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NOTICE

This report was prepared ac an account of Government-
sponsored work. Neither the United States, nor the
National Aeronautics and Space Administration (NASA),
nor any person acting on behalf of NASA:

A.) Makes any warrantv or representatior,
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accuracy, completeness, or usefulness of the
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INTRODUCTION

1.0 Background

For years much of the fracture mechanics research, both theoretical
and experimental, has been devoted to the study of problems in which
the loads were applied in a direction perpendicular to the plane of the
crack. Studies of this type provide valid information for solely mode
one, or opening mode problems.

A knowledge of only mode one displacements is inadequate or
insufficient to perform the proper design analyses required for the
structures being considered today. Factors such as complex loadings,
nonuniform loadings, and the nonalignment of loadings and crack geome-
tries demand that a study of mixed mode fracture mechanics be accom-
plished to insure that the maximum possible structural integrity is
attained. Mixed mode problems arise frequently in bridges, pipes,
pressure vessels, and aircraft and aerospace structures. The necessity
for using high strength alloys in the fabrication of many structures
of this type intensifies the requirement for adequate mixed mode
fracture mechanics analysis sincc many of thesec alloys are often quite
brittle and sensitive to the presence of flaws or mechanical defects.

An example of a situation in which fracture mechanics considera-
tions will be exercised is in the design of the space shuttle structure.
Many components of the space shuttle will be reused a number of times
and be exposed to hostile environmental effects, so a proper design
analysis must be made which will include adequate assurance that the
desired life is not threatened by possible crack growth. Mixed mode

fracture mechanics considerations would be of less consequence if the




structural components were to be used only once, but they gain
increased magnitudes of importance when the components must withstand
a number of launches and recoveries. It is for consideraticns such as
these that a study of mixed mode fracture mechanics problems was
undertaken.

Part I of this report is devoted to the study of a semielliptical
surface flaw which has nonuniform shear loading applied to the surfaces
in either of two directions, parallel or perpendicular to the major axis
of the ellipse. An alternating method is used to calculate the mode two
and mode three stress intensity factors. These stress intensity factors
are presented as a function of position along the crack border for a
number of crack shapes and crack depths. No similar results have
heretofore been obtained for this problem.

A number of studies have been made for an elliptical crack in an
infinite solid and a semielliptical surface flaw in a finite solid, both
of which are subjected to uniaxial tension. However, no valid solution
exists for a semielliptical surface flaw having small depth to length
ratios, a/2c¢, which penetrates the solid with large depth to thickness
ratios, a/t. Kobayashi (1)* has stated that semielliptical surface
flaws with a/2c = 0.12 to 0.2 with depth ratios a/t = 0.9 are probably
the most critical problems in applied fracture mechanics without an
adequate solution. Part Il of this report is devoted to the study of
semielliptical surface flaws subjected to normal loading. Results of

this study were presented in Technical Report No. 4 but are included

*
Numbers in parentheses refer to references at the end of the report.
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here to allow the presentation of additional computations made since

the publication of that report.

2.0 Previous Work

Inglis (2) in 1913 presented the initial analytical work leading
to the present day concepts of fracture mechanics. He studied the
stresses in the vicinity of an elliptical hole which, in the limit,

becomes a sharp crack. This work then provided Griffith (3) with the

background recessary to postulate his theory of crack propagation based i
on a balance between released elastic strain energy and absorbed
surface energy.

Much of the initial fracturc mechanics work was done on two-
dimensional problems, but in 1945 Sneddon (4) formulated the axi-
symmetric three-dimensional problem of a circular flat crack in an
infinite solid with uniform normal pressure applied to its surfaces.

In 1960 Green and Sneddon (5) solved a similar problem for an ellipti-
cal crack embedded in an infinite solid, and in 1971 Shah and Kobayashi
(6) extended this solution to the case of an embedded elliptical crack
undeur arbitrary normal loading. All of these solutions dealt only
with embedded cracks.

The solution of Green and Sncddon (5) was used by Irwin (7) in
1966 to estimate stress intensity factors for a semielliptical crack in
the surface of a flat plate. Smith (8, 9) in 1966 presented the
solution to the problem involving a semicircular surface crack located
at a free surface of a half-space and loaded with an arbitrary normal
pressure. He used an alternating technique originally used by
Lachenbruch (10) to remove and calculate the effects of normal stresses

on the free surface.




Smith and Alavi (11, 12, 13) later solved the problem of a
circular crack onhodded in a semi-infinite solid, and . ,.oblem of a
part-circular crack in the surface of a semi-infini- solid.  hresher
and Smith (14, 15) in 1972 extended this work to solve the probiem of a
part-circular surface flaw in z finite thickiess solid. in 1973, Shah
and Kobayashi gave solutions to the problems of an embedded elliptical
crack approaching the free surface of a semi-infinite solid subjected
to uniform tension (16, 17) and linearly varying pressure (18). All of
the solutions mentioned above were for normal loading of the crack
surface, and thus involved only mode one displacements and stress
intensity factors.

Much less work has been done for the three-dimensional problems
involving cracks which have shear loading applied to their surfaces,
although some work has been done for cracks embedded in infinite
bodies. Segedin (19) in 1950 presented a solution for an embedded
circular crock subjected to a uniform shear stress. This same problem
was also solved by Westmann (20), while [:helby (21) discussed it as a
special case of his more general solutiun for an ellipsoidal inclusion
in an infinite elastic medium.

Kassir and Sih (22) in 1966 formulated the problem of an cmbedded
elliptical crack in an infinite solid, subiected to uniform shear
applied in any direction. They studied the stress ficld near the crack
border, and presented mode two and mode three stress intensity factors

as functions of position along thc crack border.
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3.0 Objectives of the Report !

The objectives of this repsrt are two-fold. The first objective
is to present the stress intensity factors for a semielliptical surface
crack in a finite thickness solid subjected to shear loading.

The second objective is to present stress intensity factors for a
semielliptical surface crack which has normal loading applied to its
surfaces. This work is the first presentation of an analysic< of this
problem which ircludes all known elastic effects, and it covers ranges
of crack depth and shape for which results of direct analysis are not

available.
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PART I--SHEAR LOADING OF A SEMIELLIPTICAL SURFACE CRACK

Chapter 1

THE SHEAR LOADING PROBLEM

1.0 General Stateaent of the Surface Crack Problem

Consider a semielliptical surface crack locaced in the front
surface of a finite thickness slab, as shown in Fig¢ 1. The crack is
considered to lie on the plane defined by z = 0, and has a semiminor
axis '"b" located alung the y-axis, and a semimajor axis '"a" located
along the x-axis.

The problem is to determine the stress intensity factor along the
periphery of the crack when the surface of the crack is subjected to
nonuniform shear stresses Tox and sz, the positive directions of which
are shown in Fig. 1. Boundary conditions for this problem are deter-
mined from a consideration of the conditions of skew symmetry of the

displaccments of the problem. These boundary conditions are:

= = 4 J
9,, 0, (z 0) 1.1)
and
x2 2
u=v=0 X +X.51, z2=0 (1.2)
2 2
a b

where u and v are the displacements in the x and y directions,
respectively. The front and back surfaces of the boay are considered
to be free of stresses.

In addition, the shear stiz2sses on the surface of the crack can be

expressed by the following series representations:

- —— . - e ol
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2
+Loc1; 2= 0 (1.3)
b

33
sz=ZZanxmyn’

m=

o
=3

o

wherem + n < 3. The sum, m + n, is limited 1o being less than or
equal to three because of the enormous quantity of work necessary to

derive the equations for the stresses and stress intensity factors.

2.0 The Method of Solution

The method of solution which will be used i< an alternating
technique similar to the one which has been used by Thresher and Smith
(15), and in a slightly different manner by Shah and Kobayashi (17).
Two elastic solutions are required to apply this technique. The
results from each solution are superposed to yield a solution te the
problem. These two solutions will be referred to as Solution 1 and
Solution 2 as follows:

Sclution 1. The determination of the stresses at any point in

an infinite solid due to the presence of an clliptical
crach in the infinite solid. The crack surface is subjected
to variable shear stresses.

Solution 2. The determination of the stresses within a semi-

infinite body <ubjected tov uniform normal and shear stress

applied over a rectangular portion of the surface.
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2.1 Elastic Solution of a Crack in an Infinite Soiid

Solution 1 represents the elastic solution of an elliptical crack
in an infinite solid subjected to nonuniform shear stresses. These
shear stresses can be applied to the surface of the crack parallel to
the minor axis or the major axis, or parallel to both axes simulta-
neously. This method solves the three-dimensional equations of
elasticity for the displacements and the stresses at any particular
point within the infinite body. Additional derivations are made for
the equations which define the stress intensity factors as functions of
position along the crack border. The derivations and the explanation

of this method are accomplished in Chapter 2.

2.2 The Half-Space Solution

Solution 2 utilizes the general formulation of a half-space
problem by Love (23, 24). This is a solution for stresses in a half-
space due to normal and shear tractions applied to a rectangular
portion of the surface.

For the problem under consideration here, the shear stresses Tox
and sz had to be ca.culated from the Love formulation on the face of
the crack. This had not been done before so it was neccessary to derive
the equations using Love's general formulation as a beginning point.
The skew symmetry conditions of this prcbhlem preclude the presence of
any residual normal stresses g,, on the facc of the crack, so it was
not necessary to calculate this component.

The details of thec solutior are presented in Chapter 3.

2.3 The Alternatiqngethod

The alternating method which is applied to the semielliptical

surface crack probiem works in the following way:

o ——— - B R




The shear loading, tzx °T T2y’ is applied to the crack surface
as prescribed from the statement of the particular problem
being solved. Solution 1 is used to compute the normal and
shearing stresses at points on a plane in the infinite solid
at the location of the front surface.

The front surface of the body must be free of stresses, so the
stresses produced in the previous step must be removed. This
requires that opposing surface tractions be applied on the
plane of an uncracked half-space. This is done by dividing
the front surface into a number of rectangular areas and
applying stresses tc each area which are equal in magnitude
but opposite in sign to the stresses computed at the center of
each rectangle in Step 1. Solution 2 is then used to compute
the shear stresses L and Tay at 96 points at the location of
the crack surface in the hal space. The effects of all
surface rectanglies are included by summing over the entire
number of rectangles used on the surface. The result of this
is a secondary residual stress which is now generated on the
crack surface.

Figure 2 shows a typical arrangement of surface
rectangles used in the analysis. This pattern is the one
which appears in the first quadrant and is repeated in each
of the other three quadrants.

The stress residuals which have now been produced on the crack
surface must be removed in order that the boundary conditions
on the crack surface can be met. This is done by applying

opposing stresses on the crack surface. The polynomial
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cquations (1.3) for Tox and sz are least square fitted to
the valucs of the stress residuals at the 96 points on the
crack surface shown in Fig. 3.

The change in thce stress intensity fuactors AK2 and AK3
caused by the application of these opposing stresses is
calculated and added to the stress intensity factors caused by
the initial loading. Solution 1 is again used to compute the
stresses on the front surface if more than one iteration is
desired on that surface. Either one or two iterations of this
kind are done with the front surface, storing the stress
residuals applied to the crack surface as well as the stress
residuals applied to the front surface.

When stress residuals are applied to the front surface,
stresses are produced at the location of the back surface.
These stresses must also be accounted for during the applica-
tion of the alternating technique. The applied stresses on
the front surface are used to calculate the stresses on the
back surface, using Solution 2, and stresses of the opposite
sign are then applied to the back surface. This, in turn,
causes some additional stress residuals on the crack which
must be removed, and the change in the stress intensity
factors AK2 and AK3 is once again calculated. This change is
then added to the running sum of each stress intensity factor
which was calculated from the initial loading plus the contri-
butions of any subsequent iterations.

The same steps which have been accomplished between and crack

and the f-ont surface are now done between the crack and the
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back surface, and a process similar to the one between the
front and the back surface is now performed between the back
and front surface.

Steps one through five constitute one cycle of iteration. Several

cycles are executed until the changes in K2 and l(_S from each step are

negligivle as compared to the values caused by the initial loading.
The final stress intensity factors are the sum of all the stress
intensities due to the initially prescribed crack surface stresses plus
the contributions due to all the stress residuals which arc applied at
the crack surface.

This procedure is extremely complicated and time-consuming when it
is considered that a large number of rectangles are used on each
surface, and 96 points are used on the crack face. For this reason,

all such calculations were programmed and performed on the digital

computer.




Chapter 2

THEF ELLIPTICAL CRACK WITH NONUNIFORM SHEAR LOADING

1.0 The Problem and its Boundary Conditions

The problem, referred to earlier as '"Solution 1", is illustrated
in Fig. 4, and is a flat elliptical crack embedded in an infinite
solid. The crack has a semiminor axis '"b'" located along the y-axis,
and a semimajor axis "'a" located along the x-axis. The plane of the
crack is considered to lie on the plane defined by z = 0. The surface
of the crack is subjected to nonuniform shear stresses Tox and sz, the
positive directions of which are shown in Fig. 4.

Considerations of the conditions of skew symmetry of the displace-

ments lead to the following boundary conditions:

o, = 0, (z = 0) (2.1)
\
and xz yz
u=vs=20, =S+t >1; z=0 (2.2)
a b

where u and v are the displacements in the x and y-directions,
respectively. It is assumed that the shear stresses applied to the
surface of the crack are expressible in terms of a polynomial of x and

y as

2
%+X—11; 2 =0 (2.3)

12
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where m+n <3,

All stresses are assumed to vanish at large distances from the crack.

2.0 Stress Functions, Displacements and Stresses

Kassir and Sih (22) formulated the problem of an elliptical crack
subjected to uniform shear applied in any direction as a mixed boundary
value problem. They were able to satisfy the three-dimensional equa-
tions of clasticity through the appropriate selection of two harmonic

stress functions, f and g. These functions satisfy Laplace's equations

Vef = Vg = 0. (2.4)
Navier's displacement equations of equilibrium are satisfied by the

harmonic functions, f and g. Define

F=—1—+ % and VZF = 0. (2.5)

The rectangular components u, v, and w of the displacement vector

are given in terms of the harmonic functions as:

of oF
u= -2¢(1 - n) 37 + 2z x (2.6a)
= -2(1 - m 38 oF
v = -2(1 n) 3y t 2 3y (2.6b)
w=-(1 -2n) F + z %% (2.6¢)

where u, v, and w are the displacement components in the x, y, and z
directions, respectively, and n is Poisson's ratio. The strain-
displacement equations may be applied to the displacements to yield the
strains, and in turn the stress-strain relationships for linear
elasticity may be used to obtain the stresses in terms of the stress

functions f and g to be
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XX _ I°f aF 9F
2G -2(1 n) 3X02 -2n 3z + 2 -"“2 (2.7a)
ax
o} 2 2
) 3 oF 3°F
3F =20 - ok o e (2.7b)
3y
o} 2
2z _ 9°F
3¢ - %5 (2.7¢)
3z
T_xl-_(l_ )_2_(?£+33.)+ _a._zl__ (2.7d)
26 "oz \ay T ax Z 3x3y )
T 2 2
xz _ 3°F 3F 3°F
56 - -(1 - n) ) + ﬂa—x'+ < 3x3z (2.7e)
2
T 2 2
XE o1 -m 22 oFF , ,3F
T8 1 -n) 822 +n 3y + 2 3y3z (2.7f)

where G is the snear modulus.

It has been found convenient in solving boundary value problems of
this nature to introduce the ellipsoidal coordinate system A, p, and v
where thesc ellipsoidal coordinates are roots of the cquation

x2 2 z2
1 - L _Z -y, (2.8)
2 S
a +s b +s

The ellipsoidal coordinates A, u and v are related to the cartesian

coordinates x, y and z by the transformation equations:

az(az-bz) x2 = (a2+k) (a2+u) (az+v) (2.9a)
b2 (b2-a%) y2 = (b%en) (bEew) b2ev) (2.9b)
a’b 22 = apv (2.9¢)

where the values of the coordinates are limited to the standard

restrictions:

-a2 <v < -h2 fWL0<c <o (2.10)
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In these coordinates, on the planc z = 0, the interior of the crack is
described by A = 0 while the region exterior to the crack is described
by uw = 0.

Segedin (25) suggested the use of a series of functions which
satisfy (2.4) and have properties which make it possible to satisfy
boundary conditions of the type required by (2.1), (2.2), and (2.3).
Shah and Kobayashi (6) used them *o develop the solution for an
embedded elliptical crack subjected to nonuniform normal loading.
These functions are used here in a similar way to solve this problem

and are expressed in the form

a TN v(m+n+1)

Z Z bmn ax" ay" (2-10

3
m=0 n=0 mn

f
4

where m + n < 3,

. j
v o _/” L (8) 4 (2.12)
X /Qls)
2 2 2
w(s) = 1 - ; R S = (2.13)
a +s b +s
and
Q(s) = s(a’+s) (b%+s). (2.14)
(n)

Segedin (25) showed that V is a harmonic potential function. Since
V(n) is harmonic, the stress functions, f and g, are also harmonic and

therefore satisfy the governing differential cquations (2.4),

3.0 Satisfying the Boundary Conditions
The boundary conditions, as defined in (2.1), (2.2), and (2.3),
must now be satisfied to complete the formal elastic solution.

Equation (2.1) states the first boundary condition as being 9, " 0 on
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the plane z = 0. It is obvious from (2.7c¢) that this boundary condition
1s identically satisfied at any point on the plane z = 0,

Equation (2.2) states that the displacements in the x and y-direc-
tion, u and v, are equal to zero outside the ellipse on the plane z = 0.

The substitution of this equation into (2.6a) and (2.6b)} yields:

af _ %,
= = 5. =0 (2.15)

Segedin (25) showed that the z-derivative of the function V(m) vani shes
on the plane z = 0 in the region outside of the ellipse. From (2.11)
it can be seen that if av(m)/az vanishes outside the ellipse for z = 0,
then 3f/3z and 3g/3z must likewise vanish, thus satisfying the boundary
conditions (2.2).

The final task remaining in satisfying the boundary conditions is
that of satisfying (2.3) for Tox and Ty inside the crack on the plane
z = 0. This was done by deriving the expressions for the stress
components Tox and sz on the plane z = 0 inside of the ellipse, using
(2.7e) and (2.7f), for each term in the polynomial which is produced by
(2.11). The result was a polynomial expression corresponding to each
one of the ten independent 8 coefficients and the ten independent bmn
coefficients. To satisfy the shear stress boundary conditions,
coefficients of similar powers of x"y" were collected from all the
calculations described above and equated to the corresponding coefficient

from (2.3). This resulted in the following matrix equation:

N e ol
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(" 2g0 ) (Ag0 )
30 Ao
201 Aor
250 A0
mn A
(K13 ag, = < Ags ? (2.16)
312 Al2
an A
%30 Asq
303 Aos |
ban B
\. J . J !

In the column matrices, the terms bmn and an are permuted in an
identical manner to the a and Amn terms, which are shown as the top
half of the column matrices. The square matrix Kij is a 20 x 20 matrix
and nonzero terms of this matrix are tabulated in Appendix I.

The solution to a typical problem would require that the Amn and
an cosfficients in the right-hand column matrix bec known or specificd
for the particular problem being solved. It is quite likely that the
problem being solved would require only a portion of these cocfficicnts
to be nonzero. Jt is also quite likely that the symmetry or skew-
symmetry of the stresses being used could preclude the necessity for
using all twenty of the coefficients. Equation (2.16) may be solved for
the am and blnn coefficients. These would be substituted into (2.11)

and then into (2.5) and (2.7) to calculate the stresses, and into (2.6)

to compute the displacements.
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This completes the formal solution to the three-dimensional

equations of elasticity.

4.0 Stress Intensity Factors

The mode two and mode three stress intensity factors would be o~
more importance to the designer than would the stresses or the displa:e-
ments near the crack. These stress intensity factors, when defined as a
function of position along the crack border, would be used with a
suitable failure criterion to help accomplish the design of mechanical

parts loaded with nonuniform shear stresses.

4.1 Definition of K2 and K3

Mode two and mode three stress intensity factors have been computed
for each an and bmn term in the stress functions of (2.11). This was
done by computing the following limits for mode two and mode three

stress intensities, respectively:

- .
_ Lim L
Ky = 10 (271) Tzn‘
L 2=0]
_ (2.17)
CLin [
Ky = 0 (27r) thl
i 2=0)

Figure S5 illustrates the terms used to define K, and K! in (2.17). The

2
direction normal to the crack front is defined as n, while the direction
tangential to the crack front is defined as t. The angle ¢ is the
parametric angle of the ellipse, and the angle B8 is the angle between
the x-axis and the outward normal vector. It should be noted that the
angle ¢ locates a point along the border of the ellipse which does not

in general coincide with the intersection of the radial line with the

ellipse. In these expressions, r is the distance from the crack tip
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measured along an outward normal, and Ton and Tot refer to the stresses

in the normal and tangential directions, respectively.

4.2 Derivations of Stress Intensity Factors

Mode two and mode three stress intensity factors, K2 and KS' are

calculated for every coefficient an and bwn. In the foilowing para-

graphs a calculation of the stress intes::!. factors corresponding to
the coefficient a4 will be done to illu.«:.a.e the procedure.
The first step is to compute the stress components Tox and sz on

the plane z = 0 outside the crack. [Lquation (2.11) is substituted into
{(2.7e) and (2.7f) to calculate these stresses. The use of Leibnitz'

rule for differentiiting integrals leads to:

1
=T =z -8(1-n)a,,.xT, |+ 8na,. xT (2.18)
6 "2x) o 107 4| Co M0t s
us=0 u=0

1
=T = 8na, y T (2.19)
% “zy|, .0 10" 6|,

u=0

where the Pi-terms are shorthand notation for:

ds Z DY
roe ] LY (2.20)
107 s(@)R AR ?
ds x A
FS = 3 f - (2.21)

(aZen) 2ROy >

ds X oA
T, = - -— (2.22)
6 xf (aes) (b2+s)VQ(8)  (aer) (b2en)QD X

(a9 R

Byrd and Friedman's (26) book is used to calculate the above

integrals directly in terms of clliptic integrals and Jacobian elliptic
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functions. The derivates of X may be obtained by differentiating

(2.9a), (2.9b), and (2.9¢). Equations (2.20), (2.21), and (2.22)

become
2 2 2 v
r4 askzk'f [(l-Zk )E(ul) + k dnultnui - ul]
(2.23)
) 222(b2+5)
AQ(Y) ( a) (A-v)
2 2 2 2
'5 = 85k4 [(2+k )ul-Z(l*k )E(u1)+k snulcnuldnull
(2.24)
o 2x2A(b2+xl
@ 020 (1) (u-v)
P6 = _E—%fTI (1+k'2)E(u1)-2k'2u1-kzsnulcdu1]
a"k "k
(2.25)
2x2k

@2 Q0) (A-w) (A-v)

where E(ul) is the incomplete elliptic integral of the second kind. The

modulus k and the complementary modulus k' are defined by

k2 =1 - b2/a%; k' = b/a (2.26)

The functions sn, cn and dn are Jacobian ellipfic functions and u,
represents the incomplete elliptic integral of the first kind. To find
the limiting form of the stresses near the crack tip it is necessary to
set u = 0, and approach the crack tip. As r, the distance from the
crack :ip, approaches zero the following limiting expressions are

applicable:
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A - 2abr ¢ ° u=0; v+ -9
snu, * 1 dnu1 + b/a ; cnu, 0; cdu1 +0 (2.27)
tnul + a/)\li ; u, K(k) ; x + a cos¢ ; y + b sin¢

In these expressions ¢ is given by
%= azsin2¢ + b2c052¢ (2.28)

and K(k) is the complete elliptic integral of the first kind. Upon
substituting (2.27) into (2.23) through (2.25) and retaining only those

)
terms containing (2r) ? the stresses are found to be

b’ %
1 - ¢ a b 3
56 Tzx © 16a10 ‘/——-Zbr <—(1-n) Tk' cosd-n —7-—35 2° cos ¢>

a
(2.29)

o3

/
1 - n . 2
%G T2y ° '16310J br (33/24» sin$ cos ")

The stress components Ton and T,. 3Te now found from & stress

transformation to .e

T =7 cos B + 1 sin B
zZn ZX zy

(2.30)

T = -7 sin B + t cos B
zt zX zy

The angle R is reclated to the parametric equations of an ellipse by

sing = a sing

¢ (2.31)
cosB = b cosé

¢

Substitution of (2.31) into (2.30) yields the following equations for

T and v __.
n zt
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T =1 b cos¢ .7 B sin
zn zX " zy °§

¢
¢ =.r asing b coss
zt zX 0% R

Substitutinyg (2.29) into (2.32) and the results of this into

(2.17) yislds:

s
-32Gn -5 b 2
Kpm 377 ) By 00
(ab)
1
Ky = 32Gr ;'; 0°*alo sin¢ cos¢
(ab)

Similar calculations have been done for every term 8 and bmn'

The resulting equations are presented in Appendix II.

(2.32)

{(2.33)

(2.34)




o e, e

Chapter 3

THE HALF-SPACE PROBLEM

1.0 Discussion of the Method

This solution, which was referred to earlier as "Solution 2, gives
the stresses in a half-space subjected to uniform normal and shear
tractions over a rectangular portion of the surface of the half-space.
The general formulation for this problem was originally developed by
Boussinesq and Cerruti (23) for the cases in which the rectangular area
is subjected to surface tractions normal and parallel to the surface of
the half-space. Love (24) worked the problem in detail for the case in
which the rectangular zrea is subjected to uniform normal stress. Alavi
(11) gave the solution for the case where the rectansular area is
subjected to shear tractions.

Love's solution (24) gave the six stress components caused by the
application of a load normal to the plane. Two of these components, 33?
and‘;; in Love's notation are needed for Solution 2. However, no
derivation for these two components existed for the cases in which the
two shearing components of the traction vector were applied, so it was

necessary to derive these equations.

The equations for the x, y, and z displacements are presented by

Love (23) as:

a
1 aF 1 3H A 1 1 Y
“’m[ﬁ'i’ﬁ‘zwu) ™ 7 (-1
w T
ve L |26 _ LM A __1 1, 3% (3.2)
Jeu |3z T 29y T 2(h*n) 8y 2 T 3y

9-1] (3.3)
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where A and u are Lame's constants defined as

En
(1+n) (1-2n

shear modulus

=
]

and

E = modulus of elasticity

Poisson's ratio

n

The harmonic functions F, G, H, ¥, and wl, are defined in Love
(23), and Smith and Alavi (12), and will not be further defined here
since this solution may be explained with no additional knowledge of
them.

Equations (3.1), (3.2), and (3.3 are written in terms of what
shall hereafter be called Love's coordinate system, which is different
from the one used in Chapters 1 and 2. This coordinate system is used
in Figs. 6 and 7 where it may be seen that in terms of Love's coordi-
nates the desired shear stresses on the surface of the crack are Tyx
and 1 2’ Love's notation will also be used to specify which component
of the surface traction vector is being considered. In this notation,
Xo, Yv’ and Zv reprasent the applied load at the center of each rectangle
in the x, y, and z directions, respectively. The derivations involving

these components will be considered separately, and the >verall solution

will be obtained by superimposing the results from each.

2.0 Derivation of Stresses on the Crack Surface

The strain-displacement equations can be applied to (3.1), (3.2),
and (3.3) to provide equations for the strains. Then the stress-strain
relations can be used to yield equations for the desired stress

components, Tyx and ryz. These steps are accomplished in the rext three
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sections for the application of xv, Yv’ and Zv to a t'pical ractangular

arei in the first quadrant of the plane.

2.1 Stress Derivations when Applying X,,

Figure 6 shows the coordinate system for a typi~zal r~-~tangle used
in this half-space solution. A shearing traction vector Xv is applied
parallel to the x-axis on the surface of the rectangle. This is

described by the following boundary conditions.

A
"

X, (x| <a, lyl <b, 220
(3.4)

Ox = %%y = %22 % Txy = Tzy ° 0 (|x|] >aor |y] >b)

Calculations made for Tyx using the steps mentioned in the previous

section yield:

2
SL{ZE, a2y 5.5
Tyx 2n | 9y3dz = (A+n) 3x3y Ixay ’
where

2. [d +{(a-x)}}b,~(a+x)
2F . X log b2 2 (3.6)
dydz v [al+(a-x) cs-(a+x

2

oy _ X [_ a-x __asx . 3%x . 2X ] (3.7)
9XJy v al(z+al) bz(z+b2) cs(z+c3) d4(i+d4)

2
3Ty 2

1 . 3y a-x _ a+x  a+x a-x

3x3y zaxay""u[al * b, T d] (3.8)

The terms a), bz, Cs» and d4 are defined as

Y

a, = &a-x)z + (h-y)2 + 22]

9 5 21 3
b2 = [(aﬂ(]" + (h-y)~ + z']
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e; = [@n? + Gop? + 2]
]

4, = [(a-x)z Y L

Similar calculations made for the other shear component on the

surface of the crack give

2
=11, 23y
Yy2 = Zn [ z ayaz] (3.9)
where
ﬁ”r-l___l-+¢-_1.] (3.10)
dydz v 3 b, ¢ d,

2.2 Stress Derivations when Applying Y,

A shearing traction vector Yv is applied parallel to the y-axis,

with the following boundary conditions:

Ty =Y, (Ix] <a, |yl <b, z=0)
(3.11)
Sex = Oyy = %2z = Txy = Tox 0, (x| >aor ]yl >b)
The following equation for Tyx is obtained:
2
. =L %6, 3‘!)1-;32"’ (3.12)
yx 2w [3x3z (A+u) 9x3y axdy
where the derivatives were found to be
2 [d -(b+;ﬂ [p +(h-yﬂ
= Y log (— 2 (3.13)
a,+(b-y)| |c-(b+y)
1 3
2
3V . by R 4 Lo A q by ] (3.14)
3xdy v al(z+a1) bz(z+b2) c3(2+c3) 4(¢¢d4)

axdy = 3xdy a b, <

2%y 2
1., 30,y b-y_b-Y_b*X+%tZ (3.15)
v 1 3 4
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Calculations made for Tyz give
2 2
IR
Tyz 2n BZ2 z dydz (3.16)
where
2 b-; - b -
2y Y, =) o\ (3.17)
9ydz (b-y) " +2 1 2 (bey)"+2 4 3
G is a harmonic function, so
2 2 2
3G 9 9
5 = - g + g (3.18)
9z ax y
326 1b 1 b+ 1 b- 1 z(b+
—_—= Y tan- _:X.+ tan- _—X.- ta _L__ZL_ - tan— EL__Xl_
axz v a-x a-x (a- x)a (a- x)d
(3.19)
+ tan" 1 22X 4 gan l B2Y | g 'l_iﬂljﬂL_ an1 2(b4y)
a+x a+rx a+ )b (a*+x)c,
aZG -1 a-x 1 a+x 1 z(a-x 1 z(a+x
= Y [tan “— + ta : - tan_ ?L-:—l—-- tan’ -S——Tl~ +
;;T v h- b-y)a, (b-y)b,
(3.20)

+
ot
+
ct
[
=

n~1 a-x -1 a+x _ n-l z(a-x) -1 z(a+x)
b+y b+y (b+y)d, (bty)e,

2.3 GStress Derivations when Applying Z,

The normal traction vector z is applied parallel to the z-axis and

perpendicular to the plane, providing the following boundary conditions:

o = -1 (Ix] < a, |yl <b, z=0)

(3.21)

2 0 = T =1 = 1 =0 (IX' > a or ‘YI > b)
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Calculations made for Tyx yicld
i
2 2
=1 M 3°H 3"y
Tyx T 2w [(A+u) axdy = ¢ axay] (3.22)
where
2 (z+a3,) (z+c,)
3°H _ 1 3
Xy Zv log (z*bz)(z+d4) (3.23)
2
QY 1,1 1 (3.24)
IXdy via, b2 g d4
The following equation is obtained for Tyz
1 329 i
Yyz = Zn |7 Fyez (3.25) E
where |
a? + a+
ayau; =2y v il Rle st vl (3-26)
(b-y) " +z 1 2 (b+y) "+2 4 S/J

3.0 The Solution Form for Application to the Crack Problem

When using the half-space solution, each quadrant of the planc is
divided into a number of small rectangles, as shown in Fig. 2. The
exact number of rectangles used can vary, depending upon the particular
crack shape a/2c, and the amount of crack penetration into the plate,
a/t. The effect of applying the normal and shear loading to each
rectangle must be considered when the stress at any particular point is
calculated. The number of calculations would tend to get out of hand if
a large number of rectangles were used, so it is desirable to take

advantage of the symmetry conditions of the stresses and thus reduce the
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number of total calculations necessary. Therefore, calculations are
made using only the rectangles in one quadrant of the surface.

The principle of superposition is used to determine the shear
stresses on the face of the crack, Tyx and Tyz, by adding the effects of
applying X, Yv, and Zv. In order to clarify the procedure, and shorten
the length of the equations used, the following shorthand notation will
be adopted. Let (3.5), (3.12), and (3.22) be called F1X, F2X, and F3X,
respectively. The number 1, 2, or 3 identifies with the direction of

loadiny, Xv, Y,

,» OF Zv’ respectively, while the last letter X identifies

that the shear component in the x-direction, Tyx’ is being determined.
In a like manner, let (3.9), (3.16), and (3.25) be identified as FlZ,
F2Z, and F3Z, respectively, where the Z denotes that the stress
component in the z-direction, ryz is being considered.

Using supeirposition, and factoring the applied load from each of

the equations mentioned above, the Tyx component may be written:
T =X FIX «+Y F2X + Z T3X (3.27)
yX v v v

Consider the case in which a uniform load is applied to the surface of
the crack in the x-direction only. This would correspond to the loading
Yeing applied in the direction of Tyx as shown in Fig. 7, and would
result in the stress symmetiies on the surface of the plane as shown in

the same figure. These symmetries may be written as

1. =-Y =Even in X, Odd in Y
zX v

T = -Y =0dd in X, Even in Y (3.28)
zy v

a = -Z =0dd in X, Odd in Y

~Z v

They will be used in generalizing the solution for computer usc.
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A check of the symmetries of the equations derived for Fi1X, F2X,

and F3X, shows them to be:

F1X = Even in X, Odd in Y
F2X = 0dd in X, Even in Y (3.29)
F3X = Odd in X, Odd in Y

To illustrate how these symmetries are used, consider only the
effect of the Xv surface traction on four rectangular areas, located

symmetrically in cach of the four quadrants, as shown in Fig. 7. Then

FIX; = FIX (X - X, Y-Y, 2), first quadrant
FIX, = FIX (X + X, Y-V, 2), second quadrant
~ - (3.30)
FlX3 = FIX (X - X, Y+Y, Z2), third quadrant
FIX, = FIX (X + X, Y+Y, 2), fourth quadrant

where X, Y, and Z are thc coordinates of the peint at which the stresses
are being calculated, while X and Y are the coordinates of the cenier of
the rectangle being considered. Since the plane is the origin of the
coordinate system, the Z coordinate is equal to zero. On thc plane of
the crack, Y = 0, and after using -Y and the symmetry conditions of

(3.29), equations (3.30) become:

FIX, = FIX x - X, -Y, 2)
FIX, = FIX (X + X, -Y, 2) (3.31)
F1X; = -FIX (X - X, -Y, 2)
FIX, = -FIX (X + X, -Y, 2)
From (3.31), FIX, = -FlX; and FIX, = -FI1X,.
Let
= ] F 3.32
T xv1 Fle + xv2 Frx2 + x“s IX, + x\)4 IX, ( )

-~ - " R G T T AR I




where the subscripts on Xv indicate the quadrant number. Using the

symmetrics of (3.28),

(3.33)

and substituting,

- (3.34)

T2 X [FIX(X-X, -Y, z) + FIX(X+X, -Y, Z)]
1

If a similar procedure is followed when applying Yv and Zv’ and if the

results from all rectangles are summed, the stress Tyx generated at a

point on the surface of the crack is
|

Tk =t 2 X, |FIXQ-Xy, <Yy, 2) ¢ FIXQGX, =Yy, D))+
k=1 kL )
N — — — —
+ 32X, |FX(X-X, Y, 2) - F2X(XeXp, Y, 2) L e (3.35)
k=1 k 4
N — —— — —
+ Eg; 2 z\,k F3X(X-X,, Y., 2) - F3X(XeX,, -Y, Z)J

where k is a particular rectangle number and N is the total number of

rectangles in the first quadrant.

In the same manner as above, the Tyz component of the stress may

be written as:

v =X F12 + Y ¥2Z + Z T3Z (3.36)
v v v

yz
The equations for F1Z, F2Z, and F3Z provide thc following symmetries:
F1Z = Odd in X, Odd in Y
(3.37)

F2Z = Even in X, Even in Y

F3Z = Even in X, Odd in Y

ey S o R e AT T T M T e 1o, .

T neemamy ey
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If the same procedure is followed to calculate Tyz as was followed to

calculate Tyx in (3.35), the results will be:

N
Tyt EE% ZX FIZ(X-X,, -1, . Z) + F1IZ(X+X, -Y

+
M=
~N
-
<

=
n

Yt

ko2

FZZ(X-Xk , ~Y

o 2) - F22(X+ik, -Y,, 2) +  (3.38)

r

o D) - F3ZOeK, -V, 2)

N
+ 3 22 [FRz(x-X, Y

**
[}
[y
<
-~
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Chapter 4

THE COMPUTER PROGRAM

1.0 General Makeup of the Program

The mathematical derivations discussed in Chapters 2 and 3 result
in an appalling number of equations which must be solved to provide a
solution to the problem. Additionally, the alternating technique with
its iterations causes many of these equations to be solvea rereatedly
during the solution procedure used for a single crack geometry. The
magnitude of the problem dictates that the digital computer be utilized
to obtain the solutions. Therefore, the entire problem was programmed
into the Fortran IV language to be used on the Colorado State Urniversity
CDC 6400 computer.

Subroutines were used to a great extent in the makeup of the
program. Generally, a separate subroutine was written to accomplish
each individual portion of the overall solution. The subroutines were
then called in the proper sequence necessary to successfully achieve the
solution to the problem.

As each subroutine which performed 2 particular function was
written, it was checked and debugged individualiy or in conjunction with
some other required subroutines. This fucilitated the checkout of the
large program when the subroutin:s were added to it since they had
already been checked to be operational on an individual basis. After
an initial perind of debugging, the proven portions of the large program
were put on permanent file in the computer. Five individual cycles of
a8 single file name were uscd so that any changes in a particular sub-
routine would necessitate changes only to one cycle, which constituted

only a small portion of the total.

33

' T I TR A ST, - e N



34

The following steps in abbreviated form show the operating s~quence

of the computer program.

.

6.

Re=d the input data for the problem being solved. This 4ata
includes input loading in terms of coefficients Amn and an
crack and plate geometries, number of cycle iterations to be
made, ani the dimensional informatior for the rectangular grids
used on doth the front and back surfaces.

Generatc the coordinates for the 96 points on the crack surface
for which stress calculations are ti he made.

Generate the initial shear stress ‘'oading or each of the points
on the crack surface from the input coefficients Amn and an.
Perform a least squares fit of the stress distribution
calculated in the last step. This step is not necessary when
the stress distribution being fitted is the initial loading
determined by the coefficients prescribed in step one, but it
is done for this first iteration to keep the program general
enough to handle successive iterations, and also as a check on
th~ accuracy of the least squares solution for a known loading
case. The method of least squ : s is discussed in more detail
in Section 2.2.

Caiculate the modulus and complementary moduius of the Jacobian
elliptic functions and integrals, and compute the complete
elliptic integrals of the first and second kinds. All four of
these funciions are used in the 20 x 20 Kij matrix of

equation ([2.16).

Using the functions of the last step, determinc the nonzero

term: ot the Ki' matrix. Use a Gauss elimination methsd to

ny L e T " _ .



10.

11.

12.

13.

solve the matrix equation, and calculate the coefficients

a and b .
mn mn

Calculate the mode twu and mode three stress intensity factors,
K2 and K3. Nondimensionalize these factors and call them M2

and M., the stress intensity magnification factors.

3
Calculate the stresses at the center of each rectangle on the
front surface. This requires the following steps for each
rectangle:
8.1 Calculate the ellipsoidal coordinates A, u and v of the
rectangle center.
8.2 Calculate the required elliptic integrals, Jacobian
elliptic functions, and partial derivatives. Compute
the stresses at the center of each rectangle.
Calculate the stresses on the crack due to freeing the stresses
on the front surface.
Perform steps four through seven for the new loading on the
crack surface. Repeat steps eight through ten for as many
iterations as are desired on the front surface.
Obtain the total stress applied to the front surface and use
this total to calculate the resulting residual stresses at the
center of cach rectangle of the grid on the back surface, as
in 8.1 and §.2.
Calculate the stresses on the crack due to freeing the stresses
on the back surface.

Repeat steps four through seven for the new lcading on the

crack surface.



-t

36

14. Obtair the total stresses applied to the crack in steps three
and nine, and repeat steps four through 14 for the back
surface. This completes one cycle of iteration, and should be
repeated until the stress intensity factors are negligible

compared to the ones obtained from the original applied load.

2.0 Special Subroutines Used

Some of the subroutines used in Section 1.0 should be discussed to

point out details of their operation.

2.1 Crack Ccordinate Genzrator

A subroutine called COORD is used to generate the 96 points on the
crack surface for whick stress calculations are to be made. Considera-
tions of symmetry enable calculations to be made on only the half of the
crack for which x is positive, as shown in Fig. 3.

The coordinate generator uses five similar ellipses, each with a
semiminor and semimajor axis which is a particular fraction of the
length of the axes of the outer ellipse. The ratios used in this case

were 0.2, 0.4, 0.6, 0.8, and 1.0. Coordinates were generated by a

simultaneous solution of the two equations

xZ Yz =

-a—é—+?-] (4.1)
and

tan ¢ = y/ x (4.2)

where the angle ¢ was increased in 10 degree increments for each of the
five similar ellipses. Values were calculated only in the first

quadrant (positive x and y) and then reflected with the proper sign into

the other quadrant.
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2.2 Least Squares Curve Fitting

The loading on the crack surface for which all calculations weroe
made in this w rk was one in which only a uniform x-component T,x Wa3
applied as shown in Ffig. 4. A consideration of the problem shows that
the Tox and sz components applied back on the c¢rack surface through the
iteration process have symmetries which state that Tox is even in x and
Ty is odd in x. Because of these symmetries, the least squares curve
fitting process is slightly different for each of these two components.

If Tox is even in x, the first of equations (2.3) becomes:

2 2 2 3
Tax T Roo tRor Y YR X tAgY tAn XY Ay (4.3)

The T,y Stress components calculated at the 96 points mentioned in the
last section are used in the least squares subroutine, LEAST, which
calculates the fit for this component.

The component sz is odd in x, so the last of equations (2.3) may

be written:

2 3

2
=B.,.+B _x+B + 812 Xy~ 4 B30 X (4.4)

Ty = Boo * Bio 11Xy * B

027
After the sz components were calculated on the surface of the crack the
methed of least squares was used on the stress distribution to calculate
the an coefficients in a subroutinc called LEAST2.

The least squares criterion uscd is a general one in which

N 2
E = 12-:1 [P(x.l,yi) - f(xi,yi)} (4.5)

where

P(xi,yi) = tabular pressure values

f(xi’yi) = family of functions representing the pressurc, which

in this case would be (4.3) or (4.4).
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The best fit will he obtained if E is a minimum. This is obtained by

setting

3E

aAmn

=0 (4.6)

wherc Amn represents the coefficients in (4.3) or (4.4).

2.3 Calculation of Elliptic Integrals

The complete elliptic integrals of the first and secona kinds are
required in the efements of the Kij matrix in equation (2.16), so they
must be evaluated fcr their use there. A polynomial approximation, as
presented in Abramowitz and Stegun (27), is used to calculate the values

of these integrals. The absolute value ot the error associated with

8

these pclynomials is no greater than 2.0 x 107, so it is sufficiently

accurate for the intended purpose.
Incomplete elliptic integrals of the first and second kinds are
required for the stress calculations of Solution 1. These integrals

are evaluated using the process of the arithmetic-geometric mean, which

is also presented in (27).

2.4 Ellipsoidal Coordinates

Ellipsoidal coordinates A, u and v were obtained as the roots of
the cubic equation (2.8). The Newton-Raphson method was used to find
the first root, and the quadratic equation solution was then used to
find the other two roots of the reduced polynomial. The three roots
thus determined were placed in the order of ascending magnitude and
each was matched with its proper ellipsoidal coordinate, as shown in
(2.10). A final check was made to assure that thc coordinates did
indeed have the proper relative magnitudes of (2.10), and could satisfy

the transformation equations (2.9).
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3.0 Rectangular Surface Grids

A typical rectangular surface grid used to calculate and remove
stresses from the front and back surfaces is shown in Fig. 2. Most of
the cases run utilized a grid with 62 rectangles on the front surface
and a grid with 32 rectangles on the back surface. However, more
rectangles were used in cases involving thin cracks or cracks which
penetrated the plate for a major part of the thickness. The total
computer time used is dramatically affected by the number of rectangles
on each surface, so the number was kept to a minimum consistent with the
desired accuracy and convergence required for each particular crack

geometry.

|




Chapter 5

DISCUSSION OF RESULTS FOR PART 1

The results included in this section were obtained from computer
calculations using the equations developed in the previous chapters,
All results shown are for the loading case in which a uniform shear load
T, Was applied tn the surface of the crack, parall:l to the x-axis, as
shown in Fig. 4. The initial loading did not include the application of
the shear component in the y-direction, sz This particular initial
loading reduces the first of equations (2.3) to the case where all Amn

coefficients except AOO are equal to zero, while all coefficients of the
second equation of (2.3) are equal to zero. Solutions 1 and 2 of the
previous chapters were used with the alternating method to determine the

mode two and mode three stress intensity factors for a semielliptical

surface crack in the surface of a finite thickness solid.

1.0 Results and Discussion

Mode two and mode three stress intensity factors were calculated

for several semielliptical surface crack shapes subjected to uniform

shear loading applied only in the x-direction. The various crack

shapes considered had a/2¢ ratios of 0.05, 0.1, 0.2, 0.3, and 0.4, and

had depth ratios a/t varying from 0.2 to 0.9. A Poisson's ratio of 0.25

was used for all calculations.

Figures 9 through 13 present the mode two and mode three stress
intensity factors as a function of the parametric angle ¢ which is
measured from the semiminor axis of the ellipse, as shown in Fig. 8.
and K3 have been nondimensionalized and

The stress intensity factors K2

plotted as M2 and MS’ respectively, where

40
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M2 =1, (5.1)

and

M, = (5.2)
3k (ra/Q)

The stress Tox is the initially applied loading, "a'" is the semiminor
axis, and Qli = E(k), the complete elliptic integral of the second kind.

The process of iterating between the crack and the front and back

surfaces of the plate causes the K2 and K3 curves to assume new shapes
and values as compared to those obtained for the embedded crack.
Several effects interact to influence the variation of the shape of
these curves, and an inspection of the step-by-step output from the
computer analysis reveals the following trends:

1. The crack shape effect: This effect is a result of the
elliptical crack solution. It causes Kz to increase and K3
to decrease as the angle ¢ varies from 0 to 90 Jdegrees. The
range through K2 increases becomes smaller as the crack shape
goes from a/2c = 0.40 to 0.05, while the range through which

K, decreases becomes larger with the same variation in crack

3
shape.

2. The front surface effect: This effect increases the value of
K., as the angle ¢ varies from 0 to 90 degrees, and is larger

3
for cracks having large a/2c¢ ratios than it is for the slender

cracks having small a/2c ratios. It is this effect which
produces a small value for K% at ¢ = 90° on cracks having

a/2c = 0.20 and larger.
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3. The back surface effect: This increases the value of K3 by an

o

amount. which is maximum at ¢ = 0°. As ¢ is allowed to range

from 0 to 90 degrees the increase in K3 diminishes and

essentially disappears at about 60 or 70 degrees. This back

surface effect also causes K2 to increase from zero at ¢ = 0°
to a maximum at approximately 40 or S50 degrees, and drop back
to a winimum value at ¢ = 90°. The magnitude of change in K2
is substantially less than that in K3, especially for a/t
ratios greater than 0.5, where the magnitude of K3 is
substantial.

4. Effect of the interaction between the front and back surfaces:
This effect causes both K2 and K3 to increase. The increase

becomes greater as ¢ varies from 0 to 90 degrees, while

of K2
the increase of K3 becomes smaller as ¢ ranges from 0 to
90 degrees.

I+ should be noted that the K3 curves in the figures are all
concave downward, while the K2 curves are concave downward for the
larger values of a/2c and concave upward for a/2c values less than 0.2.
The results of this study, and thosc of Kassir and Sih (22) show that
for an ellipse embedded in an infinite solid with only the L component
applied, the curvature of the K2 plot changes sign at an a/2c value of
approximately 0.2. The behavior is a result of the crack shape effect
for the particular loading used.

Figures 9 through 13 show that the values for K3 at 4 = 0 degrees

increase with larger depth ratios a/t. This is due primari.y to the

back surface effect whizh exerts its maximum influence at ¢ = 0°. This
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effect becomes increasingly important as the crack nears the back
surface with large a/t ratios.

The figures will show that cracks with higher a/t ratios exhibit
greater K, values than do those with lower a/t values. This is true for

2

every value of ¢ except 0 degrees where K2 for all cracks is zero.
These increases with higher a/t values can be attributed to the back
surface effect, and the effects of the interaction between the front and
back surfaces.

All depth ratios a/t provide a value of zero for Kz at ¢ = 00,
According to equation (2.17) K2 can exist only if the stress component
T__ exists at this point. At the angle ¢ = 0° the tip of the crack is

zn
perpendicular to the y-axis, so the Ton component in this case is 7

zy
which is an odd function of x. Since x = 0 at ¢ = 0°, then Toy must
also be zero at this point, and K2 must be the same. This justifies the
fact that Kz at ¢ = 0° is always zero, and also provides a check on the
computer results for that point.

Figures 9 through 13 show that the stress intensity factors
approach a finite value at the angle ¢ = 90°. It is felt, however, that
the curves mnay not represent the true behavior of the elastic solution
where the crack tip intersects the surface of the plate because it is
expected that there is a change in the nature of the crack tip singular-
ity at that point. Hartranft and Sih (28) used a refined numerical
analysis to study the problem of a semicircular surface crack subjected
to normal loading. Their analysis utilizea a very large number of
surface rectangles and terms in the mathematical expressions used to

calculate the stresses, and considered the singular and nonsingular

portions of the surface stresses separately. They noted that the stress
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intensity factor for the problem which they solved would tend to
approach zero at the surface, though they were unable to extend the
calculation to the point of intersection. Smith (29) concluded that the
results obtained by Smith (8) und Thresher (14} agree well with those of
Hartranft and Sih over most of the crack front although the smaller
number of rectangles and mathematical terms used by Smith and Thresher
miss the effect of the decrease in the stress intensity factor near

¢ = 90°.

It is expected that a comparabie uncertainty exists in the behavior
at the surface of the plate for the shear problem. The au:alytical
apprecach used in this study, however, should be accurate along most of
the crack front. The value of the stress intensity factors shown in the
curves is representative of the average near ¢ = 90°.

The cost of the computer time necessary to perform a refined
analysis such as the one by Hartranft and Sih becomes prohibitive. A
serious study becomes necessary in which the advantages of greater
accuracy are considered and weighed against the increased computer costs
incurred.

Figure 14 presents the values of maximum K2 plotted against depth
ratios a/t for cracks with a/2c¢ values of 0.05, 0.1, 0.2, 0.3, and 0.4.
It should be noted that the curve for a particular crack shape increases
gently and smoothly as the depth ratio increases. Therc is a sizeable
difference in the K2 values for slender cracks with a/2c = 0.05 as
compared with thicker cracks with a/2c values of 0.4.

The maximum value of K, plotted in Fig. 14 is determined at ¢ = 90°
from Figs. 9 through 13. Considerations advanced in preceding para-

graphs indicate that the maximum truc value for K2 may not exist at
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¢ = 90°, but this value is represcntative of K, in an average sense

2

near ¢ = 90°.

Values of K, for cracks with a/2c values ranging from 0.05 to 0.4

3
are plotted against depth ratios a/t in Fig., 15. It should be noted
that these curves for the corresponding range of a/2c values are
clustered closer together than are those for Kz. These K” curves also
rise quite rapidly as the a/t ratio is incrcased heyona »uprezimately

0.6. This trend was not noticed with the K, curves, and indicates that

2
cracks of this type are quite mode three sensitive to crack depth
ratios,

The results reveal that there is only a slight change in the
maximum K2 and K3 values for semiclliptical cracks having low a/t ratios
of 0.2, - 'mpared to the maximum K2 and K3 values for embedded
ellipses of the same shape. The maximum K3 value for a crack having an
a/2c ratio of 0.2 increased by 15.1 and 31.2 percent as a/t was
increased to 0.8 and 0.9, respectively, while the maximum K2 value
increased by 6.0 and 7.1 percent, respectively, under the same condi-
tions. A crack having an a/2¢ of 0.3 showed an increase in K3 of 11.2
and 2.6 percent and an increase in K, of 5.3 and 6.7 percent as a/t was

increased to 0.8 and 0.9, respectively. Similar increases were noted

in both K, and K, for other crack geometries.
- <

2.0 Accuracy and Convergence

Rectangular grids similar to the one illustrated in Fig. 2 were
used on the front and buack surfaces in the alternating techniqgue
employed f.: this problem. Tt had previously been determined from other
problems that convergence difficulties could exist if the rectangle

sizes were too large for the problem geometry being considered. It was
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discovered in the shear problem that convergence was not as difficult
to attain as in the normal loading problem. The shear problem for a
particular geometry could be worked using coarser grids and generally
fewer cycles thar what were requircd for the normal problem. Usually a
front grid with 62 rectangles, a rear grid with 32 rectangles, and two
cycles of iteration were adequate to achieve excellent convergence for
most problems. However, it was necessary to use four cycles and finer
grids for problems having high a/t ratios, especially for those having
low a/2c values,

Figure 16 shows the stress intensity factors afier each cycle of
iteration for a typical run in which four cycles were made on a crack
geometry of a/2c = 0.2 and a/t = 0.9. It should be noted that the value
of the stress intensity factors increases fo~ each cycle, and that the
contribution of each successive cycle becomes smaller until the last
cycle produces essentially an insignificant change. The differences
between cycles three and four for K, are too small to be plotted on the
scale used in the figure.

The following tabulation shows the percentage of change of the

maximum values of Kz and K3 accomplished by each cycle of iteration.

Cycle Percent Change in Kz Percent Change in K3
1 4.74 24.30
2 1.42 4.09
3 0.57 1.07
4 0.22 0.35

Obviously some truncation error exists in the final results due to

stopping the iteration process >t a finite number of cycles. However,
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enough cycles of iteration were performed in each case to insure that
the change in the stress intensity factors which would be obtained by
further iterations was of an insignificant magnitude and did not warrant
the expenditure of additional computer time.

Accuracy of the soiution was checked by making two computer runs
each on several cracks, using different surface grids for each of the
runs on a specific crack geometry. The results of the runs for a
particular crack configuration werce then compared to determine the dif-
ference which existed between them. Cracks considered in this marner
had 2/2c¢ values of 0.05 and 0.1, and a/t values of 0.8 and ¢.9. 3olu-
tions obtained from grids with 62 front and 32 back rectangles were com-
pared with those obtained from grids with 55 front and back rectangles.
Changing from one set of grids to the other caused the maximum values
of K, to differ by 0.1 to 2.0 percent, and the maximum values of K,
to differ by 0.6 to 0.9 percent,

The results discussed in this chapter are obtained by numerical
methods and thus include the step-by-step accumulation of numerical

inaccuracies inherent in methods of this type. Although these results

cannot be considered as an exact solution to the problem, they represent

the best solutions available.

The program was compiled under the Fortran Extended option which

would give the minimum running time. It was then cataloged on per: - 't

file to insure that no compiler time was necessary for the data produc-

tion runs. Typical running time used by the CDC 6400 computer for 62

rectangles on the front and 32 rectangles on the rear was approximately
510 seconds for two cycles of iteration, and approximately 1015 seconds

for four cycles. The cases in which 55 rectangles on each surface were

used with four cycles required 1300 seconds.
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PART 17--NORMAL LOAGING OF A SEMIELLIPTICAL SURFALE CRACK

Chapter 6

THE NORMAL LOADING PROBLEM

1.0 Statement of the Semielliptical Surface Crack Problem

Consider a flat semielliptical surface crack located in the .roat
surface of a finite thickness slab. The geometrical configuration is
the same as that shown .n Fig. 1, but there 1s no shear load:ng applied
to the surface of the crack for this problem. Instead, the surftace of
the crack is subjected to nonuniform normal stresses o,

The boundary conditions to be considered in the solution of this

problem are as follows:

sz = sz =0, (z = 0) (6.1)
and
2
w=0, %+>’7>1;z-o (6.2)
a b

where w is the displacement in the z-direction.
It is assumed that the normal stress applied to the surface of the

crack is expressitle as

303 2 2
- WM n X x__‘( . =
o, L A Xy \Fr&HGo1z o\) (6.3)
m=0 n=0 a b

where m + n < 3 because of the magnitude of work requj-ed in the ca’'cu-
iations if the sum were allowed to be larger than three. The front and

back surfaces of the body are considered to be free of stresses.

2.0 The Mathod of Solution

The method of solution which will be used for this problem is

essentially identical to the one uscd for the shear problem which has
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been di.cussed in previous chapters. The alternating technique is once

again used with Solutions 1 and 2, defined as follows:
Solution 1. The determination of the stresses near an elliptical

crack at any point in an infinite solid through which
it is desired to pass a plane. The surface of the
crack is subjected to nonuniform normal loading.

Solution 2. The determination of the stresses within a half-space
subjected to uniform normal and shear stress over a
rectangular portion of the surface.

Solutions one and two are discusscd briefly in the following two

sactions.

2.1 Elastic Solution of a Crack in an Infinite Solid

& .

Solution 1 represents the elastic solution of an eiliptical crack

in an infinite solid subjected to nonuniform normal stresses. The

particular form of this solution which was used for this portion oi{ the

preblem was derived by Shah and Kobayashi (6). Thi method was used by

them in an altermating method solution to the problem of an elliptical
crack approaching the surface of an semi-infini.e solid subjected to
uniform tension perpendicular to the plane of the crack (17). Detaiis

and the derivations necessary to use the solution may be found in
(6, 16, and 17), and will not be repeated here.
2.2 The Half-Space Solution
This solution has previously been identified as "Solution 2', and
calculates the stresses in a half-space subjected to uniform normal and

shear tractions applied to a rectangular portion of the surface of the

half-space. The solution method is similar to that described in

Chapter 3, and uses the equations descr .ed in (11 and 12).
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This portion of Solution 2 calculates only the o,, component of the
stress on the crack surface. The symmetry conditions of the problem

prohibit the presence of any residual shear stresses, T,y OT sz’ on the

crack surface. Therefore, no attempt need be made at calculating then

since they vanish when all effects from all ructangles are summed.

2.3 The Alternating:Method

The alternating method used here is the same as the one used by
Thresher and Smith (14, 15), and the method described in Chapter 1 which

was used for the shear problem. It differs from the one used for the

shear problem in that it calculates only the normal stresses on the
crack surface and the resulting mode one stress intensity factor, Kl’
while the method described in Chapter 1 calculates both shear stresses
on the crack surface and the mode two and mode three stress intensity
factors, K, and K_.
2 3

As is the case with the shear problem, the alternating method

iterations proceed until the change in the mode one stress intensity

factor for any one cycle becciies negligible when compared to its value

obtained for the initial loading.

3.0 The Computer Program

A computer program was written for the CDC 6400 digital computer

which would perform all the calculations for Solutions 1 and 2. The

general method of programming was the same as that discussed in

Chapter 4 tor the shear problem. 1In fact, the program for the normal

loading problem was written before the one for the shear loading

problem, and served as the model for it in addition to providing some of

the subroutines which are all or partially common to both programs.
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The sequence cf operations performed and the manner in which the sub-
routines are used is essentially the same ir both programs.

One of the primary differences between the two programs is the much
smaller number of equations which must be solved for the normal loading
problem. For example, the 20 x 29 Kij matrix of equation (2.16) is only
a 10 x 10 matrix for the normal load problem. Since only one component
of stress is being applied to the crack instead of two, which is the
case with the shear problem, there arc only approximately onc-half as
many terms neccssary to calculate the stresses which must be freed from
the surfaces of the body.

A study of the symmetries of the normal loading problem reveals
that the normal stress on the crack surface 9ys is even in x. This

allows (6.3) to be written as

2 2 2 3
Op2 “Rop T Ao Y Ao Xt Ag Y Ay Xy 2 Rpgy (6.4)

The method of least squares curve fitting is performed on this equation
in the same manner as it was performed on the equations for the shear
loading problem. After the curve fitting scheme is employed, a matrix
equation similar to (2.16), but having a 10 x 10 Kij matrix, is solved
for the ten irdependent a. cocfficients. These in cturn are used to
calculate the mode one stress intensity factor Kl'

A typical vectangular grid of the type used on the front and back

surfaces is shown in Fig. 17, and will be discussed in mcre detail in

the next chapter.
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Chapter 7

DISCUSSION OF RESULTS FOR PART Il

All computer calculations were run for the case in which a uniform
normal load was applied to the surface of the crack. This corresponds
to the situation where a uniform censile load is applied to the body in
a direction perpendicular to the plane of the crack. Equation (6.4) is
then reduced to the case where all thc coefficients Amn in the first

iteration step are equal to zero except for A Solutions 1 and 2 were

00’
used with the alternating method to determine the mode one stress
intensity factors for a semielliptical surface crack in the surface of

a finite thickness solid.

1.0 Results and Discussion

Four different crack shapes were considered having a/2c ratios of
0.05, 0.10, 0.20, and 0.30, and having depth ratios a/t ran ..y from S
0.20 to 0.95. All computations werc made using a Poisson's ratio of ;
0.25. ‘

The stress intensity factors plotted as a function of the paramet-
ric angle ¢ of the ellipse are presented in a nondimensionalized form
in Figs. 16 through 21. The angle ¢ is measured from the semiminor axis
"a" at the portion of the crack which is farthest into the material, as
shown in Fig. 8. Three effects interact to influence the variation of
the shape of the stress intensity curves, and are:

1. The effect of the crack shape: This effect is a property of

the elliptical crack solution ind causes K1 to decrease as the

angle ¢ i3 varied from 0 to 90 degrees. The 1. of K1 is

constant {for a circular crack with a/2c ratio of 0.5, ouvt
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decreases vcry drastically as ¢ is increased for a slender
crack with a/2c = 0.05. Thus the crack shape effect hecomes
more significant as the crack shape goes from a/2c = 0.5 to
af/2c = 0.05.

2. The effect of the front surface: Previous studies (9) and
inspection of the present computer solutions show that this
cffect causes K1 to increase as ¢ varies from 0 to 90 degrees.
The amount of increase from this effect is of smaller magnitude
than the crack shape effect.

3. The effect of the back surface: This effect can be corsidered
to include the direct effect of the presence of the back
surface as well as the effect of the intcraction betweern the
front and back surfaces. The back surface effect alone tends
to cause a sharp increase in Kl near ¢ = 0°, while the
interaction effect between the two surfaces tends to increase

K1 rear ¢ = 90°, but by an amount substantially less than that

caused by the back surface effect. The result of the two
effects combined is to cause K1 to increase significantly near
¢ = 0° and to increase by a smaller amount near ¢ = 90°,

The crack shape effect causes a general decrease in Kl with
increasing ¢, as can be noted in Figs. 18 through 21. The back surface
effect causes an increase in K1 as the thickness ratio a/t is increased.
In Figs. 20 and 21, for a/2c¢ of 0.05 and 0.10, an increase in K1 occurs
before the expected decrease begins, which indicates that the maximum

value of K1 does not necessarily occur at ¢ = 0°, The reason for this

behavior is that for these slender cracks the front surface effect tends

o
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to incrcase Kl taster than the shape cffect tends to decrease it in the

range from ¢ = 0V to approximately ¢ = 409,
A cursory inspection of the curves of Figs. 18 through 21 reveals

at least two general trends. It is apparent that for any given crack

depth ratio a/t, the maximum Kl value is greater for slender cracks with

small a/2c ratios than for the rounder cracks with larger a/2c ratios.

Also, it is appavent that for any given a/2c ratio, the larger K1 values

occur for the deeper cracks, or those with higher values of a/t.

The computations which were performed to obtain the results plotted

in Figs. 18 through 21 used rectangular grids on the front and back

surfaces similar to the one shown in Fig. 17. 1t was found that

convergence difficulties existed for cases in which the plate thickness
was approximately the same as the dimensions of the smallest rectangle.

It was therefore necessary to revisc the grid so that therc were

approximately twice as many rectangles near the origin of the grid. The

revised grid hay 79 rectangles, while the one shown in Fig. 17 has 55

rectangles. The grid with 79 rectangles was used whenever the crack

depth "a'' approached the size of the smallest rectangle. Grids of

62 and 32 rectangles were also used where the gec ‘ry of the problem

being solved would permit the use of thesc configurations. The use of

the proper grid insured that good convergence was attained, as
evidenced by the fact that the contribution of the last cycle was

generally less than one percent of the total stress intensity factor.

The stress intensity factor Kl' as shown in ¥Figs. 18 through 21,

smoothly approaches a definite value at ¢ = 90°. However, it is

expected that there is a change in the naturz of the crack tip singular-

ity at the point where the tip of the crack intersects the surface of
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the plate. This would mean that the curves do not represent the true
behavior of the clastic solution there. Hartranft and Sih (28) have
concluded that the mode one stress intensity factor tends to zero at the
surface for a semicircular crack. They handled separately the singular
and nonsingular portions of the stress ¢n the surface of the plate. In
addition, they usad a very large number of rectangles and a large
number of terms in the series expansions used to calculate the stresses.
Smith (29) concluded that for the semicircular crack the level of
approximation used here gives results within one or two percent over
most of the crack border as compared with the results obtained from the
more refined analysis of (28), although there can be a sizeable
difference near the intersection of the crack tip with the front
surface.

It is therefore reasonable to expect a similar behavior for this
analysis which irvolves a semieiliptical crack rather than a semi-
circular crack as considered in (29). The stress intensity factor Kl
at ¢ = 90° has little practical importance, however, since the maximum
occurs somewhere between the angle of ¢ = 0° and 409, as shown in
Figs. 18 through 21 for semielliptical surface flaws.

Figure 22 presents the values of maximum K1 from this analysis for
a/2c values of 0.05, 0.1, 0.2, and 0.3. The curves for a/2c values of
0.4 and 0.5 were estimated by Shah and Kobayashi {17) from their solu-
tion for the elliptical crack near the surface of a half-space. The
results for the two-dimensional cdge crack (30) which represents the
limiting solution are also shown in the figure. 1t has been argued that
cracks having an a/2c ratio less than 0.1 closely anrroximate the

behavior of a two-dimensional =dge crack, but these results indicate
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that even a crack having a length 20 times its depth is somewhat less

severe than a two-dimensional edge crack.

2.0 Comparisons with Other Work

A comparison of the results of this study with those due to Shah
and Kobayashi (17) is made in Fig. 23. Shah and Kobayashi obtained
their results by assuming that the back surface cffects arc the samc as
the effect of the surface for an elliptical crack approaching the
surface in a semi-infinite solid. They estimated the effect of the
front surface, but chose to neglect the effect of the interaction
between the front and back surfaces.

The surface interaction effect causes only slight changes in the
results for values of a/2c = 0.3 and greater. Though not shown for
a/2c = 0.3, the vesults of this study compare well with those of Shah
and Kobayashi for a/2c = 0.3, and they approach closely for a/2c = 0.2.
However, the curves from this study become relatively higher as a/2c
is decreased to 0.1 and 0.05, indicating the growing importancc of the
interaction between the front and back surfaces for slender cracks.

The results of Fig. 22 were used to compute the fracture toughness
values for a numher of epoxy plates on which experiments were conducted

by Smith (29). The fracture toughness KIC was calculatad as

KIC = Mlo(na/Q)% . (7.1)

The nominal stress in the sample plate a. the ti~c of fracture is
indicated by o, and "a" is the depth of the crack. The flaw shape

1
parameter Q is defined as Qi = E(k), the complete clliptic integral of

the second kind. The term M1 is the nondimensionalized form of K1 and
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is frequently called the magnifi -ction factor where the subscript
indicates the modec one loading casc.

Figure 24 presents a plot of fracture toughness values which were
calculated from the experiments of (29) using the curves cf Fig., 22.
The data was uscd in equation (7.1) and was taken from a number of ;
different epoxy plates having different average fracture toughness
values. It was normalized by dividing the KIC value for each sample by
an average KIC value for the cpoxy plate from which the sample was
taken. The average fracture toughness values which were used to normal-
ize the data were calculated using only samples which had a/t values of

0.5 or less. As shown in the figure, the a/2¢ values ranged from about

0.13 to about 0.42. The normalized fracture toughness has a scatter
band of approximately *10 percent, and is relatively constant with

variation in a/t, although it does drop slightly as a/t is increased.
The constant trend of the normalized values indicates that the cu;ves i

are valid and possess some practical utility for design and analysis

situations in which linear fracture mechanics may be applied.

3.0 Advantages and Limitations of the Method

The alternating method, as used in this study, is capable of
producing a reasonably accurate solution to the types ol problems
discussed here. ‘The method is straightforward and requires no approxi-
mations from twe - 'mensional theories to effect the desired solution.

Extremely good convergence can be realized but it is not always
easily attained. As has been mentioned previously, convergence is quite
dependent upon the number and size of the rectangles used in the grid.
The desire for extreme accuracy would dictate the maximum number of

rectangles possibie. However, the total computer time used is a




58

function of the product of the number of front and back surface
rectangles used, so a compromise is necessary.

The total ccmputer time required for some typical configurations
for the shear loading problem has been discussed in Chapter 5. The
normal loading problem was usually run with a total of four cycles of
iteration for each crack geometry. This number of cycles required
960 seconds of total computer time for 62 front and 32 rear rectangles,
1220 seconds for 55 rectanglies on each surface, and 2000 scconds for
79 rectangles on each surface. The entire program was cataloged on
permanent file within the computer, so none of the time mentioned above
was lost to the CDC 6400 compiiler.

Accuracy of the infinite solid solution is dependent upon the
preciseness with which the methed of least squares is able to match the
calculated stresses with the proper polynomial expression. A polynomial
with more terms than the number allowed in a third-degree polynomial
would undoubtedly increase the accuracy of the curve fit, but more
terms were impossible to tolerate for reasons already mentioned.

One of the limitations to thec alternating method as it is presently
used is its restriction to geometric configurations in which the front
and back surfaces are parallel. The method is also limited to finite
thickness bodies whose width is great enough so that no effects are
realized from the presence of any side surfaces. This would pose a
problem if solutions were desired for some geometries where the width

effect could no longer be ignored.
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Chapter 8

CONCLUSTON

1.0 Discussion

A semielliptical surface crack located in the surface of a finite
thickness solid and subjected to two different conditions of loading is
considered. The first condition of loading is one in which shear
stresses arc applied to the surface of the crack parallel to the semi-
major axis. The second loading case is the one in which normal loading
is applied to the surface of the crack in a direction perpendicular
to the plane of the crack. The alternating method was used in each of
the two loading cases to solve the problem.

As a necessary part of the analysis, a solution was presented
which developed the mode two and modc three stress intensity factors
for an erbedded elliptical crack subjected to nonuniform shear
stresses, Additional equations were derived for the residual stress
components on the crack surface which resulted from the freeing of the
surfaces of the plate of stresses during the alternating technique,

Results were computed and presented grapi:ically for the problem in
which a urniform shear stress was applied to the surface of the crack
and parallel to the semimajor axis of the ellipse, while no initial
loading was applied in the direction parallel to the semiminor axis.
Crack shapes were varied from a/2c ratios of 0.05 to 0.40 whereas
crack depth ratios a/t were varied from 0.2 to 0.9. When compared to
the maximum K2 and K; values for embedded ellipses, the results

revealed that there was only a slight change in the maximum K2 and K3

values for similar semielliptical cracks having low a/t ratios.
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Both X, and K3 became substantially larger as the crack depth a/t

was increased, although Kz experienced a significantly greater increase

than did KZ' The maximum value of the mode three stress intensity K3
for a crack with a/2c¢c of 0.2 increas d by 15.1 and 31.2 percent as a/t

was increased to 0.8 and 0.9, respectively. The maximum mode two

stress intensity factor K2 for the corresponding geometries increased

by 6.0 and 7. percent, respectively. Similar increases occur for

other problem geumetries, so these factors can play an important roie

in situations where mixcd mode loading can occur.

The normal loading problem was solved in a manner which was

essentially identical to the one uscd for the shear problem. The

alternating method was again used to obtain the stress intensity

factors, although it was the mode vne factor Kl which was of interest

in this case.

Computer cilculations were made and results were plotted for the
case in which a uniform normal stress was applied to the surface of
+he crack in a direction which was perpendicular to the planc of the

crack. Emphasis was placed on slender cracks, so runs were made for

cases in which the crack shapes a/2c varied from 0.05 to 0.3 as crack

depth ratios a/t werc varied from 0.2 to 0.95.
The maximum value for thec mode one stress intensity factor Kl

increases for any particular crack depth a/t as the crack becomes more

slender with o decreasing a/2c ratio.  Likewise, K: increased very

significantly a+ the 4/t ratio was increased for any particular a2

value. Very slender cracks of low a/2¢ ratios and high a/t ratios

produce high modc one stress intensity factors, und so are of special

importance to the designer. Additionally, the maximum stress intensity
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does not always octur at the deepest part or the crack, but can occur

up to 40 or 50 degrees from that point.
Results from this study were compared with those obtained by other
researchers who neglected the effects of the interaction between the

front and back surfaces. The results compare well for cracks having

a/2c of 0.2 and greater, but some difference in the results of the two
studies is apparent for lower a/2c ratios, indicating the importance
of this effect.

The rasults of this study were used to calculate the fracture

toughness values for a large number of epoxy plates on which mode onc

tests were made. When normalized, these fracture toushness values are

nearly constant, thus indicating the validity o the calcul.ted results.

2.0 Recommendations

The complex loading of today's structures makes either of the
two loadings discussed incomoletc or inadequate when considered alone.
When more than one mode is acting along the crack border, failure of
the part beccmes a function of all nonzero stress intensity factors.
Very little work has been done on developing a theoretically or experi-
mentally obtained mixed mcde fracturc criterion. This criterion is an
urgent requirement if information such «> that obtaincd in this study
is to be employed vsefully in the field of applied fracture mechanics.

As presently developed, the alternating method is limited to
geometric configurations in which the front and back surfaces are

parallel. This restriction on the rclative placement of the surfaces

does not allow the solution to be obtained for a large class of

problems. A new technijue utilizing a better metlod of obtaining the

sclution to stresscs in an uncracked body of general shape with gencral

" ' ' "
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boundary conditinns, such as 3 three-dimensionsl finite element wethod,
would greatly incre:z.e the provlem solving capabilities of this method

if it could be dorc without extensive increases in computer time

requirements.



H3

REFERUMCES

1. Kobayashi, A.S., "Fracture Mechanics,” in Experimental Techniques
in Fracture Mechanics. Edited by A.S. Kobayashi. Westport,
Connecticut: Society for Experimental Stress Analysis,

SESA Monograph No. 1, 1973.

i

!

{

|

|

[

|

2. Inglis, C.E , "Stresses in a Plate Due to the Presence of Cracks f

and Sharp Corners,' Transactions of the Institute of Naval ,

Architects, Vol. 55, 1913. ]

|

Griffith, A.A., '"The Phenomena of Rupture and Flow in Solids," ;

Philosophical Tiansactions of the Royal Society (Londen), ‘
Series A, Vol. 221, 1920.

|

i

!

|

}

|

i

{

\92]

4. Sneddon, I.N., "The Distribution of Stress in the Neighborhood
of a Crack in an Elastic Solid," Proceedings of the Royal
Society (London}, Series A, Vol. 187, 1946.

S. Green, A.E. and I.N. Sneddon, '"The Distribution of Stress in the
Neighborhood of a Flat Elliptical Crack in an Elastic Solid,"
Proceedings of the Cambridge Philosophical Society, Vol. 46,

1950.

A, Shah, R.C. ard A.S. Kobayashi, "Stress Intensity Factor for an }
Elliptical Crack Under Arbitrary Normal Loading,' Journal *
of Engineering Fracture Mechanics,'" Vol. 3, No. 1,
July 197),

7. Irwin, G.R., "Crack Extension Force for a Part-Through Crack
in a Plate,' Journazl of Applied Mechanics, Vol. 33, No. 4,

December 1966. |

8. Smith, F.W., "Stresses Near a Semi-Circular Edge Crack,' Ph.D.
Thesis, University of Washington, 1966.

9. Smith, F.W., A.F. Emery and A.S. Kobayashi, '"Stress Intensity
Factors for Semicircular Cracks,'" Journal of Applied
Mechanics, Vo.. 34, December 1967.

16.  Lachenbruch, A.H., "Depth and Spacings of Tension Cracks," Journal
of Geophysical Research, Vol. 66, No. 12, 1961.

11. Alavi, M.J., "Stresses Near a Circular Crack in a Half-Space,"
Ph.D. Thesis, Colorado State University, 1968.

12 Smith, F.W. and M.J. Alavi,'Stress Intensity Factors for a
Penny-Shaped Crack in a tialf-Space,” Journal of Engineering

Fracture Mechanics, Vol. 3, No. 2, 1971.




13.

14,

16.

17.

18.

19.

20.

21.

22.

23.

24,

04

Smith, F.W. and M.J. Alvai, "Stress Intensity Factors for a
Part-Circular Surface Flaw," Proceedings of the First
Internationral Conference on Pressure V-=ssel Technology,

Delft, Holland, 1969.

Thresher, R.W., "A Surface Crack in a Finitc Solid," Ph.D.
Thesis, Colorado State University, 1970,

Thresher, R.W. and F.W. Smith, "Stress Intensity Factors for a
Surface Crack in a Finite Solid," Journal of Applied Mechanics,
Vol. 39, No. 1, March 1372.

Shah, R.C. and A.S. Kobayashi, "Stress Intensity Factors for an
Elliptical Crack Approaching the Surface of a Semi-Infinite
Solid," Boeing Aerospace Company Document, No. D-180-14494-1,

1971.

Shah, R.C. and A.S. Kobayashi, "Stress Intensity Factors for an
Elliptical Crack Approaciing the Surface of a Semi-Infinite
Solid," International Journal of Fracture, Vol. 9, No. 2,

June 1973.

Shah, R.C. and A.S. Kobayashi, '"Stress Intensity Factor for an
Elliptical Crack Approaching the Surface of a Plate in
Bending,” in Stress Analysis and Growth of Cracks.
Philadelphia: American Society for Testing and Materials,

ASTM STP 513, 197Z.

Segedin, C.M., "A Penny-Shaped Crack Under Shcar,” Proceedings
of the Cambridge Philosophical Society, Vol. 47, 1950.

Westman, R.A., ' Asymmetric Mixed Boundary-Value Problem of the
Elastic Half-Space," Journal of Applied Mechanics, Vol 32,

No. 2, June 1965,

Eshelby, J.U., "The Determination of the Elastic Field of an
Ellipsoidal Inclusion and Relatcd Prohlems,’ Proceedings of

the Royal Society, Series A, Vol. 241, 1957.

Kassir, M.K. and G.C. Sih, "Three-Dimensional Stress Distrihution
Around an Elliptical Crack Under Arbitrary Loadings,"”
Journal of Applied Mechanics, Vol. 33, No. 3, September 1966

Love, A.E.H., A Treatisc on the Mathematical Theory of
Elasticity. New York: Dover Publications, 1944.

Love, A.E.H., "On Stress Produced in a Semi-Infinite Solid by
Pressure on Part of the Boundary,' Philosophical Transactions
of the Royal Society, Series A, Vol. 228, 1929.




25,

26.

27.

28.

30.

Segedin, C.M., "Some Threc-Dimensional Mixed Boundary Value
Problems in Elasticity,'" Report, Department of Aeronautics
and Astronautics, University of Washington, Seattle,
Washington, June 1967,

Byrd, P.F. and M.D. Friedman, Handbook of Elliptic Integrals.
Berlin: 3pringer-Verlag, 1971.

Abramawitz, M. and I.A. St-gum, Handbook of Maihematical Functions.
New York: Dover Publications, Inc., 1965.

Hartranft, R.J. and G.C. Sih, "Alternating Method Applied to
Edge and Surface Crack Problems,” in Mechanics of Fracture 1--

Methods of Analysis and Solutions of Crack Problems. Edited
by G.C. Sih. Leyden, The Netherlands: Noordhoff Inter-
national Publishing, 1973.

Smith, F.W., "The Elastic Analysis of the Part-Circular Surface
Flaw Problem by the Alternating Method," in The Surface
Crack: Physical Problems and Computational Solutions. Edited
by J.L. Swedlow. New York: American Society of Mechanical
Engineers, 1972.

brown, W.F. and J.E. Srawley, Plane Strain Crack Toughness Testing
of High Strength Metallic Materials. Philadelphia: American
Society ror Testing and Materials, ASTM STP 410, 1966.




-kp

OO

FIGURES

i
t




A

67

Back Surface

Front Surface

b

—
N

S
/

\
/
/

al Surface Flaw in o Finite Thickness Platre

Figure 1. Semicllipti

——



ama——
> - - d BNy 2 S A ]

68

3.0

~1.0

~0.5

-
=
T m
.
o

X 30 2.0 0 05 O

Figure 2. Arrangement of Surfuace Rectangles for the Shear Probicn




69

?x

<v

Figure 3.

4: o g mm'ﬂ

+b

Location of Points on the Crack Surface

e

——



70

WZ

Figure 4. Flat Elliptical Crack Subjected to Nonuniform Shear

A

e e
-
————

———



71
l —
Figure 5. Parametric Angle ¢, Normal and Tangential Directions
n and t and the Angle B for an Elliptical Crack

——— -



w

Figure 6.

72

Local Coordinate System for a Typical Surface Rectangle




ol
-
=l

Figure 7. Coordinate System tor the Half-Space Soiution

——— e




74

/
\
+a \ Z-upward

-+

Lyl < . . - . s RS
| ).“t . ““’ll'l”\.'( 'V\(Li" '()l ("L "tl,'tl\ l‘ (' ‘(k

3
L —~—
TN v e— e T .I e ‘A
e - - ' ) -
_— — o h"‘ﬂ
—— . -

e e el .

DA . K
———— L= —



1.20¢
LIOF 9/t
0.9 /
"oo_ 0.8
0.90_0.2
0.30}
‘0
2mo.‘rob S
o 0.60F ©9 \
N
0.8—
= 0.50F %
0.2
0.40}
0.30}
“‘z h‘s
0.20} K,
hﬂi =
0.10} T (1a/Q)E
o I L 1 L 1 1 1 I ]
O 10 20 30 40 50 60 70 80 9
¢ - Degrees

Figure 9. Stress Intensity Factors for a Surface Crack with Uniform
Shear Applied Parallel to the Major Axis; a/2c = 0.40

- . EF ] -, - - -

. e e LS STHAERIPON S - inag e . ] M
. _ e,

- - e




/o
.20 a/t
|.:0L-O'Q\
1.00| 0.8 '
0.2 \
0.90
™~
0.80
():7()" A
s N
¢ 0.60F O-9 \\
~N . \
0.8 - \
% 0.50}
0.2
0.40} /7
0.30
0.20} M, " My
M‘ =
0.10F T,y (70 /Q)f
o t 1 4 L 1 [} 1 1 I |
C 10 20 50 40 50 60 70 80 90
¢ -Degrees

Figure 10. “(ress Intensity Factors for a Surface Crack with Uniform
shear Applicd Parallel to the Major Axis; af2c = 0.30

— - - m . ‘
e 4 - ‘rﬁ“m__ e anatttie B CEEE T N Ly
—— e — - - .- - e e ¢ . ) : -
M i T s . L —



77

L30r o/t
. .9
.20
1.10 - 0.8
M
(.00}
.. 0.2
080F T~
0.80}
0.70
[ 2]
=
o 0.60 A
S \
0.50F
0.9
0.40 0.8
0.30- 027
0.20 K.
“42 hﬂi = ' * M3
0.10F T, \70/Q)
0 ‘ 1 1 1 t 1 1 L 1 J
O 10 20 30 40 50 60 70 &80 90
¢ - Degrees

Stress Intensity Factors for a Surface Crack with Uniform

Figure 11.
Shear Applied Parallel to the Major Axis; a/2c = 0.20




78

1.30
a/t
(.20 0.8
1.10 | 0.6
0.
.00k 0.2
0.90
0.80F
. 0.70F
=
o 0.60f
2
=
0.50F
0.40
0.30 0.8
0.26 0.6
T 0.2 K,
> i;: hﬂi
O.IO-M Tax (T /Q) M,
o l 1 L i 1 1 J D——
O 10 20 30 40 50 60 70 80 90
¢ -Degrees

Figure 12. Stress Intensity Factors for a Surface Crack with Uniform
Shear Applied Parallel to the Major Axis; a/2¢c = 0.10

1 R ETERE RN B e A R




79

1.30
.20

1.10
1.00]
0.90
0.80

0.70

K;

0.60F M; = I
T, (7 a/Q)

M, & M,

0.50
0.40

0.30}

0.8
0.20F 0.2

V.10 F M rﬁs

o ek i A o 1 ] 1 A

0
O 10 20 30 40 50 60 70 80 90
¢ -Degrees

Figure 13. Stress Intensity Factors for a surface Crack with Uniform
Shear Applied Parallel to ti.e Major Axis; a/2c = 0.05




84

0.10 —

Figure b, Max imum Mode Twe Stress Intens

bomiclliptic

ty Factop for 4

al Su. age Urageh



M1 max

81

.30

1.20

{10}

0.90~

Ky

0.80 - M! = i
1, (ra/Q)
<

o wde } 1 HR 1 1 i 1 L 3
0 0.0 0.20 0.30 040 050 0.60 070 0.80 090 1.00
a/t

Figure 13. Maximum Mode Three Stress Intensity Factor for a
Semielliptical Surface Crack




1.30

1.20

.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

Mz
1

82

N Ki
B -rzx (70/0)"2

M

1 1 1 | | 1 i

Fipure lo.

0 20 30 40 50 60 70 8O0 90
¢ - degrees

Stress Intensity Factors for Successive Cycles of
Iteration; a/2¢ = 0,20 and a/t = 0.90




83

[ ¥4

3.0

-2.0

1.0

~0.5

X 3.0 2. — 1.0 05 O

Figure 17. Arrangement of Surfacc Rectangles for the Normal
Loading Problem




R4

1.50
140}
130}
120 .
% . o/ts=08
435 1o e
o 100 ‘\gg
090} '
080
070+
O{ A N 1 1 1 5 ¥ _ 1 _J
O 10 20 30 40 50 60 70 80 90

Figure 18.

¢ - degrees

Stress Intensity Factor for a Surface Crack Subjected
to Normal Loading; a/2c = 0.30



85

.70,
.60

1.50

1.40

1.30

1.20

o (1ra/Q)%e

L1or 020

.00}
090 -

080 |-

0.70£
o [ 1 1 1 1 Fi 1 [ | I |

o 10 20 30 40 50 60 70 80 90
¢- degrees

Figure 19. Stress Intensity Factour for a Surface Crack Subjected
to Normal Loading; a/2c = 0.20




86

1.90
.80
.70

160

1.50
1.40
1.30

1.20

1.10

K
o(re/Q)2

100

0.90

O 10 20 30 40 50 60 70 80 90C
¢ - degrees

Figure 20. Stress Intensity Factor for a Surface Crack Subjccted
to Normal loading; a/2c = 0.10




e e e e

160
1.0}
i.40

1.30

120 }

L1O

100

i
o(wra/Q)”

080

080
070

060

87

(‘{ 4 1 . 1 A I 1 A d

0

Frgure 21.

10 20 30 40 50 60 70 80 9
¢ - degrees

Stress Intensity lFactor for a Surface Crack Subjected
to Normal Loading; a/2¢  0.08



~ .

88

Ol 060 080 OL0 090 OSO O¥D OL0 020 OI0 O
1 Ll L) L

Yoe1) adejang (estidy(ratmag
® 10J 103024 AITSUdIU] SSAIIS SUQ IPO) WnuIXew -zz 2andty

/0
o)

4 ¥

L Ll ¥ [ﬂJ

¥0
€0

60’0 =92/0
Ho¢gi

409’I
rALe} . oL’}

¥o01) 006p3 Jon
|DUOISUSWI] OM]’ o5l

i0

(0704 ) 0
You

-

e



RY

Y2€E1) ddejing [ed1adI[[{3TWIS B ICF S303dey4
A21SUdIU] SSIIIS UG PO [BITIAI0SYL Fu uostiedwod -c7 sandry

/0
001 060 080 0.0 090 OSO O¥0O 0O£O 020 QO o

r T 4 T T Y T T T
Aoou

e

S0 . ) Jog1

Ndv\ /
/ / 409!
/ -\
/ 1041
\ i Apnig siyy ------
_.oJ.. lysohoqoy - yous —— o

{C/o4 )0
!Di'f.lx



! Axodg 103 eleg SssouiEnol Ixmydery vl aandty

[~ B

| /0
w. oUl 060 080 OLO 090 0G0 OY0 OE0 020 OI0 O

| S | | | ] ¥ R ] | | | | L O
| 2b0 04 €10 : 92/0
» GONDAY €1 JO 28 peindwo) 120

0.9 609 12-01-9

. 1G9 26S 12-1-%
T g 99 186 0OL-5-2! 4%0
S .€9 6.5 69-.-8
m €09 gvG  0L-9-0l d9-0 =
! wu ul < |c.
W LWL My emawew | ® ,
! « ® P ., . . %
| LR ..ssu,.. ., Nt e .a...-.. o s-\. * . .
N . . \oonl «' . oOaL. oMoo ouoowﬂoo - o -

42|




91

APPENDIXES




92
APPENDIX 1

I'he non zero terms of the matrix [Kij] are piven by the expression

below and the parameters A, B, C, p and q are given in the table.

K,. = A[B(1-v)M + cwM ] 26
" (1-0)M q]

1,3 A B c P q 1) A B c P q
1,1 -2 -1 1 3 1 ) 145 24 0 1 - 4
1,4 24 -1 3 5 | 14 11,11 2 1 | -1 3 2
1,6 24 -1 1 6 4 11,14 24 -1 H 5 4
1,15 24 0 1 - 4 11,16 24 -1 1 6 4
2,2 8 | -1 1 S |14 12,3 8 0 1 - 4
2,7 | 192 1] -3 7 8 12,8 |-576 0 1 - 8
2,9 | 576 1] =5 10 | 16 12,10}-576 0 1 - 9
2,13 8 0 1 - 4 12,12 8 -1 1 5 4
2,18j-576 o 1 - 8 12,17 192 1 | -3 7 9
2,20}-576 0 1 - 9 12,19| 576 1 |-1] 10 8
3,3 8 | -1 1 6 4 13,2 8 0 1 - 4
3.8 | 192 1) -3 7 8 13,7 |-576 0 1 - 9
3,10 576 1] -1 11 9 13,9 |-576 0 1 - 8
3,12 8 c 1 - 4 13,13 8 -1 1 6 |15
3,17{~576 0 1 - 9 13,18 192 1 | -3 7 9
3,19} -576 0 1 - 8 13,20] 576 1 |-5 ] 11 |17
444 72 1] -5 10 | 16 14,5 | -72 0 1 - 8
4,6 24 1] -3 7 8 14,141 72 1 |-1]10] 8
4,15 -72 0 1 - 8 14,16 24 1 |-3 7 9
5,5 48 1] -3 7 8 1544 |-144 0 1 - 8
5,14}-144 0 1 - 8 15,6 |-144 ] 1 - 9
5,16{-144 0 1 - 9 15,15} 48 1 1-3 7 9
6,4 24 1] -3 7 8 16,5 | =72 0 1 - 9
6,6 72 1 1 11 9 16,14] 24 1 | -3 7 9
6,15 -72 0 1 - 9 16,16 72 | ~1 s |11 | 17
7,7 | 576 -1 3 | 28 |19 17,8 1728 0 1 - 119
7,9 | 576 -1 5 27 | 18 17,10]2880 0 1 - 120
7,18/1728 ] 1 - ]19 17,17} 576 | -1 5128 |20
7,20} 2880 0 1 - 120 17,19} 576 1 3127119
8,8 | 576 -1 5 27 {18 18,7 11728 n 1 - 119
8,10} 576 -1 3 28 | 19 18,9 |2830 0|1 - 118
8,17/ 1728 0 1 - |19 18,18] 576 -1 3127 (19
8.19) 2880 0 1 - |18 18,20| 576 | -1 5 | 28 | 20
9,7 | 192 -1 5 27 | 18 19,8 | 960 0 1 - {18
9,9 | 960 | -1 7 2t |29 19,10} 576 0 1 - |19
9,18 960 0 1 - |18 19,17] 192 ~1 3127 {19
9,20{ 576 0 I - 119 19,19] 960 | i 121 ] 18
10,8 | 192 -i 3 28 |19 20,7 | 960 0 | - | 20
10,10 960 | -1 1 22 |20 20,9 | 576 0 1 -] 19
10,17 960 0 1 - |20 20,18] 192 -1 5 |28 | 20
10,191 576 Q0 1 =119 L20,20] 960 | -1 7. 122125

L I ] n mT..—_._T._ — — .
i b N

LR L IS
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APPENDIX I
(continued)

Mp - a, [Bp E(k) + Y, K(k)]

p Gp Bp yp
1.  2/a*k? -1 +1

2. 2/ab%? +1 -k'2

3. 2/a%'? -1 0

4. 2/a*d?k* 1+k'? -2k'?

5. 2/a®k%k'? 1-2k” -k’

6. 2/a’k*k'" -1-k? k'?

7. 2/a’k“k'" ~2(k'2+k") k'2(2-k?)

8. 2/3a°b%k® 345k 242k %k "2 ~k'2(8+k?)

9. 2/3a%b“k® 3%%k ' 2+10k%-8 Bk '2-9k2k'?

10.  2/3a’k“k'? 2+3k%-8k" -2(2k3+1)k'?

11.  2/3a’k“k"’ 3k2+(2-10k?)/k'? 2(3k%-1

12, 2/3a’k%*k" 8k2k ' 24+5k2~3 (3k'2-k?¥)k'?

13, 2/3a”k%'® 2k%k' 2+5k%+3 -(k%+3)k'?

14,  2/3a°k" ~2(1+k?) 2+k?

15.  2/3ab“k" 2(2k*-1) k'7(2-3k?)

16.  2/15a7k® - (8k"“+7k2+8) Ak 4+3k%+8

17.  2/15ab%k® 23<"-23k%+8 -k'?(15k"~19k?+8)
18.  2/15a7b%k®  15+33k'2+17k%k'248k"k'? ~4k" 2 (K" +2k%+12)
19.  2/3ab“k® 18k%-16+8k%k' *~2k%k"" k'2(16-17k%+k’k' %)
20.  2/15a’b%k®  73Kk"-113k7+48-15k7k'" ~k'¥(60k"~104k?+48)
21, 2/15a%k°k'?  8+9k®+16k"“-48k°® ~k"'2(24k"+13k?+8)
22, 2/15a%%Kk'®  4OKZk'Z-48Kk2+88k“k'I-15k“k'"  k'Z(16k*-45k*k'?+8k?)

23.

2/3a%%k'®

2k%k Y4k P-4k 2-16+16/Kk"?

11k%k'2-8Kk%-k?k"'"

———
—————

U
——————
——
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APPENDIX 1

(continued)
P %p Bp p
24, 2/3a%k"k'"  16k“k'Z+8k"“-4k?-2 k'2(2+5k2-8k")
25. 2/105ab®k®  8(2k%-1)(6-11k?k'?) k'2(105k" k' 2+88k"~160k%+48)
26.  2/3a’k“k'®  8-2k'2-3k%Kk'?-8k%k'" 2k' 2 (2k?k' 2-k' 2-2)
27.  2/3a%%k' 8k“k'Z+3k?k'Z?-2k%-8 k' 2 (4k%k' 2+5k' 243)
28.  2/3a%kSk'"  6k“-3k%+16-8/k'? 3k?k ' ?+12k2-8
29. 2/105a%k® 8(1+k?) (-6k “+k?-6) 26k8+1 7k “+16k?+48




Y

APPENDIX II

The following are the expressions for K2 and K3 corresponding to

each term {i. the stress function series.

a and b
00 00

%
K el - (@ bcosp+b a sing)
00 00

2 (ab)a/ﬁ ¢'B

Y
K = gen (1-v) (b becosd -a a sing)
3 (ab)3/2 ¢% 00 00

a and b
10

10

1
~32G7 2
o326m7

X T (a b cos?d + b sind cos¢)
2 (ab)3/2 3 10 8 10
s
K = 2321—7~—1; (i1-v) (a sind cosdp - b % coaz¢)
3 (ab)?'2 & 10 10
a and b
01 01
-32Gﬂ% a 2
K = =% (a sing cosp + b 5 8in“¢)
2 (ab)’lz ® 01 01
326w¥ a
K = == (1-v) (a 5 sin?¢ - b  sind cosd)
3 (ab)3/2 Ly 01 01

a and bl

11 1

Y a b ,
K = 19262/2 T ( all sind cos’¢ + FLL sin’$ cosd)
S (-0 AR
\ b a4y
K = 19267' — (1-v) ( At sind cos?¢ - — sin?¢ cosd)
S (ab)V? 0" @ P




a

a

20

02

21

12

30

and b
20

K
2

3

192617si

e —p————————

(ab)s/2 ¢k

1926nk

e ————————

(ab)¥/? ¢

and b
02

2

3

and b
2

3

3

b

_lga6m”

(ab)?/? o

19261112

(Bb) 3/2 @%

1

_1536CT7

(ab)a/Q ¢k

1536Gnli

——————

(ab)*/2 &°

and b
12

2

3

and b
3

2

3

—153bG‘nLj

—————————r—

(ab)?/? ¢*

1536Gn %

et ———

(ab)a/2 ¢

[+]
~1536GT°
(ab) ¥/? o

%
1536GT

T ——————————

(ab)a/z )

Q0

(a Ez cos’¢ + b 1 sind cos?d)
20 @ 20 8@

(1-v) (b Eycosa¢ - a 1 sind cos?d)
20 8 204

(a 1 gin’¢ cosd¢ + b 2, sin’¢)
02 b 02 b

(1-v) (b02 % sin?¢ cosd - ao2 %2 sin’¢)

(a21 %2 sind cos’¢ + bz‘ %g sin?¢ cos?¢)

(1-v) (a2l %E sin?¢ cos?d - b21 %2 sin¢ cos’¢)

(a12 %E ginZ¢ cos’d + b12 %2 gin®¢ cos$)

(1-v) (a12 %2 3in3d cosd - b12 %E sin?¢ cos®o)

(a E; cos'd + b lz sing cos’d)
30 8 3p &

1 g, - b 4
(1-v) (aao a2 sing cos’¢ b30 s’ cos'$)




o

a

03

07

and b
03
K = '15366“3 (a 17 sin¢ cosd + b 2, sin'¢)
2 (ap)/? p% 03 D 03 b '

s
- Joa p (1-v) (a %3 sin“d - b 2 sin’$ cosp)
® 03 0

3 (ab)al2 e

® = a? gin’d + b cos?d




