h P 

the cool i ng a i r  (Ta) . That i s ,  

The f i n  e f f i ~ i e n c ~ y ,  n, and the  heat t r a n s f e r  c o e f f i c i e n t ,  h, are funct ions 

o f  the  a i r  ve loc i ty .  A '  represents the t o t a l  heat t r a n s f e r  area per  

u n i t  length o f  condenser. The grouping nhA' i s  p l o t t e d  as a func t ion  o f  

a i r  ve loc i t y  f o r  various f i n  conf igurat ions i n  Figures 30, 31 and 32, 
These curves are useful  f o r  s i z i n g  heat pipes o f  t he  type ~hown  i n  Figure 

28. S imi la r  resu l t s  could be generated f o r  o ther  cool i ng methods. 

4.2.3.2.2 Design Approach 

The heat-pi  pe-system concept can be separated i n t o  the se lec t i on  

of the heat-pipe design and the  design o f  the ove ra l l  system inc lud ing  

a i r -duc t  conf igurat ion,  fan(s) se lect ion,  e tc .  Since the design o f  the 
a i  r - d u c t  system and ove ra l l  system perfomdnce analys is  would be simi 1 a r  

t o  the a i r -coo l ing  concept discussed i n  Sect ion 4.2.1 w i t h  the heat p i pe  
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merely i q m v i n g  the t h e m 1  conductance between the equipmi t  and the 

cooling a i r  only the selection o f  the heat pipes w i l l  be discussed i n  

th is  section. 

Figure 33. Es timatcd High Voltage Power Conditioner Teaperature P r o f  i les  

Since there i s n ' t  any r e q u i m m t  t o  optimize the heat pipe 

fo r  each piece o f  SPA equipment, an examination o f  the maximum heat 

dissipation case n i l  1 suff ice t o  select a heat pipe cmfiguration. The 

high voltage power conditioner represents the highest heat dissipation 

of the rack-mounted electronic equipment. As shown i n  Figure 33, the power 

dissipation p r o f i l e  shows an i n i t i a l  ievel o f  2600 watts fo r  30 minutes 

followed by 800 watts fo r  the remainder o f  an experiment cycle. Since 

the thermal time constant for t h i s  piece o f  equipment i s  approximately 17 

minutes (Ref. Table 17) the heat pipes w i l l  respond t o  the f i r s t  30 minute 

pwer  dissipation level. Accordingly, the number of heat pipes selected 

must be capable o f  handling the 2600 r a t t  load. 



To select  a heat pipe some physical aspects o f  the heat pipe 

need to be established and the appropriate wick selected. Based on the 

s ize o f  the equipnent i n  the SPA payloads, the heat pipe physical geometry 

speci f ied i n  Table 18 i s  selected f o r  the heat pipe. 

The heat transport by the heat p ipe i s  l i m  

re jec t ion t o  the a i r  by the cool ing f ins ,  therefore, a 

be selected. Examination o f  a 2.5-cm-radius (1 -in-rad 

per inch appears t o  provide good heat t ransfer  f o r  low 

3m/s (10 f t l s ) .  For t h i s  f i n :  

i t e d  by the heat 

cool ing f i n  must 

i us )  f i n  a t  12 f i n s  

ve loc i t i es  

330 ~ a t t s / ( C  m) 
= 

[38 Btu/(hr  F Ft ) ]  (Figure 32) 

Thus the maximum heat transport i n  a s ing le  heat pipe i s  f r o m  equation (1) 

Q =  - 6 * 
(T.$ (150 F-75 F) = 418 watts 3.415 

and 

QLef, = 209(18) + 418(6) + 209(6) = 7524 watt-inch 
(o r  19,100 watt-un) 

Therefore, the low voltage condit ioner requires s i x  heat pipes which w i l l  

provide the temperature response shown i n  Fi  gwe 33. The wick se lec t ion 

must be based on m e t i n g  the QLeff o f  l9,lOC watt-cm (7524 watt-inches) 

requirement based on the selected working f l u i d .  Because the heat pipes 

w i l l  be in terna l  t o  the Spacelab and not subjected to temperature below 

the freezing po in t  o f  water, water i s  the recomnended working f l u i d .  

Hater i s  compatible w i th  copper and monel, brlt i t  does require oxidized 

surfaces f o r  good wetting. It i s  believed tha t  w i t h i n  the next f i  de 

years water heat pipes w i  11 be we1 1 developed. 

The wick select ion should be based on the simplest wick 

that  w i l l  sa t i s fy  the requirements. The homogeneous wick represents the 

simplest geometry and i n  addi t ion are much cheaper and more r e l i a b l e  than 

arter ies.  The porosity, ;, o f  most wicks i s  on the order o f  60 % and 

the wire size, 5 ,  i s  determined by the need f o r  tes t ing  i n  a grav i ta t iona l  

f i e l d .  It was found t ha t  a wire diameter as large as 0.05 crn (0.02 in . )  



Table 18 

Heat Pipe Sizing Parameters 

Heat Pipe 

Diameter 

Evaporator 1 ength 
Adi abati c length 

Ccndenser 1 ength 

Component* 

Hax temperature 

Weight 

Cooling Air 

In1 e t  temperature 
Velocity 

1.3 an (0.5 in . )  

46 cm (18 in . )  

15 cm ( 6 in . )  

15 cm ( 6 in . )  

24 C (75 F) 

3.1 rn/s (10 fps) 

*Power Conditioner 



could be used, based on an ou t  o f  l eve l  o r  t i 1  t capab i l i t y  o f  as much 

as 1.3 cm (0.5 in.). For purposes o f  analysis, however, a nominal wire 

diameter o f  0.025 cm !Q.Si i~.) was selected. For a 1.3 cm (0.5 in.)  0.0. 

tube the maximun wick diameter would be on the order o f  0.8 cm (0.3 in.). 

This corresponds t o  an area, \, o f  0.45 an2 (0.Oi which i s  about the 

same as a slab wick t h a t  i s  (3.38 an (0.15 in.) thick. From Figure 28 

the ava i l  able heat transport capabi l i ty  f o r  water a t  66 C (1 50 F) i s :  

= 15,400 watt-in. 

o r  39,100 watt-cm 

This design was analyzed using MULTIWiCK and i t  was found t ha t  taking the 

vapor loss i n t o  account drops the avai lable capacity t o  27,200 watt-an 

(10,700 watt-in.), which i s  more than adequate. Thus, a hmgeneous wick 

w i l l  s u f f i ce  f o r  t h i s  appl icat ion. 

4.2.3.3 System Feas ib i l i t y  

The heat-pipe-system approach permits the use o f  standard 

cotmnerci a1 equipment i n  the absence o f  natural convection cool ing w i t h  

a minimum amount o f  modi f icat ion o r  rework. It i s  believed t h a t  conducting 

the heat t o  a forced a i r  duct behind the racks w i th  heat pipes as i l l u s t r a t e d  

i s  more e f f i c i e n t  than providing each component w i t h  a fan o r  special ductinq. 

I n  summary, heat pipes provide the f c r l l ow iq  advantages f o r  the Spacelab 

appl icat ion:  

U t i l i z a t i o n  o f  coimnercially avai lable equipment i n  the 

absence of natural convection. 

Minimum rework o f  comnercially avai lable equipment. 

Maximum, f l e x i b i l i t y  f o r  i n s t a l l a t i o n  and removal o f  

equipment a t  end o f  mission. 

E f f i c i e n t  cooling o f  electronics. 

Again, as wi th  the a i  r - coo l i  ng and pumped-1 i q u i  d-loop concepts, a t o t a l  

system analysis must be conducted t o  assure c o p 1  ete system f e a s i b i l i t y .  

Also, a heat-pipe system (heat pipe(s) on a commercial piece o f  equipment) 

should be b u i l t  and tested i n  an a i r  cool ing duct t o  demonstrate performarace, 



provide system pressure drop data and develop rack-mounting techniques, 

however, the prel iminary analysis discussed herein indicates system 

feas ib i l i t y .  

The SPA payload equipmefit thermal control  f a l l s  i n t o  two ca te~o r i es .  

The f i r s t  category contains t ha t  equipment tha t  can be thermally ccnt ro l led 

by the basic SPA TCS. Thi c category i n c l  udes the major i ty  o f  the equipment 

and has been discussed i n  previous paragraphs. The second category contains 

the equi p e n t ,  such as high tenperature furnaces, tha t  requires in te rna l  

cool i ng . 
4.3.1 hiater Cooled Equipment 

There a number o f  i tems i n  the various SPA payloads invest igated 

that  require in terna l  cool ing because o f  t h e i r  design. Table 19 contains 

a compilation o f  those un i ts  i d e n t i f i e d  t o  date. As indicated, the un i ts  

are generally cooled w i th  water c i r cu la t ing  through in terna l  channels o r  

cooling co i ls .  The un i ts  are usual ly connected t o  f a c i l i t y  water supply a t  
2 470 kN/m (60 psig)  which supplies the required water f low rate. Since 

the Spacelab does not  provide a general purpose, pressurized water supply, 

other nr ILS o f  supplying the necessary cool ing w i l l  have t o  be provided. 

It i s  proposed t ha t  those items o f  SPA payload equipment requ i r ing 

water cooling be equipped w i t h  a water pump (approximately 200 watt power 

-equirement) and a heat exchanger t o  provide a closed loop cool ing system. 

fhe heat exchanger w i l l  be a l i q u i d  t o  1 i qu id  type which would interface 

w i t h  the Soacelab water loop as shown i n  Figure 34. Manual valves are 

reconr.pnded t o  allow the supply l i n e s  t o  the SPA equipment loop t o  be shut 

o f f  :.tanual l y  i n  the absence o f  the SPA payload. The Spacelah 1 oop pressure 

drop character ist ic  should be examined t o  assess the need f c r  a pressure 

drop simulator when the SPA heat exchanger i s  not on 1 ine. I n  the event 

a simulator i s  required the manual valves coul d be e l  iminated. 

SPA payloads have been i den t i f i ed  which require the use o f  an 

a m i  r iary power and heat re jec t ion  k i t  (Ref. Section 3.1.2). For those 

payloads c ix ta in ing  i tems tha t  need water cool ing the heat re jec t ion  w i l l  

be provided by the k i t  (see Section 2.4). I n  those instances, the SPA 

water cooled equipment loop w i l l  in ter face w i th  a heat exchanger i n  the 
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k i t  and there w i l l  no t  be any in te r face  w i t h  the  Spacelab water loop. 

4.3.2 A i r  Cooled Equipment 

I n  add i t ion  t o  the  rack mounted e lec t ron ics ,  there are o the r  SPA 

payload equipment requ i r i ng  a i r  cool ing (notably the  r e f r i g e r a t i o n  equip- 

ment). Since the  re f r i ge ra to rs  o r  f reezer un i t s  already contain, o r  can 

be equipped with, fans f o r  the  condenser heat exchanger no add i t iona l  

p rov is ion  i s  required. However, since t h e  condenser heat load w i l l  be 

m jec ted  d i r e c t l y  t o  the  Spacelab cabin a i r ,  the cabin heat exchanger w i  11 

experience a shor t  durat ion t rans ien t  load o f  as much as f i v e  k i l owa t t s  

f o r  one hour. This load must be assessed re1 a t i v e  t o  Space1 ab thermal 

contro l  system capacity on a t rans ient  basis t o  determine ; he e f f e c t  on 

cabin a i r  temperature. 

4.4 THERMAL CONTROL SUBSYSTEM OF POWER/HEAT REJECTION KIT 

The thermal contro l  subsystem i s  designated the task o f  mainta in ing 

the environment o f  the experimental modules and payload equipnent w i  th 

spec i f ied  temperature l i m i t s  during the e n t i r e  mission. Heat d i ss ipa t i on  

i s  accompl ished by sys tems t h a t  combines co ld  p lates,  fans, heat exchanger, 

pumps, accumul ators and re1 ated tubing and controls. 

4.4.1 System Descript ion 

The PowerIHeat Reject ion K. i  t (PHRK) thermal coc t ro l  subsys tem (TCS) 

consists o f  a pumped l i q u i d  loop which re jec ts  thermal energy t o  space v i a  

a themal  rad ia tor  located on the e x t e r i o r  o f  the PHRK st ructure.  A 
s impl i f ied  schematic of the TCS i s  shown i n  Figure 35. As shown, the sys- 

tom i s  a l i q u i d  loop using two rad ia tors  t o  r e j e c t  the thema l  energy 

absorbed from the fuel ce l ls ,  e lec t ron ic  equipment and furnace. The 
primary rad ia to r  i s  a high temperature rad ia to r  fo r  high heat r e j e c t i o n  

and the secondary rad ia to r  i s  t o  provide temperdture drop i n  approximately 

ten percent of t i le flow f o r  cool ing room temperature operat ing e lec t ron ic  

equipment. 

Since the area ava i lab le  fnr rad ia tors  w i l l  always l i m i t  the 

waste heat re jec t i on  ra te  ava i lab le  to  the h igh heat d i ss ipa t i ng  SPA 

payloads (e. g., Furnace Subel ement Experiments), a thermal capaci t o r  i s  

included i n  the system downstream of  the primary rad ia tor .  The capaci tor  
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serves the func t ion  o f  s to r ing  the thermal energy t h a t  exceeds r a d i a t o r  capa- 

c i t y  u n t i l  such a time as the thermal load f a l l s  w i t h i n  rad ia to r  capab i l i t y .  

A t  t h i s  time the lhermal energy i s  remved from the capaci tor  and re jec ted  t o  

space through the radiators.  

Figure 35 shows the PHRK TCS f o r  the autonomous k i t  operation. For those 

missions m e r e  the  k i t  i s  i n  support o f  SPA payloads w i t h i n  the Spacelab, the 

furnace and e lec t rcn ics  por t ions o f  the coolant  loop would be rep1 aced w i t h  
i n te r face  heat exchangers t o  provide cool i n g  ( Figure 36). These heat exchangers 

would be l i q u i d - t o - l i q u i d  type where the Spacelab coolant would be water ( o r  

another su i tab le  coolant). It i s  desirable t o  keep Coolanol 15 f r o m  the inhab- 

i t a b l e  area o f  the Spacelab where furnace temperatures could exceed 71 C (160 F) 

due t o  the f i r e  hazard associated w i t h  the r e l a t i v e l y  low auto-igni t i o n  p o i n t  

o f  the Cool an01 . 
4.4.2 System Analysis 

A system thermal analysis was conducted t o  assess the capabi l  i f i e s  - o f  the 

system described i n  the previous section. The pe r t i nen t  parameters o f  the anal - 
y s i s  are shown i n  Figure 35. A system flow r a t e  o f  1810 kg/hr (4000 l b / h r )  was 

selected t o  maintain a r e l a t i v e l y  uniform temperature i n  the primary rad ia to r  t o  

maximize rad ia to r  effect iveness. This h igh mass f low r a t e  r e s u l t s  i n  a high 

pump power requirement as shown on the f igure .  

The thermal capaci tor  charac ter is t i cs  chosen fob the analysis are those o f  

s tea r i c  ac id  which i s  a 1 i k e l y  phase-change mater ia l  for  t h i s  type o f  system. 

I t  may prove desi rable t o  se lec t  various phase-change mater ia ls  depending upon 

the p a r t i c u l a r  mission t o  be flown (i.e., astonornous o r  Spacelab support r o l e  

f o r  the PHRK) . 
Based on the heat d iss ipa t ions  shown i n  Figure 35, the thermal contro l  

system heat r e j e c t i o n  i s  shown i n  Figure 37. For the purpose o f  the analysis, 
the e l e c t r i c a l  power was assumed t o  bc an instantaneous thermal load. I n  

rea l  i ty, the thermal mass associated w i t h  the e l  e c t r i c a l  power d i s s i  pators 

w i  11 tend to reduce the peak 1 oad and/or shorten i ts  expressed durat ion. The 

system heqt re jec t i on  (expressed as allowable duty cyc le  f o r  the e l e c t r i c a l  

load) i s  shown fo r  the base1 i n e  system and the add1 t i o n  o f  a water evaporator 

which u t i l i z e s  the fuel c e l l  water. Also shown i s  the e f f e c t  of rad ia to r  s ink 
temperature which can mate r ia l l y  i ncrease the a1 lowabl e peak power duty q c l  es. 
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Since the  TCS c a p a b i l i t y  i s  based on use o f  a  thermal capac i to r ,  t he  

volume ( o r  mass) o f  phase-change mater ia l  can be va r i ed  t o  increase opera- 
t i n g  times f o r  peak loads. The requ i red  weight ( n o t  i n c l u d i n g  con ta iner )  

i s  shown i n  F igure 38. For exampl e, t o  o b t a i n  a  capabi l  i ty o f  a  4  kW peak 

f o r  30 minutes requi res 45 kg (1  00 1 b) o f  heat  s i n k  mater ia l  . Addi t i m a l  

opera t ing  t ime can be obta ined f o r  a  4  kW load  a t  the  r a t e  o f  1.5 kg 

(3.3 1 b) o f  phase-change ma te r i a l  per  add i t i ona l  minute o ?  opera t ion .  

I f  i t  i s  assumed t h a t  the i nhs ren t  thermal mass o f  t i : r iRK ;; such 

as t o  increase the a l lowab le  d ~ t y  c y c l e  by a f a c t o r  of  2 f[ r #. ' io r t  dura- 

t i o n  pcak/loads (c 2 hrs .  ) conduct ing a furnace subel ement experiment 

( t y p i c a l  power p r o f i l e  shown i n  F igure 39) would requ i re  a  thermal capac i t o r  

o f  approximately 227 kg (500 l b ) .  I f  s t e a r i c  a c i d  i s  used as the  phase- 

change mater ia l ,  approximately 0.25 m3 (9  ft3) o f  ma te r i a l  i s  requi red.  

Th is  mass can be reduced t o  181 kg (400 1 b) i f  the f u e l  c e l l  water i s  

u t i l i z e d  i n  an evaporator system i n t ~ q r a l  w i t h  the  TCS loop. 

Tdble 20 gives a weight est imate o f  thermal capac i t o r  r equ i red  i n  the 

PHRK t o  meet the var ious experiment heat  d i s s i p a t i o n  requirements f o r  

l i m i t i n g  case assumptions. Table 20, as such, i l l u s t r a t e s  the  heat  r e j e c -  

t i o n  capac i ty  as the preeminent l i m i t i n g  i n t e r f a c e  subsystem. S t e a r i c  

a c i d  w i t h  a  heat o f  fusion o f  199 J/g (85.5 B tu / l b )  was assumed as t he  

capac i to r  mater i  a1 . Capaci tor weights were ca l  cu la ted  f o r  autonomous 

opera t ion  o f  the  PHRK and f o r  the case where 4.8 kW e l e c t r i c a l  equ iva len t  

heat  i s  d i s s i p t t e d  by the Spacelab. Also, the e f f e c t  o f  ven t ing  f u e l  c e l l  

water w i t h  an evaporator i s  shown. The cases where zero capac i t o r  weight 

i s  shown i nd i ca tes  t h a t  the PHRK can hand1 e the requ i red  thermal l o a d  i n  
a  steady s t a t e  mode. For a l l  o t h e r  cases t he  exporiment repeat  frequency 

must be const ra ined t o  a1 low the thermal capac i t o r  mate r ia l  t o  r e - s ~ l  i d i f y .  
The repeat frequency can be determined from the  du ty  c y c l e  curves shown i n  

F igure 38. 

The requirement f o r  thermal capac i t o r  mass can be reduced by a1 lowing 

heat  leak  from the PHRK s t r u c t u r e  t o  the  S h u t t l e  bay s t r uc tu re .  With the 

Shu t t l e  bay doors open the bay s t r u c t u r e  approaches -73C (-100 F).  For 
a  PHRK s t r u c t u r e  temperature of  38 C ( 1  00 F) approximately 6 kW o f  thermal 

heat  leak  can be generated. Th is  i s  equ iva len t  t o  110 kg (245 l b )  o f  

phase-change mater ia l  on 1 i n e  for one hour. Another r~ieans o f  reduc ing the 
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1. METALLURGICAL- FURNACE 
I I I I 

1 AVERAGE : 8-47 KW I 4  

ELAPSED EXPERIMENT TIME. HOURS 

8. BIOLOGY APPLICAT IWS-CONTINUOUS FLOW 
10 I I I I 

SUSTAINING 6.05 KW 
PEAK 9-95 K W  lSPlKEl 

9.24 K W  '18 MIN. 

I I I 

0 1 2 3 4 
*3s-a7 

ELAPSED E XPERIMENT T WE. HOURS e s w  

Figure 39. SPA Experiment Power Source Load Profi les 



capacitor mass requirement would be to use a material w i t h  a higher 

Joule/gram (Btu/lb) rat ing. Materials are i n  existance w i th  values as high 

as 278 - 302 J/g (120 - 130 Btu/lb) tha t  change phase i n  the 66 C (150 F) 
temperature range. However, a1 1 the character ist ics o f  these materials 

have not been thoroughly studied to date. 

Further de f i n i  t i on  of equipment to be i n c l  uded i n  the PHRK (notably 

electronics) may allow the rad ia tor  to operate a t  higher temperatures. 

The heat re ject ion as a function o f  f i n  rart temperature i s  shown i n  

F i g u x  40. I f  electronic temperatures are allowed to  operate a t  74 C 

(165 F) o r  above, less thermal capacitor m t e r i a l  would be required. 

4.4.3 Radiator Siz ing 

The feas ib i l  i t y  o f  providing a heat re ject ion capabi l i ty  to  al low the 

PHRK to opera-e a t  a steady s ta te  e l ec t r i ca l  load o f  up to 14 kH was 

investigated. The rad ia tor  area requirements were established as a function 

of the fuel c e l l  stack's coolant e x i t  temperature because the fuel  ce l l  I s  
coolant temperature i s  a pr inc ipa l  parameter a f fec t ing the rad ia tor  

design. 

To f u l l y  val idate the system defined herein, fur ther  detai led thermal 

analyses o f  tne radiator heat re ject ion and evaluation o f  the coolant loop 

f l u i d  and pump requirements w i l l  be required. I n  order t o  achieve a 

radiator system o f  high heat re ject ion density, portions o f  the cool ant 

loop must operate a t  temperatures i n  excess o f  370 C (7W F). This 

operating temperature level  requires high system operating pressures and 

special considerations f o r  1 ine connections and seals. 

4.4.3.1 System Def in i t ion 

The requirement to  provide cool ing f o r  up to 14 kW o f  consumed elec- 

t r i c a l  power resul ts i n  a radiator heat re jec t ion  requirement of up t o  

23.5 kW. The addit ional 9.5 kW o f  thermal energy comes from the fuel  c e l l  

waste heat as shown i n  Figure 1 6 o f  Section 3.1.2. For the purposes o f  
PHRK radiator sizing, the P r a t t  and Whitney fuel ce l l  character ist ics 

were chosen based pr imar i ly  on the higher coolant e x i t  cemperature o f  the 

un i t .  The 14 kW e lec t r i ca l  output i s  made up o f  two fuel c e l l s  operating 

a t  the 1 kW output level. The e lec t r i ca l  output power i s  suppl ied  to  

SPA payload equipment and i s  subsequently rejected as waste heat w i th in  the 
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thermal control loop (TU) .  For the purpose o f  TCL def in i t ion,  h e  waste 

heat 1 oad sources were assigned as shown i n  Tabl e 21. 

As shown i n  Tabl e 21 , various load sources a1 so have maximum a, lowable 

tmperature requirements. The allowable temperatures l i s t e d  i n  Table 21 

were assigned as possible leve ls  f o r  TCL system de f i n i t i on  purposes. Con- 

sidering both the heat load sources and the associated temperature leve ls  

a TCL s imi l  L;- t o  the schematic show i n  Figure 41 i s  required. The rad ia tor  

arrangement features three separate rad ia tor  sect~ons. The high temperature 

section provides f o r  re jec t ion o f  the waste heat from high temperature 

qua1 i f  ied equipment which provides f o r  a high heat re jec t ion  density and 

also minimizes the rad ia tor  area. However, to achieve the high i n l e t  

coolant temperature necessary f o r  t h i s  rad ia tor  requires t ha t  a por t ion o f  

the t a ta l  f low be diverted through t h i s  section o f  the TCL. Attendant w i th  

t h i s  necessary lower coolant f low ra te  w i l l  be a large temperature drop 

across the radiator. The temperature drop i s  such tha t  achievement o f  

su f f i c i en t  rad ia tor  effectiveness (n = 0.6) w i l l  require subsectioning the 

radiator  w i th  rad ia tor  and bypass mixing o f  the coolant. 

;ne second rzd i  a tor  section (moderate temperature) provides f o r  

re jec t ion o f  fuel c e l l  waste heat w i th  a radiator  o u t l e t  temperature com- 

pat ib le  wi th  the fuel  c e l l  cool ing requirements. Since the area o f  t h i s  

radiator  i s  coupled to the fuel c e l l  waste heat re jec t ion ard temperature 

requirements, i t  becomes the governing rad ia tor  for  t o ta l  system radiator  

area requirements. To minimize the temperature drop i n  t h i s  rad ia tor  

(necessary f o r  a reasonable effectiveness; n - 0.8) the t o ta l  system f low 

i s  passed through the radiator  a f t e r  being mixed w i th  the e f f l uen t  f r o m  

the high temperature radiator .  

A t h i r d  rad ia tor  section proviaes the necessary temperature drop i n  a 

port ion of the flow to al low cooling of low temperature electronics. The 
e x i t  coolant from the low temperature electronics heat exchanger i s  mixed 

wi th the ou t l e t  o f  the secondary rad ia tor  (moderate temperature) to al low 

to ta l  system f low through the fuel c e l l  heat exchangers. 

4.4.3.2 System Performance 

The to ta l  rad ia tor  requirement i s  d i r e c t l y  dependent upon the 1 i m i  t i n g  

fuel ce l l  operating conditions , spec i f i ca l l y  the fuel  c e l l  cool ant e x i t  
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temperature (Te) (see Figure 12, Section 3.3.2). As such, the re la t i onsh ip  

between the fue l  c e l l  e x i t  coolant temperature and PHRK rad ia to r  area i s  pre- 

sented i n  Figure 42. The required rad ia to r  area when compared w i t h  the ava i lab le  

area shows t h a t  the rad ia to r  system i s  l i m i t e d  t o  only on'e f u c l  c e l l  provided the 

fue l  c e l l  can operate a t  an e x i t  coolant temperature o f  143 C (285 F) o r  higher. 

The avai lable rad ia to r  area i s  based on the PFRK exposed body surface (12d0 arc) 

w i t h  a seven-foot-long radiator .  A system using a deployed rad ia to r  such 

as shown i n  Figure 43 could provide f o r  one fue l  c e l l  a t  nominal f ue l  c e l l  

temperature o r  two fue l  c e l l s  a t  an e x i t  cool ant  tenqerature o f  approximately 

150 C (300 F). A deployed rad ia to r  such as shown i n  Figure 43 would nec- 

essa r i l y  requi r~ fur ther  assessment re1 a t i v e  t o  the e f fec ts  o f  shadowing 

por t ions o f  the s h u t t l e  rad ia to r  system (bay door radiators) .  

4.4.3.3 System Feasibi: i ty 

The f e a s i b i l i t y  of the TCL described herein i s  predicated on mazy 

factors. As shown, major design considerations are the fue l  c e l l  ' s  opera- 

t i n g  condit ions and the ava i lab le  rad ia to r  area. Referr ing t o  Figure 42 

and based upon the nominal fue l  c e l l  operat ing temperatures and the def ined 

are: f o r  a k i  tlbody-mounted, 120' angle radiator ,  the output  of one fue l  c e l l  

cannot be accommodated i n  a steady s ta te  mode o f  operhtion. For such a 

rad ia tor  size, a fue l  c e l l  operat ing temperature o f  behreen 140 C (285 F) 

to 143 C (290 F) would be required f o r  a one-cell system. F e a s i b i l i t y  o f  

operat ing candidate shut t le- type fue l  c e l l s  a t  t h i s   temp^ ature l e v e l  must 

s ti 11 be assessed. 

Two fuel  c e l l  s operat ing continuously requires a substant i  a1 increase 

i n  e i the r  the necessary rad ia to r  area o r  a combination o f  an increase i n  

rad ia to r  area along w i t h  an increase i n  fue l  - c e l l  operat ing temperature. 

Any increase i n  rad ia to r  area impacts both shu t t l e  and/or other  payload 

operations and must be assessed accordingly. 

Furthsrmore, the rad ia to r  heat re jec t i on  effectiveness must be 

assessed more thoroughly t o  val ida  t e  the conceptual 1 eve1 s presented. The 

high temperatures and predicated 1 arge temperature drops of these p re l  i m -  
i nary analyses require t h a t  fur ther  d e t a i l  ed thermal analysis be conducted 

to  va l ida te  overa l l  system f e a s i b i l i t y .  As such, a coolant f l u i d  assess- 

ment must be e f fec ted t o  determine t o  what degree high temperatures 1370 - 
427 C (700 - 800 F)] i n  p a r t  of the loop are compatible w i t h  e x i s t i n g  
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working f lu ids .  This temperature leve l  i s  near the upper 1 i m l t  f o r  normally 

employed coolants. Dowtherm A, f o r  example, i s  near i t s  operating 1 i m i  t a t  
400 C (75n F). If a compatible f l u i d  cannot be selected, availatr?e f l u i d  

temperature l i m i t s  may become the governing parameter f o r  rad ia tor  

requi reme&. 

The resul ts o f  a preliminary system analysis as presented herein i n -  

dicates tha t  a system t o  accommodate the output of two fuel c e l l s  operating 
continuously (14 kW) i s  not  out o f  the realm o f  poss ib i l i ty ;  however, impacts 

t o  both fuel  c e l l  design and shut t le  bay radiators may resuit .  Further 
detai'ed studies are required before a k i t  system and i t s  performance ranges 

can be f inal ized.  



The p r i nc ipa l  concern o f  the EMC studies re la ted  t o  the SPA program 

has been the development o f  a system-legel agproach towards es tab l ish ing  
payload sel f-compatibi l  i ty and compati b i  1  i ty w i t h  the Space Shut t le  

environment. The i n i t i a l  e f f o r t s  have, therefore, been aimed a t  various 

l eve l s  o f  categor izat ion o f  the payloads and i n t e r f a c i n g  equtpment and a t  

the establishment o f  i n i t i a l  estimates f o r  the EMC environment f o r  the 

respresentat ive ~ a y l o a d  conf igurat ions. The potent ia l  u t i l  i z a t i o n  o f  a 
computer-assis ted  analysis e f f o r t  has been invest igated and several o f  the 

key parameters f o r  such an approach have been determined. 

5.1 EMC CLASS1 FI CATIOid 

The basic assumption f o r  any system-level approach to  EMC categor izat ion 

i s  the requirement t h a t  ind iv iduu l  components c o n s t i t u t i n g  such a system are 

a t  l e a s t  self-compatible. This imp1 i e s  a lso t h a t  there ex i s t s  some s o r t  o f  

a margin between the i n te rna l  noise l eve l s  o f  the component and those noise 
1 evel s  which, possibly due t o  the external electromagnetic environment, cam- 

the equipment performance t o  be degraded t o  undesi rab ie  l eve l  s. I n  addi t ion,  

i t  must a1 so be recognized the e l e c t r i c a l  /e lec t ron ic  equipment mi  t s  a ce r ta in  

1 evel o f  electromagnetic energy as a r e s u l t  o f  i t s  intended manner o f  operation. 

Several manners o f  categor izat ion suggest themsel ves. One such system u t i  - 
l i z e s  the concept t h a t  any component, i n te r face  c i r c u i t  o r  subsystem can 

a1 ways be categorized on i t s  electomagneti c  emission charac ter is t i cs  ( e i  ther  

wi re conducted o r  radiated) and by i t s  1 evel s  o f  s u s c e p t i b i l i t y  t o  Con- 
ducted o r  radiated noise leve ls .  A fu r ther  l eve l  o f  breakdown can be accom- 
p l ished by d i f f e ren t i a t i ng  between those emissions which are  re la ted  t o  

funct ional p rxesses  and those which represent a s p i l l o v e r  i n t o  the spectrum 

range not  required f o r  proper component opera t ion.  Potent ia l  l y  suscepti b l  e  

" c i r c u i t s "  can be s i m i l a r l y  described i n  terms o f  e f fec ts  due t o  i n t e r f t r e n c e  

w i t h i n  t h e i r  funct ional  range o f  operat ion and the so-cal led out-of-band 

responses. Final l y ,  i t  i s  a1 so necessary t o  categorize the process whereby 
the po tent ia l  source of in ter ference t ransfers t h i s  energy i n t o  the 

recei v i  ng terminal . 
The fo l lowing se t  of  c l ass i f i ca t i ons  have been selected as a working 

basis for  the SPA EMC study. Note t h a t  these categories are not  necessar i ly  
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mu&ally exclusive, as a component o r  subsystem may be a source o f  i n t e r -  

ference t o  another uni  t a t  the same t ime t h a t  i t  may be suscept ible t o  

emissions from a t h i r d  un i t .  

5.1.1 Essent ial  Eni t t e r s  

Those phys ica l l y  present o r  specif ication-imposed generators o f  e lec t ro -  
magnetic energy s e t  the minimum 1 eve1 s f o r  the  SPA EMC environment. They 

inc lude sources o f  conducted as wel l  as sources o f  radiated emissions and 

are no t  1 i m i  ted to the SPA pay1 oad excl usf vely. The fo l l ow ing  examples fa1 1 

i n t o  the class o f  i n ten t i ona l  emit ters: 

a AC Power1 i nes 

a Induct ion Heaters 

a Microwave Heaters 

EMC Specification-imposed s u s c e p t i b i l i t y  t e s t  l eve l s  
a Space Shut t le  RF t ransmit ters 

A l l  o f  these sources have o m  p r inc ipa l  EMC charac ter is t i c :  t h e i r  emis- 

s ion  spectrum i s  se t  by funct ional  requirements and, therefore, cannot be 

a1 tered by d i r e c t  suppression techniques. 

5.1.2 Non-Essential Emitters 

These cont r ibu tors  t o  the SPA EMC e n v i r o n ~ e n t  represent those sources 

of noise which are  non-essential t o  the proper funct ioning o f  e i t h e r  the 

Space Shutt le,  the Spacelab, o r  the SPA payload. Examples o f  such emit ters 

are the fo l lowing:  

Converter Ripple 

a Induct ion Heater Harmonics 

a RF Leakage and Spurious Emissions 

S w i  tch ing Transients 

0 Fl ashtube Emissions 

e E-Beam I n s t a b i l i t i e s  

The overa l l  EMC dasign o f  the Spacelab and SPA payload needs to  

e f fec t i ve l y  contro l  these sources, bu t  must do so i n  a balanced e f f i r r t  

aimed a t  compatible system operat ion and no t  j u s t  spec i f i ca t i on  cornpl iance. 

5.1.3 I ? ten t i ona l  Recei vers -- 
An in ten t iona l  receiver,  as t reated i n  the context o f  t h i s  study, i s  



any c i r c u i t  o r  co~ponent receiving signals w i th in  the bandwidth required 

f o r  it; prcper operation. These parameters are set  by functional require- 

ments and bandwidth-1 i a i  ti ng techniaues that  are normal 1 y appl ied  as desen- 

s i t i za t i on  methods are ruled out. Fxaqles of such receptors are l i s t e d  

be1 ow: 

a Anal og Tel emetry Channel s 
a Cusrsand Lines 

m Coaaunication Receivers 

a Sensor Readings 

9 Dig i ta l  Data ir,ec 

a Video Link 

As previously noted, many of these items represent the interfaces 

between the SPA payloads and Spacel ab, o r  even the Space Shuttle. A consi- 

derable amount of the E n '  design of the SPA payload i s  therefore dependent 

upon the u l  timate configuration of the sel ected Spacel ah design. 

5.1.4 Inadvertent Receivers 

The inadvertent receivers are generally ident ical  to the categories 

1 is ted above under intentional recei vers. The primary dif ference between 

the tno categaries i s  the emphasis i n  t h i s  category upon out-of-band response. 

Sens i t iv i ty  to interference i n  the frequency ranges cowered by t h i s  category 

can be a l tered s igni f icant ly,  a t  least  i n  concept, without affect ing the 

c i r c u i t ' s  capacity f o r  proper operation. A few o f  these "receivers" are 
1 i sted be1 on: 

Image Response 

a Ou t-of-Band Response 

Excess Bandwidth 

a Non-Lineari t i es  (Recti f icdt ion, Peak Detection, etc.) 

a EMC Speci f ication-a1 lowed Interference Level s. 

The 1 as t i tan 1 is ted above treats the a1 1 owed 1 eve1 s o f  radiated and 

conducted interference as if the i n i  t l a l  u n i t  level  EMC speci f icat ion 

c r i t e r i a  represented a hypothetical composite rec.eiver. 

5.1.5 -- Svxs fe r  Hechanisms 

There ex is t  f f ve pr incipal  mechanisms whereby electromagnetic energy 

may be transferred f rom a source t o  a receiver. Again, these are not 



necessarily mutually exclusive, but  as a pract ical  matter, one o f  the f i v e  

mechanisms usucl l y  predominates. 

a Comnon Inrpedance 

a Mutual Inductance 

a C o m n  Gipacity 

a Elec t r i c  Fields 

a Magnetic Fields 

Further breakdowns are possible i n  each o f  the indiv idual  categories, 

such as comnon source impedance and d is t r ibuted ground plans resistance f o r  

the case o f  comnon impedance coupling. Also, i t  may becone i n e f f i c i e n t  to 

t rea t  two mechanisms separately (i.e., E- and H-fields o f  a plane wave) but  

i f  the separation can be maintained, a solut ion to the energy coupl ing  ca l -  

culations becomes amendable to computer analysis. A model o f  such a 
mechanization, as used i n  the TW-developed SEHCAP* computer program, i s  

shown i n  Figure 44. The speci f ic  transfer equations f o r  each o f  the coupl i ng  

mechanisms are ind iv idua l ly  stored i n  the core program, and only the geo- 

metric, shieldin[, and grounding parameters need be specif ied as i n  input. 

5.2 EMC CHARACTERISTICS 

An i n i t i a l  e f f o r t  has been made during the course of t h i s  study to 

i den t i f y  the most prominent factors which w i l l  determine two potent ia l  EMC 

characterist ics o f  the SPA payload and the Spacelab environment. This e f f o r t  

has been hampered considerably by the almost total 1 ack of any appl icabie 

ENC data on comnercial components under consideration f o r  SPA (see section 

5.3). Par t ly  to  circumvent t h i s  problem and pa r t l y  also t o  obtain a t  leas t  

an order o f  magnitude estitrate f o r  the parameters involved, a review was 

conducted o f  the avai lable EiK 1 i terature pert inent t o  the subject. I n  

addition, an in-house t es t  program was started to measure same of the pe r t i -  

nent Em: characterist ics o f  R&D prototypes o f  equipient s imi lar  to that  

under consideration as patent ia l  ;FA payloads. The resul ts of t h i s  1 i te ra -  

ture and tes t  survey are presented i n  the fol lowing sections. 

5.2.1 Prominent Emission Sources 

Sources of potential interference are generally c lass i f ied  as e i ther  

*SPECIFICATION AND ELECTROMAGNETIC COMPATIBILITY ANALYSIS PROGRAM. 
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GENERATOR M I E L  RECEPTOR WDEL 

C - CAPACITIVE HIRE-TO-WIE TRANSFER 

I - INDUCTIVE WIRE-TO-WIRE TRANSFER 

R - COFWN RESISTANCE TRANSFER 

E - ELECTRIC FIELD TRANSFER 

H - MAGNETIC FIELD TRANSFER 

Figure 44 . Computer Analysis Model 
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steady-state o r  t ransient  and may be fur ther  subdivided i n t o  e i t he r  con- 

ducted o r  radiated interference. Some of the more prominent emission 

sources f o r  the SPA payload and in ter fac ing equipment5 are i den t i f i ed  

be1 ow. 

5.2.1 .1 Steady-State Radiated Interference 

The two most prominent sources o f  steady-state radiated interference 

anong the SPA candidate payloads are the induction heater and the microwave 
oven. The induction heater radiated interference can be expected to be a 

major consideration f o r  the design o f  the Spacelab data handling and com- 

munication equipment while the microwave heater, although to a much lower 

emission level,  needs t o  be considered as a potent ia l  source of interference 

to the RF comnunication 1 inks o f  the Space Shuttle. 

Line spectra radiated by induction heaters can be expected tc range 

f r o m  1 to  10 ampere-turnslmeter (1 t o  10 microteslas) a t  the primary induc- 

t i o n  heater frequency (tuneable f r o m  2 kHz to 2 MHz). Harmonic emissions 

depend s ign i f i can t l y  upon the loading o f  the induction heater co i l ,  but  can 

be expected t o  rol l  o f f  a t  approximately 60 dB/decade o r  better. These 

1 we1 s are from 00 t o  120 dB above those specif ied i n  MIL-STD-1541, the 

USAF space vehicle amendment to MIL-STD-461A. The Space Shutt le Amendment 

to MIL-STD-461A as c f  y e t  does not  specify any l i m i t s  f o r  magnetic f i e l d  

rad ia t ion above 50 kHz. 

Figures 45 and 46 i l l u s t r a t e  the leve ls  o f  magnetic f i e l d  rad ia t ion 

measured a t  a 1-meter distance flom !NO separate induction heaters. It i s  

o f  in terest  to note tha t  the l i g h t l y  loaded induction heater radiated a 

s ign i f i can t l y  higher level  o f  harmonics, and that  the type of power supply 

used for  th2 heaters appears t o  have a marked ef fec t  upon the radiated 

levels o f  broadband interference. The l a t t e r  conclusion has t o  be somewhat 

qua? i f i e d  by the f a c t  that  no tests o f  heater c o i l  loading upon power supply 
lerated noise 1 eve1 s were made. 

A somewhat d i f ferent  s i tua t ion  ex is ts  for  the microwave oven. Use o f  
the contact1 ess posi t ion ing system imp1 ies  tha t  the microwave cav i ty  must be 

provided w i  t h  " e l ec t r i ca l l y  th in"  wall s, and the e l  ec t r i ca l  thickness o f  

these walls w i l l  therefore have t o  be constrained t o  a few skin depths. 

Assuming a re f lec t ion  loss o f  approximately 78 dB f o r  the microwave signal, 
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and an approximate penetrat ion loss  of 8 dB per sk in  depth, an overa l l  

at tenuation o f  100 t o  110 dB can be estimated f o r  a 1 GHz signal.  A 1-kW 

(+60 dBtn) heater, wi thout  addi t ional  external shielding, may therefore be 

considered to  be capable of rad ia t i ng  a power densi ty  o f  approximately -50 

d~m/m2 a t  a one-meter distance. 

A low noise receiver, typ ica l  o f  the ones used f o r  S-band spacecraft 

comnunications, may employ a s e n s i t i v i t y  o f  -110 dBm/MHz. I n  the absence of 

any spec i f i c  information about the Space Shut t le  antennas, i f  one assumes 

omnidirect ional gain of u n i t y  f o r  the backlobes, a 1-m* capture area, and a 

separation distance of 1G meters between antenna and heater, a path loss  o f  

170 dB would seem to be a reasonable minimum requirement. O f  t h a t  value, 

approximately 130 dB may be assigned t o  the RF cav i t y  sh ie ld ing  and to  path 

loss, b u t  a t  l e a s t  another 40 dB o f  loss w i l l  be required o f  the external 

housing o f  the heater. I n  addit ion, i t may wel l  become necessary t o  r e s t r i c t  

the range o f  operat ion o f  the microwave heat:-.r i n  order t o  preclude any 

poss ib i l  i ty o f  in ter ference w i th  the on-board comnunication gear. 

5.2.1.2 Transient Radiated Inter ference 

One o f  the major sources o f  t rans ient  radiated inter ference i n  the 

SPA payload my be the f lashtube assembly used to pump the pulsed laser. 

Figures 47 and 48 i l l u s t r a t e  the l eve ls  o f  t rans ient  1,adiation measured a t  

a 1-meter distance from an unshielded l a s e r  head assembly. As may be seen 

frorr the graphical data, the 1 eve1 s of broadband radiated inter ference 

exceed the a1 lowed E-f i e l  d values o f  MIL-STD-461A, Space Shut t le  Amendment, 

by f r o m  40 to 60 dB over the e n t i r e  range from 14 kHz i;o 20 MHz. The 

radiated H- f i e ld  1 i m i  ts are a ~ a i n  spec i f ied  on ly  t o  an upper frequency o f  

50 kHz, bu t  are 'exceeded even w i t h i n  t h a t  range by 40 t o  50 dB. To reduce 

these leve ls  o f  t i ans ien t  radiat ion,  the choice o f  ava i lab le  u n i t s  may wel l  

be narrowed down to  those u t i l i z i n g  we1 1 groui~ded meta l l i c  enclosures f o r  

the flashtube assembly o r  those capable o f  being modified t o  such a 

conf igurat ion. 

5.2.2 Potent i  a1 Suscepti b i  1 i t y  Modes 

To evaluate the shie ld ing requirements f o r  e lec t ron ic  c i r c u i t r y  repre- 

sentat ive o f  po tent ia l  SPA equipments, data i s  required on the average 

s u s c e p t i b i l i t y  leve l  o f  such c i r c u i t r y  and also on the p o t c ~ t i a l  i n t e r -  

ference pickup i n  any i n te r fac ing  harness path. Actual experimental 

- 1 30- 
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determination o f  such data a t  the equipment l e v e l  i s  impract ica l  a t  t h i s  

p o i n t  due t o  the df f f i c u l  ty o f  generating the expected environment o ther  

than w i t h  the source equipment i t s e l f  (i .e. induc t ion  heater c o i l s ,  

f l  ashtubes, mod1 f i e d  microwave ovens). 

5.2.2.1 C i r c u i t  Cards 

The selected approach towards determining the minimum sh ie l  d ing 

requi rements f o r  e lec t ron i c  c i  r c u i  try has therefore been based upon the 

generic charac ter is t i cs  o f  commonly employed c i r c u i t  1 ayouts. As an 

exampl e, several studies i n  the 1 i tera ture  have attempted t o  assess the 

suscepti b i  1 i t y  o f  ' I near and d i  g i  t a l  in tegra ted  c i  r c u i  t s  a t  the c i  r c u i  t board 

1 eve1 . Comparing these threshold values against the prev iously  obtained 

data on the p o t e n t i a l l y  prominent emission sources, i t  can be concluded t h a t  

1 inear  c i r c u i t s  (opera l i ona l  ampl i f i e r s ,  AID converters, d i  f f e r e n i i  a1 

ampl i f i e r s ,  b u f f e r  c i r c u i t s ,  etc.) can b= a f fec ted  a t  the c i r c u i t  board 

l eve l  a t  distances o f  1 meter o r  more from the mdjor SPA in te r fe rence sources. 

Cig i  t a l  c i r c u i t s  are general ly more t o l e r a n t  t o  radiated in ter ference,  b u t  

t h i s  tolerance i s  o f f s t t  by t h e i r  increased bandwidth and broadband response 

charac ter is t i cs .  These cow; usions have been derived from the data shown i n  

Figures 49 and 50, and ind i ca te  that,  as a baseline, k. jnsiderat ion should 

be given towaris rbepackagi :I: SPA equipment i n t o  RF-t ight enclosures. 

Consideration should a1 so be given t o  packaging c r i  t i c a l  analog c i  r c u i  try 

i n  magneti cal l y  sh ie l  ded modul es. 

5.2.2.2 Fuel Cel l  Voltaqe Modulation 

One o f  the major weaknesses o f  standard EMC spec i f i ca t ions  i s  t h a t  the 

allowed leve l s  o f  conducted in ter ference are  spec i f ied  i n  terms o f  AC current ,  

whi le  the t e s t  l e v e l s  f o r  s u s c e p t i b i l i t y  a re  spec i f ied  i n  terms o f  voltage. 

This overs ight  o f  the source impedarlce coupl ing between the two fac tors  can 

lead t o  higher than expected voltage excursions i n  the fue l  c e l l  outputs. 

The ch ie f  reason f o r  t h i s  phenomena i s  t h a t  the impedance o f  a f ue l  c e l l  

var ies as both a func t ion  o f  frequency as we1 1 as a funct ion o f  DC load 

current.  I t  i s  therefore i n s u f f i c i e n t  t o  spec i fy  the 28 V r i p p l e  independent 

of t h i s  loading. The 400 Hz i nve r te rs  can be expected to  draw ti sinusoidal 

cur ren t  from the fuel c e l l s .  Since the inver te r ,  o r  inver te rs ,  generate s ingle-  
phase power, the i nve r te r  i npu t  cur ren t  modulates the output  vol tage o f  the 

fuel c e l l ,  and a var iable conducted noise voltage i s  introduced i n t o  u n i t s  

operat ing d i r e c t i o n a l l y  from the 28 V power. 
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An example o f  the range o f  impedances which may be encountered i n  a 

fue l  c e l l  i s  shown i n  Figure 51. The data was reported t o  have been obtained 

on a 28-cell Allis-Chalmers 200 watt, hydrogen-oxygen module and has been 

included i n  t h i s  repo r t  p r i n c i p a l l y  t o  shown the range o f  impedances one 

could expect to encounter. I t  i s  c e r t a i n l y  recomnended t h a t  s i m i l a r  data 

be c.its!ned on potent ia l  Spacelab fue l  c e l l  packages and t h t  l e v e l s  o f  con- 

ducted in ter ference specif ied fo r  the equipment to be reexamined beforc f i n a l  

pub1 ica t ion .  

5.2.3 Computer EMC Analysis 

I n  view o f  the 1 ack o f  data about the f i n a l  Spacelab conf igurat ion and 

i t s  operat ing charac ter is t i cs  a real  f s t i c  assessment o f  the po ten t i a l  com- 

p a t i  b i l  i t y  of  SPA payloads and Spacel ab in te r faces  has no t  been deemed t o  

be feas'2l e a t  t h i s  w r i t i ng .  This e f f o r t  can proceed once a candidate con- 

f i g u r a t i o n  and payload have been selected, where i t  w i l l  requi re the assumed 

geometry o f  the conf igurat ion t o  be specif ied. Modcls su i tab le  f o r  en t ry  i n t o  

the SEMCAP computer program, have been generated based on the emission data 

ou t l i ned  i n  sect ion 5.2.1, and the s u s c e p t i b i l i t y  c r i t e r i a  described i n  

sect ion 5.2.2 above. Models a re  a lso ava i l  able f o r  both conducted as wel l  

as radiated 1 eve1 s o f  a1 lowed emissions per  MIL-STD-461 A, Space Shut t le  

Amendment, and i n i t i a l  estimates have been prepared f o r  the responses o f  

typ ica l  command, telemetry and contro l  c i r c u i t s .  

The data s t i l l  t o  be determined before any reasonable estimate f o r  EMC 

in terac t ions  can be obtained res ts  p r i n c i p a l l y  i n  the geometrical terms 

required to speci fy  the i n te rac t i on  distances and harness routes, and the 

sensi ti v i  t y  and bandwidth charac ter is t i cs  o f  t yp i ca l  Spacel ab/SPA inter faces.  

5.2.4 EM1 Environmental Estimates 

The p r i nc ipa l  cause f o r  special  EMC concern uncovered during the course 

of t h i s  study has teen the induct ion furnace payload. Most o ther  sources o f  
po ten t ia l  interference, such as the unshielded l a s e r  head o r  the microwave 

oven, appear t o  be amenable t o  contro l  v i a  normal EMC suppression techniques. 

But operat ion o f  the induct ion heater and e x c i t a t i o n  c i r c u i t r y  w i t h i n  the 

ra ther  c lose confines o f  Spacelab w i l l  demand a considerable e f f o r t  i n  terms 

o f  noise suppression and imnunization techniques, i n  terms o f  t e s t  s i r r ~ l a t i o n  

requirements, and i n  prevent ive EMC design. P a r t i c u l a r  a t ten t i on  w i l l  ha *e 
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to be paid to the mechanical layout o f  harnesses, the or ienta t ion o f  the 

co i l  i t s e l f ,  the grounding configuration o f  associated c i r c u i t r y  and the 
signal transmission techniques to be q l o y e d .  

A t .  t h i s  time, i t  appears that  tk most s ign i f i can t  shortcoming o f  the 

Space Shuttle Amendment t o  MIL-STD-461A 1 ies  i n  the area o f  magnetic f i e l d  

suscept ib i l i ty  requirements f o r  the Spacel ab and associated equipment. Any 
shortcomings i n  the noise imnunity o f  the as y e t  untested portions of the 
SPA candidate payloads o r  i n  t h e i r  i ~ t e r f e r e n c e  suppression characterist ics 

are o f  course also o f  concerr: but  do not appear to  carry the same potential 

for serious interference w i t h  the host vehicie. 

5.3 AVAILABLE EM1 DATA FOR COWRCIAL EQUIPEidT 

There exists an almost to ta l  lack o f  available information about the 

EW characterist ics o f  the comnerxial equipment surveyed For SPA. Even i f  

th is  information were available, i t  i s  ooubtful tha t  i t  would be o f  d i r ec t  

value due to the evident necessity o f  modifyfng that  equipment thermal and 

ei ec t r i c a l  interfaces w i  th the Spacel ab. I n  addi tion, several changes 

would need to  be made i n  the t es t  methods used t o  derive such data. As an 

example, m s  t conducted interference meascrements are perf~rmed by u ti 1 i z i  ,ig 

a 1-ohm o r  s imi lar  low inpedsnce source. For SPA, the source impedance f o r  

highei- power loads should be simulated by a current l im i t ed  source, a con- 

df t i on  imposed by the 400-Hz o r  1600-Hz inverters. Similarly, conducted 

interference and suscept ib i l i ty  characterist ics o f  the candidate equipments 

can be expected to change s ign i f icant ly  from those bneasured under 60-1'- 

operation. 

Sumnarizing, EMC characteristics f o r  candidate SPA equipnents are 

lacking, but th is  drawback i s  tenpered by the f a c t  that  s ign i f i can t  varia- 

t ions i n  such data could be expected as a resu l t  of nmxanical equipment 

redesigns and power supply modifications. A tes t  o f  i o r t  t o  obtain such 

data w i l l  become pract ical  only a t  a time when the candidate payload 

configurations have been more closely defined i n  spec i f ic  deta i l  f9r each 

equipment. 

5.'' SPACELAB AdD SHUTTLE VEHICLE E t K  

The findings out1 ined so f a r  have indicated tha t  the wide var iety o f  

potential SPA configurations are not very amenable to  a general i zed 



speci f icat ion approach. Nothing tha t  has been determined up to t h i s  po in t  

precludes the previously out l ined approach to use o f  prel iminary computer- 

assisted EHC ar;sessments f o r  SPA missions, but  the potent ia l  range o f  

serious interact ions o f  the payload w i th  the f e r r y  vehicle requires a 

greater degree o f  de f i n i t i on  o f  the ENC character ist ics o f  a t  l eas t  the 
Spacelab. 

5.4.1 General EMC Specification Approac5 

Any assessment o f  a general EM spec i f ica t ion approach to  SPA payload 

configurations shows tha t  the degree o f  extra protect ion required to  encom- 

pass a l l  candidate components would impose s ign i f i can t  f inancial  impacts. 

This impact may be unavoidable i n  the case o f  the standard Spacelab mission- 

independent cons t i  tuents , such as the data hand1 i ng  and comnunications gear, 

but  appears tc be avoidable f o r  selected payload configurations. To accom- 

p l i s h  such an objective, i t  appears tha t  a dual speci f icat ion approach may 

be appropriate t o  SPA. I n  tha t  approach a generally more severe EMC speci- 

ii ca ti on mu1 d be developed f o r  the Spacel ab equ!pments to encompass the 

envelope o f  the worst expected envirotunent resu l t ing f r o m  a l l  potent ia l  

payloads. This approach carr ies v i  th  i t  the advantage o f  reducing potent ia l  

downtime f o r  resolut ion o f  payload in tegrat ion problems. Its disadvantage 

may be a higher i n i t i a l  cost resul ti ng f r o m  a need to upgrade a1 ready space 

qua1 i f i e d  equipments. 

5.4.2 Mission Speci f i c  Analyt ical Approach 

This mission sgecif ic analyt ical  approach carr ies w i t h  i t  the advantage 

tha t  once the EMC character ist ics o f  the Spacelab have been established, the 

only modifications required for a spec i f ic  mission analysis are the descrip- 

t i on  of the payload. Ov~rdesign i s  avoided because only one par t i cu la r  

configuration i s  evaluated a t  a time, and otherwise substandard performance 

characterist ics m y  be found t o  be s t i l l  acceptable i n  a spec i f ic  appl icat ion. 

I n  addi t ion, any Spacel ab re lated equipment modifications may be inserted 

i n to  the computer model a t  the time o f  i t s  implementation, w i t h u t  requ i r ing 

a general upgrading o f  a: I the remaining payloads. 

5.4.3 Specif icat ion kvelopmect Prerequisites 

Before e i the r  o f  the above out l ined approaches reaches the point  o f  

modifying any ex is t ing speci f icat ion 1 i m i  ts, fu r ther  EF#: data w i l l  have t o  



become avai 1 abl e about the selected ccnf i gura t ion  of Space1 ab and i ts 

comnd  and data hand1 ing  characteristics. Pertinent points include the 

secondary power d is t r ibut ion and grounding phi losophy, the acceptabl e range 

o f  source and loaa impedances and the levels of tolerable interference on 

interfacing c i rcu i ts .  To a certain degree, these parameters may already be 

estimated i f  i t  can be assumed that  the level of technology and c i r c u i t  

sophistication i s  to be based upon generally exist ing comnercial equipment. 

As a m i n i m ,  i t  i s  f e l t  that any p e r t i n ~ n t  data derived from the experience 

gained on Skylab be factored in to  the SPA EHC c r i t e r i a  selection process. 

5.5  TEST RECOI~li4NDATIONS 

The present phase of the SPA E X  assessment has uncovered the almost 

total  lack o f  EMC tes t  data on candidate payload equipments. It has also 

shown that a good port ion o f  such data, would i t  have been available, nould 

have been d i f f i c u l t  to u t i l i z e  i n  terms o f  the proposed e lect r ica l  power 

subsystem configuration and the demands imposed by the thermal environment 

o f  the Sptc~lab. To circmvent these conditions, i t  i s  recomnended that  a 

modified EMC tes t  program be i n i t i a t e d  along the l ines o f  an exploratory 

engineering investigation, s imi lar i n  nature ta the a1 ready acconpl ished 

tests on indliction heaters and flashtubes . 
5.5.1 Conducted Interference and Susceptibi l i ty 

Where power supplies on candidate SPA equipments have been designed to  

operate over the €0- to 400-Hz frequency range, engineering evaluation tests 

would provide a uc l f u l  indication i n to  the equipments potential behavior on 

Spacelab. Use nf simulated current 1 imited power supply should give inpr- 

tan t information about the expected transient behavior o f  such components 

and the resultant information from suscept ibi l i ty testing nould provide some 

feedback fo r  the design implementation o f  the AC power subsystem. 

5.5.2 Radiated Interference and Susceptibil i ty 

Recent simulated arc-discharge tests a t  TRW i n  support o f  another spaie 

pmgram have shown that a considerable amount o f  data on potent ial ly er rat ic  

c i r c u i t  behavior can be obtained i n  a re lat ive ly  short time. Such tests 

serve as qual i tat ive indicators o f  the adequacy o f  the incorporated EMC 
design features and serve b ident i fy  the weaker l inks i n  the signal o r  

data processing chains. By such means a considerable amount o f  test  time i s  



saved, and an imnediate follow-on e f f o r t  becomes feasible t o  characterize 

the properties o f  potent ia l  trouble spots a t  tt,e c i r c u i t  level .  Such a 

tes t  also provides an excel lent  ind icat ion about the adequacy and r e l a t i v e  

noise imnunity o f  any associated inter face c i r cu i t r y .  The t es t  a lso provides 

a reasonable measure o f  protect ion against causing permanent damage to  the 

equipment due to the shortness of the radiated RF pulses. Such a t e s t  could 

serve to simulate any o f  a n u ~ e r  o f  potent ia l  transients the quipment might 

encounter i n  actual use and should therefore provide valuable i ns i gh t  i n t o  

the re l a t i ve  noise i m n i  t y  o f  candidate SPA equipments. 

Radiated interference measurements on equipment configured f o r  com- 

mercial use on the ground can best be employed as diagnostics. Primary 

contr ibutors may thereby be i den t i f i ed  and an estimate can then be esta- 

b l  ished on the re1 a t i ve  amount o f  rC shield ing to be required f r o m  the 

equipment enclosure when modified f o r  SPA use. 

5.5.3 Scope o f  Test E f f o r t  

Considering the i n t e n t  of the investigations to be for  purposes o f  

gathering eng in~er ing  information, i t  i s  reasonable t o  assume tha t  the 

actual tes t  e f f o r t  per equipment can be held to two weeks o f  t e s t  time o r  

less. These estimates are based upon the a v a i l a b i l i t y  o f  semi-automated 

t es t  equipment and a 1 i m i  ted amount of engineering invest igat ion i n t o  

unexpected equi p e n t  behsvior. TRW has a1 so performed s im i la r  investiga- 

t ions i n  the past and has the personnel , f a c i l i t i e s  and equipment needed 

to zarry through the out1 ined investigations. 

5.6 CONCLUSIONS 

The i n ten t  and d i rec t ion o f  t h i s  study was to i den t i f y  the most pm- 

minent problem factors t ha t  could inf luence t radeoff  studies and t ha t  would 

lead to solut ions of problems related to matching SPA payload needs to 

Space1 ab/Shuttl e ca; ab i l  i t ies.  The i n i t i a l  e f f o r t s  expended during the EMC 

Subsystem interface study c lear l y  f u l f i l  l ed  the ear ly  expectations tha t  

evaluation o f  EMC character ist ics would be hampered by the almost t o ta l  

lack o f  such data f o r  the equipment items under consideration. 

A two-pronged ef for t  was undertaken to determine the EMC impact tc 

employing comnercial equipment: (a) i n -huse  t e s t  program and (b) a 

1 i terature review. 



The resul ts o f  these aspects of the study have been presented w i th in  

t h i s  section of t h i s  report. Tasks tha t  would provide fur ther  i den t i f i ca t i on  

of equipment performance c r i t e r i a  as effected by the EMC in ter face include 
a consortium o f  model in9 and suscept ib i l i ty  analysis that  culminates from 

a t es t  matrix. 

I t  i s  c lear tha t  f rom the studies presently conpleted i n  the E X  
Subsystem task tha t  the continuing EMC e f f o r t  f o r  SPA should be the mission 

speci f ic  analyt ical  approach for  purposes o f  modeling the system f o r  

EMC analyses. 
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