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Preface to First Yearly Report under Contract NAS2-7613

Work under Contract NAS2-7613 started on July 1, 1973,
It is a continuation of research conducted since February
l, 1967, under Contract NAS2-4151, Phase VII-A, B and C
Reports of June, 1973, titled, "Concepts for a Theoretical
and Experimental Study of Lifting Rotor Random Loads and
Vibrations", are the final reports under Contract NAS2-4151
and list the 9 preceding reports aund 1li published articles
and papers prepared under the contract,

Meanwhile 2 further papers generated under this Con-

tract have been published:
Crews, S. T., Hohenemser, X, H. and Ormiston, R. A.,

"An Unsteady Wake Model for a Hingeless Rotor", Journal of

-y Aircraft Vol. 10, No., 12, Dec, 1973, pp. 758-760,
Hohenemser, K, H, and Prelewicz, D, A.,, "Computer Experi-
1 ments on Periodic Systems Identification Using Rotor Blade

Transient Flapping-Tcrsion Responses at High Advance Ratio",

é AHS/NASA Ames Specialists Meeting on Rotorcraft Dynamics,
Moffett Field, California, February 1974,
[ The first paper which has been generated under the new
Contract NAS2-7613 is:

Hohenemser, K, H, and Yin, S. K., "On the Use of First 3

Order Rotor Dynamics in Multiblade Coordinates", presented

at the 30th Annual National Forum of the American Helicopter

| Sm———

Society, May 1974, Preprint 831,

o—

[R—]

ke Ll

_~ ”"""T*"‘"'" e e




II

The research goals stated in Contract NAS2-7613 are

(a) Assess analytically the effects of fuselage motions on
stability and random response. The problem is to
develop an adequate but not overly complex flight
dynamics analytical model and to study the effects |
of structural and electronic feedback, particularly
for hingeless rotors.

(b) Study by computer and hardware experiments the feasi-
bility of adequate perturbation models from non-linear
trim conditions. The problem is to extract an
adequate linear perturbation model for the purpose of ;
stability and random motion studies, The extraction is

to be performed on the basis of transient responses 1

A bt

obtained either by computed time histories or by

s

model tests, 3
(c) Extend the experimental methods to assess rotor wake-
blade interactions by using a 4-bladed rotor model
with the capability of progressing and regressing blade ;
pitch excitation (cyclic pitch stirring), by using a
4ebladed rotor model with hub tilt stirring, and by
testing rotor models in sinusoidal up or side flow.

The first yearly report under Contract NAS2-7613 is

subdivided into 3 parts, whereby Parts I, IJ, and III are
related to the research goals (a), (b), and (c) respectively.

The authors and titles of the three parts are:
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Part I,

II1

Hohenemser, K, H, and Yin, S. K., "Methods Studies

Toward Simplified Rotor-Body Dynamics",

Part II, Hohenemser, K. H. and Yin, S. K., "Computer

Experiments in Preparation of System Identification

from Transient Rotor Model Tests",

Part III, Hohenemser, K, H., and Crews, S. T., "Experiments

Part I

Part II

with a Four-Bladed Cyclic Pitch Stirring Model
Rotor".

considers a number of simplifications in rotor-body
dynamics and applies the various analytical models
to a hypothetical compound hingeless rotorcraft
with and without feedback into cyclic and collective
controls,

deals with the problem of rotor parameter ideati-
fication from noise polluted transient blade flapping
responses. Computer experiments are used in order
to gain some insight into the efficiency of various
identification schemes to be later applied to rotor

model flapping transients,

Part II1l summarizes the test results obtained with the

b~bladed cyclic pitch stirring model rotor., The
analytical blade flapping responses without con-
sidering the rotor wake are compared to the measured

responses which include the wake-blade interactions,
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? i COMPUTER EXPERIMENTS IN PREPARATION L
; ; OF SYSTEM IDENTIFICATION FROM TRANSIENT
ROTOR MODEL TESTS
i i Part II of First Yearly Report under Contract NAS2-7613
g I Abstract
; z This report is directed to the problem of developing
? system identification methods which can extract model rotor
é i- parameters with reasonable accuracy from noise polluted
é blade flapping transient measurements. Usually parameter
-‘ ; identification requires data on the state variables, that
f ? is on deflections and on rate of deflections. The small
1 - size of rotor models makes it, however, difficult to
& g measure more than the blade flapping deflections., For the )
: , computer experiments it was, therefore, assumed that only -
& gE noisy delection ineasurements are available., Parameter
- identifications were performed for one and two unknown
g- parameters, Both rotating coordinates and multiblade
? coordinates were used. It was found that data processing
’ with a digital filter allowed by numerical differentiation
ﬁ a sufficiently accurate determination of the rates of
deflection and of the accelerations to obtain reasonable
¥ —
% parameter estimates with a simple linear estimator. The “
IE estimates could be improved by computing the rates of
: deflection and the accelerations with a Kalman filter based on
ié the system equations with the first estimate of the parameters,
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Nomenclature

parameter vector

time variable blade flap damping
system function

system matrix

system input gain matrix
measurement function

measurement matrix

time variable aerodynamic blade stiffness
aerodynamic A derivative

state covariance matrix
parameter covariance matrix

covariance matrix, if reference to x or
a is unambiguous

system input noise covariance matrix
measurement noise covariance matrix

non-dimensional time in which period of
rotor revolution is 2w

measurement noise vector

system input vector including input noise
state vector

measurement vector

blade flapping angle

blade Lock numver

Y0,

blade collective pitch angle

=
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Subscripts

Superscripts

B

non-dimensional normal flow velocity,
or variable for backward sweep

rotor advance ratio
standard deviation

rotating blade flapping natural
frequency

value at time t = 0, or ccllective
first, second state variable
first, second multiblade variable for

forward and left cyclic flapping
respectively

mean value
estimated value
transpose
inverse

time derivative
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Introduction

The method of System Identification is becoming an
efficient analytical tool to correlate a set of system
equations with transient responses obtained either experi-
mentally or from a time history of a more complete analyt-
ical model of the system, The method of system identification
is particularly effective if a linear perturbation model of a
basically non-linear system is to be identified. Applications
of system identification methods to V/STOL aircraft are
described in Reference [1], applications to rotorcraft are
described in Reference [2], and computer experiments toward
single blade system identification at high advance ratio are
reported in Reference [3].

| For a linearized system of perturbation rotor equations
the frequency response functions or transfer functions com=
pletely describe the system. For hingeless rotor models
such functions have been experimentally determined, see
Refererce (4] and Part III of this report. Reference [5]
presents correlations of tne frequency responses with
analytical models., Since both the rotor frequency response
testing and the correlation with analytical rotor models is
quite laborious, an attempt will be made to extract an
adequate linear perturbation model from transient rotor
responses, This is in accordance with Research Goal (b)

stated in the Preface, The analytical model will be the

ol
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simpler, the smaller the frequency range which it is required
to cover, In an inertial system the lowest rotor natural
frequency, that of the regressing blade flapping mei-, .-
widely separated from the higher natural frequenc.us, tho.:
of the coning and advancing blade flapping modes, From
Reference [5] one can expect that in this low frequency

range the quasisteady inflow assumption will be a rea-
sonable approximation,

The simplest inflow representation is that by an
equivalent blade Lock number. In a more sophisticated
inflow representation the "L" matrix of References [5] and
[6] can be used, As explained in Part III of this report
the rotor model excitation will first consist of transients
of cyclic pitch stirring. After completion of the test
equipment to generate sinusoidal normal flow variations in
the wind tunnel, excitations with normal flow transients
will be possible, 1In this report we are concerned about
the identification of the blade Lock nunber from rotor
responses to transient normal flow inputs,

The work reported in the following is of a preliminary
nature and was intended to gain some experience with a
number of identification schemes applied to lifting rotors.
Normal flow transients were used in two forms: The first
is a rectangular normal flow pulse, the second a wave

shaped normal flow pulse, In either case it is assumed that
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the entire rotor disk experiences at a given instant of
time the same normal flow velocity, Though this assump-
tion is not very realistic, particularly for the rectan=-
gular pulse, it was used becaut~ of its convenience, since
the emphasis was on the identification methods, not the
actual identifications, The transients ware obtained with
a complete linear analysis including periodic terms. For
the identification two analytical models were used: A
complete blade representation in a rotating frame of
reference, and a simplified multiblade representation
omitting periodic terms and omitting the multiblade acceler-

ations.

The computer experiments in this report differ in their

e i ] ] ) e e B e ey

basic assumptions from those of Reference [3]. 1In

earlier computer experiments it was assumed that . ‘e

[ 2
o Wi

polluted measurements of the blade flapping and t sional

3

g. blade deflections, rate of deflections and accelerations are
e available, and that the trim responses have been removed,

- The parameter identification was thus based on pure transient
5' responses to normal flow pulses., In this report it was

. assumed that only noise polluted blade flapping deflections
li are known, not their rates or accelerations, since this will
i; be the situation in the planned transient rotor model tests,
- It was also assumed in some of the computer experiments,

that transient and trim responses had not been separated,

which requires the identification of two parameters, Because
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of the torsionally very stiff model rotor blades and the
relatively low advance ratio assumed here (u = ,4),
torsional elasticity and reversed flow effects could be

omitted,

Non-linear Simultane 's State and Parameter Estimation

The general problem of estimating rotorcraft derivatives
from noisy measurements of transients whica include the
effects of unknown turbulence excitation is defined in
Reference [2] and developed in more detail in Reference [7].
The characterization in Reference [2] as "Bayesian Approach
to Estimation" is meant to emphasize a certain interpretation
of the identification algorithm rather than a specific
"Bayesian” algorithm, The same algorithm can also be
interpreted as expression of maximization of a performance
criterion,

The general prorlem is the tullowing: Given the non-
linear process or system equations with an unknown constant
parameter vector a, unknown state vector x and known or

unknown system input vector w, including input noise

x = F(x,a) + G w , (1)
whereby a = 0 (2)

and given the measurement equations relating the state vector
to the measurement vector z with the randum measurement noise
vector v,

z = H(x) + v (3)
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determine the estimates at time t = 0 for the state vector and
for the parameter vector ;o and ;o respectively such that the
conditional probability density function p(x/z) of the state
given the measurement is maximized for each timc step. The
estimate ;o represents the optimal constant parameter vector,

In terms of the performance criterion the solution requires

maximization nf the expression

- - T -1 ~ - T -1 -~
J = (1/2)((a°-a°) Pao (ao-ao) + (xo-xo) Pxo (xo-xo)
()
' gt (w-)TQ" L(w-)dt + ét (z-0(x))TR™L(z=H(x))dt}

where a and x  are the estimates of parameter and state vector

at time t = 0 before the measurements, and where Pa and Px
. o o

are the corresponding covariance matrices before the measurements,
Parameters and state variables appear as products in the
system function F(x,a). In maximizing the expression Eq. (4)
one obtains a set of non-linear differential equations for the
estimates ; and a which are given in a form suitable for appli-~
cation to rotorcraft identification in Reference [7]. One
problem of the simultaneous estimation of state vector and
parameter vector is its sensitivity to the initial estimates
before measurements Xyr 8g0 Unless one has reasonably good
initial estimates the non-linear estimation algorithm may

grossly diverge, The quality of the estimate also depends on the

quality of the analytical model used in the identification

ST T PR L T T TR




algorithm, that is it depends on the possible modeling errors.
Furthermore, the transient used in the identification scheme
must be within the range of validity of the linear pertur-
bation model, For large amplitude transients with substan-
tial non-linear effects one cannot expect a valid iden-

tification of a linear perturbation model, And, finally,

-t - wcem VD dena
the gquality of ths estimaticn & nds on the chapracter

-

Q
h

the transient which must involve all essential modes of the
linear perturbation model, If such "global" transients are
not available, one can use a sequence of specialized
transients which in combination excite all essential modes
of the perturbation model. If the transients are too

short for an effective parameter identification, one can
'use a sequence of transients of the same type and introduce
fcr each additional transient a new set of state variables
and parameters., All sets are identified simultaneously
whereby the mean value over the set of parameters represents
an improved estimate as compared to that obtained from a
single transient, see References [2] and [7]. An identi-
fication method for the special case of steady random

system excitation is given in Reference [8]., Parameters and
states are estimated simultaneously by a non-linear algorithm,

making use of a Kalman filter representation of the system,
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Linear State Estimation

Linear estimators are obtained if one assumes that

either the parameter vector a or the state vector x is

known, In the first case the first term in Eq. (4) is
zero. Maximization of the remaining expressions in
Eq. (4) leads to the linear extended Kalman filter

equations for the estimate i, see for example Reference 1

(9].
x = Fx) ¢+ an+pED TRz - H(x)) (s)
= 3F 3F. T T 3T _-1 3H
P = 3-,—‘- P+ P(s‘;) + GQG - P(ax) R -3—)? P (5)

P stands here for P,.For a linear perturbation model F(x)

and H(x) are linear functions of the estimate x and can

also be written as F; and H; respectively, where F is the
system matrix and H the measurement matrix. Initial
estimates before measurements of state vector x, and its
associated covariance matrix P° must be made, and the

-

quality of the estimate x vs, time will depend on the

quality of these initial estimates. The covariance Eq. (6)

[

can be integrated without knowing x or z. In the absence of
system noise, Q = 0, P may asymptotically approach zero.

From then on the solution of the filter Eq. (5) will not

depend anymore on the measurzments z, The estimate x is then

identical to the result from integrating the system Eq. (1)
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for given a. As long as P is finite, the integration of
the system equation will result in a state vector x dif-

ferent from x due to the third term in Eq. (5), TFor

large measurement noise the correction term from measure- ;

ments in Eq. (5) will have little effect on the estimate ;.

RSk

since the correction term has a factor R™1.

If all state variables are measured without noise,

ok T ot B L B Y Y

Eq. (5) reverts to the system equation (1) and tnere is no |

=

need for the Kalman filter. If there are noisy measurements 4

of some state variables and no measurements of other state

&

Hezas IR st | A *

variables, Eqs. (5) and (6) will provide an optimal estimate
of all state variables given the measurements, If not all 3
parameters of the vector a are well known, and if only

incomplete noisy measurements of x exist, one can still use

Eqs., (5) and (6) to obtain an estimate §, on the condition

Bk
.

that the errors in a are not substantial. This case will be

treated in one of the later numerical examples,

ey

The estimate x(t) from Eqs., (5) and (6) is optimal given

the measurements z between time 0 and time t. For small time

»
- S

values the estimate will be less accurate than for larger

oy

time values, since fewer measurement data are used, One

method of improving the early estimates by utilizing all of

| rerter ]

the measurement data is smoothing by the backward sweep

method, see for example Reference [9]). Once x is known from

e R -]
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Eqs. (5) and (6) up to t = tg, one determines for the linear

case H(x) Hx, F(x) = Fx the variable A from

T

= —(r-PHTR"M)TA 4+ HT

R-Yz - HR) (7)

P

integrating backwards with initial condition A(tg) = O,

-

The improved estimate X of the state vector is

X - PA (8)

X
which is optimal given all measurements between t = 0 and
t = tg., One can now also improve on the mean value of the

system input which had been assumed as W before measurements.

The optimal estimate w given all measurements is

Wz ow- QG (9)

In this report we will not make use of the possibility of
improving the early estimate from Eqs. (5) and (6) by the
process of smoothing, but this possibility should be looked

into for later lifting rotor applications,

Another way of using Eqs., (5) and (6), documented for exampljl
in Reference [7], is to replace the system Eq. (1) by a relation ;f
between the state variables and the acceleration which does |
not include the parameter vector a. Assuming, for example,
that noisy acceleration measurements exist, one writes Eq, (1)
in the form
X = Gw ao g
whereby w is now a measured quantity., In addition we have

the measurements 2z, Eqs. (5) and (6) for F(x) = 0 allow -
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now to determine an optimal estimate X based on the mea-

processing is desirable before parameter identification.
In the case of our planned model tests this type of data
processing is not possible since only flapping deflections

are measured but not deflection rates or accelerations.

; surements, without knowing the system equation., Such data
E Mathematical relations between measured quantities

outside the system equations do, therefore, not exist,

3! Linear Parameter Estimation
g
We are now proceeding to the second case of a linear

r‘v

{

H estimation where we assume that by measurements and data

3 processing the state vector x and its der.ivative %X are
known, while the parameter vector a is unknown., We replace
the system equation by Eq. (2), and write the measurement

Eq. (3) in the form of the system equation

[ m—

z = ; = H(x,a) + v (11)

~ L]
The optimal estimate a based on measurements x and x is now

S—

given by Eqs. (5) and (6) after replacing x by a and con=-

p—

"
z|
1]
o
n
o
.

gidering F(a)

] a = P30T Rz - H(x,a)] (12)
|
§ ; 3H,T -1 3H

P = -P(EE) R Ya P (13)
)
|

ey
+ ek
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P stands here for P;. Since asymptotically, when the |

transient has subsided, P + 0, ; + 0, one obtains asymptotic
values for the parameter vector estimate, While noise in

the acceleration measurement of ; is of no concern - Eq, (1l1l)
includes the noise term v -, there is no provision in this
algorithm for noise in the state vector measurement x. As
shown in Reference [1] and as will become obvious also from
the later numerical examples, noise in the measurement of x
produces a bias in the estimate 3, same as non-linearities in
the system equations. It is, therefore advisable, before
applying the parameter estimation scheme of Eqs. (12) and (13),
to remove as much as possible the noise in the state variable
measurements,

The simultaneous estimation of state variables and
parameters by non-linear algorithms like those used in
References [7] and [8] requires good initial estimates to
start up the algorithm., A linear estimator like Eqs. (12)
and (13) can provide these initial estimates with little

effort, The question then is, whether the improvements

possible with the non-linear estimators are worth the
considerable additional effort. 1In the following computer
experiments only the linear estimator Eqs. (12) and (13) was
applied.

In all cases parameters could be identified with only a
few percent error, so that an improvement of the estimate was
unnecessary. The situation may change when more complex rotor

identification problems will be attacked in the future,
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Parameter Estimation from Single Blade Response

From an experimental point of view, the blade flapping
response to a transient input is easy to obtain in a
rotating reference system, In addition to the transient
blade flapping motion there is the flapping motion from
trim, which can be much larger than the transient, The
inaccuracies involved in separating out the transient from
the combined transient and trim response may be significant.
As an alternative it will be attempted to identify the
blade Lock number from the combined response,

The first transient model experiments are expected to be
conducted with transients in cyclic pitch stirring frequency.

Later experiments will be made with transient normal flow

variations., The computer experiments reported here all refer

to normal flow transients, It is assumed that the entire
rotor disk experiences at a given time the same normal flow
component, This simplified model is believed to be adequate
to provide some insight into the accuracy of the various
identification schemes. For the later actual identifications
from experimental normal flow transients a _etter analytical
model considering the gradual penetration of the rotor disk
into a normal flow wave may become necessary.

The two transient excitations studied are a rectangular
pulse and a wave shaped pulse of normal flow, They are

shown in Fig. 1 together with their flapping responses in

l‘
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the rotating reference system, The response is obtained
from the linear analysis assuming a blade Lock number of
Y = 5, a rotating blade natural frequency of w; = 1.2, and
an advance ratio of u = .4, (The tip loss factor is .97)

A straight rigid blade elastically hinged at the rotor
center was assumed,

Identification with Eqs. (12) and (13) requires data
on deflections, rate of deflections and accelerations, that
is x and x must be known, The rates of deflection and the
accelérations can either be obtained from the solution of
the response problem, or by numerical differentiation of
the deflection response, If the latter is not noise pol-
luted it was found that either method is satisfactory and
leads to the same estimates. The identification of the
blade Lock number has been performed for 4 types of responses:

1, Unpolluted transient
2, Noise polluted transient
3, Unpolluted combined transient and trim response

4, Noise polluted combined transient and trim response

Estimation from Unpolluted Response

We begin with the first type., The question arises, what

initial conditions Yo and Po to select. In order to cover

the most unfavorable case, ;o = 0 was selected in all examples,

VA NG ) G NG DR ) GG g g g ] Py ) G R e Dy UU.l“'nm

' i
}
et}
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The accuracy of the estimate can be improved, though not by
much, if a better initial estimate is used, say ;o = 3, ;
where actually vy = 5. With respect to the initial value P,
it was found that the accuracy of the estimate was usually g
better for higher values of P,. An upper limit of P, is

given by the selected time step for the numerical integration

of Eq., (13)., P is negative and should not be so large as to :

reduce P excessively for one time step, These time steps
were selected to be .1 in a non-dimensional time which
makes the period of one rotor revolution 2w,

Fig. 2(a) shows for the rectangular normal flow pulse
the estimate ; and its covariance P vs, time for P, = 1000

and 2000, The final value of ; is obtained after less than

one rotor revolution, The higher initial covariance gives :

the better estimate which has an error of about 2%. Fig. 2(b)
shows for the wave shaped normal flow pulse the estimate

; and its covariance P, Now the asymptotic value of Y is
delayed to somewhat less than 2 rotor revolutions, Again

the higher initial covariance gives the better estimate,
Because of the slow build-up of the flapping transient

evident from Fig. 1(b) the identification takes longer and is
for the same initial value of P, less accurate. As the

curve for P, =.5000 shows, a bettéf accuracy of about 1%

can be obtained for a higher initial P,. The higher values

of P, for the wave shaped pulse as compared to the rectangular
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pulse are admissable since the maximum down slopes of the

P curves are much lower for the wave shaped pulse,

Estimation from Noise Polluted Digitally Filtered Response

We now proceed to the second type of response, the
noise polluted transient, Simulated noisy measurements

were obtained by adding at each of the time points used for

ot B Sk B L Y Y R -

the numerical integration (time step size .l) samples
from zero mean computer generated Gaussian random sequences.

Contrary to Reference [3] the noise was only added to the

computed blade flapping deflections. The problem now is,

Py

&
L J

how to best obtain the rates of deflection and the acceler-

ations needed for the identification algorithm of Eqs. (12)

ey

and (13), Kalman filtering of the data without using the

Lo

system equations, as was performed in Reference [7], is not

possible here, since no mathematical relations between the

Y]
P

test data outside the system equations exist, One way is to

filter the data with a zero phase shift digital filter and

S———y
& ovenr 4

then differentiate the filtered data twice for insertion

"

into Eqs. (12) and (13), 1In selecting the cut-off frequency

.
.

of the digital filter, one wishes to remove the noise without

]
[T

distorting the response too much, Three cut-off ranges of

the digital filter (see Reference 10) were tried: .6 to .9, &

Snaniss
—

1.7 tO 1.9' 305 tO 309.

[ ]
» vl

It was found that the accuracy of the parameter identi-

fication is best for the middle range, The standard deviation

s

of the added white noise was 05 = .2 and is pictured in Fig. 1
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in comparison to the response curves. This is a substan-
tially higher noise level than can be expected in the rotor

model measurements. A value of og = .05 was alro investi-

gated, The initial value of the covariance was P, = 2000,
Figs. 3(a) and 3(b) show for P, = 2000 the estimate vy
and it variance P/P, for the rectangular and wave shaped

pulse respectively. The cases og = +2 and .05 are presented,

For the rectangular pulse the error in the final estimate is
much larger than for the unpolluted case, as can be seen by
comparing Figs. 2(a) and 3(a). The error is about 12% for
og = .05 and 16% for og = .2 as compared to 2% when using
the unpolluted transient., For the wave shaped pulse the
errors in the estimate are little affected by the noise
pollution, as can be seen by comparing Figs., 2(b) and 3(b)
for Py = 2000, For og = .05 the error is about

4%, for og = .2 it is twice as large, Due to the noise
pollution the Y curves do not have an asymptote within the
time range shown up to t = 12, but fluctuate to a certain
degree. The reason why noise pollution has a lower effect
on the accuracy of the estimate for the wave shaped pulse

is probably the more gradual onset of the response which
leads to smaller initial errors in the differenti:l quotients
of the noise polluted filtered response, Fig, 4 shows for
the two types of normal flow pulses the rate of blade

flapping deflection with and without noise pollution obtained

P O e Ve s Bl Qe D Mg Bl B B DA BB BB ;I-

By
[

i
P
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by differentiating the noise polluted and filtered response,

dobintdidi

There is for both types of pulses a sizeable error

in § from noise pollution which is magnified after another

[T,

differentiation to obtain é.

o Ao sl

Improved Estimation from Kalman Filtered Response i

o

Once an approximate value for the parameter is known,

S Wil b 7,

one can attempt to improve on the resul' . ° the identification

by applying the Kalman filter Eqs., (5) a»1 (6) to the

ool

measured response, using the approximation for the parameter,
One can either apply the Kalman filter directly to the noisy
data, or one can first smooth the data with a digital filter
as was done before, It was found that the second method is

the better one, if one ignores the Kalman filter result with

o

- | ] s
respect to B and only uses B and 8 from the Kalman filter. :

In other words, rather than numerically differentiating the
digitally filtered deflection function 8, one lets the
Kalman filter with the approximate value of the parameter y

perform the differentiation,

The system and measurement equations corresponding to

Eqs. (5) and (6) are

%, l' 0 1 X, 6 o 0
N + | (lu)
i2 l(Y/?)K(t)+u12 (y/2)C(t) x, O-(v/i’)mA A
z, 1 o0 xi]
= (1s)
22 0 0 x2J

Bl PR el e el e Deikd Deied aeid Guiiid  Peing Dl  Dway e i ey B N e

E - 4
C L e AT - )
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where X, = 8, X, = 8. It was found that the Kalman filter

wit? the digitally filtered measurements yields better values

e T —-

é. 8 than the direct numerical differentiations, though v

is in error.

R i

The method was applied to the case of Fig, 3(a) whr e with

08 = .2 the final estimate was v = 4,2, This value was

Bussg gy

inserted into the Kalman filter equations rather than the

correct value vy = 5,0, A unity matrix was assumed for R,

= ey« ’

since for Q = 0 and R diagcaal the sclution does not depend

e

on the individual P and R but only on PR-l. After setting

R =1 the initial value of P was selected as

LR

2 0
EE P, = (15)
; 0 2
EE This is the highest value consistent with the requirement
! R
‘ that the initial slope P, does not result in an excessive
Aﬁ change of the components of P over the time increment
lg At = ,1, At first an initial covariance matrix
10 0
ﬁ P, = (16a)
: 0 10

had been selected, The reduction of Pll during the first

v

time increment was Apll = 9, which is clearly excessive.
The diagonal terms of the covariance matrix obtaine? by

numerically integrating Eq. (6) are shown in Fig. 5.

e B e B S

- -
0 ol

g
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Fig. 6 shows a comparison of the flapping rates and
accelerations between the exact values (gg = 0), the values
obtained from numerical differentiation of the filtered
polluted 8 data, and the values from the Kalman filter
with v = 4,2 instead of vy = 5,0, It is evident, how much
better the Ka) .an filter values for 8 and E are as compared
to the values from numerical differentiation, It was found
that the E estimate from the Kalman filter is considerably
less accurate than the filtered measurement data used in
the Kalman filter, The 3 estimate should, therefore, be
discarded and the swoothed measured data for 8 should be
used in the identification algorithm of Eqs. (12) and (13)
together with the Kalman filter estimates ;, ;. Fig. 7
‘compares the estimate ; and associated variance from Fig, 3(a)
with the values obtained with the Kalman filter for vy = 4,2
instead of 5.0. The large improvement by using é. § from
the Kalman filter is evident, Fig. 7 suggeststhe possibility
of an iteration procedure for the simultaneous estimation
of state variables and parameters, The new value of ; could
be used for an improved estimate of 8 and ; to be inserted
once more into the identification algorithm of Eqs. (12)
and (13), The errors of the smoothed measurements of 8 and
additional modeling errors will remain, so that a true
convergence of the iteration method cannot be expected,

Nevertheless the results of one or two iterations would

provide csome clues as to the accuracy of the parameter estimate,
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Estimation from Combined Transient and Trim Response

The separation of transient and trim response is not
straight forward. One way of achieving such a separation
is to Fourier analyze the pure trim response, compute the
Fourier terms for the sample points used in analyzing the
transient and subtract these Fourier terms from the
combined transient and trim response. Small differences of
large numbers may occur in this process and may cause
errors in the result, In case of the pitch stirring model
rotor another complication arises, The trim response
cannot be measured while the eccentric which produces
cyclic pitch stirring is installed. Only after replacing
the eccentric by a pin without eccentricity, can the trim
response be measured in a separate test run. In this case
the separation of the transient and the trim response will
involve errors from setting up identical test conditions in
two different test runs, It was, therefore, believed to
be of importance to look into the possibility of estimating
Y directly rrom the combined transient and trim response,

The rotor control plane angle of attack for the planned
transient model tests is nominally zero, Whatever actual
small angle of attack may exist is considered by a correction
of the collective pitch angle, We will thus assume, that the
entire trim response is caused by an equivalent collective
pitch angle which is not well known and which must be included

in the parameter estimation.
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For the computer experiments a step input of a collective
pitch angle of 2 was performed at time zero, and the normal
flow transient input, either in form of a rectangular or a
wave shaped pulse was started at time 12, The identification
was performed between time 12 and time 20, Fig. 8 shows
the transient responses and the combined transient and trim
responses for the two types of normal flow pulses. The
two parameters to be identified with Eqs. (12) and (13) are
vy and v 6, = §. Figs. 9(a) and 9(b) show the estimates
; and § from the unpolluted corbined trim and transient
responses to the two types of normal flow pulses given in
Figs. 1 and 2. The initial values for the covariance matrix
were

PY = 2000 0

0 Pﬁ = 2800
[

It is seen that vy is identified with about the same accuracy
as for the transients alone, Figs. 2(a) and 2(b), while § is also
identified with good accuracy.
The case of noise pollution with og = .1 was also studied,
The digital filter method with a cut-off frequency range of
2,5 to 2.9 resulted in very good estimates for ;, both for
the rectangular normal flow pulse and for the wave shaped
pulse, The estimate for § = y8, was 10% low in both cases.

The filter cut-off frequency prange of 2.5 - 7.3 probably

was not optimal,
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The method described in the preceding section was also
applied to the two parameter estimation case, inserting inte
the Kalman filter equations values of v = 4.5 instead Jf
5.0 and § = 9,0 instead of 10, Again the identificatio:
was performed with the noise polluted fog = ,1) diyitally
filtered (cut-off frequency 2.5 - 2.9) values for B an.
with the Kalman filter estimates for E and 5. Figs. 30(a)
and 10(b) show the results,

The method works very well also for the two parumeter
identification and provides an excellent estimate ; and
somewhat reduced accuracy for 3. It may be possible to
improve the latter by selecting a more favorable digital

filter cut-off frequency.,

Parameter Estimation from Multiblade Responses

When using multiblade flapping coordinates, see Reference
[11], there exists the possibility to introduce two different
equivalent blade Lock numbers, one for those aerodynamic
terms which refer to rotor pitching and rolling moments,
and a different one for the aerodynamic terms which refer
to rotor thrust.. It is intended to try this concept out in
future rotor model tests, Here the results of some
computer experiments are presented which are based on a
multiblade coordinate representation, using however only &
single value of the blade Lock number to be identified,

The responses to the normal flow pulses shown in Fig. 1 were
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obtained from the complete equations including the periodic
terms. They are shown in Fig. 11, For the identification a
simplified system description has been used, ser Rerfarance
[12Jand Part I of this report, which omits periodic terms
and the multiblade accelerations., As indicated in Fig. 11,
only the rates of the multiblade coordinates B,, B;, By, are
used, Thus a =~ 'eling error is introduced into the \
identification algorithm.

Fig. 12 shows the results of the identification per-

formed with Eqs. (12) and (13). The initial variance was

P, = 1000, the initial estimate y(o) = 0, The error

covariance matrix was assumed to be

10 0 0
R = 0 10
0 0 10

Four cases are shown in Fig., 12,

1, The responses are unpolluted by noise. The identification
for the wave shaped pulse, Fig, 12(b), is excellent, For
the rectangular pulse, Fig. 12(a), there is a 7% bias
error because the simplified model cannot follow the
rapid changes in response, indicated in Fig, 1l1l(a).

As explained in Part I of this report the first order
dynamics rotor representation is good for low frequencies

but introduces increasing errors for increasing frequencies,
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2. The unpolluted response is filtered with a digital
filter with a cut-off frequency range of 1,7 -~ 1.9, The
result of the identification from the rectangular pulse,
Fig. 12(a), is greatly improved, resulting now in only
2% bias error, For the wave shaped pulse the identi-
fication is not much changed from the case without
filter, since the wave input excites the higher fre-
quencies of B to a lesser degree as is seen in Figs.
11(a) and 11l(b).

3. Response deflections and their rates are polluted by
zero mean computer generated Gaussian sequences with
standard deviations indicawed in Figs, ll(a) and (b),
This results for the rectangular pulse in a large
bias error of 18%, for the wave shaped pulse in a
smaller bias error of 8%,

4, The noise polluted responses are Filtered with the same
filter as in case 2, Now the identification yields
very accurate results for the wave shaped pulse, somewhat

less accurate results for the rectangular pulse,

One can conclude from these experiments that filtering of
the responses with a digital filter with cut-off frequency
range of 1,7 - 1,9 not only removes much of the bias error
from the noise pollution, but it also removes the modeling

bias error. It was found that filtering with a cut~-off

[
R e e i L i L e e e s i T e s i e i e S i T S G T o e e e Do g e PR
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frequency range of ,6 - ,9 gave poor y identification,
particularly in the rectangular pulse case, Using a
smoother pulse shape with less high frequency contents
and increasing the filter cut-off frequency range ot 1.7 =-
1,9 resulted in very accurate identification in spite of
the simplified analytical model,

As mentioned before, only deflections will be measured

in the transient rotor model tests, A further set of

computer experiments assumed, therefore, that only 8,, BI’
871 are avajilable and pulluted by noise with a standard

deviation indicated in Fig. ll. The deflections were

o B L

filtered with a cut-off frequency range of 1,7 - 1,5 and

. * o
numerically differentiated to obtain 8,, B8y, BII' The

-

identification result is shown in Fig. 13, The identifjcation
of vy is excellent for the wave shaped pulse, less good for

the rectangular pulse, Probably the latter case could be

e I -

T improved in a similar way as was shown for the single blade ?
;ﬁ g by applying a Kalman filter with the estimated vy to obtain ;
s 'y 2 2

M ? Boo BI, BII rather than applying numerical differentiation, i

amomny |

g
§
]
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The computer experiments were performed with a simple
linear parameter identification algorithm, The estimation
of blade Lock number and collective pitch angle was based
on the availability of noise polluted blade flapping
measurements without knowing the flapping rates or
accelerations, It was found that the linear estimator
worked very well provided the data were properly processed
by applying a digital filter with an optimal cut-off
frequency between 2 and 3., The filter removed much of the
bias in the estimate caused by the noise pollution, and
it also removed most of the bias in the multiblade estimate
from modeling errors incurred by omitting periodic terms
and multiblade flapping accelerations. Substantial improve-
ment of the estimates were possible if the numerical
differentiation of the polluted filtered flapping deflection
was replaced by Kalman filtering with the system equations
using first estimates for the parameters, A continuation
of the computer experiments is planned to encompass more

complex situations of rotor parameter identification,
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Figure Captions
Fig. 1 Normal Flow Pulse and Associated Flapping Response

for w = M4, v = 5, w; = 1,2
{a) Rectangular Pulse
(b) Wave Shaped Pulse

Tige 2 Estimate Y and Associated Variance P/P, for
Unpolluted Responses

(a) Rectangular Pulse
(b) Wave Shaped Pulse

Fig. 3 Estimate y and Associated Variance for Polluted i
(6g = «2 and ,05) Filtered (1.7 - 1.9) Responses. j

(a) Rectangular Pulse

41 A o

(b) Wave Shaped Pulse

Fig. 4 Ra*es of Flapping Deflection 8
for 0, = 0 and .2 from Numerically Differentiating

Filtered Response 8,

B L il Tl A

(a) Rectangular Pulse
(b) Wave Shaped Pulse

Fig., § Diagonal Terms of Covariance Matrix for Kalman
Filter, Rectangular Pulse,

Fig., 6 Flapping Rates and Accelerations, Exact Values
(og = 0), from Numerically Differentiating
figtered Response B8 (08 = ,2), and from Kalman
Filter with v = 4,2,

0

Fig. 7 Estimates y and Associated Variance P/P, for
6g = +2, Digital Filter and Kalman Filter for
Yy = 4,2 Rectangular Pulse,

Fig. 8 Transient Response and Combined Transient and
Trim Response for 6, = 2,

(a) Rectangular Pulse

(b) Wave Shaped Pulse
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Fig, 9

Fig., 10

Fig., 11

Fig. 12

Fig., 13
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Estimates y and 8§ and Diagonal Components of
Assocjiated Covariance Matrix from Unpolluted
Responses with 6, = 2

(a) Rectangular Pulse

(b) Wave Shaped Pulse

CEstimates ; and 3 and Piagonal Components of
Associated Covariance Matrix for Polluted (og = .1),

Filtered (2,5 = 2,9) Responses Using Kalman
Filter with y = 4,5 and 6§ = 9,

(a) Rectangular Pulse
(b) Wave Shaped Pulse

Normal Flow Pulse and Associated Multiblade
Flapping Responses for u = .4, v = 5, u; = 1,2

(a) Rectangular Pulse

(b) Wave Shaped Pulse

Estimate ; and Associated Variance P for
Unpolluted, Unpolluted Filtered (1,7 - 1.9),

Polluted,and Polluted Filtered Multiblade
Responses, Bo, BI’ BII’ Bo' ﬂ;. Br given,

(a) Rectangular Pulse
(b) Wave Shaped Pulse

Estimate ; and Associated Variance P for Polluted,
F_ltered (1.7 - 1,9), Differentiated Multiblade
Responses , Bgy BI’ BII given.

(a) Rectangular Pulse

(b) Wave Shaped Pulse
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Fig. 1 (b)
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