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1 NTRODUCT ION 

1.0 Background 

For years much of the fracture mechanics research, both theoretical 

and experimental, has been devoted to the study of problems in which 

the loads were applied in a direction perpendicular to the plane of the 

crack. Studies of this type provide valid information for solely mode 

one, or opening mode prsblcms. 

A knowledge of only mode one displacements is inadequate o r  

insufficient to perform the proper design analyses required for thc 

structures being considered today. Factors such as complex loadings, 

nonuniform loadings, and the nonalignment of loadings and crack genme- 

tries demand that a study of mixed mode fracture mechanics be accom- 

plished to insure that the maximum possible structural integrity is 

attained. Mixed mode problems arise frequently in bridges, pipes, 

pressure vessels, and aircraft and aerospace structures. The necessity 

for using high strength alloys in the fabrication of many structures 

of this t e e  intensifies the requirement for adequate mixed mode 

fracture mechanics analysis sincc many of thcsc alloys are often quite 

brittle and sensitive to the presence of flaws or mechanical defects. 

An example of a situation in which fracture mechanics considera- 

tions will be exercised is in the design of the space shuttle structure. 

Many components of the space shuttle will be reused a number of times 

and be exposed to hostile environmental effects, so a proper design 

analysis must be made which will include adequate assurance that the 

desired life is not threatened by possible crack growth. Mixed mode 

fracture mechanics considerations would be of loss consequence if thc 



structural components were to be used only once, but they gain 

increased magnitudes of importance when the components must withstand 

a number of launches and recoveries. It is for considerations such as 

these that a ztudy of mixed mode fracture mechanics problems was 

undertaken. 

Part I of this report is devoted to the study of a semielliptical 

surface flaw which has nonunifora shear loading applied to the surfaces 

in either of two directions, parnllcl or perpendicular to the major axis 

of the ellipse. An alternating method is used to calculate the mode two 

and mode three strcss intensitv factors. These stress intensity factors 

are presented as a function of position along thc crack border for n 

number of crack shapes and crack depths. No similar results have 

heretofore been obtained for this problem. 

A number of studies have been made for an elliptical crack in an 

infinite solid and a semielliptical surface flaw in a finite solid, both 

of which are subjected to uniaxial tension. However, no valid solution 

exists for a semielliptical surfac: flaw having small depth to length 

ratios, a/2c, which penetrates the solid with large dcpth to thickness 

ratios, 3/t. Kobayashi (I)+ has statcd that scmielliptical surface 

flaws with a/2c = 0.12 to 0 . 2  with dcpth ratios a / t  = 0.9 are probably 

the most critical problems in applied fracture mechanics without an 

adequate solution. Part I1 of this report is dcvotcd to the study of 

semielliptical surface flaws subjcctcd to normal loading. Results of 

this study were presented in Technical Report No. 4 but are included 

* 
Numbers in parentheses refer to references at the end of the report. 



here to allow the presentation of additional computations made since 

the publication of that report. 

2.0 Previous Work 

Inglis (2) in 1913 presented the initial analytical work leading 

to the present day concepts of fracture mechanics. He studied the 

stresses in the vicinity of an elliptical hole which, in the limit, 

becomes a sharp crack. This work then provided Griffith (3) with the 

background vecessary to postulate his theory of crack propagation based 

on a balance between released elastic strain energy and absorbed 

surface energy. 

Much of the initial fracturc mechanics work was done on two- 

dimensional problems, but in 1945 Sneddon (4) formulated the axi- 

symmetric three-dimensional problem of a circular flat crack in an 

infinite solid with uniform normal pressure applied to its surfaces. 

In 1960 Green and Sneddon (5) solved a similar problem for an ellipti- 

cal crack embedded in an infinite solid, and in 1971 Shah and Kobayashi 

( 6 )  extended this solution to the case of an embedded elliptical crack 

under arbitrary normal loading. All of these solutions dealt only 

with embedded cracks. 

The solution of Green and Sneddon (5) was uscd by Irwin (7) in 

1966 to estimate stress intensity factors for a semielliptical crack in 

the surface of a flat plate. Smith (8, 9) in 1966 presented the 

solution to the problem involving a semicircular surface crack located 

at a fret surface of a half-space and loaded with an arbitrary normal 

pressure. He used an alternating technique originally usad by 

Lachcnbruch (10) to remove and calculate the effects of normal stresses 

on the free surface. 



Smith und A l r ~ v i  ( 1 1 ,  12, 1.7) later solvccl tlw prohlom of a 

circrrlor crack o~~.\oddcd in a semi-infinite 301 id, an+ . : , :abler of a 

part-circular crnck in the surface of a semi-infini' solid. :'hresher 

and Smith (14, 15) in 1972 extendeJ this work to solve the probiem of a 

part-circular surface flaw in z finite thickx,ess solid. In 1973, Shah 

and Kobayashi gave solutions to the problems of an embedded elliptical 

crack approaching the free surface of a semi-infinite solid subjected 

to uniform tension (16, 17) and linearly varying pressure (18). All of 

the solutions mentioned above were for normal loading of the crack 

surface, and thus involved only mode one displacements and stress 

intensity factors. 

Much less work has been done for the three-dimensional problems 

involving cracks which have shear loading applied to their surfaces, 

although some work has been done for cracks embedded in infinite 

bodies. Segedin (19) in 1950 presented a solution for an embedded 

circular c r m k  subjected to a uniform shear stress. This same problem 

was also solved by Westmann (20), while C-helby (21) discussed it as a 

special case of his more general solutim for an ellipsoidal inclusion 

in an infinite elastic medium. 

Kassir and Sih (22) in 1966 formulated the problem of an embedded 

elliptical crack in an infinite solid, subjected to uniform shear 

applied in any direction. They studied the stress fiald near the crack 

border, and presented mode two and mode three stress intensity factors 

as functions of position along thc crack border. 



3.0 Objectives of the - Report 

The objectives of this report are two-fold. The first objective 

is to present the stress intensity factors for a semielliptical surface 

crack in a finite thickness solid subjected to shear loading. 

The second objective is to present stress intensity factors for a 

semielliptical surface crack which has normal loading applid to its 

surfaces. This work is the first presentation of an nnalysie. of t h ~ s  

problem which ir,cludcs a1 1 known elastic effects, and it covers ranges 

of crack depth and shapc for which results of direct analysis arc not 

available. 
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PART I--SHEAR LOADING OF A SEMIELLIPTICAL SURFACE CRACK 

Chapter 1 

THE SHEAR LOADING PROBLEM 

1 . 0  General State-nent of the Surface Crack Problem - 
Cnnjider a semie l l i p t i ca l  surface crack locaczd i n  the  f ron t  

surface of a f i n i t e  thickness  s l a b ,  a s  shown i n  Fit, 1. The crack i s  

considered t o  l i e  on the  plane defined by z = 0 ,  and has a semiminor 

axis  "b" located along the y-axis ,  and a semimajor ax i s  "a" located 

along the x-axis.  

The problem i s  t o  d e t e r m i n ~  thc s t r e s s  i n t ens i ty  f ac to r  alofig the 

periphery of t he  crack when the  surface of the crack i s  subjcctcd t o  

nonuniform shear s t r e s s e s  T and T t he  pos i t i ve  d i r ec t ions  of which 
Z X Z Y '  

a r e  shown i n  Fig. 1. Boundary condit ions f o r  t h i s  pro5lem a r e  de t e r -  

mined from a considerat ion of the  condit ions o f  skew symmetry of the 

d i sp l acmen t s  of t h t  problem. These boundary condit ions a r e :  

and 

where u and v are thc displaccmcnts in the  x and y d i r e c t  ions,  

respec t ive ly .  The f ront  and back surfaces of  t he  boay a r e  considered 

t o  be f r e e  of s t r e s s e s .  

In addi t ion ,  t h e  shear s t i z s s e s  on the  surface of the  crack can be 

expressed by the followin$ s e r i e s  representat ions:  



where m + n < 3. The sum, in + n ,  i s  l imited Lo being l e s s  than o r  - 

equal t o  three  because of the  enormous quaqt i ty  of work necessary t o  

derive the equations f o r  the  s t r e s s e s  and s t r e s s  i n t e n s i t y  f ac to r s .  

2 .0  The Method of Solution 

The method of solut ion which w i l l  be used is an a l t e rna t ing  

technique s imi l a r  t o  t he  one which has been used by Thresher and Smith 

( IS) ,  and i n  a s l i g h t l y  d i f f e r e n t  manner by Shah and Kobayashi (17). 

Two e l a s t i c  so lu t ions  a r e  required t o  apply t h i s  technique. The 

r e s u l t s  from each so lu t ion  a r r  superposed t o  y i e ld  a so lu t ion  t o  t he  

problem. These two so lu t ions  w i l l  be r e f e r r ed  t o  a s  Solution 1 and 

Solution 2 as  follows: 

S ~ l u t i o n  1. The determination of the  s t r e s s e s  a t  any point in  

an i n f i n i t c  so l id  due t o  t h e  presence of an elliptical 

crack i n  the  i n f i n i t e  so l id .  The crack surface i s  subjected 

t o  var iab le  shear s t r e s s e s .  

Solution 2. The determination of the  s t r e s s e s  within a semi- 

i n f z n i t e  body ssbjected t o  uniform normal and shear s t r e s s  

applied over a rectangular  port ion of  t h e  surface.  



2.1 Elastic Solution of a Crack in an Infinite Solid 

Solution 1 represents the elastic solution of an elliptical crack 

in an infinite solid subjected to nonuniform shear stresses. These 

shear stresses can be applied to the surface of the crack parallel to 

the minor axis or the major axi;, or parallel to both axes simulta- 

neouslj. This method solves the three-dimensional equations of 

elasticity for the displacements and the stresses at any particular 

point within the infinite body. Additional derivations arc made for 

the equations which define the stress intensity factors as functions of 

position along the crack border. The derivations and the explanation 

of this method are accomplished in Chapter 2. 

2.2 The Half-Space Solution 

Solution 2 utilizes the general formulation of a half-space 

problem by Love (23, 243 .  This is a solutim for stresses in a half- 

space due to normal and shear tractions applied to a rectangular 

portion sf the surface. 

For the problem under consideration here, the shear stresses T z X 

and T hod to be c;i:culntcd from thc Love formulation on the face of 
ZY 

the crack. This h:id not been done before so it was necessary to derive 

the equations using Love's general formulation as a beginning point 

The skew symmetry conditions of this prcblem preclude the presence of 

any residual normal stresses a on thc facc of the crack, so it was 
ZZ 

not necessary to calculate this component. 

The details of thc so lu t ior  are presented in Chapter 3. 

2.3 The Alternating Meths 

The alternzting method which is applied to the semielliptical 

surface crack probiem works in the following way: 



o r  1. The shezr loading, r,, T Z Y '  i s  applied t o  t he  crack surface 

a s  prescribed from the  statement of the p a r t i c u l a r  problem 

being sllrl\/ed, Salut ion 1 i s  used t o  compute the  normal and 

shearing s t r e s s e s  a t  po in ts  on a plane i n  t h e  i n f i n i t e  s o l i d  

a t  t he  locat ion of t he  f ron t  surface.  

2. The f ront  surface of t h e  body must be f r e e  of s t r e s s e s ,  so the  

s t r e s s e s  produced in t he  previous s t ep  must be removed. This 

requi res  t h a t  opposing surface t r a c t i o n s  be applied on the  

plane of an uncracked half-space.  This i s  done by dividing 

the  f ron t  surface i n t o  a number of rectangular  areas  and 

applying s t r e s s e s  t o  each area which a r e  equal i n  magnitude 

but opposite i n  s ign t o  the  s t r e s s e s  computed a t  t he  center  of 

each rectangle i n  Step 1 .  Solution 2 i s  then used t o  compute 

the  shear s t r e s s e s  T~~ and T a t  96 poin ts  a t  the  locat ion of 
z Y 

t he  crack surface in  t h e  ha1 space. The e f f e c t s  of a l l  

surface rectangles  a r c  included by summing over t h e  e n t i r e  

number of rectangles  used on the  surface.  The r e s u l t  of t h i s  

i s  a secondary residual  s t r e s s  which i s  now generated on the  

crack surf  ace. 

Figure 2 shows a t yp ica l  arrangement of surface 

rectangles  used i n  t he  ana lys is .  This pa t t e rn  i s  the  one 

which appears in  t hc  f i r s t  quadrant and i s  repeated i n  each 

of the other  t h ree  quadrants.  

3 .  The s t r e s s  r e s idua l s  which have now been produced on the  crack 

surface must be removed i n  order  t h a t  the boundary condit ions 

on the  crack surface can be met. This i s  done by applying 

opposing s t r e s s e s  on t h c  crack surfacc.  The polynomial 



cquations (1.3) f o r  T~~ and T a r e  l e a s t  square f i t t e d  t o  
Z Y  

t he  v:~lucs  of the strcss residuals a t  t hc  96 points  on the 

crack surfncc shown in  F i g .  3 .  

Thc change in  thc  s t r e s s  i n t ens i ty  f ac to r s  A K 2  and AK3 

caused by the appl ica t ion  of these opposing s t r c s s c s  i s  

calculated and added t o  t h e  s t r e s s  i n t ens i ty  f ac to r s  caused by 

t h e  i n i t i a l  loading. Solution 1 is  again used t o  compute the  

s t r e s s e s  on t h e  f r o n t  surface i f  more than one i t e r a t i o n  i s  

desired on t h a t  surface.  E i ther  one o r  two i t e r a t i o n s  of t h i s  

kind a r e  done with the  f r o n t  sur face ,  s to r ing  the  s t r e s s  

r e s idua l s  applied t o  t he  crack surface a s  well a s  the  s t r e s s  

r e s idua l s  applied t o  t he  f ron t  sur face .  

4 .  When s t r e s s  r e s idua l s  a r c  applied t o  t he  f ront  sur facc ,  

s t r e s s e s  a r e  produced n t  t he  locat ion of the back surfacc.  

These s t r e s s e s  must a l s o  be accounted f o r  during the appl ics -  

t i o n  of t he  a l t e rna t ing  technique. The applied s t r e s s e s  on 

t h e  f ron t  surface a r e  used t o  ca l cu la t e  t he  s t r e s s e s  on t h e  

back surface,  using Solution 2 ,  and s t r e s s e s  of t he  opposi te  

s ign a r e  then applied t o  the  back surface. This ,  i n  t u rn ,  

causes some addi t iona l  s t r e s s  r e s idua l s  on the  crack which 

must be removed, and the  change in  the  s t r e s s  i n t e n s i t y  

f a c t o r s  AK, and AK3 i s  once again ca lcu la ted .  This change i s  
& 

then added t o  the running sum of  each strcss i n t ens i ty  f ac to r  

which was cnlculntcd from thc  i n i t i a l  loading plus  t hc  con t r i -  

butions of any subsequcnt i t c r a t i o n s .  

5 .  The same s t eps  which have been accomplished between and crack 

and t h e  f-ont surface a r e  now done between t h e  crack and t h e  



back surface, and a process similar to the one ~etween the 

front and the back surface is now performed between the back 

and front surface. 

Steps one through five constitute one cycle of iteration. Several 

cycles are executed until the changes in K and K from each step are 2 3 

negligible as compared to the values caused by the initial loading. 

The final stress intensity factors are the sum of all the stress 

intensities due to the initially prescribed crack surface stresses plus 

the contributions due to all thc strcss residuals which arc applied at 

the crack surface. 

This procedure is extremely complicated and time-consuming when it 

is considered that a large number of rectangles are used on each 

surface, and 96 points are used on the crack face. F o ~  this reason, 

all such calculations were programed and performed on the digital 

computer. 



I 

Chapter 2 

THE ELLIPTICAL CRACK WITH NONUNIFORM SHEAR LOADING 

1.0 The Problem and its Boundary Conditions 

The problem, referred to earlier as "Solution l " ,  is illustrated 

in Fig. 4, and is a flat elliptical crack embedded in an infinite 

solid. The crack has a semiminor axis "b" located along the y-axis, 

and a semimajor axis "a" located along the x-axis. The plane of the 

crack is consider2d to lie on the plane defined by z - 0. The surface 

of the crack is subjected to nonuniform shear stresses T~~ and T the 
ZY' 

positive directions of which are shown in Fig. 4. 

Considerations of the conditions of skew symmetry of the displace- 

ments lead to the following boundary conditions: 

and 

where u and v are the displacements in the x and y-directions, 

respectively. It is assumed that the shear stresses applied to the 

surface of the crack are expressible in terms of a polynomial of x and 



where m + n < 3 .  - 

All stresses are assumed to vanish at large distances from the crack. 

2 . 0  Stress Functions, Displacements and Stresses 

Kassir and Sih (22) formulated the problem of an elliptical crack 

subjected to uniform shear applied in any direction as a mixed boundary 

value problem. They were able to satisfy the three-dimensional equa- 

tions of elasticity through t h e  appropriate selection of two harmonic 

stress functions, f and g .  These functions satisfy Laplace's equations 

2 2 V f = V g = O .  (2.43 

Navier's displacement equations of equilibrium are satisfied by the 

harmonic functions, f and g. Define 

+ 2 af a and V F = O .  F a -  ax ay 

The rectangular components u, v, and w of the displacement vector 

are given in terms of the harmonic fiinctions as: 

where u, v, and w are the displacement components in the x, y, and z 

directions, respectively, and TI is Poisson's ratio. The strain- 

displacement equatia'ns may be applied to the displacerne~~ts to yield the 

strains, and in turn the stress-strain relationships for linear 

elasticity may bc used to obtain the stresses in toms of the stress 

functions f and g to be 



where G is the  snear  modulus. 

I t  has been found convenient in  solving boundary value problems of 

t h i s  na ture  t o  introduce the  ellipsoidal coorditl;ltc system A ,  D ,  and v 

where t h e w  el 1 ipsoidal  coordinn t c s  arc roo t s  of the cquat ion 

The e l l i p s o i d a l  coordinates A ,  p and v a r e  r e l a t ed  t o  t he  ca r t c s i an  

coordinates x,  y and z by the transformation equations: 

where the values of the coordinates iirc l imited t o  the  standa.rd 



In these coordinates, on the plane z = 0, the interior of the crack is 

described by X = 0 while the region exterior to the crack is described 

by P = 0. 

Segedin (25) suggested the use of a series of functions which 

satisfy (2.4) and have properties which make it possible to satisfy 

boundary conditions of the type required by (2. I), (2.2), and (2.3). 

Shah and Kobayashi (6) used them +.o develop the solution for an 

embedded elliptical crack subjected to nonuniform normal loading. 

These functions are used here in a similar way to solve this problem 

and are expressed in the form 

where m + n 5 3, 
m 

and 

Segedin (25) showed that v(") is a harmonic potential function. Since 

v(") is harmonic, the stress functions, f and g, irre also harmonic and 

therefore satisfy the governing differential equations (2.4). 

3.0 Satisfying the Boundary Conditions 

The boundary conditions, as defined in (2. I), (2.2), and (2.3), 

must now be satisfied to complete the formal elastic solution. 

Equation (2.1) states the first boundary condition as being uZZ = 0 on 



the planc z = 0 .  It is obvious from ( 2 . 7 ~ )  that this boundary condition 

I S  identically satisfied at any point on the planc z = 0. 

Equation (2.2) states that the displaccrnents in the x and y-direc- 

tion, u and v, are equal to zero outside the ellipse on thc plane z = 0. 

The substitution of this equation into ( 2 . h a )  and (2.6b) yields: 

Segedin (25) showed that the z-derivative of the function v ( ~ )  van] shes 

on the plafie z = 0 in the region outside of the ellipse. From (2.11) 

it can be seen that if a~(~)/az vanishes outside the ellipse for r = 0, 

then af/az and ag/az must likewise vanish, thus satisfying the boundary 

conditions (2.2) . 
The final task rzmaining in satisfying the boundary conditions is 

that of satisfying (2.3) for T~~ and T inside the crack on the plane 
ZY 

z = 0. This was done by deriving the expressions for the stress 

components T and T on the plane z = 0 inside of the ellipse, using 
ZX z Y 

(2.7e) and (2.7f), for each term in the polynomial which is produced by 

(2.11). The result was a polynomial expression corresponding to each 

one of the ten indepsndent amn coefficients and the ten independent bmn 

coefficients. To satisfy the shear stress boundary conditions, 

coefficients of similar powers of xmyn wore collected from a1 1 the 

calculations described above and equated to the corresponding coefficient 

from (2.3). This resulted in the following matrix equaticn: 



In the column matrices, the terms bmn and Bmn are permuted in an 

identical manner to the a and Amn tenns, which are shown as the top mn 

half of the c o l m  matrices. The square matrix Kij is a 20 x 20 matrix 

and nonzero tenns of this matrix are tabulated in Appendix I. 

The solution to a typical problem would require that the Amn and 

Bmn coefficients in the right-hand column matrix hc known nr spcc i f i cd  

for the particular problem 1,elng solvcd. It is quitc likcly that ttw 

problem being solved would require only o portion of these cocfficicr~ts 

to be nonzero. J t  is also quite likely that the symmetry or skew- 

symmetry of the stresses being used could preclude the necessity for 

using all twenty of the coefficients. Equation (2.16) may be solved for 

the a,,,,, m d  bm coefficients. These would be substituted into (2.11) 

and then into (2.5) and (2.7) to calculate the stresses, and into (2.6) 

to compute the displacements. 



This completes t he  formal so lu t ion  t o  the three-dimensional 

equations of e l a s t i c i t y .  

4.0 S t r e s s  In t ens i ty  Factors - 
The mode two and mode th ree  s t r e s s  intensi,'cy f ac to r s  would be nr 

more importance t o  tho designer than would the  s t r e s s e s  o r  the disp1a:e- 

ments near the  crack. These s t r e s s  i n t e n s i t y  f ac to r s ,  when defined a s  a  

function of pos i t ion  along the  crack border,  would be used with a  

su i t ab l e  f a i l u r e  c r i t e r i o n  t o  help accomplish t h e  design of mechanical 

p a r t s  loaded with nonuniform shear  s t r e s s e s .  

4.1 Definition of K2 and K3 

Mode two a h  mode th ree  s t r e s s  i n t ens i ty  f ac to r s  h a w  been computed 

f o r  each amn and bmn term i n  the  s t r e s s  funct ions of (2.11). This was 

done by computing the  following limits f o r  mode two and mode three  

s t r e s s  i n t e n s i t i e s ,  respec t ive ly :  

Figure S i l l u s t r a t e s  t he  terms used t o  dcf inc K and K3 i , ,  ( 2 . 1 7 ) .  Thc 2 

d i r ec t ion  normal t o  t he  crack front  i s  defined a s  n, while tho d i r ec t ion  

tangent ia l  t o  the  crack f ront  is  defined a s  t .  Thc angle 4 i s  the 

parametric angle of t he  e l l i p s e ,  and t h e  angle 6 i s  the  angle between 

the  x-axis and t h e  outward normal vector .  I t  should be noted tha t  t he  

angle 6 loca tes  a point  along the  border o f  the  e l l i p s e  which does not 

i n  general coincide with the  in t e r sec t ion  of t h e  r a d i a l  l i n e  with the  

e l l i p s e .  In these  expressions, r is the  d is tance  from the  crack t i p  



measured along an outward normal, and t and rZt refer to the stresses zn 

in the normal and tangential directions, respectively. 

4.2 Derivations of Stress Intensity Factors 

Mode two and mode three stress intensity factors, K2 and K3, are 

calculated for every coefficient a and b,,,,,. In the foilowing para- 
mt I 

graphs a calculation of the stress inte.\s:.!. factors corresponding to 

the coefficient aI0 will be done to i l l u - f . . , , ~ e  the procedure. 

The first step is to compute the stress components r and T 
ZX z Y 

the plane z = 0 outside the crock. Iiquntion (2.11) is substituted 

(2.7e) and ( 2 . 7 f )  to calculate these stresses. Thc use of Leibnitz 

rule for differentilting integrals leads to: 

where the r.-terms are shorthand notation for: 
1 

0)  

on 

into 

1 

Byrd and Friednnnls (26) book is used to calculate the above 

intcgrnl3 directly in terms of cllrj~ti~ integrals und Jacobirn elliptic 



funct ions.  The der iva tes  of h may be obtained by d i f f e r t n t i a t i n g  

(2.9a) ,  (2.9b),  and ( 2 . 9 ~ ) .  Equations (2.201, (2.211, and (2.22) 

become 

2 2 2 
? = [(2+k ) u l - 2 ( l + t 2 ) ~ ( b i ) + k  snulcnu dnu 

a k  1 1  

where E(u ) i s  the  incomp1e:e e l l i p t i c  i n t eg ra l  of t he  second kind. The 1 

modulus k and the  complementary modulus k g  a r e  defined by 

The funct ions sn ,  cn and dn a r e  Jacobian e l l i p t i c  funct ions and u 1 

represents  t h e  incomplete e l l i p t i c  i n t e g r a l  o f  the  f i r s t  kind. To f ind 

the  l imi t ing  fonn of the  s t r e s s e s  near t h e  crack t i p  it is  necessary t o  

s e t  u = 0 ,  and approach thc  crack t i p .  A s  r, the  d is tance  from the  

crack :ip, approaches zero the  following l imi t ing  expressjons a r e  

appl icable:  



snu + 1 ; 1 dnul + b/a ; cnu + 0 ; 1 cdul + 0 ( 2 . 2 7 )  

4 .  tnul + a/X , u1 + K(k) ; x + a cos+ ; y + b sin+ 

In these expressions 0 is given by 

2 2 2 2  
@ = a sin $ + b cos + 

and K(k) is the complete elliptic integral of the first kind. Upon 

substitutLng ( 2 . 2 7 )  into ( 2 . 2 3 )  through ( 2 . 2 5 )  and retaining only those 
1 

t e n s  containing (2r)-'* the stresses are found to be 

- 
1 - a 4 
2G 'zx = 16alO /& (-(I-TI] - a4kt 

The stress components T~,, and lZt sre now found from s stress 

transfonnation to Le 

T = T cos 0 + T sin 0 zn zx z Y 
( 2 . 3 0 )  

T = -T sin R + T cos 0 
zt z X ZY 

The angle B is related to the parametric equations of an ellipse by 

Substitution of ( 2 . 3 1 )  into ( 2 . 3 0 )  y i e l d s  the following equations for 

T and lZt. zn 



b cos4 a s i n  
Tzn = l z x  7 + 'zy --;t 

(2.32) 

T = - T  
a s ing  b cos4 

Z t  7.x 4 
@ + t z ~  7 

Subst i tut icp  (2 .29)  i n t o  (2 .32)  and t h e  r e s u l t s  of  t h i s  i n t o  

(2 .17)  yf s l d s  : 

Similar calculat iof is  have been done for  every term a and bm. mn 

The r e s u l t i n g  equations are presented i n  Appendix 11. 



Chapter 3 

THE HALF-SPACE PROBLEM 

1.0 Discussio~~ of the Method 

This solution, which was referred to earlier as "Solution 2", gives 

the stresses in a half-space subjected to uniform normal and shear 

tractions over a rectangular portion of the surface of the half-space. 

The general formulation for this problem was originally developed by 

Boussinesq and Cerruti (23) for the casss in which the rectangular area 

is subjected to surface tractions normal and parallel to the surface of 

the half-space. Love (24) worked the problem in detail for the case in 

which the rectangular trea is subjected to uniform normal stress. Alavi 

(11) gave the solution for the case where the rectan!,ular area is 

subjected to shear tractions. 

Love's solution (24) gave the six stress components caused by the 

application of a load normal to the plane. Two of these components, 

and in Love's notation are needed for Solution 2. However, no 

derivation for these two components existed for the cases in which the 

two shearing components of the traction vector were applied, so it was 

necessary to derive these equations. 

The equations for the x,  y, and z displacements are presented by 

Love (23) as: 



where A and u are Lameg s constants defined as 

p = shear modulus 

and 

E = modulus of elasticity 

n = Poisson's ratio 

The harmonic functions F. G, ti, , and , are defined in Love 

(23), and Smith and Alavi (12), and will not be further defined here 

since this solution may be explained with no additional knowledge of 

them. 

Equations (3. I), (3.2), and (3.3:  are written in terms of what 

shall hereafter be called Love's coordinate system, which is different 

from the one used in Chapters 1 and 2. This coordinate system is used 

in Figs. 6 aqd 7 where it may be seen that in terms of Love's coordi- 

nates the desired shear stresses on the surface of the crack are r 
YX 

and z 
YZ' 

Love's notation will also be used to specify which component 

of the surface traction vector is befng considered. In this notation, 

x 3 ,  yvs and 2" reprasent the applied load at the center of each rectangle 

in the x,  y, and z directions, respectively. The derivations involving 

these components will be considered separately, and the ?Vera11 solution 

will be obtained by superimposing the results from each. 

2.0 Derivation of Stresses on the Crack Surface 

The strain-displacement eycations can be applied to (3.1), (5.2), 

and (3.3) to provide equations for the strains. Then the stress-strain 

relations can be used to yield equations for the desired stress 

components, T and T . These steps are accomplished in the next %ree 
YX Y = 



sec t ions  f o r  t h e  appl ica t ion  of X 
v 3  Y V 3  

and Z t o  a r; . i- icil  ractangular  
V 

areil i n  t h c  f i r s t  quadrant of t h e  plane. 

2.1 S t r e s s  Derivations when Applying Xv 

Figure 6 shows t h e  coordinate  system f o r  a typic91 r e - t m g l e  used 

i n  t h i s  half-space so lu t ion .  A shearing t r a c t i o n  vec tor  X v  i s  appl ied 

p a r a l l e l  t o  t he  x-axis  on the  sur face  o f  t h e  rec tangle .  This i s  

described by t h e  following boundary condi t ions.  

Calculat ions made f o r  T using t h e  s t eps  mentioned i n  t h e  previous 
YX 

s ec t i on  y ie ld :  .. 

where 

2% a2$ 
t 2- 

a-x a+x a+x - + - - - - -  
axay axay + X v  [ a  1 b2 C 3 a-x d4 I 

The terms r l ,  b,, c3,  and d4 a r e  defined a s  - 



Similar calculat ions made for the other shear component on the 

surface o f  the crack give  

where 

2 . 2  Stress  Derivations when Applying Yv 

A shearing traction vector Y i s  applied paral le l  t o  the y-axis ,  
V 

with the following boundary conditions: 

The following equation for  T i s  obtained: 
YX 

where the derivatives  were found t o  be 



* 

Calculations madc for T~~ givc 

whcre 

G is a harmonic function, so 

a L~ -1 b+y -1 z @+Y) + , = Y, ban-' " + tan a-x - tan -1 '(b-~) - tan 
(a-x) a 1 (a-xld4 ax 

+ tan-' b-Y + tan -I b+y - tan -I zlb-y) - tan -1 z(b+y) 
a+x a+x (a+x)b2 (a+x)c3 I 

2 -1 D+X 2 = Y v  ban-' + tan - h-Y - tan - 1  b-~)a - ?$E& + 

a-x + tan-1 S - tan + tan - -1 z(i3-x) - tan -1 z (a+x) 
b+y b+y @+Y) d4 @+Y) c3 

2 . 3  Stress Derivations when Applying Z v 
-- - - 

The nomal traction vector zy is applied parallel to the z-axis and 

perpen-liculnr to the plane, providing the following boundary conditions: 



Calculations mndc for T yicld 
Y X  

where 

The following equation is obtained for T 
Y = 

where 

3.0 The Solution Form for Application to the Crack Problem 

When using the half-space solution, each quadrant of the planc i s  

divided into a number of small rectangles, as shown in Fig. 2. The 

exact number of rectangles used can vary, depending upon the particular 

crack shape a/2c, and the amount of crack penetration into the plate, 

a/t . The effect of applying the normal and shear loading to each 

rectangle must be considered when the stress at any particular point is 

calculated. The number of calculations would tend to get out of hand if 

a large number of rectangles were used, so it is desirable to take 

advmtnge of the symmctrv conditions of the strcsscs and thus rcducc the 



number of total calculations neccssary. Therefore, calculations are 

made using only t.hc rectangles in one quadrant of thc surface. 

The principle of superposition is used to determine the shear 

stresses on the face of the crack, T and T by addiag the effects of 
YX YZ' 

applying Xu, Yv, and Zv. In order to clarify the procedure, and shorten 

the length of the equations used, the following shorthand notation will 

be adoptcd. Let (3.5). (3.121, and (3.22) bc called PIX, FZX, and FSX, 

respectively. ?'he number 1,  2 ,  or 3 identifies with thc direction of 

loading, Xv, Yy, or Zy, respectively, while the last letter X identifies 

that the shear component in the x-direction, T is being determined. 
YX' 

In a like manner, let (3.9), (3.16), and (3.25) be identified as FIZ, 

FZZ, and F31, respectively, where the Z denotes that the stress 

component in the z-direction, T is being considered. 
Y = 

Using superposition, and factoring the applied load from each of 

the equations mentioned above, the T component may be written: 
YX 

7 = X V  FIX + Yv 122X + Zv F3X (3.27) 
YX 

Consider the case in which a uniform load is applied to the surface of 

the crack in the x-direction only. This would correspond to the loading 

being applied in the direction of T as shown in Fig. 7, and would 
YX 

result in the stress synmet~ies on the surface of the plane as shown in 

the same figure. These symmetries may be written as 

T = - Y  
z X v = Even in X ,  Odd in Y  

r = -Y  = Odd in X, Even in Y 
Z Y  v 

= - 2  = Odd in X, Odd in Y 
2 z V 

They will be used in gcnernlizing thc solution for computer usc. 



A check of thc symmctrics of the equations derived for FIX, F2X, 

and F3X, shows them to be: 

FIX = Even in X, Odd in Y 

F2X = Odd in X, Even in Y 

F3X = Odd in X, Odd in Y 

To illustrate how these symmetries are ~sed, consider only the 

effect of the X surface traction on four rectangular areas, located 
V 

symmetrically in each of the four quadrants, as shown in Fig. 7. 3 e n  

- 
FIXl = FIX (X - X, Y - Y, 2). first quadrant 

FIX2 = FIX (X + Y, Y - T, Z) ,  second quadrant 
- 

FlX3 = FlX (X - X, Y + y, 2).  third quadrant 

FIX4 = ilX (X + x, Y + P, Z), fourth quadrant 

where X ,  Y, and Z are thc coordinates of the point at which the stresses 

are being calculated, while and 7 are the coordinates of the ceni?r o:F 

the rectangle being considered. Since the plane is the origin of the 

coordinate system, the 2 coordinate is equal to zero. On th6 plane of 
- 

the crack, Y = 0, and after using -Y and the symmetry conditions of 

(3.29) , equations (3.30) become : 

FIXl = PlI (X - T, -y, 2 )  

FIXZ = FlX ( X  + 3, - y ,  2)  
- - 

FlX3 = -FIX (X - X, -Y, Z) 
- 

FIXg = -FIX (X + 3, - Y ,  2 )  

From (3.31), FIXl = -FIX3 and FIX2 = -Fix4. 

Let 

t = X FIXl + Xv FIX2 + Xv3 PIX3 + Xv FIXO (3.32) 
yx v 1 2 4 



where the  subscr ip t s  on Xu i n d ~ c a t c  the  quadrant irumher. Using t h e  

syimnetrics of (3.28). 

and subs t i t u t i ng  , 
- - 

T = 2 X [FIX(X-X, -Y,  i) + P I X ( X + ~ .  -r, I)] I3.34) 
yx Vl 

I f  a s imi l a r  procedure is followed xhen applying Y and Zv,  and i f  t h e  v 

r e s u l t s  from a l l  rec tangles  a r e  summed, t h e  stress T generated a t  a 
YX 

po in t  on t h e  surface of t h e  crack is  

where k is a p a r t i c u l a r  rec tangle  number and N i s  t h e  t o t a l  number of 

rec tangles  i n  t h e  f i r s t  quadrant.  

In t h e  same manner a s  above, t h e  T component of the s t r e s s  may 
Y Z  

be writt.en a s :  

The equations fo r  F l i .  F2Z, and 1:3Z provide t hc  following symmctrics: 

F1Z = Odd i n  X ,  Odd in  Y 

F2Z = Even i n  X ,  Even in  Y (3.37) 

F3Z = Even i n  X ,  Odd i n  Y 



If the same procedure is fo~.lowed to calculate T Y as was followed to 

cnlculate T in ( 3 . 3 5 ) '  thc rewlts will be: 
YX 

N - - - 
F ~ z ( x - $ .  - Y k .  Z) - F2Z(X+Xk, -Yk. Z)] + (3.18) 

k= 1 



Chapter 4 

THE COMPtiTER PROGRAM 

1.0 General Makeup of the Program 

The mathematical derivations discussed in Chapters 2 and 3 result 

in an appalling number of equations which m s t  be solved to provide a 

solution to the problem. Additionally, the alternating technique with 

its iterations causes many of these equations to be solvea releatedly 

during the solution procedure used for a single crack geometry. The 

magnitude of the problem dictates that the digital computer be utilized 

to obtain the solutions. Therefore, the entire problem was programmed 

into the Fortran IV language to he uscd on the Colorado Statc Uaiversity 

CDC 6400 computer. 

Subroutines were used to a great extent in the makeup of the 

program. Generally, a separate subroutine was written to accomplish 

each individcal portion of the overall solution. The subroutines were 

then called in the proper sequence necessary to successfully achieve the 

solution to the problem. 

As each subroutine which performed a particular function was 

written, it was checked and dehuggcd individualiy or in conjunction with 

some other required subroutines. 'I'his fucilitatcd thc chcckout of thc 

large program when the subroutiws were added to it since they had 

already been checked to be operational on an individual basis. Aftcr 

an initial period of debugging, the proven portions of the large program 

were put on permanent file in the computer. Five individual cycles of 

a single file name were usod so that any changes in a particular sub- 

routine would necessitate changes only to one cycle, which constituted 

only a small portion of the total. 



The following steps in abbreviated fornr show the operating sqquence 

of the computer program. 

Resd the input data for the problem being solved. This data 

includes input loading in terms of coefficient Amn and 

crack and plate geomctrics, number of cycle iterations to be 

nade , ani the dir,~ei~s iona 1 informatior for the rectangular grids 

used on both the front and back surfaces. 

Generate the coordinntes far t-he 46 points on tbc crack surface 

for which stress calculations are t; he made. 

Generate the initial shear stress loading on ecch of the points 

on the crack surface from the input coefficients A and Bm. 
1ns1 

Perform a least squares fit of the stress distribution 

calcutated in rhe 1 ~ s z  step. This steF is not necessary when 

the stress distribution bcing fitted is the initial loading 

determined by the coefficients prescribed in step one, but it 

is done for this first iteration to keep the program general 

enough to handle successive iterations, and also as a check on 

th- accuracy OF the least sqcnrcs solution for a known loading 

csse. The method of least s q ~  a 9 is discussed in more detail 

in Section 2.2. 

Caiculate the modulus and complementary modulus of the Jacobian 

elliptic functions and integrals, and compute the complete 

elliptic integrals of the first and second kinds. All four of 

these functions arc used in the 23 x 20 K matrix of 
i j 

equation i2.16). 

6 .  2*ing the functions of +he last step, deteninc the nonzero 

terns of the K matrix. Use a Gauss elimination mcth3d to 
i j 



solve the matrix equation, and ca l cu la t e  the coe f f i c i en t s  

a and hmn. mn 

7 .  Calculate the mode t w b  and modc t h r e e  s t r e s s  i n t e n s i t y  f ac to r s ,  

K2 and K3. Nondimensionalize these f ac to r s  and c a l l  them M2 

and M3, t he  s t r e s s  i n t ens i ty  magnification f ac to r s .  

8 .  Calculate  t he  s t r e s se s  a t  t he  center  of each rectangle on the  

f ront  surface.  This requi res  t he  following steps f o r  each 

rectangle:  

8 .1 Calculate t he  e l l i p s o i d a l  coordinates A ,  u and v of t he  

rectangle center .  

8 . 2  Calculate  t he  required e l l i p t i c  i n t e g r a l s ,  Jacobian 

e l  l i p t i c  funct ions,  and p a r t i a l  der iva t ives .  Compute 

the s t r e s s e s  a t  the centcr  of each r e c t a ~ g l t .  

9. Calculate  t he  s t r e s s e s  on the crack due t o  f ree ing  the  s t r e s s e s  

on the  f ron t  surface.  

10. Per fom s teps  four through seven f o r  t he  new loading on the  

crack surface. Repeat s teps  e ight  through t en  f o r  a s  many 

i t e r a t i o n s  as  a r e  desired on the  f ron t  surface.  

11. Obtain the t o t a l  s t r e s s  applied t o  the  f ron t  surface and use 

t h i s  t o t a l  t o  ca l cu la t e  the  r e su l t i ng  res idua l  s t r e s s e s  a t  the  

center  of cach rectangle of the gr id  on the  b a c ~  surface,  as  

in 8 .1  and 6 . 2 .  

12. Calculate  the s t r e s s e s  on the  crack due t o  freeing the  s t r e s s e s  

on the back surface.  

13. Repeat s teps  four through seven for the  new loading on t h e  

crack surface.  



14. Obtair the  t o t a l  s t r e s s e s  applied t o  the   rack i n  s teps  t h ree  

and nine,  and repeat  s teps  four  through 14 f o r  t he  back 

surface.  ;%is completes one cycle  of i t e r a t i o n ,  and should be 

repeated u n t i l  the  s t r e s s  i n t e n s i t y  f a c t o r s  a r e  neg l ig ib l e  

compared t o  t he  ones obtained from t h e  o r ig ina l  applied load. 

2 .0  Special Subroutines Used 

Some of t he  subroutines used in  Section 1.0 should be discussed t o  

point  out d e t a i l s  of t h e i r  operat ion.  

2 . 1  Crack Ccordinate Generator -. 

A subroutine ca l led  COORD i s  used t o  generate  t h e  96 poin ts  on the  

crack sur face  f o r  which s t r e s s  ca l cu la t ions  a r e  t o  be made. Considera- 

t i o n s  of symmetry enable ca lcu la t ions  t o  be made on only t h e  ha l f  of t h e  

crack f o r  which x i s  pos i t i ve ,  a s  shown i n  Fig. 3. 

The coordinate generator uses f i v e  s imi l a r  e l l i p s e s ,  each with a 

semiminor and sesimajor a x i s  which is a p a r t i c u l a r  f r a c t i o n  of t he  

length of t h e  axes of t he  outer  e l l i p s e .  The r a t i o s  u e d  i n  t h i s  case 

were 0.2,  0.4,  0 .6,  0.8, and 1.0.  Coordinates were generated by a 

simultaneous so lu t ion  of t he  two equations 

and 

t a n  t$ = y/ x (4.2) 

where the  angle 41 was increased i n  10 degree increments f o r  each of the  

f i v e  s imi l a r  e l l i p s e s .  Values were ca lcu la ted  only i n  t he  f i r s t  

quadrant (pos i t ive  x and y) and then r e f l ec t ed  with the  proper s ign i n t o  

the  o ther  quadrant.  



2 . 2  I,c,~st Sclt~ilrcs Curvc F i t t i n s  

Tho la;~ding on thc crack surf:lcc for which al l cnlculnt ions wcro 

m : d r  i n  this w ~ k  w:rs onc in which only a uniform x-component T was 
ZX 

applied as shown in eig. 4 .  A consideration of thc problem shows that 

the T~~ and r components applied back on t.he crack surface through the 
ZY 

iteratior, process have symmetries which state that T is even in x and z X 

T is odd in x. Because of these symmetries, the least squares curve 
z Y 

fitting process is slightly different for each of these two components. 

If T~~ is even in x,  the first uf equations (2.3)  becomes: 

The T~~ stress components calculated at the 96 points mentioned in the 

last section are used in the least squares subroutine, LEAST. which 

salcula*es the fit for this component. 

The component T is odd in x, so the last of equations (2 .3 )  may 
z Y 

be written: 

After the T companents were calculated on the surface of the crack the = Y 
methcd of least squares was used on the stress distribution to calculate 

the B,,, coefficlcnts in a subroutine callcd LEAST2. 

The least squares criterion uscd is a gencral one in which 

where 

P(xi,yi) = tabular pressure values 

f(xi,yi) = family of functions representing the pressurL, which 

in this case would be (4.3) or ( 4 .4 ) .  



The best fit will he obtained if E is a minimum. This is obtained by 

setting 

wherc Amn represents the coefficients in (4.3) or (4.4). 

2.3 Calculation of Elli~tic Integrals 

The complete elliptic integrals of the first and second kinds are 

required in the elements of the Kij matrix in equation (2.16), so they 

must be evaluated fcr their use there. A polynomial approximation, as 

presented in Atramowitz and Stegun (27), is used to calculate the values 

of these integrals. The absolute value ot the error associated with 

these pclynomials is no greater than 2.P x so it is sufficiently 

accurate for the intended purpose. 

Incomplete elliptic integrals of the first and second kinds are 

required for the stress calculations of Solution 1. These integrals 

are evaluated using the process of the arithmetic-geometric mean, which 

is also presented in (27). 

2.4 Ellipsoidal Coordinates 

Ellipsoidal coordinetes A ,  u and v were obtained as the roots of 

the cubic equation (2.8). The Newton-Raphson method was used to find 

the first root, and the quadratic equation solution was then used to 

find the other two roots of the reduced polynomial. The three roots 

thus determined were placed in the order of ascending magnitude and 

each was matchcd with its propcr ellipsoidal coordinate, as shown in 

(2.10). A fins1 check was made to assure that the coordinates did 

indeed have the proper relative magnitudes of (2.10), and could satisfy 

the transformation equations (2.9). 



3.0 Hcctangular Surfacc Grids - 

A typical rectangular surface grid used to calculate and remove 

stresses from the front and back surfaces is shown in Fig. 2. Most of 

the cases run utilized a grid with 62 rectanglcs on the front surface 

and a grid with 32 rectangles on the back surface. However, more 

rectangles were used in cases involving thin cracks or cracks which 

penetrated the plate for a major part of the thickness. The total 

computer time used is dramatically affected by thp number of rectangles 

on each surface, so the number was kept to a minimum consistent with the 

desired accuracy and convergence required for each particular crack 

geometry . 



Chapter 5 

DISCUSSION OF RESULTS FOR PART 1 

The results included in this section were obtained from computer 

calculations using the equations developed in the previous chapters. 

All results shown arc for the loading case in which a uniform shear load 

T was applied t~ the surface of the crack, para1121 to the x-axis, as 
ZX 

shown in Fig. 4. The initial lo~ding did not include the application of 

the shear component in the y-direction, T This particular initial 
ZY' 

loading reduces the first of equations (2.3) to the case where all A mn 

coefficients except AoO are equal to zero, while all coefficients of the 

second equation of (2.3) are equal to zero. Solutions 1 and 2 of the 

previous chapters were used with the alternating method to determine the 

mode two and mode three stress intensity factors for a semielliptical 

surface crack in the surface of a finite thickness solid. 

1.0 Results and Discussion 

Mode two and mode three stress intensity factors were calculated 

for several semielliptical surface crack shapes subjected to uniform 

shear loading applied only in the x-direction. The various crack 

shapes considered ha*, a/2c ratios of 0.05, 0.1, 0.2, 0.3, and 0.4, and 

had depth ratios a/t varying from 0.2 to 0.9. A Poisson's ratio of 0.25 

was used for all calculations. 

Figures 9 through 13 present the mode two and mode three stress 

intensity factors as a function of the parametric angle 9 which is 

measured from the semiminor axis of the ellipse, as shown in Pig. 8. 

Tho stress intensity factors K2 and K j  hnve been nondimensionalized and 

plotted as M2 and Mj, respectively, where 



and 

The s t r e s s  T~~ i s  t he  i n i t i a l l y  applied loading, "a" is  t h e  semiminor 

a x i s ,  and Q4 = E ( t )  , the complete e l l i p t i c  in tegra l  of the  second kind. 

The process of i t e r a t i n g  between t h e  crack and the  f ron t  and back 

surfaces of the  p l a t e  causes the K and K3 curves t o  assume new shapes 2 

and values a s  compared t o  those obtained f o r  t he  embedded crack. 

Several e f f e c t s  i n t e r a c t  t o  inf luence t h e  va r i a t i on  of  t h e  shape o f  

these curves,  and an inspect ion o f  t h e  step-by-step output from t h e  

computer ana lys is  revea ls  the  following t rends :  

1. The crack shape e f f e c t :  This e f f e c t  is  a r e s u l t  of t he  

e l l i p t i c a l  crack so lu t ion .  I t  causes K2 t o  increase and Kg 

t o  decrease a s  t he  angle 4 va r i e s  from 0 t o  90 degrees. The 

range through K increases  becomes smaller a s  t he  crack shape 
2 

goes from a l2c  = 0.40 t o  0.05, while t h e  rongc through which 

K decreases becomes la rger  with t h e  same va r i a t i on  in  crack 
3 

shape. 

2 .  The f ron t  surface e f f e c t :  This e f f ec t  increases  t he  value of 

K3 a s  the  angle 4 v a r i e s  from 0 t o  90 degrees,  and is  l a rge r  

f o r  cracks having large a/2c r a t i o s  than it i s  f o r  t h e  s lender  

cracks having small a/2c r a t i o s .  I t  i s  t h i s  e f f e c t  which 

produces a small value f o r  Ks a t  4 = 90° on cracks having 

a/2c = 0.20 and la rgcr .  



3. The back surface e f f e c t :  This increases  the  value of K by an 
3 

amount. which i s  maximum a t  4 = 0'. As 4 is  allowed t o  range 

from 0 t o  90 degrees t h e  increase i n  K diminishes and 3 

e s s e n t i a l l y  disappears a t  about 60 o r  70 degrees. This back 

surface e f f e c t  a l s o  causes K t o  increase f ron  zero a t  41 = 0' 2 

t o  a maximum a t  approximately 40 o r  SO degrees,  and drop back 

t o  a minimum value a t  I$ = 90'. The magnitude of change i n  K2 

i s  subs t an t i a l l y  l e s s  than t h a t  i n  K3, e spec i a l ly  f o r  a / t  

r a t i o s  g rea t e r  than 0 . 5 ,  where the  magnitude of K3 i s  

subs t an t i a l .  

4 .  Effect of the  in t e rac t ion  between t h e  f r o n t  and back surfaces:  

Th i s  e f f e c t  causes both K 2  and K3 t o  increase.  The increase 

of K2 becomes g r e a t e r  a s  + va r i e s  from 0 t o  90 degrees,  while 

t he  increase of K3 becomes smaller  a s  (I ranges from 0 t o  

90 degrees.  

I t  should be noted t h a t  t h e  Kg curves i n  t h e  

concave downward, while t he  K curves a r e  concave 2 

l a rger  values of 3/2c and concave upward f o r  a/2c 

f igu res  a r e  a l l  

downward f o r  t he  

values l e s s  than 0 .2 .  

The r e s u l t s  of t h i s  study, and thosc of Kassir and Sih (22)  show t h a t  

f o r  an e l l i p s e  embedded i n  an i n f i n i t e  so l id  with only thc  T~~ component 

appl ied,  t he  curvature of the  K p  p lo t  changes s ign a t  an a/2c value of 

approximately 0.2.  The behavior i s  a r e s u l t  o f  t h e  crack shape e f f e c t  

f o r  t he  p a r t i c u l a r  loading used. 

Figures 9 through 13 show t h a t  t h e  values f o r  K3 at 4 = 0 degrees 

increase  with la rger  depth r a t i o s  a / t .  This  is  due primari,y t o  t he  

back sur face  e f f e c t  whi.c,h exe r t s  i t s  maximum influence a t  4 = 0'. This 



effect becomes increasingly important as the crack nears the back 

surface with large ajt ratios. 

The figures will show that cracks with higher a/t ratios exhibit 

greater K2 values than do those with lower a/t values. This is true for 

every value of 4 except 0 degrees where K for all cracks is zero. 
2 

These increases with higher a/t values can be attributed to the back 

surface effect, and the effects of the interaction between the front and 

back surfaces. 

All depth ratios a/t provide a value of zero for K at 4 = OO. 
2 

According to equation (2.17) K2 can exist only if the stress component 

T exists at this point. At the angle 4 = O0 the tip of the crack is z n 

perpendicular to the y-axis, so the T component in this case is T zn ZY 

which is an odd function of x.  Since x = 0 at @ = oO, then T must 
ZY 

also be zero at this point, and K2 must be the same. 'I'his justifies the 

fact that Kt at b = O0 is always zero, and also provides a check on the 

computer results for that point. 

Figures 9 through 13 show that the stress intensity factors 

approach a finite value at the angle $ = 90°. It is felt, however, that 

the curves n t a j  not represent the true behavior of the elastic solution 

where the crack tip intersects the surface of the plate because it is 

expected that there is a change in the nature of the crack tip singular- 

ity at that point. Hartranft and Sih (28) used a refined numerical 

analysis to study the problem of a semicircular surface crack subjected 

to normal loading. Their analysis utilizea a very large number of 

surface rectangles and terms in the mathematical expressions used to 

calculate the stresses, and considered the singular and nonsingular 

portions of the surface stresses separately. They noted that the stress 



i n t e n s i t y  f ac to r  fo r  thc problem which they solvcd would tend t o  

approach zero a t  t h e  sur face ,  though they were unable t o  extend the  

ca l cu l a t i on  t o  t h e  point  of i n t e r sec t ion .  Smith (29) concluded t h a t  t h e  

r e s u l t s  obtained by Smith (8) and Thresher (14) agree well  with those of 

Hartranft  and Sih over most of t he  crack f ron t  although the  smaller 

number of rec tangles  and mathematical terms used by Smith and Thresher 

miss t h e  e f f e c t  of t h e  decrease i n  t he  s t r e s s  i n t e n s i t y  f a c t o r  near  

0 = 9g0. 

I t  is expected t h a t  a comparable uncer ta in ty  e x i s t s  i n  t he  behavior 

a t  t h e  surface of t he  p l a t e  f o r  t h e  shear  problem. The a;:alytical 

approach used in  t h i s  study, however, should be accurate  along most of 

t h e  crack f r o n t .  The value of  t h e  s t r e s s  i n t e n s i t y  f a c t o r s  shown i n  t h e  

curves i s  r ep re sen t a t i ve  of t h e  average near t$ = 90°. 

Tho cos t  of t he  computer time necessary t o  perform a re f ined  

ana lys i s  such as  t h e  one by Har t ranf t  and Sih becomes prohib i t ive .  A 

ser ious  study becomes necessary i n  which the  advantages of g r ea t e r  

accuracy a r e  considered and weighed aga ins t  t h e  increased computer c o s t s  

incurred. 

Figure 14 prescn ts  t he  values  o f  maximum K p lo t t ed  aga ins t  depth 2 

r a t i o s  a / t  f o r  cracks with a/2c values  of 0.05, 0 .1 ,  0 .2 ,  0.3,  and 0.4.  

I t  should be noted t h a t  the  curve f o r  a p a r t i c u l a r  crack shape increases  

gent ly  and smoothly a s  t he  depth r a t i o  increascs .  There i s  a s i zeab le  

d i f fe rence  i n  t h e  I, values  f o r  s lender  cracks with a/2c = 0.05 a s  

.4.  

determined a t  41 = 90' 

in  preceding para- 

may not e x i s t  a t  

L 

compared with t h i cke r  cracks with a/2c values of 0 

The maximm value of K2 p lo t t ed  i n  Fig.  14 is  

from Figs .  9 through 13. Considerations advanced 

graphs i nd i ca t e  t h a t  t h e  maximum t r u c  vrrlue f o r  K 2 



4 = !No, I ~ r t  t h i s  V ~ I ~ U C  i s  rcprcscntnt  ivc of K i n  an average sense 2  

ncar 4 = 90'. 

Values of K f o r  cracks with a/2c values ranging from 0.05 t o  0.4 3 

a re  p lo t ted  aga ins t  depth r a t i o s  a / t  i n  Fig. 15. I t  should be noted 

t h a t  these curves f o r  t he  corresponding range of a/2c values a r e  

clustered c lose r  together  than a r e  those f o r  K These K, curves a l s o  
2' 

r i s e  qu i t e  rap id ly  a s  t hc  a / t  r a t i o  i s  incrcascd hcyona ~;j:~-.-cxirnately 

0.6.  This trend kas not noticed with the  K curves,  and ind ica t e s  t h a t  
2 

cracks of t h i s  type a r e  qu i t e  mode th ree  sens i t i ve  t o  crack depth 

r a t i o s  . 
The r e s u l i s  reveal t ha t  t he re  i s  only a s l i g h t  change in  the  

maximum K 2  and K values f o r  s emic l l i p t i ca l  cracks having low a / t  r a t i o s  3 

of 0 .2 ,  r ~mpared t o  the maximuni K and K3 values f o r  embedded 2 

e l l i p s e s  of t he  same shape. The maximum K value f o r  a crack having an 3 

a/2c r a t i o  of 0 . 1  increased by 15.1 and 31.2 pcrccnt a s  a / t  was 

increased t o  0 . 8  and 0 . 9 ,  respec t ive ly ,  while the  maximum K value 2 

increased by 6 . 2  and 7.1 p t r cen t ,  respec t ive ly ,  under the  same condi- 

t i ons .  A crack having an a/2c of 0 .3 showed an increase i n  K3 of 11.2 

and 2 2 . 6  percent and an increase in K2 of 5.3 and 6.7 percent a s  a / t  was 

increased t o  0.8 and 0.9,  respect ;vely.  Similar  increases  were noted 

in  both K, and K 3  f o r  o ther  crack geometries. 
k 

2.0  Accuracy and Convergence 

Rectangular g r id s  s imi la r  t o  t he  one i l l u s t r a t e d  i n  Fig. 2 were 

used on the  f ront  and back s u r f ~ c c s  in the  alternating technique 

employed f,; thi:; prohlcm. I t  had ~wcvioi ts ly  hccn clctcnnincd from o the r  

problems t h a t  convergence d i f f i c u l t i e s  could e x i s t  i f  t hc  rectangle 

s i ze s  were too large f o r  the  problem geometry being considered. I t  was 



discovered in the shear problem that convergence was not as difficult 

to attain as i n  the normal loading problem. The shear problem for a 

particular geometry could be worked using coarser grids and generally 

fewer cycles thar what were required for the normal problem. Usually a 

front grid with 62 rectangles, a rear grid with 32 rectangles, and two 

cycles of iteration were adequate to achieve excellent convergence for 

most problems. However, it was nccessary to use four cycles and finer 

grids for problems having high a/t ratios, especially for those having 

low a/2c values. 

Figure 16 shows the stress intensity factors a f ~ e r  each cycle of 

iteration for a typical run in which four cycles were made on a crack 

geometry of a/2c = 0.2 and a/t = 0.9. It should be noted that the value 

of the stress intznsity factors increases fan each cycle, and that the 

contribution of each successive cycle becomes smaller until the last 

cycle produces essentially an insignificant change. The differences 

between cycles three and four for K2 are too small to be plotted on the 

scale used in the figure. 

The following tabulation shows the percentage of change of the 

uxinum valbes of K2 and K3 accomplished by each cycle of iteration. 

Cycle Percent Changc in K2 Percent Change in K3 

1 4.74 24.30 

2 1.42 4.09 

3 0.57 1 .07 

4 0.22 0.35 

Obviously same truncatim error exists in the final results duc to 

stopping the iteration process 2t a finite number of cycles. Howevcr, 



enough cycles  of i t e r a t i o n  were performed i n  each case t o  insure t h a t  

the change in  the  s t r e s s  i n t e n s i t y  f ac to r s  which would be obtained by 

fur ther  i t e r a t i o n s  was of  an in s ign i f i can t  magnitude and d id  pot wmrant 

the expenditure of  addi t iona l  computer time. 

Accuracy of t h e  so lu t ion  was checked by making two computcr runs 

each on se\reral cracks,  using d i f f e r e n t  surface g r i d s  f o r  each of  t he  

runs on a spec i f i c  crack geometry. The r e s u l t s  of  the  runs f o r  a 

pa r t i cu l a r  crack configurat ion wcrc then compared t o  determine the  d i f -  

ference which existed between them. Cracks considered i n  t h i s  macner 

had 2/2c values of 0.05 and 0.1,  and a / t  values of 0 .8  and 0.9.  Solu- 

t i ons  obtained from g r ids  with 62 f ront  and 32 back rectangles  were com- 

pared with those obtained from g r ids  with 55 f ront  and back rectangles .  

Changing from one s e t  of g r id s  t o  the o ther  caused the  maximum values 

of K2 d i f f e r  by 0.1 t o  2.0 percent, end the pui.unvaluem of 4 
t o  differ by 0.6 t o  0.9 percent.  

The r e s u l t s  discussed i n  t h i s  chapter a r e  obtained by numerical 

methods and thus include the  step-by-step accumulation o f  numerical 

inaccuracies inherent in  methods of t h i s  type. Although these r e s u l t s  

cannot be considered as an exact so lu t ion  t o  the  problem, they reprcscnt  

the bes t  so lu t ions  ava i lab le .  

The program was compiled under the  Fortran Extended opt ion which 

would give the  minimum x n n i n g  time. I t  was then cataloged on per.:+ , >t  

f i l e  t o  insure t h a t  no compiler time was necessary for  the data produc- 

t i o n  runs. Typical running time used by the  CDC 6400 computer f o r  62 

rectangles  an the  f ront  and 32 rectangles  on the  r e a r  was approximrtely 

510 seconds fo r  two cycles  of  i t e r a t i o n ,  and approximately 1015 seconds 

for four cyclc5. Thc cases i n  which SS rectangles  on each aurface were 

used w i t h  four c y c  :cs rcquired 1.100 scconda. 



PART 1:--NORMAL LOAGING OF A SEMIELLIPTICAL SURFACE CRACK 

Chapter 6 

THE NORMAL LOADING PROBLEM 

1.0 Statement of the Semielliptical Surface - Crack Problem 

Consider a flat semielliptical surface crack located in tne ~ w a t  

surface of a finite rhickr,ess slsb. The geometrical confiquratio~, i s  

the same as that shown In Fig. 1, but there is no shear loding applied 

to the surface of the crack for this problem. Instead, the surface of 

the crack is subjected to nonuniform nonnal stresses a 
2 2 '  

The boundary conditions to be considered in the solution of this 

problem are as follows: 

T ' f  ' 0 ,  ( z P O )  
2x zy 

and 

where w is the displacement in the z-direction. 

It is assumed that the normal stress applied to the surface of the 

crack is expressible as 

where m + n 2 3 because of the magnitude of work requj:-ad in the ca'cu- 

lations if the sm were allowed to be larger than three. The front aad 

back surfaces of the body are considered to be free of stresses. 

2.0 The Msthod of Solution -- 
The method of solution which will be used for this problem is 

essentially ident icn l  to the one uscd for the shear problem which has 



been dixussed i i ~  previous chapters. The alternating technique is once 

again used wit3 Solutions 1 and 2, defined as follows: 

Solution 1. The determination of the stresses near an elliptical 

crack at any point in an infinite solid through which 

it is desired to pass a plane. The surface of the 

crack is subjected to nonuniform normal loading. 

Solution 2. The determination of the stresses within a half-space 

subjected to uniform normal and shear stress over a 

rectangular port ion of the surface. 

Solutions one and two are discussed briefly in the following two 

sections. 

2.1 Elastic Solution of a Crack in an Infinite Solid 

Solution 1 represents the elastic solution of an elliptical crack 

in an infinite salid subjected to nonuniform normal stresses. The 

particular form of this solution which was used for this portion oC the 

przblem was derived by Shah and Kobayashi (6). Thi method was used by 

them in an alternating method solution to the problem of an elliptical 

crack ap?roaching the surface of an semi-infinice solid subjected to 

uniform tension perpendicular to the plane of the creck (17). Details 

and the derivations necessary t~ ose the so:ution may be found in 

(b .  1b. and 17) , ; I ~ J  w i l l  not Iw r c p w t c d  hcrc. 

2 . 2  Thc H a l f - E e  Solution -- 
This solution has previously bccn identified as "Solution 2", and 

calculates the stresses in a half-space subjected to uniform normal and 

shear tractions applied to a rectangular portion of the surface of the 

half-space. The solution method is similar to that described in 

Chapter 3 ,  and uses the equations descr ,ed in (11 and 2 2 ) .  



This  p o r t i o n  of So lu t ion  ? calcu1; i tcs  only  t h e  a component of t h e  z Z 

s t r c s s  on t h e  crack s u r f a c e .  The symmetry c o n d i t i o n s  of t h e  problem 

p r o h i b i t  t h e  presence o f  any r e s i d u a l  s h e a r  s t r e s s e s ,  T o r  T on t h e  
?X Z Y '  

crack s u r f a c e .  There fo re ,  no a t tempt  need be made a t  c a l c u l a t i n g  therr 

s i n c e  they van i sh  when a l l  c f f e c t s  from a l l  r u c t a n g l e s  a r e  summed. 

2 .3  The A l t e r n a t i n g  Method 

The a l t e r n a t i n g  method used he re  i s  t h e  same a s  t h e  one used by 

Thresher  and Smit3 ( 1 4 ,  1 5 j ,  m d  t h e  method desc r ibed  i n  Chapter 1 which 

was used f o r  t h e  shza r  problem. I t  d i f f e r s  f r o v  t h e  one used f o r  t h c  

s h e a r  problem i n  t h a t  it c a l c u l a t e s  on ly  t h e  normal s t r e s s e s  on t h e  

c rack  s u r f a c e  and t h e  r e s u l t i n g  mode one s t r e s s  i n t e n s i t y  f a c t o r ,  K1' 

whi le  t h e  method desc r ibed  i n  Chapter 1  c a l c u l a t e s  both  s h e a r  s t r e s s e s  

on t h e  crach s u r f a c e  and t h e  mode two and mode t h r e e  s t r e s s  i n t e n s i t y  

f a c t o r s ,  K 2  and L.  
.9 

A s  i s  t h e  c a s e  wi th  t h e  shea r  problem, t h e  a l t e r n a t i n g  method 

i t e r a t i o n s  proceed u n t i l  t h e  change i n  t h e  mode one s t r e s s  i n t e n s i t y  

f a c t o r  f o r  any one c y c l e  becoil~es n e g l i g i b l e  when compared t o  i t s  v a l u e  

obta ined f o r  t h c  i n i t  in1  1oadi .n~.  

3.0 The Conrputer Program 

A computer pragram was w r i t t e n  f o r  t h e  CDC 6400 d i g i t a l  computer 

which would perform a11 t h e  c a l c u l n t i o n s  f o r  S o l u t i o n s  1 and 2 .  The 

genera l  method of programming wa.; t h e  same as t h a t  ciiscusscd in  

Chapter 3 f o r  t h e  shcnr p r o l ~ l c a ~ .  In f a c t ,  t h e  program f o r  t h e  normal 

loading problem was w r i t t e n  be fo re  t h e  one f o r  t h e  s h e a r  loading 

problem. and served a s  t h e  model f o r  I t  i n  a d d i t i o n  t o  p rov id ing  some of 

t h e  subrou t ines  which a r e  a l l  o r  p a r t i n l l v  common t o  both  programs. 



The sequencc cf operat ions performed and t h e  manner in which the sub- 

rout ines  a r e  uscd i s  e s s e n t i a l l y  the  same !P both programs. 

One of  the  primary differences between the  two programs i s  the much 

smaller number of equations which must be solved fo r  the normal loading 

problem. For exampic, thc  3i) x 29 K .  lnatrix of equation (2.16) i s  only 
lj 

a 10 x 10 matrix f o r  t he  normal load problem. Since only one component 

of s t r e s s  i s  beinq applied t o  the  crack instead of two, which i s  the  

case with t h e  shear problem, there  arc only approximately onc-half  a s  

many t e n s  necessary t o  c a l c u l a t c  the  s t r c s s e s  which must be freed from 

the  surfaces of the  hody. 

A study of the symmetries of the  normal loading problem revea ls  

t h a t  the  normal s t r e s s  on the  crack surface a i s  even i n  x.  This 
z Z 

allows (6.3) t o  he wr i t ten  as 

The method of l e a s t  squares curve f i t t i n g  is  performed on t h i s  equation 

i n  t he  same mamer a s  it was performed on the  equations f o r  the  shear  

loading problem. After the curve f i t t i n g  scheme i s  employed, a matrix 

equation s imi l a r  t o  (2.16) ,  but having n 10 x 10 K . .  matrix,  i s  solvcd 
1 J 

f o r  the t en  ir-dependent a, coe f f i c i en t s .  These i n  curn a r e  used t o  

ca l cu la t e  t he  mode one s t r e s s  i n t ens i ty  f a c t o r  K 1 ' 

A typ ica l  rectangular  g r id  of the  type used on the  f ront  and back 

surfaces is shown in Fig. 17, and w i l l  he discussed i n  mcre d e t a i l  i n  

the  next chapter .  



Chapter 7 

DISCUSSION OF RESULTS FOR PART I1 

All computcr calculations were run for the case in which a uniform 

normal load was applied to the surface of the crack. This corresponds 

to the situation where a uniform censilc load is applied to the body in 

a direction peqxndicular to the plane of the crack. Equation (6.4) is 

then reduced to the case where all thc coefficients A in the first 
mn 

iteration step are equal to zero except for A 
00' 

Solutions 1 and 2 were 

used with the alternating method to determine the mode one stress 

intensity factors for a semielliptical surface crack in the surface of 

a finite thickness solid. 

1.0 Results and Discussion 

Four different crack shapes were considered having a/2c ratios of 

0.05, 0.10, 0.20, and 0.30, and having depth ratios a/t ran , I I ~  from 

0.20 to 0.95. All computations werc made using a Poisson's ratio of 

0 . 2 5 .  

The stress intensity factors plotted as a function of the paramet- 

ric angle $I of the ellipse are presented in a nondimenslonalized form 

in Figs. 16 through 21. The angle 4 is measured from the semiminor axis 

"a" at the portion of the crack which is farthest into the material, ss 

shown in Fig. 8. Three effects interact to influence the variation of 

the shape of the stress intensity curves, and are: 

1. The effect of the crack shape: This effect is a property of 

the elliptical crack solution qnd causes K to decrease as the 
1 

angle 4 i.; varied from O to 90 degrees. The 1.i * of K1 is 

constant for a circular crack with a/2c ratio of 0 .5 ,  o v t  



decreases vcry d r a s t i c a l l y  as  4 i s  increased f o r  a s lender  

crack with a/2c = 0.05. Thus the  crack shape e f f e c t  hecomes 

more s ign i f i can t  a s  the  crack shape goes from a/2c = 0.5 t o  

a/2c = 0.05. 

2 .  The e f f e c t  of t he  f ront  surface:  Previous s tud ie s  (9) and 

inspect ion of t h e  present computer so lu t ions  show t h a t  t h i s  

e f f e c t  causes K t o  increase a s  4 va r i e s  from 0 t o  90 degrees. 
1 

The amount of increase from t h i s  e f f e c t  i s  of smaller magnitude 

than the  crack shape e f f e c t .  

3. The e f f e c t  of the  back surface:  This e f f e c t  can be considered 

t o  include the  d i r e c t  e f f e c t  of the presence of t he  back 

surface as  well a s  the e f f ec t  of the  in tc rac t ion  between the  

f ront  and back sur faces .  The hack surface e f f e c t  alone tends 

t o  cause a sharp increase in K near 4 = 0°, while the  1 

i n t e rac t ion  e f f e c t  between t h e  two surfaces tends t o  increase 

K near 4 = 90°, but by an amount subs t an t i a l l y  less than t h a t  
1 

caused by the  back sur face  e f f e c t .  The r e s u l t  o f  t he  two 

e f f e c t s  combined i s  t o  cause K t o  increase s ign i f i can t ly  near 1 

4 = 0' and t o  increase by a smaller amount near @ = 90'. 

The crack shape e f f e c t  causes n general decrease i n  K1 with 

increasing 4 ,  as  can be noted in Figs.  18 through 21. The back surface 

e f f e c t  causes an increase i n  K1 a s  the  thickness  r a t i o  a / t  i s  increased.  

In Figs.  20 and 21, f o r  a/2c of 0.05 and 0.10, an increase i n  K1 occurs 

before the e x p e c t ~ d  dccreasc bcgins,  which ind ica t c s  t h a t  t h e  maximum 

value of K does not necessar i ly  occur a t  @ = O O .  The reason f o r  t h i s  
1 

behavior i s  t h a t  f o r  these s lender  cracks the  f r o n t  sur face  e f f e c t  tends 



t o  incrcase K taster than thc shapc c f f c c t  tends t o  decrease i t  in  the 
1 

A cursory inspection of thc curvcs  of F i g s .  18 through 21 C C V C ~ I ~ S  

a t  l ea s t  two general t rends .  I t  i s  apparent t h a t  f o r  any given crack 

depth r a t i o  a / t ,  the maximum K value is  g rca t e r  f o r  s lender  cracks with 
1 

small a/2c r a t i o s  than f o r  t he  rounder cracks with la rger  a/2c r a t i o s .  

Also, i t  i s  appa-ent t h a t  f o r  any given a/2c r a t i o ,  t he  l a r g e r  K1 values 

occur f o r  the  deeper cracks,  o r  those with higher valuss  of a / t .  

The computations which were performed t o  obtain the  r e s u l t s  p lo t t ed  

in  F i g s .  I8  through 21 used rectangular  g r id s  on the f ron t  and back 

surfaces s imi l a r  t o  the  one shown i n  Fig. 17. I t  was found t h a t  

convergence d i f f i c u l t i e s  ex is ted  f o r  cases i n  which the  p l a t e  thickness  

was approximately +he same a s  the  dimensions of t hc  smallest  rec tangle .  

I t  was therefore  necessary t o  rev ise  t he  g r id  so t h a t  t he rc  were 

approximately twice as  many rec tangles  near t he  o r ig in  of  t h e  gr id .  The 

revised g r id  has 79 rec tangles ,  while the  one shown i n  Fig. 17 has 55 

rectangles .  The g r i d  with 79 rec tangles  was used whenever t h e  crack 

depth "a" approached the  s i z e  of t he  smallest  rectangle.  Grids of 

62 and 32 rectangles  were a l s o  used where the  gec I r y  of t h e  problem 

being solved would permit t he  use of these configurat ions.  The use of 

the  proper g r id  insured t h a t  good convergence was a t t a ined ,  a s  

evidenced by t h e  f a c t  t h a t  t h e  contr ibut ion of the l a s t  cycle  was 

general ly  l e s s  than one percent of the  t o t a l  s t r e s s  i n t e n s i t y  f ac to r .  

The s t r e s s  i n t ens i ty  f ac to r  K a s  shown i n  Figs. 18 through 21, 
I ' 

smoothly approaches a d e f i n i t e  value a t  $ = 90°. However, it i s  

expected t h a t  there  i s  a change i n  t he  na ture  of t he  crack t i p  s ingular-  

i t y  a t  t he  point  where the  t i p  of t he  crack i n t e r s e c t s  t he  sur face  of 



5 5 

the  p l a t e .  This would mean t h a t  t he  curves do not represent  the  t r u e  

behavior of t hc  c l a s t i c  so lu t ion  the re .  Hartranft  and Sih (28) have 

concluded t h a t  t he  mode one s t r e s s  i n t ens i ty  f a c t o r  tends t o  zero a t  the 

surface fo r  a semicircular  crack. They handled separa te ly  the  s ingular  

and nonsingular port ions of t he  s t r e s s  c m  t he  surface of the  p l a t e .  In 

addi t ion ,  they used a very large number of rectangles  and a la rge  

number of tenns i n  t he  s e r i e s  expansions used t o  ca l cu la t e  t he  s t r e s se s .  

Smith ( 2 9 )  concluded t h a t  f o r  the semicircular  crack the  leve l  of 

approximation used here gives r e s u l t s  within one o r  two percent over 

most of t h e  crack border a s  compared with the  r e s u l t s  obt6ined from the  

more ref ined ana lys i s  of ( 2 8 ) .  although there  can be a s izeable  

d i f fe rence  near the  in te rsec t ion  of the  crack t i p  with the  f ron t  

surface.  

I t  i s  therefore  reasonable t o  expect a s imi la r  behavior f o r  t h i s  

ana lys is  which i ~ v o l v e s  a s e ~ i e l l i p t i c a l  crack r a t h e r  than a semi- 

c i r c u l a r  crack as considered in  (29).  The s t r e s s  i n t e n s i t y  f a c t o r  K 
1 

a t  $I = 90' has l i t t l e  p r a c t i c a l  importance, however, s ince  the  maximum 

occurs somewhere between the  angle of $I = O0 and 40°, a s  shown i n  

Figs. 18 through 21 f o r  s emie l l i p t i ca l  sur face  flaws. 

Figure 22 presents  t he  values of maximum K from t h i s  ana lys is  f o r  
1 

a/?c values of 0 .05 ,  0 .1 ,  0 . 2 ,  and 0 .3 .  The curves f o r  a/2c values of 

0 . 4  and 0 . 5  were estimated by Shah and Kobayashi (17) from t h e i r  solu- 

t i on  fo r  the  c l l i p t i c n l  crack near the  surface of a half-space.  The 

r e s u l t s  f o r  the twa-dimensional cdgc crack (30) which  rcprcsents  t hc  

l imi t ing  solut ion a r e  a l so  shown i n  the  f igure .  I t  has been argued t h a t  

cracks having an a/2c r a t i o  l e s s  than 0.1 c lose ly  a?~roximate  t h e  

behavior of a two-dimensional sdge crack, but these  r e s u l t s  i nd ica t e  



t h a t  even a  crack havlng a  length 20 times i t s  depth i s  somewhat l e s s  

severe than a  two-dimensional edge crack. 

2 . 0  Comparisons with Other Work - 
A comparison of the  r e s u l t s  of t h i s  stud) with those due t o  Shah 

and Kobayashi (17) i s  made in  Fig. 23. Shah and Kobayashi obtained 

t h e i r  r e s u l t s  h y  assuming tha t  the  bnck surface e f f e c t s  a r c  the same a s  

the  e f f e c t  of ?Ire surface f o r  an e l l i p t i c a l  crack approaching the 

surface i n  a semi- inf in i te  so l id .  They estimated t h e  e f f e c t  of the  

f ron t  sur face ,  but chose t o  neglect  t h e  e f f e c t  of t he  in t e rac t ion  

between the  f ron t  and back surfaces.  

The surface in t e rac t ion  e f f e c t  causes only s l i g h t  changes i n  the  

r e s u l t s  f o r  values of a/2c = 0 .3  and g rea t e r .  Though not shown f o r  

a/2c = 0.3,  the  r e s u l t s  of t h i s  study compare well with those of Shah 

and Kobayashi f o r  a/2c = 0 .3 ,  and they approach c lose ly  f o r  a/2c = 0.2.  

Howcver, t hc  curves from t h i s  study become r e l n t i v c l y  highcr as  a/2c 

i s  decreased t o  0 .1  and 0.05, ind ica t ing  the  growing importancc of t he  

in t e rac t ion  between the  f ron t  and back surfaces f o r  s lender  cracks. 

The r e s u l t s  of Fig. 22 were used t o  compute the  f r a c t u r e  toughness 

values f o r  a number of epoxy p l a t e s  on which experiments were conducted 

by Smith (29). The f r a c t u r e  toughness K I C  was ca lcu la ted  as 

The nominal s t r e s s  in  the  sample p l a t e  al- the ti-? of  f r a c t u r e  i s  

indicated by a, and "a" i s  t hc  depth of thc crack. The flaw shapf: 

parameter Q i s  defined a s  9'' = E(k) . the  tompletc r l l i p t i c  i n t eg ra l  o f  

the  second kind. The term MI is  ttrc nondimcnsional i red  form of KI and 



is frequently called the magnifi .cion factor where the subscript 

indicates the mode one loading casc. 

Figure 24 presents a plot of fracture toughness values which were 

calculated from the experiments of (29) using the curves cf Fig. 22. 

The data was uscd in equation (7.1) and was taken from a number of 

different epoxy plates having different average fracture to~ghness 

values. It was normalized by dividing the K value for each sample by IC 

an average K value for the epoxy plate from which thc szmple was 1C 

taken. The average fracture toughness values which were used to normal- 

ize the data were calculated using only samples which had a/t values of 

0.5 or less. As shown in the figure, the a/2c values ranged from about 

0.13 to about 0.42. The normalized fracture toughness has a scatter 

band of approximately +lo percent, and is relatively constant with 

variation in a/t, although it does drop slightly as a/t is increased. 

The constant trend of the normalized values indicates that the curves 

are valid and possess some practical utility for design and analysis 

situations in which linear fracture mechanics may be applied. 

3.0 Advantaees and Limitations of thc Method 

The alternating method, as used in this study, is capable of 

producing a reasonably accurate solution to the types of problems 

discussed here. 'ihe method is straightforward and requires no approxi- 

mations from twb - lmensional theories to effect the desired solution. 

Extremely good convergence can be realized but it is not always 

easily attained. As has beon mentioned previously, convergence is quite 

dependent upon the number and size of the rectangles used in the grid. 

The desire for extreme accuracy would dictate the maximum number of 

rectatrglcs possi h ~ c .  Ilowcvrr, tlrc t o t ; ~ l  computcr t imc uscd is :I 



function of thc product of thc number of front and back surface 

rectangles used, so a compromise is necessary. 

The total ccmputer time required for some typical configurations 

for the shear loading problem has been discussed in Chapter 5 .  The 

normal loading problcm was usually run with a total of four cycles of 

iteration for each crack geometry. This number of cycles required 

960 seconds of total computer time for 62 front and 32 rear rectangles, 

1220 seconds for 55 rectangles on cach surface, and 2000 scconds for 

79 rectangles on cach surface. The entire program was cataloged on 

permanent file within the computer, so none of the tims mentioned above 

was lost to the CDC 6400 compiier. 

Accuracy of the infinite solid solution is dependent upon the 

preciseness with which the methed of least squares is able to match the 

calculated stresses with the proper polynomial expression. A polynomial 

with more terms than the number allowed in a third-degree polynomial 

would undouhtedly increase thc accuracy of the curve fit, but more 

tcrms wcrc impossihlc to tolcratc t'or rcasons n1rc;rdy mcntioncd. 

One of the limitations to thc nltcrnating method as it is prcscntly 

used is its restriction to geometric configurations in which the front 

and back surfaces are parallel. The method is also limited to finite 

thickness bodies whose width is great enough so that no effects are 

realized from the presence of any side surfaces. This would pose a 

problem if solutions were desired for some geometries where the width 

effect could no longer be ignored. 



Chapter 8 

CONC LU S I ON 

1 . 0  Discuss ion 

A s e m i e l l i p t i c a l  s u r f a c e  crack l o c a t e d  i n  t h e  s u r f a c e  o f  a f i n i t e  

t h i c k n e s s  s o l i d  and sub jec ted  t o  two d i f f e r e n t  c o n d i t i o n s  of  loading i s  

cons i Je red .  Thc f i r s t  c o n d i t i o n  o f  loading i s  one in  which shea r  

s t r e s s e s  a rc  a p ~ l i e d  t o  t h e  s u r f a c e  of t h e  crack p a r a l l e l  t o  t h e  semi- 

major a x i s .  The second loading c a s e  i s  t h e  one i n  which normal loading 

i s  a p p l i e d  t o  t h e  s u r f a c e  of  t h e  crack i n  a d i r e c t i o n  pe rpend icu la r  

t o  t h e  p lane  of  t h e  c rack .  The a l t e r n a t i n g  method was used i n  each o f  

t h e  two loading c a s e s  t o  s o l v e  the problem. 

As a necessary  p a r t  of t h e  a n a l y s i s ,  a  s o l u t i o n  was p resen ted  

which developed t h e  mode two and mode t h r e e  s t r e s s  i n t e n s i t y  f a c t o r s  

f o r  an erbedded e l l i p t i c a l  crack sub jec ted  t o  nonuniform shear  

s t r e s s e s ,  Addition21 equa t ions  were de r ived  f o r  t h e  r e s i d u a l  s t r e s s  

components on t h e  crack s u r f a c e  which r c s u l t c d  from t h e  frceirrg of t h e  

s u r f a c e s  of t h e  p l a t e  o f  s t r e s s c s  dur ing  t h e  a l t e r n a t i n g  t echn ique .  

R e s u l t s  werc computed and p resen ted  grah::ically f o r  t h e  problem i n  

which a u ~ l f o r m  shear  s t r e s s  was a p p l i e d  t o  t h e  s u r f a c e  of t h e  crack 

e l l i p s e ,  whi le  no i n i t i a l  

l l e l  t o  t h c  scmiminor a x i s .  

of 0 .05 t o  0.40 whereas 

.2 t o  0 . 9 .  When compared t o  

1 i p s c s  , t h s  r e s u l t s  

in t h e  maximum K and K3 2 

ing low a / t  ratios.  

and p a r a l l e l  t o  t h e  semimajor a x i s  o f  t h e  

loading was appl ied i n  :he d i  rcc t ion p;~r:i 

Crack shapes wcre v a r i e d  from a/2c r a t i o s  

crack depth  r a t i o s  a / t  were v a r i e d  from 0 

t h e  maximum K, and Kj va lues  f o r  embcdded - c 1 

revealed t h a t  t h c r e  was only  n s l i g h t  change 

values  f o r  s i m i l a r  semiel 1 i p t  i c a l  c racks  hav 



Uoth K 2  artd K g  became substdnt  l a 1  l y  l a r g e r  a s  ?he  crack depth  a i t  

was inc rcascd ,  al though K3 cxpcricnced a  s i g n i f i c a n t l y  g r e a t e r  i n c r e a s e  

than d i d  K 2 .  'The maximum valuc  of  t h c  mode t h r c c  s t r e s s  i n t e n s i t y  K 
3 

f o r  a crack with iij2c of  0 . 1  i n c r c ; ~ ~  4 by 15.1  and 31.2 pe rcen t  as a / t  

was increased t u  0 . 8  iirid O.!), rcspcct  ivc ly .  Thc nlax lmum mode two 

s t r e s s  i n t e n s i t y  f a c t o r  K f o r  t h c  wr rcspond ing  geometries incrcascd 
2 

by 6 . 0  and 7 . ;  p e r c e n t ,  r e s p e r t i v c l y .  S i m i l a r  i n c r e a s e s  occur f o r  

o t h e r  problem geumetr ies ,  so t h c s c  f a c t o r s  can play an important r o i c  

i n  s i tmt  ions  whcrc mixcd modc I o * d  ing can occur .  

Thc normal losdirrg problem was solved in  ;I mnnncr which was 

e s s e n t i a l l y  identical t o  t h c  one uscll f o r  t h c  shea r  problcm. 'The 

a l t e r n a t i n g  method was again  used t o  o h t a i n  t h e  s t r e s s  i n t e n s i t y  

f a c t o r s ,  a l though it  was t h e  mode one f a c t o r  K which was o f  i n t e r e s t  
1  

i n  t h i s  case.  

Computcr v ; ~ l c u l n t  ions wcrt. m;de rind r e s u l t s  wcre p l o t t e d  f o r  t hc 

c a s e  i n  which 3 ur~iform normal s t r e s s  was app l i ed  t o  t h c  s u r f a c e  of 

:he crack i n  n d i r e c t i o n  which was pcrpcnd icu la r  t n  thl? p lane  o f  t h c  

c rack .  Emphasi5 was placed on s lc*nJcr  c r a c k s ,  s o  runs were made f o r  

c a s e s  in  which t h e  c rack  shnpcs :I /?c v a r i e d  from 0.05 t o  0 .3  as  crack 

depth r a t i o s  a / t  wcrc v a r i e d  from 0 . 2  t o  0.95. 

The maximum v a l u e  f o r  t h c  mode one s t r e s s  i n t e n s i t y  f a c t o r  X I  

Increases  f o r  any p a r t i c u l a r  crack depth  a / t  a s  t h e  c rack  becomes more 

s l i m i e r  with ;I tii .crc;~sing a/.!,: r ; t t i o .  L.ihewisc, K ,  ~ ~ l c r c a s c d  very  
1 

sigrti  f i c a n t  ly , I % *  t l l t b  . ~ / t  rut i o  W ~ I S  i ~ i ~ r i * i ~ q i b J  for ~ I I Y  ptr t  icu1:ir ;1/2c 

vit lur.  Very s!cndc.r. L.~-;Ic~.';  o f  I i ) w  ;1/2c r,ct ios , I I I ~  hi&;] a / t  r a t  i o s  

produce high modc onc s t r e s s  in t  c n s i r y  f a c t o r s ,  ;rnJ s o  a r e  o f  s p e c i a l  

importance t o  t h e  d e s i g n e r .  A d d i t i o n a l l y ,  t h e  maximum s t r e s s  i n t e n s i t y  



docs not always oc-ur at  thc dccpcst p a r t  or the crack, but can occur 

up t o  40 o r  50 dcgrces from t h a t  point .  

Results from t h i s  study were compared w l i h  those obtained by o ther  

researchers who ncglccted the  e f f e c t s  of the  in te rac t ion  between t h e  

f ront  and back >urfnccs.  The r e s u l t s  compnrc we1 l for  c r a ~ k s  having 

a/2c of 0.2 and g rea t e r ,  but some d i f fe rence  in  the  r e s u l t s  of the  two 

s tudies  i s  apparent f o r  lower a/2c r a t i o s ,  ind ica t ing  the importance 

of t h i s  e f f e c t .  

The r t s u l t s  of t h i s  study wcrc used t o  c a l c u l ; ~ t c  the  f r ac tu re  

toughness values fo r  (I large nuni1)cr o f  epoxy p ln tcs  on which mode onc 

t e s t s  were made. When normalized, these f r ac tu re  to.!?hness values a r c  

nearly constant ,  thus ind ica t ing  the  va l id i ty  o' the  calcul- ted r e s u l t s .  

2.0 Recommendations 

The complex loading of t o d a y ' s  s t ruc tu re s  makes e i t h e r  of t he  

two loadings discussed i n c o m ~ l c t c  or  inadequate when considered alone. 

When more than one mode is ac t ing  nlong the  crack bordcr ,  f a i l u r e  of 

the par t  beccmcs a function of a l l  nonzero s t r e s s  i n t ens i ty  f ac to r s .  

Vcry 1 i t t  l e  work has been done on dc.~cloping a theo re t i ca l ly  o r  sxper i -  

mentally obtai~ict;  rnixcd mcdc fracture c r i t e r i o n .  This c r i t e r i o n  i:; ;in 

urgent requirement i f  information such .!r, t ha t  o b t a i n d  In t h i s  study 

i s  t o  be employed ~ l s e f u l l y  i n  the  f i e l d  of  applied f rac ture  mechanics. 

As present ly developed, t hc  ;rl t c rna t ing  method i s  1 imited t o  

geometric configur,tt ions i n  wlricli thc front and Imck .zurf:)ces arc 

parallel. This r e s t r i c t i o n  on thc  r c l a t i ve  placement of the sur facss  

does not allow the so lu t ion  t o  be obtained f o r  a large c l a s s  of 

problems. A new t e c h n i l ~ e  u t i l i z i n g  a b e t t e r  rnet1.d of obtaining t h e  

sc iu t ion  t o  s t r e s s e s  i n  an uncrackcd body of general shape with general 



requirements . 

boundary conditlnn5. ;uch ac a three-dirensional f i n ~ t e  element a t h o d .  

uoul) g r t a t l y  incrc; .e the problem solvinp, c q j b i l i t i e s  of this a t h o d  

i f  i t  could bc done without extens:ve increases in couqnter time 
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FIGURES 





Figure 2 .  Arrangement of Susfacc licctanglcs for the Shear I'rohlcn~ 



Figure  3 .  Location of  P o i n t s  on t h e  Crack Surface 



Figure 4 .  Flat I l l  1 ipt ica l  Crack Subjcctcd to Nonirni form Shea r  



Figure 5. Parametric Angle @ ,  Normal and Tangential Directions 
n and t and thc Angle P for an 1:ll iptical Crack 



Figure 6.  Local Coordinate System f o r  a Typical Surface Rectangle 
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Figure 9 .  Strcss Intensity Factors for a Strrfacc Crack with Uniform 
Shear .Apl:lied I';~ralIcl to the Major A x i s ;  a/2c = 0.40 



Figure 10. :.;rcss Intensity Pfictors for a Surfacc Crock with Uniform 
Shear Applied I'rrr:~llcl to 'tlrc Major A x i s ;  a/2c = 0 .50  



cp - Degrees 

i r e  11.  S t r e s s  1ntcnl; i ty  I::ictms for n Surf i~cc   rack with IJniform 
Slicnr Applied I';lr;ll l c l  to  the Major A x i s ;  a/2c = 0.20 
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Figure 1 2 .  Stress Intensity Factors for a Surface Crack with Uniform 
Shrar Applied Para l l r l  to  the Major A x i s ;  a/2c = 0.10 
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bigure 1.5. Strcss I n t e n s i t y  t:;~ctors for ;I Surfncc Crack with Uniform 
Slrcar Applied I'i~riil l c l  to t : . ~  blojor Axis; a/2c = 0.05 





F l g ~ = e  ifaxinvm Mode Three Stress Intensity Factor for a 
S@miel!iptical Surface crack 
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I:igurc 1 7 .  Art ;~ngcmcnt o f  S i ~ r f n c c  Hcctnnglcs for thc Normal 
L.ix1cling I'roI)lc~a 
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Figure 18. S t r e s s  Intens i ty  Factor for a Surface Crack Subjected 
t o  Normal Loading; a j 2 c  = 0.30 



Figure 19.  Stress Intens i ty  Factor for a Surface Crack Subjected 
t o  Normal Loading; a /2c  = 0.20  
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Figure 20. Stress l n t c n s i t y  Factor for a Surface Crack Subjected 
t o  Normal I.oeding; a/2c = 0.10 
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APPENDIX I 

'rile   on zero teran o f  ~ h r t  ~nt i tr ix  [K ] are ~ i v e n  try the exprearion u 
below and the parameters A ,  B ,  C ,  p and q are  g iven in the t a b l e .  
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APPENDIX I 
(continued) 

M - a [Op E(k) + yp ~ ( k ) l  
P P 

P a 
P BP Y~ 



APPE3DIX I 
(continued) 



APPENDIX 11 

The following are the expreseions for K and K correeponding to 
2 3 

each term i i .  the etrees function serice, 

a and b 
0 0 0 D 

8Gn 4 
K = - 1 )  b b cos4 - a a sin$) 

(abj3/' 4' o o o o 

a and b 
1 0  1 0  

K -  32Gn b (i-V) (it ~ l n $  ~ 0 8 4  - b - coe2$) 
(at)  3:2 Q' 1 0  

1 0  a 

a and b 
0 1 0 1 

a and b 
1 1  1 1  



192Gn k b  1 
K = 

c0s3+ + b2 ; sin4 cos2+) 

(ab) 
3 1 2  $5 a 

a and b 
0 2 0 2 

a and b  
9 1 2 1 

a and b  
1 2  1 2  

-152bGn 4 1 

K = L sin24 Cos2$ + b 1 2  b2 .in3@ c0.O t ab 
(ab)3 /2  @ 

3 and b 
3 0 3 0 



a and b 
0 3 0 3 

-1536GIT + 
(ab) ' 4' 


